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KAM THEORY FOR THE HAMILTONIAN
DERIVATIVE WAVE EQUATION

ʙʏ M���ɪ�ɪʟɪ�ɴ� BERTI, L��� BIASCO �ɴ� Mɪ�ʜ�ʟ� PROCESI

Aʙ��ʀ���. – We prove an infinite dimensional KAM theorem which implies the existence of Can-
tor families of small-amplitude, reducible, elliptic, analytic, invariant tori of Hamiltonian derivative
wave equations.

R�����. – Nous prouvons un théorème KAM en dimension infinie, qui implique l’existence de
familles de Cantor de tores invariants de petite amplitude, réductibles, elliptiques et analytiques, pour
les équations des ondes hamiltoniennes avec dérivées.

1. Introduction

In the last years many progresses have been done concerning KAM theory for nonlinear
Hamiltonian PDEs. The first existence results were given by Kuksin [20] and Wayne [32] for
semilinear wave (NLW) and Schrödinger equations (NLS) in one space dimension (1d) under
Dirichlet boundary conditions, see [27]-[28] and [23] for further developments. The approach
of these papers consists in generating iteratively a sequence of symplectic changes of variables
which bring the Hamiltonian into a constant coefficients (=reducible) normal form with
an elliptic (=linearly stable) invariant torus at the origin. Such a torus is filled by quasi-
periodic solutions with zero Lyapunov exponents. This procedure requires to solve, at each
step, constant-coefficients linear “homological equations” by imposing the “second order
Melnikov” non-resonance conditions. Unfortunately these (infinitely many) conditions are
violated already for periodic boundary conditions.

In this case, existence of quasi-periodic solutions for semilinear 1d-NLW and NLS equa-
tions, was first proved by Bourgain [5] by extending the Newton approach introduced by
Craig-Wayne [11] for periodic solutions. Its main advantage is to require only the “first order
Melnikov” non-resonance conditions (the minimal assumptions) for solving the homologi-
cal equations. Actually, developing this perspective, Bourgain was also able to prove in [6],
[8] the existence of quasi-periodic solutions for NLW and NLS (with Fourier multipliers) in
higher space dimensions; see also the recent extensions in [4], [3], [31]. The main drawback
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302 M. BERTI, L. BIASCO AND M. PROCESI

of this approach is that the homological equations are linear PDEs with non-constant coef-
ficients. Translated in the KAM language this implies a non-reducible normal form around
the torus and then a lack of informations about the stability of the quasi-periodic solutions.

Later on, existence of reducible elliptic tori was proved by Chierchia-You [9] for semilinear
1d-NLW, and, more recently, by Eliasson-Kuksin [14] for NLS (with Fourier multipliers) in
any space dimension; see also Procesi-Xu [30], Geng-Xu-You [15].

An important problem concerns the study of PDEs where the nonlinearity involves deriva-
tives. A comprehension of this situation is of major importance since most of the models
coming from Physics are of this kind.

In this direction KAM theory has been extended to deal with KdV equations by Kuksin
[21]-[22], Kappeler-Pöschel [19], and, for the 1d-derivative NLS (DNLS) and Benjiamin-
Ono equations, by Liu-Yuan [24]. The key idea of these results is again to provide only
a non-reducible normal form around the torus. However, in this case, the homological
equations with non-constant coefficients are only scalar (not an infinite system as in the
Craig-Wayne-Bourgain approach). We remark that the KAM proof is more delicate for
DNLS and Benjiamin-Ono, because these equations are less “dispersive” than KdV, i.e.,
the eigenvalues of the principal part of the differential operator grow only quadratically at
infinity, and not cubically as for KdV. As a consequence of this difficulty, the quasi-periodic
solutions in [21], [19] are analytic, in [24], only C∞. Actually, for the applicability of these
KAM schemes, the more dispersive the equation is, the more derivatives in the nonlinearity
can be supported. The limit case of the derivative nonlinear wave equation (DNLW)—which
is not dispersive at all—is excluded by these approaches.

In the paper [5] (which proves the existence of quasi-periodic solutions for semilinear
1d-NLS and NLW), Bourgain claims, in the last remark, that his analysis works also for the
Hamiltonian “derivation” wave equation

ytt − yxx + g(x)y =
�
− d2

dx2

�1/2
F (x, y);

see also [7], page 81. Unfortunately no details are given. However, Bourgain [7] provided a
detailed proof of the existence of periodic solutions for the non-Hamiltonian equation

ytt − yxx + my + y2
t

= 0 , m �= 0 .

These kinds of problems have been then reconsidered by Craig in [10] for more general
Hamiltonian derivative wave equations like

ytt − yxx + g(x)y + f(x,Dβy) = 0 , x ∈ T ,

where g(x) ≥ 0 and D is the first order pseudo-differential operator D :=
�
−∂xx + g(x).

The perturbative analysis of Craig-Wayne [11] for the search of periodic solutions works
when β < 1. The main reason is that the wave equation vector field gains one derivative
and then the nonlinear term f(Dβu) has a strictly weaker effect on the dynamics for β < 1.
The case β = 1 is left as an open problem. Actually, in this case, the small divisors problem
for periodic solutions has the same level of difficulty of quasi-periodic solutions with 2
frequencies.
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The goal of this paper is to extend KAM theory to deal with the Hamiltonian derivative
wave equation

(1.1) ytt − yxx + my + f(Dy) = 0 , m > 0 , D :=
�
−∂xx + m , x ∈ T ,

with real analytic nonlinearities (see Remark 7.1)

(1.2) f(s) = as3 +
�

k≥5

fksk , a �= 0 .

We write Equation (1.1) as the infinite dimensional Hamiltonian system

ut = −i∂ūH , ūt = i∂uH ,

with Hamiltonian

(1.3) H(u, ū) :=

�

T
ūDu + F

�u + ū√
2

�
dx , F (s) :=

�
s

0
f ,

in the complex unknown

u :=
1√
2
(Dy + iyt) , ū :=

1√
2
(Dy − iyt) , i :=

√
−1 .

Setting u =
�

j∈Z ujeijx (similarly for ū), we obtain the Hamiltonian in infinitely many
coordinates

(1.4) H =
�

j∈Z
λjuj ūj +

�

T
F

� 1√
2

�

j∈Z
(uje

ijx + ūje
−ijx)

�
dx

where

(1.5) λj :=
�

j2 + m

are the eigenvalues of the diagonal operator D. Note that the nonlinearity in (1.1) is x-inde-
pendent implying, for (1.3), the conservation of the momentum−i

�
T ū∂xu dx. This symme-

try allows to simplify somehow the KAM proof (a similar idea was used by Geng-You [16]).

For every choice of the tangential sites I := {j1, . . . , jn} ⊂ Z, n ≥ 2, the integrable
Hamiltonian

�
j∈Z λjuj ūj has the invariant tori {uj ūj = ξj , for j ∈ I , uj = ūj = 0

for j �∈ I} parametrized by the actions ξ = (ξj)j∈I ∈ Rn. The next KAM result states the
existence of nearby invariant tori for the complete Hamiltonian H in (1.4).

Tʜ��ʀ�� 1.1. – The Equation (1.1)-(1.2) admits Cantor families of small-amplitude, ana-
lytic, quasi-periodic solutions with zero Lyapunov exponents and whose linearized equation is
reducible to constant coefficients. Such Cantor families have asymptotically full measure at the
origin in the set of parameters.

The proof of Theorem 1.1 is based on the abstract infinite dimensional KAM Theo-
rem 4.1, which provides a reducible normal form (see (4.12)) around the elliptic invariant
torus, and on the measure estimates Theorem 4.2. The key point in proving Theorem 4.2
is the asymptotic bound (4.9) on the perturbed normal frequencies Ω∞(ξ) after the KAM
iteration. This allows to prove that the second order Melnikov non-resonance conditions
(4.11) are fulfilled for an asymptotically full measure set of parameters (see (4.16)). The esti-
mate (4.9), in turn, is achieved by exploiting the quasi-Töplitz property of the perturbation.
This notion has been introduced by Procesi-Xu [30] in the context of NLS in higher space

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



304 M. BERTI, L. BIASCO AND M. PROCESI

dimensions and it is similar, in spirit, to the Töplitz-Lipschitz property in Eliasson-Kuksin
[14]. The precise formulation of quasi-Töplitz functions, adapted to the DNLW setting, is
given in Definition 3.4 below.

Let us roughly explain the main ideas and techniques for proving Theorems 4.1, 4.2. These
theorems concern, as usual, a parameter dependent family of analytic Hamiltonians of the
form

(1.6) H = ω(ξ) · y + Ω(ξ) · zz̄ + P (x, y, z, z̄; ξ)

where (x, y) ∈ Tn × Rn, z, z̄ are infinitely many variables, ω(ξ) ∈ Rn, Ω(ξ) ∈ R∞ and
ξ ∈ Rn. The frequencies Ωj(ξ) are close to the unperturbed frequencies λj in (1.5).

As is well known, the main difficulty of the KAM iteration which provides a reducible
KAM normal form like (4.12) is to fulfill, at each iterative step, the second order Melnikov
non-resonance conditions. Actually, following the formulation of the KAM theorem given
in [2], it is sufficient to verify

(1.7) |ω∞(ξ) · k + Ω∞
i

(ξ)− Ω∞
j

(ξ)| ≥ γ

1 + |k|τ , γ > 0 ,

only for the “final” frequencies ω∞(ξ) and Ω∞(ξ), see (4.11), and not along the inductive
iteration.

The application of the usual KAM theory (see e.g., [20], [27]-[28]), to the DNLW equation
provides only the asymptotic decay estimate

(1.8) Ω∞
j

(ξ) = j + O(1) for j → +∞ .

Such a bound is not enough: the set of parameters ξ satisfying (1.7) could be empty. Note that
for the semilinear NLW equation (see e.g., [27]) the frequencies decay asymptotically faster,
namely like Ω∞

j
(ξ) = j + O(1/j).

The key idea for verifying the second order Melnikov non-resonance conditions (1.7) for
DNLW is to prove the higher order asymptotic decay estimate (see (4.9), (4.2))

(1.9) Ω∞
j

(ξ) = j + a+(ξ) +
m

2j
+ O(

γ2/3

j
) for j ≥ O(γ−1/3)

where a+(ξ) is a constant independent of j (an analogous expansion holds for j → −∞with
a possibly different limit constant a−(ξ)). In this way infinitely many conditions in (1.7) are
verified by imposing only first order Melnikov conditions like |ω∞(ξ) · k + h| ≥ 2γ2/3/|k|τ ,
h ∈ Z. Indeed, for i > j > O(|k|τγ−1/3), we get

|ω∞(ξ) · k + Ω∞
i

(ξ)− Ω∞
j

(ξ)| = |ω∞(ξ) · k + i− j +
m(i− j)

2ij
+ O(γ2/3/j)|

≥ 2γ2/3|k|−τ −O(|k|/j2)−O(γ2/3/j) ≥ γ2/3|k|−τ

noting that i− j is integer and |i− j| = O(|k|) (otherwise no small divisors occur). We refer
to Section 6 for the precise arguments, see in particular Lemma 6.2.

The asymptotic decay (4.9) for the perturbed frequencies Ω∞(ξ) is achieved thanks to the
“quasi-Töplitz” property of the perturbation (Definition 3.4). Let us roughly explain this
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notion. The new normal frequencies after each KAM step are Ω+
j

= Ωj + P 0
j

where the
corrections P 0

j
are the coefficients of the quadratic form

P 0zz̄ :=
�

j

P 0
j
zj z̄j , P 0

j
:=

�

Tn

(∂2
zj z̄j

P )(x, 0, 0, 0; ξ) dx .

We say that a quadratic form P 0 is quasi-Töplitz if it has the form

P 0 = T + R

where T is a Töplitz matrix (i.e., constant on the diagonals) and R is a “small” remainder
satisfying Rjj = O(1/j) (see Lemma 5.2). Then (1.9) follows with a := Tjj which is
independent of j. The rate of decay O(1/j) is the natural one for the application to the
DNLW equation, due to the asymptotic expansion

�
j2 + m = j + m/(2j) + O(1/j3) as

j → +∞, see (5.12). We expect that the class of quasi-Töplitz functions defined with a weaker
decay, say O(1/|j|β), β > 0, would still be closed under Poisson brackets; see below.

Since the quadratic perturbation P 0 along the KAM iteration does not depend only on the
quadratic perturbation at the previous steps, we need to extend the notion of quasi-Töplitz
to general (non-quadratic) analytic functions. The preservation of the quasi-Töplitz property
of the perturbations P at each KAM step (with just slightly modified parameters) holds in
view of the following key facts:

1. the Poisson bracket of two quasi-Töplitz functions is quasi-Töplitz (Proposition 3.1),
2. the hamiltonian flow generated by a quasi-Töplitz function preserves the quasi-Töplitz

property (Proposition 3.2),
3. the solution of the homological equation with a quasi-Töplitz perturbation is quasi-

Töplitz (Proposition 5.1).

We note that, in [14], the analogous property 1 (and therefore 2) for Töplitz-Lipschitz func-
tions is proved only when one of them is quadratic.

The definition of quasi-Töplitz functions heavily relies on properties of projections. How-
ever, for an analytic function in infinitely many variables, such projections may not be well
defined unless the Taylor-Fourier series (see (2.28)) is absolutely convergent. For such reason,
instead of the sup-norm, we use the majorant norm (see (2.12), (2.54)), for which the bounds
(2.14) and (2.55) on projections hold (see also Remark 2.4).

We underline that the majorant norm of a vector field introduced in (2.54) is very different
from the weighted norm introduced by Pöschel in [26]-Appendix C, which works only in finite
dimension, see comments in [26] after Lemma C.2 and Remark 2.3. In Section 2 we show its
properties, in particular the key estimate of the majorant norm of the commutator of two
vector fields (see Lemma 2.15). A related majorant norm for functions and vector fields is
introduced in Bambusi-Grébert [1] in a context of Sobolev spaces (and with tame modulus
properties); see also [25].

Before concluding this introduction we also mention the recent KAM theorem of
Grébert-Thomann [18] for the quantum harmonic oscillator with semilinear nonlinear-
ity. Also here the eigenvalues grow to infinity only linearly. We quote the normal form
results of Delort-Szeftel [13], Delort [12], for quasi-linear wave equations, where only finitely
many steps of normal form can be performed. Finally we also mention the recent work by
Gérard-Grellier [17] on Birkhoff normal form for a degenerate “half-wave” equation.
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The paper is organized as follows:

– In Section 2 we define the majorant norm of formal power series of scalar functions
(Definition 2.2) and vector fields (Definition 2.6) and we investigate the relations with
the notion of analiticity, see Lemmata 2.1, 2.2, 2.3, 2.11 and Corollary 2.1. Then we
prove Lemma 2.15 on commutators.

– In Section 3 we define the Töplitz (Definition 3.3) and Quasi-Töplitz functions (Defi-
nition 3.4). Then we prove that this class of functions is closed under Poisson brackets
(Proposition 3.1) and composition with the Hamiltonian flow (Proposition 3.2).

– In Section 4 we state the abstract KAM Theorem 4.1. The first part of Theorem 4.1
follows by the KAM Theorem 5.1 in [2]. The main novelty is part II, in particular the
asymptotic estimate (4.9) of the normal frequencies.

– In Section 5 we prove the abstract KAM Theorem 4.1.
We first perform (as in Theorem 5.1 in [2]) a first normal form step, which makes

Theorem 4.1 suitable for the direct application to the wave equation.
In Proposition 5.1 we prove that the solution of the homological equation with a

quasi-Töplitz perturbation is quasi-Töplitz. Then the main results of the KAM step
concern the asymptotic estimates of the perturbed frequencies (Section 5.2.3) and the
Töplitz estimates of the new perturbation (Section 5.2.4).

– In Section 6 we prove Theorem 4.2: the second order Melnikov non-resonance con-
ditions are fulfilled for a set of parameters with large measure, see (4.16). We use the
conservation of momentum to avoid the presence of double eigenvalues.

– In Section 7 we finally apply the abstract KAM Theorem 4.1 to the DNLW Equa-
tion (1.1)-(1.2), proving Theorem 1.1. We first verify that the Hamiltonian (1.4) is
quasi-Töplitz (Lemma 7.1), as well as the Birkhoff normal form Hamiltonian (7.8)
of Proposition 7.1. The main technical difficulties concern the proof in Lemma 7.4
that the generating function (7.17) of the Birkhoff symplectic transformation is also
quasi-Töplitz (and the small divisors Lemma 7.2). In Section 7.2 we prove that the
perturbation, obtained after the introduction of the action-angle variables, is still
quasi-Töplitz (Proposition 7.2). Finally in Section 7.3 we prove Theorem 1.1 applying
Theorems 4.1 and 4.2.

2. Functional setting

Given a finite subset I ⊂ Z (possibly empty), a ≥ 0, p > 1/2, we define the Hilbert space

�a,p

I
:=

�
z = {zj}j∈Z\I , zj ∈ C : �z�2

a,p
:=

�

j∈Z\I
|zj |2e2a|j|�j�2p < ∞

�
.

When I = ∅ we denote �a,p := �a,p

I
. We consider the direct product

(2.1) E := Cn × Cn × �a,p

I
× �a,p

I

where n is the cardinality of I. We endow the space E with the (s, r)-weighted norm

(2.2) v = (x, y, z, z̄) ∈ E , �v�E := �v�E,s,r =
|x|∞

s
+
|y|1
r2

+
�z�a,p

r
+
�z̄�a,p

r
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where, 0 < s, r < 1, and |x|∞ := maxh=1,...,n |xh|, |y|1 :=
�

n

h=1 |yh|. Note that, for all
s� ≤ s, r� ≤ r,

(2.3) �v�E,s�,r� ≤ max{s/s�, (r/r�)2}�v�E,s,r .

We shall also use the notations

z+
j

= zj , z−
j

= z̄j .

We identify a vector v ∈ E with the sequence {v(j)}j∈J with indices in

(2.4) J :=

�
j = (j1, j2), j1 ∈ {1, 2, 3, 4}, j2 ∈

�
{1, . . . , n} if j1 = 1, 2

Z \ I if j1 = 3, 4

�

and components

v(1,j2) := xj2 , v(2,j2) := yj2 (1 ≤ j2 ≤ n), v(3,j2) := zj2 , v(4,j2) := z̄j2 (j2 ∈ Z \ I) ,

more compactly
v(1,·) := x , v(2,·) := y, , v(3,·) := z, , v(4,·) := z̄ .

We denote by {ej}j∈J the orthogonal basis of the Hilbert space E, where ej is the sequence
with all zeros, except the j2-th entry of its j1-th components, which is 1. Then every v ∈ E
writes v =

�
j∈J v(j)ej , v(j) ∈ C. We also define the toroidal domain

(2.5) D(s, r) := Tn

s
×D(r) := Tn

s
×Br2 ×Br ×Br ⊂ E

where D(r) := Br2 ×Br ×Br,

(2.6) Tn

s
:=

�
x ∈ Cn : max

h=1,...,n

|Im xh| < s
�

, Br2 :=
�

y ∈ Cn : |y|1 < r2
�

and Br ⊂ �a,p

I
is the open ball of radius r centered at zero. We think Tn as the n-dimensional

torus Tn := 2πRn/Zn, namely f : D(s, r) → C means that f is 2π-periodic in each
xh-variable, h = 1, . . . , n.

R���ʀ� 2.1. – If n = 0 then D(s, r) ≡ Br ×Br ⊂ �a,p × �a,p.

2.1. Majorant norm

2.1.1. Scalar functions. – We consider formal power series with infinitely many variables

(2.7) f(v) = f(x, y, z, z̄) =
�

(k,i,α,β)∈I
fk,i,α,β eik·xyizαz̄β

with coefficients fk,i,α,β ∈ C and multi-indices in

(2.8) I := Zn × Nn × N(Z\I) × N(Z\I)

where

(2.9) N(Z\I) :=
�

α := (αj)j∈Z\I ∈ NZ with |α| :=
�

j∈Z\I
αj < +∞

�
.

In (2.7) we use the standard multi-indices notation zαz̄β := Πj∈Z\I z
αj

j
z̄

βj

j
. We denote the

monomials

(2.10) mk,i,α,β(v) = mk,i,α,β(x, y, z, z̄) := eik·xyizαz̄β .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



308 M. BERTI, L. BIASCO AND M. PROCESI

R���ʀ� 2.2. – If n = 0 the set I reduces to NZ × NZ and the formal series to f(z, z̄) =�
(α,β)∈I fα,β zαz̄β .

We define the “majorant” of f as

(2.11)
�
Mf

�
(v) =

�
Mf

�
(x, y, z, z̄) :=

�

(k,i,α,β)∈I
|fk,i,α,β |eik·xyizαz̄β .

We now discuss the convergence of formal series.

D��ɪɴɪ�ɪ�ɴ 2.1. – A series
�

(k,i,α,β)∈I
ck,i,α,β , ck,i,α,β ∈ C ,

is absolutely convergent if the function I � (k, i, α, β) �→ ck,i,α,β ∈ C is in L1(I, µ) where µ is
the counting measure of I. Then we set

�

(k,i,α,β)∈I
ck,i,α,β :=

�

I
ck,i,α,β dµ .

By the properties of the Lebesgue integral, given any sequence {Il}l≥0 of finite subsets
Il ⊂ I with Il ⊂ Il+1 and ∪l≥0Il = I, the absolutely convergent series

�

k,i,α,β

ck,i,α,β :=
�

(k,i,α,β)∈I
ck,i,α,β = lim

l→∞

�

(k,i,α,β)∈Il

ck,i,α,β .

D��ɪɴɪ�ɪ�ɴ 2.2 (Majorant-norm: scalar functions). – The majorant-norm of a formal
power series (2.7) is

(2.12) �f�s,r := sup
(y,z,z̄)∈D(r)

�

k,i,α,β

|fk,i,α,β |e|k|s|yi||zα||z̄β |

where |k| := |k|1 := |k1|+ · · ·+ |kn|.

By (2.7) and (2.12) we clearly have �f�s,r = �Mf�s,r.
For every subset of indices I ⊂ I, we define the projection

(2.13) (ΠIf)(x, y, z, z̄) :=
�

(k,i,α,β)∈I

fk,i,α,βeik·xyizαz̄β

of the formal power series f in (2.7). Clearly

(2.14) �ΠIf�s,r ≤ �f�s,r

and, for any I, I � ⊂ I, it results that

(2.15) ΠIΠI� = ΠI∩I� = ΠI�ΠI .

Property (2.14) is one of the main advantages of the majorant-norm with respect to the usual
sup-norm

(2.16) |f |s,r := sup
v∈D(s,r)

|f(v)| .

We now define useful projectors on the time Fourier indices.
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D��ɪɴɪ�ɪ�ɴ 2.3. – Given ς = (ς1, . . . , ςn) ∈ {+,−}n we define

(2.17) fς := Πςf := ΠZn
ς ×Nn×N(Z\I)×N(Z\I)f =

�

k∈Zn
ς ,i,α,β

fk,i,α,β eik·xyizαz̄β

where

(2.18) Zn

ς
:=

�
k ∈ Zn with

�
kh ≥ 0 if ςh = +

kh < 0 if ςh = −
∀ 1 ≤ h ≤ n

�
.

Then any formal series f can be decomposed as

(2.19) f =
�

ς∈{+,−}n

Πςf

and (2.14) implies �Πςf�s,r ≤ �f�s,r.

We now investigate the relations between formal power series with finite majorant norm
and analytic functions. We recall that a function f : D(s, r) → C is

– analytic, if f ∈ C1(D(s, r), C), namely the Fréchet differential D(s, r) � v �→ df(v) ∈
L(E, C) is continuous,

– weakly analytic, if ∀v ∈ D(s, r), v� ∈ E \ {0}, there exists ε > 0 such that the function

{ξ ∈ C , |ξ| < ε } �→ f(v + ξv�) ∈ C

is analytic in the usual sense of one complex variable.

A well known result (see e.g., Theorem 1, page 133 of [29]) states that a function f is

(2.20) analytic ⇐⇒ weakly analytic and locally bounded .

L���� 2.1. – Suppose that the formal power series (2.7) is absolutely convergent for all
v ∈ D(s, r). Then f(v) and Mf(v), defined in (2.7) and (2.11), are well defined and weakly
analytic in D(s, r).
If, moreover, the sup-norm |f |s,r < ∞, resp. |Mf |s,r < ∞, then f , resp. Mf , is analytic
in D(s, r).

Proof. – Since the series (2.7) is absolutely convergent the functions f , Mf , and, for all
ς ∈ {+,−}n, fς := Πςf , Mfς (see (2.17)) are well defined (also the series in (2.17) is
absolutely convergent).

We now prove that each Mfς is weakly analytic, namely ∀v ∈ D(s, r), v� ∈ E \ {0},

(2.21) Mfς(v + ξv�) =
�

k∈Zn
ς ,i,α,β

|fk,i,α,β |mk,i,α,β(v + ξv�)

is analytic in {|ξ| < ε}, for ε small enough (recall the notation (2.10)). Since each
ξ �→ mk,i,α,β(v + ξv�) is entire, the analyticity of Mfς(v + ξv�) follows once we prove
that the series (2.21) is totally convergent, namely

(2.22)
�

k∈Zn
ς ,i,α,β

|fk,i,α,β | sup
|ξ|<ε

|mk,i,α,β(v + ξv�)| < +∞ .

Let us prove (2.22). We claim that, for ε small enough, there is vς ∈ D(s, r) such that

(2.23) sup
|ξ|<ε

��mk,i,α,β(v + ξv�)
�� ≤ mk,i,α,β(vς) , ∀k ∈ Zn

ς
, i,α, β .
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Therefore (2.22) follows by
�

k∈Zn
ς ,i,α,β

|fk,i,α,β | sup
|ξ|<ε

|mk,i,α,β(v + ξv�)| ≤
�

k∈Zn
ς ,i,α,β

|fk,i,α,β |mk,i,α,β(vς)

= Mfς(v
ς) < +∞ .

Let us construct vς ∈ D(s, r) satisfying (2.23). Since v = (x, y, z, z̄) ∈ D(s, r) we have
x ∈ Tn

s
and, since Tn

s
is open, there is 0 < s� < s such that |Im(xh)| < s�, ∀1 ≤ h ≤ n.

Hence, for ε small enough,

(2.24) sup
|ξ|<ε

��Im(x + ξx�)h

�� ≤ s� < s , ∀ 1 ≤ h ≤ n .

The vector vς := (xς , yς , zς , z̄ς) with components

xς

h
:= −iςhs� , yς

h
:= |yh|+ ε|y�

h
| , 1 ≤ h ≤ n ,

zς

h
:= |zh|+ ε|z�

h
| , z̄ς

h
:= |z̄h|+ ε|z̄�

h
| , h ∈ Z ,(2.25)

belongs to D(s, r) because |Im xς

h
| = s� < s, ∀ 1 ≤ h ≤ n, and also (yς , zς , z̄ς) ∈ D(r) for ε

small enough, because (y, z, z̄) ∈ D(r) and D(r) is open. Moreover, ∀k ∈ Zn

ς
, by (2.24),

(2.18) and (2.25),

(2.26) sup
|ξ|<ε

��eik·(x+ξx
�)
�� ≤ e|k|s

�
= eik·xς

.

By (2.10), (2.25), (2.26), we get (2.23). Hence each Mfς is weakly analytic and, by the
decomposition (2.19), also f and Mf are weakly analytic. The final statement follows by
(2.20).

C�ʀ�ʟʟ�ʀʏ 2.1. – If �f�s,r < +∞ then f and Mf are analytic and

(2.27) |f |s,r, |Mf |s,r ≤ �f�s,r .

