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TRAVELLING GRAPHS FOR THE
FORCED MEAN CURVATURE MOTION
IN AN ARBITRARY SPACE DIMENSION

 R MONNEAU, J-M ROQUEJOFFRE
 V ROUSSIER-MICHON

Dedicated to Henri Berestycki

A. – We construct travelling wave graphs of the form z = −ct+ φ(x),
φ : x ∈ RN−1 7→ φ(x) ∈ R, N ≥ 2, solutions to the N -dimensional forced mean curvature mo-
tion Vn = −c0 + κ (c ≥ c0) with prescribed asymptotics. For any 1-homogeneous function φ∞,
viscosity solution to the eikonal equation |Dφ∞| =

√
(c/c0)2 − 1, we exhibit a smooth concave

solution to the forced mean curvature motion whose asymptotics is driven by φ∞. We also describe
φ∞ in terms of a probability measure on SN−2.

R. – Nous construisons des ondes progressives sous la forme de graphes z = −ct + φ(x),
φ : x ∈ RN−1 7→ φ(x) ∈ R, N ≥ 2, solutions du mouvement par courbure moyenne forcée
Vn = −c0+κ (c ≥ c0) en dimensionN d’espace et avec un comportement asymptotique prescrit. Pour
toute solution de viscosité φ∞, 1-homogène en espace, de l’équation eikonale |Dφ∞| =

√
(c/c0)2 − 1,

nous mettons en évidence une solution régulière et concave du mouvement par courbure moyenne
forcée dont le comportement asymptotique est donné parφ∞. Nous décrivons aussiφ∞ en terme d’une
mesure de probabilité sur la sphère SN−2.

1. Introduction

1.1. Setting of the problem

The question investigated here is the description of the travelling wave graph solutions to
the forced mean curvature motion in any dimensionN ≥ 2, that is written under the general
form

(1) Vn = −c0 + κ

where Vn is the normal velocity of the graph, κ its local mean curvature and c0 a given strictly
positive constant to be defined later. A graph satisfying (1) can be given by the equation
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218 R. MONNEAU, J.-M. ROQUEJOFFRE AND V. ROUSSIER-MICHON

z = u(t, x) where u : (t, x) ∈ R+ × RN−1 7→ u(t, x) ∈ R is a solution to the parabolic
equation

(2)
ut√

1 + |Du|2
= −c0 + div

Å
Du√

1 + |Du|2

ã
, t > 0 , x ∈ RN−1.

Indeed, at any time t > 0 fixed, the outer normal to the subgraph {(x, z) ∈ RN−1 × R |
z ≤ u(t, x)} is given by

~n =
1√

1 + |Du|2

(
−Dxu

1

)
its normal velocity Vn by (0, ∂tu)T · ~n while its mean curvature by κ = − div(x,z) ~n, see [6].

A travelling wave to (2) is a solution of the form u(t, x) = −ct + φ(x) where
φ : x ∈ RN−1 7→ φ(x) ∈ R is the profile of the wave and c ≥ c0 is some given constant
standing for its speed. Thus φ satisfies the following elliptic equation

(3) − div

Ç
Dφ√

1 + |Dφ|2

å
+ c0 −

c√
1 + |Dφ|2

= 0 , x ∈ RN−1.

1.2. Connection with reaction diffusion equations

This work should provide us a better understanding of the multidimensional solutions to
the non linear scalar reaction diffusion equation

(4) ∂tv = ∆v + f(v) , t > 0 , (x, z) ∈ RN−1 × R

where v : (t, x, z) ∈ [0,+∞) × RN−1 × R 7→ v(t, x, z) ∈ R and, especially the case of
travelling waves in dimensionN . In the case of a “bistable” nonlinearity f , that is to say when
f is a continuously differentiable function on R satisfying

(i) f(0) = f(1) = 0

(ii) f ′(0) < 0 and f ′(1) < 0

(iii) there exists θ ∈ (0, 1) such that f(v) < 0 for v ∈ (0, θ), f(v) > 0 for v ∈ (θ, 1)

(iv)
∫ 1

0

f(v) dv > 0,

it is well-known [10] that there exists a one-dimensional travelling front v(t, z) = φ0(z+ c0t)

solution to (4) with N = 1. The speed c0 is unique and strictly positive by (iv) while the
profile φ0 is unique up to translations. This result defines the constant c0 > 0 that appears
in Equation (1).

In the caseN = 2, multidimensional solutions to (4) are well understood. Paper [7] proves
the existence of conical travelling waves solutions to (4), and paper [8] classifies all possible
bounded non constant travelling waves solutions under rather weak conditions at infinity. In
particular, it is proved in [8] that c ≥ c0 and, up to a shift in x ∈ R, either u is a planar front
φ0(±x cosα+ z sinα) with α = arcsin(c0/c) ∈ (0, π2 ] or u is the unique conical front found
in [7].

In higher dimensions, less is known. In [7], Hamel, Monneau and Roquejoffre or in [13],
Ninomiya and Taniguchi proved the existence of conical travelling waves with cylindrical
symmetry whose level sets are Lipschitz graphs moving away logarithmically from straight
cones. Some special, non cylindrically symmetric pyramidal-shaped solutions (see Taniguchi
[14] and references therein) are also known in any dimension N ≥ 3.

4 e SÉRIE – TOME 46 – 2013 – No 2
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Thus, in order to get a better understanding of the mechanisms at work, we further
the idea of bridging reaction-diffusion equations with geometric motions. In particular,
travelling wave graph solutions to the forced mean curvature motion go back to Fife [5]. He
proved (in a formal fashion) that reaction-diffusion travelling fronts propagate with normal
velocity

Vn = −c0 +
κ

t
+O

Å
1

t2

ã
, t� 1.

For a mathematically rigorous treatment of these ideas, we refer for instance to de Mottoni,
Schatzman [11]—small times, smooth solutions context—and Barles, Soner, Souganidis
[1]—arbitrary large times, viscosity solutions context.

1.3. Main results

Our Theorem 1.1 below states that, given a 1-homogeneous solution φ∞ to the eikonal
equation derived from (3) (i.e., the equation obtained by removing the curvature term)
there exists a smooth solution φ to the forced mean curvature motion Equation (3) whose
asymptotic behaviour is prescribed by φ∞. Here is the precise result.

Theorem 1.1 (Existence of solutions with prescribed asymptotics in dimension N )
Let N ∈ N \ {0, 1}, α ∈ (0, π2 ], c0 > 0 and c = c0/ sinα. Choose φ∞ a 1-homogeneous

viscosity solution to the eikonal equation

(5) |Dφ∞(x)| = cotα , x ∈ RN−1 .

Then there exists a smooth concave solution φ ∈ C∞(RN−1) to (3) such that

(6) φ(x) = φ∞(x) + o(|x|) as |x| → +∞.

This is the most possible general result. However, due to the possible complexity of a
solution to the eikonal Equation (5), it is useful to specialize our result to the particular case
of a solution with a finite number of facets.

Theorem 1.2 (Solutions with finite number of facets in dimension N )
Let N ∈ N \ {0, 1}, α ∈ (0, π2 ], c0 > 0 and c = c0/ sinα. Choose φ∗ a viscosity solution to

the eikonal Equation (5) given for any x ∈ RN−1 by

(7) φ∗(x) = inf
ν∈A

(−(cotα) x · ν + γν)

where A is a finite subset of cardinal k ∈ N∗ of the sphere SN−2 and γν are given real numbers.
Then there exists a unique smooth concave solution φ ∈ C∞(RN−1) to (3) such that

(8)


− 2 ln k

c0 sinα
≤ φ− φ∗ ≤ 0 , x ∈ RN−1

lim
l→+∞

sup
dist(x,E∞)≥l

|φ(x)− φ∗(x)| = 0

where E∞ is the set of edges defined as

E∞ = {x ∈ RN−1 |φ∞ is not C1 at x}

with the 1-homogeneous function

φ∞(x) = inf
ν∈A

(−(cotα) x · ν) .
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In space dimension N = 3, we obtain a more precise result by considering solutions
having a finite number of gradient jumps. Those solutions are still more complex than the
infimum of a finite number of affine forms. Here is the precise result.

Theorem 1.3 (Solutions with finite number of gradient jumps and N = 3)
Let α ∈ (0, π2 ], c0 > 0 and c = c0/ sinα. Choose φ∞ a 1-homogeneous viscosity solution to

the eikonal Equation (5) in dimension N = 3 with a finite number of singularities on S1. Then,
there exist

(1) a 2π-periodic continuous function ψ∞ : θ ∈ [0, 2π] 7→ ψ∞(θ) ∈ [− cotα, cotα] and a
finite number k ∈ N\ {0} of angles θ1 < · · · < θk in [0, 2π) such that

φ∞(r cos θ, r sin θ) = rψ∞(θ) , (r, θ) ∈ R+ × [0, 2π).

Moreover, for any i ∈ {1, . . . , k},
(a) Either ∀θ ∈ [θi, θi+1], ψ∞(θ) = −(cotα) and we set σi = 1.
(b) Or{
∀θ ∈

î
θi,

θi+θi+1

2

ó
, ψ∞(θ) = −(cotα) cos(θ − θi)

∀θ ∈
î
θi+θi+1

2 , θi+1

ó
, ψ∞(θ) = −(cotα) cos(θ − θi+1)

and we set σi = 0.

By convention, θk+1 = 2π + θ1 and σk+1 = σ1. If k ≥ 2, then σiσi+1 = 0 for any
i ∈ {1, ..., k}.

(2) a smooth concave function φ ∈ C∞(R2) solution to Equation (3) such that when |x| goes
to infinity

φ(x) = φ∗(x) +O(1)

where

(9) φ∗(x) = − 2

c0 sinα
ln

Å∫
S1

e
c0 cosα

2 x·ν dµ(ν)

ã
and µ is the non negative measure on S1 with finite mass determined by ψ∞ as follows:
We set µ =

∑k
i=1 µi where for any fixed λ0 > 0, we set

(a) If σi = 1, then µi = 1I(θi,θi+1) dθ + λ0(δθi + δθi+1
)

(with the exception for k = 1: µ1 = 1I(θ1,θ1+2π) dθ).
(b) If σi = 0, then µi = λ0(δθi + δθi+1

).

