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LOCAL Tb THEOREM WITH L? TESTING
CONDITIONS AND GENERAL MEASURES:
CALDERON-ZYGMUND OPERATORS

BY MIcHAEL T. LACEY AND HENRI MARTIKAINEN

ABSTRACT. — Local Tb theorems with L? type testing conditions have been studied widely in the
case of the Lebesgue measure. Such conditions are tied to the scale of the given test function’s support-
ing cube. Until very recently, local T'b theorems in the non-homogeneous case had only been proved as-
suming scale invariant (L> or BMO) testing conditions. Moving past such strong assumptions in non-
homogeneous analysis is a key problem. In a previous paper we overcame this obstacle in the model
case of square functions defined using general measures. In this paper we finally tackle the very de-
manding case of Calderén-Zygmund operators. That is, we prove a non-homogeneous local T'b theo-
rem with L? type testing conditions for all Calderén-Zygmund operators. In doing so we prove general
twisted martingale transform inequalities which turn out to be subtle in our general framework.

RESUME. — Les théorémes T'b avec conditions de type L? pour une famille de fonctions de test
indexées par les cubes ont été étudiés abondamment dans le cadre de la mesure de Lebesgue. Jusqu’a
trés récemment, les théorémes 7'b locaux dans les espaces non doublants ont été obtenus sous des
conditions invariantes par transformation affine (L°° ou BMO). Se dispenser de cette invariance
complique la tache. Dans un article précédent, nous avons développé une méthode permettant de
surmonter cette difficulté dans un cas modéle de fonctions carrées définies a I’aide de mesures générales.
Dans cet article, on s’attaque au cas des opérateurs de Calderén-Zygmund. Plus précisément, on
démontre un théoréme T'b local dans le cas non doublant avec des conditions de test L? pour tous
les opérateurs de Calderon-Zygmund. Un ingrédient essentiel est le controle d’une transformation de
martingale tordue qui s’avere subtile dans notre cadre.

1. Introduction

In this paper we prove the boundedness of a Calderén-Zygmund operator T on L2 (1),
where 1 can be non-homogeneous, assuming only the existence of certain non-degenerate
test functions satisfying local L? conditions. For a given test function bg, associated with
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58 M. T. LACEY AND H. MARTIKAINEN

a cube @ C R”, the assumptions concern only the scale of @ (unlike, say, with L*> or
BMO conditions). This is a key difficulty made much harder by the fact that we allow
general measures. Indeed, such local T'b theorems with L? testing functions are known in
the homogeneous case, but proving such a result in the non-homogeneous setting is delicate.
Here we are able to do this for the first time. The proof requires extensive development and
usage of the techniques of non-homogeneous and two-weight dyadic analysis.

Let us begin by introducing the setting and formulate our main theorem. We assume that
u is a measure on R™ satisfying only the size condition p(B(z,r)) < r™ for some m. We
consider Calderon-Zygmund operators T in this setting. First of all, this means that thereis a
kernel K: R™ x R\ {(z,y) : * = y} — C for which there holds for some C' < coand a > 0
that

K@yl < —o—  aty,
lz —yl
1ANe%
K(e9) = K@) < CEtle, o=yl 2 2o —a'|
and
K(,9) = Ko < CPtle, o=yl > 2o/

Secondly, we demand that 7" is a linear operator satisfying the identity
f@ = [ K@@, o gmir

In this paper we assume a priori that T': L?(u) — L?(u) boundedly. We are after a new quan-
titative bound for ||T'||, independent of the a priori bound. Such practice is standard, and one
can deduce to this situation by, for example, considering suitably truncated operators.

We are ready to state our main theorem—a non-homogeneous local T theorem
with L? type testing conditions for all Calderdén-Zygmund operators.

1.1. THEOREM. — Suppose that T: L?*(u) — L?(u) is a bounded Calderdén-Zygmund
operator with an adjoint operator T*. We assume that to every cube QQ C R™ there is associated
two functions bg and bg satisfying that

1. spt by, C Q and spt bg* cQ;
Nfo ¥ du| 2 (@) and | [ du| 2 (@)
||b ||L2(;4) Q) and IIbES %Z(u) S (@)
4 1QTHY s ) S 1(Q) and 1TV |22,y S 1(Q)
Then we have that |T|| < 1.

w N

Recently in [11] we proved a version of this theorem for square functions defined in the
upper half-space. While of independent interest because of the genuinely different context,
it is a result with a much simpler proof than the current one. Indeed, the square functions
essentially provide a model framework where many technicalities of the Calderon-Zygmund
world do not arise. One of them is that the diagonal is completely trivial for square functions
while extremely delicate for Calderén-Zygmund operators. Another difference is that the
recent Whitney averaging identity over good cubes of Martikainen and Mourgoglou [15]
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LOCAL T THEOREM WITH L? TESTING CONDITIONS AND GENERAL MEASURES 59

makes certain probabilistic arguments easy even in the local T'b situation. A critical difference
is the fact that the paraproduct operator is much simpler in the square function case.
Before going more to the history and context, we want to discuss the proof of our main
theorem, Theorem 1.1, and the references most related to our techniques. The proof is
quite simply begun by reducing to the non-homogeneous 7'1 theorem of Nazarov-Treil-
Volberg [17]. More specifically, a local formulation following directly from this is used:

T
T <CtCo sup  sup  LLL9
QoCR" f.g M(AQo)
Qo cube | f|,|g|<1q,

Here A > 1 is some fixed large constant. This reduces things to proving that

(Tf, 9)] < (Cs + | TIHr(AQo),

where ¢ can be taken to be arbitrarily small. Two independent random cubes Q* and R*
for which Q¢ C @* C AQp and @y C R* C M@y are then used to expand the fixed bounded
functions f and g dyadically in to martingale differences adapted to the local test functions.

We now come to the essentials. To handle the complicated paraproducts we require a non-
homogeneous version of the twisted martingale difference inequalities of Auscher-Routin [2]
or Lacey-Vahiakangas [13]. This is Proposition 2.4 of our current paper—a result of indepen-
dent interest. Indeed, the proof of Proposition 2.4 turns out to be a demanding task. The key
reason lies in the fact that even if we have performed a stopping time argument which gives us
that a fixed test function b%, behaves nicely on a cube Q i.e., |, 0 1bL12 dp < (@), we cannot
say much what happens in the stopping children of Q. That is, in a stopping child Q' of Q we
cannot use the simple argument

/Ib”du</|b Pdp S (@) S (@)

which would only be available if © would be doubling.

Instead, the proof of Proposition 2.4 becomes about controlling maximal truncations of
certain half-twisted martingales } _, e Dq. Even if we are interested in an L? result, we find
it convenient to prove a weak type bound for every p € (1, 00) and interpolate this (the half-
twisted martingales will be LP bounded for every p unlike the original twisted martingales).
But such a weak type bound can be reduced to a testing condition—an idea originally by
Sawyer [18], but which can essentially also be found from e.g., [9] by Hytonen et al. The
verification of this testing inequality is based crucially on controlling > 0 €@Dqlin LP. This
control is proved by reducing to the case p = 1 using a non-homogeneous John-Nirenberg
principle formulated at least by Lacey-Petermichl-Reguera [12] and Hytonen-Pérez-Treil-
Volberg [8].