Proof. – For all v = (x, y, z, z̄) ∈ Tn

s
×D(r), we have |eik·x| ≤ e|k|s and

|f(v)| , |Mf(v)| ≤
�

k,i,α,β

|fk,i,α,β |e|k|s|yi||zα||z̄β |
(2.12)
≤ �f�s,r < +∞

by assumption. Lemma 2.1 implies that f , Mf are analytic.

Now, we associate to any analytic function f : D(s, r) → C the formal Taylor-Fourier
power series

(2.28) f(v) :=
�

(k,i,α,β)∈I
fk,i,α,β eik·xyizαz̄β

(as (2.7)) with Taylor-Fourier coefficients

(2.29) fk,i,α,β :=
1

(2π)n

�

Tn

e−ik·x 1

i!α!β!
(∂i

y
∂α

z
∂β

z̄ f)(x, 0, 0, 0) dx

where ∂i

y
∂α

z
∂β

z̄ f are the partial derivatives(1).

(1) For a multi-index α =
�

1≤j≤k eij , |α| = k, the partial derivative is

(2.30) ∂α
z f(x, y, z, z̄) :=

∂k

∂τ1 . . . ∂τk |τ=0
f(x, y, z + τ1ei1 + · · · + τkeik , z̄) .
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What is the relation between f and its formal Taylor-Fourier series f?

L���� 2.2. – Let f : D(s, r) → C be analytic. If its associated Taylor-Fourier power
series (2.28)-(2.29) is absolutely convergent in D(s, r), and the sup-norm

(2.31)
���

�

k,i,α,β

fk,i,α,β eik·xyizαz̄β

���
s,r

< ∞ ,

then f = f, ∀ v ∈ D(s, r).

Proof. – Since the Taylor-Fourier series (2.28)-(2.29) is absolutely convergent and (2.31)
holds, by Lemma 2.1 the function f : D(s, r) → C is analytic. The functions f = f are equal
if the Taylor-Fourier coefficients

(2.32) fk,i,α,β = fk,i,α,β , ∀ k, i, α, β ,

where the coefficients fk,i,α,β are defined from f as in (2.29). Let us prove (2.32). Indeed, for
example,

f0,0,eh,0 =
1

(2π)n

�

Tn

d

dξ |ξ=0

�

k∈Zn, m∈N
fk,0,meh,0e

ik·xξm(2.33)

=
�

k∈Zn, m∈N

1

(2π)n

�

Tn

d

dξ |ξ=0
fk,0,meh,0e

ik·xξm = f0,0,eh,0 ,

using that the above series totally converge for r� < r, namely
�

k∈Zn, m∈N
sup

x∈R, |ξ|≤r�
|fk,0,meh,0e

ik·xξm| ≤
�

k∈Zn, m∈N
|fk,0,meh,0|(r�)m

≤
�

k,i,α,β

|fk,i,α,βmk,i,α,β(0, 0, r�eh, 0)| < ∞

recall (2.10). For the others k, i, α, β in (2.32) are analogous.

The above arguments also show the unicity of the Taylor-Fourier expansion.

L���� 2.3. – If an analytic function f : D(s, r) → C equals an absolutely convergent
formal series, i.e., f(v) =

�
k,i,α,β

f̃k,i,α,βeik·xyizαz̄β , then its Taylor-Fourier coefficients
(2.29) are fk,i,α,β = f̃k,i,α,β .

The majorant norm of f is equivalent to the sup-norm of its majorant Mf .

L���� 2.4. –

(2.34) |Mf |s,r ≤ �f�s,r ≤ 2n|Mf |s,r .

Proof. – The first inequality in (2.34) is (2.27). The second one follows by

(2.35) �Πςf�s,r ≤ |Mf |s,r , ∀ ς ∈ {+,−}n ,

where Πςf is defined in (2.17). Let us prove (2.35). Let

D+(r) :=
�

(y, z, z̄) ∈ D(r) : yh ≥ 0 , ∀ 1 ≤ h ≤ n , zl, z̄l ≥ 0 ,∀ l ∈ Z \ I
�

.
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For any 0 ≤ σ < s, we have

|Mf |s,r = sup
(x,y,z,z̄)∈D(s,r)

���
�

k,i,α,β

|fk,i,α,β |eik·xyizαz̄β

���

≥ sup
x1=−iς1σ,...,xn=−iςnσ,(y,z,z̄)∈D+(r)

���
�

k,i,α,β

|fk,i,α,β |eik·xyizαz̄β

���

(2.18)
≥ sup

(y,z,z̄)∈D+(r)

�

k∈Zn
ς ,i,α,β

|fk,i,α,β |e|k|σ|yi||zα||z̄β |

= sup
(y,z,z̄)∈D(r)

�

k∈Zn
ς ,i,α,β

|fk,i,α,β |e|k|σ|yi||zα||z̄β | = �Πςf�σ,r .

Then (2.35) follows since for every function g we have sup0≤σ<s
�g�σ,r = �g�s,r .

D��ɪɴɪ�ɪ�ɴ 2.4 (Order relation: scalar functions). – Given formal power series

f =
�

k,i,α,β

fk,i,α,β eik·xyizαz̄β , g =
�

k,i,α,β

gk,i,α,β eik·xyizαz̄β ,

with gk,i,α,β ∈ R+, we say that

(2.36) f ≺ g if |fk,i,α,β | ≤ gk,i,α,β , ∀k, i, α, β .

Note that, by the Definition (2.11) of majorant series,

(2.37) f ≺ g ⇐⇒ f ≺ Mf ≺ g .

Moreover, if �g�s,r < +∞, then f ≺ g =⇒ �f�s,r ≤ �g�s,r.
For any ς ∈ {+,−}n define qς := (q(j)

ς )j∈J as

(2.38) q(j)
ς

:=

�
−ςh i if j = (1, h) , 1 ≤ h ≤ n ,

1 otherwise .

L���� 2.5. – Assume �f�s,r, �g�s,r < +∞. Then

(2.39) f + g ≺ Mf + Mg , f · g ≺ Mf ·Mg

and

(2.40) M
�
∂j(Πςf)

�
= q(j)

ς
∂j

�
M(Πςf)

�
, j ∈ J ,

where ∂j is short for ∂v(j) and q(j)
ς are defined in (2.38).

Proof. – Since the series which define f and g are absolutely convergent, the bounds
(2.39) follow by summing and multiplying the series term by term. Next (2.40) follows by
differentiating the series term by term.

An immediate consequence of (2.39) is

(2.41) �f + g�s,r ≤ �f�s,r + �g�s,r , �f g�s,r ≤ �f�s,r�g�s,r .

The next lemma extends property (2.39) for infinite series.

L���� 2.6. – Assume that f (j), g(j) are formal power series satisfying
1. f (j) ≺ g(j), ∀j ∈ J ,
2. �g(j)�s,r < ∞, ∀j ∈ J ,
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3.
�

j∈J |g(j)(v)| < ∞, ∀ v ∈ D(s, r),
4. g(v) :=

�
j∈J g(j)(v) is bounded in D(s, r), namely |g|s,r < ∞.

Then the function g : D(s, r) → C is analytic, its Taylor-Fourier coefficients (defined as in
(2.29)) are

(2.42) gk,i,α,β =
�

j∈J

g(j)
k,i,α,β

≥ 0 , ∀ (k, i, α, β) ∈ I ,

and �g�s,r < ∞. Moreover
1.

�
j∈J |f (j)(v)| < ∞, ∀ v ∈ D(s, r),

2. f(v) :=
�

j∈J f (j)(v) is analytic in D(s, r),
3. f ≺ g and �f�s,r ≤ �g�s,r < ∞.

Proof. – For each monomial mk,i,α,β(v) (see (2.10)) and v = (x, y, z, z̄) ∈ D(s, r), we
have

(2.43) |mk,i,α,β(v)| = mk,i,α,β(v+) ,

where v+ := (i Im x, |y|, |z|, |z̄|) ∈ D(s, r) with |y| := (|y1|, . . . , |yn|) and |z|, |z̄| are similarly
defined.

Since �g(j)�s,r < ∞ (and f (j) ≺ g(j)) the series

(2.44) g(j)(v) :=
�

k,i,α,β

g(j)
k,i,α,β

mk,i,α,β(v) , g(j)
k,i,α,β

≥ 0

is absolutely convergent. For all v ∈ D(s, r) we prove that
�

j∈J

�

k,i,α,β

|g(j)
k,i,α,β

mk,i,α,β(v)| (2.44),(2.43)
=

�

j∈J

�

k,i,α,β

g(j)
k,i,α,β

mk,i,α,β(v+)

(2.44)
=

�

j∈J

g(j)(v+) = g(v+) < ∞(2.45)

by assumption 3. Therefore, by Fubini’s theorem, we exchange the order of the series

(2.46) g(v) =
�

j∈J

�

k,i,α,β

g(j)
k,i,α,β

mk,i,α,β(v) =
�

k,i,α,β

� �

j∈J

g(j)
k,i,α,β

�
mk,i,α,β(v)

proving that g is equal to an absolutely convergent series. Lemma 2.1 and the assumption
|g|s,r < ∞ imply that g is analytic in D(s, r). Moreover (2.46) and Lemma 2.3 imply (2.42).
The gk,i,α,β ≥ 0 because g(j)

k,i,α,β
≥ 0, see (2.44). Therefore Mg = g, and, by (2.34) and the

assumption |g|s,r < ∞, we deduce �g�s,r < ∞.

Concerning f we have
�

j∈J

|f (j)(v)| ≤
�

j∈J

�

k,i,α,β

���f (j)
k,i,α,β

mk,i,α,β(v)
��� ≤

�

j∈J

�

k,i,α,β

g(j)
k,i,α,β

|mk,i,α,β(v)|
(2.45)
< ∞

and, arguing as for g, its Taylor-Fourier coefficients are

fk,i,α,β =
�

j∈J

f (j)
k,i,α,β

, ∀(k, i, α, β) ∈ I.

Then
|fk,i,α,β | ≤

�

j∈J

|f (j)
k,i,α,β

| ≤
�

j∈J

g(j)
k,i,α,β

(2.42)
= gk,i,α,β .
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Hence f ≺ g and �f�s,r ≤ �g�s,r < ∞. Finally f is analytic by Lemma 2.1.

L���� 2.7. – Let �f�s,r < ∞. Then, ∀0 < s� < s, 0 < r� < r, we have �∂jf�s�,r� < ∞.

Proof. – It is enough to prove the lemma for each fς = Πςf defined in (2.17). By
�f�s,r < ∞ and Corollary 2.1 the functions fς , Mfς are analytic and

�∂jfς�s�,r�
(2.34)
≤ 2n|M(∂jfς)|s�,r�

(2.40)
= 2n|∂j(Mfς)|s�,r� ≤ c|Mfς |s,r

(2.34)
≤ c�fς�s,r

for a suitable c := c(n, s, s�, r, r�), having used the Cauchy estimate (in one variable).

We conclude this subsection with a simple result on representation of differentials.

L���� 2.8. – Let f : D(s, r) → C be Fréchet differentiable at v0. Then

(2.47) df(v0)[v] =
�

j∈J

∂jf(v0)v
(j) , ∀v =

�

j∈J

v(j)ej ∈ E ,

and

(2.48)
�

j∈J

|∂jf(v0)v
(j)| ≤ �df(v0)�L(E,C)�v�E .

Proof. – (2.47) follows by the continuity of the differential df(v0) ∈ L(E, C). Next,
consider a vector ṽ = (ṽ(j))j∈J ∈ E such that |ṽj | = |vj | and

ṽ(j)(∂jf)(v0) = |(∂jf)(v0)v
(j)| , ∀ j ∈ J .

Hence df(v0)[ṽ] =
�

j∈J ṽ(j)(∂jf)(v0) =
�

j∈J |(∂jf)(v0)v(j)| which gives (2.48) because
�ṽ�E = �v�E .

2.1.2. Vector fields. – We now consider a formal vector field

(2.49) X(v) :=
�
X(j)(v)

�

j∈J

where each component X(j) is a formal power series

(2.50) X(j)(v) = X(j)(x, y, z, z̄) =
�

k,i,α,β

X(j)
k,i,α,β

eik·xyizαz̄β

as in (2.7). We define its “majorant” vector field componentwise, namely

(2.51) MX(v) :=
�
(MX)(j)(v)

�

j∈J

:=
�
MX(j)(v)

�

j∈J

.

We consider vector fields X : D(s, r) ⊂ E → E, see (2.1).

D��ɪɴɪ�ɪ�ɴ 2.5. – The vector field X is absolutely convergent at v if every component
X(j)(v), j ∈ J , is absolutely convergent (see Definition 2.1) and

���
�
X(j)(v)

�
j∈J

���
E

< +∞ .

The properties of the space E in (2.1) (as target space), that we will use are:

1. E is a separable Hilbert space times a finite dimensional space,
2. the “monotonicity property” of the norm

(2.52) v0, v1 ∈ E with |v(j)
0 | ≤ |v(j)

1 | , ∀ j ∈ J =⇒ �v0�E ≤ �v1�E .
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For X : D(s, r) → E we define the sup-norm

(2.53) |X|s,r := sup
v∈D(s,r)

�X(v)�E,s,r .

D��ɪɴɪ�ɪ�ɴ 2.6 (Majorant-norm: vector field). – The majorant norm of a formal vector
field X as in (2.49) is

�X�s,r := sup
(y,z,z̄)∈D(r)

���
� �

k,i,α,β

|X(j)
k,i,α,β

|e|k|s|yi||zα||z̄β |
�

j∈J

���
E,s,r

= sup
(y,z,z̄)∈D(r)

���
�

k,i,α,β

|Xk,i,α,β |e|k|s|yi||zα||z̄β |
���

E,s,r

(2.54)

where

Xk,i,α,β :=
�
X(j)

k,i,α,β

�
j∈J

and |Xk,i,α,β | :=
�
|X(j)

k,i,α,β
|
�
j∈J

.

R���ʀ� 2.3. – The stronger norm (see [27])

||X||s,r :=
���
�

sup
(y,z,z̄)∈D(r)

�

k,i,α,β

|X(j)
k,i,α,β

|e|k|s|yi||zα||z̄β |
�

j∈J

���
E,s,r

is not suited for infinite dimensional systems: for X = Id we have ||X||s,r = +∞.

By (2.54) and (2.51) we get �X�s,r = �MX�s,r. For a subset of indices I ⊂ I we define the
projection

(ΠIX)(x, y, z, z̄) :=
�

(k,i,α,β)∈I

Xk,i,α,β eik·xyizαz̄β .

L���� 2.9 (Projection). – ∀I ⊂ I,

(2.55) �ΠIX�s,r ≤ �X�s,r .

Proof. – See (2.54).

R���ʀ� 2.4. – The estimate (2.55) may fail for the sup-norm | |s,r and suitable I.

Let us define the “ultraviolet” resp. infrared projections

(2.56) (Π|k|≥KX)(x, y, z, z̄) :=
�

|k|≥K,i,α,β

Xk,i,α,β eik·xyizαz̄β , Π|k|<K := Id−Π|k|≥K .

L���� 2.10 (Smoothing). – ∀ 0 < s� < s,

(2.57) �Π|k|≥KX�s�,r ≤
s

s�
e−K(s−s

�)�X�s,r .

Proof. – Recall (2.54) and use e|k|s
� ≤ e|k|se−K(s−s

�), ∀|k| ≥ K.
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We decompose each formal vector field

(2.58) X =
�

ς∈{+,−}n

ΠςX

applying (2.19) componentwise

(2.59) Xς := ΠςX :=
�
ΠςX

(j)
�

j∈J

recall (2.17). Clearly (2.55) implies

(2.60) �Xς�s,r ≤ �X�s,r .

In the next lemma we prove that, if X has finite majorant norm, then it is analytic.

L���� 2.11. – Assume

(2.61) �X�s,r < +∞ .

Then the series in (2.49)-(2.50), resp. (2.51), absolutely converge to the analytic vector field
X(v), resp. MX(v), for every v ∈ D(s, r). Moreover the sup-norm defined in (2.53) satisfies

(2.62) |X|s,r, |MX|s,r ≤ �X�s,r .

Proof. – By (2.61) and Definition 2.6, for each j ∈ J , we have

sup
(y,z,z̄)∈D(r)

�

k,i,α,β

|X(j)
k,i,α,β

|e|k|s|yi||zα||z̄β | < +∞

and Lemma 2.1 (and Corollary 2.1) implies that each coordinate function X(j),
(MX)(j) : D(s, r) → C is analytic. Moreover (2.62) follows applying (2.27) componentwise.
By (2.61) the maps

X , MX : D(s, r) → E

are bounded. Since E is a separable Hilbert space (times a finite dimensional space), Theo-
rem 3-Appendix A in [29], implies that X, MX : D(s, r) → E are analytic.

Viceversa, we associate to an analytic vector field X : D(s, r) → E a formal Taylor-
Fourier vector field (2.49)-(2.50) developing each component X(j) as in (2.28)-(2.29).

D��ɪɴɪ�ɪ�ɴ 2.7 (Order relation: vector fields). – Given formal vector fields X, Y , we say
that

X ≺ Y

if each coordinate X(j) ≺ Y (j), j ∈ J , according to Definition 2.4.

If �Y �s,r < +∞ and

(2.63) X ≺ Y =⇒ �X�s,r ≤ �Y �s,r .

Applying Lemma 2.5 componentwise we get

L���� 2.12. – If �X�s,r, �Y �s,r < ∞ then X + Y ≺ MX + MY and �X + Y �s,r ≤
�X�s,r + �Y �s,r.

L���� 2.13. –

(2.64) |MX|s,r ≤ �X�s,r ≤ 2n|MX|s,r .
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Proof. – As for Lemma 2.4 with f � X, |�
k,i,α,β

| � ��
k,i,α,β

�E and using
(2.52).

We define the space of analytic vector fields

Vs,r := Vs,r,E :=
�

X : D(s, r) → E with norm �X�s,r < +∞
�

.

By Lemma 2.11 if X ∈ Vs,r then X is analytic, namely the Fréchet differential
D(s, r) � v �→ dX(v) ∈ L(E,E) is continuous. The next lemma bounds its operator
norm from (E, s, r) := (E, � �E,s,r) to (E, s�, r�), see (2.2).

L���� 2.14 (Cauchy estimate). – Let X ∈ Vs,r. Then, for s/2 ≤ s� < s, r/2 ≤ r� < r,

(2.65) sup
v∈D(s�,r�)

�dX(v)�L((E,s,r),(E,s�,r�)) ≤ 4δ−1|X|s,r

where the sup-norm |X|s,r is defined in (2.53) and

(2.66) δ := min
�

1− s�

s
, 1− r�

r

�
.

Proof. – In the appendix.

The commutator of two vector fields X,Y : D(s, r) → E is

(2.67) [X,Y ](v) := dX(v)[Y (v)]− dY (v)[X(v)] , ∀ v ∈ D(s, r) .

The next lemma is the fundamental result of this section.

L���� 2.15 (Commutator). – Let X,Y ∈ Vs,r. Then, for r/2 ≤ r� < r, s/2 ≤ s� < s,

(2.68) �[X,Y ]�s�,r� ≤ 22n+3δ−1�X�s,r�Y �s,r

where δ is defined in (2.66).

Proof. – The lemma follows by

(2.69) �dX[Y ]�s�,r� ≤ 4n+2δ−1�X�s,r�Y �s,r ,

the analogous estimate for dY [X] and (2.67).
We claim that, for each ς ∈ {+,−}n, the vector field Xς defined in (2.59) satisfies

(2.70) �dXς [Y ]�s�,r� ≤ 2n+2δ−1�Xς�s,r�Y �s,r

which implies (2.69) because

�dX[Y ]�s�,r�
(2.58)
≤

�

ς∈{+,−}n

�dXς [Y ]�s�,r�
(2.70)
≤

�

ς∈{+,−}n

2n+2δ−1�Xς�s,r�Y �s,r

(2.60)
≤

�

ς∈{+,−}n

2n+2δ−1�X�s,r�Y �s,r ≤ 4n+2δ−1�X�s,r�Y �s,r .

Let us prove (2.70). First note that, since �Xς�s,r

(2.60)
≤ �X�s,r < +∞ and �Y �s,r < +∞ by

assumption, Lemma 2.11 implies that the vector fields

(2.71) Xς , MXς , Y, MY : D(s, r) → E , ∀ς ∈ {+,−}n ,

are analytic, as well as each component X(i)
ς , MX(i)

ς , Y (i), MY (i) : D(s, r) → C, i ∈ J .
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The key for proving the lemma is the following chain of inequalities:

dXς [Y ](i) ≺ M(dXς [Y ])(i)
(2.47)
= M

� �

j∈J

(∂jX
(i)
ς

)Y (j)
�

Lemma 2.6
≺

�

j∈J

M(∂jX
(i)
ς

)MY (j)(2.72)

(2.40)
=

�

j∈J

q(j)
ς

∂j

�
MX(i)

ς

�
MY (j) (2.47)

= d
�
MX(i)

ς

��
Ỹq]

where

(2.73) Ỹq := (Ỹ (j)
q

)j∈J := (q(j)
ς

MY (j))j∈J ∈ E .

Actually, since |q(j)
ς | = 1 (see (2.38)), then

(2.74) �Ỹq(v)�E = �MY (v)�E

(2.71)
< +∞ , ∀v ∈ D(s, r) .

In (2.72) above we applied Lemma 2.6 with

(2.75) s � s� , r � r� , f (j) � (∂jX
(i)
ς

)Y (j) , g(j) � M(∂jX
(i)
ς

)MY (j) .

Let us verify that the hypotheses of Lemma 2.6 hold:

1. f (j) ≺ g(j) follows by (2.39) and since �f (j)�s�,r� , �g(j)�s�,r� < +∞ because
�X(i)

ς �s,r ≤ �X�s,r < +∞, �Y (j)�s,r ≤ �Y �s,r < +∞, and Lemma 2.7.
2. �g(j)�s�,r� < ∞ is proved above.
3. We have

�
j∈J |g(j)(v)| < ∞, for all v ∈ D(s�, r�), because

�

j∈J

|g(j)(v)| (2.75)
=

�

j∈J

|M(∂jX
(i)
ς

)(v)MY (j)(v)| (2.40)
=

�

j∈J

|q(j)
ς

∂j

�
MX(i)

ς

�
(v)MY (j)(v)|

(2.38)
=

�

j∈J

|∂j

�
MX(i)

ς

�
(v)MY (j)(v)|

(2.48)
≤ �dMX(i)

ς
(v)�L(E,C)�MY (v)�E < +∞

by (2.71), (2.74). Actually we also proved that g(j) = q(j)
ς ∂j

�
MX(i)

ς

�
MY (j).

4. The function

g(v) :=
�

j∈J

g(j)(v) =
�

j∈J

q(j)
ς

∂j

�
MX(i)

ς

�
MY (j) (2.47)

= d
�
MX(i)

ς

��
Ỹq]

since MX(i)
ς is differentiable (see (2.71)) and Ỹq ∈ E (see (2.74)).

Moreover the bound |g|s�,r� < ∞ follows by

|g|s�,r� = |d
�
MX(i)

ς

��
Ỹq]|s�,r� ≤ |d

�
MXς

��
Ỹq]|s�,r�
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and

|d
�
MXς

��
Ỹq]|s�,r�

(2.53)
= sup

v∈D(s�,r�)

���d
�
MXς

�
(v)

�
Ỹq(v)

����
E,s�,r�

≤ sup
v∈D(s�,r�)

���d
�
MXς

�
(v)

���
L((E,s,r),(E,s�,r�))

�Ỹq(v)�E,s,r

(2.65)
≤ 4δ−1|MXς |s,r sup

v∈D(s�,r�)
�Ỹq(v)�E,s,r

(2.62),(2.74)
≤ 4δ−1�Xς�s,r sup

v∈D(s�,r�)
�
�
MY

�
(v)�E,s,r

(2.53)
≤ 4δ−1�Xς�s,r|MY |s,r

(2.64)
≤ 4δ−1�Xς�s,r�Y �s,r < +∞(2.76)

because �Y �s,r < +∞ and �Xς�s,r ≤ �X�s,r < +∞ by assumption.

Hence Lemma 2.6 implies

dX(i)
ς

[Y ]
(2.47)
=

�

j

(∂jX
(i)
ς

)Y (j) =: f
Lemma 2.6

≺ g := d
�
MX(i)

ς

��
Ỹq] , ∀i ∈ J ,

namely, by (2.37) and Definition 2.7,

(2.77) dXς [Y ] ≺ M(dXς [Y ]) ≺ d
�
MXς

��
Ỹq] .

Hence (2.73) is fully justified. By (2.77) and (2.63) we get

�dXς [Y ]�s�,r� ≤ �d
�
MXς

��
Ỹq]�s�,r�

(2.64)
≤ 2n

���M
�
d
�
MXς

��
Ỹq]

����
s�,r�

= 2n

���d
�
MXς

��
Ỹq]

���
s�,r�

(2.78)

because d
�
MXς

��
Ỹq] coincides with its majorant by (2.77). Finally (2.70) follows by (2.78),

(2.76).

2.2. Hamiltonian formalism

Given a function H : D(s, r) ⊂ E → C we define the associated Hamiltonian vector field

(2.79) XH := (∂yH,−∂xH,−i∂z̄H, i∂zH)

where the partial derivatives are defined as in (2.30).
For a subset of indices I ⊂ I, the bound (2.55) implies

(2.80) �XΠIH�s,r ≤ �XH�s,r .

The Poisson brackets are defined by

{H,K} := {H,K}x,y + {H,K}z,z̄

:=
�
∂xH · ∂yK − ∂xK · ∂yH

�
+ i

�
∂zH · ∂z̄K − ∂z̄H · ∂zK

�

= ∂xH · ∂yK − ∂xK · ∂yH + i∂z+H · ∂z−K − i∂z−H · ∂z+K

= ∂xH · ∂yK − ∂xK · ∂yH + i
�

σ=±, j∈Z\I
σ∂z

σ
j
H ∂

z
−σ
j

K(2.81)
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where “ · ” denotes the standard pairing a · b :=
�

j
ajbj . We recall the Jacobi identity

(2.82) {{K, G}, H}+ {{G, H}, K}+ {{H,K}, G} = 0 .

Along this paper we shall use the Lie algebra notations

(2.83) adF := { , F} , eadF :=
∞�

k=0

adk

F

k!
.

Given a set of indices

(2.84) I := {j1, . . . , jn} ⊂ Z ,

we define the momentum

M := MI :=
n�

l=1

jl yl +
�

j∈Z\I
jzj z̄j =

n�

l=1

jl yl +
�

j∈Z\I
jz+

j
z−
j

.

We say that a function H satisfies momentum conservation if {H,M} = 0.

By (2.81), any monomial eik·xyizαz̄β is an eigenvector of the operator adM, namely

(2.85) {eik·xyizαz̄β ,M} = π(k, α,β)eik·xyizαz̄β

where

(2.86) π(k, α,β) :=
n�

l=1

jlkl +
�

j∈Z\I
j(αj − βj) .

We refer to π(k, α,β) as the momentum of the monomial eik·xyizαz̄β . A monomial satisfies
momentum conservation if and only if π(k,α,β) = 0. Moreover, a power series (2.7) with
�f�s,r < +∞ satisfies momentum conservation if and only if all its monomials have zero
momentum.

Let O ⊂ Rn be a subset of parameters, and

(2.87) f : D(s, r)×O → C with Xf : D(s, r)×O → E .

For λ > 0, we consider

|Xf |λs,r,O := |Xf |λs,r
:= sup

O

|Xf |s,r + λ|Xf |lips,r
(2.88)

:= sup
ξ∈O

|Xf (ξ)|s,r + λ sup
ξ,η∈O, ξ �=η

|Xf (ξ)−Xf (η)|s,r

|ξ − η| .