We plan to use our travelling graphs for the forced mean curvature motion exhibited in
Theorems 1.1 to 1.3 in order to construct multi-dimensional travelling fronts to the reaction
diffusion Equation (4); we plan to do it in a forthcoming paper.

That Equation (5) prescribes the asymptotic behaviour of (3) has nothing surprising:
let ε > 0 and denote by φε the scaled function

φε(x) = εφ
(x
ε

)
, x ∈ RN−1.

Since φ is a solution to (3), φε satisfies

−ε div

Ç
Dφε√

1 + |Dφε|2

å
+ c0 −

c√
1 + |Dφε|2

= 0 , x ∈ RN−1.

Let ε go to zero. If adequate estimates forφε are known, (a subsequence of) (φε)ε>0 converges
to a function φ∞ satisfying (5).
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The proof of Theorem 1.1 is done by a sub and super solutions argument. We first
construct a family of smooth sub-solutions to (3), which will give us some better insight in
the equation. This step is quite general, and works in any space dimension. Then, we will
construct a Lipschitz super-solution whose rescaled asymptotics is prescribed by φ∞ and this
will give us a smooth solution whose asymptotic behavior is not well precise. To get a better
asymptotics of the super-solution prescribed by the sub-solution, this will require a more
delicate matching procedure which will limit us, for the moment, to any space dimension N
with a finite number of facets (Theorem 1.2) or to the space dimension N = 3 and a finite
number of gradient jumps (Theorem 1.3).

The rest of this paper is organized as follows. In Section 2, we build and characterize
all 1-homogeneous solutions to the eikonal Equation (5). In Section 3, we detail Perron’s
method in our context, and explain why it will yield a smooth concave solution. Sub-
solutions are built in Section 4, and super-solutions in Section 5. Finally, Section 6 sums
up previous constructions to prove Theorems 1.1 and 1.2. Section 7 presents a more precise
approach in dimensionN = 3 and details the proof of Theorem 1.3. An appendix is devoted
to the Laplace’s method that we use in our estimates.
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2. Eikonal equation

In this section, we classify the continuous viscosity solutions to the eikonal equation in
any dimension N ≥ 2:

(10) |Dφ∞(x)| = cotα , x ∈ RN−1

where α ∈ (0, π2 ] is some given angle. In a first subsection, we are interested in the general
case. In a second one, we reduce our study to 1-homogeneous functions and give a better
description of those solutions in order to use them in both Sections 4 and 5.

2.1. Characterization of solutions to (10) in any dimension N

For any unit vector ν ∈ SN−2 and γ ∈ (−∞,+∞], let us define the affine map

φν,γ(x) = −(cotα) ν · x+ γ ∈ (−∞,+∞] , x ∈ RN−1.

Proposition 2.1 (A Liouville theorem for the eikonal equation). – Let φ∞ ∈ C(RN−1).
Then φ∞ is a viscosity solution to the eikonal equation (10) if and only if there exists a lower
semi-continuous map γ : SN−2 → (−∞,+∞] such that

(11) φ∞(x) = inf
ν∈SN−2

φν,γ(ν)(x).

Moreover φ∞ is 1-homogeneous if and only if for all ν ∈ SN−2, γ(ν) ∈ {0,+∞}.
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This result is most certainly known. Because we not only need the result but also an insight
of the construction, we give a complete proof.

Proof of Proposition 2.1. – We first show the direct implication. Let φ∞ ∈ C(RN−1) be
a viscosity solution to (10). We shall prove that φ∞ is (cotα)-Lipschitz and concave before
giving its characterization as an infimum of affine maps.

Step 1: φ∞ is (cotα)-Lipschitz. – We simply use the fact that φ∞ satisfies

(12) |Dφ∞| ≤ cotα on RN−1.

For any ρ > 0, ε ≥ 0 and x0 ∈ RN−1, let us define

Ψ(x) =

φ∞(x0) + |x− x0| cotα+
ε

ρ− |x− x0|
if |x− x0| < ρ

+∞ if |x− x0| ≥ ρ

and for any λ ≥ 0, we define
Ψλ(x) = λ+ Ψ(x).

For any ε > 0, we can check that Ψλ is a strict supersolution where it is finite and for x 6= x0,
i.e.,

(13) |DΨλ(x)| > cotα on Bρ(x0)\ {x0} , if ε > 0.

Then we define
λ∗ = inf

{
λ ≥ 0, Ψλ ≥ φ∞ on RN−1

}
.

Assume that λ∗ > 0. Then this implies that there exists a point xλ ∈ Bρ(x0)\ {x0} such that{
Ψλ∗ ≥ φ∞ on RN−1

Ψλ∗ = φ∞ at x = xλ.

Because Ψλ∗ is a test function from above for φ∞, we get a contradiction between the
subsolution inequality (12) and the strict supersolution inequality (13) for ε > 0. Therefore
λ∗ = 0, i.e., for x ∈ Bρ(x0):

φ∞(x)− φ∞(x0) ≤ |x− x0| cotα+
ε

ρ− |x− x0|
which gives in the limit ε→ 0:

φ∞(x)− φ∞(x0) ≤ |x− x0| cotα for any x ∈ Bρ(x0)

and by symmetry and because ρ > 0 is arbitrary, we get

|φ∞(x)− φ∞(x0)| ≤ |x− x0| cotα for all x, x0 ∈ RN−1.

Step 2: φ∞ is concave. – Because φ∞ is a Lipschitz stationary viscosity solution to the
evolution equation

ut +H(Du) = 0 , x ∈ RN−1 where H(p) =
1

2
(p2 − cot2 α) , p ∈ RN−1

we can apply Lemma 4 page 131 in [4], and get that φ∞ satisfies for any t > 0

φ∞(x+ x′)− 2φ∞(x) + φ∞(x− x′) ≤ C0
|x′|2

t
, for all (x, x′) ∈ R2(N−1)
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and we can check that we have C0 = 1. Letting t go to infinity shows that φ∞ is concave
in RN−1.

Step 3: Tangent cone. – Since φ∞ is Lipschitz continuous, it is differentiable almost every-
where by Rademacher’s theorem. Let D ⊂ RN−1 be the set of differentiability of φ∞ and fix
x0 ∈ D. Since φ∞ is concave, for any x ∈ RN−1, we have

φ∞(x) ≤ φ∞(x0) +Dφ∞(x0) · (x− x0).

Passing to the infimum on D, we get for any x ∈ RN−1,

φ∞(x) ≤ ψ(x) := inf
x0∈D

φ∞(x0) +Dφ∞(x0) · (x− x0).

Thus, ψ and φ∞ are (cotα)-Lipschitz functions that coincide on D which is a dense set
on RN−1. Therefore, they are in fact equal on RN−1. Using Equation (10), we finally have

φ∞(x) = inf
x0∈D

−(cotα) ν(x0) · x+ g(x0)

where for any x0 ∈ D, ν(x0) = −Dφ∞(x0)/ cotα ∈ SN−2 and g(x0) = φ∞(x0)

−x0 ·Dφ∞(x0) ∈ R. Defining γ as

(14)

γ : SN−2 → (−∞,+∞]

ν 7→

{
infx0∈A g(x0) if A := {x0 ∈ D | ν(x0) = ν} 6= ∅
+∞ otherwise

we get the desired characterization (11). Since φ∞ is continuous, we also deduce from (11)
that γ is lower semi-continuous.

Step 4: The 1-homogeneous case. – We assume that φ∞ is a 1-homogeneous continuous
viscosity solution to (10). Then for any x0 ∈ RN−1, there exists p ∈ RN−1 with |p| = cotα

such that by (11)

∀x ∈ RN−1 , φ∞(x) ≤ φ∞(x0) + p · (x− x0).

On the one hand, considering x = 0, we get

p · x0 ≤ φ∞(x0)

because φ∞ is 1-homogeneous. On the other hand considering λx instead of x and taking
the limit λ→ +∞, we get

ψ(x) := p · x ≥ φ∞(x) with equality at x = x0 .

Therefore if we call Lφ∞ the set of linear functions ψ satisfying ψ ≥ φ∞ such that
|∇ψ| = cotα, we have

φ∞ = inf
ψ∈ Lφ∞

ψ

because this is true at any point x0 ∈ RN−1.

Step 5: Conclusion. – Conversely, if a function φ∞ is given by (11), then it is straightforward
to check that φ∞ is a viscosity solution to (10).
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Remark 2.2. – In dimension N = 2, the previous proposition simply reads: If N = 2 and
α ∈ (0, π2 ], φ∞ is a viscosity solution to (10) if and only if φ∞ is affine or if there exists
(x0, y0) ∈ R2 such that

(15) φ∞(x) = −(cotα) |x− x0|+ y0 , x ∈ R.

Moreover, φ∞ is 1-homogeneous if and only if y0 = 0.
The proof of this proposition can also be done directly from definitions of viscosity solutions

and we omit the details. Notice however the link with [8]: two-dimensional reaction diffusion
waves are either planar fronts or the unique (up to translations) conical front whose level sets
are asymptotics to the graph of φ∞ just described.

2.2. The 1-homogeneous case

As stressed in Theorem 1.1, we only build solutions to the forced mean curvature motion
Equation (3) whose asymptotics is prescribed by a 1-homogeneous solution to the eikonal
Equation (10). Therefore, it is worth emphasizing this particular case.

Notice however that there exist viscosity solutions to the eikonal Equation (10) defined
in RN−1 that are not homogeneous of order 1. For instance, consider solutions given by
(15) with x ∈ RN−1 and y0 6= 0. We can also consider any translation of a 1-homoge-
neous solution. Another example is for instance given in dimension N = 3 by a function
φ∞ = infi=1...4 φi where (φi)i∈{1...4} are four planar solutions defined for x = (x1, x2) ∈ R2

by

φ1(x) = −(cotα) x1 + 2 φ2(x) = (cotα) x1 + 2

φ3(x) = −(cotα) x2 φ4(x) = (cotα) x2.