Proposition 2.4 is formulated in such a way that essentially the stopping generation is
fixed. For this reason we perform an argument which gives that in the expansion of the
pairing (T'f, g} we can use only finitely many generations of stopping cubes. This follows
from the Carleson property of the stopping cubes by noticing that the large generations
provide only an absorbable error. The fact that the functions f and g are bounded plays a
role in this reduction, and also later in the proof when we prove the boundedness of a certain
paraproduct.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



60 M. T. LACEY AND H. MARTIKAINEN

After this, the pairing is split in to standard pieces: separated, nested, diagonal. The good-
ness is inserted only to the nested sum—an idea already used by Hytonen-Martikainen [7].
The point of adding the goodness like this is to guarantee the collapse of the paraproduct.
The crucial thing is that the paraproduct arising from this sum can now be handled using an
argument by Lacey-Vahidkangas [14], the non-homogeneous twisted martingale difference
inequality proved before, and the reduction to finitely many generations of stopping cubes.
The final part of the proofis to deal in this non-homogeneous setting with the extremely deli-
cate surgery of the diagonal using only L? test functions.

We have given the technical foundation and references related to these latest tech-
niques. But let us now discuss the history and overall context of the problem. The first
local T'b theorem, with L control of the test functions and their images, is by Christ [4].
This was proven for doubling measures. Nazarov, Treil and Volberg [16] obtained a non-
homogeneous version of this theorem. The point compared to the global Th theorems is
as follows. The accretivity of a given test function bg is only assumed on its supporting
cube Q ie., | [, o b du| Z p(Q). While in a global Th one needs a function which is simul-
taneously accretive on all the scales. But the remaining conditions are still completely scale
invariant: bg € L*(u) and Tbg € L™(u) (or Thy belongs to some non-homogeneous
BMO space). This scale invariance of the testing conditions is the main thing one wants to
get rid of.

The idea of using (in the homogeneous situation) just local LP type testing conditions
was introduced over ten years ago by Auscher, Hofmann, Muscalu, Tao and Thiele [1].
However, their proof works only for the so-called perfect dyadic singular integral operators.
The assumptions are of the form [, [b5[P < |Q|. [, [¥3]7 < QI [, |Tbé2|q/ < |Q| and
Jo |T*b2Q|P' < |@Q|, where s’ denotes the dual exponent of s and 1 < p,q < co. Our interest
here is solving the long open problem of extending to general measures. That is, we study
the p = ¢ = 2 case for all Calderén-Zygmund operators in the non-homogeneous setting.
Even in the homogeneous setting extending the result of [1] to general Calder6n-Zygmund
operators is complicated.

Hofmann [6] was able to extend to general Calderon-Zygmund operators but at the price
of needing a stronger set of assumptions: [, [bg|° < Q. [, [B3|° < QI [, T4 < |Q|
and [ 0 IT*b3|* < |Q| for some s > 2. Auscher and Yang [3] established the theorem for
standard Calderén-Zygmund operators in the case 1/p + 1/¢ < 1 (and thus in the case
p=q=2).

We mention that there is also the question of considering the case 1/p + 1/q > 1. While
general exponents are not part of this paper, it has been an extremely active area in the
homogeneous world. Hofmann [5] has given a full solution in the case of square functions.
In the Calderén-Zygmund world the work of Auscher and Routin [2] continued to shed
some light to the general case of exponents, however, not giving a definite answer and
involving additional technical conditions. The (almost) full solution is given by Hyténen and
Nazarov [10].

1.1. Notation

Consider a dyadic grid 9 in R™. For Q € 9 we use the following notation:
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LOCAL T THEOREM WITH L? TESTING CONDITIONS AND GENERAL MEASURES 61

£(Q) is the side length of Q;

ch(Q)={Q € D: Q' CQ, £Q") =£(Q)/2};

gen(Q) is determined by £(Q) = 2-&"(Q);

Q™ € P is the unique cube for which £(Q*)) = 2F4(Q) and Q c Q.

The average of a function f with respect to the measure p on a set A is denoted
(f)a=wu(A)~! [, fdu. We also use the pairing (f,g) = [ fgdpu.

The notation f < gisused to write f < Cg for some constant C. This implied constant C
is always allowed to depend on the dimension n of the space R"™, the upper bound m for
the dimension of the measure p, the kernel constants of 7" and on the implied constants of
Theorem 1.1. If we do some LP estimates we also let the constants depend on p. However,
when we need to track the dependence on some parameter s, we usually explicitly write C'(s)
for a large constant and ¢(s) for a small constant. In Subsections 2.3 and 2.4 we record the
other parameters that we in some cases may absorb to the implied constants.

Acknowledgements

We thank Pascal Auscher for helping us with the French version of the abstract.

2. Beginning of the proof

Let A > 1 be a fixed large constant. We begin by noting that by [17] there holds that

T
IT|| < C1+ Cs sup sup w

QoCRn f.9 (A Qo) '
Qo cube |fl,|g|<1q,

Let us fix a cube Q)9 C R™ and functions f, g such that | f|, |g| < 1¢,. It suffices to prove that

(T'f,9)] < (C5 + ¢l TI)) (A Qo),
where c is so small that Coe < 1/2.

For small notational convenience we assume that cg, =0 (that is, Qo is centred
at the origin). Let N € Z be defined by the requirement 2V~ < £4(Qq) < 2N—2.
Consider two independent random squares Q* = Q*(w) = w + [-2V,2M)" and
R* = R*(w') = w' + [-2V,2N)", where w,w’ € [-2N~1 2N¥~1)" The cubes Q* and R*
are taken to be the starting cubes of the independent grids 9T and 97 (only the cubes
inside @* and R* are included in these grids). The probability measure is the normal-
ized Lebesgue measure on the square [—2V~1 2N—1)?  Furthermore, note that always
spt f,spt g C a@Q* N aR* with some absolute constant o < 1. There also holds that
Q* U R* C AQq choosing ) large enough.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



62 M. T. LACEY AND H. MARTIKAINEN

2.1. Martingale difference operators

Let M, h(z) = sup,-g m fB(%T) |h| dp be the centred maximal function. This
is an L?(u) bounded operator. For a small convenience we may assume the normalization
(b4 = 1= (b )q. Let also A denote the constant for which 11132,y + 165112 Tam < An(Q)
and B the constant for which ||1QTb 132 T2 T ||1QT*b ||L2(u < BH(Q).

Let F¢ o+ consist of the maximal cubes @ € o, @ C @*, for which at least one of the
following three conditions holds:

L (b5 )l < 1/2;
2. (| Mub5. 1% > 1642 M|1%;
3. (|TbL,|?)q > 16AB.

Next, one repeats the previous procedure by replacing @Q* with a fixed Q@ € & 22*. The
combined collection of stopping cubes resulting from this is called & é This is continued
and one sets S g« = U;’io 7. . Finally, for every Q € T, Q C Q*, welet Q* € J g« be
the minimal cube S € ¥ g« for which @ C S.

Similarly, let & }%* consist of the maximal cubes R € @T*, R C R*, for which at least one
of the following three conditions holds:

L |(bh)rl < 1/2;
2. (ML, P R > 16A%|| M, |1%;
3. (|T*vE, 1> R > 16AB.

We define & g+ and R* analogously as above.

The following results are proved essentially in [11].
2.1. LEMMA. — For F € . there holds that

1
> wS) < (1- g ) = TaF), <L
SeWQtl
SCF

2.2. COROLLARY. — We have the following Carleson estimate:

Yo uF) ), Qe Qcqn

FeJ g
FCQ

IfQ e 9",Q c Q*,and h € L} (), we define the twisted martingale difference
operators

(Mo 7 <h>Q T
Qech(Q) (@)@

The operators Ag, R € T , R C R*, are analogously defined.
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LOCAL T THEOREM WITH L? TESTING CONDITIONS AND GENERAL MEASURES 63

2.2. General twisted martingale transform inequalities

Most of the time we can make do with the following square function estimate.
2.3. LEMMA. — Suppose |h| < 1. Then there holds that
Z ||AQh||2L2(#) S u(@F).