Note that |·|λ
s,r

is only a semi-norm on spaces of functions f because the Hamiltonian vector
field Xf = 0 when f is constant.

D��ɪɴɪ�ɪ�ɴ 2.8. – A function f as in (2.87) is called

– regular, if the sup-norm |Xf |s,r,O := supO |Xf |s,r < ∞, see (2.53).
– M-regular, if the majorant norm �Xf�s,r,O := supO �Xf�s,r < ∞, see (2.54).
– λ-regular, if the Lipschitz semi-norm |Xf |λs,r,O

< ∞, see (2.88).
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We denote byHs,r the space of M-regular Hamiltonians and byHnull
s,r

its subspace of functions
satisfying momentum conservation.

When I = ∅ (namely there are no (x, y)-variables) we denote the space of M-regular
functions simply by Hr, similarly Hnull

r
, and we drop s form the norms, i.e., | · |r, � · �r, | · |r,O,

etc.

Note that, by (2.62) and (2.88), we have

(2.89) M− regular =⇒ regular ⇐= λ− regular .

If H , F satisfy momentum conservation, the same holds for {H,K}. Indeed by the Jacobi
identity (2.82),

(2.90) {M, H} = 0 and {M, K} = 0 =⇒ {M, {H,K}} = 0 .

For H,K ∈ Hs,r we have

(2.91) X{H,K} = dXH [XK ]− dXK [XH ] = [XH , XK ]

and the commutator Lemma 2.15 implies the fundamental lemma below.

L���� 2.16. – Let H,K ∈ Hs,r. Then, for all r/2 ≤ r� < r, s/2 ≤ s� < s

(2.92) �X{H,K}�s�,r� = �[XH , XK ]�s�,r� ≤ 22n+3δ−1�XH�s,r�XK�s,r

where δ is defined in (2.66).

Unlike the sup-norm, the majorant norm of a function is very sensitive to coordinate
transformations. For our purposes, we only need to consider close to identity canonical
transformations that are generated by an M -regular Hamiltonian flow. We show below that
the M -regular functions are closed under this group and we estimate the majorant norm of
the transformed Hamiltonian vector field.

L���� 2.17 (Hamiltonian flow). – Let r/2 ≤ r� < r, s/2 ≤ s� < s, and F ∈ Hs,r with

(2.93) �XF �s,r < η := δ/(22n+5e)

with δ defined in (2.66). Then the time 1-hamiltonian flow

Φ1
F

: D(s�, r�) → D(s, r)

is well defined, analytic, symplectic, and, ∀H ∈ Hs,r, we have H ◦ Φ1
F
∈ Hs�,r� and

(2.94) �XH◦Φ1
F
�s�,r� ≤

�XH�s,r

1− η−1�XF �s,r

.

Finally if F,H ∈ Hnull
s,r

then H ◦ Φ1
F
∈ Hnull

s�,r� .

Proof. – We estimate by Lie series the Hamiltonian vector field of

(2.95) H � = H ◦ Φ1
F

= eadFH =
∞�

k=0

adk

F
H

k!
=

∞�

k=0

H(k)

k!
, i.e., XH� =

∞�

k=0

XH(k)

k!
,

where H(i) := adi

F
(H) = adF (H(i−1)), H(0) := H .

For each k ≥ 0, divide the intervals [s�, s] and [r�, r] into k equal segments and set

si := s− i
s− s�

k
, ri := r − i

r − r�

k
, i = 0, . . . , k .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



322 M. BERTI, L. BIASCO AND M. PROCESI

By (2.92) we have

(2.96) �XH(i)�si,ri = �[XF , XH(i−1) ]�si,ri ≤ 22n+3δ−1
i
�XH(i−1)�si−1,ri−1�XF �si−1,ri−1

where

δi := min

ß
1− si

si−1
, 1− ri

ri−1

™
≥ δ

k
.(2.97)

By (2.96)-(2.97) we deduce

�XH(i)�si,ri ≤ 22n+3kδ−1�XH(i−1)�si−1,ri−1�XF �si−1,ri−1 , i = 1, . . . , k .

Iterating k-times, and using �XF �si−1,ri−1 ≤ 4�XF �s,r (see (2.3))

(2.98) �XH(k)�s�,r� ≤ (22n+5kδ−1)k�XH�s,r�XF �k

s,r
.

By (2.95), using kk ≤ ekk! and recalling the definition of η in (2.93), we estimate

�XH��s�,r�
(2.95)
≤

∞�

k=0

�XH(k)�s�,r�

k!

(2.98)
≤ �XH�s,r

∞�

k=0

(22n+5kδ−1�XF �s,r)k

k!

≤ �XH�s,r

∞�

k=0

(η−1�XF �s,r)
k (2.93)

=
�XH�s,r

1− η−1�XF �s,r

proving (2.94).

Finally, if F and H satisfy momentum conservation then each adk

F
H , k ≥ 1, satisfies

momentum conservation. For k = 1 it is proved in (2.90) and, for k > 1, it follows by
induction and the Jacobi identity (2.82). By (2.95) we conclude that also H ◦ Φ1

F
satisfies

momentum conservation.

We conclude this section with two simple lemmata.

L���� 2.18. – Let P =
�

|k|≤K,i,α,β
Pk,i,α,βeik·xyizαz̄β and |∆k,i,α,β | ≥ γ�k�−τ ,

∀|k| ≤ K, i,α, β. Then

F :=
�

|k|≤K,i,α,β

Pk,i,α,β

∆k,i,α,β

eik·xyizαz̄β satisfies �XF �s,r ≤ γ−1Kτ�XP �s,r .

Proof. – By Definition 2.6 and |∆k,i,α,β | ≥ γK−τ for all |k| ≤ K.

L���� 2.19. – Let P =
�

j∈Z\I Pjzj z̄j with �XP �r < ∞. Then |Pj | ≤ �XP �r.

Proof. – By (2.79) and Definition 2.6 we have

�XP �2r = 2 sup
�z�a,p<r

�

h∈Z\I
|Ph|2

|zh|2
r2

e2a|h|�h�2p ≥ |Pj |2

by evaluating at z(j)
h

:= δjhe−a|j|�j�pr/
√

2.
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3. Quasi-Töplitz functions

Let N0 ∈ N, θ, µ ∈ R be parameters such that

(3.1) 1 < θ, µ < 6 , 12NL−1
0 + 2κN b−1

0 < 1 , κ := max
1≤l≤n

|jl| ,

(the jl are defined in (2.84)) where

(3.2) 0 < b < L < 1 .

For N ≥ N0, we decompose

(3.3) �a,p

I
× �a,p

I
= �a,p

L
⊕ �a,p

R
⊕ �a,p

H

where

�a,p

L
:= �a,p

L
(N) :=

�
w = (z+, z−) ∈ �a,p

I
× �a,p

I
: zσ

j
= 0 , σ = ± , ∀|j| ≥ 6NL

�

�a,p

R
:= �a,p

R
(N) :=

�
w = (z+, z−) ∈ �a,p

I
× �a,p

I
: zσ

j
= 0 , σ = ± , unless 6NL < |j| < N

�

�a,p

H
:= �a,p

H
(N) :=

�
w = (z+, z−) ∈ �a,p

I
× �a,p

I
: zσ

j
= 0 , σ = ± , ∀|j| ≤ N

�
.

Note that by (3.1)-(3.2) the subspaces �a,p

L
∩�a,p

H
= 0 and �a,p

R
�= 0. Accordingly we decompose

any
w ∈ �a,p × �a,p as w = wL + wR + wH

and we call wL ∈ �a,p

L
the “low momentum variables” and wH ∈ �a,p

H
the “high momentum

variables”.

We split the Poisson brackets in (2.81) as

{·, ·} = {·, ·}x,y + {·, ·}L + {·, ·}R + {·, ·}H

where

(3.4) {H,K}H := i
�

σ=±, |j|>cN

σ∂z
σ
j
H ∂

z
−σ
j

K .

The other Poisson brackets {·, ·}L, {·, ·}R are defined analogously with respect to the splitting
(3.3).

L���� 3.1. – Consider two monomials

m = ck,i,α,βeik·xyizαz̄β and m� = c�
k�,i�,α�,β�e

ik�·xyi
�
zα

�
z̄β

�
.

The momentum of mm�, {m,m�}, {m,m�}x,y, {m,m�}L, {m,m�}R, {m,m�}H , equals the sum
of the momenta of each monomial m, m�.

Proof. – By (2.86), (2.81), and

π(k + k�, α + α�, β + β�) = π(k, α,β) + π(k�, α�, β�) = π(k,α− ej , β) + π(k�, α�, β� − ej) ,

for any j ∈ Z.

We now define subspaces of Hs,r (recall Definition 2.8).
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D��ɪɴɪ�ɪ�ɴ 3.1. – Low-momentum A monomial eik·xyizαz̄β is (N,µ)-low momentum if

(3.5)
�

j∈Z\I
|j|(αj + βj) < µNL , |k| < N b .

We denote by
Ls,r(N,µ) ⊂ Hs,r

the subspace of functions

(3.6) g =
�

gk,i,α,βeik·xyizαz̄β ∈ Hs,r

whose monomials are (N,µ)-low momentum. The corresponding projection

(3.7) ΠL

N,µ
: Hs,r → Ls,r(N,µ)

is defined as ΠL

N,µ
:= ΠI (see (2.13)) where I is the subset of I (see (2.8)) satisfying (3.5).

Finally, given h ∈ Z, we denote by

Ls,r(N,µ, h) ⊂ Ls,r(N,µ)

the subspace of functions whose monomials satisfy

(3.8) π(k, α,β) + h = 0 .

By (3.5), (3.1)-(3.2), any function in Ls,r(N,µ), 1 < µ < 6, only depends on x, y, wL and
therefore

(3.9) g, g� ∈ Ls,r(N,µ) =⇒ gg�, {g, g�}x,y, {g, g�}L do not depend on wH .

Moreover, by (2.86), (3.1), (3.5), if

(3.10) |h| ≥ µNL + κN b =⇒ Ls,r(N,µ, h) = ∅ .

D��ɪɴɪ�ɪ�ɴ 3.2 ((N, θ, µ)-bilinear). – We denote by

Bs,r(N, θ, µ) ⊂ Hnull
s,r

the subspace of the (N, θ, µ)-bilinear functions defined as

(3.11) f :=
�

|m|,|n|>θN,σ,σ�=±

fσ,σ
�

m,n
(x, y, wL)zσ

m
zσ

�

n
with fσ,σ

�

m,n
∈ Ls,r(N,µ,σm + σ�n)

and we denote the projection

ΠN,θ,µ : Hs,r → Bs,r(N, θ, µ) .

Explicitely, for g ∈ Hs,r as in (3.6), the coefficients in (3.11) of f := ΠN,θ,µg are

(3.12) fσ,σ
�

m,n
(x, y, wL) :=

�

(k,i,α,β) s.t. (3.5) holds

and π(k,α,β)=−σm−σ�n

fσ,σ
�

k,i,α,β,m,n
eik·xyizαz̄β

where

f+,+
k,i,α,β,m,n

:= (2− δmn)−1gk,i,α+em+en,β , f+,−

k,i,α,β,m,n
:= gk,i,α+em,β+en ,

f−,−

k,i,α,β,m,n
:= (2− δmn)−1gk,i,α,β+em+en , f−,+

k,i,α,β,m,n
:= gk,i,α+en,β+em .(3.13)

For parameters 1 < θ < θ�, 6 > µ > µ�, we have

Bs,r(N, θ�, µ�) ⊂ Bs,r(N, θ, µ) .

4 e SÉRIE – TOME 46 – 2013 – No 2



KAM THEORY FOR THE HAMILTONIAN DERIVATIVE WAVE EQUATION 325

R���ʀ� 3.1. – The projection ΠN,θ,µ can be written in the form ΠI , see (2.13), for a
suitable I ⊂ I. The representation in (3.11) is not unique. It becomes unique if we impose the
“symmetric” conditions

(3.14) fσ,σ
�

m,n
= fσ

�
,σ

n,m
.

Note that the coefficients in (3.12)-(3.13) satisfy (3.14).

3.1. Töplitz functions

Let N ≥ N0.

D��ɪɴɪ�ɪ�ɴ 3.3 (Töplitz). – A function f ∈ Bs,r(N, θ, µ) is (N, θ, µ)-Töplitz if the
coefficients in (3.11) have the form

(3.15) fσ,σ
�

m,n
= fσ,σ

��
s(m), σm + σ�n

�
for some fσ,σ

�
(ς, h) ∈ Ls,r(N,µ, h) ,

with s(m) := sign(m), ς = +,− and h ∈ Z. We denote by

Ts,r := Ts,r(N, θ, µ) ⊂ Bs,r(N, θ, µ)

the space of the (N, θ, µ)-Töplitz functions.

For parameters N � ≥ N , θ� ≥ θ, µ� ≤ µ, r� ≤ r, s� ≤ s we have

(3.16) Ts,r(N, θ, µ) ⊆ Ts�,r�(N
�, θ�, µ�) .

L���� 3.2. – Consider f, g ∈ Ts,r(N, θ, µ) and p ∈ Ls,r(N,µ1, 0) with 1 < µ, µ1 < 6.
For all 0 < s� < s , 0 < r� < r and θ� ≥ θ, µ� ≤ µ one has

(3.17) ΠN,θ�,µ�{f, p}L , ΠN,θ�,µ�{f, p}x,y ∈ Ts�,r�(N, θ�, µ�) .

If moreover

(3.18) µNL + κN b < (θ� − θ)N

then

(3.19) ΠN,θ�,µ�{f, g}H ∈ Ts�,r�(N, θ�, µ�) .

Proof. – Write f ∈ Ts,r(N, θ, µ) as in (3.11) where fσ,σ
�

m,n
satisfy (3.15) and (3.14), namely

(3.20) fσ,σ
�

m,n
= fσ

�
,σ

n,m
= fσ,σ

�
(s(m), σm + σ�n) ∈ Ls,r(N,µ,σm + σ�n) ,

similarly for g.

Proof of (3.17). – Since the variables zσ

m
, zσ

�

n
, |m|, |n| > θN , are high momentum,

{fσ,σ
�

m,n
zσ

m
zσ

�

n
, p}L = {fσ,σ

�

m,n
, p}L zσ

m
zσ

�

n

and {fσ,σ
�

m,n
, p}L does not depend on wH by (3.9) (recall that fσ,σ

�

m,n
, p ∈ Ls,r(N,µ)). The

coefficient of zσ

m
zσ

�

n
in ΠN,θ�,µ�{f, p}L is

ΠL

N,µ�{fσ,σ
�

m,n
, p}L (3.20)

= ΠL

N,µ�{fσ,σ
�
(s(m), σm + σ�n) , p}L ∈ Ls�,r�(N,µ�, σm + σ�n)

using Lemma 3.1 (recall that p has zero momentum). The proof that ΠN,θ�,µ�{f, p}x,y ∈
Ts�,r�(N, θ�, µ�) is analogous.
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Proof of (3.19). – A direct computation, using (3.4), gives

{f, g}H =
�

|m|,|n|>θN, σ,σ�=±

pσ,σ
�

m,n
zσ

m
zσ

�

n

with

(3.21) pσ,σ
�

m,n
= 2i

�

|l|>θN , σ1=±

σ1

�
fσ,σ1

m,l
g−σ1,σ

�

l,n
+ fσ

�
,σ1

n,l
g−σ1,σ

l,m

�
.

By (3.9) the coefficient pσ,σ
�

m,n
does not depend on wH . Therefore

(3.22) ΠN,θ�,µ�{f, g}H =
�

|m|,|n|>θ�N, σ,σ�=±

qσ,σ
�

m,n
zσ

m
zσ

�

n
with qσ,σ

�

m,n
:= ΠL

N,µ�p
σ,σ

�

m,n

(recall (3.7)). It results qσ,σ
�

m,n
∈ Ls�,r�(N,µ�, σm+σ�n) by (3.22), (3.21), and Lemma 3.1 since,

i.e.,
fσ,σ1

m,l
∈ Ls,r(N,µ,σm + σ1l) and g−σ1,σ

�

l,n
∈ Ls,r(N,µ,−σ1l + σ�n) .

Hence the (N, θ�, µ�)-bilinear function ΠN,θ�,µ�{f, g}H in (3.22) is written in the form (3.11).
It remains to prove that it is (N, θ�, µ�)-Töplitz, namely that for all |m|, |n| > θ�N , σ,σ� = ±,

(3.23) qσ,σ
�

m,n
= qσ,σ

��
s(m), σm + σ�n

�
for some qσ,σ

�
(ς, h) ∈ Ls,r(N,µ�, h) .

Let us consider in (3.21)-(3.22) the term (with m, n,σ,σ�, σ1 fixed)

(3.24) ΠL

N,µ�

�

|l|>θN

fσ,σ1

m,l
g−σ1,σ

�

l,n

(the other is analogous). Since f, g ∈ Ts,r(N, θ, µ) we have

(3.25) fσ,σ1

m,l
= fσ,σ1

�
s(m), σm + σ1l

�
∈ Ls,r(N,µ,σm + σ1l)

(3.26) g−σ1,σ
�

l,n
= g−σ1,σ

��
s(l),−σ1l + σ�n

�
∈ Ls,r(N,µ,−σ1l + σ�n) .

By (3.10), (3.25), (3.26), if the coefficients fσ,σ1

m,l
, g−σ1,σ

�

l,n
are not zero then

(3.27) |σm + σ1l| , |− σ1l + σ�n| < µNL + κN b .

By (3.27), (3.1), we get cN > |σm + σ1l| = |σσ1s(m)|m| + s(l)|l||, which implies, since
|m| > θ�N > N (see (3.22)), that the sign

(3.28) s(l) = −σσ1s(m) .

Moreover
|l| ≥ |m|− |σm + σ1l|

(3.27)
> θ�N − µNL − κN b

(3.18)
> θN .

This shows that the restriction |l| > θN in the sum (3.24) is automatically met. Then

ΠL

N,µ�

�

|l|>θN

fσ,σ1

m,l
g−σ1,σ

�

l,n

(3.26)
= ΠL

N,µ�

�

l∈Z
fσ,σ1

�
s(m), σm + σ1l

�
g−σ1,σ

��
s(l),−σ1l + σ�n

�

= ΠL

N,µ�

�

j∈Z
fσ,σ1

�
s(m), j

�
g−σ1,σ

��
s(l), σm + σ�n− j

�

(3.28)
= ΠL

N,µ�

�

j∈Z
fσ,σ1

�
s(m), j

�
g−σ1,σ

��− σσ1s(m), σm + σ�n− j
�

depends only on s(m) and σm + σ�n, i.e., (3.23).
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3.2. Quasi-Töplitz functions

Given f ∈ Hs,r and f̃ ∈ Ts,r(N, θ, µ) we set

(3.29) f̂ := N(ΠN,θ,µf − f̃) .

All the functions f ∈ Hs,r below possibly depend on parameters ξ ∈ O, see (2.87). For
simplicity we shall often omit this dependence and denote � �s,r,O = � �s,r.

D��ɪɴɪ�ɪ�ɴ 3.4 (Quasi-Töplitz). – A function f ∈ Hnull
s,r

is called (N0, θ, µ)-quasi-
Töplitz if the quasi-Töplitz semi-norm
(3.30)

�f�T

s,r
:= �f�T

s,r,N0,θ,µ
:= sup

N≥N0

�
inf

f̃∈Ts,r(N,θ,µ)

�
max{�Xf�s,r, �Xf̃

�s,r, �Xf̂
�s,r}

��

is finite. We define

QT

s,r
:= QT

s,r
(N0, θ, µ) :=

�
f ∈ Hnull

s,r
: �f�T

s,r,N0,θ,µ
< ∞

�
.

In other words, a function f is (N0, θ, µ)-quasi-Töplitz with semi-norm �f�T

s,r
if, for all

N ≥ N0, ∀ε > 0, there is f̃ ∈ Ts,r(N, θ, µ) such that

(3.31) ΠN,θ,µf = f̃ + N−1f̂ and �Xf�s,r , �X
f̃
�s,r , �X

f̂
�s,r ≤ �f�T

s,r
+ ε .

We call f̃ ∈ Ts,r(N, θ, µ) a “Töplitz approximation” of f and f̂ the “Töplitz-defect”. Note
that, by Definition 3.3 and (3.29)

ΠN,θ,µf̃ = f̃ , ΠN,θ,µf̂ = f̂ .

By the Definition (3.30) we get

(3.32) �Xf�s,r ≤ �f�T

s,r

and we complete (2.89) noting that

(3.33) quasi-Töplitz =⇒ M-regular =⇒ regular ⇐= λ-regular .

Clearly, if f is (N0, θ, µ)-Töplitz then f is (N0, θ, µ)-quasi-Töplitz and

(3.34) �f�T

s,r,N0,θ,µ
= �Xf�s,r .

Then we have the following inclusions

Ts,r ⊂ QT

s,r
, Bs,r ⊂ Hnull

s,r
⊂ Hs,r .

Note that neither Bs,r ⊆ QT

s,r
nor Bs,r ⊇ QT

s,r
.

L���� 3.3. – For parameters N1 ≥ N0, µ1 ≤ µ, θ1 ≥ θ, r1 ≤ r, s1 ≤ s, we have

QT

s,r
(N0, θ, µ) ⊂ QT

s1,r1
(N1, θ1, µ1)

and

(3.35) �f�T

s1,r1,N1,θ1,µ1
≤ max{s/s1, (r/r1)

2}�f�T

s,r,N0,θ,µ
.
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Proof. – By (3.31), for all N ≥ N1 ≥ N0 (since θ1 ≥ θ, µ1 ≤ µ)

ΠN,θ1,µ1f = ΠN,θ1,µ1ΠN,θ,µf = ΠN,θ1,µ1 f̃ + N−1ΠN,θ1,µ1 f̂ .

The function ΠN,θ1,µ1 f̃ ∈ Ts1,r1(N, θ1, µ1) and

�XΠN,θ1,µ1 f̃
�s1,r1

(2.80)
≤ �X

f̃
�s1,r1

(3.31)
≤ �f�T

s1,r1
+ ε ,

�XΠN,θ1,µ1 f̂
�s1,r1

(2.80)
≤ �X

f̂
�s1,r1

(3.31)
≤ �f�T

s1,r1
+ ε .

Hence, ∀N ≥ N1,

inf
f̃∈Ts1,r1 (N,θ1,µ1)

�
max{�Xf�s1,r1 , �Xf̃

�s1,r1 , �Xf̂
�s1,r1}

�
≤ �f�T

s1,r1
+ ε ,

applying (2.3) we have (3.35), because ε > 0 is arbitrary.

For f ∈ Hs,r we define its homogeneous component of degree l ∈ N,

(3.36) f (l) := Π(l)f :=
�

k∈Zn , 2|i|+|α|+|β|=l

fk,i,α,β eik·xyizαz̄β ,

and the projections

(3.37) fK := Π|k|≤Kf :=
�

|k|≤K,i,α,β

fk,i,α,β eik·xyizαz̄β , Π>Kf := f −Π|k|≤Kf .

We also set

(3.38) f≤2
K

:= Π|k|≤Kf≤2 , f≤2 := f (0) + f (1) + f (2) .

The above projectors Π(l), Π|k|≤K , Π>K have the form ΠI , see (2.13), for suitable subsets
I ⊂ I.

L���� 3.4 (Projections). – Let f ∈ QT

s,r
(N0, θ, µ). Then, for all l ∈ N, K ∈ N,

(3.39) �Π(l)f�T

s,r,N0,θ,µ
≤ �f�T

s,r,N0,θ,µ

(3.40) �f≤2�T

s,r,N0,θ,µ
, �f − f≤2

K
�T

s,r,N0,θ,µ
≤ �f�T

s,r,N0,θ,µ

(3.41) �Π|k|≤Kf�T

s,r,N0,θ,µ
≤ �f�T

s,r,N0,θ,µ

(3.42) �Πk=0Π|α|=|β|=1Π
(2)f�T

r,N0,θ,µ
≤ �Π(2)f�T

s,r,N0,θ,µ

and, ∀ 0 < s� < s,

(3.43) �Π>Kf�T

s�,r,N0,θ,µ
≤ e−K(s−s

�) s

s�
�f�T

s,r,N0,θ,µ
.

Proof. – We first note that by (2.15) (recall also Remark 3.1) we have

(3.44) Π(l) ΠN,θ,µg = ΠN,θ,µ Π(l)g , ∀ g ∈ Hs,r .

Then, applying Π(l) in (3.31), we deduce that, ∀N ≥ N0, ∀ε > 0, there is f̃ ∈ Ts,r(N, θ, µ)
such that

(3.45) Π(l)ΠN,θ,µf = ΠN,θ,µΠ(l)f = Π(l)f̃ + N−1Π(l)f̂

and, by (2.80), (3.31),

(3.46) �XΠ(l)f�s,r , �XΠ(l)f̃
�s,r , �XΠ(l)f̂

�s,r ≤ �f�T

s,r
+ ε .
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We claim that Π(l)f̃ ∈ Ts,r(N, θ, µ), ∀l ≥ 0. Hence (3.45)-(3.46) imply Π(l)f ∈ QT

s,r
(N0, θ, µ)

and
�Π(l)f�T

s,r
≤ �f�T

s,r
+ ε ,

i.e., (3.39). Let us prove our claim. For l = 0, 1 the projection Π(l)f̃ = 0 because
f̃ ∈ Ts,r(N, θ, µ) is bilinear. For l ≥ 2, write f̃ in the form (3.11) with coefficients f̃σ,σ

�

m,n

satisfying (3.15). Then also g := Π(l)f̃ has the form (3.11) with coefficients

gσ,σ
�

m,n
= Π(l−2)f̃σ,σ

�

m,n

which satisfy (3.15) noting that Π(l)Ls,r(N,µ, h) ⊂ Ls,r(N,µ, h). Hence g ∈ Ts,r(N, θ, µ),
∀l ≥ 0, proving the claim. The proof of (3.40), (3.41), (3.42), and (3.43) are similar (use also
(2.57)).

L���� 3.5. – Assume that, ∀N ≥ N∗, we have the decomposition

(3.47) G = G�

N
+ G��

N
with �G�

N
�T

s,r,N,θ,µ
≤ K1 , N�XΠN,θ,µG

��
N
�s,r ≤ K2 .

Then �G�T

s,r,N∗,θ,µ
≤ max{�XG�s,r, K1 + K2}.

Proof. – By assumption, ∀N ≥ N∗, we have �G�

N
�T

s,r,N,θ,µ
≤ K1. Then, ∀ε > 0, there

exist G̃�

N
∈ Ts,r(N, θ, µ), Ĝ�

N
, such that

(3.48) ΠN,θ,µG�

N
= G̃�

N
+ N−1Ĝ�

N
and �X

G̃
�
N
�s,r, �XĜ

�
N
�s,r ≤ K1 + ε .

Therefore, ∀N ≥ N∗,

ΠN,θ,µG = G̃N + N−1ĜN , G̃N := G̃�

N
, ĜN := Ĝ�

N
+ NΠN,θ,µG��

N

where G̃N ∈ Ts,r(N, θ, µ) and

(3.49) �X
G̃N
�s,r = �X

G̃
�
N
�s,r

(3.48)
≤ K1 + ε,

(3.50) �X
ĜN
�s,r ≤ �XĜ

�
N
�s,r + N�XΠN,θ,µG

��
N
�s,r

(3.48),(3.47)
≤ K1 + ε + K2 .

Then G ∈ QT

s,r,N∗,θ,µ
and

�G�T

s,r,N∗,θ,µ
≤ sup

N≥N∗

max
�
�XG�s,r, �XG̃N

�s,r, �XĜN
�s,r

�

(3.49),(3.50)
≤ max{�XG�s,r, K1 + K2 + ε} .

