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COMPLETE PERIODICITY OF PRYM EIGENFORMS

 E LANNEAU  D-M NGUYEN

A. – This paper deals with Prym eigenforms which are introduced previously by
McMullen.We prove several results on the directional flow on those surfaces, related to complete
periodicity (introduced by Calta). More precisely we show that any homological direction is alge-
braically periodic, and any direction of a regular closed geodesic is a completely periodic direction. As
a consequence we draw that the limit set of the Veech group of every Prym eigenform in some Prym
loci of genus 3, 4, and 5 is either empty, one point, or the full circle at infinity. We also construct new
examples of translation surfaces satisfying the topological dichotomy (without being lattice surfaces).
As a corollary we obtain new translation surfaces whose Veech group is infinitely generated and of the
first kind.

R. – Dans cet article nous démontrons plusieurs résultats topologiques sur les formes
propres des lieux Prym, formes différentielles abéliennes découvertes par McMullen dans des travaux
antérieurs. Nous obtenons une propriété dite de complète périodicité (introduite par Calta), ainsi que
de nouvelles familles de surfaces de translation vérifiant la dichotomie topologique de Veech (sans être
une surface de Veech) . Comme conséquences nous montrons que l’ensemble limite des groupes de
Veech de formes propres de certaines strates en genre 3, 4, et 5 est soit vide, soit un point, soit tout le
cercle à l’infini. Ceci nous permet de plus de construire de nouveaux exemples de surfaces de translation
ayant un groupe de Veech infiniment engendré et de première espèce.

Notre preuve repose sur une nouvelle approche de la notion de feuilletage périodique par les
involutions linéaires.

1. Introduction

1.1. Periodicity and Algebraic Periodicity

In his 1989 seminal work [35], Veech introduced an important class of translation surfaces
(now called Veech surfaces) providing first instances of translation surfaces whose directional
flows satisfy a remarkable property: for a given direction, the flow is either uniquely ergodic
(all the flow lines are dense and uniformly distributed) or completely periodic (all the flow
lines are closed or a saddle connection). This property is subsequently called the Veech
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88 E. LANNEAU AND D.-M. NGUYEN

dichotomy. Since then numerous efforts have been made in the study of the linear flows on
translation surfaces, to name a very few: [22, 30, 27, 31, 11, 7]. Veech’s theorem raised the
issue of what can be said about the dynamics of the directional flows on non Veech surfaces.

This paper deals with the question of completely periodic linear flows. This aspect has
been initiated in [5], and then developed later in [6]. A useful invariant to detect completely
periodic flows (i.e., all the flow lines are closed or connect singularities), introduced in
Arnoux’s thesis [1], is the Sah-Arnoux-Fathi (SAF) invariant. It is well known that the linear
flow F θ in a direction θ ∈ RP1 on a translation surface (X,ω) (equipped with a transversal
interval I) provides an interval exchange transformation Tθ, which is the first return map
to I. The invariant of the flow in direction θ can be informally defined by

SAF (Tθ) =

∫
I

1⊗ (Tθ(x)− x)dx ∈ R ∧Q R

(the integral is actually a finite sum). If F θ is periodic, that is when every leaf of F θ is either a
closed curve or an interval joining two zeros of ω, then SAF (Tθ) = 0. However the converse
is not true in general. Following this remark, the direction θ will be called algebraically
periodic if the SAF-invariant of the flow F θ vanishes.

A translation surface (X,ω) is completely periodic (in the sense of Calta) if for every
θ ∈ RP1 for which F θ has a closed regular orbit, the flow F θ is completely periodic. We
have the corresponding “algebraic” definition: the surface (X,ω) is completely algebraically
periodic if the SAF-invariant of F θ vanishes in any homological direction (θ ∈ RP1 is homo-
logical if it is the direction of a vector

∫
c
ω ∈ C ' R2 for some c ∈ H1(X,Z)). These notions

are introduced in [5] and [6].

Flat tori and their ramified coverings are both completely periodic and completely
algebraically periodic; in this case, up to a renormalization by GL+(2,R), the set of homo-
logical directions is Q ∪ {∞}. In [5], Calta proved that these two properties also coincide
for genus 2 translation surfaces, in which case the set of homological directions is KP1,
where K is either Q or a real quadratic field over Q, and moreover a surface in H (2) is
completely periodic if and only if it is a Veech surface (see also [25]). However there are
completely periodic surfaces in H (1, 1) that are not Veech surfaces (actually, most of them
are not Veech surfaces).

We will say that a quadratic differential is algebraically completely periodic (respectively,
completely periodic in the sense of Calta) if its orientation double cover is. Translation
surfaces in genus two are closely related to quadratic differentials over CP1, since we
have the following identifications (which are GL+(2,R) invariant) H (2) ' Q(−15, 1),
H (1, 1) ' Q(−16, 2). Note that dimC Q(−15, 1) = 4, and dimC Q(−16, 2) = 5. We record
all strata of quadratic differentials of dimension 5 in Table 1. In this paper, our first aim is
to extend Calta’s result to all of these strata.

T A. – Let (Y, q) be quadratic differential in one of the strata in Table 1. If (Y, q) is
completely algebraically periodic then it is completely periodic in the sense of Calta.

T B. – LetK be eitherQ or a real quadratic field. For any stratum Q(κ) in Table 1,
the set of algebraically completely periodic quadratic differentials in Q(κ), with homological
directions in KP1 up to renormalization by GL+(2,R) is a union of GL+(2,R)-invariant
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submanifolds of complex dimension 3. Such invariant submanifolds are called Prym eigenform
loci (see Section 2 for precise definitions).

The techniques developed in this paper for the proof of Theorems A and B actually
provide us with some precise information on the flow in directions for which the SAF-
invariant vanishes: we get some topological properties of the directional flows on surfaces
in some particular strata. Here we introduce the terminology of [7].

We say that a translation surface satisfies the topological dichotomy if for every direction,
either the flow is minimal, or every flow line is closed or a saddle connection. Observe that
this is equivalent to saying that if there is a saddle connection in some direction, then there is
a cylinder decomposition of the surface in that direction. Obviously a Veech surface satisfies
the topological dichotomy. First examples of surfaces satisfying topological dichotomy
without being Veech surfaces have been constructed in [12] (see also [23]). All examples
are ramified coverings above “true” Veech surfaces. Our next theorem provides us with
new examples which do not arise from a covering construction above Veech surfaces (see
Theorem 1.13).

T C. – Let (Y, q) be a quadratic differential in Q(8) or Q(−1, 2, 3). Assume that
all the periods (relative and absolute) of the orientation double cover of (Y, q) belong to K(ı),
where K is either Q or a real quadratic field. If (Y, q) is algebraically completely periodic then
it satisfies the topological dichotomy. In particular, if (Y, q) is stabilized by a pseudo-Anosov
homeomorphism, then it satisfies the topological dichotomy.

Observe that Theorem C is false for other strata. Moreover, “most” of surfaces of
Theorem C are not Veech surfaces, namely:

T D. – The following two hold:

(1) There are quadratic differentials in the strata Q(8) and Q(−1, 2, 3) satisfying the topo-
logical dichotomy without being Veech surfaces.

(2) There are quadratic differentials in each of the strata Q(−13, 1, 2), Q(−1, 2, 3), and Q(8)

whose Veech group is infinitely generated and of the first kind.

Finally our techniques also provide us with the following result for quadratic differentials
in a slightly larger family of strata (compared to Theorem C).

T E. – For any quadratic differential in the collection of strata Q(−13, 1, 2),
Q(−1, 2, 3), and Q(8) the limit set of its Veech group is either the empty set, a single point, or
the full circle at infinity.

1.2. Prym loci and Prym eigenforms

From the work of McMullen [25], it turns out that all completely periodic surfaces in genus
two belong to the loci of eigenforms for real multiplication. Later McMullen [24] proved the
existence of similar loci in genus 3, 4 and 5. These loci are of interest since they are closed
GL+(2,R)-invariant sub-manifolds in the moduli spaces of Abelian differentials. We briefly
recall the definitions of those objects here below.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



90 E. LANNEAU AND D.-M. NGUYEN

1.2.1. Prym forms. – If X is a compact Riemann surface, and τ : X → X is a holomorphic
involution of X, we will denote by Ω(X) the set of holomorphic 1-forms (Abelian differen-
tials) on X and by Ω−(X, τ) := ker(τ + Id) ⊂ Ω(X).

For any integer vector κ = (k1, . . . , kn) with ki ≥ 0 and
∑
ki = 2g − 2, we will denote

by H (κ) the moduli space of translation surfaces having n singularities with multiplicities
κ. The set of Prym forms Prym(κ) ⊂ H (κ) is the subset of pairs (X,ω) ∈ H (κ) such
that there exists an involution τ : X → X satisfying τ∗ω = −ω i.e., ω ∈ Ω−(X, τ), and
dimC Ω−(X, τ) = 2. We sometimes add a superscript to the vector κ, which could be “even”,
“odd”, or “hyp”, to specify the corresponding component of H (κ) in which the Prym locus
lies (see [15] for the classification of connected components of H (κ)).

Any translation surface of genus two is a Prym form: Prym(2) = H (2) and
Prym(1, 1) = H (1, 1) (the hyperelliptic involution is by definition a Prym involution,
which is actually unique). See Figure 7 for an example.

Let Y be the quotient of X by the Prym involution and π the corresponding (possibly
ramified) double covering from X to Y . By pushforward, there exists a meromorphic
quadratic differential q on Y (with at most simple poles) so that π∗q = ω2. Let
κ′ = (d1, . . . , dr) be the integer vector that records the orders of the zeros and poles of q.
Then there is a GL+(2,R)-equivariant bijection between Q(κ′) and Prym(κ) [16, p. 6].

All the strata of quadratic differentials of dimension 5 are recorded in Table 1. It
turns out that if (Y, q) is a quadratic differential in one of those strata, and (X,ω) is its
orientation double cover, then (letting τ be the deck transformation) dimC Ω−(X, τ) =

genus(X)− genus(Y ) = 2. Hence (X,ω) is by definition a Prym form.

E 1.1. – Let q be a quadratic differential on a Riemann surface Y having at
most simple poles. We assume that q is not the global square of any Abelian differential.
Let π : X → Y be the orientation double cover. If genus(X)− genus(Y ) = 2 then the deck
transformation τ on X provides a natural Prym form (X, τ, ω) where ω =

√
π∗q ∈ Ω(X)−.

For instance, if (Y, q) ∈ Q(−12, 6) then the orientation cover belongs to Prym(3, 3). The
same is true for (Y, q) ∈ Q(−16, 2): the orientation cover (X,ω) ∈ Prym(1, 1) = H (1, 1).
On the other hand, we have a one to one map from Q(−16, 2) to Q(−12, 6) (given by taking
double cover ramified over the double zero and five poles [16]). This explains the notation
Prym(3, 3) ' H (1, 1).