It is straightforward to check that φ∞ satisfies |Dφ∞| = cotα in the viscosity sense and that
it is not homogeneous of order 1 since there exists λ > 0 such that φ∞(λ, 0) 6= λφ∞(1, 0).

In any case, a solution φ∞ to the eikonal Equation (10) is concave (see the proof of
Proposition 2.1, step 2). Therefore the function g : λ ∈ R+∗ 7→ g(λ) = φ∞(λx)/(λ|x|) ∈ R
is decreasing in λ > 0. Since φ∞ is (cotα)-Lipschitz, g is bounded from below and for any
x ∈ SN−2, the limit

lim
λ→+∞

φ∞(λx)

|λ|
exists and φ∞ is asymptotically homogeneous. Thus we have a fairly general understanding
of what is going on by restricting ourselves to homogeneous solutions to Equation (10).

Proposition 2.3 (A countable characterization of homogeneous solutions)
Let φ∞ ∈ C(RN−1). Then φ∞ is a 1-homogeneous viscosity solution to the eikonal

Equation (10) if and only if there exists a sequence (νi)i∈N of SN−2 such that

(16) φ∞(x) = inf
i∈N
−(cotα) νi · x.

Proof of Proposition 2.3. – Let φ∞ ∈ C(RN−1) be a 1-homogeneous viscosity solution
to (10). According to Proposition 2.1, there exists a lower semi continuous function γ defined
from SN−2 to {0,+∞} such that

φ∞(x) = inf
ν∈SN−2

φν,γ(ν)(x) , x ∈ RN−1.
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Then K = {ν ∈ SN−2 | γ(ν) = 0} is a compact set of SN−2. We claim (see Lemma 2.4 and
Corollary 2.5 below) that there exists a sequence (νi)i∈N of SN−2 such that

K =
⋃
i∈N
{νi}.

Thus, φ∞(x) can be described as the infimum over ν ∈ K of the linear functions −(cotα) x · ν.
Since ∪i∈N{νi} is dense in K, φ∞(x) can also be written as the infimum over i ∈ N of the
linear functions −(cotα) x · νi. This ends the proof of Proposition 2.3 since the converse
implication is straightforward.

Lemma 2.4 (Decomposition of a compact set of SN−2 in cubes). – For any compact
set K of SN−2, there exists a countable family (Qi)i∈N of closed cubes of RN−1 such that

(17)


∀n ∈ N , K ⊂

⋃
i≥n

Qi

∀i ∈ N , Qi ∩K 6= ∅
lim sup
i→+∞

diam(Qi) = 0.

Proof of Lemma 2.4. – We built this decomposition into cubes by induction. Let
C0 = [−1, 1]N−1 be the first cube of width 2. Thus K ⊂ C0. We divide C0 in 2N−1 smaller
cubes of width 20 = 1. Since C0 ∩ K is not empty, there exist some of the smaller cubes
called C1,i for i = 1 . . . n1 whose intersection with K is not empty. Then, 1 ≤ n1 ≤ 2N−1

and

K ⊂
n1⋃
i=1

C1,i.

In the same way, for i = 1, ..., n1, we divide each cube C1,i into 2N−1 smaller cubes of
width 2−1 and keep only those whose intersection withK is not empty. We call themC2,k for
k = 1 . . . n2 and 1 ≤ n2 ≤ 2N−1n1. Then, one can easily verify that K ⊂ ∪k=1...n2C2,k.

Assume the cubes Cj,i are built for j ∈ N, i = 1 . . . nj and 1 ≤ nj ≤ 2j(N−1) such that
K ⊂

⋃nj
i=1 Cj,i

∀i = 1 . . . nj , Cj,i ∩K 6= ∅
diam(Cj,i) = 2−j+1.

Then we construct the cubes Cj+1,i as follows. We divide each cube Cj,i into 2N−1 smaller
cubes of width 2−j and keep only those whose intersection withK is not empty. We call them
Cj+1,i for i = 1 . . . nj+1 and 1 ≤ nj+1 ≤ 2N−1nj ≤ 2(j+1)(N−1). By construction, it is easy
to verify that 

K ⊂
⋃nj+1

i=1 Cj+1,i

∀i = 1 . . . nj+1 , Cj+1,i ∩K 6= ∅
diam(Cj+1,i) = 2−j .

The induction is then proved. We thus construct a countable family of cubes that we
recall (Qj)j∈N for convenience with the desired assumptions (17). This ends the proof of
Lemma 2.4.
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Corollary 2.5 (Representation of a compact set of SN−2). – For any compact set K

of SN−2, there exists a sequence (νj)j∈N of SN−2 such that

K =
⋃
j∈N
{νj}.

Proof of Corollary 2.5. – For K a compact set of SN−2, we define (Qj)j∈N a family of
cubes as proposed in Lemma 2.4. For any j ∈ N, we choose νj ∈ K ∩ Qj . Then, it is
straightforward to check that ∪j∈N{νj} ⊂ K. Regarding the converse inclusion, we fix
x0 ∈ K and ε > 0. By (17), there exists nε ∈ N such that the width of cube Qi is smaller
than ε provided i ≥ nε. Since K ⊂ ∪i≥nεQi, there exists iε ≥ nε such that

x0 ∈ Qiε and |x0 − νiε | ≤ ε
√
N − 1.

This shows the density of ∪j∈N{νj} in K and ends the proof of Corollary 2.5.

3. Perron’s method and comparison principle

In this section, we are concerned with the forced mean curvature motion equation

(18) − div

Ç
Dφ√

1 + |Dφ|2

å
+ c0 −

c√
1 + |Dφ|2

= 0 , x ∈ RN−1

with the condition at infinity

(19) φ(x) = φ∞(x) + o(|x|) , x ∈ RN−1

where φ∞ is a homogeneous viscosity solution to |Dφ∞| = cotα found in Section 2
with α = arcsin(c0/c) ∈ (0, π2 ]. We choose to solve (18) using Perron’s method with sub
and super-solutions (see [3] or [6]). Let us first recall the existence process and clarify the
regularity of the solution in the following

Proposition 3.1 (Existence of a solution to (18) in dimension N ). – Let N ∈ N \ {0, 1},
(c0, c) ∈ R2 such that c ≥ c0 > 0. Assume that φ∗ is a viscosity sub-solution and φ∗ a viscosity
super-solution to (18) such that φ∗ ≤ φ∗ on RN−1. Then,

(i) there exists a function φ ∈ [φ∗, φ
∗] viscosity solution to (18).

(ii) Moreover, if φ∗ is concave, and satisfies the following technical condition:

(20) there exists p ∈ RN−1 such that lim sup
|x|→+∞

φ∗(x)− p · x
|x|

< 0,

then φ can be chosen concave and smooth.

Proof of Proposition 3.1. – We build the solution φ using Perron’s method directly in the
framework of viscosity solutions to (18), that is to say φ is chosen as the maximal sub-
solution to (18) (see the user’s guide to viscosity solutions [3]).

Step 1: Concavity. – We apply a result due to Imbert (see [9]) that we first recall. Denote F
the following Hamiltonian

F (p,M) = − trM√
1 + |p|2

+
tr(M · (p⊗ p))
(1 + |p|2)3/2

+ c0 −
c√

1 + |p|2
, (p,M) ∈ RN−1 × R(N−1)×(N−1)

sym

where R(N−1)×(N−1)
sym is the set of (N − 1)-square symmetric matrices.
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Proposition 3.2 (Imbert’s Proposition 5 in [9]). – Letu be a lower semi-continuous and epi-
pointed function. If u is a supersolution to

F (Du(x), D2u(x)) = 0 , x ∈ RN−1

then, so is its convex envelope.

In our context, −φ∗ is epi-pointed because of the technical condition (20). Thus, the
maximal sub-solution φ to (18) is concave (otherwise Imbert’s result stated in Proposition 3.2
contradicts the maximal property of φ). Then, φ is a concave viscosity solution to (18).

Step 2: Regularity. – Once concavity is at hand, a Lipschitz bound is automatically available
from the Equation (18) itself:

|Dφ(x)| ≤ cotα , x ∈ RN−1

where α ∈ (0, π2 ] is such that c0 = c sinα. Then F becomes uniformly elliptic, thus allowing
forC1,1 estimates (see Theorem 4 in [9]). A bootstrap argument then shows that the solution
is C∞. This concludes the proof of Proposition 3.1.

Remark 3.3. – Notice that the condition (20) is hidden in the statement of Proposition 9 in
[9]. Thus, the proof of Proposition 5 in [9] uses Proposition 9.

It now remains to find sub and super-solutions to (18).

4. Sub-solution

In this section we build smooth sub-solutions to the forced mean curvature Equation (18)
as global solutions to a viscous eikonal equation and we do believe that they are really close
to the desired solutions.

4.1. Sub-solutions as solutions to a viscous eikonal equation

We have the following

Lemma 4.1 (Sufficient condition for a sub-solution to (18)). – Fix α ∈ (0, π2 ], c0 > 0 and
c = c0/ sinα. Let φ∗ be a concave smooth solution to

(21) −∆φ∗ =
c0 sinα

2

(
cot2 α− |Dφ∗|2

)
, x ∈ RN−1

such that

(22) |Dφ∗(x)| ≤ cotα , x ∈ RN−1.

Then φ∗ is a smooth sub-solution to Equation (18).
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Proof of Lemma 4.1. – Let φ∗ be any concave function verifying (21) and (22). Since φ∗
is smooth and concave, we have

N [φ∗] := − div

Ç
Dφ∗√

1 + |Dφ∗|2

å
+ c0 −

c√
1 + |Dφ∗|2

=− ∆φ∗√
1 + |Dφ∗|2

+
D2φ∗(Dφ∗, Dφ∗)

(1 + |Dφ∗|2)
3
2

+ c0 −
c√

1 + |Dφ∗|2

≤ 1√
1 + |Dφ∗|2

(
−∆φ∗ + c0

»
1 + |Dφ∗|2 − c

)
.

