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LOCAL Tb THEOREM WITH L2 TESTING
CONDITIONS AND GENERAL MEASURES:

CALDERÓN-ZYGMUND OPERATORS

 M T. LACEY  H MARTIKAINEN

A. – Local Tb theorems with Lp type testing conditions have been studied widely in the
case of the Lebesgue measure. Such conditions are tied to the scale of the given test function’s support-
ing cube. Until very recently, local Tb theorems in the non-homogeneous case had only been proved as-
suming scale invariant (L∞ or BMO) testing conditions. Moving past such strong assumptions in non-
homogeneous analysis is a key problem. In a previous paper we overcame this obstacle in the model
case of square functions defined using general measures. In this paper we finally tackle the very de-
manding case of Calderón-Zygmund operators. That is, we prove a non-homogeneous local Tb theo-
rem with L2 type testing conditions for all Calderón-Zygmund operators. In doing so we prove general
twisted martingale transform inequalities which turn out to be subtle in our general framework.

R. – Les théorèmes Tb avec conditions de type Lp pour une famille de fonctions de test
indexées par les cubes ont été étudiés abondamment dans le cadre de la mesure de Lebesgue. Jusqu’à
très récemment, les théorèmes Tb locaux dans les espaces non doublants ont été obtenus sous des
conditions invariantes par transformation affine (L∞ ou BMO). Se dispenser de cette invariance
complique la tâche. Dans un article précédent, nous avons développé une méthode permettant de
surmonter cette difficulté dans un cas modèle de fonctions carrées définies à l’aide de mesures générales.
Dans cet article, on s’attaque au cas des opérateurs de Calderón-Zygmund. Plus précisément, on
démontre un théorème Tb local dans le cas non doublant avec des conditions de test L2 pour tous
les opérateurs de Calderón-Zygmund. Un ingrédient essentiel est le contrôle d’une transformation de
martingale tordue qui s’avère subtile dans notre cadre.

1. Introduction

In this paper we prove the boundedness of a Calderón-Zygmund operator T on L2(µ),
where µ can be non-homogeneous, assuming only the existence of certain non-degenerate
test functions satisfying local L2 conditions. For a given test function bQ, associated with

Research of M.T.L. is supported in part by grant NSF-DMS 0968499, and the Australian Research Council
through grant ARC-DP120100399. Research of H.M. is supported by the Academy of Finland through the grant
Multiparameter dyadic harmonic analysis and probabilistic methods.
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58 M. T. LACEY AND H. MARTIKAINEN

a cube Q ⊂ Rn, the assumptions concern only the scale of Q (unlike, say, with L∞ or
BMO conditions). This is a key difficulty made much harder by the fact that we allow
general measures. Indeed, such local Tb theorems with Lp testing functions are known in
the homogeneous case, but proving such a result in the non-homogeneous setting is delicate.
Here we are able to do this for the first time. The proof requires extensive development and
usage of the techniques of non-homogeneous and two-weight dyadic analysis.

Let us begin by introducing the setting and formulate our main theorem. We assume that
µ is a measure on Rn satisfying only the size condition µ(B(x, r)) . rm for some m. We
consider Calderón-Zygmund operators T in this setting. First of all, this means that there is a
kernelK : Rn × Rn \ {(x, y) : x = y} → C for which there holds for someC <∞ andα > 0

that

|K(x, y)| ≤ C

|x− y|m
, x 6= y,

|K(x, y)−K(x′, y)| ≤ C |x− x
′|α

|x− y|m+α
, |x− y| ≥ 2|x− x′|,

and

|K(x, y)−K(x, y′)| ≤ C |y − y′|α

|x− y|m+α
, |x− y| ≥ 2|y − y′|.

Secondly, we demand that T is a linear operator satisfying the identity

Tf(x) =

∫
Rn
K(x, y)f(y) dµ(y), x 6∈ spt f.

In this paper we assume a priori that T : L2(µ)→ L2(µ) boundedly. We are after a new quan-
titative bound for ‖T‖, independent of the a priori bound. Such practice is standard, and one
can deduce to this situation by, for example, considering suitably truncated operators.

We are ready to state our main theorem—a non-homogeneous local Tb theorem
with L2 type testing conditions for all Calderón-Zygmund operators.

1.1. T. – Suppose that T : L2(µ) → L2(µ) is a bounded Calderón-Zygmund
operator with an adjoint operator T ∗. We assume that to every cubeQ ⊂ Rn there is associated
two functions bTQ and bT

∗

Q satisfying that

1. spt bTQ ⊂ Q and spt bT
∗

Q ⊂ Q;

2.
∣∣∣∫Q bTQ dµ∣∣∣ & µ(Q) and

∣∣∣∫Q bT∗Q dµ
∣∣∣ & µ(Q);

3. ‖bTQ‖2L2(µ) . µ(Q) and ‖bT∗Q ‖2L2(µ) . µ(Q);
4. ‖1QTbTQ‖2L2(µ) . µ(Q) and ‖1QT ∗bT

∗

Q ‖2L2(µ) . µ(Q).

Then we have that ‖T‖ . 1.

Recently in [11] we proved a version of this theorem for square functions defined in the
upper half-space. While of independent interest because of the genuinely different context,
it is a result with a much simpler proof than the current one. Indeed, the square functions
essentially provide a model framework where many technicalities of the Calderón-Zygmund
world do not arise. One of them is that the diagonal is completely trivial for square functions
while extremely delicate for Calderón-Zygmund operators. Another difference is that the
recent Whitney averaging identity over good cubes of Martikainen and Mourgoglou [15]
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LOCAL Tb THEOREM WITH L2 TESTING CONDITIONS AND GENERAL MEASURES 59

makes certain probabilistic arguments easy even in the local Tb situation. A critical difference
is the fact that the paraproduct operator is much simpler in the square function case.

Before going more to the history and context, we want to discuss the proof of our main
theorem, Theorem 1.1, and the references most related to our techniques. The proof is
quite simply begun by reducing to the non-homogeneous T1 theorem of Nazarov-Treil-
Volberg [17]. More specifically, a local formulation following directly from this is used:

‖T‖ ≤ C1 + C2 sup
Q0⊂Rn
Q0 cube

sup
f,g

|f |,|g|≤1Q0

|〈Tf, g〉|
µ(λQ0)

.

Here λ > 1 is some fixed large constant. This reduces things to proving that

|〈Tf, g〉| ≤ (C3 + c‖T‖)µ(λQ0),

where c can be taken to be arbitrarily small. Two independent random cubes Q∗ and R∗

for which Q0 ⊂ Q∗ ⊂ λQ0 and Q0 ⊂ R∗ ⊂ λQ0 are then used to expand the fixed bounded
functions f and g dyadically in to martingale differences adapted to the local test functions.

We now come to the essentials. To handle the complicated paraproducts we require a non-
homogeneous version of the twisted martingale difference inequalities of Auscher-Routin [2]
or Lacey-Vähäkangas [13]. This is Proposition 2.4 of our current paper—a result of indepen-
dent interest. Indeed, the proof of Proposition 2.4 turns out to be a demanding task. The key
reason lies in the fact that even if we have performed a stopping time argument which gives us
that a fixed test function bTF behaves nicely on a cube Q i.e.,

∫
Q
|bTF |2 dµ . µ(Q), we cannot

say much what happens in the stopping children ofQ. That is, in a stopping childQ′ ofQwe
cannot use the simple argument∫

Q′
|bTF |2 dµ ≤

∫
Q

|bTF |2 dµ . µ(Q) . µ(Q′)

which would only be available if µ would be doubling.

Instead, the proof of Proposition 2.4 becomes about controlling maximal truncations of
certain half-twisted martingales

∑
Q εQDQ. Even if we are interested in an L2 result, we find

it convenient to prove a weak type bound for every p ∈ (1,∞) and interpolate this (the half-
twisted martingales will be Lp bounded for every p unlike the original twisted martingales).
But such a weak type bound can be reduced to a testing condition—an idea originally by
Sawyer [18], but which can essentially also be found from e.g., [9] by Hytönen et al. The
verification of this testing inequality is based crucially on controlling

∑
Q εQDQ1 inLp. This

control is proved by reducing to the case p = 1 using a non-homogeneous John-Nirenberg
principle formulated at least by Lacey-Petermichl-Reguera [12] and Hytönen-Pérez-Treil-
Volberg [8].

Proposition 2.4 is formulated in such a way that essentially the stopping generation is
fixed. For this reason we perform an argument which gives that in the expansion of the
pairing 〈Tf, g〉 we can use only finitely many generations of stopping cubes. This follows
from the Carleson property of the stopping cubes by noticing that the large generations
provide only an absorbable error. The fact that the functions f and g are bounded plays a
role in this reduction, and also later in the proof when we prove the boundedness of a certain
paraproduct.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



60 M. T. LACEY AND H. MARTIKAINEN

After this, the pairing is split in to standard pieces: separated, nested, diagonal. The good-
ness is inserted only to the nested sum—an idea already used by Hytönen-Martikainen [7].
The point of adding the goodness like this is to guarantee the collapse of the paraproduct.
The crucial thing is that the paraproduct arising from this sum can now be handled using an
argument by Lacey-Vähäkangas [14], the non-homogeneous twisted martingale difference
inequality proved before, and the reduction to finitely many generations of stopping cubes.
The final part of the proof is to deal in this non-homogeneous setting with the extremely deli-
cate surgery of the diagonal using only L2 test functions.

We have given the technical foundation and references related to these latest tech-
niques. But let us now discuss the history and overall context of the problem. The first
local Tb theorem, with L∞ control of the test functions and their images, is by Christ [4].
This was proven for doubling measures. Nazarov, Treil and Volberg [16] obtained a non-
homogeneous version of this theorem. The point compared to the global Tb theorems is
as follows. The accretivity of a given test function bQ is only assumed on its supporting
cube Q i.e., |

∫
Q
bQ dµ| & µ(Q). While in a global Tb one needs a function which is simul-

taneously accretive on all the scales. But the remaining conditions are still completely scale
invariant: bQ ∈ L∞(µ) and TbQ ∈ L∞(µ) (or TbQ belongs to some non-homogeneous
BMO space). This scale invariance of the testing conditions is the main thing one wants to
get rid of.