Q(κ′) Prym(κ) g(X)

Q(−16, 2) Prym(1, 1) = H (1, 1) 2

Q(−12, 6) Prym(3, 3) ' H (1, 1) 4

Q(1, 1, 2) Prym(12, 22) ' H (02, 2) 4

Q(−14, 4) Prym(2, 2)odd 3

Q(κ′) Prym(κ) g(X)

Q(−13, 1, 2) Prym(1, 1, 2) 3

Q(−1, 2, 3) Prym(1, 1, 4) 4

Q(8) Prym(4, 4)even 5

Q(−1, 1, 4) Prym(2, 2, 2)even 4

T 1. Prym loci for which the associated stratum of quadratic differen-
tials Q(κ′) has (complex) dimension 5.
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1.2.2. Prym eigenforms. – We now give the definition of Prym eigenforms. We define

Prym(X, τ) := (Ω−(X, τ))∗/H1(X,Z)−,

where H1(X,Z)− := {c ∈ H1(X,Z) : τ(c) = −c}. Prym(X, τ) will be called the Prym
variety ofX, it is a sub-Abelian variety of the Jacobian variety Jac(X) := Ω(X)∗/H1(X,Z).

Recall that a quadratic order is a ring isomorphic to OD = Z[X]/(X2 + bX + c), where
D = b2 − 4c > 0 (quadratic orders being classified by their discriminant D).

D 1.2 (Real multiplication). – Let A be an Abelian variety of dimension 2. We
say that A admits a real multiplication by OD if there exists an injective homomorphism
i : OD → End(A), such that i( OD) is a self-adjoint, proper subring of End(A) (i.e., for any
f ∈ End(A), if there exists n ∈ Z\{0} such that nf ∈ i( OD) then f ∈ i( OD)).

D 1.3 (Prym eigenform). – For any quadratic discriminant D > 0, we denote
by ΩED(κ) the set of (X,ω) ∈ Prym(κ) such that dimC Prym(X, τ) = 2, Prym(X, τ) admits
a multiplication by OD, and ω is an eigenvector of OD. Surfaces in ΩED(κ) are called Prym
eigenforms.

Prym eigenforms exist in each Prym locus described in Table 1, as real multiplications arise
naturally with pseudo-Anosov homeomorphisms commuting with τ (see Theorem 7.1). It
follows from the work of McMullen [24], that each ΩED(κ) is a GL(2,R)-invariant subman-
ifold of Prym(κ). It turns out that for Prym(κ) in Table 1, the loci ΩED(κ) have complex
dimension 3 (see Proposition 3.1).

1.3. Other formulations of main results

Because of the correspondence between quadratic differentials in Table 1 and Prym forms,
we can now reformulate our main results in terms of Prym forms.

T 1.4. – Any Prym eigenform in the Prym loci of Table 1 is completely alge-
braically periodic.

Note that the cases (1), (2), (3) follow from the work of Calta and McMullen. Conversely,
we have

T 1.5. – Let (X,ω) ∈ Prym(κ) where Prym(κ) is given by Table 1. Assume
that (X,ω) is completely algebraically periodic, and the set of homological directions
of (X,ω) is KP1, where K is either Q, or a real quadratic field. Then the surface (X,ω) is a
Prym eigenform i.e., (X,ω) ∈ ΩED(κ) for some discriminant D.

To prove Theorem 1.5, we need the following theorem which relates complete algebraic
periodicity and complete periodicity.

T 1.6. – Let (X,ω) be a translation surface in one of the Prym loci given by the
cases of Table 1. If (X,ω) is completely algebraically periodic, then it is completely periodic in
the sense of Calta.

As a consequence of Theorems 1.4 and 1.6, we draw
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92 E. LANNEAU AND D.-M. NGUYEN

C 1.7. – Every Prym eigenform in the loci shown in Table 1 is completely
periodic in the sense of Calta.

R 1.8. – In a recent preprint [36], A. Wright obtains an independent proof of
Corollary 1.7, the result of Wright is actually more general than this as it applies to Prym
eigenform loci of any dimension.

The key ingredient of Wright’s approach is the fact that the tangent space of ΩED(κ) at
a point (X,ω) projects to a subspace of complex dimension two in H1(X,C). Our approach
to prove Theorem 1.6 (which implies Corollary 1.7) is different from Wright’s, it is based
on a careful investigation of the geodesic foliation in directions for which the SAF -invariant
vanishes. In particular, it does not require any assumption on the GL+(2,R)-orbit closure of the
surface, and hence can be used to prove the complete periodicity of surfaces which are not Prym
eigenforms.

In the appendix, using similar ideas, we will show that for surfaces in H hyp(4), algebraic
complete periodicity also implies complete periodicity in the sense of Calta, this implies the
existence of completely periodic surfaces whose GL+(2,R)-orbit is dense in H hyp(4).

To prove Theorem 1.6, we will consider linear involutions defined over 6 letters (see
Section 4 for more details) for which the SAF -invariant vanishes. It turns out that in some
particular cases, one can improve the complete periodicity in the sense of Calta. Namely, as
by-products of our strategy, we will show the following theorems, which only involve some
strata in Table 1.

T 1.9. – Let (X,ω) be a Prym form in Prym(4, 4)even or Prym(1, 1, 4) having
all the periods (relative and absolutes) in K(ı), where K is either Q or a real quadratic field.
If (X,ω) is completely algebraically periodic then (X,ω) satisfies the topological dichotomy.
Moreover, a direction θ is periodic on (X,ω) if and only if θ ∈ KP1. In particular, if the Veech
group SL(X,ω) of (X,ω) contains a hyperbolic element, then (X,ω) satisfies the topological
dichotomy.

R 1.10. – The statement of Theorem 1.9 is not true for all Prym loci. For instance,
every completely algebraically periodic surface (X,ω) ∈ ΩED(1, 1) with relative and absolute
periods in K(ı), which is not a Veech surface, admits an irrational splitting into two isogenous
tori [8]. In particular, the topological dichotomy fails for such surfaces.

We will show (see Section 9) that if (X,ω) ∈ Prym(1, 1, 2)tPrym(1, 1, 4)tPrym(4, 4)even

is stabilized by an affine pseudo-Anosov homeomorphism, then the set of directions θ ∈ KP1

that are fixed by parabolic elements in the Veech group is dense in RP1. As corollaries, we get

T 1.11. – Let (X,ω) be a Prym form in

Prym(4, 4)even t Prym(1, 1, 4) t Prym(1, 1, 2).

Then the limit set of the Veech group SL(X,ω) is either the empty set, a single point, or the full
circle at infinity.

And
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T 1.12. – (1) There exist surfaces in Prym(4, 4)even tPrym(1, 1, 4) which satisfy
the topological dichotomy but without being Veech surfaces.

(2) There exist Teichmüller discs generated by Prym forms in the loci Prym(1, 1, 2),
Prym(1, 1, 4), and Prym(4, 4)even whose Veech group is infinitely generated and of the
first kind.

Finally, we will show that our results give rise to surfaces which have connection points (in
the sense of Hubert and Schmidt [12]) but are not lattice surfaces. Recall that a (non singular)
point p is a connection point of a translation surface if every separatrix passing through p is
a saddle connection.

T 1.13. – Let (X,ω) be a Prym form in Prym(4, 4)even or Prym(1, 1, 4) having
all the periods (relative and absolutes) in K(ı), where K is either Q or a real quadratic field.
Then any (non singular) point p ∈ X having coordinates in K[ı] is a connection point.

Proof of Theorem 1.13. – If p has homology in K[ı] then any segment from a singularity
to p has slope in K. By Theorem 1.9, it is a periodic direction, hence the segment is part of
a saddle connection.

1.4. Outline of the paper

We conclude by sketching the proof of our results. It involves the dynamics of interval
exchange transformations and linear involutions, the SAF-invariant and the kernel foliation
in Prym loci.

1. To prove Theorem 1.4 we use an invariant introduced by McMullen similar to the
SAF-invariant: the Galois flux. Let T be an interval exchange transformation (IET), and
let λα, tα, α ∈ A, be respectively the lengths of the exchanged intervals and their translation
lengths. The Galois flux of T is defined only if the translation lengths tα lie in a real quadratic
field K ⊂ R, namely

flux(T ) =
∑
α∈ A

λαt′α, where t′α is the Galois conjugate of tα.

It turns out (see Theorem 2.6) that if (X,ω) ∈ ΩED(κ) and having all absolute periods
in K(ı) then for any θ ∈ KP1,flux(Tθ) = 0, where Tθ is the IET defined by the first return
map of the flow in direction θ to a transversal interval in X. The two invariants are related
by Proposition 2.8. Namely, under the additional assumption: if the relative periods of ω are
also in K(ı) then flux(Tθ) = 0 implies SAF (Tθ) = 0.

Now if the relative periods of ω are not in K(ı) then we can “perturb” ω in ΩED(κ) to
get a new form ω′ (by using the kernel foliation, see Section 3) so that the relative periods
of ω′ belong toK(ı). Thus by the preceding discussion SAF (T ′θ) = 0 ( T ′θ is the IET defined
by flow in direction θ on X ′).We then conclude with Proposition 3.3: which states that the
“perturbation” leaves the SAF -invariant unchanged. This proves Theorem 1.4.

2. It is well known that linear flows on translation surfaces are encoded by interval
exchange transformations. Since we will work with non-orientable measured foliations
defined by quadratic differentials, it will be more convenient to use the coding provided by
linear involutions. By [3] one can still define a “first return” of the non-orientable foliation
(that is no longer a flow) to a transverse interval, which gives a linear involution defined
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94 E. LANNEAU AND D.-M. NGUYEN

over d intervals (see Section 4). It turns out that the number d of exchanged intervals is
related to the dimension of the Prym locus, namely d = dimC Prym(κ) + 1.

Obviously complete periodicity for a foliation or for its associated linear involution is the
same. In view of this, we will deduce Theorem 1.6 from results on linear involutions (see
Section 5). We briefly sketch a proof here. Let (X,ω) ∈ Prym(κ) be a Prym form which has
a vertical cylinder (we normalize so that any homological direction belongs to a quadratic
field). We will consider the cross section T of the vertical foliation to some full transversal
interval on the quotient X/〈τ〉. Let us resume the situation: T is a linear involution defined
over d = 6 letters (for all the Prym loci in Table 1, dimC Prym(κ) = 5) having a periodic
orbit, and SAF (T ) = 0. We want to show that T is completely periodic.

If T is defined over 2 or 3 intervals then the proof is immediate. We prove the assertion
for d = 6 by induction on the number of intervals, we pass from d intervals to d−1 intervals
by applying the Rauzy induction (which preserves the SAF-invariant, see Section 5).

3. Theorem 1.9 is a refinement of Theorem 1.6 by inspecting the possible degenerations of
linear involutions (see Section 8). We actually show that for surfaces in Prym(4, 4)even and
Prym(1, 14), complete algebraic periodicity implies topological dichotomy, and the set of
periodic directions coincides with the set of homological directions.

If the Veech group of a Prym form (X,ω) contains a hyperbolic element A, then (X,ω)

belongs to some Prym eigenform locus ΩED (see [24], Theorem 3.5), and all the periods of ω
belong to K(ı), where K = Q(Tr(A)) (see [23] Theorem 9.4). Thus (X,ω) is completely
algebraically periodic by Theorem 1.4, and the arguments above show that (X,ω) satisfies
the topological dichotomy.