From (22) and c0 = c sinα, we deduce that

cot2 α− |Dφ∗|2 =

Å
c

c0

ã2

−
(»

1 + |Dφ∗|2
)2

≤ 2c

c0

Å
c

c0
−

»
1 + |Dφ∗|2

ã
.

Using Equation (21) satisfied by φ∗, we get

N [φ∗] ≤
1√

1 + |Dφ∗|2

Å
c

c0
−
»

1 + |Dφ∗|2
ãÅ

2c

c0

c20
2c
− c0

ã
= 0.

Thus, φ∗ is a sub-solution to (18).

As it is well-known, Equation (21) is readily transformed into a linear one by the Hopf-
Cole transform

φ̃∗(x) = exp

Å
−c0 sinα

2
φ∗

Å
2x

c0 cosα

ãã
, x ∈ RN−1 , α 6= π

2

where φ̃∗ is a positive solution to

(23) −∆φ̃∗(x) + φ̃∗(x) = 0 , x ∈ RN−1.

From [2], a positive solution φ̃∗ to (23) has the form

φ̃∗(x) =

∫
SN−2

eν·x dµ(ν) , x ∈ RN−1,

where µ is a non negative measure on SN−2 with finite mass.

Now, for any non negative measure µ on the sphere SN−2, let us define

(24) φ∗(x) = − 2

c0 sinα
ln

Å∫
SN−2

e
c0 cosα

2 x·ν dµ(ν)

ã
, x ∈ RN−1 , α ∈

(
0,
π

2

]
.

By construction, φ∗ is a smooth solution to (21). Let us now prove that φ∗ is a sub-solution
to Equation (18), with all the requirements.

Lemma 4.2 (Inequalities for the derivatives of φ∗). – Let µ be a non negative measure
on SN−2 with finite mass, α ∈ (0, π2 ], c0 > 0 and c = c0/ sinα. Define φ∗ as in (24). Then φ∗
is a smooth concave solution to (21) and its gradient is uniformly bounded, that is to say, for
any (x, ξ) ∈ RN−1 × RN−1,

(25) |Dφ∗(x)| ≤ cotα , D2φ∗(x)(ξ, ξ) ≤ 0.
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Proof of Lemma 4.2. – Let µ and φ∗ be so defined. We have

Dφ∗(x) = −(cotα)
Fν(x)

F1(x)
, x ∈ RN−1

where for any continuous (scalar or vector) function f defined on SN−2

Ff (x) =

∫
SN−2

e
c0 cosα

2 x·νf(ν) dµ(ν).

Remark that if we define for some fixed x ∈ RN−1,
∫

SN−2 f(ν) dµx(ν) =
Ff (x)
F1(x)

, then µx is a

probability measure on SN−2. We can then apply Jensen’s inequality to the convex function
y 7→ |y|2. This gives

(26)
∣∣∣∣Ff (x)

F1(x)

∣∣∣∣2 =

∣∣∣∣∫
SN−2

f(ν) dµx

∣∣∣∣2 ≤ ∫
SN−2

|f(ν)|2 dµx =
F|f |2(x)

F1(x)

for any continuous function f defined on SN−2. Applying this inequality to f(ν) = ν, we get
the desired bound on the gradient of φ∗: |Dφ∗(x)| ≤ cotα.

Regarding the concavity property of φ∗, we use the same type of arguments. Indeed, for
any ξ ∈ RN−1 and x ∈ RN−1, we have

D2φ∗(x)(ξ, ξ) = −c0 cos2 α

2 sinα

Ç
Ff2(x)

F1(x)
−

Å
Ff (x)

F1(x)

ã2
å

where f is the continuous function defined on SN−2 by f(ν) = ν · ξ. Applying again Jensen’s
inequality (26), we conclude that D2φ∗(x)(ξ, ξ) ≤ 0 for any ξ ∈ RN−1 and x ∈ RN−1 which
shows that φ∗ is concave.

Finally, we proved the following proposition:

Proposition 4.3 (Existence of a sub-solution to (18)). – Fix α ∈ (0, π2 ], c0 > 0 and
c = c0/ sinα. Let µ be a non negative measure on SN−2 with finite mass. Define φ∗ as in (24).
Then, φ∗ is a smooth concave sub-solution to (18).

Remark 4.4. – The way we choose the measure µ is decisive in the asymptotic behavior of
the sub-solution φ∗ built as in Proposition 4.3. Indeed, if we want the subsolution (and hence the
solution) to the mean curvature Equation (18) to follow asymptotically some given solution φ∞
to the eikonal Equation (10), we will have to choose the measure µ carefully. In that procedure,
information collected in Section 2 will help.

Of course, it will be also very interesting to assess whether each sub-solution built with a
general probability measure gives rise to a solution to the mean curvature Equation (18).

5. Super-solution

A natural super-solution to the forced mean curvature Equation (18) is a viscosity solution
φ∞ to the eikonal Equation (10). Indeed, φ∞ satisfies (in the distributional and viscosity
sense)

− div

Ç
Dφ∞√

1 + |Dφ∞|2

å
+ c0 −

c√
1 + |Dφ∞|2

≥ 0 , x ∈ RN−1.
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However, this super-solution does not satisfy the right comparison with the previous sub-
solution φ∗. For instance, if N = 3, φ∞ is the radially symmetric viscosity solution to the
eikonal Equation (10) and φ∗ the sub-solution associated with the Lebesgue measure µ = dθ

on [0, 2π] as in (24), then we can compute the asymptotic behavior of both functions φ∞
and φ∗ for x ∈ R2 with |x| large enough using Laplace’s method (see Appendix 8). We then
observe that the sub-solution φ∗ is above the super-solution φ∞ in this area. This contradicts
the crucial assumption φ∗ ≤ φ∗ on R2 in the Perron’s method (see Proposition 3.1).

5.1. Super-solutions as infimum of hyperplanes

Since we do believe that the sub-solution is close to the viscosity solution to the forced
mean curvature Equation (18) at infinity, we prefer to change the super-solution. In the
general case of dimension N , we use the countable characterization of the solution φ∞ to
the eikonal Equation (10) that we want to approach (see Proposition 2.3).

Proposition 5.1 (Existence of a super-solution to (18)). – Fix α ∈ (0, π2 ], c0 > 0 and
c = c0/ sinα. Choose φ∞ a 1-homogeneous solution to the eikonal Equation (10). Define
(νi)i∈N the sequence of SN−2 given by its countable characterization in Proposition 2.3.

For any sequence (λi)i∈N such that λi > 0 and
∑
i∈N λi < +∞, we set

φi(x) = −(cotα) x · νi −
2

c0 sinα
lnλi , i ∈ N , x ∈ RN−1

and

φ∗(x) = inf
i∈N

φi(x) , x ∈ RN−1.

Then, φ∗ is a concave continuous super-solution to (18).

Proof of Proposition 5.1. – Since φi are exact solutions to the forced mean curvature
Equation (18), it is clear that φ∗ is a super-solution to that equation. As the infimum of affine
functions, it is concave and continuous.

Remark 5.2. – This construction is very easy. However, it is not clear whether the technical
condition (20) is satisfied or not. It is even clear that when the set of {νi}i∈N is finite of cardinal
less or equal to N − 1, this condition is NOT verified. We will see later (see Step 4 of the proof
of Theorem 1.1) how to modify the sub- and super-solutions in order to satisfy condition (20)
and then pass to the limit to recover the general case.

Remark 5.3. – In the case when the set {νi}i∈N is infinite, the convergence of
∑
λi forces

(λi)i∈N to go to zero and the sequence (− lnλi)i∈N grows as i goes to infinity.
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6. General existence results

Now equipped with sub and super-solutions as well as a Perron’s method, we are able to
prove existence results. The general case in dimension N ≥ 2 is the easiest one since the
asymptotics is less precise. Let us explain our ideas in details depending on the degree of
precision we want to obtain in our construction.

Let N ∈ N \ {0, 1}, α ∈ (0, π2 ], c0 > 0 and c = c0/ sinα. It is worth noticing that some
of our constructions do not work for α = π/2. However, this case is obvious and leads to
planar fronts. Therefore, we restrict ourselves to α ∈ (0, π2 ).

6.1. Proof of Theorem 1.1

Step 1: Sub and super-solutions. – Chooseφ∞ a 1-homogeneous continuous viscosity solution
to the eikonal Equation (10) in RN−1. By Proposition 2.3, there exists a sequence (νi)i∈N
of SN−2 such that

φ∞(x) = inf
i∈N
−(cotα)νi · x.

Let µ be the probability measure on SN−2 defined as

µ =
∑
i∈N

λiδνi

where (λi)i∈N are chosen so that λi > 0 and
∑+∞
i=0 λi = 1.

Build the sub-solution φ∗ as in (24) with the above measure µ. Then by Proposition 4.3,
φ∗ is a smooth concave sub-solution to the mean curvature motion Equation (18). Build
a concave continuous super-solution φ∗ by Proposition 5.1 as the infimum of hyperplanes
where the (λi)i∈N and (νi)i∈N are defined by the choice of µ. For any x ∈ RN−1,

φ∗(x) = − 2

c0 sinα
ln

(
+∞∑
i=0

λi e
c0 cosα

2 νi·x

)
≤ − 2

c0 sinα
ln

Ä
λi e

c0 cosα

2 νi·x
ä
.

Since the last inequality holds for any i ∈ N, we have

φ∗(x) ≤ inf
i∈N

Å
−(cotα)νi · x−

2

c0 sinα
lnλi

ã
= inf
i∈N

φi(x) = φ∗(x)

and the super-solution φ∗ is above the sub-solution φ∗.

Step 2: Asymptotics of sub and super-solutions. – Let us now precise their asymptotics: we
claim that as |x| goes to infinity

(27) φ∗(x) = φ∞(x) + o(|x|) and φ∗(x) = φ∞(x) + o(|x|).