The idea of using (in the homogeneous situation) just local Lp type testing conditions
was introduced over ten years ago by Auscher, Hofmann, Muscalu, Tao and Thiele [1].
However, their proof works only for the so-called perfect dyadic singular integral operators.
The assumptions are of the form

∫
Q
|b1Q|p ≤ |Q|,

∫
Q
|b2Q|q ≤ |Q|,

∫
Q
|Tb1Q|q

′ ≤ |Q| and∫
Q
|T ∗b2Q|p

′ ≤ |Q|, where s′ denotes the dual exponent of s and 1 < p, q ≤ ∞. Our interest
here is solving the long open problem of extending to general measures. That is, we study
the p = q = 2 case for all Calderón-Zygmund operators in the non-homogeneous setting.
Even in the homogeneous setting extending the result of [1] to general Calderón-Zygmund
operators is complicated.

Hofmann [6] was able to extend to general Calderón-Zygmund operators but at the price
of needing a stronger set of assumptions:

∫
Q
|b1Q|s ≤ |Q|,

∫
Q
|b2Q|s ≤ |Q|,

∫
Q
|Tb1Q|2 ≤ |Q|

and
∫
Q
|T ∗b2Q|2 ≤ |Q| for some s > 2. Auscher and Yang [3] established the theorem for

standard Calderón-Zygmund operators in the case 1/p + 1/q ≤ 1 (and thus in the case
p = q = 2).

We mention that there is also the question of considering the case 1/p+ 1/q > 1. While
general exponents are not part of this paper, it has been an extremely active area in the
homogeneous world. Hofmann [5] has given a full solution in the case of square functions.
In the Calderón-Zygmund world the work of Auscher and Routin [2] continued to shed
some light to the general case of exponents, however, not giving a definite answer and
involving additional technical conditions. The (almost) full solution is given by Hytönen and
Nazarov [10].

1.1. Notation

Consider a dyadic grid D in Rn. For Q ∈ D we use the following notation:
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LOCAL Tb THEOREM WITH L2 TESTING CONDITIONS AND GENERAL MEASURES 61

• `(Q) is the side length of Q;
• ch(Q) = {Q′ ∈ D : Q′ ⊂ Q, `(Q′) = `(Q)/2};
• gen(Q) is determined by `(Q) = 2−gen(Q);
• Q(k) ∈ D is the unique cube for which `(Q(k)) = 2k`(Q) and Q ⊂ Q(k).

The average of a function f with respect to the measure µ on a set A is denoted
〈f〉A = µ(A)−1

∫
A
f dµ. We also use the pairing 〈f, g〉 =

∫
fg dµ.

The notation f . g is used to write f ≤ Cg for some constantC. This implied constantC
is always allowed to depend on the dimension n of the space Rn, the upper bound m for
the dimension of the measure µ, the kernel constants of T and on the implied constants of
Theorem 1.1. If we do some Lp estimates we also let the constants depend on p. However,
when we need to track the dependence on some parameter s, we usually explicitly writeC(s)

for a large constant and c(s) for a small constant. In Subsections 2.3 and 2.4 we record the
other parameters that we in some cases may absorb to the implied constants.

Acknowledgements

We thank Pascal Auscher for helping us with the French version of the abstract.

2. Beginning of the proof

Let λ > 1 be a fixed large constant. We begin by noting that by [17] there holds that

‖T‖ ≤ C1 + C2 sup
Q0⊂Rn
Q0 cube

sup
f,g

|f |,|g|≤1Q0

|〈Tf, g〉|
µ(λQ0)

.

Let us fix a cubeQ0 ⊂ Rn and functions f, g such that |f |, |g| ≤ 1Q0
. It suffices to prove that

|〈Tf, g〉| ≤ (C3 + c‖T ||)µ(λQ0),

where c is so small that C2c ≤ 1/2.

For small notational convenience we assume that cQ0
= 0 (that is, Q0 is centred

at the origin). Let N ∈ Z be defined by the requirement 2N−3 ≤ `(Q0) < 2N−2.
Consider two independent random squares Q∗ = Q∗(w) = w + [−2N , 2N )n and
R∗ = R∗(w′) = w′ + [−2N , 2N )n, where w,w′ ∈ [−2N−1, 2N−1)n. The cubes Q∗ and R∗

are taken to be the starting cubes of the independent grids DT and DT
∗

(only the cubes
inside Q∗ and R∗ are included in these grids). The probability measure is the normal-
ized Lebesgue measure on the square [−2N−1, 2N−1)n. Furthermore, note that always
spt f , spt g ⊂ αQ∗ ∩ αR∗ with some absolute constant α < 1. There also holds that
Q∗ ∪R∗ ⊂ λQ0 choosing λ large enough.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



62 M. T. LACEY AND H. MARTIKAINEN

2.1. Martingale difference operators

Let Mµh(x) = supr>0
1

µ(B(x,r))

∫
B(x,r)

|h| dµ be the centred maximal function. This
is an L2(µ) bounded operator. For a small convenience we may assume the normalization
〈bTQ〉Q = 1 = 〈bT∗Q 〉Q. Let also A denote the constant for which ‖bTQ‖2L2(µ) + ‖bT∗Q ‖2L2(µ) ≤ Aµ(Q)

and B the constant for which ‖1QTbTQ‖2L2(µ) + ‖1QT ∗bT
∗

Q ‖2L2(µ) ≤ Bµ(Q).

Let F 1
Q∗ consist of the maximal cubes Q ∈ DT , Q ⊂ Q∗, for which at least one of the

following three conditions holds:

1. |〈bTQ∗〉Q| < 1/2;
2. 〈|Mµb

T
Q∗|2〉Q > 16A2‖Mµ‖2;

3. 〈|TbTQ∗|2〉Q > 16AB.

Next, one repeats the previous procedure by replacing Q∗ with a fixed Q ∈ F 1
Q∗ . The

combined collection of stopping cubes resulting from this is called F 2
Q∗ . This is continued

and one sets F Q∗ =
⋃∞
j=0 F jQ∗ . Finally, for every Q ∈ DT , Q ⊂ Q∗, we let Qa ∈ F Q∗ be

the minimal cube S ∈ F Q∗ for which Q ⊂ S.

Similarly, let F 1
R∗ consist of the maximal cubes R ∈ DT

∗
, R ⊂ R∗, for which at least one

of the following three conditions holds:

1. |〈bT∗R∗〉R| < 1/2;
2. 〈|Mµb

T∗

R∗|2〉R > 16A2‖Mµ‖2;
3. 〈|T ∗bT∗R∗|2〉R > 16AB.

We define F R∗ and Ra analogously as above.

The following results are proved essentially in [11].

2.1. L. – For F ∈ F jQ∗ there holds that∑
S∈ F j+1

Q∗

S⊂F

µ(S) ≤
(

1− 1

8A

)
µ(F ) =: τµ(F ), τ < 1.

2.2. C. – We have the following Carleson estimate:∑
F∈ FQ∗
F⊂Q

µ(F ) . µ(Q), Q ∈ DT , Q ⊂ Q∗.

If Q ∈ DT , Q ⊂ Q∗, and h ∈ L1
loc(µ), we define the twisted martingale difference

operators

∆Qh =
∑

Q′∈ ch(Q)

[ 〈h〉Q′
〈bT(Q′)a〉Q′

bT(Q′)a −
〈h〉Q
〈bTQa〉Q

bTQa
]
1Q′ .

The operators ∆R, R ∈ DT
∗
, R ⊂ R∗, are analogously defined.
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LOCAL Tb THEOREM WITH L2 TESTING CONDITIONS AND GENERAL MEASURES 63

2.2. General twisted martingale transform inequalities

Most of the time we can make do with the following square function estimate.

2.3. L. – Suppose |h| ≤ 1. Then there holds that∑
Q∈ DT

‖∆Qh‖2L2(µ) . µ(Q∗).

Proof. – The proof is like that of Proposition 2.5 of [11] - except easier because of the
assumption |h| ≤ 1.

But for a few key times (in connection with paraproducts) we absolutely depend on the
variant presented in the next proposition. It is much stronger in many sense but requires that
we set Qa = F for a fixed F ∈ F Q∗ . It is not a triviality to then sum over all the generations
of stopping cubesF . However, this is an issue that we do not care about since our proof of the
local Tb theorem incorporates a reduction to finitely many stopping generations. So we could
use the bound that follows in every situation. But just to stress that this stronger estimate
and the reduction to finitely many generations is really needed only when dealing with the
paraproduct, we mostly use the above bound.

We shall use the following notation. If F ∈ F Q∗ , we let j ∈ N be such that F ∈ F jQ∗ and

define H = H F = {H ∈ F j+1
Q∗ : H ⊂ F}.

2.4. P. – Suppose F ∈ F Q∗ and h ∈ L2(µ). Suppose also that we have
constants εQ, Q ∈ DT , which satisfy |εQ| ≤ 1. Then there holds that∥∥∥ ∑

Q∈ DT

Qa=F

εQ∆Qh
∥∥∥2

L2(µ)
. ‖h‖2L2(µ).

Proof. – Consider a cube Q ∈ DT for which Qa = F . We define

DQh :=
∑

Q′∈ch(Q)\ H

[ 〈h〉Q′
〈bTF 〉Q′

− 〈h〉Q
〈bTF 〉Q

]
1Q′ .

Our aim is to reduce to these operators. However, for technical reasons certain maximal
truncations of them will be needed. Anyway, begin by noticing that∥∥∥ ∑

Q∈ DT

Qa=F

εQ∆Qh · 1F\⋃ H

∥∥∥2

L2(µ)
=
∥∥∥ ∑
Q∈ DT

Qa=F

εQDQh · bTF 1F\
⋃

H

∥∥∥2

L2(µ)

.
∥∥∥ ∑
Q∈ DT

Qa=F

εQDQh
∥∥∥2

L2(µ)
,

since bTF 1F\
⋃

H ∈ L∞(µ).
We are reduced to controlling∑

H∈ H

∥∥∥ ∑
Q∈ DT

H(1)⊂Q⊂F

εQ∆Qh · 1H
∥∥∥2

L2(µ)
.
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64 M. T. LACEY AND H. MARTIKAINEN

We write∑
Q∈ DT

H(1)⊂Q⊂F

εQ∆Qh · 1H = εH(1)

(
〈h〉HbTH −

〈h〉H(1)

〈bTF 〉H(1)

bTF 1H

)
+

∑
Q∈ DT

H(2)⊂Q⊂F

εQDQh · bTF 1H .

We have that ∑
H∈ H

|εH(1) |2|〈h〉H |2‖bTH‖2L2(µ) .
∑
H∈ H

∫
H

|h|2 dµ ≤ ‖h‖2L2(µ).