Since ε > 0 is arbitrary the lemma follows.

The Poisson bracket of two quasi-Töplitz functions is quasi-Töplitz.

Pʀ����ɪ�ɪ�ɴ 3.1 (Poisson bracket). – Assume that f (1), f (2) ∈ QT

s,r
(N0, θ, µ) and

N1 ≥ N0, µ1 ≤ µ, θ1 ≥ θ, s/2 ≤ s1 < s, r/2 ≤ r1 < r satisfy

(3.51) κN b−L

1 < µ−µ1, µNL−1
1 +κN b−1

1 < θ1− θ, 2N1e
−N

b
1

s−s1
2 < 1, b(s− s1)N

b

1 > 2 .

Then
{f (1), f (2)} ∈ QT

s1,r1
(N1, θ1, µ1)

and

(3.52) �{f (1), f (2)}�T

s1,r1,N1,θ1,µ1
≤ C(n)δ−1�f (1)�T

s,r,N0,θ,µ
�f (2)�T

s,r,N0,θ,µ
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where C(n) ≥ 1 and

(3.53) δ := min
�

1− s1

s
, 1− r1

r

�
.

The proof is based on the following splitting lemma for the Poisson brackets.

L���� 3.6 (Splitting lemma). – Let f (1), f (2) ∈ QT

s,r
(N0, θ, µ) and (3.51) hold. Then,

for all N ≥ N1,

ΠN,θ1,µ1{f (1), f (2)} = ΠN,θ1,µ1

��
ΠN,θ,µf (1),ΠN,θ,µf (2)

�H

(3.54)

+
�

ΠN,θ,µf (1),ΠL

N,2µ
f (2)

�L

+
�

ΠL

N,2µ
f (1),ΠN,θ,µf (2)

�L

+
�

ΠN,θ,µf (1),ΠL

N,µ
f (2)

�x,y

+
�

ΠL

N,µ
f (1),ΠN,θ,µf (2)

�x,y

+
�

Π|k|≥Nbf (1), f (2)
�

+
�

Π|k|<Nbf (1),Π|k|≥Nbf (2)
��

.

Proof. – We have

{f (1), f (2)} = {Π|k|<Nbf (1),Π|k|<Nbf (2)}(3.55)

+ {Π|k|≥Nbf (1), f (2)}+ {Π|k|<Nbf (1),Π|k|≥Nbf (2)} .

The last two terms correspond to the last line in (3.54). We now study the first term in the
right hand side of (3.55). We replace each f (i), i = 1, 2, with single monomials (with zero
momentum) and we analyze under which conditions the projection

ΠN,θ1,µ1

�
eik(1)

·xyi
(1)

zα
(1)

z̄β
(1)

, eik(2)
·xyi

(2)

zα
(2)

z̄β
(2)

�
, |k(1)|, |k(2)| < N b ,

is not zero. By direct inspection, recalling the Definition 3.2 of ΠN,θ1,µ1 and the expression
(2.81) of the Poisson brackets { , } = { , }x,y +{ , }z,z̄, one of the following situations (apart
from a trivial permutation of the indices 1, 2) must hold:

1. one has zα
(1)

z̄β
(1)

= zα̃
(1)

z̄β̃
(1)

zσ

m
zσ1
j

and zα
(2)

z̄β
(2)

= zα̃
(2)

z̄β̃
(2)

zσ
�

n
z−σ1
j

where

|m|, |n| ≥ θ1N , σ,σ1, σ� = ±, and zα̃
(1)

z̄β̃
(1)

zα̃
(2)

z̄β̃
(2)

is of (N,µ1)-low momentum.
We consider the Poisson bracket { , }z,z̄ (in the variables (z+

j
, z−

j
)) of the monomials.

2. one has zα
(1)

z̄β
(1)

= zα̃
(1)

z̄β̃
(1)

zσ

m
zσ

�

n
zσ1
j

and zα
(2)

z̄β
(2)

= zα̃
(2)

z̄β̃
(2)

z−σ1
j

where

|m|, |n| ≥ θ1N and zα̃
(1)

z̄β̃
(1)

zα̃
(2)

z̄β̃
(2)

is of (N,µ1)-low momentum. We consider the
Poisson bracket { , }z,z̄.

3. one has zα
(1)

z̄β
(1)

= zα̃
(1)

z̄β̃
(1)

zσ

m
zσ

�

n
and zα

(2)
z̄β

(2)
= zα̃

(2)
z̄β̃

(2)
, where |m|, |n| ≥ θ1N

and zα̃
(1)

z̄β̃
(1)

zα̃
(2)

z̄β̃
(2)

is of (N,µ1)-low momentum. We consider the Poisson bracket
{ , }x,y, i.e., in the variables (x, y).

Note that when we consider the { , }x,y Poisson bracket, the case

zα
(1)

z̄β
(1)

= zα̃
(1)

z̄β̃
(1)

zσ

m
and zα

(2)

z̄β
(2)

= zα̃
(2)

z̄β̃
(2)

zσ
�

n
, |m|, |n| ≥ θ1N ,

and zα̃
(1)

z̄β̃
(1)

zα̃
(2)

z̄β̃
(2)

is of (N,µ1)-low momentum, does not appear. Indeed, the momen-
tum conservation −σm = π(α̃(1), β̃(1), k(1)), (2.86) and |k(1)| < N b, give

θ1N < |m| ≤
�

l∈Z\I
|l|(|α̃(1)

l
|+ |β̃(1)

l
|) + κN b ≤ µ1N

L + κN b ,
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which contradicts (3.1).

C��� 1. The momentum conservation of each monomial gives

(3.56) σ1j = −σm− π(α̃(1), β̃(1), k(1)) = σ�n + π(α̃(2), β̃(2), k(2)) .

Since zα̃
(1)

z̄β̃
(1)

zα̃
(2)

z̄β̃
(2)

is of (N,µ1)-low momentum (Definition 3.1),
�

l∈Z\I
|l|(α̃(1)

l
+ β̃(1)

l
+ α̃(2)

l
+ β̃(2)

l
) ≤ µ1N

L =⇒
�

l∈Z\I
|l|(α̃(i)

l
+ β̃(i)

l
) ≤ µ1N

L , i = 1, 2 ,

which implies, by (3.56), (2.86), |k(1)| < N b, |j| ≥ θ1N−µ1NL−κN b > θN by (3.51). Hence
|m|, |n|, |j| > θN . Then eik(h)

·xyi
(h)

zα
(h)

z̄β
(h)

, h = 1, 2, are (N, θ, µ)-bilinear. Moreover the
(zj , z̄j) are high momentum variables, namely { , }z,z̄ = { , }H , see (3.4). As m, n run over
all Z \ I with |m|, |n| ≥ θ1N , we obtain the first term in Formula (3.54).

C��� 2. The momentum conservation of the second monomial reads

(3.57) − σ1j = −π(α̃(2), β̃(2), k(2)) .

Then, using also (2.86), |k(2)| < N b, that zα̃
(1)

z̄β̃
(1)

zα̃
(2)

z̄β̃
(2)

is of (N,µ1)-low momentum,

|j|+
�

l∈Z\I
|l|(α̃(1)

l
+ β̃(1)

l
)

(3.57)
= |π(α̃(2), β̃(2), k(2))|+

�

l∈Z\I
|l|(α̃(1)

l
+ β̃(1)

l
)

≤
�

l∈Z\I
|l|(α̃(1)

l
+ β̃(1)

l
+ α̃(2)

l
+ β̃(2)

l
) + κN b ≤ µ1N

L + κN b
(3.51)
< µNL .

Then zα̃
(1)

z̄β̃
(1)

zσ1
j

is of (N,µ1)-low momentum and the first monomial

eik(1)
·xyi

(1)

zα
(1)

z̄β
(1)

= eik(1)
·xyi

(1)

zα̃
(1)

z̄β̃
(1)

zσ1
j

zσ

m
zσ

�

n

is (N, θ, µ)-bilinear (µ1 ≤ µ). The second monomial

eik(2)
·xyi

(2)

zα
(2)

z̄β
(2)

= eik(2)
·xyi

(2)

zα̃
(2)

z̄β̃
(2)

z−σ1
j

is (N, 2µ)-low-momentum because, arguing as above,

|j|+
�

l

|l|(α̃(2)
l

+ β̃(2)
l

)
(3.57)
= |π(α̃(2), β̃(2), k(2))|+

�

l

|l|(α̃(2)
l

+ β̃(2)
l

)

≤ 2µ1N
L + κN b

(3.51)
< 2µNL .

The (zj , z̄j) are low momentum variables, namely { , }z,z̄ = { , }L, and we obtain the second
and third contribution in Formula (3.54).

C��� 3. We have, for i = 1, 2, that
�

l

|l|(α̃(i)
l

+ β̃(i)
l

) ≤
�

l

|l|(α̃(1)
l

+ β̃(1)
l

+ α̃(2)
l

+ β̃(2)
l

) ≤ µ1N
L ≤ µNL .

Then eik(1)
·xyi

(1)
zα

(1)
z̄β

(1)
is (N, θ, µ)-bilinear and eik(2)

·xyi
(2)

zα
(2)

z̄β
(2)

is (N,µ)-low-
momentum. We obtain the fourth and fifth contribution in Formula (3.54).
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Proof of Proposition 3.1. – Since f (i) ∈ QT

s,r
(N0, θ, µ), i = 1, 2, for all N ≥ N1 ≥ N0

there exist f̃ (i) ∈ Ts,r(N, θ, µ) and f̂ (i) such that (see (3.31))

(3.58) ΠN,θ,µf (i) = f̃ (i) + N−1f̂ (i) , i = 1, 2 ,

and

(3.59) �Xf(i)�s,r, �Xf̃(i)�s,r, �Xf̂(i)�s,r ≤ 2�f (i)�T

s,r
.

In order to show that {f (1), f (2)} ∈ QT

s1,r1
(N1, θ1, µ1) and prove (3.52) we have to provide

a decomposition

ΠN,θ1,µ1{f (1), f (2)} = f̃ (1,2) + N−1f̂ (1,2) , ∀N ≥ N1 ,

so that f̃ (1,2) ∈ Ts1,r1(N, θ1, µ1) and

(3.60) �X{f(1),f(2)}�s1,r1 , �Xf̃(1,2)�s1,r1 , �Xf̂(1,2)�s1,r1 < C(n)δ−1�f (1)�T

s,r
�f (2)�T

s,r

(for brevity we omit the indices N1, θ1, µ1, N0, θ, µ). By (2.92) we have (δ is defined in (3.53))

�X{f(1),f(2)}�s1,r1 ≤ 22n+3δ−1�Xf(1)�s,r�Xf(2)�s,r .

Considering (3.58) and (3.54), we define the candidate Töplitz approximation

f̃ (1,2) := ΠN,θ1,µ1

��
f̃ (1), f̃ (2)

�H

+
�

f̃ (1),ΠL

N,2µ
f (2)

�L

+
�

ΠL

N,2µ
f (1), f̃ (2)

�L

+
�

f̃ (1),ΠL

N,µ
f (2)

�x,y

+
�

ΠL

N,µ
f (1), f̃ (2)

�x,y

(3.61)

and Töplitz-defect

f̂ (1,2) := N
�
ΠN,θ1,µ1{f (1), f (2)}− f̃ (1,2)

�
.(3.62)

Lemma 3.2 and (3.51) imply that f̃ (1,2) ∈ Ts1,r1(N, θ1, µ1). The estimate (3.60) for f̃ (1,2)

follows by (3.61), (2.92), (2.80), (3.59). Next

f̂ (1,2) = ΠN,θ1,µ1

��
f̃ (1), f̂ (2)

�H

+
�

f̂ (1), f̃ (2)
�H

+ N−1
�

f̂ (1), f̂ (2)
�H

+
�

f̂ (1),ΠL

N,2µ
f (2)

�L

+
�

ΠL

N,2µ
f (1), f̂ (2)

�L

+
�

f̂ (1),ΠL

N,µ
f (2)

�x,y

+
�

ΠL

N,µ
f (1), f̂ (2)

�x,y

+ N
�

Π|k|≥Nbf (1), f (2)
�

+ N
�

Π|k|<Nbf (1),Π|k|≥Nbf (2)
��

and the bound (3.60) follows again by (2.92), (2.80), (3.59), (2.57), (3.51). Let us consider only
the term N

�
Π|k|≥Nbf (1), f (2)

�
=: g, the last one being analogous. We first use Lemma 2.16

with r� � r1, r � r, s� � s1 and s � s1 +σ/2, where σ := s− s1. Since
�
1− s1

s1+σ/2

�−1
≤

2
�
1− s1

s

�−1
≤ 2δ−1 with the δ in (3.53), by (2.92) we get

�Xg�s1,r1 ≤ C(n)δ−1N�XΠ|k|≥Nb f(1)�s1+σ/2,r�Xf(2)�s,r

(2.57)
≤ C(n)δ−1N

s

s1
e−N

b(s−s1)/2�Xf(1)�s,r�Xf(2)�s,r

(3.51)
≤ C(n)δ−1�Xf(1)�s,r�Xf(2)�s,r ,
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for every N ≥ N1. The proof of Proposition 3.1 is complete.

The quasi-Töplitz character of a function is preserved under the flow generated by a quasi-
Töplitz Hamiltonian.

Pʀ����ɪ�ɪ�ɴ 3.2 (Lie transform). – Let f, g ∈ QT

s,r
(N0, θ, µ) and let s/2 ≤ s� < s,

r/2 ≤ r� < r. There is c(n) > 0 such that, if

(3.63) �f�T

s,r,N0,θ,µ
≤ c(n) δ ,

with δ defined in (2.66), then the hamiltonian flow of f at time t = 1, Φ1
f

: D(s�, r�) → D(s, r)
is well defined, analytic and symplectic, and, for

(3.64) N �

0 ≥ max{N0, N̄} , N̄ := exp
�

max
�2

b
,

1

L− b
,

1

1− L
, 8

��
,

(recall (3.2)), µ� < µ, θ� > θ, satisfying
(3.65)
κ(N �

0)
b−L lnN �

0 ≤ µ− µ� , (6 + κ)(N �

0)
L−1 lnN �

0 ≤ θ� − θ , 2(N �

0)
−b ln2 N �

0 ≤ b(s− s�) ,

we have eadf g ∈ QT

s�,r�(N
�
0, θ

�, µ�) and

(3.66) �eadf g�T

s�,r�,N �
0,θ�,µ� ≤ 2�g�T

s,r,N0,θ,µ
.

Moreover, for h = 0, 1, 2, and coefficients 0 ≤ bj ≤ 1/j!, j ∈ N,

(3.67)
���

�

j≥h

bj adj

f
(g)

���
T

s�,r�,N �
0,θ�,µ�

≤ 2(Cδ−1�f�T

s,r,N0,θ,µ
)h�g�T

s,r,N0,θ,µ
.

Note that (3.66) is (3.67) with h = 0, bj := 1/j!

Proof. – Let us prove (3.67). We define

G(0) := g , G(j) := adj

f
(g) := adf (G(j−1)) = {f, G(j−1)} , j ≥ 1 ,

and we split, for h = 0, 1, 2,

(3.68) G≥h :=
�

j≥h

bjG
(j) =

J−1�

j=h

bjG
(j) +

�

j≥J

bjG
(j) =: G≥h

<J
+ G≥J .

As in (2.98) we deduce

(3.69) �XG(j)�s�,r� ≤ (C(n)jδ−1)j�Xf�j

s,r
�Xg�s,r , ∀j ≥ 0 ,

where δ is defined in (2.66). Let

(3.70) η := C(n)eδ−1�Xf�s,r < 1/(2e)

(namely take c(n) small in (3.63)). By 3.69, using jjbj ≤ jj/j! < ej , we get

(3.71) �XG≥J
�s�,r� ≤

�

j≥J

bj(C(n)jδ−1�Xf�s,r)
j�Xg�s,r ≤ 2ηJ�Xg�s,r .

In particular, for J = h = 0, 1, 2, we get

(3.72) �XG≥h�s�,r� ≤ 2ηh�Xg�s,r .

For any N ≥ N �
0 we choose

(3.73) J := J(N) := lnN ,
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and we set
G�

N
:= G≥h

<J
, G��

N
:= G≥J , G≥h = G�

N
+ G��

N
.

Then (3.67) follows by Lemma 3.5 (with N∗ � N �
0, s � s�, r � r�, θ � θ�, µ � µ�) and

(3.72), once we show that

(3.74) �G�

N
�T

s�,r�,N,θ�,µ� ≤
3

2
ηh�g�T

s,r
, N�XG

��
N
�s�,r� ≤

1

2
ηh�g�T

s,r

with h = 0, 1, 2 (for simplicity �g�T

s,r
:= �g�T

s,r,N0,θ,µ
).

For all N ≥ N �
0 ≥ e8 (recall (3.64)),

N�XG≥J
�s�,r�

(3.71)
≤ N2ηJ�Xg�s,r ≤ ηh(N2ηJ−h)�g�T

s,r

(3.70)
≤ ηh2−J+h+1ehNe−J�g�T

s,r
≤ ηh

2
�g�T

s,r
,(3.75)

proving the second inequality in (3.74). Let us prove the first inequality in (3.74).

Cʟ�ɪ�: ∀j = 1, . . . , J − 1, we have G(j) ∈ QT

s�,r�(N, θ�, µ�) and

(3.76) �G(j)�T

r�,s�,N,θ�,µ� ≤ �g�T

s,r
(C �jδ−1�f�T

s,r
)j

(for simplicity �f�T

s,r
:= �f�T

s,r,N0,θ,µ
). This claim implies (using jjbj < ej)

���
J−1�

j=h

bj G(j)
���

T

s�,r�,N,θ�,µ�

(3.76)
≤

J−1�

j=h

bj�g�T

s,r
(C �jδ−1�f�T

s,r
)j

(3.70)
≤ �g�T

s,r

+∞�

j=h

ηj ≤ 3

2
ηh�g�T

s,r

for c small enough in (3.63). This proves the first inequality in (3.74).

Let us prove the claim. Fix 0 ≤ j ≤ J − 1. We define, ∀i = 0, . . . , j,

(3.77) µi := µ− i
µ− µ�

j
, θi := θ + i

θ� − θ

j
, ri := r − i

r − r�

j
, si := s− i

s− s�

j
,

and we prove inductively that, for all i = 0, . . . , j,

(3.78) �adi

f
(g)�T

si,ri,N,θi,µi
≤ (C �jδ−1�f�T

s,r
)i�g�T

s,r
,

which, for i = j, gives (3.76). For i = 0, Formula (3.78) follows because g ∈ QT

s,r
(N0, θ, µ)

and Lemma 3.3.
Now assume that (3.78) holds for i and prove it for i+1. We want to apply Proposition 3.1

to the functions f and adi

f
(g) with N1 � N , s � si, s1 � si+1, θ � θi, θ1 � θi+1, etc. We

have to verify conditions (3.51) that reads

κN b−L < µi − µi+1 , µiN
L−1 + κN b−1 < θi+1 − θi ,(3.79)

2Ne−N
b si−si+1

2 < 1 , b(si − si+1)N
b > 2 .(3.80)

Since, by (3.77),

µi − µi+1 =
µ− µ�

j
, θi+1 − θi =

θ − θ�

j
, si − si+1 =

s− s�

j

and j < J = lnN (see (3.73)), 0 < b < L < 1 (recall (3.2)), µ� ≤ µ ≤ 6, the above conditions
(3.79)-(3.80) are implied by

κN b−L lnN < µ− µ� , (6 + κ)NL−1 lnN < θ� − θ ,

2Ne−N
b(s−s

�)/2 ln N < 1 , b(s− s�)N b > 2 lnN .(3.81)
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The last two conditions (3.81) are implied by b(s − s�)N b > 2 ln2 N and since N ≥ e1/1−b

(recall (3.64)). Recollecting we have to verify

(3.82) κN b−L lnN ≤ µ− µ� , (6 + κ)NL−1 lnN ≤ θ� − θ , 2N−b ln2 N ≤ b(s− s�) .

Since the function N �→ N−γ lnN is decreasing for N ≥ e1/γ , we have that (3.82) follows
by (3.64)-(3.65). Therefore Proposition 3.1 implies that adi+1

f
(g) ∈ QT

si+1,ri+1
(N, θi+1, µi+1)

and, by (3.52), (3.35), we get

(3.83) �adi+1
f

(g)�T

si+1,ri+1,N,θi+1,µi+1
≤ C �δ−1

i
�f�T

s,r
�adi

f
(g)�T

si,ri,N,θi,µi

where

(3.84) δi := min

ß
1− si+1

si

, 1− ri+1

ri

™
≥ δ

j

and δ is defined in (2.66). Then

�adi+1
f

(g)�T

si+1,ri+1,N,θi+1,µi+1

(3.83),(3.84)
≤ C �jδ−1�f�T

s,r,N0,θ,µ
�adi

f
(g)�T

si,ri,N,θi,µi

(3.78)
≤ (C �jδ−1�f�T

s,r
)i+1�g�T

s,r

proving (3.78) by induction.

4. An abstract KAM theorem

We consider a family of integrable Hamiltonians

(4.1) N := N (x, y, z, z̄; ξ) := e(ξ) + ω(ξ) · y + Ω(ξ) · zz̄

defined on Tn

s
× Cn × �a,p

I
× �a,p

I
, where I is defined in (2.84), the tangential frequencies

ω := (ω1, . . . ,ωn) and the normal frequencies Ω := (Ωj)j∈Z\I depend on n-parameters

ξ ∈ O ⊂ Rn .

For each ξ there is an invariant n-torus T0 = Tn × {0} × {0} × {0} with frequency ω(ξ).
In its normal space, the origin (z, z̄) = 0 is an elliptic fixed point with proper frequencies
Ω(ξ). The aim is to prove the persistence of a large portion of this family of linearly stable
tori under small analytic perturbations H = N + P .

– (A1) Parameter dependence. The map ω : O → Rn, ξ �→ ω(ξ), is Lipschitz continuous.

With in mind the application to NLW we assume

– (A2) Frequency asymptotics. We have

(4.2) Ωj(ξ) =
�

j2 + m + a(ξ) ∈ R , j ∈ Z \ I ,

for some Lipschitz continuous functions a(ξ) ∈ R.

By (A1) and (A2), the Lipschitz semi-norms of the frequency maps satisfy, for some
1 ≤ M0 < ∞,

(4.3) |ω|lip , |Ω|lip∞ ≤ M0

where the Lipschitz semi-norm is

(4.4) |Ω|lip∞ := |Ω|lip
∞,O

:= sup
ξ,η∈O,ξ �=η

|Ω(ξ)− Ω(η)|∞
|ξ − η|
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and |z|∞ := sup
j∈Z\I |zj |. Note that by the Kirszbraun theorem (see e.g., [23]) applied

componentwise we can extend ω,Ω on the whole Rn with the same bound (4.3).

– (A3) Regularity. The perturbation P : D(s, r) × O → C is λ-regular (see Defini-
tion 2.8).

In order to obtain the asymptotic expansion (4.9) for the perturbed frequencies we also
assume

– (A4) Quasi-Töplitz. The perturbation P (preserves momentum and) is quasi-Töplitz
(see Definition 3.4).

Thanks to the conservation of momentum we restrict to the set of indices

I :=
�

(k, l) ∈ Zn × Z∞, (k, l) �= (0, 0) , |l| ≤ 2, where(4.5)

or l = 0 , k · j = 0 ,

or l = σem , m ∈ Z \ I , k · j + σm = 0 ,

or l = σem + σ�en , m, n ∈ Z \ I , k · j + σm + σ�n = 0
�

.

Let

(4.6) P = P00(x) + P̄ (x, y, z, z̄) where P̄ (x, 0, 0, 0) = 0 .

Tʜ��ʀ�� 4.1 (KAM theorem). – Suppose that H = N + P satisfies (A1)-(A4) with
s, r > 0, 1 < θ, µ < 6, N > 0. Let γ > 0 be a small parameter and set
(4.7)
ε := max

�
γ−2/3|XP00 |λs,r

, γ−2/3�XP00�s,r , γ−1|XP̄ |λs,r
, γ−1�P̄�T

s,r,N,θ,µ

�
, λ := γ/M0 .

If ε is small enough, then there exist:

• (Frequencies) Lipschitz functions ω∞ : Rn → Rn, Ω∞ : Rn → �∞, a∞± : Rn → R, such that

(4.8) |ω∞ − ω|+ λ|ω∞ − ω|lip , |Ω∞ − Ω|∞ + λ|Ω∞ − Ω|lip∞ ≤ Cγε , |a∞± | ≤ Cγε ,

(4.9) sup
ξ∈Rn

|Ω∞
j

(ξ)− Ωj(ξ)− a∞s(j)(ξ)| ≤ γ2/3ε
C

|j| , ∀|j| ≥ C�γ
−1/3 .

• (KAM normal form) A Lipschitz family of analytic symplectic maps

(4.10) Φ : D(s/4, r/4)×O∞ � (x∞, y∞, w∞; ξ) �→ (x, y, w) ∈ D(s, r)

close to the identity where

O∞ :=
�

ξ ∈ O : |ω∞(ξ) · k + Ω∞(ξ) · l| ≥ 2γ

1 + |k|τ , ∀ (k, l) ∈ I defined in (4.5) ,

|ω∞(ξ) · k + p| ≥ 2γ2/3

1 + |k|τ , ∀k ∈ Zn, p ∈ Z , (k, p) �= (0, 0) , τ > 1/b see (3.2),

|ω(ξ) · k| ≥ 2γ2/3

1 + |k|n , ∀ 0 < |k| < γ−1/(7n)
�

(4.11)

such that, ∀ξ ∈ O∞:

(4.12) H∞(·; ξ) := H ◦ Φ(·; ξ) = ω∞(ξ) · y∞ + Ω∞(ξ) · z∞z̄∞ + P∞ has P∞

≤2 = 0 .
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Then, ∀ξ ∈ O∞, the map x∞ �→ Φ(x∞, 0, 0; ξ) is a real analytic embedding of an elliptic,
n-dimensional torus with frequency ω∞(ξ) for the system with Hamiltonian H .

The main novelty of Theorem 4.1 is the asymptotic decay (4.9) of the perturbed frequen-
cies. In order to prove (4.9) we use the quasi-Töplitz property (A4) of the perturbation. The
reason for introducing in (4.7) conditions for both the Lipschitz-sup and the Töplitz-norms
is the following. For the measure estimates, we need the usual Lipschitz dependence of the
perturbed frequencies with respect to the parameters, see (4.8). This is derived as in [27] and
[2]. On the other hand, we do not need (in Section 6) a Lipschitz estimate on a∞± (that, in any
case, could be obtained). For this reason, we do not introduce the Lipschitz dependence in
the Töplitz norm.

In the next Theorem 4.2 we verify the second order Melnikov non-resonance conditions
thanks to

1. the asymptotic decay (4.9) of the perturbed frequencies,
2. the restriction to indices (k, l) ∈ I in (4.11) which follows by momentum conservation,

see (A4).

As in [2], the Cantor set of “good” parameters O∞ in (4.11), is expressed in terms of
the final frequencies ω∞(ξ), Ω∞(ξ) (and of the initial tangential frequencies ω(ξ)) and not
inductively as, for example, in [27]. This simplifies the measure estimates.

Tʜ��ʀ�� 4.2 (Measure estimate). – Let O := [ρ/2, ρ]n, ρ > 0. Suppose

(4.13) ω(ξ) = ω̄ + Aξ , ω̄ ∈ Rn , A ∈ Mat(n× n) , Ωj(ξ) =
�

j2 + m + �a · ξ , a ∈ Rn

and assume the non-degeneracy condition:

(4.14) A invertible and 2(A−1)T�a /∈ Zn \ {0} .