To prove such a claim, the idea is to compare φ∞(x) with the limits as ε goes to zero
of εφ∗(x/ε) and εφ∗(x/ε). In particular, we will prove the sequence of three inequalities: for
any x ∈ RN−1

(28) φ∞(x) ≤ lim
ε→0

εφ∗(x/ε) ≤ lim
ε→0

εφ∗(x/ε) ≤ φ∞(x)

which proves the desired claim (27).
The first step of the present proof leads easily to the second inequality in (28) sinceφ∗ ≤ φ∗

on RN−1. As far as the first inequality is concerned, we have for any i ∈ N and x ∈ RN−1,

|x · νi| = |x| cos(θx − θi) ≤ |x| cos δx
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where δx is the angular distance between x/|x| and K := ∪i∈N{νi} . Thus,

φ∗(x) ≥ − 2

c0 sinα
ln
(
e
c0 sinα

2 |x| cos δxµ(SN−2)
)

= −(cotα)|x| cos δx = inf
ν∈K
−(cotα) x · ν = φ∞(x)

where µ(SN−2) =
∑
i λi = 1. Thus φ∞ ≤ φ∗ on RN−1 and the homogeneity of φ∞ gives

the first inequality of (28).
Regarding the last inequality in (28), we know that for any x ∈ RN−1,

φ∗(x) ≤ φi(x) = −(cotα) x · νi −
2

c0 sinα
lnλi.

Since limε→0 εφi(x/ε) = −(cotα) x · νi, it is clear that

lim
ε→0

εφ∗
(x
ε

)
≤ inf
i∈N
−(cotα) x · νi = φ∞(x).

This ends the proof of the three inequalities (28) and hence of (27).

Step 3: Existence of a solution. – By Proposition 3.1, there exists a function φ ∈ [φ∗, φ
∗]

viscosity solution to (18) and by the previous step, φ verifies the right asymptotics

φ(x) = φ∞(x) + o(|x|).

However, in the statement of Theorem 1.1, we claim that there exists a smooth concave
solution to (18) and the above construction does not provide such information. By Propo-
sition 3.1, the regularity and concavity of the solution are at hand if the super-solution φ∗

satisfies the technical assumption (20). If it does not, we will first modify the sub and the
super-solutions in order to satisfy (20), then get a concave solution, and in a last step pass
to the limit to find a solution (still concave) between φ∗ and φ∗.

Step 4: Regularity and concavity. – Let us consider for any ε > 0

(29) φε∗(x) = − 2

c0 sinα
ln

Å∫
SN−2

e
c0 cosα

2 x·ν dµε(ν)

ã
, x ∈ RN−1

with µε = µ+ εµ1 where

µ1 =
∑
±

N−1∑
j=1

δ±ej

denoting (ei)i∈{1,...,N−1} as the canonical orthonormal basis of RN−1. In the same way, we
define

φε∗(x) = inf
i∈N, j=1...N−1, ±

Å
−(cotα) x · νi −

2

c0 sinα
lnλi,−(cotα) x · (±ej)−

2

c0 sinα
ln ε

ã
.

Then, φε∗ is a sub-solution, φε∗ is a super-solution and φε∗ ≤ φε∗. It satisfies (20) for any
ε > 0 and for p = 0. By Proposition 3.1, there exists a concave smooth solution φε satisfying
Equation (18), with φε being (cotα)-Lipschitz such that

φε∗(x) ≤ φε(x) ≤ φε∗(x) , x ∈ RN−1.

Finally, we take the limit as ε goes to zero. The sub-solutions φε∗ go to φ∗. The super-solutions
φε∗ converge to φ∗. This follows from the expression of super-solutions as an infimum of
hyperplanes, those associated to the ε weights going to +∞. Moreover by Ascoli’s theorem,
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(φε)ε>0 converges (up to a subsequence) to some concave and (cotα)-Lipschitz function φ0

solution to (18) and satisfying

φ∗ ≤ φ0 ≤ φ∗.
Again a bootstrap argument shows that φ0 is smooth. Therefore, φ0 is the intended solution
to the mean curvature Equation (18).

6.2. Proof of Theorem 1.2

Step 1: Existence of a solution. – Chooseφ∗ the viscosity solution to the eikonal Equation (10)
given by

(30) φ∗(x) = inf
ν∈A

(−(cotα) x · ν + γν) , x ∈ RN−1

where A = {ν1, . . . , νk} is a finite subset of the sphere SN−2, k ∈ N∗ and γν are any given
real numbers. We build a sub-solution φ∗ as in Proposition 4.3

(31) φ∗(x) = − 2

c0 sinα
ln

(
k∑
i=1

λi e
c0 cosα

2 x·νi

)
, x ∈ RN−1

where λi is determined by the relation γνi = − 2
c0 sinα lnλi for i = 1 . . . k. Let us notice that

in the particular case when A is finite, the super-solution built in Proposition 5.1 coincides
with the solution φ∗ to the eikonal equation. As in Section 6.1, φ∗ ≤ φ∗ and the assumptions
of Proposition 3.1 i) are satisfied. Thus, there exists a function φ ∈ [φ∗, φ

∗] viscosity solution
to (18). Dealing as in Section 6.1 step 4, we can even find a smooth concave solution still
denoted φ ∈ [φ∗, φ

∗]. It now remains to study φ∗ − φ∗ to get a precise asymptotics of the
solution φ.

Step 2: Asymptotics (first line of (8)). – Setting

φi(x) = −(cotα) x · νi −
2

c0 sinα
lnλi

we have

φ∗(x) = − 2

c0 sinα
ln

(
k∑
i=1

e−
c0 sinα

2 φi(x)

)
≥ − 2

c0 sinα
ln

Å
ke
− c0 sinα

2

(
min

i=1,...,k
φi(x)

)ã
= − 2

c0 sinα
ln

Å
ke−

c0 sinα

2 φ∗(x)

ã
= φ∗(x)− 2 ln k

c0 sinα
.

This implies in particular that

(32) − 2 ln k

c0 sinα
≤ φ∗ − φ∗ ≤ 0

which shows the first line of (8).

Step 3: Asymptotics (second line of (8)). – We now notice that the set E∞ of edges (where
φ∞ is not C1) is characterized by

E∞ =

ß
x ∈ RN−1, max

ν∈A
x · ν = x · νi0 = x · νi1 , with νi0 6= νi1 and (νi0 , νi1) ∈ A2

™
.
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For each index i0 ∈ {1, ..., k}, let us denote the convex set

Ki0 =

ß
x ∈ RN−1, x · νi0 = max

ν∈A
x · ν

™
.

Then
∂Ki0 ⊂

⋃
j 6=i0

(νi0 − νj)⊥.

For x ∈ Int(Ki0), let xi1 ∈ ∂Ki0 ⊂ E∞ such that

dist(x,E∞) = |x− xi1 | with xi1 ∈ (νi0 − νi1)⊥.

For j 6= i0, we define the orthogonal projection of x on (νi0 − νj)⊥ as

xj = Proj|(νi0−νj)⊥(x).

In particular |x− xj | ≥ |x− xi1 |. Moreover

x · νj = (x− xj) · νj + xj · νj = (x− xj) · νj + xj · νi0
= (x− xj) · (νj − νi0) + x · νi0 = x · νi0 − |νj − νi0 ||x− xj |
≤ x · νi0 − δ dist(x,E∞)

with
δ = min

ν 6=ν′, ν,ν′∈A
|ν − ν′| > 0.

Therefore

φ∗(x) = − 2

c0 sinα
ln

(
k∑
i=1

λie
c0 cosα

2 x·νi

)

≥ − 2

c0 sinα
ln

(
k∑
i=1

λie
c0 cosα

2 (x·νi0−δ dist(x,E∞))

)
and then for x ∈ Ki0 , we have

φ∗(x) ≥ φ∗(x) ≥ φ∗(x)− 2

c0 sinα
ln

Å
1 +

∑
i6=i0

λi
λi0

e−
c0 cosα

2 δ dist(x,E∞)

ã
.

This shows that
lim

l→+∞
sup

dist(x,E∞)≥l
|φ∗(x)− φ∗(x)| = 0

which implies the second line of (8).

Step 4: Uniqueness. – To end the proof of Theorem 1.2, it only remains to prove uniqueness
of the above smooth solution φ to the mean curvature Equation (3) with the prescribed
asymptotics given by φ∗. Let φ and φ be two solutions to (3) with the asymptotics (8). Let

ε := inf
{
ε′ > 0 | ∀x ∈ RN−1 , φ(x) + ε′ ≥ φ(x)

}
then for any x ∈ RN−1,

φ(x) + ε ≥ φ(x)

and there exists a sequence of points (xn)n such that

φ(xn) + ε− φ(xn)→ 0 as n goes to infinity.
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Let us define for any x ∈ RN−1{
φn(x) = φ(x+ xn)− φ(xn),

φ
n
(x) = φ(x+ xn)− φ(xn).

Then, up to the extraction of a subsequence, we have as n goes to infinity

φn → φ∞ and φ
n
→ φ∞

with a uniform convergence on any compact sets of RN−1. Moreover φ∞ and φ∞ solve
Equation (3) and satisfy

φ∞ + ε ≥ φ∞ with equality at x = 0.

From the strong maximum principle, we deduce that for any x ∈ RN−1,

(33) φ∞(x) + ε = φ∞(x).

Let us now assume that ε > 0. Because we have

E∞ ⊂
⋃

ν 6=ν′, (ν,ν′)∈A2

(ν − ν′)⊥ =: Ê∞

we deduce that there exists C > 0 such that for any R ≥ 1 and any x ∈ RN−1, we have

(34) sup
y∈BR(x)

dist(y,E∞) ≥ sup
y∈BR(x)

dist(y, Ê∞) = R sup
y∈B1(x/R)

dist(y, Ê∞) ≥ CR

with

C = inf
z∈RN−1

(
sup

y∈B1(z)

dist(y, Ê∞)

)
.

We easily check by contradiction that C > 0. Therefore by (8), let us choose R large enough
such that

sup
dist(y,E∞)≥CR

|φ(y)− φ∗(y)| ≤ ε

4
for φ = φ, φ.