Next, notice that∑
H∈ H

|εH(1) |2
|〈h〉H(1) |2

|〈bTF 〉H(1) |2

∫
H

|bTF |2 dµ .
∑
H∈ H

|〈h〉H(1) |2
∫
H

|bTF |2 dµ

=
∑
Q∈ DT

|〈h〉Q|2αQ . ‖h‖2L2(µ),

since

αQ :=

{∑
Q′∈ch(Q)∩ H

∫
Q′
|bTF |2 dµ, if Qa = F,

0, otherwise,

is a Carleson sequence. Let us show this fact now.
To this end, fix a cube R ∈ DT . We have that∑

Q⊂R
αQ =

∑
Q⊂R
Qa=F

∑
Q′∈ch(Q)∩ H

∫
Q′
|bTF |2 dµ ≤

∫
R

|bTF |2 dµ.

We can assume that R ⊂ F and that there is a Q ⊂ R for which Qa = F . But then Ra = F

and
∫
R
|bTF |2 dµ . µ(R) proving the Carleson property.

So we are to deal with ∑
H∈ H

∥∥∥ ∑
Q∈ DT

H(2)⊂Q⊂F

εQDQh · bTF 1H

∥∥∥2

L2(µ)
.

But notice that ∑
Q:H(2)⊂Q⊂F

εQDQh

is constant on H(1). We can then estimate∑
H∈ H

∣∣∣〈 ∑
Q:H(2)⊂Q⊂F

εQDQh
〉
H(1)

∣∣∣2 ∫
H

|bTF |2 dµ

=
∑
H∈ H

∣∣∣〈 ∑
Q∈ DT

Qa=F

`(Q)>`(H(1))

εQDQh
〉
H(1)

∣∣∣2 ∫
H

|bTF |2 dµ

≤
∑
H∈ H

〈
sup
ε>0

∣∣∣ ∑
Q∈ DT

Qa=F

`(Q)>ε

εQDQh
∣∣∣〉2

H(1)

∫
H

|bTF |2 dµ
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LOCAL Tb THEOREM WITH L2 TESTING CONDITIONS AND GENERAL MEASURES 65

=
∑
R∈ DT

〈
sup
ε>0

∣∣∣ ∑
Q∈ DT

Qa=F

`(Q)>ε

εQDQh
∣∣∣〉2

R
αR .

∥∥∥ sup
ε>0

∣∣∣ ∑
Q∈ DT

Qa=F

`(Q)>ε

εQDQh
∣∣∣ ∥∥∥2

L2(µ)
.

The conclusion is that the proposition follows from the L2(µ) bound of these maximal
truncations. But this bound follows from Proposition 2.12.

To control the maximal truncations we need some heavier tools. For the reader’s conve-
nience we formulate and prove the needed principles exactly. The first is a reduction to a
testing condition (a dyadic adaptation of Sawyer’s idea [18] and also essentially contained
in [9]). The second is a non-homogeneous John-Nirenberg principle (essentially found in [12]
and [8]).

Suppose that for every Q ∈ DT we are given an operator AQ satisfying:

• AQh =
∑
Q′∈ch(Q) cQ′(h)1Q′ for some constants cQ′(h);

• |AQh| ≤M DT
µ h, where M DT

µ h(x) := supR∈ DT 1R(x)µ(R)−1
∫
R
|h| dµ.

We set

Aεh :=
∑
Q∈ DT

`(Q)>ε

AQh, ε > 0,

A#h := sup
ε>0
|Aεh|.

For P ∈ DT , let us define

APε h =
∑
Q∈ DT

Q⊂P
`(Q)>ε

AQh, ε > 0,

AP#h := sup
ε>0
|APε h|.

The following lemma states that a certain testing condition for maximal truncations
implies an estimate Lp(µ)→ Lp,∞(µ) for the maximal truncations.

2.5. L. – Let p ∈ (1,∞). We assume that for every Q ∈ DT and h ∈ Lp(µ) there
holds that

(2.6)
∫
Q

AQ#h dµ . ‖h1Q‖Lp(µ)µ(Q)1/p′ .

Then for every h ∈ Lp(µ) there holds that ‖A#h‖Lp,∞(µ) . ‖h‖Lp(µ).

Proof. – We assume qualitatively that AQ 6= 0 for only finitely many Q ∈ DT . This gives
us the a priori information ‖A#h‖Lp,∞(µ) <∞ for h ∈ Lp(µ).

Let λ > 0 and set Ωλ := {A#h > λ}. Let Mλ consist of the maximal Q ∈ DT for which
Q ⊂ Ωλ. It is clear that Ωλ =

⋃
Q∈Mλ

Q, since for every x ∈ Ωλ there is a Q ∈ DT such that
x ∈ Q ⊂ Ωλ.

Let us set
Hλ(Q) := Q ∩ {A#h > 4λ, M DT

µ h ≤ λ}, Q ∈Mλ.
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We have that

Ω4λ ⊂
⋃

Q∈Mλ

Hλ(Q) ∪ {M DT
µ h > λ}

so that we have for any η > 0 that

λpµ(Ω4λ) ≤ λp
∑
Q∈Mλ

µ(Hλ(Q)) + ‖M DT
µ h‖pLp,∞(µ)

≤ λp
∑
Q∈Mλ

µ(Hλ(Q))>ηµ(Q)

µ(Hλ(Q)) + ηλpµ(Ωλ) + C‖h‖pLp(µ).

Let Q ∈Mλ and x ∈ Q. Let z ∈ Q(1) be such that A#h(z) ≤ λ. Let ε > 0 be arbitrary. If
`(Q) > ε we have the following identity

Aεh(x) = AQε h(x) +
∑
R∈ DT

`(Q)<`(R)≤4`(Q)

ARh(x) +
∑
R∈ DT

4`(Q)<`(R)

ARh(z).

We get the bound that

|Aεh(x)| ≤ AQ#h(x) + 2M DT
µ h(x) +A#h(z).

It is clear that this bound holds for every ε > 0. Therefore, we have that

4λ < A#h(x) ≤ AQ#h(x) + 3λ, Q ∈Mλ, x ∈ Hλ(Q).

This yields that if Q ∈Mλ and µ(Hλ(Q)) > ηµ(Q), then there holds that∫
Q

AQ#h dµ ≥
∫
Hλ(Q)

AQ#h dµ ≥ λµ(Hλ(Q)) ≥ ηλµ(Q).

From this we can conclude that( 1

µ(Q)

∫
Q

AQ#h dµ
)p
≥ ηpλp, Q ∈Mλ, µ(Hλ(Q)) > ηµ(Q).

We can now see using the assumed testing condition that

λp
∑
Q∈Mλ

µ(Hλ(Q))>ηµ(Q)

µ(Hλ(Q)) ≤ Cη−p
∑
Q∈Mλ

‖h1Q‖pLp(µ) ≤ Cη
−p‖h‖pLp(µ).

We have shown that

4−p(4λ)pµ(Ω4λ) ≤ Cη−p‖h‖pLp(µ) + ηλpµ(Ωλ) + C‖h‖pLp(µ).

This yields that

4−p‖A#h‖pLp,∞(µ) ≤ Cη
−p‖h‖pLp(µ) + η‖A#h‖pLp,∞(µ) + C‖h‖pLp(µ).

Taking η = 4−p/2 and using the fact that ‖A#h‖Lp,∞(µ) <∞ we get the claim.

The following two lemmata capture our usage of the non-homogeneous John-Nirenberg
principle.
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2.7. L. – Suppose that for every P ∈ DT there holds that

‖AP#1‖L1(µ) . µ(P ).

Then for every p ∈ (1,∞) and for every P ∈ DT there holds that

‖AP#1‖Lp(µ) . µ(P )1/p.

Proof. – Follows from the next lemma by taking ϕQ = AQ1/C for a large enough
constant C > 1.

2.8. L. – Assume that for every Q ∈ DT we are given a function ϕQ such that

• ϕQ =
∑
Q′∈ch(Q) cQ′1Q′ for some constants cQ′ ;

• ‖ϕQ‖L∞(µ) ≤ 1.

For every P ∈ DT we set
ΦP := sup

ε>0

∣∣∣ ∑
Q∈ DT

Q⊂P
`(Q)>ε

ϕQ

∣∣∣.

Suppose that for every P ∈ DT there holds that

µ({x ∈ P : ΦP (x) > 1}) ≤ µ(P )/2.

Then for every P ∈ DT and t > 1 there holds that

µ({x ∈ P : ΦP (x) > t}) ≤ 2−(t−1)/2µ(P ).

Proof. – Fix P0 ∈ DT . Let R1 consist of the maximal R ∈ DT such that R ⊂ P0 and∣∣∣ ∑
Q:R(Q⊂P0

ϕQ(x)
∣∣∣ > 1, x ∈ R.

The left-hand side is constant on R so this makes sense. Define S1 :=
⋃
R∈R1

R. We have
that:

• µ(S1) ≤ µ({x ∈ P0 : ΦP0
(x) > 1}) ≤ µ(P0)/2;

• ΦP0
1P0\S1

≤ 1;
• For R ∈ R1 and x ∈ R we have that∣∣∣ ∑

Q:R(Q⊂P0

ϕQ(x)
∣∣∣ ≤ 2.

For R0 ∈ R1 we let RR0

2 consist of the maximal R ∈ DT such that R ⊂ R0 and∣∣∣ ∑
Q:R(Q⊂R0

ϕQ(x)
∣∣∣ > 1, x ∈ R.

Let R2 :=
⋃
R0∈R1

RR0

2 and S2 :=
⋃
R∈R2

R. We have that:

• µ(S2) ≤ µ(P0)/4;
• ΦP01P0\S2

≤ 3;
• For R ∈ R2 and x ∈ R we have that∣∣∣ ∑

Q:R(Q⊂P0

ϕQ(x)
∣∣∣ ≤ 4.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



68 M. T. LACEY AND H. MARTIKAINEN

Continue like this. We establish collections Rj and sets Sj =
⋃
R∈Rj R such that there

holds µ(Sj) ≤ 2−jµ(P0) and ΦP0
1P0\Sj ≤ 2j − 1. Let t > 1 and choose jt ∈ N such that

2jt − 1 ≤ t < 2jt + 1. We have that

µ({x ∈ P0 : ΦP0
(x) > t}) ≤ µ(Sjt) ≤ 2−jtµ(P0) ≤ 2−(t−1)/2µ(P0).