QepT

Proof. — The proof is like that of Proposition 2.5 of [11] - except easier because of the
assumption |h| < 1. O

But for a few key times (in connection with paraproducts) we absolutely depend on the
variant presented in the next proposition. It is much stronger in many sense but requires that
we set Q¢ = F for afixed F' € - Itis not a triviality to then sum over all the generations
of stopping cubes F'. However, this is an issue that we do not care about since our proof of the
local T'b theorem incorporates a reduction to finitely many stopping generations. So we could
use the bound that follows in every situation. But just to stress that this stronger estimate
and the reduction to finitely many generations is really needed only when dealing with the
paraproduct, we mostly use the above bound.

We shall use the following notation. If F' € ¥ g+, we let j € N be such that F' € gjé* and

deﬁneﬂ:ﬂF:{Heggll: H C F}.

2.4. PROPOSITION. — Suppose F € o« and h € L*(p). Suppose also that we have
constants eq, Q € D*, which satisfy |eq| < 1. Then there holds that

H Z GQAQh‘
Qep”

Q=F

2
< |1AlZ 2,
I L1

Proof. — Consider a cube @ € 9" for which Q* = F. We define
(W (b
DQh = Z [ Q — Q :|1Q

T T
Q' ech(Q\H <bF>QI <bF>Q

Our aim is to reduce to these operators. However, for technical reasons certain maximal
truncations of them will be needed. Anyway, begin by noticing that

2
H E 6QAQh~ IF\U;{‘
T

2
ey H > GQDQh~551F\Uﬂ‘
P qeot

2
0o L2 ()
Qe=F Qe=F
2
S| T wpall,,
E:; T L
QeD
Q=F
since bL 1\ € L ().
We are reduced to controlling
2
eglAph -1 ‘ .
Tl 5 wsanl,
eH QeoT

HM)cCQCF
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64 M. T. LACEY AND H. MARTIKAINEN

We write
h) g
Z GQAQh . 1H = €yQ) (<h>Hb71; - <<bT>>Hlb£1H) + Z EQDQh . b?lH.
Qea” FIH® QeaT
HMcCQCF H®CQCF
We have that

S leaw PO IR o 5 3 [ 1A die < [,

Hedt Hed
Next, notice that

h) g |?
> |6H<1>I2|'<<,)T>>H'|2/ BEPdu S S 1) oo 2 / 6L du
Hew P urow? Ju <
= > [(helag S IIAlIZs ),
Qep”
since
ag = ZQ ech(Q)mﬁfQI|b | du, ifQ* =F,
0, otherwise,

is a Carleson sequence. Let us show this fact now.
To this end, fix a cube R € 9”. We have that

Sag= Y Z / W au< [ W

QCR QCR Q’'ech(Q
Qa

We can assume that R C F' and that there is a Q C R for which Q¢ = F'. But then R* = F

and [, [b%1* du S w(R) proving the Carleson property.
So we are to deal with

2

Z H Z 6QDQh~b£1H‘ 2 .

Hew Qcor (w)
H®cCQCF

> egDgh

But notice that

is constant on H(). We can then estimate

Q:H?)CQCF
S X apar),,

A
Hedt Q:H®PCQCF

=X X <aban),,
HeH QepT

2
/|b£2
H

Qe=F
2(Q)>L(HWD)
2
<> (sw| X cobanl), | [ 10EPau
e>0 H® H
Hed QepT
Qe=F
L(Q)>e

4¢ SERIE - TOME 49 — 2016 — N° 1



LOCAL T THEOREM WITH L? TESTING CONDITIONS AND GENERAL MEASURES 65

2

= Z <sup Z eQDQhDZOzR,SHsup Z eQDQhH

L2 ()

regr 0 QcaT >0 ocaT (w)
Qe=F Q*=F
2Q)>e 2Q)>e

The conclusion is that the proposition follows from the L?(u) bound of these maximal
truncations. But this bound follows from Proposition 2.12. O

To control the maximal truncations we need some heavier tools. For the reader’s conve-
nience we formulate and prove the needed principles exactly. The first is a reduction to a
testing condition (a dyadic adaptation of Sawyer’s idea [18] and also essentially contained
in [9]). The second is a non-homogeneous John-Nirenberg principle (essentially found in [12]
and [8]).

Suppose that for every @ € D" we are given an operator A satisfying:

o Aph = ZQ’quh(Q) cQ/(h)lQT/ for some constants cg (h);
o [Agh| < M?" h, where M?" h(z) := supge gr 1r(z)u(R) " [}, |h] dp.
We set

Ach:= > Agh, €>0,

QepT
2Q)>e

Ayh :=sup|Ach|
e>0

For P € 97, let us define

APh= )" Aqh, e>0,

QepT
QCP
£(Q)>e

A;h :=sup |AFh).
e>0

The following lemma states that a certain testing condition for maximal truncations
implies an estimate LP(u) — LP*°(u) for the maximal truncations.

2.5. LEMMA. — Let p € (1,00). We assume that for every Q € D" and h € LP(y) there
holds that

2.6) | AZhan S WGl oi(@F
Then for every h € LP(u) there holds that || Axh| rr.(u) S 1Bl Lr(u)-

Proof. — We assume qualitatively that Ag # 0 for only finitely many @ € " . This gives
us the a priori information || Axh|| 1p.c () < oo for h € LP(p).
Let A > 0 and set 2y := {Axh > A}. Let M), consist of the maximal Q) € 9" for which
Q C Q,. Itisclear that Q) = UQeMA Q, since for every x € Q) thereisa Q € 9" such that
T € Q C Q.
Let us set
HA(Q) = QN {Agh >4\ M7 R <)}, Q€ M,.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



66 M. T. LACEY AND H. MARTIKAINEN

We have that

Qnc |J HAQ UMY h> A}
QeMy

so that we have for any n > 0 that

Nu(Qan) <N D p(HAQ) + 1M RIY,
QEM)

<N Y uHAQ) + () + ClAIY, -
QeMy
B(HA(Q))>n1(Q)

LetQ € My and z € Q. Let z € Q) be such that Ayh(z) < \. Let e > 0 be arbitrary. If
£(Q) > € we have the following identity

Ach(z) = A9h(z) + > Agh(z)+ > Agh(2).
RePT RepT
LQ)<E(R)<4£(Q) 4(Q)<L(R)

We get the bound that
|Ach(z)| < AQh(z) +2M7" h(z) + Agh(2).
It is clear that this bound holds for every e > 0. Therefore, we have that
AN < Ayh(z) < AZh(z) +3), Q€ My, z € Hy(Q).
This yields that if @ € M, and u(Hx(Q)) > nu(Q), then there holds that

Q Q
/QA#h dp > /HA(Q) Azhdp > Mu(HA(Q)) = (@)

From this we can conclude that

(u(lQ)/QAghdﬂ)p > P AP, Q € My, p(HA(Q)) > nu(Q).