Then using (34), we get for some yn ∈ BR(xn) with dist(yn, E∞) ≥ CR,

inf
y∈BR(xn)

|φ(y)− φ(y)| ≤ |φ(yn)− φ(yn)| ≤ |φ(yn)− φ∗(yn)|+ |φ∗(yn)− φ(yn)| ≤ ε

2
.

This implies that

inf
y∈BR(0)

|φ∞(y)− φ∞(y)| ≤ ε

2

which is in contradiction with (33). Therefore ε = 0 and we get φ ≥ φ. By symmetry, we
also get φ ≥ φ, which implies φ = φ and shows the uniqueness of the solution. This ends the
proof of Theorem 1.2.

7. Proof of further results in dimension N = 3

In this section, the space dimension is N = 3 and we denote any x ∈ R2 with its polar
coordinates (r, θx) ∈ R+ × [0, 2π) such that x = r(cos θx, sin θx).
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7.1. Classification in dimensionN = 3 of solutions to the eikonal equation with a finite number
of singularities

This subsection gives alternative statement and proof of Proposition 2.3 in dimension
N = 3, in the special case of a finite number of singularities (i.e., gradient jumps).

Proposition 7.1 (Classification with a finite number of singularities, N = 3)

Let α ∈ (0, π2 ], c0 > 0 and c = c0/ sinα. Choose φ∞ a 1-homogeneous viscosity solution to
the eikonal Equation (10) in dimension N = 3 with a finite number of singularities on S1. Then
the (1) of Theorem 1.3 holds.

Proof of Proposition 7.1. – From Proposition 2.1, we know that there exists a (non
empty) compact set K = γ−1({0}) ⊂ S1, such that

(35) φ∞(x) = inf
ν∈K

(−(cotα) ν · x) .

Thus, for any θ ∈ [0, 2π), ψ∞(θ) = φ∞(cos θ, sin θ) defines a continuous function with
values in [− cotα, cotα]. Firstly ψ∞|K = − cotα. Moreover for any maximal interval (a, b)

contained in S1\K, we necessarily have

ψ∞(θ) =

{
−(cotα) cos(θ − a) if θ ∈

[
a, a+b2

]
,

−(cotα) cos(θ − b) if θ ∈
[
a+b
2 , b

]
.

Therefore φ∞ has a singularity (gradient jump) at θ = a+b
2 . If ψ∞ only has a finite number

of singularities, then we get the characterization of ψ∞ given in the (1) of Theorem 1.3. This
ends the proof of Proposition 7.1.

Remark 7.2. – Notice that without assuming that φ∞ has a finite number of singularities
on S1, the set K could be a Cantor set in (35).

Remark 7.3. – Notice that the particular function φ∞(x) = −(cotα)|x| is the analogue
(at the level of the eikonal equation) of the level sets of cylindrically symmetric solutions to
reaction diffusion equation, constructed in [8] by Hamel, Monneau and Roquejoffre. Similarly,
the particular case where the graph of φ∞ is a pyramid is also the analogue of solutions
constructed by Taniguchi in [14].

7.2. Explicit construction of super-solutions in dimension N = 3

In the particular case N = 3, we construct super-solutions by hand and try to be more
precise than in Section 5, above all when ψ∞ is constant and equal to −(cotα) on some
interval I. In that case, we construct our super-solution by hand. We explain our ideas on
different elementary pieces that we bring together in the proof of Theorem 1.3 to build a
global super-solution φ∗. Those different elementary pieces are: a cone, an edge or an arc.
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7.2.1. The cone case

Lemma 7.4 (Radially symmetric solutions). – Let φ∞ be the viscosity solution to eikonal
Equation (10) whose graph is the straight cone i.e., φ∞(x) = −(cotα)|x| for x ∈ R2. Then,
there exists a unique radially symmetric solution φc (unique up to an additive constant) to the
forced mean curvature Equation (18), satisfying

φ′c(0) = 0 and φc(x) = φ∞(x) + o(|x|).

Moreover φc is concave and |Dφc| ≤ cotα. In the case α = π/2, φc is zero (up to an additive
constant). Otherwise, as |x| goes to infinity, its asymptotics is more precisely given (up to a
constant C ∈ R) by

(36) φc(x) = −(cotα)|x|+ 1

c0 sinα
ln |x|+ C +

2− 3 sin2 α

c20 sin(2α)|x|
+O

Å
1

|x|2

ã
, α 6= π

2
.

Moreover, let φ∗ be the sub-solution defined by (24) with µ = dθ
2π and N = 3. Fix φc such that

C = C0 := ln(πc0 cosα)
c0 sinα , then for any x ∈ R2, φc(x) ≥ φ∗(x) and as |x| goes to infinity

(37) φc(x) = φ∗(x) +O

Ç
1√
|x|

å
.

Proof of Lemma 7.4. – This result is proved using quite classical methods. The proof is
sketched for the reader’s convenience. We also mention that similar results were already
obtained by Ninomiya and Taniguchi, see Theorem 3.1 in [12]. With a slight misuse of
notation, we denote in the case of radially symmetric solutions φc(x) by φc(|x|) = φc(r)

with r = |x| ≥ 0. Then, Equation (18) reads

−φ
′
c

r
− φ′′c

1 + φ′2c
+ c0

»
1 + φ′2c − c = 0 , r > 0.

Thus, φc satisfies an ODE involving only its first two derivatives and it can only be defined
up to constants. Setting v = φ′c, we get

(38) v′ = (1 + v2)
(
c0
√

1 + v2 − c− v

r

)
:= (1 + v2)g(v, r) , r > 0.

The proof of Lemma 7.4 now reduces to the study of this ODE (existence, uniqueness and
asymptotics).

7.2.1.1. Step 1: Existence. – Since for any r > 0, g(0, r) ≤ 0 and g(v0(r), r) = 0 where

v0(r) = − c2 − c20
c
r + c0

»
1
r2 + c2 − c20

≤ 0 ,

v = 0 is a super-solution and v = v0 is a negative decreasing sub-solution to the ODE (38).
Thus, for every r1 > 0, there exist r2 > r1 and a solution v ∈ C∞((r1, r2),R) to the ODE
v′ = (1+v2)g(v, r) satisfying v0 ≤ v ≤ 0 for any r ∈ (r1, r2). Moreover we have g′v(v, r) ≤ 0

for v ∈ [v0, 0], and then we conclude that

(39) v′ ≤ 0 for r ∈ (r1, r2).
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7.2.1.2. Step 2: Qualitative properties. – Since for any r > 0, v0(r) ∈ (− cotα, 0),
the bounds of v(r) by v0(r) and zero force v to exist globally for r > 0. Moreover, as
lim
r→0

v0(r) = 0, v satisfies the same limit and we can extend v to 0 by continuity as v(0) = 0.

This proves that v is a global smooth solution to (38) with initial condition v(0) = 0. Thus it
is easy to check that any primitive function φc to v is a smooth radially symmetric solution
to (18) satisfying φ′c(0) = 0. From (39), we conclude that φc is concave.

7.2.1.3. Step 3: Asymptotics. – Since v is strictly decreasing on R+ and bounded from below,
it converges to a finite limit− cotα ≤ l < 0 as r goes to infinity. Since v is uniformly bounded
in [− cotα, 0], l must satisfy g(l,+∞) = 0 which leads to l = − cotα.

Linearising Equation (38) around − cotα, we set w = v + cotα. As w is uniformly
bounded on R+ and goes to zero at infinity, Equation (38) reads

w′(r) = −c (cotα)w + g̃(w, r) , r > 0

where g̃(w, r) = O(w2) + O(1/r) as r goes to infinity. By Duhamel’s formula, w follows
exponentially fast the behavior of the slowest term of g̃. Thus w ∼ C/r as r goes to infinity
and a straight calculation gives C = 1/(c0 sinα). Repeating this method up to order 2, one
gets

v(r) = − cotα+
1

c0(sinα)r
+

3 sin2 α− 2

c20 sin(2α)r2
+O

Å
1

r3

ã
.

This gives the desired asymptotics for φc up to constants.

Step 4: Uniqueness. – Let φ1
c and φ2

c be two smooth radially symmetric solutions to (18).
From step 3, we know that they satisfy the same asymptotic expansion as r goes to infinity
and we assume the constants C are the same. Since φ1

c − φ2
c solves an elliptic equation with

smooth coefficients and no zero order term, the classical maximum principle applies. Hence
φ1
c − φ2

c = 0 because limr→∞(φ1
c − φ2

c)(r) = 0. This proves the uniqueness of φc up to
constants.

Step 5: Comparison with φ∗. – Using Lemma 8.1, we can check (37) with the suitable value
of the constantC = C0 (see for instance the computation (45) withN0(x) ' 1/

√
π). Finally,

using the comparison principle (as in Step 4), we deduce that φ∗ ≤ φc. This ends the proof
of Lemma 7.4.

7.2.2. The edge case

Lemma 7.5 (Edge super-solution). – Assume φ∗ is given by (24) where the measure µ is the
sum of two Dirac masses

µ = µ{θ1,θ2} = λ1δθ1 + λ2δθ2

with λi > 0, θi ∈ [0, 2π) for i = 1, 2 such that θ1 < θ2 and δθi the Dirac mass in θi. In the case
α 6= π/2, define φe for any x ∈ R2 by

(40) φe(x) = min(p1(x), p2(x)) with pi(x) = −(cotα) x · νi −
2

c0 sinα
lnλi

where νi = (cos θi, sin θi). Then, φe is a Lipschitz and piecewise smooth global super-solution
to (18) verifying φ∗ ≤ φe on R2. Moreover, as |x| goes to infinity,

(41) φe(x) = φ∗(x) +O(1) , x ∈ R2.
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Proof of Lemma 7.5. – Notice first that φe = φ∗ with φ∗ defined as a special case of
Proposition 5.1. This shows that φe is a concave (Lipschitz) supersolution. Finally (41)
follows from (32). This ends the proof of the lemma.

7.2.3. The arc case. – Here we wish to describe a super-solution to (18) which, from above,
looks like an arc, i.e., is made up of two non parallel straight lines connected by a circle.