An important tool for us is the following standard maximal truncation estimate for
martingale differences.

2.9. L. – Suppose we have constants εQ, Q ∈ DT , which satisfy |εQ| ≤ 1. Let
p ∈ (1,∞). We have for every h ∈ Lp(µ) the estimate∥∥∥ sup

ε>0

∣∣∣ ∑
Q∈ DT

`(Q)>ε

εQ
∑

Q′∈ch(Q)

[〈h〉Q′ − 〈h〉Q]1Q′
∣∣∣ ∥∥∥p
Lp(µ)

. ‖h‖pLp(µ).

Proof. – The claim follows by first using Doob’s inequality and then using Burkholder’s
inequality for martingale transforms.

We need a version of this where we have removed the stopping children.

2.10. C. – Suppose F ∈ F Q∗ . Suppose also that we have constants εQ,
Q ∈ DT , which satisfy |εQ| ≤ 1. Let p ∈ (1,∞). We have for every h ∈ Lp(µ) the estimate∥∥∥ sup

ε>0

∣∣∣ ∑
Q∈ DT

Qa=F

`(Q)>ε

εQ
∑

Q′∈ch(Q)\ H

[〈h〉Q′ − 〈h〉Q]1Q′
∣∣∣ ∥∥∥p
Lp(µ)

. ‖h‖pLp(µ).

Proof. – Notice that

sup
ε>0

∣∣∣ ∑
Q∈ DT

Qa=F

`(Q)>ε

εQ
∑

Q′∈ch(Q)∩ H

[〈h〉Q′ − 〈h〉Q]1Q′(x)
∣∣∣ ≤ ∑

H∈ H

|〈h〉H − 〈h〉H(1) |1H(x)

≤ 2
∑
H∈ H

1H(x)M DT
µ h(x).

But then we have that∥∥∥ sup
ε>0

∣∣∣ ∑
Q∈ DT

Qa=F

`(Q)>ε

εQ
∑

Q′∈ch(Q)∩ H

[〈h〉Q′ − 〈h〉Q]1Q′
∣∣∣ ∥∥∥p
Lp(µ)

.
∑
H∈ H

‖1HM DT
µ h‖pLp(µ)

≤ ‖M DT
µ h‖pLp(µ) . ‖h‖

p
Lp(µ).

Combining this with the previous lemma we have the result.

The proof of Proposition 2.12 will be based on a reduction to the testing condition
(Lemma 2.5). However, to verify the testing condition we still require the following lemma.
It is in the proof of this final lemma that the John-Nirenberg type reductions from above are
used.
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2.11. L. – Suppose F ∈ F Q∗ . Suppose also that we have constants εQ, Q ∈ DT ,
which satisfy |εQ| ≤ 1. For every p ∈ [1,∞) and P ∈ DT there holds that∥∥∥ sup

ε>0

∣∣∣ ∑
Q∈ DT

Qa=F,Q⊂P
`(Q)>ε

εQDQ1
∣∣∣ ∥∥∥p
Lp(µ)

. µ(P ).

Proof. – By Lemma 2.7 it suffices to prove that for every P ∈ DT there holds that∫
P

sup
ε>0

∣∣∣ ∑
Q∈ DT

Qa=F,Q⊂P
`(Q)>ε

εQDQ1
∣∣∣ dµ . µ(P ).

Let us write

1

〈bTF 〉Q′
− 1

〈bTF 〉Q
=
〈bTF 〉Q − 〈bTF 〉Q′

〈bTF 〉2Q
+

[〈bTF 〉Q − 〈bTF 〉Q′ ]2

〈bTF 〉Q
2〈bTF 〉Q′

.

Define ε̃Q := εQ/〈bTF 〉2Q, Qa = F . Note that |ε̃Q| . 1, and then that∫
P

sup
ε>0

∣∣∣ ∑
Q∈ DT

Qa=F,Q⊂P
`(Q)>ε

ε̃Q
∑

Q′∈ch(Q)\ H

[〈bTF 〉Q′ − 〈bTF 〉Q]1Q′
∣∣∣ dµ

≤ µ(P )1/2
(∫

P

[
sup
ε>0

∣∣∣ ∑
Q∈ DT

Qa=F,Q⊂P
`(Q)>ε

ε̃Q
∑

Q′∈ch(Q)\ H

[〈bTF 〉Q′ − 〈bTF 〉Q]1Q′
∣∣∣]2 dµ)1/2

. µ(P )1/2‖1P bTF ‖L2(µ) . µ(P ).

Here we first appealed to the L2 bound for maximal truncations of a martingale difference
(Corollary 2.10). For the last inequality we have the following explanation. It is trivial if
F ∩ P = ∅ or F ⊂ P . Otherwise, we may assume that there is a Q for which Qa = F

and Q ⊂ P ⊂ F . But then P a = F .

Next, notice that∫
P

sup
ε>0

∣∣∣ ∑
Q∈ DT

Qa=F,Q⊂P
`(Q)>ε

εQ
∑

Q′∈ch(Q)\ H

[〈bTF 〉Q − 〈bTF 〉Q′ ]2

〈bTF 〉Q
2〈bTF 〉Q′

1Q′
∣∣∣ dµ

.
∑
Q∈ DT

Qa=F,Q⊂P

∫ [ ∑
Q′∈ch(Q)

(〈bTF 〉Q′ − 〈bTF 〉Q)1Q′
]2
dµ . ‖1P bTF ‖2L2(µ) . µ(P ).
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2.12. P. – Suppose F ∈ F Q∗ . Suppose also that we have constants εQ,
Q ∈ DT , which satisfy |εQ| ≤ 1. Then for every p ∈ (1,∞) and h ∈ Lp(µ) there holds that∥∥∥ sup

ε>0

∣∣∣ ∑
Q∈ DT

Qa=F

`(Q)>ε

εQDQh
∣∣∣ ∥∥∥p
Lp(µ)

. ‖h‖pLp(µ).

Proof. – Fix 1 < p < ∞, h ∈ Lp(µ) and P ∈ DT . By Lemma 2.5 we need to prove that
there holds that ∫

P

sup
ε>0

∣∣∣ ∑
Q∈ DT

Qa=F,Q⊂P
`(Q)>ε

εQDQh
∣∣∣ dµ . ‖h1P ‖Lp(µ)µ(P )1/p′ .

Indeed, then we have the weak type bound for every p and we can interpolate the sublinear
operator to establish the strong type bounds.

We now write
〈h〉Q′
〈bTF 〉Q′

− 〈h〉Q
〈bTF 〉Q

=
{ 〈h〉Q′
〈bTF 〉Q

− 〈h〉Q
〈bTF 〉Q

}
+
{ 〈h〉Q′
〈bTF 〉Q′

− 〈h〉Q
′

〈bTF 〉Q

}
=

1

〈bTF 〉Q
{
〈h〉Q′ − 〈h〉Q

}
(2.13)

+
{
〈h〉Q′ − 〈h〉Q

}{ 1

〈bTF 〉Q′
− 1

〈bTF 〉Q

}
(2.14)

+ 〈h〉Q
{ 1

〈bTF 〉Q′
− 1

〈bTF 〉Q

}
.(2.15)

This leaves us with three terms to control.
Define ε̃Q := εQ/〈bTF 〉Q, Qa = F . Note that |ε̃Q| . 1. The control of (2.13) goes as

follows: ∫
P

sup
ε>0

∣∣∣ ∑
Q∈ DT

Qa=F,Q⊂P
`(Q)>ε

ε̃Q
∑

Q′ch(Q)\ H

[〈h〉Q′ − 〈h〉Q]1Q′
∣∣∣ dµ

≤
∥∥∥ sup
ε>0

∣∣∣ ∑
Q∈ DT

Qa=F,Q⊂P
`(Q)>ε

ε̃Q
∑

Q′ch(Q)\ H

[〈h〉Q′ − 〈h〉Q]1Q′
∣∣∣ ∥∥∥
Lp(µ)

µ(P )1/p′

. ‖h1P ‖Lp(µ)µ(P )1/p′ .

Here we used Corollary 2.10.
We will then control (2.14). Let us define

∆c
Qh =

∑
Q′∈ch(Q)

[〈h〉Q′ − 〈h〉Q]1Q′ ,

where c stands for classical. Notice that

∆c
Qh ·DQ1 =

∑
Q′∈ch(Q)\ H

{
〈h〉Q′ − 〈h〉Q

}{ 1

〈bTF 〉Q′
− 1

〈bTF 〉Q

}
1Q′ .
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The small point we want to make is that the other martingale can in fact be taken classical,
since it is multiplied with DQ which is supported on the children of Q which are not in H .
Now we have that∣∣∣ ∑

Q∈ DT

Qa=F,Q⊂P
`(Q)>ε

εQ∆c
Qh ·DQ1

∣∣∣ ≤ ( ∑
Q∈ DT

|∆c
Q(h1P )|2

)1/2( ∑
Q∈ DT

Qa=F,Q⊂P

|DQ1|2
)1/2

.

It is enough to note that∥∥∥( ∑
Q∈ DT

|∆c
Q(h1P )|2

)1/2∥∥∥
Lp(µ)

∥∥∥( ∑
Q∈ DT

Qa=F,Q⊂P

|DQ1|2
)1/2∥∥∥

Lp′ (µ)
. ‖h1P ‖Lp(µ)µ(P )1/p′ .

To control the last term we used Lemma 2.11. Indeed, this form follows from it by averaging
over independent random signs ±1.

We are left to control the term with (2.15). To control the averages 〈h〉Q in front, we will
perform a standard stopping time. Let S0 = {P}. Let S1 consist of the maximal R ∈ DT ,
R ⊂ P , for which 〈|h|〉R > 4〈|h|〉P . Continuing this in the standard way we get the full
stopping tree S =

⋃∞
j=0 Sj . For Q ∈ DT , Q ⊂ P , we define Qs to be the minimal S ∈ S for

which Q ⊂ S. We have that 〈|h|〉Q ≤ 4〈|h|〉Qs .