Then, the Cantor like set O∞ defined in (4.11), with exponent

(4.15) τ > max{2n + 1, 1/b}

(b is fixed in (3.2)), satisfies

(4.16) |O \ O∞| ≤ C(τ)ρn−1γ2/3 .

Theorem 4.2 is proved in Section 6. The asymptotic estimate (4.9) is used for the key inclusion
(6.12).

5. Proof of the KAM Theorem 4.1

In the following by a � b we mean that there exists c > 0 depending only on n, m, κ such
that a ≤ cb.
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5.1. First step

We perform a preliminary change of variables to improve the smallness conditions. For
all ξ in

(5.1) O∗ :=
�

ξ ∈ O : |ω(ξ) · k| ≥ γ2/3

1 + |k|n , ∀ 0 < |k| < γ−1/(7n)
�

we consider the solution

(5.2) F00(x) :=
�

0<|k|<γ−1/(7n)

P00,k

iω(ξ) · k eik·x

of the homological equation

(5.3) − adNF00 + Π|k|<γ−1/(7n)P00(x) = �P00� .

Here P00 is defined in (4.6) and �·� denotes the mean value on the angles. Note that for
any function F00(x) we have �F00�T

s,r
= �XF00�s,r, see Definition 3.4. We want to apply

Proposition 3.2 with s, r, s�, r� � 3s/4, 3r/4, s/2, r/2. The condition (3.63) is verified
because

�F00�T

3s/4,r
= �XF00�3s/4,r

(5.2),(5.1),(2.55)
≤ C(n, s)γ−2/3�XP00�s,r

(4.7)
≤ C(n, s)ε

and ε is sufficiently small. Hence the time–one flow

(5.4) Φ00 := Φ1
F00

: D(s0, r0)×O∗ → D(s, r) with s0 := s/2 , r0 := r/2 ,

is well defined, analytic, symplectic. Let µ0 < µ, θ0 > θ, N0 > N large enough, so that
(3.65) is satisfied with s, r,N0, θ, µ,� s, r,N, θ, µ and s�, r�, N �

0, θ
�, µ� � s0, r0, N0, θ0, µ0.

Note that here N0 is independent of γ. Hence (3.66) implies

(5.5) �eadF00 P̄�T

s0,r0,N0,θ0,µ0
≤ 2�P̄�T

s,r,N,θ,µ
.

Noting that eadF00 P00 = P00 and eadF00N = N + adF00N the new Hamiltonian is

H0 := eadF00 H = eadF00N + eadF00 P00 + eadF00 P̄ = N + adF00N + P00 + eadF00 P̄
(5.3)
=

�
�P00�+N

�
+

�
Π|k|≥γ−1/(7n)P00 + eadF00 P̄

�
=: N0 + P0 .(5.6)

By (2.57) (and since P00(x) depends only on x)

(5.7)
���Π|k|≥γ−1/(7n)P00

���
T

3s/4,r

≤ 4e−sγ
−1/(7n)

/4�XP00�s,r

(4.7)
≤ 4γ2/3e−sγ

−1/(7n)
/4ε ≤ γε ,

for γ small. By (5.7), (5.5) and (4.7) we get

(5.8) �P0�T

s0,r0,N0,θ0,µ0
< 3γε .

In the same way, since |XF00 |λ3s/4,r
≤ C(n, s)γ−2/3|XP00 |λs,r

, we also obtain the Lipschitz
estimate

(5.9) |XP0 |λs0,r0
< 3γε .
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5.2. KAM step

We now consider the generic KAM step for an Hamiltonian

(5.10) H = N + P = N + P≤2
K

+ (P − P≤2
K

)

where P≤2
K

are defined as in (3.38).

5.2.1. Homological equation. –

L���� 5.1. – Assume that

(5.11) |Ωj −
�

j2 + m− as(j)| ≤
γ

|j| , ∀ |j| ≥ j∗ ,

for some a+, a− ∈ R. Let ∆k,m,n := ω · k + Ωm − Ωn, ∆̃k,m,n := ω · k + |m|− |n|.
If |m|, |n| ≥ max{j∗,

√
m} and s(m) = s(n), then

(5.12) |∆k,m,n − ∆̃k,m,n| ≤
m

2

|m− n|
|n||m| + γ

� 1

|m| +
1

|n|
�

+
m2

2

Å
1

|m|3 +
1

|n|3
ã

.

Proof. – For 0 ≤ x ≤ 1 we have |
√

1 + x − 1 − x/2| ≤ x2/2. Setting x := m/n2 (which
is ≤ 1) and using (5.11), we get

����Ωn − |n|−
m

2|n| − as(n)

���� ≤
γ

|n| +
m2

2|n|3 .

An analogous estimate holds for Ωm. Since |∆k,m,n − ∆̃k,m,n| = |Ωm − |m|−Ωn + |n|| the
estimate (5.12) follows noting that as(m) = as(n).

For a monomial mk,i,α,β := eik·xyizαz̄β we set

(5.13) [mk,i,α,β ] :=

�
mk,i,α,β if k = 0 , α = β

0 otherwise.

The following key proposition proves that the solution of the homological equation with a
quasi-Töplitz datum is quasi-Töplitz.

Pʀ����ɪ�ɪ�ɴ 5.1 (Homological equation). – Let K ∈ N. For all ξ ∈ O such that

(5.14) |ω(ξ) · k + Ω(ξ) · l| ≥ γ

�k�τ , ∀(k, l) ∈ I (see (4.5)), |k| ≤ K ,

then ∀P (h)
K

∈ Hnull
s,r

, h = 0, 1, 2 (see (3.36), (3.37)), the homological equations

(5.15) − adNF (h)
K

+ P (h)
K

= [P (h)
K

] , h = 0, 1, 2 ,

have a unique solution of the same form F (h)
K

∈ Hnull
s,r

with [F (h)
K

] = 0 and

(5.16) �X
F

(h)
K
�s,r < γ−1Kτ�X

P
(h)
K
�s,r , |X

F
(h)
K
|λ
s,r

� γ−1Kτ+1|X
P

(h)
K
|λ
s,r

where 2γλ−1 ≥ |ω|lip, |Ω|lip∞ . In particular F≤2
K

:= F (0)
K

+ F (1)
K

+ F (2)
K

solves

(5.17) − adNF≤2
K

+ P≤2
K

= [P≤2
K

] .

Assume now that P (h)
K

∈ QT

s,r
(N0, θ, µ) and Ω(ξ) satisfies (5.11) for all |j| ≥ θN∗

0 where

(5.18) N∗

0 := max
�

N0 , ĉγ−1/3Kτ+1
�
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for a constant ĉ := ĉ(m, κ) ≥ 1. Then, ∀ξ ∈ O such that

(5.19) |ω(ξ) · k + p| ≥ γ2/3

�k�τ , ∀|k| ≤ K, p ∈ Z ,

we have F (h)
K

∈ QT

s,r
(N∗

0 , θ, µ), h = 0, 1, 2, and

(5.20) �F (h)
K
�T

s,r,N
∗
0 ,θ,µ

≤ 4ĉγ−1K2τ�P (h)
K
�T

s,r,N0,θ,µ
.

Proof. – The solution of the homological Equation (5.15) is

F (h)
K

:= −i
�

|k|≤K,(k,i,α,β)�=(0,i,α,α)
2i+|α|+|β|=h

Pk,i,α,β

∆k,i,α,β

eik·xyizαz̄β , ∆k,i,α,β := ω(ξ) · k + Ω(ξ) · (α− β) .

The divisors ∆k,i,α,β �= 0, ∀(k, i, α, β) �= (0, i,α, α), because (k, i, α, β) �= (0, i,α, α) is
equivalent to (k, α − β) ∈ I, and the bounds (5.14) hold. Then the first estimates in (5.16)
follows by Lemma 2.18. The Lipsichtz estimate in (5.16) is standard, see e.g., Lemma 1 (and
the first comment after the statement) of [27]. We just note that the Melnikov condition used
in [27] follows by (5.14) and momentum consevation, e.g.,

|ω · k + Ωm − Ωn|
(5.14)
≥ γ

�k�τ
(5.22)
=

γ|m− n|
|j · k|�k�τ ≥ γ

|m− n|
κ�k�τ+1

.

For the Töplitz estimate notice that the cases h = 0, 1 are trivial since ΠN,θ,µF≤1
K

= 0. When
h = 2 we first consider the subtlest case when P (2)

K
contains only the monomials with i = 0,

|α| = |β| = 1 (see (3.36)), namely

(5.21) P := P (2)
K

=
�

|k|≤K,m,n∈Z\I
Pk,m,neik·xzmz̄n ,

and, because of the conservation of momentum, the indices k, m, n in (5.21) are restricted to

(5.22) j · k + m− n = 0 .

The unique solution F (2)
K

of (5.15) with [F (2)
K

] = 0 is
(5.23)

F := F (2)
K

:= −i
�

|k|≤K,(k,m,n) �=(0,m,m)

Pk,m,n

∆k,m,n

eik·xzmz̄n , ∆k,m,n := ω(ξ) · k + Ωm(ξ)−Ωn(ξ).

Note that by (5.14) and (5.22) we have ∆k,m,n �= 0 if and only if (k,m, n) �= (0, m,m).

Let us prove (5.20). For all N ≥ N∗
0

(5.24) ΠN,θ,µF = −i
�

|k|≤K,|m|,|n|>θN

Pk,m,n

∆k,m,n

eik·xzmz̄n,

and note that eik·x is (N,µ)-low momentum since |k| ≤ K < (N∗
0 )b ≤ N b by (5.18) and

τ > 1/b. By assumption P ∈ QT

s,r,N0,θ,µ
and so, recalling Formula (3.45), we may write,

∀N ≥ N∗
0 ≥ N0,

(5.25)
ΠN,θ,µP = P̃ + N−1P̂ with P̃ :=

�

|k|≤K,|m|,|n|>θN

P̃k,m−neik·xzmz̄n ∈ Ts,r(N, θ, µ)
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and

(5.26) �XP�s,r, �XP̃
�s,r, �XP̂

�s,r ≤ 2�P�T

s,r
.

We now prove that

(5.27) F̃ :=
�

|k|≤K,|m|,|n|>θN

P̃k,m−n

∆̃k,m,n

eik·xzmz̄n , ∆̃k,m,n := ω(ξ) · k + |m|− |n| ,

is a Töplitz approximation of F . Since |m|, |n| > θN ≥ θN∗
0 > N∗

0

(5.18)
> κK ≥ |j · k| by

(3.1), we deduce by (5.22) that m, n have the same sign. Then

∆̃k,m,n = ω(ξ) · k + |m|− |n| = ω(ξ) · k + s(m)(m− n) , s(m) := sign(m) ,

and F̃ in (5.27) is (N, θ, µ)-Töplitz (see (3.15)). Moreover, since |m|− |n| ∈ Z, by (5.19), we
get

(5.28) |∆̃k,m,n| ≥ γ2/3�k�−τ , ∀|k| ≤ K, m, n,

and Lemma 2.18 and (5.27) imply

(5.29) �X
F̃
�s,r ≤ γ−2/3Kτ�X

P̃
�s,r .

The Töplitz defect is

N−1F̂ := ΠN,θ,µF − F̃

(5.30)

(5.24),(5.27)
=

�

|k|≤K,|m|,|n|>θN

� Pk,m,n

∆k,m,n

− P̃k,m−n

∆̃k,m,n

�
eik·xzmz̄n

=
�

|k|≤K,|m|,|n|>θN

�� Pk,m,n

∆k,m,n

− Pk,m,n

∆̃k,m,n

�
+

�Pk,m,n − P̃k,m−n

∆̃k,m,n

��
eik·xzmz̄n

(5.25)
=

�

|k|≤K,|m|,|n|>θN

�
Pk,m,n

�∆̃k,m,n −∆k,m,n

∆k,m,n∆̃k,m,n

�
+ N−1 P̂k,m,n

∆̃k,m,n

�
eik·xzmz̄n .

By (5.12), |m|, |n| ≥ θN ≥ N , and |m− n| ≤ κK (see (5.22)) we get, taking ĉ large enough,
(5.31)

|∆̃k,m,n −∆k,m,n| ≤
mκK

2N2
+

2γ

N
+

m2

N3
≤ ĉ

4N

Å
K

N
+ γ

ã
(5.18)
≤ min

®
ĉγ1/3

2N
,

γ2/3

2Kτ

´
.

Hence

(5.32) |∆k,m,n| ≥ |∆̃k,m,n|− |∆̃k,m,n −∆k,m,n|
(5.28),(5.31)

≥ γ2/3

�k�τ −
γ2/3

2Kτ
≥ γ2/3

2�k�τ .

Therefore (5.31), (5.28), (5.32) imply

|∆̃k,m,n −∆k,m,n|
|∆k,m,n||∆̃k,m,n|

≤ ĉγ1/3

2N

2�k�τ
γ2/3

�k�τ
γ2/3

≤ ĉ

Nγ
K2τ

and (5.30), (5.28), and Lemma 2.18, imply

(5.33) �X
F̂
�s,r ≤ ĉγ−1K2τ�XP�s,r + γ−2/3Kτ�X

P̂
�s,r

(5.26)
≤ 4ĉγ−1K2τ�P�T

s,r
.
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In conclusion (5.16), (5.29), (5.33) prove (5.20) for F .
Let us briefly discuss the case when h = 2 and P (2)

K
contains only the monomials with

i = 0, |α| = 2, |β| = 0 or viceversa (see (3.36)). Denoting

(5.34) P := P (2)
K

:=
�

|k|≤K,m,n∈Z\I
Pk,m,neik·xzmzn ,

we have

ΠN,θ,µF = −i
�

|k|≤K,|m|,|n|>θN

Pk,m,n

ω · k + Ωm + Ωn

eik·xzmzn

where |ω · k + Ωm + Ωn| > (|m| + |n|)/2 > θN/2 since |m|, |n| > θN and |k| ≤ K < N b.
In this case we may take as Töplitz approximation F̃ = 0.

5.2.2. The new Hamiltonian H+. – Let F = F≤2
K

be the solution of the homological
Equation (5.17). If, for s/2 ≤ s+ < s, r/2 ≤ r+ < r, the condition

(5.35) �F�T

s,r,N
∗
0 ,θ,µ

≤ c(n) δ+ , δ+ := min
�

1− s+

s
, 1− r+

r

�

holds (see (3.63)), then Proposition 3.2 (with s� � s+, r� � r+, N0 � N∗
0 defined in (5.18))

implies that the Hamiltonian flow Φ1
F

: D(s+, r+) → D(s, r) is well defined, analytic and
symplectic. We transform the Hamiltonian H in (5.10), obtaining

H+ := eadF H
(2.83)
= H + adF (H) +

�

j≥2

1

j!
adj

F
(H)

(5.10)
= N + P≤2

K
+ (P − P≤2

K
) + adFN + adF P +

�

j≥2

1

j!
adj

F
(H)

(5.17)
= N + [P≤2

K
] + P − P≤2

K
+ adF P +

�

j≥2

1

j!
adj

F
(H) := N+ + P+

with new normal form

N+ := N + N̂ , N̂ := [P≤2
K

] = ê + ω̂ · y + Ω̂z · z̄

(5.36)
ω̂i := ∂yi| y=0,z=z̄=0�P � , i = 1, . . . n , Ω̂ := (Ω̂j)j∈Z\I , Ω̂j := [P ]j := ∂2

zj z̄j | y=0,z=z̄=0�P �

(the � � denotes the average with respect to the angles x) and new perturbation

(5.37) P+ := P − P≤2
K

+ adF P≤2 + adF P≥3 +
�

j≥2

1

j!
adj

F
(H)

having decomposed P = P≤2 + P≥3 with P≥3 :=
�

h≥3 P (h), see (3.36).

5.2.3. The new normal form N+

L���� 5.2. – Let P ∈ QT

s,r
(N0, θ, µ) with 1 < θ, µ < 6, N0 ≥ 9. Then

(5.38) |ω̂|, |Ω̂|∞ ≤ 2�P (2)�T

s,r,N0,θ,µ

and there exist â± ∈ R satisfying

|â±| ≤ 2�P (2)�T

s,r,N0,θ,µ

4 e SÉRIE – TOME 46 – 2013 – No 2



KAM THEORY FOR THE HAMILTONIAN DERIVATIVE WAVE EQUATION 343

such that

(5.39) |Ω̂j − âs(j)| ≤
40

|j|�P
(2)�T

s,r,N0,θ,µ
, ∀ |j| ≥ 6(N0 + 1) .

Moreover |ω̂|lip, |Ω̂|lip∞ � |XP (2) |lips,r
.

Lemma 5.2 is based on the following elementary lemma, whose proof is postponed.

L���� 5.3. – Suppose that, ∀N ≥ N0 ≥ 9, j ≥ θN ,

(5.40) Ωj = aN + bN,jN
−1 with aN , bN,j ∈ R , |aN | ≤ c1 , |bN,j | ≤ c1 ,

for some c1 > 0 (independent of j). Then there exists a ∈ R, satisfying |a| ≤ c1, such that

(5.41) |Ωj − a| ≤ 20c1

|j| , ∀ |j| ≥ 6(N0 + 1) .

Proof of Lemma 5.2. – The estimate on ω̂ is trivial. Regarding Ω̂ we set (recall (3.36),
(3.42))

P (2)
0 := Πk=0Π|α|=|β|=1Π

(2)P =
�

j

[P ]jzj z̄j

since, by the momentum conservation (2.86), all the monomials in P (2)
0 have α = β = ej .

Note that [P ]j is defined in (5.36). By Lemma 2.19

(5.42) |[P ]j | ≤ �X
P

(2)
0
�r

(3.30)
≤ �P (2)

0 �T

r

(3.42)
≤ �P (2)�T

s,r
.

We now prove (5.39) for j > 0 (the case j < 0 is similar). Since P (2)
0 ∈ QT

r
(N, θ, µ), for all

N ≥ N0, we may write ΠN,θ,µP (2)
0 = P̃ (2)

0,N
+ N−1P̂ (2)

0,N
with

P̃ (2)
0,N

:=
�

j>θN

P̃jzj z̄j ∈ Tr(N, θ, µ) , P̂ (2)
0,N

:=
�

j>θN

P̂jzj z̄j

and

(5.43) �X
P

(2)
0
�r , �X

P̃
(2)
0,N
�r , �X

P̂
(2)
0,N
�r ≤ 2�P (2)

0 �T

r
≤ 2�P (2)�T

s,r
.

For |j| > θN , since all the quadratic forms in (5.43) are diagonal, we have

Ω̂j = [P ]j = P̃j + N−1P̂j := aN,+ + N−1bN,j

where aN,+ := P̃j is independent of j > 0 because P̃ (2)
0,N

∈ Tr(N, θ, µ) (see (3.15)). Applying

Lemma 2.19 to P̃ (2)
0,N

and P̂ (2)
0,N

, we obtain

|aN,+| ≤ �X
P̃

(2)
0,N
�s,r

(5.43)
≤ 2�P (2)�T

s,r
, |bN,j | = |P̂j | ≤ �X

P̂
(2)
0,N
�r

(5.43)
≤ 2�P (2)�T

r
.

Hence the assumptions of Lemma 5.3 are satisfied with c1 = 2�P (2)�T

s,r
and (5.39) follows.

The final Lipschitz estimate is standard, see e.g., [2], [27].
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Proof of Lemma 5.3. – For all N1 > N ≥ N0, j ≥ θN1 we get, by (5.40),

(5.44) |aN − aN1 | = |bN1,jN
−1
1 − bN,jN

−1| ≤ 2c1N
−1 .

Therefore aN is a Cauchy sequence. Let a := limN→+∞ aN be its limit. Since |aN | ≤ c1

we have |a| ≤ c1. Moreover, letting N1 → +∞ in (5.44), we derive |a − aN | ≤ 2c1N−1,
∀N ≥ N0, and, using also (5.40),

(5.45) |Ωj − a| ≤ |Ωj − aN |+ |aN − a| ≤ 3c1N
−1, ∀N ≥ N0 , j ≥ 6N .

For all j ≥ 6(N0 + 1) let N := [j/6] (where [·] denotes the integer part). Since N ≥ N0,
j ≥ 6N ,

|Ωj − a|
(5.45)
≤ 3c1

[j/6]
≤ 3c1

(j/6)− 1
≤ 18c1

j

�
1 +

1

N0

�
≤ 20c1

j

for all j ≥ 6(N0 + 1).

5.2.4. The new perturbation P+. – We introduce, for h = 0, 1, 2,

ε(h) := γ−1 max
�
�P (h)�T

s,r,N0,θ,µ
, |XP (h) |λs,r

�
, ε̄ :=

2�

h=0

ε(h) ,(5.46)

Θ := γ−1 max
�
�P�T

s,r,N0,θ,µ
, |XP |λs,r

�

(λ defined in (4.7)) and the corresponding quantities for P+ with indices r+, s+, N+
0 , θ+, µ+.

The P (h) denote the homogeneous components of P of degree h (see (3.36)).

Pʀ����ɪ�ɪ�ɴ 5.2 (KAM step). – Suppose (s, r,N0, θ, µ), (s+, r+, N+
0 , θ+, µ+) satisfy

s/2 ≤ s+ < s, r/2 ≤ r+ < r,

(5.47) N+
0 > max{N∗

0 , N̄} (recall (5.18), (3.64)) , 2(N+
0 )−b ln2 N+

0 ≤ b(s− s+) ,

(5.48) κ(N+
0 )b−L lnN+

0 ≤ µ− µ+, (6 + κ)(N+
0 )L−1 lnN+

0 ≤ θ+ − θ .

Assume that

(5.49) ε̄K τ̄δ−1
+ ≤ c small enough , Θ ≤ 1 ,

where τ̄ := 2τ +n+1 and δ+ is defined in (5.35). Suppose also that (5.11) holds for |j| ≥ θN∗
0 .

Then, for all ξ ∈ O satisfying (5.14),(5.19), denoting by F := F≤2
K

the solution of the
homological Equation (5.17), the Hamiltonian flow Φ1

F
: D(s+, r+) → D(s, r), and the

transformed Hamiltonian

H+ := H ◦ Φ1
F

= eadF H = N+ + P+

satisfies

ε(0)
+ � δ−2

+ K2τ̄ ε̄2 + ε(0)e−(s−s+)K

ε(1)
+ � δ−2

+ K2τ̄
�
ε(0) + ε̄2

�
+ ε(1)e−(s−s+)K

ε(2)
+ � δ−2

+ K2τ̄
�
ε(0) + ε(1) + ε̄2

�
+ ε(2)e−(s−s+)K(5.50)

(5.51) Θ+ ≤ Θ(1 + Cδ−2
+ K2τ̄ ε̄) .
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We focus on the quasi-Töplitz estimates, the Lipschitz ones follow formally in the same
way. The proof splits in several lemmas where we analyze each term of P+ in (5.37). We note
first that

(5.52) �P≤2
K
�T

s,r,N0,θ,µ

(3.41)
≤ �P≤2�T

s,r,N0,θ,µ

(3.38),(5.46)
≤ γε̄ .

Moreover, the solution F = F (0) + F (1) + F (2) of the homological Equation (5.17) (for
brevity F (h) ≡ F (h)

K
and F ≡ F≤2

K
) satisfies, by (5.20) (with N∗

0 defined in (5.18)), (3.41),
(5.46),

(5.53) �F (h)�T

s,r,N
∗
0 ,θ,µ

� K τ̄ε(h) , h = 0, 1, 2, �F�T

s,r,N
∗
0 ,θ,µ

� K τ̄ ε̄ .

Hence (5.49) and (5.53) imply condition (5.35) and therefore Φ1
F

: D(s+, r+) → D(s, r) is
well defined. We now estimate the terms of the new perturbation P+ in (5.37).

L���� 5.4. –
���adF (P≤2)

���
T

s+,r+,N
+
0 ,θ+,µ+

+
���

�

j≥2

1

j!
adj

F
(H)

���
T

s+,r+,N
+
0 ,θ+,µ+

� δ−2
+ γK2τ̄ ε̄2 .

Proof. – We have
�

j≥2

1

j!
adj

F
(H) =

�

j≥2

1

j!
adj

F
(N + P ) =

�

j≥2

1

j!
adj−1

F
(adFN ) +

�

j≥2

1

j!
adj

F
(P )

(5.17)
=

�

j≥2

1

j!
adj−1

F
([P≤2

K
]− P≤2

K
) +

�

j≥2

1

j!
adj

F
(P ) .

By (5.47), (5.48) and (5.35) we can apply Proposition 3.2 with N0, N �
0, s

�, r�, θ�, µ�, δ �
N∗

0 , N+
0 , s+, r+, θ+, µ+, δ+. We get (recall N∗

0 ≥ N0)
���

�

j≥2

1

j!
adj

F
(P )

���
T

s+,r+,N
+
0 ,θ+,µ+

(3.67),(3.35)
�

�
δ−1
+ �F�T

s,r,N
∗
0 ,θ,µ

�2
�P�T

s,r,N0,θ,µ

(5.53),(5.46)
� δ−2

+ K2τ̄ ε̄2γ Θ(5.54)

and, similarly,
���

�

j≥2

1

j!
adj−1

F
(P≤2

K
)
���

T

s+,r+,N
+
0 ,θ+,µ+

=
���

�

j≥1

1

(j + 1)!
adj

F
(P≤2

K
)
���

T

s+,r+,N
+
0 ,θ+,µ+

(3.67)
� δ−1

+ �F�T

s,r,N
∗
0 ,θ,µ

�P≤2
K
�T

s,r,N0,θ,µ

(5.53),(5.52)
� δ−1

+ K τ̄γε̄2 .(5.55)

Finally, by Proposition 3.1, applied with

(5.56) N0, N1, s1, r1, θ1, µ1, δ � N∗

0 , N+
0 , s+, r+, θ+, µ+, δ+ ,

we get
���adF (P≤2)

���
T

s+,r+,N
+
0 ,θ+,µ+

(3.52)
� δ−1

+ �F�T

s,r,N
∗
0 ,θ,µ

�P≤2�T

s,r,N0,θ,µ

(5.53),(5.52)
� δ−1

+ K τ̄γ ε̄2 .(5.57)

The bounds (5.54), (5.55), (5.57), and Θ ≤ 1 (see (5.49)), prove the lemma.
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L���� 5.5. – (5.51) holds.

Proof. – By Proposition 3.1 (applied with (5.56)) we have
���adF (P≥3)

���
T

s+,r+,N
+
0 ,θ+,µ+

� δ−1
+ �F�T

s,r,N
∗
0 ,θ,µ

�P≥3�T

s,r,N0,θ,µ

(5.53),(3.40),(5.46)
� δ−1

+ K τ̄γ ε̄ Θ ,(5.58)

and (5.51) follows by (5.37), (3.40), (3.35), (5.46) (5.58), Lemma 5.4 and ε̄ ≤ 3Θ (which
follows by (5.46) and (3.39)).

We now consider P (h)
+ , h = 0, 1, 2. The term adF P≥3 in (5.37) does not contribute to P (0)

+ .
On the contrary, its contribution to P (1)

+ is

(5.59) {F (0), P (3)}

and to P (2)
+ is

(5.60) {F (1), P (3)}+ {F (0), P (4)} .

L���� 5.6. – �{F (0), P (3)}�T

s+,r+,N
+
0 ,θ+,µ+

� δ−1
+ γK τ̄ε(0)Θ and

���{F (1), P (3)}+ {F (0), P (4)}
���

T

s+,r+,N
+
0 ,θ+,µ+

� δ−1
+ K τ̄γ(ε(0) + ε(1))Θ .