We can now see using the assumed testing condition that

Wy uHAQ) <P Y Ihlolh e, < Cn PRI,
QGM)\ QGMA
H(HA(Q))>nu(Q)

We have shown that
47PN p(Qan) < C PR, + mAP() + OB -

This yields that
47P||Aghll}

sy < O IRy + DAL ey + ClRI -

Taking n = 477 /2 and using the fact that || A4l 1r. (,) < 0o we get the claim. O

The following two lemmata capture our usage of the non-homogeneous John-Nirenberg
principle.
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LOCAL T THEOREM WITH L? TESTING CONDITIONS AND GENERAL MEASURES 67

2.7. LEMMA. — Suppose that for every P € D there holds that
1AL ey S w(P).
Then for every p € (1,00) and for every P € D" there holds that
IAL1| oy S m(P)VP.

Proof. — Follows from the next lemma by taking pg = Agl/C for a large enough
constant C' > 1. O

2.8. LEMMA. — Assume that for every Q € D" we are given a function g such that
e o= ZQ,eCh(Q) cqr1gr for some constants cgr;
o [logllree(u < 1.

For every P € D" we set

®p :=sup Z ch‘.
e>0 Qe
QCP
LHQ)>e

Suppose that for every P € D there holds that
u({x € P: ®p(z) > 1}) < u(P)/2.
Then for every P € DT and t > 1 there holds that
p({z € P: ®p(x) > t}) <27 ED/24(P).
Proof. — Fix Py € DT . Let R, consist of the maximal R € 9” such that R ¢ P, and
’ Z wQ(x)‘ > 1, z € R.
Q: RCQCPy

The left-hand side is constant on R so this makes sense. Define S1 := (Jgcp, B We have
that:

o u(S1) < u({z € Py: Ppy(z) > 1}) < u(Fo)/2;
o Pplpns, <15

e For R € ®#; and z € R we have that
| > el <2
Q: RCQCPy
For Ry € R, we let %50 consist of the maximal R € 9" such that R C Ry and
Z @Q(x)‘ > 1, z € R.
Q: RCQCRy
Let R := Ug, e, R5° and Sy = Ugrex, BB- We have that:

o u(S2) < p(Po)/4;
o Oplpns, <3;
e For R € R, and = € R we have that

‘ Z @Q(a:)‘ <4.

Q: RCQCPy
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Continue like this. We establish collections ®; and sets S; = Jp, , 1t such that there
holds p(S;) < 279 u(Py) and ®p,1p)\s, < 25— 1. Lett > 1and choose j; € N such that
2j: — 1 <t < 2j; + 1. We have that

u(fe € Py @py(2) > 1)) < u(S;,) < 277 u(Bo) < 27D p(Ry). O

An important tool for us is the following standard maximal truncation estimate for
martingale differences.

2.9. LEMMA. — Suppose we have constants eg, Q € DT, which satisfy leg] < 1. Let
p € (1,00). We have for every h € LP(u) the estimate

sup| > cq Y. [Me — (helle
Y QerT  Qeh(@)
£Q)>e

< p
T LI

Proof. — The claim follows by first using Doob’s inequality and then using Burkholder’s
inequality for martingale transforms. O

We need a version of this where we have removed the stopping children.

2.10. COROLLARY. — Suppose F' € T q-. Suppose also that we have constants €g,
Q € DT, which satisfy leq| < 1. Let p € (1,00). We have for every h € LP(p) the estimate

swp| > o D e~ (Wl
P QesT  Qech(@\

Qe=F

£€Q)>e

< |IAZ,
A LA

Proof. — Notice that

ap| Yoo Y (e - (Mallo @] < X Ihha - (W) uolLa@)
0" hegt  Qrech(Qna He#

Q=F

L(Q)>e€

<23 1u(e)M? h(z).
Hed
But then we have that

p T

swp| 3o Y (e~ ale| |, £ X0 M Al
0" Qeam  Qech(@n W en

Qe=F

£(Q)>e

T
< 1M R, S RN, -
Combining this with the previous lemma we have the result. O

The proof of Proposition 2.12 will be based on a reduction to the testing condition
(Lemma 2.5). However, to verify the testing condition we still require the following lemma.
It is in the proof of this final lemma that the John-Nirenberg type reductions from above are
used.
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2.11. LEMMA. — Suppose F' € Y g«. Suppose also that we have constants eq, Q € ",
which satisfy |eg| < 1. For every p € [1,00) and P € DT there holds that

p

su eDl‘H < u(P).

i ZT elalll],, ~#P)
Qe

a=F,QCP
£(Q)>e

Proof. — By Lemma 2.7 it suffices to prove that for every P € 9" there holds that

/ sup| Y GQDQl‘dM S u(P).
P

>0

Qep”
e=F QCP
2(Q)>e
Let us write
L __1 _ (Fe—0Re  [bre—(brel
(bF)er (bF)e 5% T)o” (WT)or

Define € := eq/(bf)5. Q* = F. Note that |ég| < 1, and then that

Low] ¥ i X (0o - thallo]d

>0 QeaT  @ech@\#
e=F,QCP
L(Q)>e
1/2 ~ T T 2 1/2
<uPy?([[sw] X @ X Who - Ghalle|] )
P e Qew” Q'ech(Q\H
“=F,QCP
£Q)>e

< (PYY2|1pbE L2 S (P).

Here we first appealed to the L? bound for maximal truncations of a martingale difference
(Corollary 2.10). For the last inequality we have the following explanation. It is trivial if
FNP = @orF C P.Otherwise, we may assume that there is a @ for which Q* = F
and Q C P C F. Butthen P* = F.

Next, notice that

/Psup Z o Z [(bF)q — (bE)@)? IQ" dy

2
00 Qegr oeamong R (bR
Qe=F,QCP
(Q)>e
2
s X [ X @he-thoie] des etz suP). O
QeD™ Q'€ech(Q)
Qe=F,QCP
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2.12. PROPOSITION. — Suppose F' € . Suppose also that we have constants €g,
Q € D", which satisfy leg| < 1. Then for every p € (1,00) and h € LP () there holds that

p
sup| 3 oDoh|| S InlL.
Qed™

Lr(p)

e>0
Qo=F
L(Q)>e
Proof. — Fix1 <p< oo, he LP(u)and P € T, By Lemma 2.5 we need to prove that
there holds that

[sw| X coDah|du S Iirlugnt)
P e>0 QE@T
Q*=F,QCP
£(Q)>e

Indeed, then we have the weak type bound for every p and we can interpolate the sublinear
operator to establish the strong type bounds.
We now write

(Mo (Mo _ { (Mo (e }+{<<h>Q’ <h>Q/}

Phle (ke

thle  (Fle

bpler (bk)Q

1
(2.13) = m{@@/ - <h>Q}

(2.14) +{(hq - <h>Q}{<b£1>Ql - <b£>Q}
1) + 0l ~

This leaves us with three terms to control.
Define ég = eq/(bL)g, Q* = F. Note that |ég| < 1. The control of (2.13) goes as

follows:
[sw] ¥ @ ¥ (e~ holio]d
Pex0t geqr Qch(Q\#
Qe=F,QCP
(Q)>e
<lswp| > & > (Mo —(hlle L )M(P)l/"
=00 Qeor Qeh(Q)\H g
e=F, QCP
0Q)>e

S IBLp | Lo uy(P)V7

Here we used Corollary 2.10.
We will then control (2.14). Let us define

gh="Y_ [(he — (helle,
Q’€ch(Q)
where ¢ stands for classical. Notice that

1 1
ASh - Dol = (Mo — (o) _ 1o,
opets X e ey~ o e
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The small point we want to make is that the other martingale can in fact be taken classical,
since it is multiplied with D¢ which is supported on the children of @ which are not in .
Now we have that

1/2 1/2
Y cwngh-Dot|< (X 1agmnP) (X IDe1P)
QepT QepT QepT
Q*=F,QCP Qe=F,QCP
£(Q)>e€

It is enough to note that

1/2 1/2 /
IS 13600m) S 1001) ], 2 e

QeD” Qeo”
Qe=F,QCP

To control the last term we used Lemma 2.11. Indeed, this form follows from it by averaging
over independent random signs +1.