4. For the proof of Theorem 1.11, we first remark that if the limit set of the Veech
group SL(X,ω) of (X,ω) contains at least two points, then (X,ω) is stabilized by an affine
pseudo-Anosov homeomorphism φ. It follows that all the relative and absolute periods of ω
belong to K(ı), where K = Q(Tr(Dφ)). To show that the limit set of SL(X,ω) is the full
circle at infinity, it is sufficient to show that the set of directions which are fixed by parabolic
elements of SL(X,ω) is dense in RP1. For the cases of Prym(1, 1, 4) and Prym(4, 4)even,
this follows from Theorem 1.9 together with a criterion for a periodic direction to be
parabolic (that is to be fixed by a parabolic element in SL(X,ω), see Proposition 9.2). For
the case Prym(1, 1, 2), this follows from a similar result to Theorem 1.9 (see Corollary 8.6),
and a careful inspection of topological models for cylinder decompositions of surfaces
in Prym(1, 1, 2) (see Section 9).

5. To prove Theorem 1.12 we will construct explicitly Prym eigenforms in

Prym(1, 1, 2) t Prym(1, 1, 4) t Prym(4, 4)even

with periods in a real quadratic field, for which there are periodic directions such that the
associated cylinder decomposition is not parabolic (that is the ratios of the cylinder moduli
are not all rational numbers). By Theorem 1.9 and Theorem 1.11 such surfaces satisfy the
topological dichotomy and the limit set of the Veech group is dense in RP1. However, such
surfaces are not Veech surfaces, from which we get the desired conclusions.
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2. Interval exchange, Sah-Arnoux-Fathi invariant and McMullen’s flux

In this section we recall necessary background on interval exchange transformations and
we will make clear the relations between the SAF-invariant introduced by Arnoux in his
thesis [1], the J-invariant introduced by Kenyon-Smillie [14] and Calta [5], and the flux
introduced by McMullen [22].

2.1. Interval exchange transformation and SAF-invariant

An interval exchange transformation (IET) is a map T from an interval I into itself
defined as follows: we divide I into finitely many subintervals of the form [a, b). On each
of such interval, the restriction of T is a translation: x 7→ x + t. By convention, the
map T is continuous from the right at the endpoints of the subintervals. Any IET can be
encoded by a combinatorial data ( A, π), where A is a finite alphabet, π = (π0, π1) is a
pair of one-to-one maps πε : A → {1, . . . , d}, d = |A|, together with a vector in the posi-
tive cone λ = (λα)α∈ A ∈ R| A|>0 . The permutations (π0, π1) encodes how the intervals are
exchanged, and the vector λ encodes the lengths of the intervals. Following Marmi, Moussa,
Yoccoz [18], we denote these intervals by {Iα, α ∈ A}, the length of the interval Iα is λα.
Hence the restriction of T to Iα is T (x) = x + tα for some translation length tα. Observe
that tα is uniquely determined by π and λ.

A useful tool to detect periodic IET is given by the Sah-Arnoux-Fathi invariant (SAF-
invariant). It is defined by (see [1]):

SAF (T ) =
∑
α∈ A

λα ∧Q tα.

It turns out that if T is periodic then SAF (T ) = 0. However the converse is not true in
general.

In the case where T is defined by the first return map of the vertical flow of a translation
surface (X,ω) to a transversal interval I which crosses all the vertical leaves, Arnoux proved
the following in his thesis

T 2.1 ([1, Theorem 3.5]). – Set ρ := Re(ω). Let {a1, b1, . . . , ag, bg} be a sym-
plectic basis of H1(X,Z). Then the SAF -invariant of T satisfies

SAF (T ) =

g∑
i=1

ρ(ai) ∧Q ρ(bi).

In particular, SAF (T ) only depends on the cohomology class of ρ in H1(X,R).
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2.2. J-invariant, SAF, and algebraic periodic direction

Let (X,ω) be a translation surface. If P is a polygon in R2 with vertices v1, . . . , vn which
are numbered in counterclockwise order about the boundary of P , then the J-invariant
of P is J(P) =

∑n
i=1 vi ∧ vi+1 (with the dummy condition vn+1 = v1). Here ∧ is

taken to mean ∧Q and R2 is viewed as a Q-vector space. J(P) is a translation invariant
(e.g., J(P +−→v ) = J(P)), thus this permits to define J(X,ω) by

∑k
i=1 J(Pi) where

P1 ∪ · · · ∪Pk is a cellular decomposition of (X,ω) into planar polygons (see [14]).

The SAF-invariant of an interval exchange is related to the J-invariant as follows. We
define a linear projection Jxx : R2 ∧Q R2 → R ∧Q R by

Jxx (( ab ) ∧ ( cd )) = a ∧ c.

If T is an interval exchange transformation induced by the first return map of the vertical
foliation on (X,ω) (on a transverse interval I) then SAF (T ) = Jxx(X,ω). Note that the
definition does not depend of the choice of I if the interval meets every vertical leaf (see [1]).
Hence this allows us to define

SAF (X,ω) = SAF (T ),

and we will say that SAF (X,ω) is the SAF-invariant of (X,ω) in the vertical direction.

Following Calta [5], one also defines the SAF-invariant of (X,ω) in any direction k ∈ RP1

(k 6= ∞ = ( 0
1 )) as follows. Let g ∈ GL+(2,R) be a matrix that sends the vector ( 1

k ) to the
vector ( 0

1 ). Then we define the SAF-invariant of (X,ω) in direction k to be Jxx(g · (X,ω)).

2.3. Galois flux

For the remaining of this section K will be a real quadratic field. There is a unique
positive square-free integer f such that K = Q(

√
f). The Galois conjugation of K is given

by u + v
√
f 7→ u − v√f, u, v ∈ Q. For any x ∈ K, we denote by x′ its Galois conjugate.

An interval exchange transformation T is defined over K if its translation lengths tα are all
in K. In [23], McMullen defines the Galois flux of an IET T defined over K to be

flux(T ) =
∑
α∈ A

λαt′α.

Observe that for all n ∈ N, flux(Tn) = nflux(T ). In particular flux(T ) = 0 if T is periodic.
The flux is closely related to the SAF-invariant as we will see.

2.4. Flux of a measured foliation

Let (X,ω) be a translation surface. The real form ρ = Re(ω) defines a measured foli-
ation F ρ on X: the leaves of F ρ are vertical geodesics of the flat metric defined by ω. For
any interval I, transverse to F ρ, the cross section of the flow is an IET. We say that I is full
transversal if it intersects all the leaves of F ρ. If all the absolute periods of ρ belong to the
fieldK, that is [ρ] ∈ H1(X,K) ⊂ H1(X,R), then the first return map to I is defined overK,
and we have
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T 2.2 (McMullen [23]). – Let T be the first return map of F ρ to a full transversal
interval. If [ρ] ∈ H1(X,K), then we have

flux(T ) = −
∫
X

ρ ∧ ρ′,

where ρ′ ∈ H1(X,K) is defined by ρ′(c) = (ρ(c))′, for all c ∈ H1(X,Z). In particular, the flux
is the same for any full transversal interval. In this case, we will call the quantity −

∫
X
ρ ∧ ρ′

the flux of the measured foliation F ρ, or simply the flux of ρ, and denote it by flux(ρ).

2.5. Complex flux

LetK(ı) be the extension ofK by ı =
√
−1. Elements ofK(ı) have the form k = k1 + ık2,

k1, k2 ∈ K. We define (k1+ık2)′ = k′1+ık′2, and k1 + ık2 = k1−ık2. Suppose thatω ∈ Ω(X)

satisfies [ω] ∈ H1(X,K(ı)) and ∫
X

ω ∧ ω′ = 0,

(ω′ is an element of H1(X,K(ı))). The complex flux of ω is defined by

Flux(ω) = −
∫
X

ω ∧ ω′.

Note that we always assume that
∫
X
ω ∧ ω′ = 0 when we consider Flux(ω). This condition

holds, for example, if [ω′] is represented by a holomorphic 1-form.

In the following proposition, we collect the important properties of the complex flux:

P 2.3 (McMullen [23]). – a) For any k ∈ K(ı), Flux(kω) = kk
′
Flux(ω).

b) If ρ = Re(ω), then

flux(ρ) = −1

4

∫
X

(ω + ω) ∧ (ω′ + ω′) =
1

2
Re(Flux(ω)).

(here we used the condition
∫
X
ω ∧ ω′ = 0).

c) Assume that Flux(ω) = 0. Let k = k2/k1 ∈ KP1, k1, k2 ∈ K, and ρ = Re((k1+ık2)ω).
Then F ρ is the foliation by geodesic of slope k in (X,ω), and we have

flux( F ρ) = flux(ρ) =
1

2
Re((k1 + ık2)ω) =

1

2
Re((k1 + ık2)(k′1 − ık′2)Flux(ω)) = 0.

2.6. Periodic foliation

Given a cylinder C in (X,ω), we denote its width and height by w(C) and h(C) respec-
tively. If the vertical foliation is completely periodic, then X is decomposed into cylinders
in this direction. It turns out that the imaginary part of Flux(ω) provides us with important
information on the cylinders. Namely the following is true:

T 2.4 (McMullen [23]). – Assume that [ω] ∈ H1(X,K(ı)),
∫
ω∧ω′ = 0, and the

foliation F ρ is periodic, where ρ = Re(ω). Let {Cj}1≤j≤m be the vertical cylinders ofX. Then
we have ∑

1≤j≤m

h(Cj)w(Cj)
′ =

1

2
Im(Flux(ω)).
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Recall that we have N(k) = kk′ ∈ Q, for any k ∈ K. For any cylinder C, the modulus
ofC is defined by µ(C) = h(C)/w(C). A direct consequence of Theorem 2.4 is the following
useful corollary.

C 2.5. – If F ρ is periodic, and the complex flux of ω vanishes, then the moduli
of the vertical cylinders satisfy the following rational linear relation∑

1≤j≤m

µ(Cj)N(w(Cj)) = 0.

2.7. Prym eigenform and complex flux

A remarkable property of Prym loci is that the complex flux of a Prym eigenform (of a
real quadratic order) vanishes.

T 2.6 ([23, Theorem 9.7]). – Let (X,ω) be a Prym eigenform belonging to some
locus ΩED(κ). After replacing (X,ω) by A · (X,ω) for a suitable A ∈ GL+(2,R), we can
assume that all the absolute periods of ω are in K(ı), where K = Q(

√
D). We have∫

X

ω ∧ ω′ = 0 and Flux(ω) = 0.

Proof. – Let T be a generator of the order OD. We have a pair of 2-dimensional
eigenspaces S ⊕ S′ = H1(X,R)− on which T acts with eigenvalues t, t′ respectively.
Since T is self-adjoint, S and S′ are orthogonal with respect to the cup product.

The eigenspace S is spanned by Re(ω) and Im(ω). These forms lie in H1(X,K). The
Galois conjugate of any form α ∈ H1(X,K) ∩ S satisfies Tα′ = t′α′, and hence belongs
to S′. In particular Re(ω)′ and Im(ω)′ are orthogonal to Re(ω) and Im(ω). This shows∫

X

ω ∧ ω′ = 0 and Flux(ω) = −
∫
X

ω ∧ ω′ = 0.

C 2.7. – If (X,ω) is a Prym eigenform for a quadratic order OD such that
[ω] ∈ H1(X,K(ı)), where K = Q(

√
D), then for any k ∈ KP1, the flux of the foliation

by geodesics in direction k vanishes.