Proof. – By (3.52) (applied with (5.56)), (5.53), (5.46) and (3.39).

The contribution of P − P≤2
K

in (5.37) to P (h)
+ , h = 0, 1, 2, is P (h)

>K
.

L���� 5.7. – �P (h)
>K
�T

s+,r+,N
+
0 ,θ+,µ+

≤ 2e−K(s−s+)γε(h)

Proof. – By (3.43) and (5.46).

Pʀ��� �� Pʀ����ɪ�ɪ�ɴ 5.2 ����ʟ����. Finally, (5.50) follows by (5.37), Lemmata 5.4,
5.6 (and (5.59)-(5.60)), Lemma 5.7 and Θ ≤ 1.

5.3. KAM iteration

L���� 5.8. – Suppose that ε(0)
i

, ε(1)
i

, ε(2)
i
≥ 0, i = 0, . . . , ν, satisfy

ε(0)
i+1 ≤ C∗ K

i ε̄2
i

+ C∗ε
(0)
i

e−K∗2
i

(5.61)

ε(1)
i+1 ≤ C∗ K

i
�
ε(0)

i
+ ε̄2

i

�
+ C∗ε

(1)
i

e−K∗2
i

ε(2)
i+1 ≤ C∗ K

i
�
ε(0)

i
+ ε(1)

i
+ ε̄2

i

�
+ C∗ε

(2)
i

e−K∗2
i

, i = 0, . . . , ν − 1 ,

where ε̄i := ε(0)
i

+ ε(1)
i

+ ε(2)
i

, for some K, C∗, K∗ > 1. Then there exist ε̄� < 1, C� > 0,
χ ∈ (1, 2), depending only on K, C∗, K∗ (and not on ν and satisfying 1 ≤ C�e−K∗), such that,
if

(5.62) ε̄0 ≤ ε̄� =⇒ ε̄i ≤ C� ε̄0 e−K∗χ
i

, ∀i = 0, . . . , ν .
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Proof. – Iterating three times (5.61) we get

ε̄j+3 ≤ c1C
c1
∗ Kc1j

�
ε(0)

j+2 + ε(1)
j+2 + ε̄2

j+2 + ε̄j+2e
−K∗2

j+2
�

≤ c2C
c2
∗ Kc2j

�
ε(0)

j+1 + ε̄2
j+1 + ε̄4

j+1 + ε̄j+1e
−K∗2

j+1
�

≤ c3C
c3
∗ Kc3j

�
ε̄2

j
+ ε̄8

j
+ ε̄je

−K∗2
j
�

, ∀ 0 ≤ j ≤ ν − 3 ,(5.63)

for suitable constants 1 < c1 < c2 < c3.

We first claim that (5.62) holds with χ := 6/5 for all i = 3j ≤ ν. Setting aj := ε̄3j , we
prove that there exist C� large and ε̄� small (as in the statement) such that if a0 ≤ ε̄� then

(S)
j

aj ≤ cj+1
4 a0e

−K∗χ̃
3j

, ∀ 0 ≤ j ≤ ν/3

for a suitable c4 = c4(K, C∗, K∗) ≥ 1 large enough and χ̃ < 21/3, e.g., χ̃ := 5/4. We proceed
by induction. The statement (S)0 is trivial. Now suppose (S)

j
holds true. Note that aj ≤ 1

taking ε̄� ≤ minj≥0 eK∗χ̃
3j

/cj+1
4 . Then (S)

j+1 follows by

aj+1 = ε̄3j+3

(5.63)
≤ c3C

c3
∗ K3c3j

�
a2

j
+ a8

j
+ aje

−K∗2
3j

� aj≤1

≤ 2c3C
c3
∗ K3c3j

�
a2

j
+ aje

−K∗2
3j

�

(S)j

≤ 2c3C
c3
∗ K3c3j

�
(cj+1

4 a0e
−K∗χ̃

3j

)2 + (cj+1
4 a0e

−K∗χ̃
3j

)e−K∗2
3j

�
≤ cj+2

4 a0e
−K∗χ̃

3j+3

since 4c3Cc3
∗ K3c3j(cj+1

4 a0e−K∗χ̃
3j

)e−K∗2
3j ≤ cj+2

4 a0e−K∗χ̃
3j+3

taking c4 large enough (use
χ̃ < 2) and

4c3C
c3
∗ K3c3j(cj+1

4 a0e
−K∗χ̃

3j

)2 ≤ cj+2
4 a0e

−K∗χ̃
3j+3

taking a0 ≤ ε̄� small enough. We have proved inductively (S)j . Then (5.62) for i = 3j follows
since 6/5 =: χ < χ̃ := 5/4 and taking C� large enough. The cases i = 3j + 1 and i = 3j + 2
follow analogously noting that ε̄1, ε̄2 can be made small by (5.61) taking ε̄� small.

For ν ∈ N, we define

sν+1 := sν − s02
−ν−2 � s0

2
, rν+1 := rν − r02

−ν−2 � r0

2
(5.64)

Dν := D(sν , rν) Kν := K04
ν

Nν := N02
νρ with N0 := ĉγ−1/3Kτ+1

0 ρ := max
�

2(τ + 1),
1

L− b
,

1

1− L

�

µν+1 := µν − µ02
−ν−2 � µ0

2
, θν+1 := θν + θ02

−ν−2 � 3
θ0

2
.

We consider H0 = N0 +P0 : D0×O∗ → C withN0 := e0 +ω(0)(ξ) · y +Ω(0)(ξ) · zz̄. We
suppose that ω(0) and Ω(0) are defined on the whole Rn (using in case the Kirszbraun
extension theorem), that Ω(0) satisfies (4.2) and |ω(0)|lip, |Ω(0)|lip∞ ≤ M0 on Rn. Let
O0 ⊆ {ξ ∈ O∗ : Bγ/M0

(ξ) ⊂ O∗} where O∗ is defined in (5.1) and Br(ξ) denotes
the open ball in Rn of center ξ and radius r > 0.

L���� 5.9 (Iterative lemma). – Let H0 be as above and let ε̄0, Θ0 be defined as in (5.46)
for P0. Then there are K0 > 0 large enough, �0 > 0 small enough, such that, if

(5.65) ε̄0,Θ0 ≤ �0 ,

then
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(S1)ν ∀0 ≤ i ≤ ν, there exist ω(i), Ω(i), a(i)
± defined for all ξ ∈ Rn, satisfying

|ω(i) − ω(0)|+ λ|ω(i) − ω(0)|lip, |Ω(i) − Ω(0)|∞ + λ|Ω(i) − Ω(0)|lip∞ ≤ C(1− 2−i)γε̄0

(5.66)

|a(i)
± | ≤ C(1− 2−i)γε̄0 , |ω(i)|lip , |Ω(i)|lip∞ ≤ (2− 2−i)M0 .

(5.67)

There exists Hi := Ni +Pi : Di×Oi → C withNi := ei +ω(i)(ξ) ·y +Ω(i)(ξ) ·zz̄ in normal
form, where, for i > 0,

(5.68)

Oi :=
�

ξ ∈ Oi−1 : |ω(i−1)(ξ) · k + Ω(i−1)(ξ) · l| ≥ (1− 2−i)
2γ

1 + |k|τ ,∀(k, l) ∈ I , |k| ≤ Ki−1 ,

|ω(i−1)(ξ) · k + p| ≥ (1− 2−i)
2γ2/3

1 + |k|τ ,∀(k, p) �= (0, 0) , |k| ≤ Ki−1, p ∈ Z
�

.

Moreover, ∀ 1 ≤ i ≤ ν, Hi = Hi−1 ◦ Φi where Φi : Di ×Oi → Di−1 is a (Lipschitz) family
(in ξ ∈ Oi) of close-to-the-identity analytic symplectic maps. Setting, for h = 0, 1, 2,

ε(h)
i

:= γ−1 max
�
�P (h)

i
�T

si,ri,Ni,θi,µi
, |X

P
(h)
i
|λ
si,ri

�
, ε̄i :=

2�

h=0

ε(h)
i

,(5.69)

Θi := γ−1 max
�
�Pi�T

si,ri,Ni,θi,µi
, |XPi |λsi,ri

�
,

∀ 1 ≤ i ≤ ν and ∀ ξ ∈ Rn

|ω(i)(ξ)− ω(i−1)(ξ)| , |Ω(i)(ξ)− Ω(i−1)(ξ)|∞ , |a(i)
± (ξ)− a(i−1)

± (ξ)| ≤ 2γε̄i−1 ,

|Ω(i)
j

(ξ)− a(i)
s(j)(ξ)− Ω(i−1)

j
(ξ) + a(i−1)

s(j) (ξ)| ≤ 40γ
ε̄i−1

|j| , ∀|j| ≥ 6(Ni−1 + 1) .(5.70)

(S2)ν ∀0 ≤ i ≤ ν − 1, the ε(0)
i

, ε(1)
i

, ε(2)
i

satisfy (5.61) with K = 42τ̄+1, τ̄ := 2τ + n + 1,
C∗ = 4K2τ̄

0 , K∗ = s0K0/4.

(S3)ν ∀0 ≤ i ≤ ν, we have ε̄i ≤ C�ε̄0e−K∗χ
i

and Θi ≤ 2Θ0 (recall that C�e−K∗ ≥ 1, see
Lemma 5.8).

Proof. – The statement (S1)0 follows by the hypotheses setting a(0)
± (ξ) := 0, ∀ξ ∈ Rn.

(S2)0 is empty. (S3)0 is trivial. We then proceed by induction.

(S1)
ν+1. We denote ω̂(ν) := ∇y�Pν(ξ)�|y=0,z=z̄=0 and Ω̂(ν)

j
(ξ) := ∂2

zj z̄j | y=0,z=z̄=0�Pν(ξ)�,
see (5.36), for all ξ ∈ Oν if ν ≥ 1 and ξ ∈ O∗ (see (5.1)) if ν = 0. By Lemma 5.2 and (5.69)
there exist constants â(ν)

± (ξ) ∈ R such that
(5.71)

|ω̂(ν)(ξ)| , |Ω̂(ν)(ξ)|∞ , |â(ν)
± (ξ)| ≤ 2γε̄ν , |Ω̂(ν)

j
(ξ)− â(ν)

s(j)(ξ)| ≤ 40γ
ε̄ν

|j| , ∀|j| ≥ 6(Nν + 1) ,

uniformly in ξ ∈ Oν (resp. O∗ if ν = 0), and

(5.72) |ω̂(ν)|lip , |Ω̂(ν)|lip∞ ≤ C ε̄ν .

Let

(5.73) η0 := λ = γ/M0 , ην := γ/(2ν+3M0K
τ+1
ν−1) , ν ≥ 1 .
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We claim that, for ν ≥ 1, the ην-neighborhood of Oν+1

(5.74) Õν+1 :=
�

ξ∈Oν+1

�
ξ̃ ∈ Rn : ξ̃ = ξ + ξ̂ , |ξ̂| < ην

�
⊆ Oν .

Note that the definitions ofO0,O1 in (5.68), and (5.73) imply Õ1 ⊂ O∗. Recalling (5.68), we
have to prove that for ν ≥ 1, for every ξ̃ = ξ + ξ̂, ξ ∈ Oν+1, |ξ̂| ≤ ην , we have

(5.75) |ω(ν−1)(ξ̃) · k + Ω(ν−1)(ξ̃) · l| ≥ (1− 2−ν)
2γ

1 + |k|τ , ∀(k, l) ∈ I , |k| ≤ Kν−1 ,

and the analogous estimate for |ω(ν−1)(ξ̃) · k + p|. By the expression (5.77) (at the previous
step) for ω(ν), Ω(ν), and since χν−1 ∈ [0, 1], we get

|ω(ν−1)(ξ̃) · k + Ω(ν−1)(ξ̃) · l| ≥ |ω(ν)(ξ̃) · k + Ω(ν)(ξ̃) · l|
− |χν−1(ξ̃)||ω̂(ν−1)(ξ̃) · k + Ω̂(ν−1)(ξ̃) · l|

(5.71)
≥ |ω(ν)(ξ) · k + Ω(ν)(ξ) · l|−

���(ω(ν)(ξ̃)− ω(ν)(ξ)) · k + (Ω(ν)(ξ̃)− Ω(ν)(ξ)) · l
���

− 2γε̄ν−1(Kν−1 + 2)

ξ∈Oν+1,(5.68),(S1)ν

≥ (1− 2−ν−1)
2γ

1 + |k|τ − (Kν−1 + 2)2M0ην − 2γε̄ν−1(Kν−1 + 2)

(5.73),(S3)ν

≥ (1− 2−ν)
2γ

1 + |k|τ

taking �0 small enough, and (5.75) follows. The estimate for |ω(ν−1)(ξ̃) · k + p| follows
similarly.

We define a smooth cut-off function χν : Rn → [0, 1] which takes value 1 on Oν+1 and
value 0 outside Õν+1. Thanks to (5.74) and recalling (5.73) we can construct χν , ν ≥ 0, in
such a way that

(5.76) |χν |lip � γ−1M02
νKτ+1

ν−1

where K−1 := 1. We extend ω̂(ν), Ω̂(ν), â(ν)
± to zero outside Oν for ν ≥ 1 and, for ν = 0

outside O�. Then we define on the whole Rn

(5.77) ω(ν+1) := ω(ν) + χν ω̂(ν) , Ω(ν+1) := Ω(ν) + χνΩ̂(ν) , a(ν+1)
± := a(ν)

± + χν â(ν)
± .

By (5.76), (5.72), (5.71), we get

|ω(ν+1) − ω(ν)|lip ≤ |χν |lip|ω̂(ν)|+ |χν ||ω̂(ν)|lip ≤ CKτ+1
ν−1M0ε̄ν + C ε̄ν ≤ 2−ν−1M0

by (S3)ν and ε̄0 small enough. Similarly for |Ω(ν+1) − Ω(ν)|lip∞ . Recalling also (5.71), we get
(5.66) and (5.67) with i = ν + 1. Moreover (5.71)-(5.77) imply (5.70) for i = ν + 1 and
∀|j| > 6(Nν + 1).

We wish to apply the KAM step Proposition 5.2 with N = Nν , P = Pν , N0 = Nν ,
θ = θν . . . and N+

0 = Nν+1, θ+ = θν+1, . . . Our definitions in (5.64) (and τ > 1/b) imply that
the conditions(2) (5.47)-(5.48) are satisfied, for all ν ∈ N, taking K0 large enough. Moreover,

(2) For example the first inequality in (5.47) reads Nν+1 ≥ max{Nν , ĉγ−1/3Kτ+1
ν , N̄}.
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since

(5.78) δ+ = δν+1 := min
�

1− sν+1

sν

, 1− rν+1

rν

�
so that 2−ν−2 ≤ δν+1 ≤ 2−ν−1 ,

and (S3)ν the condition (5.49) is satisfied, for ε̄0 ≤ �0 small enough, ∀ν ∈ N. By (5.70),
the condition (5.11) holds for |j| ≥ θνNν , and (5.14) and (5.19) hold for all ξ ∈ Oν+1 (it
is the definition of Oν+1, see (5.68)). Hence Proposition 5.2 applies. For all ξ ∈ Oν+1 the
Hamiltonian flow Φν+1 := Φ1

Fν
: Dν+1 ×Oν+1 → Dν and we define

Hν+1 := Hν ◦ Φν+1 = eadFν Hν = Nν+1 + Pν+1 : Dν+1 ×Oν+1 → C .

(S2)
ν+1 follows by (5.50) and (5.64).

(S3)
ν+1. By (S2)ν we can apply Lemma 5.8 and (5.62) implies ε̄ν+1 ≤ C�ε̄0e−K∗χ

ν+1
.

Moreover, for �0 small enough, Θν+1

(5.51)
≤ Θ0Πν

i=0

�
1 + Cδ−2

i+1K
2τ̄

i
ε̄i

� (5.78),(S3)ν

≤ 2Θ0 .

Proof of the KAM Theorem 4.1 completed. – We apply the iterative Lemma 5.9 to the
Hamiltonian H0 in (5.6) where ω(0) = ω and Ω(0) = Ω are defined in (4.1). We choose

(5.79) O0 :=
�

ξ ∈ O : |ω(ξ) · k| ≥ 2γ2/3

1 + |k|n , ∀ 0 < |k| < γ−1/(7n)
�

so that O0 ⊆ {ξ ∈ O∗ : Bγ/M0
(ξ) ⊂ O∗}, see (5.1) and (4.3). The smallness assumption

(5.65) holds by (5.8)-(5.9) (use also Lemma 3.4) and ε small enough. Then the iterative
Lemma 5.9 applies. Let us define

ω∞ := lim
ν→∞

ω(ν) , Ω∞ := lim
ν→∞

Ω(ν) , a∞± := lim
ν→∞

a(ν)
± .

It could happen that Oν0 = ∅ for some ν0. In such a case O∞ = ∅ and the iterative process
stops after finitely many steps. However, we can always set ω(ν) := ω(ν0), Ω(ν) := Ω(ν0),
a(ν)
± := a(ν0)

± , ∀ν ≥ ν0, and ω∞, Ω∞, a∞± are always well defined.
The bounds (4.8) follow by (5.66) (with a different constant C). We now prove (4.9). We

consider the case j > 0. For all ∀ν ≥ 0, j ≥ 6(Nν + 1), we have (recall that a(0)
+ = 0)

|Ω∞
j
− Ω(0)

j
− a∞+ | ≤

�

0≤i≤ν

|Ω(i+1)
j

− a(i+1)
+ − Ω(i)

j
+ a(i)

+ |

+
�

i>ν

|Ω(i+1)
j

− Ω(i)
j
|+ |a(i+1)

+ − a(i)
+ |

(5.70)
≤ 40γ

�

0≤i≤ν

ε̄i

j
+ 4γ

�

i>ν

ε̄i

(S3)ν

� ε̄0γ

j
+ γ

�

i>ν

ε̄i .

Therefore, ∀ν ≥ 0, 6(Nν + 1) ≤ j < 6(Nν+1 + 1),

|Ω∞
j
− Ω(0)

j
− a∞+ |�

ε̄0γ

j
+ γ

Nν+1

j

�

i>ν

ε̄i

(5.64)
� ε̄0γ

j
+

γ

j
γ−1/3Kτ+1

0 2ρ(ν+1)
�

i>ν

ε̄i

and (4.9) follows by (S3)ν .
The symplectic transformation Φ in (4.10) is defined by

Φ := lim
ν→∞

Φ00 ◦ Φ0 ◦ Φ1 ◦ · · · ◦ Φν

with Φ00 defined in (5.4). We now verify that Φ is defined on O∞, see (4.11).
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L���� 5.10. – O∞ ⊂ ∩iOi (defined in (5.68)).

Proof. – We have O∞ ⊆ O0 by (4.11) and (5.79). For i ≥ 1, if ξ ∈ O∞ then, for all
|k| ≤ Ki, |l| ≤ 2,

|ω(i)(ξ) · k + Ω(i)(ξ) · l|
≥ |ω∞(ξ) · k + Ω∞(ξ) · l|− |k|

�

n≥i

|ω(n+1)(ξ)− ω(n)(ξ)|− 2
�

n≥i

|Ω(n+1)(ξ)− Ω(n)(ξ)|∞

(4.11),(5.70)
≥ 2γ

1 + |k|τ −Ki2γ
�

n≥i

ε̄n − 4γ
�

n≥i

ε̄n ≥ (1− 2−i)
2γ

1 + |k|τ

by the definition of Ki in (5.64), (S3)ν and ε small enough. The other estimate is analogous.

Finally P∞

≤2 = 0 (see (4.12)) follows by ε̄i → 0 as i → ∞. This concludes the proof of
Theorem 4.1.

6. Measure estimates: proof of Theorem 4.2

We have to estimate the measure of

(6.1) O \ O∞ =
�

(k,l)∈Λ0∪Λ1∪Λ+
2 ∪Λ−2

Rkl(γ)
�

(k,p)∈Zn+1\{0}

R̃kp(γ
2/3)

�
(O \ O0)

where

(6.2) Rkl(γ) := Rτ

kl
(γ) :=

�
ξ ∈ O : |ω∞(ξ) · k + Ω∞(ξ) · l| < 2γ

1 + |k|τ
�

(6.3) R̃kp(γ
2/3) := R̃τ

kp
(γ2/3) :=

�
ξ ∈ O : |ω∞(ξ) · k + p| < 2γ2/3

1 + |k|τ
�

and

(6.4) Λh :=
�

(k, l) ∈ I (see (4.5)) , |l| = h
�

, h = 0, 1, 2 , Λ2 = Λ+
2 ∪ Λ−2 ,

Λ+
2 :=

�
(k, l) ∈ Λ2 , l = ±(ei + ej)

�
, Λ−2 :=

�
(k, l) ∈ Λ2 , l = ei − ej

�
.

We first consider the most difficult case Λ−2 . Setting Rk,i,j(γ) := Rk,ei−ej (γ) we show that

(6.5)
���

�

(k,l)∈Λ−2

Rk,l(γ)
��� =

���
�

(k,i,j)∈ I

Rk,i,j(γ)
��� � γ2/3ρn−1

where

(6.6) I :=
�

(k, i, j) ∈ Zn × (Z \ I)2 : (k, i, j) �= (0, i, i) , j · k + i− j = 0
�

.

Note that the indices in I satisfy

(6.7) ||i|− |j|| ≤ κ |k| and k �= 0 .

Since the matrix A in (4.13) is invertible, the bound (4.8) implies, for ε small enough, that

(6.8) ω∞ : O → ω∞(O) is invertible and |(ω∞)−1|lip ≤ 2�A−1� .
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L���� 6.1. – For (k, i, j) ∈ I, η ∈ (0, 1), we have

(6.9) |Rτ

k,i,j
(η)|� ηρn−1

1 + |k|τ+1
.

Proof. – By (4.8) and (4.13)

ω∞(ξ) · k + Ω∞
i

(ξ)− Ω∞
j

(ξ) = ω∞(ξ) · k +
�

i2 + m−
�

j2 + m + ri,j(ξ)

where

(6.10) |ri,j(ξ)| = O(εγ) , |ri,j |lip = O(ε) .

We introduce the final frequencies ζ := ω∞(ξ) as parameters (see (6.8)), and we consider

fk,i,j(ζ) := ζ · k +
�

i2 + m−
�

j2 + m + r̃i,j(ζ)

where also r̃i,j := ri,j ◦ (ω∞)−1 satisfies (6.10). In the direction ζ = sk|k|−1 + w, w · k = 0,
the function f̃k,i,j(s) := fk,i,j(sk|k|−1 + w) satisfies

f̃k,i,j(s2)− f̃k,i,j(s1)
(6.10)
≥ (s2 − s1)(|k|− Cε) ≥ (s2 − s1)|k|/2 .

Since |k| ≥ 1 (recall (6.7)), by Fubini theorem,
���
�

ζ ∈ ω∞(O) : |fk,i,j(ζ)| ≤ 2η

1 + |k|τ
���� � ηρn−1

1 + |k|τ+1
.

By (6.8) the bound (6.9) follows.

We split

(6.11) I = I> ∪ I< where I> :=
�

(k, i, j) ∈ I : min{|i|, |j|} > C�γ
−1/3(1 + |k|τ0)

�

where C� > C� in (4.9) and τ0 := n + 1. We set I< := I \ I>.

L���� 6.2. – For all (k, i, j) ∈ I> we have

(6.12) Rτ0
k,i,j

(γ2/3) ⊂ Rτ0
k,i0,j0

(2γ2/3)

(see (6.2)), i0, j0 ∈ Z \ I satisfy

(6.13) s(i0) = s(i) , s(j0) = s(j) , |i0|− |j0| = |i|− |j|

and

(6.14) min{|i0|, |j0|} =
�
C�γ

−1/3(1 + |k|τ0)
�
.

Proof. – Since |j| ≥ γ−1/3C�, by (4.9) and (4.13) we have the frequency asymptotic

(6.15) Ω∞
j

(ξ) = |j|+ m

2|j| + �a · ξ + a∞s(j)(ξ) + O

Å
m2

|j|3
ã

+ O

Ç
ε
γ2/3

|j|

å
.
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By (6.7) we have ||i| − |j|| = ||i0| − |j0|| ≤ C|k|, |k| ≥ 1. If ξ ∈ O \ Rτ0
k,i0,j0

(2γ2/3), since
|i|, |j| ≥ µ0 := min{|i0|, |j0|} (recall (6.11) and (6.14)), we have

|ω∞(ξ) · k + Ω∞
i

(ξ)− Ω∞
j

(ξ)| ≥ |ω∞(ξ) · k + Ω∞
i0

(ξ)− Ω∞
j0

(ξ)|
−|Ω∞

i
(ξ)− Ω∞

i0
(ξ)− Ω∞

j
(ξ) + Ω∞

j0
(ξ)|

(6.15)
≥ 4γ2/3

1 + |k|τ0
− ||i|− |i0|− |j|+ |j0||

−|a∞s(i) − a∞s(i0) − a∞s(j) + a∞s(j0)|

−Cε
γ2/3

µ0
− C

m2

µ3
0

− m

2

||i|− |j||
|i| |j| − m

2

||i0|− |j0||
|i0| |j0|

(6.13)
≥ 4γ2/3

1 + |k|τ0
− Cε

γ2/3

µ0
− C

|k|
µ2

0

(6.14)
≥ 2γ2/3

1 + |k|τ0

taking C� in (6.14) large enough. Therefore ξ ∈ O \Rτ0
k,i,j

(γ2/3) proving (6.12).

As a corollary we deduce:

L���� 6.3. –
���
�

(k,i,j)∈I>
Rτ

k,i,j
(γ)

��� � γ2/3ρn−1 .

Proof. – Since 0 < γ ≤ 1 and τ ≥ τ0 (see (4.15)), we have (see (6.2)) Rτ

k,i,j
(γ) ⊂

Rτ0
k,i,j

(γ2/3). Then Lemma 6.2 and (6.9) imply that, for each k ∈ Zn, p ∈ Z fixed
���

�

(k,i,j)∈I>, |i|−|j|=p

Rτ

k,i,j
(γ)

��� � γ2/3ρn−1

1 + |k|τ0+1
.

Therefore ���
�

(k,i,j)∈I>

Rτ

k,i,j
(γ)

��� �
�

k,|p|≤C|k|

γ2/3ρn−1

1 + |k|τ0+1
�

�

k

γ2/3ρn−1

1 + |k|τ0

proving the lemma.

L���� 6.4. –
���
�

(k,i,j)∈I<
Rτ

k,i,j
(γ)

��� � γ2/3ρn−1.

Proof. – For all (k, i, j) ∈ I< such that Rτ

k,i,j
(γ) �= ∅ we have (see (6.6))

min{|i|, |j|} < C�γ
−1/3(1 + |k|τ0) , j − i = k · j =⇒ max{|i|, |j|} < C �γ−1/3(1 + |k|τ0) .

Therefore, using also Lemma 6.1 and (6.7)
���

�

(k,i,j)∈I<

Rτ

k,i,j
(γ)

��� �
�

k

�

|i|≤C�γ−1/3(1+|k|τ0 )
j=i+k·j

γρn−1

1 + |k|τ+1
�

�

k

γ2/3ρn−1

1 + |k|τ−τ0+1

which, by (4.15), gives the lemma.