If Qs = S we let εQ(S) := εQ
〈h〉Q
〈|h|〉S . Notice that |εQ(S)| ≤ 4|εQ| . 1. We then estimate

using the p = 1 case of Lemma 2.11:∫
P

sup
ε>0

∣∣∣∑
S∈ S

∑
Q∈ DT

Qa=F,Qs=S

`(Q)>ε

εQ〈h〉QDQ1
∣∣∣ dµ

≤
∑
S∈ S

∫
S

sup
ε>0

∣∣∣ ∑
Q∈ DT

Qa=F,Qs=S

`(Q)>ε

εQ〈h〉QDQ1
∣∣∣ dµ =

∑
S∈ S

〈|h|〉S
∫
S

sup
ε>0

∣∣∣ ∑
Q∈ DT

Qa=F,Qs=S

`(Q)>ε

εQ(S)DQ1
∣∣∣ dµ

.
∑
S∈ S

〈|h|〉Sµ(S) ≤
(∑
S∈ S

〈|h|〉pSµ(S)
)1/p(∑

S∈ S

µ(S)
)1/p′

. ‖h1P ‖Lp(µ)µ(P )1/p′ .

This completes the proof of the proposition.

2.16. R. – We only need the following conclusion of Proposition 2.4. If |h| ≤ 1

and S ⊂ Rn is an arbitrary set, then there holds that∥∥∥ ∑
Q∈ DT :Q⊂S

Qa=F

εQ∆Qh
∥∥∥2

L2(µ)
=
∥∥∥ ∑
Q∈ DT :Q⊂S

Qa=F

εQ∆Q(1S∩Fh)
∥∥∥2

L2(µ)
. µ(S ∩ F ).
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2.3. Further reductions

We now expand (see Proposition 2.8 of [11])

f =
∑
Q∈ DT

∆Qf + 〈f〉Q∗bTQ∗

and

g =
∑

R∈ DT∗
∆Rg + 〈g〉R∗bT

∗

R∗ .

If Q ∈ DT is such that Qa ∈ F jQ∗ , we define β(Q) := j. Let β > 0 be a large parameter (we
shall fix it momentarily). We have

|〈Tf, g〉| ≤
∣∣∣ ∑
Q∈ DT

β(Q)<β

〈T (∆Qf), g〉
∣∣∣+
∣∣∣ ∑
Q∈ DT

β(Q)≥β

〈T (∆Qf), g〉
∣∣∣+ |〈TbTQ∗ , g〉|.

Recall that our functions f and g satisfy |f |, |g| ≤ 1Q0
. Notice that∣∣∣ ∑

Q∈ DT

β(Q)≥β

〈T (∆Qf), g〉
∣∣∣ ≤ ∞∑

j=β

‖T‖
∥∥∥ ∑
F∈ F j

Q∗

∑
Q∈ DT

Qa=F

∆Qf
∥∥∥
L2(µ)

‖g‖L2(µ)

≤ ‖T‖µ(Q0)1/2
∞∑
j=β

( ∑
F∈ F j

Q∗

∥∥∥ ∑
Q∈ DT

Qa=F

∆Qf
∥∥∥2

L2(µ)

)1/2

. ‖T‖µ(Q0)1/2
∞∑
j=β

( ∑
F∈ F j

Q∗

µ(F )
)1/2

≤ ‖T‖µ(Q0)1/2
∞∑
j=β

τ j/2µ(Q∗)1/2 . τβ/2‖T‖µ(λQ0)

and |〈TbTQ∗ , g〉| ≤ ‖1Q∗TbTQ∗‖L2(µ)‖g‖L2(µ) . µ(λQ0).

Next, we have∑
Q∈ DT

β(Q)<β

〈T (∆Qf), g〉 =
∑
Q∈ DT

β(Q)<β

∑
R∈ DT∗

β(R)<β

〈T (∆Qf),∆Rg〉+
〈
T
( ∑
Q∈ DT

β(Q)<β

∆Qf
)
,
∑

R∈ DT∗

β(R)≥β

∆Rg
〉

+ 〈g〉R∗〈f, 1R∗T ∗bT
∗

R∗〉 − 〈g〉R∗
〈
T
( ∑
Q∈ DT

β(Q)≥β

∆Qf
)
, bT

∗

R∗

〉

− 〈f〉Q∗〈g〉R∗〈TbTQ∗ , bT
∗

R∗〉.

Again, there holds that∣∣∣〈T( ∑
Q∈ DT

β(Q)<β

∆Qf
)
,
∑

R∈ DT∗

β(R)≥β

∆Rg
〉∣∣∣ . τβ/2‖T‖µ(λQ0)
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and ∣∣∣〈g〉R∗〈T( ∑
Q∈ DT

β(Q)≥β

∆Qf
)
, bT

∗

R∗

〉∣∣∣ . τβ/2‖T‖µ(λQ0).

Also, we have that |〈g〉R∗〈f, 1R∗T ∗bT
∗

R∗〉| . µ(λQ0).

The pairing 〈TbTQ∗ , bT
∗

R∗〉 is trickier. Let u > 0. We estimate

|〈TbTQ∗ , bT
∗

R∗〉| ≤ ‖1Q∗TbTQ∗‖L2(µ)‖bT
∗

R∗‖L2(µ) + ‖T‖‖bTQ∗‖L2(µ)‖1(1+u)Q∗\Q∗b
T∗

R∗‖L2(µ)

+

∫
R∗\(1+u)Q∗

∫
Q∗

C(u)

`(Q∗)m/2`(R∗)m/2
|bTQ∗(y)||bT

∗

R∗(x)| dµ(y) dµ(x)

≤ C(u)µ(λQ0) + ‖T‖µ(λQ0)1/2‖1(1+u)Q∗\Q∗b
T∗

R∗‖L2(µ).

Notice that with a fixed w′ we have that

Ew‖1(1+u)Q∗\Q∗b
T∗

R∗‖L2(µ) ≤
(∫

R∗
Pw(x ∈ (1 + u)Q∗ \Q∗)|bT

∗

R∗(x)| dµ(x)
)1/2

≤ c(u)µ(λQ0)1/2,

where c(u)→ 0 when u→ 0.

The conclusion of this subsection is that

|〈Tf, g〉| ≤ Ew,w′
∣∣∣ ∑
Q∈ DT

β(Q)<β

∑
R∈ DT∗

β(R)<β

〈T (∆Qf),∆Rg〉
∣∣∣

+ C(u)µ(λQ0) + c(β)‖T‖µ(λQ0) + c(u)‖T‖µ(λQ0),

where c(β)→ 0 when β → 0 and c(u)→ 0 when u→ 0. We now fix β and u to be so small
that (c(β)+c(u))C2 ≤ 1/4. In the sequel some estimates will depend on the fixed parameter β
but this is no longer a concern (and the dependance will not be tracked). We may now focus
on proving that

Ew,w′
∣∣∣ ∑
Q∈ DT

β(Q)<β

∑
R∈ DT∗

β(R)<β

〈T (∆Qf),∆Rg〉
∣∣∣ ≤ (C4 + c̃‖T‖)µ(λQ0),

where c̃ is so small that C2c̃ ≤ 1/4.

2.4. Splitting of the summation

We set γ = α/(2m + 2α), where α > 0 appears in the kernel estimates and m appears
in µ(B(x, t)) . tm. We also let r > 0 be a large constant that we shall fix later. We will also
focus on the part of the summation where `(Q) < `(R). We will simply split this sum in to
three standard pieces:

• Q: `(Q) < `(R) and d(Q,R) > `(Q)γ`(R)1−γ ;
• Q: `(Q) ≤ 2−r`(R) and d(Q,R) ≤ `(Q)γ`(R)1−γ ;
• Q: 2−r`(R) < `(Q) < `(R) and d(Q,R) ≤ `(Q)γ`(R)1−γ .
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We call the first sum the separated sum, the second sum the nested sum and the last sum the
diagonal sum. Here the term nested is the most cryptic, but will be justified using probability
by introducing good cubes to the second sum in a specific way (like in [7]).

In the next section we will prove that∑
R∈ DT∗

β(R)<β

∑
Q∈ DT : β(Q)<β

`(Q)<`(R)

d(Q,R)>`(Q)γ`(R)1−γ

|〈T (∆Qf),∆Rg〉| . µ(λQ0).

In a section after that we will show that

Ew,w′
∣∣∣ ∑
R∈ DT∗

β(R)<β

∑
Q∈ DT : β(Q)<β

`(Q)≤2−r`(R)

d(Q,R)≤`(Q)γ`(R)1−γ

〈T (∆Qf),∆Rg〉
∣∣∣ ≤ Cµ(λQ0) + c(r)‖T‖µ(λQ0),

where c(r) → 0 as r → 0. We may then fix the parameter r at this point of the argument to
be so small thatC2c(r) ≤ 1/16. The estimates of the last sum may depend on r, but this is no
longer a concern (and the dependance will not be tracked). In the last section we will prove
that

Ew,w′
∑

R∈ DT∗

β(R)<β

∑
Q∈ DT : β(Q)<β

2−r`(R)<`(Q)<`(R)

d(Q,R)≤`(Q)γ`(R)1−γ

|〈T (∆Qf),∆Rg〉| ≤ Cµ(λQ0) + ĉ‖T‖µ(λQ0),

where ĉC2 ≤ 1/16. Combining with the symmetric argument for the case `(Q) ≥ `(R) this
proves our main theorem.

3. The separated sum

If `(Q) < `(R) and d(Q,R) > `(Q)γ`(R)1−γ , then

|〈T (∆Qf),∆Rg〉| . AQR‖∆Qf‖L2(µ)‖∆Rg‖L2(µ),

where

AQR :=
`(Q)α/2`(R)α/2

D(Q,R)m+α
µ(Q)1/2µ(R)1/2;

D(Q,R) := `(Q) + `(R) + d(Q,R).

Moreover, by [17] this `2 estimate holds∑
Q,R

AQRxQyR .
(∑

Q

x2
Q

)1/2(∑
R

y2
R

)1/2

.

Therefore, we have that∑
R∈ DT∗

β(R)<β

∑
Q∈ DT : β(Q)<β

`(Q)<`(R)

d(Q,R)>`(Q)γ`(R)1−γ

|〈T (∆Qf),∆Rg〉| .
(∑

Q

‖∆Qf‖2L2(µ)

)1/2(∑
R

‖∆Rg‖2L2(µ)

)1/2

. µ(Q∗)1/2µ(R∗)1/2 ≤ µ(λQ0).
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4. The nested sum

We now introduce the good and bad cubes to the argument. This is a key technique of
non-homogeneous analysis and is originally by Nazarov-Treil-Volberg [17]. However, due
to technical reasons we need to insert them to the argument more in the spirit of [7]. In
particular, this trick will give the nested structure.