2.8. Relation between SAF-invariant and complex flux

P 2.8. – Let (X,ω) be as in Theorem 2.6. Assume that all the relative periods
of ω are also in K(ı). Then flux(ω) = 0 implies SAF (ω) = 0. Here, flux(ω) and SAF (ω)

denote the corresponding invariants of the vertical flow on (X,ω).

Proof. – Let I be a full transversal interval for the vertical flow, and T be the IET induced
by the first return map on I. We denote the lengths of the permuted intervals Iα by λα and the
translation lengths by tα so that T (x) = x + tα for any x ∈ Iα. The assumption on relative
periods implies that ∀α ∈ A, λα ∈ K. SinceK = Q(

√
f), then we can write tα = xα+yα

√
f

with xα, yα ∈ Q. Then t′α = xα − yα
√
f . The condition flux(T ) = 0 is then equivalent to∑

α∈ A

λαxα =
√
f
∑
α∈ A

λαyα.
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Since λα ∈ K, it follows∑
α∈ A

λαyα = A+B
√
f and

∑
α∈ A

λαxα = fB +A
√
f with A,B ∈ Q.

By definition of the SAF -invariant, we have

SAF (T ) = (
∑
α∈ A

λαxα) ∧Q 1 + (
∑
α∈ A

λαyα) ∧Q
√
f = A

√
f ∧Q 1 +A ∧Q

√
f = 0.

C 2.9. – Let (X,ω) be a Prym eigenform in ΩED(κ). Assume that all the
periods of ω belong to K(ı), where K = Q(

√
D). Then (X,ω) is completely algebraically

periodic.

Proof. – We first remark that the set of homological directions of (X,ω) isKP1. For any
direction θ ∈ KP1, there exists a matrix gθ ∈ GL+(2,K) that maps θ to the vertical direction.
Note that all the periods of gθ · ω are in K(ı). From the properties of flux, we know that
flux(gθ · ω) = 0, thus SAF (gθ · ω) = 0, which implies that the SAF -invariant vanishes in
direction θ.

3. Invariance of SAF along kernel foliation leaves

3.1. Kernel foliation

Here we briefly recall the kernel foliation for Prym loci (see [10, 21, 5, 17, 26] and [37, §9.6]
for related constructions). The kernel foliation was introduced by Eskin-Masur-Zorich, and
was certainly known to Kontsevich.

Let (X,ω) be a translation surface having several distinct zeros. The intersection of
the leaf of the kernel foliation through (X,ω) with a neighborhood of (X,ω) consists of
surfaces (X ′, ω′) that share the same absolute periods as (X,ω), i.e., for any c ∈ H1(S,Z),
where S is the base topological surface homeomorphic to both X and X ′, we have
ω(c) = ω′(c).

One can get such a surface by the following construction: choose a zero P of ω and
ε > 0 small enough so that the set D(P, ε) = {x ∈ X,d(P, x) < ε} is an embedded disc
in X and disjoint from all the other zeros of ω. Assume that P is a zero of order k, then
D(P, ε) can be constructed from 2(k+ 1) half-discs as described in the left part of Figure 1.
Pick a vector w ∈ C, 0 < |w| < ε, and cut D(P, ε) along the rays in direction ±w, we
get 2(k+1) half-discs which are glued together such that all the centers are identified with P .
We modify the metric structure ofD(P, ε) as follows: in the diameter of each half-disc, there

is a unique point P ′ such that
−−→
PP ′ = w, we can glue the half-discs in such a way that all the

points P ′ are identified. Let us denote by D′ the domain obtained from this gluing. We can
glue D′ to X \D(P, ε) along ∂D′, which is the same as ∂D(P, ε). We then get a translation
surface (X ′, ω′) which has the same absolute periods as (X,ω), and satisfies the following
condition: if c is a path inX joining another zero of ω to P , and c′ is the corresponding path
inX ′, then we have ω(c′) = ω(c) + w. In this situation, we will say that P is moved by w. By
definition (X ′, ω′) lies in the kernel foliation leaf through (X,ω).

Let us now describe the kernel foliation in Prym loci in Table 1. Let (X,ω) be a translation
surface in a Prym locus given in Table 1. We first observe that either ω has two zeros, in
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which case the zeros are permuted by the Prym involution τ, or ω has 3 zeros, two of which
are permuted by τ, the third one is fixed. In both cases, let us denote the pair of permuted
zeros by P1, P2. Given ε and w as above, to get a surface (X ′, ω′) in the same leaf, it suffices
to move P1 by w/2 and move P2 by −w/2. Indeed, by assumptions, the Prym involution
exchanges D(P1, ε) and D(P2, ε). Let D′1 and D′2 denote the new domains we obtain from
D(P1, ε) and D(P2, ε) after modifying the metric. It is easy to check that D′1 and D′2 are
symmetric, thus the involution in X \ (D(P1, ε) t D(P2, ε)) can be extended to D′1 t D′2.
Therefore we have an involution τ′ on X ′ such that τ′∗ω′ = −ω′, which implies that (X ′, ω′)

also belongs to the same Prym locus as (X,ω).

In what follows we will denote the surface (X ′, ω′) obtained from this construction
by (X,ω) + w (from w small). Let c be a path on X joining two zeros of ω, and c′ be the
corresponding path in X ′. Then we have

– if two endpoints of c are exchanged by τ then ω′(c′)− ω(c) = ±w,
– if one endpoint of c is fixed by τ, but the other is not, then ω′(c′)− ω(c) = ±w/2.

The sign of the difference is determined by the orientation of c.

w

F 1. Moving a zero by a vector w ∈ R2

3.2. Neighborhood of a Prym eigenform

We first show

L 3.1. – For any Prym locus Prym(κ) in Table 1, and any discriminant D ∈ N,
D ≡ 0, 1 mod 4, if ΩED(κ) 6= ∅, then dimC ΩED(κ) = 3.

Proof. – Denote by Σ the set of zeros of ω. Let H1(X,C)− and H1(X,Σ;C)− denote
the eigenspaces of τ with the eigenvalue −1 in H1(X,C) and H1(X,Σ;C) respectively.
In a local chart which is given by a period mapping, a Prym form in Prym(κ) close
to (X,ω) corresponds to a vector in H1(X,Σ;C)−. Note that dimCH

1(X,C)− = 4 and
dimCH

1(X,Σ;C)− = 5, and we have a natural surjective linear map ρ : H1(X,Σ;C)− →
H1(X,C)−.

Let Ŝ = C · [Re(ω)] ⊕ C · [Im(ω)] ⊂ H1(X,C)−, where [Re(ω)] and [Im(ω)] are the
cohomology classes in H1(X,R) represented by Re(ω) and Im(ω). Since ω is an eigenform
of a quadratic order OD, there exists an endomorphism T ofH1(X;C)− which generates OD
such that Ŝ is an eigenspace of T for some real eigenvalue. A Prym eigenform in ΩED(κ)

close to (X,ω) corresponds to a vector in ρ−1(Ŝ). Since dimC Ŝ = 2 and dimC ker ρ = 1, the
lemma follows.
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C 3.2. – For any (X,ω) ∈ ΩED(κ), if (X ′, ω′) is a Prym eigenform in ΩED(κ)

close enough to (X,ω), then there exists a unique pair (g, w), where g ∈ GL+(2,R) close to Id,
and w ∈ R2 with |w| small, such that (X ′, ω′) = g · ((X,ω) + w).

Proof. – Let (Y, η) = (X,ω) + w, with |w| small, be a surface in the leaf of the kernel
foliation through (X,ω). We denote by [ω] and [η] the classes of ω and η in H1(X,Σ;C)−.
Then we have

[η]− [ω] ∈ ker ρ,

where ρ : H1(X,Σ;C)− → H1(X,C)− is the natural surjective linear map. On the other
hand, the action of g ∈ GL+(2,R) on H1(X,Σ;C)− satisfies

ρ(g · [ω]) = g · ρ([ω]).

Therefore the leaves of the kernel foliation and the orbits of GL+(2,R) are transversal. Since
their dimensions are complementary, the corollary follows.

3.3. Kernel foliation and SAF-invariant

In the remaining of this section, (X,ω) is a translation surface in Prym(κ) where

κ ∈
{

(1, 1), (3, 3), (2, 2)odd, (1, 1, 2), (4, 4)even, (2, 2, 2)even, (1, 1, 4)
}
.

As we have seen, moving in the kernel foliation leaves does not change the cohomology
class [ω] ∈ H 1(X,C). Therefore, the following proposition is an immediate consequence of
Theorem 2.1 (see also [5]).

P 3.3. – For any (X,ω) ∈ Prym(κ) there exists ε > 0 such that for any
w ∈ C, with |w| < ε

SAF (X,ω) = SAF ((X,ω) + w).

As a consequence, we draw our first theorem.

Proof of Theorem 1.4. – We want to show that every Prym eigenform (X,ω) is completely
algebraically periodic. Since ω is an eigenform for a real quadratic order OD, up to
action of GL+(2,R) we can assume that all the absolute periods of ω are in K(ı), where
K = Q(

√
D). As a consequence, the set of homological directions of (X,ω) is KP1.

If D is a square, then K = Q, in which case, we can assume that all the absolute periods
of ω belong to Z⊕ ıZ. Thus (X,ω) is a ramified covering of the standard torus C/(Z⊕ ıZ).
It follows that for every direction θ ∈ Q ∪ {∞}, the linear flow in direction θ is periodic,
which means that the SAF-invariant vanishes. Therefore, (X,ω) is completely algebraically
periodic.

For the case where K is a real quadratic field, given a direction k ∈ KP1, as usual we
normalize so that k is the vertical direction (0 : 1). Let T be the first return map of the vertical
flow to a full transversal interval. All we need to show is that SAF (T ) = 0.

Theorem 2.6 ensures that flux(ω) = 0. However, in view of applying Proposition 2.8
we need ω to have relative periods in K(ı), which is not necessarily true. To bypass this
difficulty we first apply Proposition 3.3. One remarks that all the relative periods of ω are
determined by a chosen relative period and the absolute ones. Hence we can choose a small
suitable vector w ∈ R2 such that all the relative coordinates of (X,ω) + w are in K(ı) and
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Proposition 3.3 applies i.e., SAF (X,ω) = SAF ((X,ω) + w). Since (Y, η) = (X,ω) + w

is still an eigenform, again Theorem 2.6 gives flux(η) = 0. But now by Proposition 2.8, we
draw SAF ((Y, η)) = 0. Hence the SAF-invariant of the vertical flow on (X,ω) also vanishes
and Theorem 1.4 is proven.

4. Interval exchange transformations and linear involutions

4.1. Linear involutions

The first return map of the vertical flow on a translation surface (X,ω) to an interval I
defines an interval exchange transformation (see Section 2.1). Such a map is encoded by a
partition of I into d subintervals that we label by letters in some finite alphabet A, and a
permutation π of A. The length of these intervals is recorded by vector λ with positive entries.
The vector λ is called the continuous datum of T and π is called the combinatorial datum (we
will write T = (π, λ)). We usually represent π by a table of two lines (here A = {1, . . . , d}):

π =

(
1 2 . . . d

π−1(1) π−1(2) . . . π−1(d)

)
.