We are left to control the term with (2.15). To control the averages (h)¢ in front, we will
perform a standard stopping time. Let J, = {P}. Let ; consist of the maximal R € T,
R C P, for which (|h|)r > 4(|h|)p. Continuing this in the standard way we get the full
stopping tree J = U _od; ForQ e P", Q c P, we define Q° to be the minimal S € J for
which @ C S. We have that (|h|)o < 4(|h|)q-.

IfQ° = Sweleteg(S) := eQ%. Notice that |eq(S5)| < 4leg| < 1. We then estimate

using the p = 1 case of Lemma 2.11:

/Psup Z Z 6Q<h>QDQ1‘du

e>0 Sed Qe T
Qa:F’ QSZS
£(Q)>e
< Z/sup eQ<h)QDQ1‘d,u= Z(|h|)s/sup‘ Z €q(S)Dgl|du
e>0 0c oT Sed S >0 QG@T
Q*=F,Q°= Q*=F,Q°=
(Q)>e Z(Q)>e
1/p 1/p' ,
<SS (rhsu(S) < (S (RNEuS)) (Do w(S)) T S IhLplnyu(P)
Sed Sed Sed
This completes the proof of the proposition. O

2.16. REMARK. — We only need the following conclusion of Proposition 2.4. If |h| < 1
and S C R" is an arbitrary set, then there holds that

2
> eQAQ]Lz()—H > cofolisnrh)],, SuSNP).
QepT:Qcs QeDdT:QcCSs .
Qe=F Qe=F
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2.3. Further reductions

We now expand (see Proposition 2.8 of [11])
f=2 Aof+{fa-bp-
QeD™

and

> Arg+{g)r-bE-
RepT™"

If Q € 9" is such that Q@ € 77, we define B(Q) := j. Let 8 > 0 be a large parameter (we
shall fix it momentarily). We have

(Thal<| Y @afha)|+| X (T(@af),g)|+ (V5. ).
Qep” Qep”
B(Q)I<B B(Q)=8

Recall that our functions f and g satisfy | f|, |g| < 1g,. Notice that

| Y (Taeh9)| < ZHTHH > Ao

Lo )||9”L2(u)

QeT Fegi,. QefZ)
B(Q)>p Qo=
1/2
< |IT)1(@ 1/22( H Z Qf)LQ( )
=8 Fe]J .

Qa

SITI@) 2 Y (Y u(F))” 2

Jj=8 Fegg*
< IT)1(Q0) 2D - 72 (@Q*)2 < 7872 || T || (A Qo)
=8
and [(Tb5., 9)| < [[1g-TbG- |l 2w llgll L2y S 1#(AQo)-

Next, we have

> Tefha) = Y Y (T(@ah) A +(T( Y Aof), > Arg)

QeaT QepT RepT" QeoT ReT”
B(R)<B B(Q)<B B(R)<B B(R)<PB B(R)=B
+ g (£ 1m TR — () (T( Y Aof),bE)
QepT
B(Q)>6

— (g (9) R+ (TbG-, bF2).-
Again, there holds that

(T( X 2ef), X Arg)| S72ITIROQ)

QepT RepT™
B(Q)<B B(R)>p
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and

(@r(T( X Aaf).bE )| S P RITIHOR).

QeT
B(Q)=pB

Also, we have that |(g) g (f, 1r-T*b%.)| < u(AQo).
The pairing (T3, b%.) is trickier. Let u > 0. We estimate

N6 b5 < 110~ T65. o 185 1220 + ITIIG- 2 Lasrom - B ez
C(u)

+ 05 (I (@) d(y) d(e)
R\ (1+u)Q~ Jo+ L(Q*)™/2U(R*)m/2
< C(w)p(AQo) + IT11(AQ0) " * 11 (14w \@- bR- | 20 -
Notice that with a fixed w’ we have that
« . 1/2
Ew”l(l—i-u)Q*\Q*b}:g* ||L2(#) < (/R* Pw(.77 S (1 + 'U,)Q* \Q*)|bT* (x)| d,u(x))

< c(u)n(AQo)"?,

where c¢(u) — 0 when u — 0.

The conclusion of this subsection is that

S (T(Aqf), Arg)

QedT RepT™
B(Q)<BB(R)<B

+ C(w)u(AQo) + c(B)I T 1(AQo) + c(w)[| T[] #(AQo),

where ¢(8) — 0 when 8 — 0 and ¢(u) — 0 when u — 0. We now fix 8 and u to be so small
that (¢(8)+c(u))Cs < 1/4.In the sequel some estimates will depend on the fixed parameter (3
but this is no longer a concern (and the dependance will not be tracked). We may now focus
on proving that

|<Tf» |<Eww’

SN (T(Agf), Arg)| < (Cu+EITINOQ),
QepT RepT”
B(Q)<B B(R)<B

ww’

where ¢ is so small that Co¢ < 1/4.

2.4. Splitting of the summation

We set v = a/(2m + 2a), where o > 0 appears in the kernel estimates and m appears
in u(B(z,t)) < ™. We also let » > 0 be a large constant that we shall fix later. We will also
focus on the part of the summation where £(Q) < ¢(R). We will simply split this sum in to
three standard pieces:

* Q:4(Q) < L(R)and d(Q, R) > L(Q)"(R)'™7;
o Q:0(Q) <27 "(R) and d(Q, R) < £(Q )M(R)
o Q:27"U(R) < {(Q) < £(R) and d(Q, R)SK(Q)W( )
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We call the first sum the separated sum, the second sum the nested sum and the last sum the
diagonal sum. Here the term nested is the most cryptic, but will be justified using probability
by introducing good cubes to the second sum in a specific way (like in [7]).

In the next section we will prove that

> > (T(Aqf), Arg)| < 1(AQo)-

RepT™  QeDT:B(Q)<B
B(R)<B £(Q)<£(R)
d(Q,R)>£L(Q) L(R) 1~

In a section after that we will show that

Buw| Y > (T(AqQf), Arg)| < Cp(AQo) + c(r)||T[|1(AQ0),

Re9™"  Qe?":8(Q)<B
B(R)<B  £(Q)<2-"L(R)
d(Q,R)<L(Q)YE(R)—

where c¢(r) — 0 as r — 0. We may then fix the parameter r at this point of the argument to
be so small that Cyc(r) < 1/16. The estimates of the last sum may depend on r, but this is no
longer a concern (and the dependance will not be tracked). In the last section we will prove
that

Euw Y. > (T(Aqf), Arg)| < Cr(AQo) + &[T || n(AQu),

RedT"  Qed":B(Q)<p
B(R)<B 2-m¢(R)<L(Q)<L(R)
d(Q,R)<L(Q)VE(R)—

where éCy < 1/16. Combining with the symmetric argument for the case £(Q) > ¢(R) this
proves our main theorem.

3. The separated sum
If£(Q) < £(R) and d(Q, R) > £(Q)"¢(R)'~", then
(T(Aqf), Arg)| S AQrllAqfliL2(llArYI L2 (),

where

a/2 a/2
o Ry Q) uR)

D(Q, R) := Q) + £(R) + d(Q, R).
Moreover, by [17] this £2 estimate holds

ZAQR&BQZJR S (Z )1/2(21/3)1/2.