Define DTbad, A to be the collection of those cubes Q ∈ DT which are bad with respect

to some DT
∗
-cube of side length A or larger. We define that this demands that there

should exist a cube S ∈ DT
∗

for which `(S) ≥ A and d(Q, skS) ≤ `(Q)γ`(S)1−γ , where
skS :=

⋃
S′∈ch(S) ∂S

′. Let DTgood, A be the collection of those Q ∈ DT which are good with

respect to all DT
∗
-cubes of side length A and larger. This means that for every S ∈ DT

∗
for

which `(S) ≥ A there holds that d(Q, skS) > `(Q)γ`(S)1−γ .

4.1. R. – Notice carefully the usage of the words some and all above.

Let us write ∑
R∈ DT∗

β(R)<β

∑
Q∈ DT : β(Q)<β

`(Q)≤2−r`(R)

d(Q,R)≤`(Q)γ`(R)1−γ

〈T (∆Qf),∆Rg〉 = Sgood + Sbad,

where

Sgood =
∑

R∈ DT∗

β(R)<β

∑
Q∈ DTgood, `(R): β(Q)<β

`(Q)≤2−r`(R)

d(Q,R)≤`(Q)γ`(R)1−γ

〈T (∆Qf),∆Rg〉

and

Sbad =
∑

R∈ DT∗

β(R)<β

∑
Q∈ DTbad, `(R): β(Q)<β

`(Q)≤2−r`(R)

d(Q,R)≤`(Q)γ`(R)1−γ

〈T (∆Qf),∆Rg〉.

4.1. The bad part is small

Notice that for a given R ∈ DT
∗

there holds that∥∥∥ ∑
Q∈ DTbad, `(R): β(Q)<β

`(Q)≤2−r`(R)

d(Q,R)≤`(Q)γ`(R)1−γ

∆Qf
∥∥∥
L2(µ)

≤
∞∑
k=r

( ∑
Q∈ DT

bad, 2k`(Q)

`(Q)=2−k`(R)

d(Q,R)≤`(Q)γ`(R)1−γ

‖∆Qf‖2L2(µ)

)1/2
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so that

|Sbad| ≤ ‖T‖
∞∑
k=r

∑
R∈ DT∗

( ∑
Q∈ DT

bad, 2k`(Q)

`(Q)=2−k`(R)

d(Q,R)≤`(Q)γ`(R)1−γ

‖∆Qf‖2L2(µ)

)1/2

‖∆Rg‖L2(µ)

≤ C‖T‖
∞∑
k=r

( ∑
Q∈ DT

bad, 2k`(Q)

‖∆Qf‖2L2(µ)

)1/2( ∑
R∈ DT∗

‖∆Rg‖2L2(µ)

)1/2

≤ C‖T‖µ(λQ0)1/2
∞∑
k=r

( ∑
Q∈ DT

bad, 2k`(Q)

‖∆Qf‖2L2(µ)

)1/2

,

where we used that

#{R ∈ DT
∗

: `(R) = 2k`(Q) and d(Q,R) ≤ `(Q)γ`(R)1−γ} . 1, k ≥ 0.

We conclude that

Ew,w′ |Sbad| ≤ C‖T‖µ(λQ0)1/2Ew

∞∑
k=r

( ∑
Q∈ DT

Pw′(Q ∈ DTbad, 2k`(Q))‖∆Qf‖2L2(µ)

)1/2

≤ C‖T‖µ(λQ0)

∞∑
k=r

2−γk/2 = c(r)‖T‖µ(λQ0),

where c(r)→ 0 as r →∞. We now fix r so that c(r)C2 ≤ 1/16.

4.2. The good part

In this sum we will have the nested structure. Indeed, notice that Q is good with
respect to R, and so we must have d(Q, skR) > `(Q)γ`(R)1−γ . The possible scenario
d(Q,R) > `(Q)γ`(R)1−γ cannot happen here because of the summing condition
d(Q,R) ≤ `(Q)γ`(R)1−γ . Therefore, for the cubeQ to stay away from the skeleton ofR (i.e.,
skR), it must lie deep inside one of the children of R. That is, there is a child RQ ∈ ch(R)

so that Q ⊂ RQ and d(Q,RcQ) > `(Q)γ`(R)1−γ .
Before having to split the argument into a case study, we prove two lemmata.

4.2. L. – If R ∈ DT
∗
, Q ∈ DTgood, `(R) and Q ⊂ R, then there holds that

|〈T (∆Qf), 1RcQb
T∗

Ra〉| .
(`(Q)

`(R)

)α/2
µ(Q)1/2‖∆Qf‖L2(µ).

Proof. – We will first show that∫
Ra\RQ

|bT∗Ra(x)|
|x− cQ|m+α

dµ(x) . `(Q)−α/2`(R)−α/2.

Let M be such that R(M+1)
Q = Ra. Notice that since Q is good with respect to all S ∈ DT

∗

for which `(S) ≥ `(R), there holds that

d(Q, ∂R
(j)
Q )m+α & `(Q)α/2`(R

(j)
Q )m+α/2 & 2αj/2`(Q)α/2`(R)α/2µ(R

(j+1)
Q ).

Here we used that γ(m+ α) = α/2.
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We may now estimate∫
Ra\RQ

|bT∗Ra(x)|
|x− cQ|m+α

dµ(x) =

M∑
j=0

∫
R

(j+1)
Q \R(j)

Q

|bT∗Ra(x)|
|x− cQ|m+α

dµ(x)

≤
M∑
j=0

1

d(Q, ∂R
(j)
Q )m+α

∫
R

(j+1)
Q

|bT
∗

Ra(x)| dµ(x)

.
M∑
j=0

µ(R
(j+1)
Q )

2αj/2`(Q)α/2`(R)α/2µ(R
(j+1)
Q )

. `(Q)−α/2`(R)−α/2.

To end the proof it remains to use the Hölder estimate of K to get that

|〈T (∆Qf), 1RcQb
T∗

Ra〉| . ‖∆Qf‖L1(µ) · `(Q)α
∫
Ra\RQ

|bT∗Ra(x)|
|x− cQ|m+α

dµ(x)

.
(`(Q)

`(R)

)α/2
µ(Q)1/2‖∆Qf‖L2(µ).

The next lemma is much easier, essentially an argument using only separation (similar
arguments appear already in [17], of course).

4.3. L. – Let R ∈ DT
∗
, Q ∈ DT be good with respect to R and Q ⊂ R. Then there

holds that
|〈T (∆Qf), 1RcQ∆Rg〉| . BQR‖∆Qf‖L2(µ)‖∆Rg‖L2(µ),

where

BQR :=
(`(Q)

`(R)

)α/2( µ(Q)

µ(RQ)

)1/2

.

Proof. – Let S ∈ ch(R), S 6= RQ. Then d(Q,S) ≥ d(Q, ∂RQ) ≥ `(Q)γ`(R)1−γ . Using
this it is easy to see (like in the separated sum) that there holds that

|〈T (∆Qf), 1S∆Rg〉| .
(`(Q)

`(R)

)α/2
µ(Q)1/2µ(S)1/2

`(R)m
‖∆Qf‖L2(µ)‖∆Rg‖L2(µ).

The claim follows from this since

µ(S)1/2

`(R)m
.

1

`(R)m/2
. µ(RQ)−1/2.

Notice that∑
R∈ DT∗

∑
Q∈ DTgood, `(R)

`(Q)≤2−r`(R)

Q⊂R

|〈T (∆Qf), 1RcQ∆Rg〉|

.
∑

R∈ DT∗

∑
Q∈ DT

`(Q)≤2−r`(R)

Q⊂RQ∈ch(R)

BQR‖∆Qf‖L2(µ)‖∆Rg‖L2(µ)

.
(∑

Q

‖∆Qf‖2L2(µ)

)1/2(∑
R

‖∆Rg‖2L2(µ)

)1/2

. µ(Q∗)1/2µ(R∗)1/2 ≤ µ(λQ0).
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Here we used Lemma 4.3 and the fact that by [17] we have the `2 estimate∑
R∈ DT∗

∑
Q∈ DT

`(Q)≤2−r`(R)

Q⊂RQ∈ch(R)

BQRxQyR .
(∑

Q

x2
Q

)1/2(∑
R

y2
R

)1/2

.

Therefore, we need to only consider

S′good :=
∑

R∈ DT∗

β(R)<β

∑
Q∈ DTgood, `(R): β(Q)<β

`(Q)≤2−r`(R)

d(Q,R)≤`(Q)γ`(R)1−γ

〈T (∆Qf), 1RQ∆Rg〉.

The case RaQ = Ra. – Define

CRQ :=
〈g〉RQ
〈bT∗RaQ〉RQ

− 〈g〉R
〈bT∗Ra〉R

.

Writing 1RQ = 1− 1RcQ we see that

1RQ∆Rg = CRQ1RQb
T∗

Ra = CRQb
T∗

Ra − CRQ1RcQb
T∗

Ra .

The first part will become part of the paraproduct and we do not touch it further in this
subsection.

Notice that now

|CRQ |µ(RQ) .
∣∣∣ ∫
RQ

CRQb
T∗

Ra dµ
∣∣∣ =

∣∣∣ ∫
RQ

∆Rg dµ
∣∣∣ ≤ µ(RQ)1/2‖∆Rg‖L2(µ).

Therefore, we have using Lemma 4.2 that∑
R∈ DT∗

∑
Q∈ DTgood, `(R):Q⊂R
`(Q)≤2−r`(R)

RaQ=Ra

|CRQ ||〈T (∆Qf), 1RcQb
T∗

Ra〉|

.
∑

R∈ DT∗

∑
Q∈ DT

`(Q)≤2−r`(R)

Q⊂RQ∈ch(R)

BQR‖∆Qf‖L2(µ)‖∆Rg‖L2(µ) . µ(λQ0).

The case RaQ = RQ. – We now write

1RQ∆Rg =
( 〈g〉RQ
〈bT∗RaQ〉RQ

bT
∗

RaQ
− 〈g〉R
〈bT∗Ra〉R

bT
∗

Ra

)
+
〈g〉R
〈bT∗Ra〉R

bT
∗

Ra1RcQ .