When the measured foliation is not oriented, the above construction does not make sense.
Nevertheless a generalization of interval exchange maps for any measured foliation on a
surface (oriented or not) was introduced by Danthony and Nogueira [9]. The generaliza-
tions (linear involutions) corresponding to oriented flat surfaces with Z/2Z linear holonomy
were studied in detail by Boissy and Lanneau [3] (see also Avila-Resende [2] for a similar
construction). We briefly recall the objects here.

Roughly speaking, a linear involution encodes the successive intersections of the foliation
with some transversal interval I. We choose I and a positive vertical direction (equivalently,
a choice of left and right ends of I) that intersect every vertical geodesics. The first return
map T0 : I → I of vertical geodesics in the positive direction is well defined, outside a
finite number of points (called singular points) that correspond to vertical geodesics that stop
at a singularity before intersecting again the interval I. This equips I with is a finite open
partition (Iα) so that T0(x) = ±x+ tα.

However the map T0 alone does not properly correspond to the dynamics of vertical
geodesics since when T0(x) = −x + tα on the interval Iα, then T 2

0 (x) = x, and
(x, T0(x), T 2

0 (x)) does not correspond to the successive intersections of a vertical geodesic
with I starting from x. To fix this problem, we have to consider T1 the first return map of
the vertical geodesics starting from I in the negative direction. Now if T0(x) = −x + ci
then the successive intersections with I of the vertical geodesic starting from x will be
x, T0(x), T1(T0(x)). . .

D 4.1. – Let f be the involution of I × {0, 1} given by f(x, ε) = (x, 1 − ε).
A linear involution is a map T , from I × {0, 1} into itself, of the form f ◦ T̃ , where T̃ is an
involution of I × {0, 1} without fixed point, continuous except on a finite set of point ΣT , and
which preserves the Lebesgue measure. In this paper we will only consider linear involutions with
the following additional condition: the derivative of T̃ is 1 at (x, ε) if (x, ε) and T̃ (x, ε) belong
to the same connected component, and −1 otherwise.
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R 4.2. – A linear involution T that preserves I × {0} corresponds precisely to an
interval exchange transformation map T0 (by restricting T to I × {0}). Therefore, we can
identify the set of interval exchange maps with a subset of the linear involutions.

As for interval exchange maps, a linear involution T is encoded by a combinatorial datum
called generalized permutation and by continuous data. This is done in the following way:
I × {0}\ΣT is a union of l open intervals I1 t . . . t Il, where we assume by convention
that Ii is the interval at the place i, when counted from the left to the right. Similarly,
I × {1}\ΣT is a union of m open intervals Il+1 t . . . t Il+m. For all i, the image of Ii by
the map T̃ is a interval Ij , with i 6= j, hence T̃ induces an involution without fixed points on
the set {1, . . . , l + m}. To encode this involution, we attribute to each interval Ii a symbol
such that Ii and T̃ (Ii) share the same symbol. Choosing the set of symbol to be A, we get a
two-to-one map π : {1, . . . , l +m} → A, with d := |A| = l+m

2 . Note that π is not uniquely
defined by T since we can compose it on the left by any permutation of the alphabet A. The
continuous data of T is a real vector λ = (λα)α∈ A with positive entries, which records the
lengths of the permuted intervals.

D 4.3. – A generalized permutation of type (l,m), with l + m = 2d, is a two-
to-one map π : {1, . . . , 2d} → A to some finite alphabet A. We will usually represent such
generalized permutations by a table of two lines of symbols, with each symbol appearing exactly
two times.

π =

(
π(1) . . . π(l)

π(l + 1) . . . π(l +m)

)
.

We will call top (respectively bottom) the restriction of a generalized permutation π

to {1, . . . , l} (respectively {l + 1, . . . , l +m}) where (l,m) is the type of π.

In the table representation of a generalized permutation, a symbol might appear two times
in the same line (see Example 4.6 below). Therefore, we do not necessarily have l = m.

Convention. We will use the terminology generalized permutations for permutations that are
not “true” permutations.

4.2. Irreducibility and suspension over a linear involution

Starting from a linear involution T , we want to construct a flat surface and a horizontal
segment whose corresponding “first return” maps of the vertical foliation give T . Such
surface will be called a suspension over T , and the parameters encoding this construction
will be called suspension data (see [3, §2.3] for details).

We say that a linear involution T = (π, λ) admits a suspension data if there exists a
collection of complex numbers ζ = {ζα}α∈ A such that

1. ∀α ∈ A Re(ζα) = λα.
2. ∀1 ≤ i ≤ l − 1 Im(

∑
j≤i ζπ(j)) > 0

3. ∀1 ≤ i ≤ m− 1 Im(
∑

1≤j≤i ζπ(l+j)) < 0

4.
∑

1≤i≤l ζπ(i) =
∑

1≤j≤m ζπ(l+j).
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Given such a collection of complex numbers, one can form two broken lines L0 and L1 (with
a finite number of edges) on the plane: the edge number i ofL0 is represented by the complex
number ζπ(i), for 1 ≤ i ≤ l, and L1 starts on the same point as L0, and the edge number j is
represented by the complex number ζπ(l+j) for 1 ≤ j ≤ m.

If L0 and L1 only intersect on their endpoints, then L0 and L1 define a polygon whose
sides come in pairs and for each pair the corresponding sides are parallel and have the same
length. Then identifying these sides together, one gets a flat surface such that the first return
map of the vertical foliation on the segment corresponding toX in S defines the same linear
involution as T .

If π is a “true” permutation defined over d letters, it is well known(see [34, Formula 3.7,
p. 207] and [19, p. 174]) that T admits a suspension if and only if π is irreducible, i.e.,
π({1, . . . , k}) 6= {1, . . . , k}, 1 ≤ k ≤ d− 1.

It turns out that a similar characterization exists for generalized permutations. For the
convenience of the reader, we state this criterion here.

D 4.4. – We will say that π is reducible if π admits a decomposition(
A ∪B ∗ ∗ ∗ D ∪B
A ∪ C ∗ ∗ ∗ D ∪ C

)
, A,B,C,D disjoint subsets of A,

where the subsets A,B,C,D are not all empty and one of the following statements holds

(i) No corner is empty.
(ii) Exactly one corner is empty and it is on the left.

(iii) Exactly two corners are empty and they are both on the same side.

A permutation that is not reducible is irreducible.

For example of irreducible and reducible permutations, see Claim 8.2.

T 4.5 ([3] Theorem 3.2). – Let T = (π, λ) be a linear involution. Then T admits a
suspension if and only if the underlying generalized permutation π is irreducible.

4.3. Rauzy induction

The Rauzy induction R(T ) of a linear involution T is the first return map of T to a smaller
interval I ′×{0, 1}, where I ′ ( I. More precisely, if T = (π, λ) and (l,m) is the type of π, we
identify I with the interval [0, 1). If λπ(l) 6= λπ(l+m), then the Rauzy induction R(T ) of T is
the linear involution obtained by the first return map of T to(

0,max{1− λπ(l), 1− λπ(l+m)}
)
× {0, 1}.

It is easy to see that this is again a linear involution, defined on d letters.

The combinatorial data of the new linear involution depends only on the combinatorial
data of T and whether λπ(l) > λπ(l+m) or λπ(l) < λπ(l+m). We say that T has type 0 or type 1

respectively. The combinatorial data of R(T ) only depends on π and on the type of T . This
defines two operations R0 and R1 by R(T ) = ( Rε(π), λ′), with ε the type of T (see [3] for
details). We will not use these operations in this paper.
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We stress that the Rauzy-Veech induction is well defined if and only if the two rightmost
intervals do not have the same length i.e., λπ(l) 6= λπ(l+m). However, when these intervals do
have the same length, we can still consider the first return map of T to(

0, 1− λπ(l)

)
× {0, 1}.

This is again a linear involution, denoted by Rsing(T ), defined over d − 1 letters. The
combinatorics of Rsing(T ) can be defined as follows: we apply the top operation of the Rauzy
induction and then we erase the last letter of the top. Equivalently, we apply the bottom
operation of the Rauzy induction and then we erase the last letter of the bottom.

E 4.6. – Let T = (π, λ) with π = ( A A B C
D C B D ). Then the combinatorial datum of

the Rauzy induction R(T ) of T is:

( A A B C
D C D B ) if λC > λD

(A A B
C D C B D ) if λC < λD

( A A B
D D B ) if λC = λD

We can formally define the converse of the (singular) Rauzy Veech operations. We proceed
as follows: given some permutation π′ defined over an alphabet A, and a letter α 6∈ A,
we put α at the end of the top or bottom line of π′. Then we choose some letter β ∈ A.
We replace β by α and we put the letter β at the end of the bottom of top line of π′. The
new permutation π we have constructed is defined over the alphabet A t {α} and satisfies
Rsing(π) = π′. It turns out that all the permutations of R−1

sing(π′) are constructed as above
with one exception: the one given by putting at the end of the top and bottom line the letterα.

E 4.7. – Let π′ = ( A B C D
B A D C ). For instance if we choose the letter β = B and we

putα at the end of the top line, we get ( A α C D α
B A D C B ) or (A B C D α

α A D C B ). More precisely, if β ranges
over all letters of A we get (up to a permutation of the letters of the alphabet A t {α}):

R−1
sing ( A B C D

B A D C )

= {(A B C D α
α A D C B ) , ( A B C D α

B α D C A ) , ( A B C D α
B A α D C ) , ( A B C D α

B A D α C ) , ( A B C D α
B A D C α ) , ( A B C α D

B A D C α ) ,

( α B C D α
B A D C A ) , ( A α C D α

B A D C B ) , ( A B α D α
B A D C C ) , ( A B C α α

B A D C D )}.

We end this section with the following easy lemma that will be useful for the sequel.

L 4.8. – If π is an irreducible generalized permutation then Rsing(π) is also a gener-
alized permutation.

4.4. Rauzy induction and SAF-invariant

We can naturally extend SAF (.) to linear involutions by SAF (T ) := SAF (T̂ ) where the
transformation T̂ is the double of T (see [2] for details). As for interval exchange maps, if T
is periodic then SAF (T ) = 0. The converse is true if |A| = d ≤ 3 (see Lemma 5.1 for a proof
in case d = 3).

P 4.9. – A linear involution T defined over d ≤ 2 intervals is completely
periodic if and only if SAF (T ) = 0.
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Proof. – We fix some alphabet A = {A,B}. There are three possibilities depending on
the combinatorics of the associated permutation:

( A A
B B ) , (A B

A B ) , ( A B
B A ) .

In the first two cases, clearly T is completely periodic (no matter what SAF (T ) is). In the last
case T is a rotation of [0, 1) of some angle θ:

T (x) =

{
x+ θ if 0 < x < 1− θ,
x+ θ − 1 if 1− θ < x < 1.

A direct computation shows SAF (T ) = 2 ∧Q θ; hence SAF (T ) = 0 implies θ ∈ Q and T is
completely periodic.

Since the SAF-invariant is a scissors congruence invariant, it is preserved by the Rauzy
operations.

P 4.10. – Let T be a linear involution. If the Rauzy induction is well defined
then T then

SAF ( R(T )) = SAF (T ).

Otherwise (if the Rauzy induction is not well defined), then

SAF ( Rsing(T )) = SAF (T ).

Moreover, T is completely periodic if and only if R(T ) or Rsing(T ) is completely periodic.