Lemma 7.6 (Arc super-solution). – Assume φ∗ is given by (24) where the measure µ is the
sum of two Dirac masses and a Lebesgue measure

µ = µ[θ1,θ2] = λδθ1 + λδθ2 + 1I(θ1,θ2) dθ,

where λ > 0, θi ∈ [0, 2π) for i = 1, 2 and θ1 < θ2.
Define φe as in the edge case (40) with λ1 = λ2 = λ. Define φc as in the cone case

(Lemma 7.4) where the constant C ∈ R in (36) is chosen such that φc(0) = φe(0) =

− 2
c0 sinα lnλ.
Finally, define φa on R2 by

(42) ∀x ∈ R2 , φa(x) =


− 2

c0 sinα
lnλ if x = 0

min(φc(x), φe(x)) if θx ∈ (θ1, θ2)

φe(x) otherwise.

Then φa is a Lipschitz continuous global super-solution to (18). Moreover, as |x| goes to infinity

φa(x) = φ∗(x) +O(1).

The shape of φa is sketched on Figures 1, 2, 3.

θ

θ2

1

F 1. Sketch of φa for θ2 − θ1 < π

Proof of Lemma 7.6. – Step 1: φa is a global continuous super-solution. – By definition and
Lemmas 7.4 and 7.5, φa is a super-solution to (18) where it is locally the minimum of
supersolutions, i.e., everywhere except on the two half lines θx = θi for i = 1, 2. However,
we have φc(0) = φe(0) and Dφe(x) = −(cotα)νi while φ′c(r) ∈ (− cotα, 0] for any x ∈ R2

with θx = θi, i = 1 or 2. Thus, φe(x) ≤ φc(x) on a neighborhood N (not containing the
origin) of the two half lines θx = θi for i = 1, 2. This implies φa = φe on N and then φa is at
least a supersolution on R2\ {0}. Moreover, φa is a supersolution on the whole R2. Indeed,
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θ1

θ2

F 2. Sketch of φa for θ2 − θ1 = π

θ

θ1

2

F 3. Sketch of φa for θ2 − θ1 > π

z=p(x)

φ
c

1

z=    (x)

intersection

θ = θ    θ(  )+ r
1

θ1

straig t
cone

z=0

h

F 4. Intersection of z = −(cotα) v1 · x with z = φc(x)

φa = φe for θx 6∈ [θ1, θ2], then φa has a gradient jump along the edge θ = (θ1 + θ2)/2 + π

up to the origin. And this gradient jump implies that there is no C2 test function touching
φa from below at x = 0.

Step 2: Relative positions ofφe andφc. – Let us now study the relative positions of both graphs
of φe and φc. Since φc(x) ∈ (−|x| cotα+ φc(0), φc(0)], we have

p1(x) = φc(x)⇐⇒ −r(cotα) cos(θx − θ1) + φc(0) = φc(r)

⇐⇒ θx = θ1 ± arccos

Å
φc(r)− φc(0)

−r cotα

ã
:= θ1 ± θ̄(r)
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where θ̄(r) ∈ (0, π/2) for r > 0 (see Figure 4). Notice that from the concavity of φc, we
deduce that the set{

x ∈ R2 | p1(x) ≤ φc(x)
}

=
{
x ∈ R2 | θx ∈ [θ1 − θ(r), θ1 + θ(r)]

}
is a convex set. Therefore we deduce that

φe(x) ≤ φc(x)⇔ θx ∈ [θ1 − θ̄(r), θ1 + θ̄(r)] ∪ [θ2 − θ̄(r), θ2 + θ̄(r)]

and φa(x) = φc(x) if and only if θx ∈ Ir = [θ1 + θ̄(r), θ2 − θ̄(r)]. Since we choose φc such
that φ′c(0) = 0, we get

lim
r→0

θ̄(r) = +
π

2
.

This forces both curves θx = θ1 + θ̄(r) and θx = θ2 − θ̄(r) to intersect at some point
(x, z) 6= (0, φc(0)) as soon as θ2 − θ1 < π. In that case, it is worth noticing that the above
interval Ir is empty for sufficiently small r (see Figures 5, 6).

θ

θ

1

2

I r

F 5. The set Ir if θ2 − θ1 < π

θ

θ

2

1

Ir

F 6. The set Ir if θ2 − θ1 > π

On the other hand, using the asymptotics (36) of φc found in Lemma 7.4, we get as r goes
to infinity

(43) cos θ̄(r) = 1− 1

c0 cosα

ln r

r
+
φc(0)− C
r cotα

+O

Å
1

r2

ã
, α 6= π

2

where C is the constant given by (36) and fixed by the choice φc(0) = φe(0).
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Step 3: φ∗ ≤ φa + constant. – Let φ∗ be the sub-solution given by (24) where the measure µ
is µ[θ1,θ2], i.e., with b = c0 cosα:

φ∗(x) = − 2

c0 sinα
ln

Ç
λe

br
2 cos(θx−θ1) + λe

br
2 cos(θx−θ2) +

∫ θ2

θ1

e
br
2 cos(θx−θ) dθ

å
.

Each term in the logarithm being non negative, we have

(44) φ∗ ≤ φe on R2.

To prove that φa is above the sub-solution φ∗ up to an additive constant, it remains to
compare φ∗ and φc when θx ∈ Ir = [θ1 + θ̄(r), θ2 − θ̄(r)] and r sufficiently large.

According to Lemma 8.1, one gets that for any x ∈ R2 for r = |x| sufficiently large and
uniformly in θx ∈ [θ1, θ2]

φ∗(x) = −(cotα)r +
ln r

c0 sinα
− 2

c0 sinα
ln(Φ(x))(45)

with Φ(x) :=
2πN0(x)√

b
+ λ
√
re

br
2 (cos(θx−θ1)−1) + λ

√
re

br
2 (cos(θx−θ2)−1) +O

Å
1√
r

ã
where

N0(x) =

∫ √rg(θ2−θx)
√
rg(θ1−θx)

e−
u2

4
du

2π

as defined in Lemma 8.1. Since g is odd and θx ∈ [θ1, θ2], we see that

N0(x) ≥
∫ √rg( θ2−θ12

)
0

e−
u2

4
du

2π
=

1

2
√
π

+ o(1).

We deduce in particular that for r large enough and uniformly in θx ∈ [θ1, θ2]:

Φ(x) ≥
√
π

2
√
b
.

Therefore, from the asymptotics (36) of φc, we deduce that there exist r1 > 0, C1 > 0 such
that

(46) ∀r ≥ 0 , ∀θx ∈ [θ1, θ2] , r ≥ r1 ⇒ φ∗(x) ≤ φc(x) + C1.

Now from (44) and (46), we deduce that (up to increasing the constant C1),

∀r ≥ 0 , ∀θx ∈ [θ1, θ2] , r ≥ r1 ⇒ φ∗(x) ≤ φa(x) + C1.

Step 4: φ∗ ≥ φa − constant.

Case 1: θx ∈ Ir. – We start with the asymptotics (45). Using (43), we see that there exist
r2 > 0, C2 > 0 such that

∀i = 1, 2 , ∀r ≥ 0 , ∀θx ∈ Ir , r ≥ r2 ⇒
√
re

br
2 (cos(θx−θi)−1) ≤

√
re

br
2 (cos(θ(r))−1) ≤ C2.

Using also the fact that N0(x) ≤ 1/(2
√
π), we deduce that Φ is bounded for r large enough

and then (up to increasing r2 and C2)

(47) ∀r ≥ 0 , ∀θx ∈ Ir , r ≥ r2 ⇒ φ∗(x) ≥ φc(x)− C2.
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Case 2: θx ∈ [θ1, θ2]\Ir. – Let us assume that θx ∈ [θ1, θ1 + θ(r)) (the symmetric case is
similar). Then there exist r3 > 0, C3 > 0 such that

∀r ≥ 0 , ∀θx ∈ [θ1, θ1 + θ(r)) , r ≥ r3 ⇒
√
re

br
2 (cos(θx−θ1)−1) ≥

√
re

br
2 (cos(θ(r))−1) ≥ C3 > 0.

Therefore (up to increasing the constants r3 and C3), for any r ≥ 0 and any
θx ∈ [θ1, θ1 + θ(r)),

r ≥ r3 ⇒ Φ(x) ≤ C3

Ä
λ
√
re

br
2 (cos(θx−θ1)−1) + λ

√
re

br
2 (cos(θx−θ2)−1)

ä
and then

φ∗(x) ≥ − 2

c0 sinα
ln
¶
λe

br
2 cos(θx−θ1) + λe

br
2 cos(θx−θ2)

©
− 2 lnC3

c0 sinα

≥ − 2

c0 sinα
ln
(

2e−
c0 sinα

2 φe(x)
)
− 2 lnC3

c0 sinα

= φe(x)− 2 ln(2C3)

c0 sinα
.(48)

Case 3: θx ∈ S1\[θ1, θ2]. – Notice that the set S1\[θ1, θ2] is not empty because θ2 − θ1 < 2π

(as a consequence of θ1, θ2 ∈ [0, 2π)). In that case, we set

θ′m = θm − π with θm =
θ1 + θ2

2
.

Then, it satisfies θ2 − 2π < θ′m < θ1. Let us assume that (the other case is similar):

(49) θx ∈ [θ′m, θ1).

We also define
θ′x = θx + π.

Then we have∫ θ2

θ1

e
br
2 cos(θx−θ) dθ =

∫
[θ1,θ2]∩[θx,θ′x]

(...) dθ +

∫
[θ1,θ2]\[θx,θ′x]

(...) dθ.

We have ∫
[θ1,θ2]∩[θx,θ′x]

e
br
2 cos(θx−θ) dθ ≤ π e br2 cos(θx−θ1).

Using (49), we also see that∫
[θ1,θ2]\[θx,θ′x]

e
br
2 cos(θx−θ) dθ ≤ π e br2 cos(θx−θ1).