The first part is exactly the same thing that we did not touch previously, and we will not do
so here either. It will become part of the paraproduct.
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But let us notice that Lemma 4.2 again gives that∑
R∈ DT∗

∑
Q∈ DTgood, `(R):Q⊂R
`(Q)≤2−r`(R)

RaQ=RQ

∣∣∣〈T (∆Qf),
〈g〉R
〈bT∗Ra〉R

bT
∗

Ra1RcQ〉
∣∣∣

.
∑

R∈ DT∗

∑
Q∈ DT

`(Q)≤2−r`(R)

Q⊂RQ∈ch(R)

BQR‖∆Qf‖L2(µ)

( ∑
R′∈ch(R)

(R′)a=R′

µ(R′)
)1/2

|〈g〉R|

.
(∑

Q

‖∆Qf‖2L2(µ)

)1/2(∑
R

|〈g〉R|2
∑

R′∈ch(R)

(R′)a=R′

µ(R′)
)1/2

. µ(Q∗)‖g‖L2(µ) ≤ µ(λQ0).

The paraproduct. – For Q ∈
⋃
k≥r DTgood, 2k`(Q) let α(Q) be the smallest k such that

Q ∈ DTgood, 2k`(Q). We are reduced to bounding

Spar :=
∑

R∈ DT∗

β(R)<β

∑
Q∈ DTgood, `(R): β(Q)<β

`(Q)≤2−r`(R)

d(Q,R)≤`(Q)γ`(R)1−γ

〈
T (∆Qf),

〈g〉RQ
〈bT∗RaQ〉RQ

bT
∗

RaQ
− 〈g〉R
〈bT∗Ra〉R

bT
∗

Ra

〉

=
∑

Q∈
⋃
k≥r DT

good, 2k`(Q)
: β(Q)<β

Q⊂R∗

∑
R∈ DT∗ : β(R)<β

`(R)≥2α(Q)`(Q)

Q⊂R

〈
T (∆Qf),

〈g〉RQ
〈bT∗RaQ〉RQ

bT
∗

RaQ
− 〈g〉R
〈bT∗Ra〉R

bT
∗

Ra

〉
.

If Q ∈
⋃
k≥r DTgood, 2k`(Q) we let H(Q) ∈ DT

∗
be the smallest cube satisfying β(H(Q)) < β,

`(H(Q)) ≥ 2α(Q)`(Q) and Q ⊂ H(Q). Let J(Q) = H(Q)Q. We have that

Spar =
∑

Q∈
⋃
k≥r DT

good, 2k`(Q)
: β(Q)<β

Q⊂R∗

〈
T (∆Qf),

∑
R∈ DT∗

H(Q)⊂R⊂R∗

〈g〉RQ
〈bT∗RaQ〉RQ

bT
∗

RaQ
− 〈g〉R
〈bT∗Ra〉R

bT
∗

Ra

〉

=
∑

Q∈
⋃
k≥r DT

good, 2k`(Q)
: β(Q)<β

Q⊂R∗

〈
T (∆Qf),

〈g〉J(Q)

〈bT∗J(Q)a〉J(Q)

bT
∗

J(Q)a −
〈g〉R∗
〈bT∗R∗a〉R∗

bT
∗

R∗a

〉
.

We may consider the following general situation. We are given a collection G ⊂ DT so
that to every cube Q ∈ G there holds β(Q) < β, and there is associated a unique cube
S(Q) ∈ DT

∗
satisfying Q ⊂ S(Q). Our object is to bound

P (f, g) :=
∣∣∣ ∑
Q∈ G

〈
T (∆Qf),

〈g〉S(Q)

〈bT∗S(Q)a〉S(Q)

bT
∗

S(Q)a

〉∣∣∣.
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To this end, we first define for F ∈ F R∗ and Q ∈ DT that

εQ(F ) =


0 if Q 6∈ G,

0 if Q ∈ G and S(Q)a 6= F,
〈g〉S(Q)

〈bT∗F 〉S(Q)
if Q ∈ G and S(Q)a = F.

Notice that |εQ(F )| . |〈g〉S(Q)| ≤ 1. We have that∥∥∥ ∑
Q∈ DT

εQ(F )∆Qf
∥∥∥
L2(µ)

≤
β−1∑
j=0

( ∑
K∈ F j

Q∗

∥∥∥ ∑
Q∈ DT

Qa=K

εQ(F )∆Qf
∥∥∥2

L2(µ)

)1/2

.
β−1∑
j=0

( ∑
K∈ F j

Q∗

µ(F ∩K)
)1/2

≤ βµ(F )1/2.

But as β is already fixed we do not need to mind about this dependence. Using this we now
have that

P (f, g) =
∣∣∣ ∑
F∈ DT∗

Fa=F

〈 ∑
Q∈ G

S(Q)a=F

〈g〉S(Q)

〈bT∗F 〉S(Q)

∆Qf, 1FT
∗bT

∗

F

〉∣∣∣
≤

∑
F∈ DT∗

Fa=F

∥∥∥ ∑
Q∈ DT

εQ(F )∆Qf
∥∥∥
L2(µ)

‖1FT ∗bT
∗

F ‖L2(µ)

.
∑

F∈ DT∗

Fa=F

µ(F ) . µ(R∗) ≤ µ(λQ0).

In particular, we have shown that

|Spar| . µ(λQ0).

This completes our proof of the fact that

|Sgood| . µ(λQ0).

5. The diagonal

We come to the part of the proof which requires a delicate surgery type argument—
another key method which originates from Nazarov-Treil-Volberg [17]. The procedure of
performing the surgery of the diagonal has evolved quite a lot since, and we need to deal
with the general L2 testing conditions.

For every Q ∈ DT and R ∈ DT
∗

we write Q =
⋃2n

i=1Qi and R =
⋃2n

j=1Rj , where
Qi ∈ ch(Q) and Rj ∈ ch(R). We then fix two indices i and j. We write Q ∼ R to mean
`(Q) ∼ `(R) and d(Q,R) . min(`(Q), `(R)). Notice that #{Q : Q ∼ R} . 1. We want to
bound a sum of the form

S =
∑
R

∑
Q:Q∼R

AQ,i|〈T (1QiuQ,i), 1RjvR,j〉|BR,j ,
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where AQ,i = AQ,i(f), BQ,j = BQ,j(g) ≥ 0 are constants and uQ,i, vR,j are functions such
that ∑

Q

[
‖1QiMµuQ,i‖2L2(µ) + ‖1QiTuQ,i‖2L2(µ)

]
A2
Q,i . µ(λQ0)(5.1)

∑
R

[
‖1RjMµvR,j‖2L2(µ) + ‖1RjT ∗vR,j‖2L2(µ)

]
B2
R,j . µ(λQ0).(5.2)

Here we recall that Mµ is the centred maximal function with respect to the measure µ.

In practice, we shall consider S with the choice that (AQ,i, uQ,i) is either

AQ,i =


∣∣∣ 〈f〉Qi〈bT

Qa
i
〉Qi
− 〈f〉Q
〈bT
Qa
〉Q

∣∣∣ if Qai = Qa

0 if Qai = Qi

, uQ,i = bTQai

or

AQ,i =

0 if Qai = Qa∣∣∣ 〈f〉Qi〈bT
Qa
i
〉Qi

∣∣∣ if Qai = Qi
, uQ,i = bTQai

or

AQ,i =

0 if Qai = Qa∣∣∣ 〈f〉Q〈bT
Qa
〉Q

∣∣∣ if Qai = Qi
, uQ,i = bTQa .

Analogous choices are made for (BR,j , vR,j). This means that we consider nine different
sums S. But to bound a sum of the form S we shall need only the fact that (5.1) and (5.2)
hold, which is true with all these choices:

5.3. L. – The inequality (5.1) holds with all the above three choices for (AQ,i, uQ,i).

Proof. – This is proved in exactly the same way as the inequality
∑
Q ‖∆Qf‖2L2(µ) . µ(Q∗).

The proof only needs the additional fact that we have also done a stopping time with respect
to the properties∫

Q

|Mµb
T
Q|2 dµ . µ(Q) and

∫
Q

|TbTQ|2 dµ . µ(Q).

5.1. First surgery: the θ-surgery

Suppose for convenience that `(Qi) ≤ `(Rj). Let θ be a small parameter. We perform
surgery on (Qi, Rj) with the parameter θ. Let j(θ) ∈ Z be such that 2−21θ ≤ 2j(θ) < 2−20θ.
Let D∗ be yet another random grid in Rn, independent of all other grids considered. Let
G := {g ∈ D∗ : `(g) = 2j(θ)`(Qi)}, and for x ∈ Rn, let G(x) be the unique cube in G that
contains x. We define

Qi,∂ := {x ∈ Qi : d(G(x), ∂Rj) < θ`(Rj)/2} ∪ {x ∈ Qi ∩Rj : d(x, ∂G(x)) < θ`(G(x))}.
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Thus points in Qi,∂ belong to Qi, and are either close to the boundary of Rj , or to the
boundary of the grid G. The set Qi,∂ depends on the set Rj as well. However, we have

Qi,∂ ⊂ Qi,bad := Qi ∩
[ ⋃

R′∈ DT
∗

2−r`(Qi)≤`(R′)≤2r`(Qi)

{x : d(x, ∂R′) < θ`(R′)}

∪
⋃
g∈ D∗

`(g)=2j(θ)`(Qi)

{x : d(x, ∂g) < θ`(g)}
]

=: Qi ∩
[ gen(Qi)+r⋃
a=gen(Qi)−r

∂D
T∗

a (θ) ∪ ∂D
∗

gen(Qi)−j(θ)(θ)
]

=: Qi ∩ [∂D
T∗

∼gen(Qi)
(θ) ∪ ∂D

∗

gen(Qi)−j(θ)(θ)],

(5.4)

which depends only on Qi and the grids DT
∗

and D∗. One should keep in mind that in what
follows Qi,bad = Qi,bad(θ).

We set

Qi,sep := Qi \ (Qi,∂ ∪Rj),

the part of Qi strictly separated from Rj . Finally, we have

Qi,∆ := Qi \ (Qi,∂ ∪Qi,sep) =
⋃
k

Lk,

where each Lk is of the form Lk = (1− θ)g∩Qi ∩Rj for some g ∈ G, and #k .θ 1. In fact,
Lk is of the form Lk = (1− θ)g unless it is close to the boundary of Qi; it cannot be close to
the boundary of Rj , since such cubes were already subtracted in the Qi,∂ component.

We have the partition

Qi = Qi,sep ∪Qi,∂ ∪Qi,∆ = Qi,sep ∪Qi,∂ ∪
⋃
k

Lk,

and in a completely analogous manner also

Rj = Rj,sep ∪Rj,∂ ∪Rj,∆ = Rj,sep ∪Rj,∂ ∪
⋃
s

Ls.