4.5. Rauzy induction and Keane property

We will say that T = (π, λ) is decomposed if there exists A′ ( A such that both following
conditions hold:π =

(
α1 ... αi0 | ∗∗∗
β1 ... βj0 | ∗∗∗

)
, where {α1, . . . , βj0} = A′ t A′,∑i0

i=1 λπ(i) =
∑j0
j=1 λπ(j), for some 1 ≤ i0 < l and 1 ≤ j0 < m.

This means exactly that T splits into two linear involutions. In this case, we will use the
notation T = T1#T2. Since the SAF-invariant is additive we have

(1) SAF (T ) = SAF (T1) + SAF (T2).

D 4.11. – A linear involution has a connection (of length r) if there exist
(x, ε) ∈ I × {0, 1} and r ≥ 0 such that

– (x, ε) is a singularity for T−1.
– T r(x, ε) is a singularity for T .

A linear involution with no connection is said to have the Keane property (also called the infinite
distinct orbit condition or i.d.o.c. property).

An instance of a linear involution with a connection of length 1 is when T is decomposed.
If T = (π, λ) is a linear involution, we will use the notation (π(n), λ(n)) := R(n)

(T ) if the
n-th iteration of T by R is well defined, and λ(n)

α for the length of the interval associated to the
symbol α ∈ A. The next proposition is a slightly more precise statement of Proposition 4.2.
of [3]:
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P 4.12. – The following statements are equivalent.

1. T satisfies the Keane property.
2. R(n)

(T ) is well defined for any n ≥ 0 and the lengths of the intervals λ(n) tends to 0 as n
tends to infinity.

Moreover in the above situation the transformation T is minimal.

In addition, if T has a connection and if the Rauzy induction R(n)
(T ) is well defined for

every n ≥ 0, then there exists n0 > 0 such that R(n0)(T ) is decomposed.

The following proposition relates connections with vanishing SAF-invariant.

P 4.13. – Let T be a linear involution such that the lengths of the exchanged
intervals belong to a 2-dimensional space over Q. If SAF (T ) = 0 then T has a connection.

Proof. – Let T̂ be the double of T . Since the interval exchange map T̂ has vanishing SAF,
T̂ is not ergodic (see Arnoux’s thesis [1]). But by a result of Boshernitzan ([4], Theorem 1.1),
T̂ is neither minimal (otherwise T̂ would be uniquely ergodic).

If T has no connection then it satisfies Keane property and Proposition 4.12 implies T would
be minimal. So that T̂ would also be minimal that is a contradiction.

5. Complete periodicity of linear involution up to 5 intervals

In this section we specialize the analysis of complete periodicity to linear involutions. In
the sequel, T will be a linear involution defined over d intervals. We prove several lemmas
depending on the values of d ∈ {3, . . . , 6}. Section 5 is devoted to the case d ≤ 5; as a
corollary we will draw Theorem 1.6. In Section 8 we will consider the case d = 6 and deduce
Theorem 1.9.

Since we proceed by induction on d, let us start with the case d = 3.

L 5.1 (d = 3). – If T is a linear involution defined over 3 intervals with SAF (T ) = 0

then T is completely periodic.

Proof. – The condition SAF (T ) = 0 implies that the lengths of the intervals exchanged
by T span a 2-dimensional space overQ. It follows from Proposition 4.13 T has a connection.
Hence from Proposition 4.12, two possibilities can occur:

(a) either the Rauzy induction R(n0)(T ) is not well defined for some n0 > 0, or
(b) there exists n0 > 0 such that the permutation R(n0)(T ) is decomposed.

Let us first consider case (a). Since the Rauzy induction is not well defined on T ′ := R(n0)(T ),
there is a relation: λπ(n0)(l) = λπ(n0)(l+m). We can consider the first return map of T ′ to(

0, 1− λπ(n0)(l)

)
× {0, 1}.

We get a new T ′′ = Rsing(T ′) defined over 2 intervals. Since 0 = SAF (T ) = SAF (T ′) =

SAF (T ′′) we get that T ′′ has vanishing SAF and hence T ′′ is completely periodic. We
conclude by Proposition 4.10 that T ′ and T are also completely periodic.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



108 E. LANNEAU AND D.-M. NGUYEN

Let us now consider case (b). By assumption, T splits as T = T1#T2. We will denote
the alphabet by A = {A,B,C}. The decomposition of the permutation π(n0) involves the
following decomposition (up to permutation of the letters and Ti):(

A α1 α2

A β1 β2

)
, where {α1, . . . , β2} = {B,C} t {B,C}.

Here T1 =

((
A

A

)
, λA

)
. Thus obviously SAF (T1) = 0. Reporting into Equation (1):

0 = SAF (T ) = SAF (T1) + SAF (T2),

we draw SAF (T2) = 0. Since T2 is a linear involution defined over 2 letters, we again
conclude that T2 is completely periodic. This proves the lemma.

In the next lemma, we continue this induction process. The idea is to consider the inverse
of the singular Rauzy induction. Thus the number of intervals increases, and we need to avoid
“bad” cases.

L 5.2 (d = 4). – If T = (π, λ) is a linear involution defined over 4 intervals with
SAF (T ) = 0, and if π 6= ( A B C D

B A D C ) up to a permutation of the letters, then T is completely
periodic.

Proof. – We first show that T has a connection. We can assume that π is irreducible
(otherwise there is a connection) and the Rauzy induction R(n)

(T ) is well defined for
any n > 0 (otherwise T would have a connection and we are done).

If π is a true permutation then by Proposition 4.12 the range of the Rauzy induction is
the Rauzy class of π. Since the SAF is invariant along the Rauzy induction, we can assume
that π = ( A B C D

D C B A ). For any α ∈ A, the translation lengths tα are (in terms of the lengths
of the subintervals):

(tA, tB , tC , tD) = (λB + λC + λD, λC + λD − λA, λD − λA − λB ,−λA − λB − λC).

It follows that

0 = SAF (T ) =
∑
α∈ A

λα ∧Q tα = λA ∧ (λB + λC + λD) + λB ∧ (λC + λD) + λC ∧ λD.

We rewrite the above relation as follows:

(2) − λA ∧ λB = (λA + λB + λC) ∧ (λC + λD).

If λA ∧ λB = 0, which means that λB ∈ QλA, then (2) implies λD ∈ QλA + QλC . Therefore
the span over Q of the lengths {λA, λB , λC , λD} is equal to QλA + QλC , and it follows that
the space SpanQ(λA, λB , λC , λD) has rank at most 2.
Now if λA ∧ λB 6= 0, Equation (2) gives

(3) λA ∧ λB ∧ (λC + λD) = 0.

Since λA and λB are linearly independent over Q there exists a, b ∈ Q such that λC + λD =

aλA + bλB . Reporting into Equation (2) we draw

(b+ 1− a) · λA ∧ λB − a · λA ∧ λC − b · λB ∧ λC = 0.
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If λC does not belong to the vector space (over Q) generated by λA and λB then the vectors
{λA ∧ λB , λA ∧ λC , λB ∧ λC} are linearly independent in

∧2
Q(R). Thus a = 0, b = 0 and

1 + b− a = 0 that is a contradiction. We can then conclude that λC belongs to QλA + QλB
and so does λD. Therefore the lengths of the exchanged intervals span a vector space of rank 2

over Q. Now, by Proposition 4.13, the linear involution T has a connection.
If π is a generalized permutation, since it is irreducible, there is a suspension (Y, q)

belonging to some stratum of quadratic differentials and inducing π. Since the number of
intervals is 4, the dimension of the stratum is 3. Hence the only possibility is Q(−1,−1, 2)

and, up to the Rauzy induction, the permutation is π = (A A B C
C B D D ). The same computa-

tion shows that the lengths of the exchanged intervals have linear rank 2 over Q so that
Proposition 4.13 applies and T has a connection.

We now repeat the same strategy as in the proof of the previous lemma. From Propo-
sition 4.12 only two possibilities (a) and (b) can occur (see the proof of Lemma 5.1). In
case (a), the Rauzy induction is not well defined and we can reduce the problem to some
T ′ = R(n0)(T ) defined over 3 letters. We then conclude using Lemma 5.1.

Thus let us assume that there exists n0 > 0 such that R(n0)(T ) breaks into two linear
involutions T1 and T2 with SAF (T1) + SAF (T2) = 0. Again if T1 or T2 is defined over only
one interval then we are done (by the same argument as above). So assume that T1 and T2

are defined over 2 intervals. If SAF (T1) = 0 then we are done by Proposition 4.9. Hence
we will assume that SAF (T1) = −SAF (T2) 6= 0 and we will get a contradiction. This can
be achieved only if the permutation associated to T1 has the form ( A B

B A ). The same is true
for T2: the permutation is ( C D

D C ). Hence π(n0) = ( A B C D
B A D C ). From this observation, it is not

hard to see that π = π(n0), that is the desired contradiction. The lemma is proven.

For the case d = 5, again new pathological cases appear as shown in the next lemma:

L 5.3 (d = 5). – Let T = (π, λ) be a linear involution defined over 5 intervals with
SAF (T ) = 0. We assume that either the Rauzy induction is not well defined, or T decomposes.
If π does not belong to one of the following sets (up to permutation of the letters of A):

E1 = {(A B C D α
α A D C B ) , ( A B C D α

B α D C A )} , E2 = {( α B C D α
B A D C A ) , ( A α C D α

B A D C B )} ,
E3 = {( A B

B A
π′ ) , ( π′ A B

B A ) , π′ permutation defined over 3 letters} ,
then T is completely periodic.

Proof of Lemma 5.3. – If the Rauzy induction is not well defined for T then we get a new
linear involution T ′ = (π′, λ′) = Rsing(T ) defined over 4 intervals with vanishing SAF-
invariant. If π′ 6= ( A B C D

B A D C ) then we are done by Lemma 5.2. Hence we can assume that
Rsing(π) = ( A B C D

B A D C ). But by Example 4.7 permutations in R−1
sing ( A B C D

B A D C ) are exactly
those lying in E1 ∪ E2 ∪ E3. Thus the lemma is proved for this case.
If T = T1#T2 is decomposed into two linear involutions, where Ti is defined over di intervals
with d1 + d2 = 5, then Ti satisfy SAF (T1) + SAF (T2) = 0. There are two possible
partitions for the number {d1, d2} of intervals of Ti: namely, up to permuting Ti: (d1, d2)

equals (1, 4) or (2, 3). In the first situation T1 is completely periodic as any linear involution
defined over only 1 interval is periodic. Hence SAF (T2) = 0. One wants to use Lemma 5.2.
For that we need to avoid the case π2 = ( A B C D

B A D C ). But in the latter situation one would have
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π = (E A B C D
E B A D C ). This permutation belongs to the set E3. Hence the lemma is proved in this

situation.
The last remaining case is (d1, d2) = (2, 3). If SAF (T1) = 0 then we are done. On the other
hand SAF (T1) 6= 0 implies π1 = ( A B

B A ), that is π ∈ E3. The lemma is proved.

6. Complete Algebraic Periodicity implies Complete Periodicity

We begin with the following simple lemma.

L 6.1. – Let T = (π, λ) be a linear involution defined over 3 letters. We assume that
π 6∈ {( A B C

B A C ) , (A B C
A C B )}. If T has a periodic orbit then T is completely periodic.

We postpone the proof of the lemma to the end of this section and show Theorem 1.6.