QR Q

AQR =

Therefore, we have that

) S rean snl 5 (S8l ) (S 12nglag)
R

Re9™"  QeDT:B(Q)<B
B(R)<B £(Q)<e(R)
d(Q,R)>£(Q)V£(R)' —

S (@) P u(R*)? < p(AQo).
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4. The nested sum

We now introduce the good and bad cubes to the argument. This is a key technique of
non-homogeneous analysis and is originally by Nazarov-Treil-Volberg [17]. However, due
to technical reasons we need to insert them to the argument more in the spirit of [7]. In
particular, this trick will give the nested structure.

Define @gad, 4 to be the collection of those cubes @ € 9" which are bad with respect
to some DT -cube of side length A or larger. We define that this demands that there
should exist a cube S € @7 for which £(S) > A and d(Q,sk S) < £(Q)74(S)1~7, where
sk S 1= Ugreen(s) 05" Let @good’ 4 be the collection of those Q € 9" which are good with
respect to all 9T -cubes of side length A and larger. This means that for every S € 97" for
which £(S) > A there holds that d(Q, sk S) > £(Q)"¢(S)1 .

4.1. REMARK. — Notice carefully the usage of the words some and all above.

Let us write

Z Z <T(AQf)7 ARrg) = Sgood t Sbads
Re9T"  Qe?dT:B(Q)<B
B(R)<B 2(Q)<2-"L(R)
d(Q,R)SL(Q)VL(R) =

where
Sgood = Z Z <T(AQf)a ARQ)
REDT" QEDY, 4 o(ry: BQ)<B
B(R)<B 0Q)<2-TU(R)
d(Q,R)<L(Q)VL(R) —
and

Sbad = Y > (T(Aqf), Arg)-
REDT" QDL yry: B(Q)<B
BB y(@)<2-m4(R)
d(Q,R)<L(Q)VEL(R) =Y

4.1. The bad part is small

Notice that for a given R € 9" there holds that

[ DERRYY/ i_oj (X 1sefl)”

Qeq}gadYZ(R):ﬂ(Q)<ﬁ k=r Qeq}l{ad, 2k 4(Q)
£(Q)<2~TL(R) 2(Q)=2"%¢(R)
d(Q,R)<L(Q)VEL(R) — d(Q,R)<L(Q)7¢(R) 7
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so that

o 1/2
Sead <ITIS S (02 18 f13200) " 1RGN

= T* T
k=r ReD Qe@bad,Zke(Q)

¢(Q)=2-*¢(R)
d(Q,R)<L(Q)VE(R)!

e / /
<ol (X 18eflw) (X 1aralEg)

k=r Qe@g;djke(Q) RepT”
" 00 ) 1/2
<O (X 18af )
ke=r Qe@tq;ad,zke(Q)

where we used that
#{Re D" : ¢(R) =2"¢(Q) and d(Q, R) < ((Q)UR)'} <1, k>0
We conclude that

e 1/2
B, |Shad| < ClITI6(AQ0)?Ew > ( Y Puw(Qe @bTad,2ke(Q))||AQf||2L2(H)>
k=r QeoT

< OIIT(p(AQ0) Y 27"/% = e(r)|ITl|n(AQo),
k=r
where ¢(r) — 0 as r — co. We now fix r so that ¢(r)Cy < 1/16.

4.2. The good part

In this sum we will have the nested structure. Indeed, notice that @ is good with
respect to R, and so we must have d(Q,sk R) > £(Q)"£(R)!~". The possible scenario
d(Q,R) > £(Q)"4(R)'~" cannot happen here because of the summing condition
d(Q, R) < £(Q)"£(R)*~7. Therefore, for the cube Q to stay away from the skeleton of R (i.e.,
sk R), it must lie deep inside one of the children of R. That is, there is a child Rg € ch(R)
so that Q C Rg and d(Q, Rg,)) > £(Q)"4(R)' 7.

Before having to split the argument into a case study, we prove two lemmata.

4.2. LEMMA. — IfR€ D", Q € Dpopu s(ry and Q C R, then there holds that

(8 b5 S (5)” QY180 Iz,

Proof. — We will first show that

[ O g < @) orany o
R

a\RQ |ZL' - CQ|m+a

Let M be such that R(QMH) = R*. Notice that since () is good with respect to all S' € T
for which £(S) > ¢(R), there holds that

d(Q,0RG))™ 2 U(Q)*/*U(RG )" 2 209/24(Q)* (R u(RG ).
Here we used that v(m + a) = a/2.
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We may now estimate

bra(x
[
Re\Rg |z — cql

NG

|bhe (2)]
/<'+1> ) v m+a dy(z)
RYTI\RY |7 — cql

1 o
W /R(J+1) b R ()| du(x)

(3+1)
. wlig ) < 0(Q)/?(R)/.
203/20(Q)*/2U(R)*/*u(RG ")

IN

0

J

N

Il
=)

J

To end the proof it remains to use the Holder estimate of K to get that
. bk (z
(T (Do f) rsbE)| S o Q)" /R @]

2\Rqg |1‘ - CQ|m+a
(Q)\*/?
S (m)

M(Q)l/2||AQf||L2(u)~ O

The next lemma is much easier, essentially an argument using only separation (similar
arguments appear already in [17], of course).

4.3.LEMMA. — LetRe 97, Qe D be good with respect to R and Q C R. Then there
holds that

(T(Aqf) 1ry Arg)l S BaorllAqfllL2 ([ ArgI L2 ()
QN2 (@) \/?
Bor == .
QR <€(R)) <N(RQ))
Proof. — Let S € ch(R), S # Rg. Then d(Q, S) > d(Q,0Rg) > £(Q)"¢(R)'~7. Using
this it is easy to see (like in the separated sum) that there holds that

Q) ) (S)/?
{(R) ({R)™

where

(T(Baf) Lsdrg)l S (f)  HQY?

The claim follows from this since

p(S)'/? 1 -1/2

1A Sz | ARGl L2 ()

Notice that

> > (T(Aef), 1rg, Arg)|
ReD™" QeDL 4 o(r)
(Q)<2-"4(R)
QCR

S Y Borll Aol AR L2

RepT” QepT
Q)27 T4(R)
QCRgEch(R)

1/2 1/2
S (X 1aafBag) (X IARgI3ag)) S m@)Y2u(R)2 < s(XQo).
Q R

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



78 M. T. LACEY AND H. MARTIKAINEN

Here we used Lemma 4.3 and the fact that by [17] we have the £? estimate

1/2
S>> Barsawrs (Xa3) " (D)
RepT” Qe” Q R
£(Q)<27U(R)
QCRg€ch(R)

1/2

Therefore, we need to only consider

éood = Z Z <T(AQf)7 1RQAR9>'
RGQT* Qe(Dg;Od,g(R):/B(Q)<B
BIR<B  yQ)<2-re(R)
d(Q,R)<L(Q)VL(R)

The case R = R®. — Define

Cry = (9)rq _ (9)r

Whrg  (Bhn

Writing 1r, =1 — lRiz we see that
lRQARg = CRQIRngz = CRQbII; - CRQchngz.

The first part will become part of the paraproduct and we do not touch it further in this
subsection.