A key observation is that all Lk ⊂ Qi∩Rj appearing in the first union are cubes (of the form
(1−θ)g for g ∈ G) unless they are close to ∂Qi, and they are never close to ∂Rj , while the Ls
in the second union are cubes unless they are close to ∂Rj , and they are never close to ∂Qi.
Thus, all Lk = Ls that appear in both unions are cubes and then 5Lk ⊂ Qi ∩Rj .

5.2. Reduction to a deeply diagonal term

Using the above θ-surgery we want to reduce to a term of the form 〈T (1HuQ,i), 1HvR,j〉,
where H = Lk = Ls is a cube with 5H ⊂ Qi ∩ Rj and #H ≤ C(θ). This term will then be
split using a different σ-surgery (at the end one will first choose θ small, and then σ = σ(θ)

small depending on θ). But let us first do the actual reduction.
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We write

〈T (1QiuQ,i), 1RjvR,j〉 =
∑

β∈{sep, ∂}

〈T (1QiuQ,i), 1Rj,βvR,j〉+
∑

α∈{sep, ∂}

〈T (1Qi,αuQ,i), 1Rj,∆vR,j〉

+
∑
k 6=s

〈T (1LkuQ,i), 1LsvR,j〉+
∑
k=s

〈T (1LkuQ,i), 1LkvR,j〉.

If α = sep or β = sep or k 6= s, then the corresponding pairing is seen to be dominated by

C(θ)‖1QiuQ,i‖L2(µ)‖1RjvR,j‖L2(µ)

using the size estimate of the kernel K together with the fact that the sets are separated
by c(θ)`(Qi) ∼ c(θ)`(Rj). In the case k 6= s a further large dependence on θ is gained from
the summation

∑
k 6=s 1.

The sum of the cases α = ∂ and β = ∂ is dominated by

‖T‖(‖1Qi,baduQ,i‖L2(µ)‖1RjvR,j‖L2(µ) + ‖1QiuQ,i‖L2(µ)‖1Rj,badvR,j‖L2(µ)].

All in all, we have the estimate

|〈T (1QiuQ,i), 1RjvR,j〉| ≤ C(θ)‖1QiuQ,i‖L2(µ)‖1RjvR,j‖L2(µ)

+ ‖T‖‖1Qi,baduQ,i‖L2(µ)‖1RjvR,j‖L2(µ)

+ ‖T‖‖1QiuQ,i‖L2(µ)‖1Rj,badvR,j‖L2(µ)

+
∑

H:=Lk=Ls

|〈T (1HuQ,i), 1HvR,j〉|.

We will now fix one such H and estimate |〈T (1HuQ,i), 1HvR,j〉| with a bound independent
of H.

5.3. Second surgery: the σ-surgery

We continue to split

〈T (1HuQ,i), 1HvR,j〉 = 〈TuQ,i, 1HvR,j〉 − 〈T (1Rn\5HuQ,i), 1HvR,j〉
− 〈T (15H\(1+σ)HuQ,i), 1HvR,j〉 − 〈T (1(1+σ)H\HuQ,i), 1HvR,j〉.

We have that

|〈TuQ,i, 1HvR,j〉| ≤ ‖1QiTuQ,i‖L2(µ)‖1RjvR,j‖L2(µ).

Using separation and the fact that 5H ⊂ Qi ∩Rj we see that

|〈T (15H\(1+σ)HuQ,i), 1HvR,j〉| ≤ C(σ)‖1QiuQ,i‖L2(µ)‖1RjvR,j‖L2(µ).

Moreover, there holds that

|〈T (1(1+σ)H\HuQ,i), 1HvR,j〉| ≤ ‖T‖‖1∂D∗gen(Qi)−j(θ)
(σ)1QiuQ,i‖L2(µ)‖1RjvR,j‖L2(µ).

The term 〈T (1Rn\5HuQ,i), 1HvR,j〉 still requires further splitting. We write

〈T (1Rn\5HuQ,i), 1HvR,j〉 = 〈T (1Rn\5HuQ,i)− 〈bT
∗

H /µ(H), T (1Rn\5HuQ,i)〉, 1HvR,j〉

+ 〈bT
∗

H , T (1Rn\5HuQ,i)〉
1

µ(H)

∫
H

vR,j dµ.
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5.5. L. – There holds that

|〈T (1Rn\5HuQ,i)− 〈bT
∗

H /µ(H), T (1Rn\5HuQ,i)〉, 1HvR,j〉|
. ‖1QiMµuQ,i‖L2(µ)‖1RjvR,j‖L2(µ).

Proof. – Let Φ := T (1Rn\5HuQ,i). We need to bound∫
|1H(x)vR,j(x)||Φ(x)− 〈bT

∗

H /µ(H),Φ〉| dµ(x).

For x ∈ H we have that

|Φ(x)− 〈bT
∗

H /µ(H),Φ〉| ≤ 1

µ(H)

∫
H

|bT
∗

H (y)||Ψ(x)−Ψ(y)| dµ(y).

But for x, y ∈ H there holds that

|Ψ(x)−Ψ(y)| . `(H)α
∫
|x−z|≥c`(H)

|uQ,i(z)|
|x− z|m+α

dµ(z) .MµuQ,i(x).

Therefore, for x ∈ H we have that

|Φ(x)− 〈bT
∗

H /µ(H),Φ〉| .MµuQ,i(x)

using which we see that∫
|1H(x)vR,j(x)| |Φ(x)− 〈bT

∗

H /µ(H),Φ〉| dµ(x) .
∫
|1H(x)vR,j(x)||1H(x)MµuQ,i(x)| dµ(x)

. ‖1QiMµuQ,i‖L2(µ)‖1RjvR,j‖L2(µ).

We are left to deal with∣∣∣〈bT∗H , T (1Rn\5HuQ,i)〉
1

µ(H)

∫
H

vR,j dµ
∣∣∣ ≤ |〈bT∗H , T (1Rn\5HuQ,i)〉|µ(H)−1/2‖1RjvR,j‖L2(µ).

Our final splitting is as follows:

〈bT
∗

H , T (1Rn\5HuQ,i)〉 = 〈bT
∗

H , TuQ,i〉 − 〈bT
∗

H , T (15H\(1+σ)HuQ,i)〉

− 〈bT
∗

H , T (1(1+σ)H\HuQ,i)〉 − 〈bT
∗

H , T (1HuQ,i)〉.

We have that

|〈bT
∗

H , TuQ,i〉| ≤ ‖bT
∗

H ‖L2(µ)‖1QiTuQ,i‖L2(µ) . µ(H)1/2‖1QiTuQ,i‖L2(µ).

Using again separation and the fact that 5H ⊂ Qi ∩Rj we see that

|〈bT
∗

H , T (15H\(1+σ)HuQ,i)〉| ≤ C(σ)‖bT
∗

H ‖L2(µ)‖1QiuQ,i‖L2(µ)

. C(σ)µ(H)1/2‖1QiuQ,i‖L2(µ).

Next, notice that

|〈bT
∗

H , T (1(1+σ)H\HuQ,i)〉| ≤ ‖T‖‖bT
∗

H ‖L2(µ)‖1∂D∗gen(Qi)−j(θ)
(σ)1QiuQ,i‖L2(µ)

. ‖T‖µ(H)1/2‖1∂D∗gen(Qi)−j(θ)
(σ)1QiuQ,i‖L2(µ).

Finally, we have that

|〈bT
∗

H , T (1HuQ,i)〉| = |〈T ∗bT
∗

H , 1HuQ,i〉| ≤ ‖1HT ∗bT
∗

H ‖L2(µ)‖1QiuQ,i‖L2(µ)

. µ(H)1/2‖1QiuQ,i‖L2(µ).
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Collecting the estimates we see that our σ-surgery yields the final bound

|〈T (1HuQ,i), 1HvR,j〉| ≤ C(σ)‖1QiuQ,i‖L2(µ)‖1RjvR,j‖L2(µ)

+ C‖1QiMµuQ,i‖L2(µ)‖1RjvR,j‖L2(µ)

+ C‖1QiTuQ,i‖L2(µ)‖1RjvR,j‖L2(µ)

+ C‖T‖‖1∂D∗gen(Qi)−j(θ)
(σ)1QiuQ,i‖L2(µ)‖1RjvR,j‖L2(µ).

5.4. The final estimate through averaging

Combining the different surgeries we see that

|〈T (1QiuQ,i), 1RjvR,j〉| ≤ C(θ, σ)‖1QiuQ,i‖L2(µ)‖1RjvR,j‖L2(µ)

+ ‖T‖‖1Qi,baduQ,i‖L2(µ)‖1RjvR,j‖L2(µ)

+ ‖T‖‖1QiuQ,i‖L2(µ)‖1Rj,badvR,j‖L2(µ)

+ C(θ)‖1QiMµuQ,i‖L2(µ)‖1RjvR,j‖L2(µ)

+ C(θ)‖1QiTuQ,i‖L2(µ)‖1RjvR,j‖L2(µ)

+ C(θ)‖T‖‖1∂D∗gen(Qi)−j(θ)
(σ)1QiuQ,i‖L2(µ)‖1RjvR,j‖L2(µ).

Using the Cauchy-Schwarz inequality, the property #{Q : Q ∼ R} . 1, the inequali-
ties (5.1) and (5.2), the independence of the different dyadic grids DT , DT

∗
and D∗, and the

fact that e.g., P D∗(x ∈ ∂D
∗

k (σ)) ≤ c(σ) for every point x and every generation k ∈ Z, we see
that

E DTE DT∗E D∗
∑
R

∑
Q:Q∼R

AQ,i|〈T (1QiuQ,i), 1RjvR,j〉|BR,j

≤ [C(θ, σ) + c(θ)‖T‖+ C(θ)c(σ)‖T‖]µ(λQ0).

Here limp→0 c(p) = 0. Let υ > 0 be small enough. First choose θ so small that c(θ) ≤ υ.
Then choose σ so small that C(θ)c(σ) ≤ υ. We have proved the diagonal bound

E DTE DT∗
∑
R

∑
Q:Q∼R

AQ,i|〈T (1QiuQ,i), 1RjvR,j〉|BR,j ≤ [C + 2υ‖T‖]µ(λQ0).

We have completed the proof of our main theorem, Theorem 1.1.
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