Proof of Theorem 1.6. – Let θ be a direction of a cylinder in X. The core curve of this
cylinder represents an element of H1(X,Z), hence by assumption, the SAF-invariant of the
foliation F θ vanishes. As usual one assumes that θ is the vertical direction. We want to show
that the flow in the vertical direction is periodic. Let T = (π, λ) be the linear involution given
by the cross section of the vertical foliation to some full transversal interval. By assumption
T is defined over 6 intervals and has a periodic orbit. Moreover π is an irreducible generalized
permutation.

Obviously proving complete periodicity for the vertical foliation or for T is the same.
Since T has a periodic orbit Proposition 4.12 implies that only two cases can occur (up to
replacing T by R(n)

(T ) for some suitable n), either

(a) R(T ) is decomposed, or
(b) the Rauzy induction R(T ) is not well defined.

C (a). In this situation,T = (π, λ) = T1#T2 is decomposed into two linear involutions,
each defined over di intervals with d1 +d2 = 6, with opposite SAF . There are three possible
(unordered) partitions for {d1, d2}, namely {1, 5}, {2, 4} or {3, 3}. In the first situation π is
reducible that is a contradiction. In the second situation since π is irreducible, we necessarily
have π1 = ( A A

B B ). Hence T1 is completely periodic, and SAF (T2) = 0. We conclude
with Lemma 5.2 (π2 is not ( C D E F

D C F E ) otherwise π would be reducible). In the last case, i.e.,
d1 = d2 = 3, T1 or T2 has a closed orbit, say T1. Again, by the irreducibility of π, the two
permutations π1 and π2 are generalized permutations. Then Lemma 6.1 implies that T1 is
completely periodic. Hence SAF (T2) = 0 and we conclude by Lemma 5.1.

C (b). Since the Rauzy induction is not well defined T ′ = Rsing(T ) = (π′, λ′) is a
linear involution defined over 5 letters, with a periodic orbit and vanishing SAF-invariant.
Note that π′ is not necessarily irreducible. Applying Proposition 4.12 again, we know that
there exists n such that either R(n)

(T ′) decomposes, or R(n+1)
(T ′) is not well defined.

Set T ′ = (π′, λ′) and T ′′ = (π′′, λ′′) := R(n)
(T ′). In the first case, we have T ′ = T ′′1 #T ′′2 ,

where T ′′i is a linear involution defined over d′′i intervals, and d′′1 +d′′2 = 5. If (d′′1 , d
′′
2) = (1, 4)

then SAF (T ′′1 ) = 0, hence SAF (T ′′2 ) = 0. Since T ′′2 is defined over 4 letters, it follows that
T ′′2 is periodic unless π′′2 = ( A B C D

B A D C ) (Lemma 5.2), consequently π′′ = ( α A B C D
α B A D C ).

But since T ′′ is obtained from T ′ by a sequence of Rauzy inductions, it follows that
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π′ = ( α A B C D
α B A D C ). In particular, π′ is not a generalized permutation, which is a contra-

diction to Lemma 4.8. Therefore, we can conclude that T ′′ and hence T is periodic. The case
(d′′1 , d

′′
2) = (4, 1) follows from the same argument.

If (d′′1 , d
′′
2) = (2, 3), then by assumption, we know that either T ′′1 or T ′′2 has a periodic

orbit. If T ′′1 has a periodic then T ′′1 is periodic (since it is defined over 2 letters), therefore
SAF (T ′′1 ) = SAF (T ′′2 ) = 0. Hence T ′′2 is also periodic by Lemma 5.1. Assume that T ′′1 is
not periodic, then we must have π′′1 = ( A B

B A ), and T ′′2 has a periodic orbit. If T ′′2 is periodic
then SAF (T ′′2 ) = 0, which implies that SAF (T ′′1 ) = 0, and T ′′1 is periodic. Therefore T ′′2 is
not periodic. By Lemma 6.1, we have π′′2 ∈ {( C D E

D C E ) , (C D E
C E D )}. Thus we have

π′′ ∈ {( A B C D E
B A D C E ) , ( A B C D E

B A C E D )}.

But since T ′′ is obtained from T ′ by Rauzy induction, we have π′ = π′′, and in particular
π′ is not a generalized permutation, which contradicts Lemma 4.8. Obviously, the case
(d′′1 , d

′′
2) = (3, 2) follows from similar arguments.

We are left with the case where R(T ′′) is not well defined. Set T̃ = (π̃, λ̃) := Rsing(T ′′),
then T̃ is defined over 4 letters. We have SAF (T̃ ) = SAF (T ) = 0, and T̃ has an periodic
orbit. By Lemma 5.2 if π̃ 6= ( A B C D

B A D C ) then T̃ is periodic. If π̃ = ( A B C D
B A D C ) then T̃

decomposes into two IETs defined over 2 letters. Since one of them has a periodic orbit, both
SAF-invariants vanish. Therefore T̃ is periodic by Proposition 4.9.

Proof of Lemma 6.1. – If π is a “true” permutation, then T is an IET defined over 3

letters. The assumption implies that T is irreducible, therefore T can be realized as the first
return map of the vertical flow to a full transversal interval on a flat torus with two marked
points. If T has a periodic orbit, then the torus has a closed geodesic in the vertical direction,
from which we deduce that the vertical flow is periodic, and T is also periodic.

In the case π is a generalized permutation, since T is not minimal, up to replacing T
by some of its iterates under the Rauzy induction, either R(T ) is not well defined, or T is
decomposed. In the first case the problem reduces to some T ′ (defined over 2 intervals) with
a periodic orbit, hence we are done. In the latter case T decomposes as two linear involutions
Ti. Since π is a generalized permutation by assumption, one of the permutations πi is of the
form ( A A

B B ). Hence the corresponding linear involution is completely periodic and we are
done.

7. Complete algebraic periodicity implies real multiplication

The aim of this section is to prove the converse of Theorem 1.4, namely Theorem 1.5. Our
proof is based on the following theorems.

T 7.1 (McMullen, [24] Theorem 3.5). – Let (X,ω) be a Prym form with
dimC Prym(X) = 2, and let us assume that there is a hyperbolic element A in SL(X,ω),
where SL(X,ω) denotes the Veech group of (X,ω). Then (X,ω) is a Prym eigenform in ΩED,
for some discriminant D satisfying Q(

√
D) = Q(Tr(A)).
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Sketch of proof. – Let φ : X → X be a pseudo-Anosov affine with respect to the flat
metric given by ω ∈ Ω(X, τ)− (e.g., given by Thurston’s construction [33]). By replacing φ by
one of its powers if necessary, we can assume thatφ commutes with τ. It follows thatφ induces
an isomorphism of H1(X,Z)− preserving the intersection form. Therefore

T = φ∗ + φ−1
∗ : H1(X,Z)− −→ H1(X,Z)−,

is a self-adjoint endomorphism of Prym(X, τ). Observe that T preserves the complex line S
in (Ω(X, τ)−)∗ spanned by the dual of Re(ω) and Im(ω), and the restriction of T to this
vector space is Tr(Dφ)·idS. Since dimC Ω(X, τ)− = 2, one has dimC S

⊥ = 1. But T preserves
the splitting (Ω(X, τ)−)∗ = S ⊕ S⊥, and acts by real scalar multiplication on each line,
hence T is C-linear, i.e., T ∈ End(Prym(X, τ)). This equips Prym(X, τ) with the real
multiplication by Z[T ] ' OD for a convenient discriminant D. Since T ∗ω = Tr(Dφ)ω, the
formω becomes an eigenform for this real multiplication. Observe thatQ(

√
D) = Q(λ+λ−1)

where λ being the expanding factor of the map φ. Note that the fact T 6∈ ZId follows from
basic results in the theory of pseudo-Anosov homeomorphisms.

T 7.2 (Calta [5]). – Fix a real quadratic field K ⊂ R. Let (X,ω) be a completely
algebraically periodic translation surface such that all the periods (both relative and absolute)
of ω belong toK(ı). Suppose that (X,ω) cannot be normalized by GL+(2,K) such that all the
absolute periods of ω belong to Q(ı). Then if (X,ω) admits a decomposition into k cylinders in
the horizontal direction, then the following equality holds

(4)
k∑
i=1

w′ihi = 0

where wi, hi are respectively the width and the height of the i-th cylinder, and w′i is the Galois
conjugate of wi in K.

R 7.3. – This statement is slightly more general than the statements [5, Proposi-
tion 4.1, and Lemma 4.2] but its proof is essentially the same. One can also remark that Equa-
tion (4) is the same as the one in Corollary 2.5.

Sketch of proof. – We have K = Q(
√
f), where f is a square-free positive integer. Recall

that if a, b ∈ Q then (a+ b
√
f)′ = a− b√f . Let w, h ∈ K.

4w ∧ h = (w + w′ + w − w′) ∧ (h+ h′ + h− h′)

=
1√
f

((w + w′)(h− h′)− (w − w′)(h+ h′))1 ∧
√
f

=
2√
f

(w′h− wh′)1 ∧
√
f.

Let Ci, i = 1, . . . , k, denote the cylinders in the horizontal direction. We identify each Ci
with a parallelogram Pi in R2 which is constructed from the pair of vectors {(wi, 0), (ti, hi)}
in K2. We have (see Section 2.2):

J(X,ω) = 2

k∑
i=1

(
wi

0

)
∧
(
ti

hi

)
.
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By assumption, the vertical direction (0 : 1) is algebraically periodic. Hence

Jxx(X,ω) =

k∑
i=1

wi ∧ ti = 0.

Let −→v q = (1, q) with q ∈ K, and Aq =

(
1 −1/q

0 1/q

)
so that Aq · −→v q = (0, 1). Thus

Jxx(Aq · (X,ω)) =

k∑
i=1

wi ∧ (ti −
1

q
hi) = 0.

It follows that
k∑
i=1

wi ∧ shi = 0, ∀s ∈ K,

which implies
k∑
i=1

w′ishi − wis′h′i = 0, ∀s ∈ K.

By evaluating the last equality for s = 1 and s =
√
f , we get

k∑
i=1

wih
′
i =

k∑
i=1

w′ihi = −
k∑
i=1

w′ihi.

Theorem 7.2 is then proved.

Proof of Theorem 1.5. – We first observe that both properties of being completely alge-
braically periodic and being a Prym eigenform is invariant along the leaves of the kernel foli-
ation in the Prym loci given in Table 1. In view of Theorem 7.1, we will show that there exists
in the leaf of the kernel foliation through (X,ω) a surface whose Veech group contains a
hyperbolic element.

By normalizing using GL+(2,R) and moving in the kernel foliation leaf, we can suppose
that all the periods of (X,ω) belong to K(ı). If K = Q, then the GL+(2,R)-orbit of (X,ω)

has a square-tiled surface. Thus the Veech group of (X,ω) contains a hyperbolic element,
and we are done.

Now assume that K is a real quadratic field. By Theorem 1.6, we know that (X,ω) is
completely periodic. We can assume that the horizontal and vertical directions are periodic.
We want to find a suitable vector v = (s, t) ∈ K2 such that the Veech group of (X,ω) + v

has two parabolic elements, one preserves the horizontal direction, the other preserves the
vertical direction, a product of some powers of such elements provides us with a hyperbolic
element in SL(X,ω).