Notice that now
CrolnRQ) S | [ Crothidu| = | [ Angan| < uRe) 1 Arglsen.
Rq Rq
Therefore, we have using Lemma 4.2 that

ReDT" QDY o4, o(ry: QCR
{Q)<27"U(R)
Rg=Re

Y > BorlAeflrzwllArgllLw S #(AQo)-

RepT” QepT
£(Q)<27"L(R)
QCRgech(R)

The case R} = Rg. — We now write

(Dro 7+ (IR 7 (9r 7
1gr, Agrg = bpa — bra bralpge.
fend (<b£g>RQ o (bh)k )+<b£2>R Rt

The first part is exactly the same thing that we did not touch previously, and we will not do
so here either. It will become part of the paraproduct.
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But let us notice that Lemma 4.2 again gives that

Y Y [an gy
REDT" QEDY, o4 o(ry: QCR R

£(Q)<27"L(R)
R% *RQ

1/2

> Y Borlboflew( X w®) )

Rep™”" QeoT R’€ch(R)
2(Q)<27TL(R) (R)*=R’
QCRgEech(R)

5(Z||AQf||2L2(u))1/2<Z|(g>R|2 3 M(R’))1/2
© R

R’ech(R)
(R")a=R'

S (@)NgllL2(w) < m(AQo).

The paraproduct. — For Q € Uy, @goodvgkz(Q) let (Q) be the smallest k£ such that
Qe @good ok g()- We are reduced to bounding

(9RrRo 7 (9r 7
Spar = 3 3 (T(8ef), Wb% - (bTZ>RbRa>
REDT™ QEDT, s 1o H(Q)<H fia R
BIR)<B  y(@)<2—74(R)

d(Q,R)<e(Q)V¢(R)'

< >R * <9>R *
- 2 > (T@eh) W}Q i~ bR
QEUizr Dgooa, 2k (g FQ<B REDT™: B(R)<B Rq R
QCR* L(R)>2%(4(Q)
QCR

Qe Uy, 2 good akp(g) Welet H(Q) € 9" be the smallest cube satisfying B(H(Q)) < 8,
((H(Q)) > 24@¢(Q) and Q C H(Q). Let J(Q) = H(Q)g. We have that

9rg ;1 I
Spar = Z <T(AQf)a Z mbR% - <bT,;>RbRa>
Q€U D2, 4 sk o0y BQ)I<B ReDT* Ry /Rq R
QCR* H(Q)CRCR*
(g >J (9)r
- Z <T(AQf) b:p*i(Q)bJ( Q) — bT*ibR*a>
T - (0 (0ya I (@) (bR
Qeukz"‘ @good,Zki(Q)'ﬁ(Q)<ﬁ
QCR*

We may consider the following general situation. We are given a collection § C D" so
that to every cube Q € % there holds 8(Q) < S, and there is associated a unique cube
5(Q) € D" satisfying Q C S(Q). Our object is to bound

P(f0) = | Y {T(80s), <b<g><>b3(@)a>.

Qey 5(Q)+)5(@)
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To this end, we first define for F € F - and Q € D* that

0 ifQ ¢ 9,
cF) =140 ifQ € Yand S(Q)* # F,
w@”f% ifQ e Yand S(Q)° = F.

Notice that [eq(F)| < [{9)s(0)| < 1. We have that

/
HQ% €Q F)AQf’Lz()<JZO(KEgJ H Z eq AQf‘LZ( ))12
Qa_
ﬂ_l( Y wFnK)’ < purys
=0 Ke9i,.

But as (3 is already fixed we do not need to mind about this dependence. Using this we now
have that

Plho=| (X 959 ppparp)]

T)k
FepT” Qey (br >S(Q)
Fa=F S(Q)e=
< > H > ca(F) AQfH HIFT*blT;”L?(u)
Fe@T* QepT
Fae=F

< >0 uF) SR < p(AQo).

FepT"
Fe=F

In particular, we have shown that

|Spar| S #(AQo)-
This completes our proof of the fact that

|Sgood| < 1(AQo)-

5. The diagonal

We come to the part of the proof which requires a delicate surgery type argument—
another key method which originates from Nazarov-Treil-Volberg [17]. The procedure of
performing the surgery of the diagonal has evolved quite a lot since, and we need to deal
with the general L? testing conditions.

Forevery @ € @7 and R € 9" we writt Q = >, Q; and R = U?:l R;, where
Q; € ch(Q) and R; € ch(R). We then fix two indices ¢ and j. We write Q ~ R to mean
Q) ~ £(R) and d(Q, R) < min(4(Q),£(R)). Notice that #{Q : Q@ ~ R} < 1. We want to
bound a sum of the form

S=>" > AillT(1g,uq.) 1r,vr;)|Br.;,
R Q:Q~R
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where Ag; = Ag,i(f), Bg,; = Bg,j(g) > 0 are constants and uq ;, vg,; are functions such
that

(5.1) Z (1. Myugill7zgu + 1@ Tug,ill 72 A < 1(AQ0)
Q
(5.2) Z (1R, Myvr 720 + 1R, T 0R 51|72, BR.; S #(AQo)-
R

Here we recall that M, is the centred maximal function with respect to the measure p.

In practice, we shall consider S with the choice that (Ag;, ug,;) is either

Na; _ e |ifoe = 0o
AQ,i — ‘(bglq)Qi (bga>Q QZ Q , uQ,i — qu
0 if QY = Qi 1
or
A 1 () rer—a u bl
Qi = Q4 : a_ . ! Qi = Q¢
(bgg)Qi ifQf = Q:
or
0 if Q¢ = Q*
— ¢ _ T
AQ,i - (fle ian =Q, » Qi = bga-
(®Za)a P

Analogous choices are made for (Bg,;,vg, ;). This means that we consider nine different
sums S. But to bound a sum of the form S we shall need only the fact that (5.1) and (5.2)
hold, which is true with all these choices:

5.3. LEMMA. — The inequality (5.1) holds with all the above three choices for (Aqg i, Q,i)-

Proof. — This is proved in exactly the same way as the inequality ), [|Aq f ||iz(u) < p(@).
The proof only needs the additional fact that we have also done a stopping time with respect
to the properties

/Q M52 du < p(@)  and /Q TV dys S 1(Q). O

5.1. First surgery: the f-surgery

Suppose for convenience that £(Q;) < ¢(R;). Let § be a small parameter. We perform
surgery on (Q;, R;) with the parameter 6. Let j(0) € Z be such that 27219 < 27(9) < 2-20¢.
Let 9" be yet another random grid in R™, independent of all other grids considered. Let
G:={ge D :4(g)=2"9¢Q,)}, and for z € R™, let G(z) be the unique cube in G that

contains x. We define

Qio = {r € Qi d(G(z),0R,) < 6U(R,)/2} U {z € QN R, : d(x,0G(z)) < 6(G(2))}.
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Thus points in @; 5 belong to @;, and are either close to the boundary of R;, or to the
boundary of the grid G. The set Q; o depends on the set R; as well. However, we have

Qio C Qipaa = Qi | U {x: d(z,0R) < 00(R')}
Rep™"
277L(Q4) <L(R)<274(Qq)

u U fe:dag) < ae(g)}]
gev*
0(9)=2"@0(Q:)
gen(Qi)+r - i
=Q;N [ U Y (Ou 8gL;n(Q7;)—j(9)(0):|
a=gen(Q;)—r

T* *
=: Qi N [02gen(@) () U Bgen() (o) (O],

(5.4)

which depends only on @); and the grids 9" and 9*. One should keep in mind that in what
follows Q; bad = Qi,bad(0).
We set
Qi,sep = Qz \ (Qi,6 ) Rj)a

the part of Q; strictly separated from R;. Finally, we have

Qi,A = Qz \ (Qi,a ) Qi,sep) = U Ly,
k

where each Ly is of the form L, = (1-0)gNQ; N R; for some g € G, and #k Sg 1. In fact,
Ly is of the form Ly = (1 — 6)g unless it is close to the boundary of @Q;; it cannot be close to
the boundary of R;, since such cubes were already subtracted in the @); 9 component.