Lemmata 6.3, 6.4 imply (6.5). This concludes the case (k, l) ∈ Λ−2 . Let consider the other
cases. The analogue of Lemma 6.1 is

L���� 6.5. – For (k, l) ∈ Λ0 ∪ Λ1 ∪ Λ+
2 , η ∈ (0,

√
m/2), we have

(6.16) |Rkl(η)|� ηρn−1

1 + |k|τ .
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Proof. – We consider only the case (k, l) ∈ Λ+
2 , l = ei + ej . By (4.8) and (4.13)

fk,i,j(ξ) := ω∞(ξ) ·k+Ω∞
i

(ξ)+Ω∞
j

(ξ) = ω∞(ξ) ·k+
�

i2 + m+
�

j2 + m+2�a ·ξ +ri,j(ξ)

where |ri,j(ξ)| = O(εγ) , |ri,j |lip = O(ε). Changing variables ζ := ω∞(ξ) we find

(6.17) fk,i,j(ζ) := ζ · k +
�

i2 + m +
�

j2 + m + 2�a ·A−1(ζ − ω̄) + r̃i,j(ζ)

where also

(6.18) r̃i,j(ζ) = O(εγ) , |r̃i,j |lip = O(ε) .

If k = �a = 0 then the function in (6.17) is bigger than
√

m and R0l(η) = ∅, for
0 ≤ η ≤ √m/2. Otherwise, by (4.14), the vector

(6.19) ã := AT k + 2�a = AT
�
k + 2(A−1)T�a

�
satisfies |ã| ≥ c = c(A,�a) > 0 , ∀k �= 0 .

The function f̃k,i,j(s) := fk,i,j(sã|ã|−1 + w), ã · w = 0, satisfies f̃k,i,j(s2) − f̃k,i,j(s1) ≥
(s2 − s1)(|ã| − Cε) ≥ (s2 − s1)|ã|/2 by (6.18). Then (6.16) follows by (6.19) and Fubini
theorem.

By Lemma 6.5, (6.2), (6.3), (5.79) and standard arguments (as above)

(6.20)
���

�

(k,l)∈Λ0∪Λ1∪Λ+
2

Rkl(γ)
����γρn−1,

���
�

(k,p)∈Zn+1\{0}

R̃kp(γ
2/3)

��� , |O\O0|�γ2/3ρn−1 .

Finally (6.1), (6.5), (6.20) imply (4.16).

7. Application to DNLW

For � = (j1, . . . , jd) ∈ Zd, �σ = (σ1, . . . ,σd) ∈ {±}d we set �σ · � := σ1j1 + · · ·+ σdjd,
and, given (uj , ūj)j∈Z = (u+

j
, u−

j
)j∈Z, we define the monomial u�σ

�
:= uσ1

j1
· · ·uσd

jd
(of

degree d).

7.1. The partial Birkhoff normal form

We now consider the Hamiltonian (1.4) when F (s) = s4/4 since terms of order five or
more will not make any difference, see Remark 7.1.

After a rescaling of the variables (and of the Hamiltonian) it becomes

H =
�

j∈Z
λju

+
j
u−

j
+

�

�∈Z4,�σ∈{±}4,�σ·�=0

u�σ

�
=: N + G

(7.1)

=
�

j∈Z
λjuj ūj +

�

|α|+|β|=4, π(α,β)=0

Gα,βuαūβ , Gα,β :=
(|α|+ |β|)!

α!β!
=

4!

α!β!
,

where (u+, u−) = (u, ū) ∈ �a,p × �a,p for some a > 0, p > 1/2, and the momentum is (see
(2.86))

π(α,β) =
�

j∈Z
j(αj − βj) .

Note that 0 ≤ Gα,β ≤ 4! (recall α! = Πi∈Zαi!)
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L���� 7.1. – For all R > 0, N0 satisfying (3.1), the Hamiltonian G defined in (7.1)
belongs to QT

R
(N0, 3/2, 4) and

(7.2) �G�T

R,N0,3/2,4 = �XG�R � R2 .

Proof. – The Hamiltonian vector field XG := (−i∂ūG, i∂uG) has components

iσ∂u
σ
l
G = iσ

�

|α|+|β|=3,π(α,β)=−σl

Gl,σ

α,β
uαūβ , σ = ± , l ∈ Z ,

where
Gl,+

α,β
= (αl + 1)Gα+el,β , Gl,−

α,β
= (βl + 1)Gα,β+el .

Note that 0 ≤ Gl,σ

α,β
≤ 5! By Definitions 2.6, 2.8 and (2.2)

�XG�R =
1

R
sup

�u�a,p,�ū�a,p<R

Å �

l∈Z,σ=±

e2a|l|�l�2p

� �

|α|+|β|=3 ,π(α,β)=−σl

Gl,σ

α,β
|uα||ūβ |

�2
ã1/2

.

For each component
�

|α|+|β|=3 ,π(α,β)=−σl

Gl,σ

α,β
|uα||ūβ | �

�

σ1j1+σ2j2+σ3j3=−σl

|uσ1
j1
||uσ2

j2
||uσ3

j3
|

�
�
ũ ∗ ũ ∗ ũ

�
−σl

where ũ := (ũl)l∈Z, ũj := |uj |+ |ūj |, and ∗ denotes the convolution of sequences. Note that
�ũ�a,p ≤ �u�a,p + �ū�a,p. Since �a,p is a Hilbert algebra, �ũ ∗ ũ ∗ ũ�a,p � �ũ�3

a,p
, and

�XG�R � R−1 sup
�u�a,p,�ū�a,p<R

Å �

l∈Z,σ=±

e2a|l|�l�2p
��(ũ ∗ ũ ∗ ũ)−σl

��2
ã1/2

(7.3)

� R−1 sup
�u�a,p,�ū�a,p<R

�ũ ∗ ũ ∗ ũ�a,p � R−1 sup
�u�a,p,�ū�a,p<R

�ũ�3
a,p

� R2 .

Moreover G ∈ Hnull
R

, namely G Poisson commutes with the momentumM :=
�

j∈Z juj ūj ,
because (see (2.81))

(7.4) {M, u�σ

�
} = −i�σ · �u�σ

�
.

We now prove that, for all N ≥ N0, the projection ΠN,3/2,4G ∈ TR(N, 3/2, 4). Hence (7.2)
follows by (7.3) (see Definition 3.4). By Definition 3.2 (with g � G, no (x, y)-variables and
z = u, z̄ = ū), in particular (3.12), (3.13), we get

ΠN,3/2,4G =
�

|m|,|n|>3N/2,σ,σ�=±

Gσ,σ
�

m,n
(wL)uσ

m
ūσ

�

n
with

Gσ,σ
�

m,n
(wL) =

�
�

j∈Z |j|(αj+βj)<4NL,

π(α,β)=−σm−σ�n

Gσ,σ
�

α,β,m,n
uαūβ and

G+,+
α,β,m,n

=
1

2− δmn

Gα+em+en,β =
1

2− δmn

4!

(1 + δmn)!
= 12 = G−,−

α,β,m,n

G+,−

α,β,m,n
= Gα+em,β+en = 24 = G−,+

α,β,m,n
.

These coefficients trivially satisfy (3.15) (with f � G), so ΠN,3/2,4G ∈ TR(N, 3/2, 4).
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We now perform a Birkhoff semi–normal form on the tangential sites

(7.5) I := {j1, . . . , jn} ⊂ Z , j1 < · · · < jn ,

recall (2.84). Let Ic := Z \ I.

Set

(7.6) G :=
1

2

�

i or j∈I

Giju
+
i
u−

i
u+

j
u−

j
, Gij := 12(2− δij) , Ĝ :=

�

�∈Z4, �σ∈{+,−}4,

�σ·�=0, �∈(Ic)4

u�σ

�
.

By (7.2) and noting that G, Ĝ are projections of G, for R > 0, N0 satisfying (3.1), we have

(7.7) �G�T

R,N0,3/2,4 , �Ĝ�T

R,N0,3/2,4 � R2 .

Pʀ����ɪ�ɪ�ɴ 7.1 (Birkhoff normal form). – For any I ⊂ Z and m > 0, there exist
R0 > 0 and a real analytic, symplectic change of variables

Γ : BR/2 ×BR/2 ⊂ �a,p × �a,p → BR ×BR ⊂ �a,p × �a,p , 0 < R < R0 ,

that takes the Hamiltonian H = N + G in (7.1) into

(7.8) HBirkhoff := H ◦ Γ = N + G + Ĝ + K

where G, Ĝ are defined in (7.6) and

(7.9) K :=
�

�∈Z2d, �σ∈{+,−}2d,
d≥3, �σ·�=0

K�,�σu�σ

�

satisfies, for N �
0 := N �

0(m, I, L, b) large enough,

(7.10) �K�T

R/2,N
�
0,2,3 � R4 .

The rest of this subsection is devoted to the proof of Proposition 7.1. We start following
the strategy of [28]. By (2.81) the Poisson bracket

(7.11) {N,u�σ

�
} = −i�σ · λ� u�σ

�

where λ� := (λj1 , . . . ,λjd) and λj := λj(m) :=
�

j2 + m.

The following lemma extends Lemma 4 of [28].

L���� 7.2 (Small divisors). – Let � ∈ Z4, �σ ∈ {±}4 be such that �σ · � = 0 and (up to
permutation of the indices)

� = 0 ,
4�

i=1

σi �= 0 ,(7.12)

or � = (0, 0, q, q) , q �= 0 , σ1 = σ2 ,(7.13)

or � = (p, p,−p,−p) , p �= 0 , σ1 = σ2 ,(7.14)

or � �= (p, p, q, q) .(7.15)

Then, there exists an absolute constant c∗ > 0, such that, for every m ∈ (0,∞),

(7.16) |�σ · λ�(m)| ≥ c∗m

(n2
0 + m)3/2

> 0 where n0 := min{�j1�, �j2�, �j3�, �j4�} .

Proof. – In the appendix.
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The map Γ := Φ1
F

is obtained as the time-1 flow generated by the Hamiltonian

(7.17) F := −
�

�·�σ=0 ,�σ·λ� �=0

and �/∈(Ic)4

(7.12)− (7.15)
i

�σ · λ�

u�σ

�
.

We notice that the condition � · �σ = 0 ,�σ ·λ� �= 0 is equivalent to requiring that � · �σ = 0 and
�,�σ satisfy (7.12)-(7.15). By Lemma 7.2 there is a constant c̄ > 0 (depending only on m and
I) such that

(7.18) � · �σ = 0 ,�σ · λ� �= 0 and � /∈ (Ic)4 =⇒ |�σ · λ�| ≥ c̄ > 0 .

We have proved that the moduli of the small divisors in (7.17) are uniformly bounded away
from zero. Hence F is well defined and, arguing as in Lemma 7.1, we get

(7.19) �XF �R � R2 .

Moreover F ∈ Hnull
R

because in (7.17) the sum is restricted to �σ · � = 0 (see also (7.4)).

L���� 7.3. – F in (7.17) solves the homological equation

(7.20) {N,F}+ G = adF (N) + G = G + Ĝ

where G, Ĝ are defined in (7.6).

Proof. – We claim that the only � ∈ Z4, �σ ∈ {±}4 with � · �σ = 0 which do not satisfy
(7.12)-(7.15) have the form

(7.21) j1 = j2 , j3 = j4 , σ1 = −σ2 , σ3 = −σ4 (or permutations of the indices) .

Indeed:
If � = 0,

�
i
σi = 0: the σi are pairwise equal and (7.21) holds.

If � = (0, 0, q, q), q �= 0, and σ1 = −σ2: by � · �σ = 0 we have also σ3 = −σ4 and (7.21)
holds.

If � = (p, p,−p,−p), p �= 0 and σ1 = −σ2: by � · �σ = 0 we have also σ3 = −σ4 and (7.21)
holds.

If j1 = j2, j3 = j4, j1, j3 �= 0, j1 �= −j3:

C��� 1. j1 �= j3. Then 0 = �σ ·� = (σ1 +σ2)j1 +(σ3 +σ4)j3 implies σ1 = −σ2, σ3 = −σ4.

C��� 2. j1 = j3 and so j1 = j2 = j3 = j4 �= 0. Hence 0 = (σ1 + σ2 + σ3 + σ4)j1 and
(7.21) follows.

By (7.17) and (7.11) all the monomials in {N,F} cancel the monomials of G in (7.1) except
for those in Ĝ (see (7.6)) and those of the form |up|2|uq|2, p or q ∈ I, which contribute to G.
The expression in (7.6) of G follows by counting the multiplicities.

The Hamiltonian F ∈ Hnull
R

in (7.17) is quasi-Töplitz:

L���� 7.4. – Let R > 0. If N0 := N0(m, I, L, b) is large enough, then F defined in (7.17)
belongs to QT

R
(N0, 3/2, 4) and

(7.22) �F�T

R,N0,3/2,4 � R2 .
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Proof. – We have to show that F ∈ Hnull
R

verifies Definition 3.4. For all N ≥ N0, we
compute, by (7.17) and Definition 3.2 (in particular (3.12)), the projection

(7.23) ΠN,3/2,4F =
�

|n|,|m|>CN/4 ,

σ,σ�=± ,|σm+σ�n|<4NL

F σ,σ
�

m,n
(wL)uσ

m
uσ

�

n

where

Fσ,σ
�

m,n
(wL) := −12i

�

|i|+|j|<4NL, i or j∈I ,

σii+σjj+σm+σ�n=0, i�=j if m=n

uσi
i

u
σj

j

σiλi + σjλj + σλm + σ�λn

(7.24)

=
�

�
j
|j|(αj+βj)<4NL,

�
j∈I

(αj+βj)>0 ,

σm+σ�n=−π(α,β), |α|+|β|=2, α �=β if m=n

Fσ,σ
�

α,β,m,n
uαūβ(7.25)

and

(7.26) Fσ,σ
�

α,β,m,n
:= − 24i

α!β!

1

λα,β + σλm + σ�λn

, λα,β :=
�

h

λh(αh − βh) .

Notice that in (7.24) the restriction i �= j if m = n is equivalent to requiring

{(i, j, m, n), (σi, σj , σ, σ�)} �= {(i, i,m, m), (σi,−σi, σ,−σ)} ,

see Formulas (7.17) and (7.21). Indeed if m = n , |i| + |j| < 4NL and |m| > CN/4 then,
by momentum conservation, we have a contribution to (7.24) only if σ = −σ� and hence
|i| = |j|.

We define the Töplitz approximation

(7.27) F̃ :=
�

F̃ σ,σ
�

m,n
(wL)uσ

m
uσ

�

n
with F̃ σ,σ

�

m,n
(wL) :=

�
F̃σ,σ

�

α,β,m,n
uαūβ

where the indices in the two sums have the same restrictions as in (7.23), (7.25), respectively,
and the coefficients are

(7.28) F̃σ,−σ

α,β,m,n
:= − 24i

α!β!

1

λα,β + σ|m|− σ|n| , F̃σ,σ

α,β,m,n
:= 0 .

The coefficients in (7.28) are well defined for N ≥ N0 large enough, because

|λα,β + σ|m|− σ|n|| ≥ |λα,β + σλm − σλn|− |λm − |m||− |λn − |n||
(7.18),(7.30)

≥ c̄− m

2

Å
1

|m| +
1

|n|

ã
≥ c̄− 2

3

m

N0
≥ c̄

2
(7.29)

(c̄ defined in (7.18)) having used the elementary inequality

(7.30) |
�

n2 + m− |n|| ≤ 1/(2|n|) .

Then (7.27), (7.28), (7.29) imply, arguing as in the proof of Lemma 7.1, that

(7.31) �X
F̃
�R � R2 .

To prove that F̃ ∈ TR(N0, 3/2, 4) we have to show (3.15) (with f � F̃ ), namely

(7.32) F̃σ,σ
�

α,β,m,n
= F̃σ,σ

�

α,β
(s(m), σm + σ�n)

with
F̃ σ,−σ

α,β
(s, h) := − 24i

α!β!

1

λα,β + sh
, F̃ σ,σ

α,β
(s, h) = 0 , s = ± , h ∈ Z .
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Recalling (7.28), this is obvious when σ� = σ. When σ� = −σ we first note that s(m) = s(n).
Indeed the restriction on the first sum in (7.27) is (recall (7.23)) |m|, |n| > 3N/2,
|σm− σn| < 4NL, which implies s(m) = s(n) by (3.1). Then

σ|m|− σ|n| = σs(m)m− σs(n)n = s(m)(σm− σn)

and (7.32) follows. We have proved that F̃ ∈ TR(N0, 3/2, 4).
The Töplitz defect, defined by (3.29), is

(7.33) F̂ :=
�

F̂σ,σ
�

m,n
(wL)uσ

m
uσ

�

n
with F̂σ,σ

�

m,n
(wL) :=

�
F̂ σ,σ

�

α,β,m,n
uαūβ

where the indices in the two sums have the same restrictions as in (7.23)-(7.25), and

F̂ σ,σ

α,β,m,n
= − 24i

α!β!

N

λα,β + σλm + σλn

(7.34)

F̂ σ,−σ

α,β,m,n
= −N

24i

α!β!

Å
1

λα,β + σλm − σλn

− 1

λα,β + σ|m|− σ|n|

ã

=
24i

α!β!

Nσ(λm − |m|− λn + |n|)
(λα,β + σλm − σλn)(λα,β + σ|m|− σ|n|) .(7.35)

We now prove that the coefficients in (7.34)-(7.35) are bounded by a constant independent
of N .

The coefficients in (7.34) are bounded because

|λα,β | ≤
�

h

λh(|αh|+ |βh|) ≤
�

h

|h|(|αh|+ |βh|) +
√

m
�

h

(|αh|+ |βh|) ≤ 4NL + 2
√

m

by (7.26)-(7.25) (note that λh ≤ |h|+√m) and

|λα,β + σλm + σλn| ≥ |λm + λn|− |λα,β | ≥ 3N − 4NL − 2
√

m ≥ 3N/2

for N ≥ N0 large enough.
The coefficients in (7.35) are bounded by (7.18), (7.29), and

N |λm − |m|− λn + |n||
(7.30)
≤ N

m

2

� 1

|m| +
1

|m|
�
≤ 2

3
m .

Hence arguing as in the proof of Lemma 7.1 we get

(7.36) �X
F̂
�R � R2 .

In conclusion, (7.19), (7.31), (7.36) imply (7.22) (recall (3.30)).

Proof of Proposition 7.1 completed. – We have

eadF H = eadF N + eadF G = N + {N,F}+
�

i≥2

1

i!
adi

F
(N) + G +

�

i≥1

1

i!
adi

F
(G)

(7.20)
= N + G + Ĝ +

�

i≥1

1

(i + 1)!
adi

F

�
adF (N)

�
+

�

i≥1

1

i!
adi

F
(G)

= N + G + Ĝ + K

where, using again (7.20),

(7.37) K :=
�

i≥1

1

(i + 1)!
adi

F
(G + Ĝ−G) +

�

i≥1

1

i!
adi

F
G =: K1 + K2 .
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Proof of (7.9). – We claim that in the expansion of K in (7.37) there are only monomials
u�σ

�
with � ∈ Z2d, �σ ∈ {+,−}2d, d ≥ 3. Indeed F,G, G, Ĝ contain only monomials of

degree four and, for any monomial m, adF (m) contains only monomials of degree equal to
the deg(m)+2. The restriction �σ ·� = 0 follows by the Jacobi identity (2.82), since F,G, G, Ĝ
preserve momentum, i.e., Poisson commutes with M .

Proof of (7.10). – We apply Proposition 3.2 with (no (x, y) variables and)

f � F , g �
�

G + Ĝ−G for K1 ,

G for K2 ,
r � R , r� � R/2 , δ � 1/2 ,

θ � 3/2 , θ� � 2 , µ � 4 , µ� � 3 ,

N0 defined in Lemma 7.4 and N �
0 ≥ N0 satisfying (3.64) and

(7.38) κ(N �

0)
b−L lnN �

0 ≤ 1 , (6 + κ)(N �

0)
L−1 lnN �

0 ≤ 1/2 .

Note that (3.65) follows by (7.38). By (7.22), the assumption (3.63) is verified for every
0 < R < R0, with R0 small enough. Then Proposition 3.2 applies and (7.10) follows by
(3.67) (with h � 1), (7.2), (7.22) and (7.7).

7.2. Action–angle variables

We introduce action-angle variables on the tangential sites I := {j1, . . . , jn} (see (7.5))
via the analytic and symplectic map

(7.39) Φ(x, y, z, z̄; ξ) := (u, ū)

defined by
(7.40)
ujl :=

�
ξl + yl e

ixl , ūjl :=
�

ξl + yl e
−ixl , l = 1, . . . , n , uj := zj , ūj := z̄j , j ∈ Z \ I .

Let

(7.41) Oρ :=
�

ξ ∈ Rn :
ρ

2
≤ ξl ≤ ρ , l = 1, . . . , n

�
.

L���� 7.5 (Domains). – Let r, R, ρ > 0 satisfy

(7.42) 16r2 < ρ , ρ = C∗R
2 with C−1

∗ := 48nκ2pe2(s+aκ) .

Then, for all ξ ∈ Oρ ∪O2ρ, the map

(7.43) Φ( · ; ξ) : D(s, 2r) → D(R/2) := BR/2 ×BR/2 ⊂ �a,p × �a,p

is well defined and analytic (D(s, 2r) is defined in (2.5) and κ in (3.1)).

Proof. – Note first that for (x, y, z, z̄) ∈ D(s, 2r) we have (see (2.6)) that |yl| < 4r2
(7.42)
<

ρ/4 < ξl, ∀ξ ∈ Oρ∪O2ρ. Then the map yl �→
√

ξl + yl is well defined and analytic. Moreover,
for ξl ≤ 2ρ, |jl| ≤ κ, x ∈ Tn

s
, �z�a,p < 2r, we get

�u(x, y, z, z̄; ξ)�2
a,p

(7.39)
=

n�

l=1

(ξl + yl)|e2ixl ||jl|2pe2a|jl| +
�

j∈Z\I
|zj |2�j�2pe2a|j|

≤ n
�
2ρ +

ρ

4

�
e2sκ2pe2aκ + 4r2

(7.42)
< R2/4
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proving (7.43) (the bound for ū is the same).

Given a function F : D(R/2) → C, the previous lemma shows that the composite map
F ◦Φ : D(s, 2r) → C. The main result of this section is Proposition 7.2: if F is quasi-Töplitz
in the variables (u, ū) then the composite F ◦ Φ is quasi-Töplitz in the variables (x, y, z, z̄)
(see Definition 3.4).

We write

(7.44) F =
�

α,β

Fα,βmα,β , mα,β := (u(1))α
(1)

(ū(1))β
(1)

(u(2))α
(2)

(ū(2))β
(2)

,

where

u = (u(1), u(2)) , u(1) := {uj}j∈I , u(2) := {uj}j∈Z\I , similarly for ū ,

and
(7.45)
(α,β) = (α(1) + α(2), β(1) + β(2)) , (α(1), β(1)) := {αj , βj}j∈I , (α(2), β(2)) := {αj , βj}j∈Z\I .

We define

(7.46) Hd

R
:=

�
F ∈ HR : F =

�

|α(2)+β(2)|≥d

Fα,βuαūβ

�
.

Pʀ����ɪ�ɪ�ɴ 7.2 (Quasi-Töplitz). – Let N0, θ, µ, µ� satisfying (3.1) and

(7.47) (µ� − µ)NL

0 > N b

0 , N02
−

Nb
0

2κ +1 < 1 .

If F ∈ QT

R/2(N0, θ, µ�) ∩Hd

R/2 with d = 0, 1, then f := F ◦ Φ ∈ QT

s,r
(N0, θ, µ) and

(7.48) �f�T

s,r,N0,θ,µ,Oρ
� (8r/R)d−2�F�T

R/2,N0,θ,µ� .

The rest of this section is devoted to the proof of Proposition 7.2. Introducing the action-
angle variables (7.40) in (7.44), and using the Taylor expansion

(7.49) (1 + t)γ =
�

h≥0

Ç
γ

h

å
th ,

Ç
γ

0

å
:= 1 ,

Ç
γ

h

å
:=

γ(γ − 1) . . . (γ − h + 1)

h!
, h ≥ 1 ,

we get

(7.50) f := F ◦ Φ =
�

k,i,α(2),β(2)

fk,i,α(2),β(2)eik·xyizα
(2)

z̄β
(2)

with Taylor–Fourier coefficients

(7.51) fk,i,α(2),β(2) :=
�

α(1)−β(1)=k

Fα,β

n�

l=1

ξ
α
(1)
l

+β
(1)
l

2 −il

l

Ç
α

(1)
l

+β
(1)
l

2

il

å
.

We need an upper bound on the binomial coefficients.

L���� 7.6. – For |t| < 1/2 we have

(7.52) (i)
�

h≥0

|t|h
���
Ç

k

2

h

å��� ≤ 2k , ∀k ≥ 0 , (ii)
�

h≥1

|t|h
���
Ç

k

2

h

å��� ≤ 3k|t| , ∀k ≥ 1 .
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Proof. – By (7.49) and the definition of majorant (see (2.11)) we have

(7.53)
�

h≥0

���
Ç

k

2

h

å���th = M(1 + t)
k
2

(2.39)
≺ (M(1 + t)

1
2 )k =

� �

h≥0

���
Ç

1
2

h

å���th
�k

≺
� �

h≥0

th
�k

because
���
� 1

2
h

���� ≤ 1 by (7.49). For |t| < 1/2 the bound (7.53) implies (7.52)-(i). Then

�

h≥1

|t|h
���
Ç

k

2

h

å��� ≤ |t|
�

h≥0

|t|h
���
Ç

k

2

h + 1

å���

(7.49)
= |t|

�

h≥0

|t|h
���
Ç

k

2

h

å���
|k2 − h|
h + 1

≤ k|t|
�

h≥0

|t|h
���
Ç

k

2

h

å���
(7.52)−(i)
≤ k2k|t|

which implies (7.52)-(ii) for k ≥ 1.

L���� 7.7 (M -regularity). – If F ∈ Hd

R/2 then f := F ◦ Φ ∈ Hs,2r and

(7.54) �Xf�s,2r,Oρ∪O2ρ � (8r/R)d−2�XF �R/2 .

Moreover if F preserves momentum then so does F ◦ Φ.

Proof. – We first bound the majorant norm (recall also (7.46))
(7.55)

�f�s,2r,Oρ∪O2ρ

(7.50),(7.46)
:= sup

ξ∈Oρ∪O2ρ

sup
(y,z,z̄)∈D(2r)

�

k,i,|α(2)+β(2)|≥d

|fk,i,α(2),β(2) |e|k|s|yi||zα
(2) ||z̄β

(2) | .

Fix α(2), β(2). Since for all ξ ∈ Oρ ∪ O2ρ, y ∈ B(2r)2 , we have |yl/ξl| < 1/2 by (7.42), we
have

�

k

e|k|s
�

i

|fk,i,α(2),β(2) ||y|i(7.56)

(7.51)
≤

�

α(1),β(1)

es(|α(1)
|+|β(1)

|)|Fα,β |ξ
α(1)+β(1)

2

n�

l=1

�

il≥0

����
yl

ξl

����
il ���

Ç
α

(1)
l

+β
(1)
l

2

il

å���(7.57)

(7.52)
≤

�

α(1),β(1)

es(|α(1)
|+|β(1)

|)|Fα,β |ξ
α(1)+β(1)

2

n�

l=1

2α
(1)
l

+β
(1)
l(7.58)

≤
�

α(1),β(1)

es(|α(1)
|+|β(1)

|)|Fα,β |(2ρ)
|α(1)|+|β(1)|

2 2|α
(1)
|+|β(1)

|(7.59)

=
�

α(1),β(1)

(2es
�

2ρ)|α
(1)
|+|β(1)

||Fα,β | .