Therefore, we conclude that in this third case,

φ∗(x) ≥ − 2

c0 sinα
ln
¶

(λ+ 2π)e
br
2 cos(θx−θ1) + (λ+ 2π)e

br
2 cos(θx−θ2)

©
≥ φe(x)−

2 ln
Ä

2(λ+2π)
λ

ä
c0 sinα

.(50)

Conclusion. – Putting (47), (48) and (50) together, we get that there exists a constant C > 0

such that for r large enough and uniformly in θx ∈ S1.

φ∗(x) ≥ φa(x)− C.
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The functions φ∗ and φa being continuous, the result still holds for any r ≥ 0 (up to
increasing the constant C). This concludes the proof of Lemma 7.6.

7.3. Proof of Theorem 1.3

Step 1: Existence of a solution. – Let α ∈ (0, π2 ], c0 > 0 and c = c0/ sinα. The case
α = π/2 is obvious and we omit it. Choose φ∞ a 1-homogeneous viscosity solution to
the eikonal Equation (10) in dimension N = 3 with a finite number m of singularities.
By Proposition 7.1, the (1) of Theorem 1.3 is already established, and we can consider the
measure µ given in the (2) of Theorem 1.3. Then Proposition 4.3 implies that the function φ∗
given by (9) is a smooth concave subsolution of (18).

If k = 1, φ∞ has no gradient jump and the corresponding measure is µ = dθ or
µ = λ0(δθ1 + δθ1+2π). In the first case, we saw in Lemma 7.4 that φc, to which a suitable
constant is added, is a smooth solution to (18) with the right asymptotics at infinity. In the
second one, φ = φ∞ is a suitable solution to (18).

We now turn to the case k ≥ 2. For any i ∈ {1, . . . , k}, choose λ0 > 0 a given positive
constant. We have

µ =
∑
j

µj ≥ µ̃i

with

(51) µ̃i = 2λ0(δθi + δθi+1) + σi 1I(θi,θi+1) dθ.

Let φ̃i∗ be the subsolution defined in (24) with the measure µ̃i. If µ̃i corresponds to an arc
(σi = 1), denote φ̃∗i the global supersolution defined in Lemma 7.6 with λ = 2λ0. Notice
that there is a constant C > 0 (that can be chosen independently of the index i) such that

(52) φ̃∗i − C ≤ φ̃i∗ ≤ φ̃∗i + C.

If µ̃i corresponds to an edge (σi = 0), denote φ̃∗i the global supersolution defined in
Lemma 7.5 with λ1 = λ2 = 2λ0, which satisfies in particular (52). Finally, define on R2

the function φ̃∗ as the infimum over i ∈ {1, . . . , k} of φ̃∗i . Notice that, by construction, we
have

(53) φ̃∗(x) = φ̃∗i (x) if θx ∈ [θi, θi+1].

We also have in particular

φ∗ ≤ φ̃i∗ ≤ φ̃∗i + C ≤ φ̃∗ + C =: φ∗.

We claim that at infinity

(54) φ∗(x) = φ∗(x) +O(1).

We shall first finish the proof of Theorem 1.3 and come back to the proof of that claim in
a second step. Thus φ∗ is a global supersolution above the subsolution φ∗. Moreover, either
there exists σi = 1 and then we have (see in particular Figures 1, 2, 3)

(55) there exists p ∈ RN−1 such that lim sup
|x|→+∞

φ∗(x)− p · x
|x|

< 0.

Or σi = 0 for any i, and condition (55) is satisfied if k ≥ 3. The special case k = 2 and
σ1 = σ2 = 0 corresponds to an edge for which we already know the existence of a smooth
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concave solution, by Theorem 1.2. In the other cases, condition (55) and Proposition 3.1
imply the existence of a smooth concave solution φ ∈ [φ∗, φ

∗].

Step 2: Proof of (54) in the case k ≥ 2. – Let x ∈ R2, then there exists i ∈ {1, . . . , k} such
that θx ∈ [θi, θi+1].

We can write:
µ = µ̃i + µ̄i

where µ̃i is defined by (51). So

(56) supp(µ̄i) ⊂ S1\(θi, θi+1) 6= ∅.

Then k ≥ 2 implies that

lx := min {θx − θi, θi+1 − θx} < π

and ∫
S1

e
br
2 cos(θx−θ) dµ̄i(θ) ≤ µ̄i(S1)e

br
2 cos lx ≤ µ̄i(S1)

2λ0

∫
S1

e
br
2 cos(θx−θ) dµ̃i(θ)

with∫
S1

e
br
2 cos(θx−θ) dµ̃i(θ) = 2λ0e

br
2 cos(θx−θi) + 2λ0e

br
2 cos(θx−θi+1) + σi

∫ θi+1

θi

e
br
2 cos(θx−θ) dθ.

Therefore we have

φ∗(x) ≥ − 2

c0 sinα
ln

ßÅ
1 +

µ̄i(S1)

2λ0

ã∫
S1

e
br
2 cos(θx−θ) dµ̃i(θ)

™
= φ̃i∗(x)− 2

c0 sinα
ln

Å
1 +

µ̄i(S1)

2λ0

ã
≥ φ̃∗i (x)− C ′

where we have used (52) in the last line. Using (53), we see that this implies

(57) φ∗(x) ≥ φ∗(x)− C ′′ for θx ∈ [θi, θi+1].

Finally, this implies (54) and ends the proof of Theorem 1.3.

8. Appendix: Laplace’s method

For the reader’s convenience, we reproduce here Laplace’s method. It investigates asymp-
totics as r goes to infinity of integrals involving expressions of the form e−rJ , J denoting
some given function. Our interest is to find uniform estimates as x = r(cos θx, sin θx) lies in
a given angle sector [θ1, θ2]. The proof develops ideas that can be found for a simpler case in
[4], Chapter 4.5.2 page 204. Lemma 8.1 below is only used in Steps 3 and 4 of the proof of
Lemma 7.6.

Lemma 8.1 (Uniform asymptotics in a sector [θ1,θ2]). – Define for any
x = r(cos θx, sin θx) ∈ R2 with θx ∈ [0, 2π)

F (x) = λ1 e
br
2 cos(θ1−θx) + λ2 e

br
2 cos(θ2−θx) +

∫ θ2

θ1

e
br
2 cos(θ−θx)f(θ)

dθ

2π

where
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(i) b = c0 cosα > 0, λi ∈ R, θi ∈ [0, 2π] for i = 1, 2 and θ1 < θ2
(ii) f ∈ C1([0, 2π],C) is 2π-periodic.

As r goes to infinity, we have the following asymptotics uniform in the angular sector θx ∈ [θ1, θ2]

F (x) = λ1 e
br
2 cos(θ1−θx) + λ2 e

br
2 cos(θ2−θx) + e

br
2

Å
f(θx)√
br

N0(x) +
R(x)

r

ã
where

N0(x) =

∫ √rg(θ2−θx)
√
rg(θ1−θx)

e−
u2

4
du

2π
∈ [0, 1/

√
π]

and

(58) g(θ) =

{
sign(θ)

√
2b(1− cos θ) for θ ∈ [−π, π]

sign(θ)2
√
b for θ ∈ R\[−π, π].

Moreover, there exists a constant C > 0 such that for any x ∈ R2, if r > 1 and θx ∈ [θ1, θ2]

then |R(x)| ≤ C.

Proof of Lemma 8.1. – It is straightforward to check that g defined by (58) is an odd
C3-diffeomorphism from [−π, π] to [−2

√
b, 2
√
b] satisfying g(0) = 0, g′(0) =

√
b and

g′′(0) = 0. We have also chosen to extend g to the real line by continuity. However, when
we speak about g−1, it has to be understood as the inverse of g on [−π, π].

Afterwards, for any x ∈ R2, we define

I(x) :=

∫ θ2

θ1

e
br
2 cos(θ−θx)f(θ)

dθ

2π
=

∫ θ2−θx

θ1−θx
e
br
2 cos θf(θ + θx)

dθ

2π
.

Assume θx ∈ [θ1, θ2]. In order to get a bound on I uniform in the angle θx, we fix some δ > 0

and set

θ∗ =

{
θ1 − θx if θ1 − θx ≥ −π + δ

−π + δ otherwise
θ∗ =

{
θ2 − θx if θ2 − θx ≤ π − δ
π − δ otherwise.

We then cut the integral I into three parts, integrating between θ1−θx and θ∗, between θ∗ and
θ∗ and finally between θ∗ and θ2− θx. We call those three integrals I1, I2 and I3 respectively.

Regarding I1 and I3, cos θ can be bounded in both cases by cos(π − δ) and f by its L∞

norm on the compact set [0, 2π]. Thus, there exists a constantC > 0 such that for any x ∈ R2

with θx ∈ [θ1, θ2],

I1 + I3 ≤ Ce
br
2 cos(π−δ).

For sufficiently small δ > 0, the right hand term decreases exponentially fast and the
contribution of I1 and I3 in I is exponentially small as r goes to infinity uniformly in θx.

Using the change of variables u =
√
rg(θ), we rewrite I2 as

I2(x) =
e
br
2

√
br

∫ √rg(θ∗)
√
rg(θ∗)

e−
u2

4 h

Å
u√
r

ã
du

2π

where h(t) = f(θx + g−1(t))/
√

1− (t2/(4b)). Since h(t) = h(0) +
∫ t
0
h′(s) ds, we have

I2(x) = e
br
2

Å
f(θx)√
br

N∗0 (x) +
R(x)

r

ã
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where N∗0 is defined as in Lemma 8.1 with θ∗ or θ∗ when needed, but it only changes the
desired asymptotics with an exponentially small correction as above. The remainder term R

is defined as

R(x) = r
1
2

∫ √rg(θ∗)
√
rg(θ∗)

e−
u2

4

∫ u√
r

0

h′(s)√
b

ds
du

2π
.

Since h is smooth, h′ is uniformly bounded on [g(θ∗), g(θ∗)] and the bound only depends
on δ. A straight calculation then shows that there exists C > 0 such that

R(x) ≤ C
∫ √rg(θ∗)
√
rg(θ∗)

|u|e−u
2

4 du ≤ C
∫ +∞

−∞
|u|e−u

2

4 du.

Putting finally I1, I2 and I3 together, we get the desired asymptotics.
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