We have the partition
Qi = Qi,sep ) Qi,a ) Qi,A = Qi,sep U Qi,a u U le
k

and in a completely analogous manner also

Rj = RjwpURjoURjA = RjsepURjpU| L.
S

A key observation is that all L, C ;N R; appearing in the first union are cubes (of the form
(1—6)g for g € G) unless they are close to 0Q;, and they are never close to OR,;, while the L,
in the second union are cubes unless they are close to R;, and they are never close to 0Q);.
Thus, all L, = L, that appear in both unions are cubes and then 5L, C Q; N R;.

5.2. Reduction to a deeply diagonal term

Using the above §-surgery we want to reduce to a term of the form (T'(15uq i), 1avr,;),
where H = Ly, = L, is a cube with 5H C Q; N R; and #H < C(6). This term will then be
split using a different o-surgery (at the end one will first choose 6 small, and then o = o(8)
small depending on ). But let us first do the actual reduction.
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We write
(T(guq.i), 1r,vr) = Y, (T(lQuei)lr,,vrs)+ Y, (T(lg,,uqi) 1k, sVR;)
B€{sep, 8} a€{sep, 8}
+Z (1L, uq@.), 1o, vR,;) +Z (1r,uQ,i), 1, vR,j)-
k#s k=s

If « = sep or 8 = sep or k # s, then the corresponding pairing is seen to be dominated by

CO)1q.uq,llL2(wI1r;vR 5l L2 ()
using the size estimate of the kernel K together with the fact that the sets are separated
by ¢(6)4(Q;) ~ c(9)¢(R;). In the case k # s a further large dependence on 6 is gained from
the summation -, 1.
The sum of the cases a = @ and § = 9 is dominated by
ITN(Q; paa @il 1R, VRl L2(u) + 11Qiuq il L2(w) 1R, bua VR L2 () |-
All in all, we have the estimate
(T(1q,uq.), 1r,vr ;)| < C(O)lI1Q,uq,ill L2 1R, vR ;1 2 ()
F 1TN1Q; aa @il 2wy 1 1R, vR G | 22 ()
T ITIM1 Qi uq,ill L2 () 11 R; bus VR L2 (1)

+ Y T(augs) 1avr,)l-
H:=Lp=L,

We will now fix one such H and estimate |(T'(1guq,;), Lzvr,;)| with a bound independent
of H.
5.3. Second surgery: the o-surgery

We continue to split

(T(1guq,), 1avrj ) = (Tuq,i, 1HVR,j) — (T(1rm\55UQ,i), LHVR,j)
—(T(Lsm\(1+0)HUQ,1), LHVR ;) — (T (L1 40)\HUQ,i): LHVR,j)-
We have that
(Tuq.i, Lrvr )| < 1@, Tuq,illL2(m 1R, VR |22 (1)-
Using separation and the fact that 5H C @Q; N R; we see that

KT (Lsm\(1+o)HYQ,i)s LrvR,5)| < C(0)11Q,uq,ill 2w |11R, VR il L2 (1)-
Moreover, there holds that

KT Qaroymmugi) Lrvr) < ITMpzx )1@iuillzz IR vl L2
The term (T'(1gn\55uQ,i), LHVR,;) still requires further splitting. We write
(T(lamsruq,i)s Lavrs) = (T(lemsnuq,) — (b /u(H), T(lemsruQ,:)), 1vg,;)

* 1
T T 1 n y 7\/ ¥ .
+ (by , T(1g \SHUQ,Z»M(H) HUR,J du
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5.5. LEMMA. — There holds that
(T (1gm\smruq,i) — (03 /u(H), T(1gm\554Q.:))s LEVR,;)]
S Qi Muuqill Lz (w1 r;vR il L2 (u) -
Proof. — Let @ := T'(1gn\55uq,:). We need to bound
[ ate)on @0 - O /ui), )] dua).

For x € H we have that

9(a) = OF /(). 9] <~ [ 1B} W1V = $(w)] ().
But for z,y € H there holds that
uQ,i
¥(@) - 0| £ ) [ 100D ) < Myuga(e).
|z—z|>cl(H |3? - Z|

Therefore, for x € H we have that
() — (bF /n(H), ®)| < M,uqi(z)
using which we see that
[ Matalon @l fota) - 05 (). )] dute) < [ [e)on@)ltn(o)Myiq(o)| du(o)
S g Muug,ille2 (1R vR,5l 2 (u)- O
We are left to deal with

(68 T mmsarug ) s [ o] < 1O T Ozmsaria ) el ™ 2, v s,

1
p(H)
Our final splitting is as follows:

(bFr » T(lemsaug,q)) = (bfr » Tug.i) — (0fr » T(Lsm\ (140 HUQ.))
— (0f \ T(Lasoym muq,)) — (Ofr , T(Laug.))-
We have that

(b Tug.i)l < |IbFy 12

2wl Tuq.illL2 ) S w(H) " 1g, Tuq.illL2(u)

Using again separation and the fact that 55 C Q; N R; we see that
(0% s T(sm\ 4oy Q)| < CO) 1Y 122w 11Qiuquill L2
< Clo)u(H) 2|10, uqill L2 (-

Next, notice that
08 T soymmued] < ITHIOE lezollon:,  olatlz

ST 21,

o @1itQillza (-
Finally, we have that
(b7 » T(Lrug,i))| = (T*0% , Lauga)| < ITaT by |2 1@ u.ill 2w

S u(H)Y?|1g,uq.ill L2 -
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Collecting the estimates we see that our o-surgery yields the final bound

(T (1ruq,), 1avr,;)| < C(o)1q,uq,illL2(l1r, VRl L2(w)
+ Cl1g,Muuq.ill2 (w117, VRl L2 ()
+ Cl1Q, TuqillL2 (1 I1r, R 51l L2 (1)
+C||T

Loz o @ tiueillzzo e vrgliza o

5.4. The final estimate through averaging

Combining the different surgeries we see that

(T(1g,uq,), 1r;vr,5)| < C(0,0)|1,uqill2(w I1r; VR, || L2 ()
F1T1M1Q; paa u@,illL2 () 11 R VR, | L2 (1)
+1TMM1Q,uq,illL2(um 11 R paa VR, L2 (1)
+CO)1g, Muuq,illz2w IR VRl L2 (1)
+C(0)qQ,Tuq,illL2(wlI1r;vR,5l L2 ()
+COT|

Loz o @ teiueillzzn e, vr illiza o

Using the Cauchy-Schwarz inequality, the property #{Q : @ ~ R} < 1, the inequali-
ties (5.1) and (5.2), the independence of the different dyadic grids 97, 97 and 9*, and the
fact that e.g., Pg. (z € P (o)) < c(o) for every point  and every generation k € Z, we see
that

EyrEyr-Eg Y > Aqil(T(1g,uq.), 1r,vr,;)|Br,
R Q:Q~R
<[C0,0) + (DT + CO)c() I TN1(AQo)-
Here lim,,_,g ¢(p) = 0. Let v > 0 be small enough. First choose 6 so small that ¢(f) < v.
Then choose o so small that C'(0)c(o) < v. We have proved the diagonal bound

EyrByre Y, Y, Aqil(T(lg,uq.), 1r,vr)|Br, < [C + 20/ T1u(AQo).
R Q:Q~R
We have completed the proof of our main theorem, Theorem 1.1.
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