Then, substituting in (7.55),

�f�s,2r,Oρ∪O2ρ ≤ sup
�z�a,p,�z̄�a,p<2r

G(z, z̄) where(7.60)

G(z, z̄) :=
�

|α(2)+β(2)|≥d

(2es
�

2ρ)|α
(1)
|+|β(1)

||Fα,β ||zα
(2) ||z̄β

(2) | .(7.61)

By (7.42), for all �z�a,p, �z̄�a,p < 2r, the vector (u∗, ū∗) defined by

(7.62) u∗
j

= ū∗
j

:= 2es
�

2ρ , j ∈ I , u∗
j

:= (R/(8r))|zj | , ū∗
j

:= (R/(8r))|z̄j | , j ∈ Z \ I
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belongs to BR/2 × BR/2. Then, by (7.61), recalling (2.11), Definition 2.2 (and since
R/(8r) > 1 by (7.42)),

G(z, z̄) ≤ (8r/R)d(MF )(u∗, ū∗) ≤ (8r/R)d�F�R/2 , ∀ �z�a,p, �z̄�a,p < 2r .

Hence by (7.60)

(7.63) �f�s,2r,Oρ∪O2ρ ≤ (8r/R)d�F�R/2 .

This shows that f is M -regular. Similarly we get

(7.64) �∂zf�s,2r,Oρ∪O2ρ ≤ �∂u(2)F�R/2(8r/R)d−1 , same for ∂z̄ .

Moreover, by the chain rule, and (7.63)

�∂xif�s,2r,Oρ∪O2ρ ≤ (�∂
u

(1)
i

F�R/2 + �∂
ū

(1)
i

F�R/2)
»

2ρ + ρ/4es(8r/R)d

�∂yif�s,2r,Oρ∪O2ρ ≤ (�∂
u

(1)
i

F�R/2 + �∂
ū

(1)
i

F�R/2)
es

�
ρ/2− ρ/4

(8r/R)d .

Then (7.54) follows by (7.42) (recalling (2.2)).

D��ɪɴɪ�ɪ�ɴ 7.1. – For a monomial mα,β := (u(1))α
(1)

(ū(1))β
(1)

(u(2))α
(2)

(ū(2))β
(2)

(as in
(7.44)) we set

(7.65) p(mα,β) :=
n�

l=1

�jl�(α(1)
jl

+ β(1)
jl

) , �j� := max{1, |j|} .

For any F as in (7.44), K ∈ N, we define the projection

(7.66) Πp≥KF :=
�

p(mα,β)≥K

Fα,βmα,β , Πp<K := I −Πp≥K .

L���� 7.8. – Let F ∈ HR/2. Then

(7.67) �X(Πp≥KF )◦Φ�s,r,Oρ ≤ 2−
K
2κ +1�XF◦Φ�s,2r,O2ρ .

Proof. – For each monomial mα,β as in (7.44) with p(mα,β) ≥ K we have

|α(1) + β(1)| (7.45)
=

n�

l=1

α(1)
jl

+ β(1)
jl

(3.1)
≥ κ−1

n�

l=1

�jl�(α(1)
jl

+ β(1)
jl

)
(7.65)
= κ−1p(mα,β) ≥ κ−1K

and then, ∀ξ ∈ Oρ, y ∈ Br2 ,

|(mα,β ◦ Φ)(x, y, z, z̄; ξ)| (7.40)
= |(ξ + y)

α(1)+β(1)

2 ei(α(1)
−β

(1))·xzα
(2)

z̄β
(2) |(7.68)

= 2−
|α(1)+β(1)|

2 |(2ξ + 2y)
α(1)+β(1)

2 ei(α(1)
−β

(1))·xzα
(2)

z̄β
(2) |

≤ 2−
K
2κ |(mα,β ◦ Φ)(x, 2y, z, z̄; 2ξ)| .

The bound (7.67) for the Hamiltonian vector field follows applying the above rescaling
argument to each component, and noting that the derivatives with respect to y in the vector
field decrease the degree in ξ by one.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



364 M. BERTI, L. BIASCO AND M. PROCESI

Let N0, θ, µ, µ� be as in Proposition 7.2. For N ≥ N0 and F ∈ HR/2 we set

(7.69) f∗ := ΠN,θ,µ

�
(F −ΠN,θ,µ�F ) ◦ Φ

�
.

Note that ΠN,θ,µ� is the projection on the bilinear functions in the variables u, ū, and ΠN,θ,µ

in the variables x, y, z, z̄.

L���� 7.9. – We have

(7.70) �Xf∗�s,r,Oρ ≤ 2−
Nb

2κ +1�XF◦Φ�s,2r,O2ρ .

Proof. – We first claim that if F = mα,β is a monomial as in (7.44) with p(mα,β) < N b

then f∗ = 0.

C��� 1.mα,β is (N, θ, µ�)-bilinear, see Definition 3.2. Then ΠN,θ,µ�mα,β = mα,β and f∗ = 0,
see (7.69).

C��� 2. mα,β is not (N, θ, µ�)-bilinear. Then ΠN,θ,µ�mα,β = 0 and f∗ = ΠN,θ,µ(mα,β ◦ Φ),
see (7.69). We claim thatmα,β ◦Φ is not (N, θ, µ)-bilinear, and so f∗ = ΠN,θ,µ(mα,β ◦Φ) = 0.
Indeed,

(7.71) mα,β ◦ Φ = (ξ + y)
α(1)+β(1)

2 ei(α(1)
−β

(1))·xzα
(2)

z̄β
(2)

is (N, θ, µ)-bilinear if and only if (see Definitions 3.2 and 3.1)

zα
(2)

z̄β
(2)

= zα̃
(2)

z̄β̃
(2)

zσ

m
zσ

�

n
,

(7.72)
�

j∈Z\I
|j|(α̃(2)

j
+ β̃(2)

j
) < µNL , |m|, |n| > θN , |α(1) − β(1)| < N b .

We deduce the contradiction that

mα,β = (u(1))α
(1)

(ū(1))β
(1)

(u(2))α̃
(2)

(ū(2))β̃
(2)

uσ

m
uσ

�

n

is (N, θ, µ�)-bilinear because (recall that we suppose p(mα,β) < N b)

n�

l=1

|jl|(α(1)
jl

+β(1)
jl

)+
�

j∈Z\I
|j|(α̃(2)

j
+β̃(2)

j
)
(7.65),(7.72)

< p(mα,β)+µNL < N b+µNL
(7.47)
< µ�NL .

(N, θ, µ�)-bilinear, a contradiction. For the general case, we divide F = Πp<NbF +Πp≥NbF .
By the above claim

f∗ = ΠN,θ,µ

��
(Id−ΠN,θ,µ�)Πp≥NbF

�
◦ Φ

�
= ΠN,θ,µ

��
Πp≥Nb(Id−ΠN,θ,µ�)F

�
◦ Φ

�
.

Finally, (7.70) follows by (2.80) and applying Lemma 7.8 to
�
Πp≥Nb(Id−ΠN,θ,µ�)F

�
◦Φ.

L���� 7.10. – Let F ∈ TR/2(N, θ, µ�) with Πp≥NbF = 0. Then F ◦ Φ(·; ξ) ∈
Ts,2r(N, θ, µ�), ∀ ξ ∈ Oρ ∪O2ρ .
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Proof. – Recalling Definition 3.3 we have

F =
�

|m|,|n|>θN,σ,σ�=±

Fσ,σ
�
(s(m), σm + σ�n)uσ

m
uσ

�

n
with Fσ,σ

�
(ς, h) ∈ LR/2(N,µ�, h) .

Composing with the map Φ in (7.40), since m, n /∈ I, we get

F ◦ Φ =
�

σ,σ�=± ,|m|,|n|>θN

Fσ,σ
�
(s(m), σm + σ�n) ◦ Φ zσ

m
zσ

�

n
.

Each coefficient F σ,σ
�
(s(m), σm + σ�n) ◦ Φ depends on n, m,σ,σ� only through s(m),

σm + σ�n, σ, σ�. Hence, in order to conclude that F ◦ Φ ∈ Ts,2r(N, θ, µ�) it remains only
to prove that Fσ,σ

�
(s(m), σm + σ�n) ◦Φ ∈ Ls,2r(N,µ�, σm + σ�n), see Definition 3.1. Each

monomial mα,β of Fσ,σ
�
(s(m), σm + σ�n) ∈ LR/2(N,µ�, σm + σ�n) satisfies

n�

l=1

(αjl + βjl)|jl|+
�

j∈Z\I
(αj + βj)|j| < µ�NL and p(mα,β) < N b

by the hypothesis Πp≥NbF = 0. Hence mα,β ◦ Φ (see (7.71)) is (N,µ�)-low momentum, in
particular |α(1) − β(1)| ≤ p(mα,β) < N b.

Proof of Proposition 7.2. – Since F ∈ QT

R/2(N0, θ, µ�) (see Definition 3.4), for all
N ≥ N0, there is a Töplitz approximation F̃ ∈ TR/2(N, θ, µ�) of F , namely

(7.73) ΠN,θ,µ�F = F̃ +N−1F̂ with �XF �R/2, �XF̃
�R/2, �XF̂

�R/2 < 2�F�T

R/2,N0,θ,µ� .

In order to prove that f := F ◦ Φ ∈ QT

s,r
(N0, θ, µ) we define its candidate Töplitz

approximation

(7.74) f̃ := ΠN,θ,µ((Πp<Nb F̃ ) ◦ Φ) ,

see (7.66). Lemma 7.10 applied to Πp<Nb F̃ ∈ TR/2(N, θ, µ�) implies that
(Πp<Nb F̃ ) ◦ Φ ∈ Ts,2r(N, θ, µ�) and then, applying the projection ΠN,θ,µ we get
f̃ ∈ Ts,2r(N, θ, µ) ⊂ Ts,r(N, θ, µ). Moreover, by (7.74) and applying Lemma 7.7 to Πp<Nb F̃

(note that Πp<Nb F̃ is either zero or it is in Hd

R/2 with d ≥ 2 because it is bilinear), we get

�X
f̃
�s,r,Oρ

(2.80)
≤ �X(Πp<Nb F̃ )◦Φ)�s,r,Oρ

(7.54)
� (8r/R)d−2�XΠp<Nb F̃

�R/2

(2.80),(7.73)
� (8r/R)d−2�F�T

R/2,N0,θ,µ� .(7.75)

Moreover the Töplitz defect is

f̂ := N(ΠN,θ,µf − f̃)
(7.74)
= N ΠN,θ,µ

�
(F −Πp<Nb F̃ ) ◦ Φ

�

= NΠN,θ,µ

�
(F − F̃ ) ◦ Φ

�
+ NΠN,θ,µ

�
(F̃ −Πp<Nb F̃ ) ◦ Φ

�

(7.73),(7.66)
= ΠN,θ,µ(F̂ ◦ Φ) + NΠN,θ,µ

��
F −ΠN,θ,µ�F

�
◦ Φ

�
+ NΠN,θ,µ

�
(Πp≥Nb F̃ ) ◦ Φ

�

(7.69)
= ΠN,θ,µ(F̂ ◦ Φ) + Nf∗ + NΠN,θ,µ

�
(Πp≥Nb F̃ ) ◦ Φ

�
.
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Using (2.80), Lemmata 7.8 and 7.9 imply that, since N2−
Nb

2κ +1 ≤ 1, ∀N ≥ N0 by (7.47),

�X
f̂
�s,r,Oρ ≤ �X

F̂◦Φ�s,r,Oρ + N2−
Nb

2κ +1(�XF◦Φ�s,2r,O2ρ + �X
F̃◦Φ�s,2r,O2ρ)

� �X
F̂◦Φ�s,2r,Oρ + �XF◦Φ�s,2r,O2ρ + �X

F̃◦Φ�s,2r,O2ρ

(7.54)
� (8r/R)d−2(�X

F̂
�R/2 + �XF �R/2 + �X

F̃
�R/2)(7.76)

(7.73)
� (8r/R)d−2�F�T

R/2,N0,θ,µ�(7.77)

(to get (7.76) we also note that F, F̂ , F̃ ∈ Hd

R/2 with d = 0, 1, unless they are zero).
The bound (7.48) follows by (7.54), (7.75), (7.77).

We conclude this subsection with a lemma, similar to Lemma 7.7, used in Lemma 7.12
(see (7.91)).

L���� 7.11. – Let F ∈ HR/2, f := F ◦ Φ and f̃(x, y) := f(x, y, 0, 0) − f(x, 0, 0, 0).
Then, assuming (7.42),

(7.78) �X
f̃
�s,2r,Oρ∪O2ρ � �XF �R/2 .

Moreover if F preserves momentum then so does f̃ .

Proof. – We proceed as in Lemma 7.7. The main difference is that here there are no
(z, z̄)-variables and the sum in (7.56) runs over i �= 0. Then in the product in (7.57) (at least)
one of the sums is on il ≥ 1. Therefore we can use the second estimate in (7.52) gaining a
factor(3) 8r2/ρ (since |yl|/|ξl| ≤ 8r2/ρ by (7.41)). Continuing as in the proof of Lemma 7.7
we get (recall (7.54) with d = 0)

�X
f̃
�s,2r,Oρ∪O2ρ � (r2/ρ)(r/R)−2�XF �R/2

(7.42)
� �XF �R/2

proving (7.78).

7.3. Proof of Theorem 1.1

We now introduce the action-angle variables (7.40) (via the map (7.39)) in the Birkhoff

normal form Hamiltonian (7.8). Hence we obtain the parameter dependent family of Hamil-
tonians

(7.79) H � := HBirkhoff ◦ Φ = N + P

where (up to a constant), by (7.6),

(7.80) N := ω(ξ) · y + Ω(ξ)zz̄ , P :=
1

2
Ay · y + By · zz̄ + Ĝ(z, z̄) + K �(x, y, z, z̄; ξ) ,

(7.81) ω(ξ) := ω̄ + Aξ , ω̄ := (λj1 , . . . ,λjn) , Ω(ξ) := Ω̄ + Bξ , Ω̄ := (λj)j∈Z\I ,

(7.82)
A = (Alh)1≤l,h≤n , Alh := 12(2− δlh) , B = (Bjl)j∈Z\I,1≤l≤n , Bjl := 24 , K � := K ◦ Φ .

(3) Actually we have the constant 3 instead of 2 in (7.58) and 3es instead of 2es in (7.60) and (7.62).
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The parameters ξ stay in the set Oρ defined in (7.41) with ρ = C∗R2 as in (7.42). As in (4.6)
we decompose the perturbation

(7.83) P = P00 + P̄ where P00(x; ξ) := K �(x, 0, 0, 0; ξ) , P̄ := P − P00 .

L���� 7.12. – Let s, r > 0 as in (7.42) and N large enough (w.r.t. m, I, L, b). Then

(7.84) �XP00�s,r � R6r−2 , �P̄�T

s,r,N,2,2 � r2 + R5r−1

and, for λ > 0,

(7.85) |XP00 |λs,r
� (1 + λ/ρ)R6r−2 , |XP̄ |λs,r

� (1 + λ/ρ)(r2 + R5r−1) ,

for ξ belonging to

(7.86) O(ρ) :=
�

ξ ∈ Rn :
2

3
ρ ≤ ξl ≤

3

4
ρ , l = 1, . . . , n

�
⊂ Oρ .

Proof. – By the Definition (7.83) we have

�XP00�s,r

(2.55)
≤ �XK��s,r

(3.32)
≤ �K ��T

s,r,N,2,2
(7.82)
= �K ◦ Φ�T

s,r,N,2,2

(7.48)
�

� r

R

�−2
�K�T

R/2,N,2,2(7.87)

(applying (7.48) with d � 0, N0 � N , θ � 2, µ � 2, µ� � 3) and taking N large enough
so that (7.47) holds. Take also N ≥ N �

0 defined in Proposition 7.1. Then by (7.87) we get

�XP00�s,r

(3.35)
�

� r

R

�−2
�K�T

R/2,N
�
0,2,2

(7.10)
�

� r

R

�−2
R4 � R6

r2

proving the first estimate in (7.84). Let us prove the second bound. By (7.83) and (7.80) we
write

(7.88) P̄ =
1

2
Ay · y + By · zz̄ + Ĝ(z, z̄) + K1 + K2

where

K1 := K �(x, y, z, z̄; ξ)−K �(x, y, 0, 0; ξ) , K2 := K �(x, y, 0, 0; ξ)−K �(x, 0, 0, 0; ξ) .

Using (7.7) (note that r < R by (7.42)) for N ≥ N0 large enough to fulfill (3.1), we have by
(3.35)

(7.89)
���

1

2
Ay · y + By · zz̄ + Ĝ(z, z̄)

���
T

s,r,N,2,2
� r2 .

By (7.48) (with d � 1, N0 � N , µ � 2, µ� � 3), for N ≥ N0(m, I, L, b) large enough, we
get

(7.90) �K1�T

s,r,N,2,2 �
� r

R

�−1
R4 � R5

r
.

Moreover, since K2 does not depend on (z, z̄), we have

(7.91) �K2�T

s,r,N,2,2
(3.34)
= �XK2�s,r

(7.78)
� �XK�R/2

(3.32)
� �K�T

R/2,N
�
0,2,3

(7.10)
� R4 .

In conclusion, (7.88), (7.89), (7.90), (7.91) imply the second estimate in (7.84):

�P̄�T

s,r,N,2,2 � r2 +
R5

r
+ R4

(7.42)
� r2 +

R5

r
.
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Let us prove the estimates (7.85) for the Lipschitz norm defined in (2.88) (which involves only
the sup-norm of the vector fields). First

|XP00 |s,r

(2.62)
≤ �XP00�s,r

(7.84)
� R6r−2 , |XP̄ |s,r

(2.62)
≤ �XP̄ �s,r

(3.32)
≤ �P̄�T

s,r,N,2,2

(7.84)
� r2 + R5r−1.

Next, since the vector fields XP00 , XP̄ are analytic in the parameters ξ ∈ Oρ, Cauchy
estimates in the domain O(ρ) ⊂ Oρ (see (7.86)) imply

|XP00 |
lip
s,r,O(ρ) � ρ−1|XP00 |s,r,Oρ � R6r−2, |XP̄ |lips,r,O(ρ) � ρ−1|XP̄ |s,r,Oρ � r2 + R5r−1

and (7.85) are proved.

All the assumptions of Theorems 4.1-4.2 are fulfilled by H � in (7.79) with parameters
ξ ∈ O(ρ) defined in (7.86). Note that the sets O = [ρ/2, ρ]n defined in Theorem 4.2 and
O(ρ) defined in (7.86) are diffeomorphic through ξi �→ (7ρ + 2ξi)/12. The hypotheses (A1)-
(A2) follow from (7.81), (7.82) with

a(ξ) = 24
�

l=1,...,n

ξl , and M0 = 24 + �A� .

Then (A3)-(A4) and the quantitative bound (4.7) follow by (7.84)-(7.85), choosing
(7.92)
s = 1, r = R1+ 3

4 , ρ = C∗R
2 as in (7.42), N as in Lemma 7.12, θ = 2, µ = 2, γ = R3+ 1

5 ,

and taking R small enough. Hence Theorem 4.1 applies.

Let us verify that also the assumptions of Theorem 4.2 are fulfilled. Indeed (4.13) follows
by (7.81), (7.82) with �a = 24(1, . . . , 1) ∈ Rn. The matrix A defined in (7.82) is invertible and

A−1 = (A−1
lh

)1≤l,h≤n , A−1
lh

=
1

12

� 2

2n− 1
− δlh

�
.

Finally the non-degeneracy assumption (4.14) is satisfied because A = AT and

2A−1�a =
4

2n− 1
(1, . . . , 1) /∈ Zn \ 0 .

We deduce that the Cantor set of parameters O∞ ⊂ O in (4.11) has asymptotically full
density because

|O \ O∞|
|O|

(4.16)
� ρ−1γ2/3

(7.92)
� R−2R

2
3 (3+ 1

5 ) = R
2
15 → 0 .

The proof of Theorem 1.1 is now completed.

R���ʀ� 7.1. – The terms
�

k≥5 fksk in (1.2) contribute to the Hamiltonian (7.1) with
monomials of order 6 or more and (7.8) holds (with a possibly different K satisfying (7.10)).
On the contrary, the term f4s4 in (1.2) would add monomials of order 5 to the Hamiltonian in
(7.1). Hence (7.10) holds with R3 instead of R4. This estimate is not sufficient. These 5-th order
terms should be removed by a Birkhoff normal form. For simplicity, we did not pursue this point.
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8. Appendix

Proof of Lemma 2.14. – We need some notation: we write E = ⊕4
j=1Ej , E1 := (Cn, | |∞),

E2 := (Cn, | |1), E3 := E4 := �a,p

I
so that a vector v = (x, y, z, z̄) ∈ E can be expressed by

its four components v(j) ∈ Ej , v(1) := x, v(2) := y, v(3) := z, v(4) := z̄, and the norm (2.2)
is

(8.1) �v�E,s,r :=
4�

j=1

|v(j)|Ej

ρj

, where ρ1 = s , ρ2 = r2 , ρ3 = ρ4 = r .

We are now ready to prove (2.65). By definition

�dX(v)�L((E,s,r);(E,s�,r�)):= sup
�Y �E,s,r≤1

�dX(v)[Y ]�E,s�,r�
(8.1)
= sup
�Y �E,s,r≤1

4�

i=1

|dX(i)(v)[Y ]|Ei

ρ�
i

= sup
�Y �E,s,r≤1

4�

i=1

|�4
j=1 dv(j)X(i)(v)Y (j)|Ei

ρ�
i

≤ sup
�Y �E,s,r≤1

4�

i,j=1

|dv(j)X(i)(v)Y (j)|Ei

ρ�
i

≤ sup
�Y �E,s,r≤1

4�

i,j=1

1

ρ�
i

�dv(j)X(i)(v)�L(Ej ,Ei)|Y (j)|Ej

≤ sup
�Y �E,s,r≤1

sup
ṽ∈D(s,r)

4�

i,j=1

1

ρ�
i

|X(i)(ṽ)|Ei

(ρj − ρ�
j
)
|Y (j)|Ej

by the Cauchy estimates in Banach spaces. Then

�dX(v)�L((E,s,r);(E,s�,r�))≤ sup
ṽ∈D(s,r)

4�

i=1

ρi

ρ�
i

|X(i)(ṽ)|Ei

ρi

sup
�Y �E,s,r≤1

4�

j=1

�
1−

ρ�
j

ρj

�−1 |Y (j)|Ej

ρj

(8.1)
≤ max

i=1,...,4

ρi

ρ�
i

max
j=1,...,4

�
1−

ρ�
j

ρj

�−1
sup

ṽ∈D(s,r)
�X(ṽ)�E,s,r ≤ 4δ−1|X|s,r

by (2.53), (2.66). This proves (2.65).

Proof of Lemma 7.2. – We first extend Lemma 4 of [28] proving that:

L���� 8.1. – If 0 ≤ i ≤ j ≤ k ≤ l with i± j ± k ± l = 0 for ���� combination of plus
and minus signs and (i, j, k, l) �= (p, p, q, q) for p, q ∈ N, then, there exists an absolute constant
c > 0, such that

(8.2) | ± λi(m)± λj(m)± λk(m)± λl(m)| ≥ cm(i2 + m)−3/2

for �ʟʟ possible combinations of plus and minus signs.

Proof. – When i > 0 it is a reformulation of the statement of Lemma 4 of [28]. Let us
prove it also for i = 0. Then j ± k ± l = 0 for some combination of plus and minus signs.
Since (i, j, k, l) �= (0, 0, q, q), the only possibility is l = j +k with j ≥ 1 (otherwise i = j = 0
and k = l). We have to study

δ(m) := ±λ0(m)± λj(m)± λk(m)± λl(m)
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for all possible combinations of plus and minus signs. To this end, we distinguish them
according to their number of plus and minus signs. To shorten notation we let, for example,
δ++−+ = λ0 +λj −λk +λl, similarly for the other combinations. The only interesting cases
are when there are one or two minus signs. The case when there are no (or four) minus signs
is trivial. When there are 3 minus signs we reduce to the case with one minus sign by a global
sign change.

One minus sign. Since δ++−+, δ+−++, δ−+++ ≥ δ+++− := δ we study only the last case. We
have

δ(0) = j + k − l = 0 , δ�(m) =
1

2

Å
1

λ0
+

1

λj

+
1

λk

− 1

λl

ã
≥ 1

2λ0
=

1

2
√

m
.

Therefore δ(m) ≥ √m ≥ cm(1 + m)−3/2 for an absolute constant c > 0.

Two minus signs. Now we have δ−+−+, δ−−++ ≥ δ+−−+ and all other cases reduce to these
ones by inverting signs. So we consider only δ = δ+−−+. Since the function f(t) :=

√
t2 + m

is monotone increasing and convex for t ≥ 0, we have the estimate

(8.3) λl − λk ≥ λl−p − λk−p , ∀ 0 ≤ p ≤ k .

Hence λl − λk ≥ λj+1 − λ1 and λj+1 − λj ≥ λ2 − λ1 (using j = l − k ≥ 1). Therefore

δ = λ0 − λj − λk + λl ≥ λ0 − λj − λ1 + λj+1 ≥ λ2 − 2λ1 + λ0 ≥ m(4 + m)−3/2 .

The last inequality follows since f ��(t) = m(t2 + m)−3/2 is decreasing and λ2 − 2λ1 + λ0 =
f(2)− 2f(1) + f(0) = f ��(ξ) ≥ f ��(2) for some ξ ∈ (0, 2).

We complete the proof of Lemma 7.2. We first consider the trivial cases (7.12)-(7.14).

C��� (7.12). Since
�

i
σi �= 0 is even, (7.16) follows by

|σ · λ�| = |
�

i

σiλ�0| ≥ 2λ�0 = 2
√

m ≥ m(1 + m)−3/2 .

C��� (7.13). By �σ ·� = (σ3 +σ4)q = 0, q �= 0, we deduce σ3 = −σ4. Hence (7.16) follows by

|σ · λ�| = |(σ1 + σ2)λ0| = 2
√

m ≥ m(1 + m)−3/2.

C��� (7.14). Since � = (p, p,−p,−p) and σ1 = σ2 then �σ · � = 0 implies σ3 = σ4 = σ2 and

|σ · λ�| = |4λp| = 4
�

p2 + m ≥ m(p2 + m)−3/2 .

C��� (7.15). Set |j1| =: i , |j2| =: j, |j3| =: k, |j4| =: l. After reordering we can assume
0 ≤ i ≤ j ≤ k ≤ l. Since, by assumption, �σ · � = 0, the following combination of plus and
minus signs gives s(j1)σ1i + s(j2)σ2j + s(j3)σ3k + s(j4)σ4l = 0. Hence Lemma 8.1 implies
(7.16) for every � except when |j1| = |j2| and |j3| = |j4| (in this case i = j and k = l and
Lemma 8.1 does not apply). We now prove that (7.16) holds also in these cases. We have that
�σ · λ� = (σ1 + σ2)λj1 + (σ3 + σ4)λj3 where σa + σb = 0,±2 so that (7.16) holds trivially
unless σ1 + σ2 = −(σ3 + σ4). We consider this last case. If σ1 + σ2 = −(σ3 + σ4) = 0 then
the equality �σ · � = σ1(j1 − j2) + σ3(j3 − j4) = 0 implies that j1, . . . , j4 are pairwise equal,
contrary to our hypothesis. If σ1 + σ2 = ±2 and i := |j1| < k := |j3| then

|�σ · λ�| ≥ 2λj3 − 2λj1 = 2λk − 2λi

(8.3)
≥ 2λk−i − 2λ0

(k>i)
≥ 2λ1 − 2λ0 ≥ 1/

√
1 + m
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giving (7.16). If |j1| = |j2| = |j3| = |j4| and σ1 + σ2 = −(σ3 + σ4) = ±2 then the relation
�σ · � = σ1(j1 + j2 − j3 − j4) = 0 implies that the j1, . . . , j4 are pairwise equal, contrary to
the hypothesis.
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