LetCi, i = 1, . . . , k, denote the horizontal cylinders, the width, height and modulus ofCi
are denoted by wi, hi, and µi respectively. Let n be the number of cylinders up to involution,
we choose the numbering of cylinders such that for every i = 1, . . . , n, if Ci and Cj are
permuted by the Prym involution then either j = i, or j > n. Theorem 7.2 implies

(5)
k∑
i=1

w′ihi =

n∑
i=1

αiµiN(wi) = 0,
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where αi = 1 if Ci is preserved by the Prym involution, αi = 2 otherwise, and
N(wi) = wiw

′
i ∈ Q. Remark that for all the Prym loci in Table 1, we have n ≤ 3. By

Lemma 9.1, if this number is maximal (i.e., equal to three) then the cylinder decomposition
is stable (i.e., every saddle connection in this direction connects a zero to itself). In the
case n ≤ 2, Equation (5) implies that all the cylinders are commensurable, therefore there
exists a parabolic element in SL(X,ω) that fixes the vector (1, 0).

Assume that n = 3, since the cylinder decomposition is stable, in each cylinder the upper
(resp. lower) boundary contains only one zero of ω. For t ∈ R such that |t| small enough, the
surface (X,ω) + (0, t) also admits a cylinder decomposition in the horizontal direction with
the same topological properties as the decomposition of (X,ω). Let Cti denote the cylinder
in (Xt, ωt) = (X,ω) + (0, t) corresponding to Ci = C0

i . Note that w(Cti ) = w(Ci) = wi
for any t, but in general hi(t) = h(Cti ) is a non-constant function of t. Namely, if the zeros
in the upper and lower boundaries of Ci are the same then hi(t) = hi, ∀t, otherwise, either
hi(t) = hi ± t, or hi(t) = ±t/2.

In particular, we see that hi(t) = hi + αit, where αi ∈ {−1,−1/2, 0, 1/2, 1}. There always
exist two cylinders Ci, Cj such that αi 6= αj . Set Rij(t) := µ(Cti )/µ(Ctj). We have

Rij(t) ∈
{
wj(hi + t)

wihj
,
wj(hi + t)

wi(hj − t)
,
wj(hi + t)

wi(hj + t/2)
,
wj(hi + t)

wi(hj − t/2)
,
wj(hi + t/2)

wihj
,
wj(hi + t/2)

wi(hj − t/2)

}
.

One can easily see that there always exists t ∈ K such that Rij(t) ∈ Q. For t small enough,
the surface (X,ω)+(0, t) is also decomposed into k cylinders in the horizontal direction, and
Equation (5) holds, thus the condition Rij(t) ∈ Q implies that all the horizontal cylinders
of (X,ω) + (0, t) are commensurable, which means that SL((X,ω) + (0, t)) contains a
parabolic element preserving the vector (1, 0).

Observe that the vertical direction on (X,ω)+(s, t) (for small s) is still a periodic direction.
Thus by the same arguments, we can conclude that there exists a vector v = (s, t) ∈ K2

such that SL((X,ω)+v) contains a parabolic element fixing the vertical direction. It follows
that SL((X,ω) + v) contains a hyperbolic element. By Theorem 7.1 (X,ω) + v is a Prym
eigenform, and so is (X,ω). Theorem 1.5 is then proven.

8. Complete periodicity of quadratic differentials with periods in a quadratic field

In this section we prove Theorem 1.9. We will deduce the theorem from a stronger state-
ment. We will concentrate on cases (4), (5), (6), (7), (8) of Table 1.

T 8.1. – Let T = (π, λ) be a linear involution defined over 6 intervals which is
defined by the first return map of the vertical foliation on a quadratic differential (Y, q) ∈ Q(κ),
where

κ ∈ {(−14, 4), (−13, 1, 2), (−1, 2, 3), (−1, 1, 4), (8)}.
We assume that the lengths of the intervals exchanged by T belong to a vector space of rank

two over Q, and SAF (T ) = 0. Then we have the followings

1. If (Y, q) ∈ Q(−1, 2, 3) t Q(8) then T is completely periodic,
2. Otherwise, if T is not completely periodic then:
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(a) if (Y, q) ∈ Q(−13, 1, 2)t Q(−14, 4) then (Y, q) is the connected sum of a flat torus
and a flat sphere, irrationally foliated with opposite SAF-invariants.

(b) if (Y, q) ∈ Q(−1, 1, 4) then (Y, q) is the connected sum of two flat tori, irrationally
foliated with opposite SAF-invariants.

α

α

0 0
1

1

2

2

3

3

4

4

(Y1, q1) ∈ Q(−13, 1, 2)

α

α

0

0
1

1

2 2

3

3

4

4

(Y2, q2) ∈ Q(−14, 4)

F 2. Decompositions of (Yi, qi) in a connected sum of a flat torus and a flat
sphere (colored in blue).

α

α

3 3

4 4

2

2

0

0

1

1

(Y3, q3) ∈ Q(−1, 1, 4)

F 3. Decompositions of (Y3, q3) in a connected sum of two tori.

Examples of decompositions of quadratic differentials into connected sum of irrationally
foliated components are shown in Figures 2, 3, and 5. We first show how Theorem 1.9 is
obtained from Theorem 8.1.

Proof of Theorem 1.9 assuming Theorem 8.1. – If K = Q then (X,ω) is a square-tiled
surface so are done. In the case K is a real quadratic field, let θ ∈ RP1 be a direction. If
the linear flow in direction θ is not minimal then θ is the direction of a saddle connec-
tion, hence θ ∈ KP1 and up to renormalization by GL+(2,K), we can assume that θ is
the vertical direction. Recall that the Prym form (X,ω) covers a quadratic differential
(Y, q) ∈ Q(−1, 2, 3) t Q(8). Let T be a the linear involution associated to the vertical foli-
ation on (Y, q). Then T satisfies the hypothesis of Theorem 8.1, therefore T is completely
periodic, which implies that θ is a periodic direction on (X,ω).
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Proof of Theorem 8.1. – We begin by observing that replacing T by R(n)
(T ) does not

change the statement. We will assume that T is not completely periodic. By Proposition 4.13
we know that T has a connection, and by Proposition 4.12 only two possibilities can occur.
Namely, up to replacing T by R(n)

(T ) for some suitable n, we will assume in the sequel that

(a) T is decomposed, or
(b) the Rauzy induction is not well defined for T .

Case (a): T decomposes. – We have T = T1#T2, where Ti = (πi, λi) is a linear invo-
lution defined over di intervals with d1 + d2 = 6. Since π is irreducible the only possible
partitions for {d1, d2} are {2, 4} or {3, 3}. Recall that by assumption, we have SAF (T ) =

SAF (T1) + SAF (T2) = 0.

If (d1, d2) = (2, 4), since T is irreducible, we must have π1 = ( A A
B B ). Thus, SAF (T1) =

SAF (T2) = 0. From Lemma 5.2, we know that T2 is periodic unless π2 = ( C D E F
D C F E ). But

in this case T is reducible, so we must have (d1, d2) 6= (2, 4). The case (d1, d2) = (4, 2) is also
ruled out by the same arguments.

In the case (d1, d2) = (3, 3), π1 and π2 are generalized permutations, each defined
over 3 letters, and we have naturally a decomposition of Y into a connected sum of two
subsurfaces Y1 and Y2 corresponding toT1 andT2 respectively. One can check that Yi is either
a sphere or a torus. Actually, Yi either belongs to Q(−14, 0) or Q(−12, 2), and the Y1 and Y2

are glued together along a geodesic loop which is obtained by cutting Yi along a geodesic
joining a pole of qi to another singular point, where qi is the quadratic differential defining
the flat metric of Yi. The assertions of the theorem can be easily verified by a case-by-case
check.

Case (b): the Rauzy induction is not well defined. – We get a new linear involution
T ′ := Rsing(T ) = (π′, λ′) defined over 5 intervals with zero SAF-invariant. Since the lengths
of the intervals exchanged by T ′ still belong to a vector space of rank two over Q, Proposi-
tions 4.13 and 4.12 imply the existence of n0 > 0 such that either the Rauzy induction is not
well defined for R(n0)(T ′), or R(n0)(T ′) is decomposed. Recall that by assumption T is not
completely periodic, so that R(n0)(T ′) is not completely periodic either. Hence Lemma 5.3,
applied to R(n0)(T ′), gives R(n0)(π′) ∈ E1 ∪ E2 ∪ E3.

We first claim that R(n0)(π′) 6∈ E1. Indeed since π is geometrically irreducible, by
Lemma 4.8 π′ is a generalized permutation (not a “true” permutation). Therefore, its image
by any sequence of Rauzy inductions cannot belong do E1.

Secondly we claim that if R(n0)(π′) ∈ E2 then, up to exchanging of the lines of π′, we have

π′ ∈ F = {( α B C D α
B A D C A ) , ( α B C D α B

A D C A ) , (B C D α B
A D C A α )}

(this list is obtained by iterating Rauzy inverse inductions to the permutations in E2). The
next claim analyze these three permutations.

C 8.2. – Assume that Rsing(π) ∈ F . Then (Y, q) ∈ Q(−1, 1, 4), and (Y, q) is the
connected sum of two flat tori, irrationally foliated with opposite SAF-invariants.
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Proof. – The first statement follows directly from above discussion. Next we will consider
separately the three cases π ∈ R−1

singπ
′ where π′ ranges over F .

For the first one, up to permutation of the letters of the alphabet {A,B,C,D, α, β} we
have:

R−1
sing ( α B C D α

B A D C A )

=

{ (
α B C D α β
β A D C A B

)
,
(
α B C D α β
B β D C A A

)
,
(
α B | C D α β
B A | β C A D

)
,
(
α B | C D α β
B A | D β A C

)
,(

α B | C D α β
B A | D C β A

)
,
(
α B | C D α β
B A | D C A β

)
,
(
β B | C D α β
B A | D C A α

)
,
(
α β | C D | α β
B A | D C | A B

)
,(

α B β D | α β
B A D C | A C

)
,
(
α B C β | α β
B A D C | A D

)
,
(
α B C D β β
B A D C A α

) }
.

The boxed permutations correspond exactly to irreducible permutations, we also indi-
cate the decomposition when the permutation is reducible (see Definition 4.4). For the
above three irreducible permutations, the corresponding suspension (Y, q) belongs to the
stratum Q(−1, 1, 4).

Observe that in these cases, we have either |α| = |A| and |β| = |B|, or |α| = |β| = |A|,
where |.| denote the length of the intervals. It follows that we have a decomposition of Y
into a connected sum of two tori which correspond to the subsets of letters {α, β,A,B}
and {C,D}.
For the next one, the irreducible permutations in R−1

sing ( α B C D α B
A D C A ) are{ (

α B C D α β
β D C A A

)
,
(
α B C D β B β
A D C A α

)
,
(
α B C D α β β
A D C A B

) }
.

Again the corresponding suspension (Y, q) belongs to the stratum Q(−1, 1, 4) and we have
a decomposition of Y into a connected sum of two tori which correspond to the subsets of
letters {α, β,A,B} and {C,D}.
For the remaining case, the irreducible permutations in R−1

sing (B C D α B
A D C A α ) are{ (

B C D α B β
β D C A α A

)
,
(
B C D β B β
A D C A α α

)
,
(
B C D α β β
A D C A α B

) }
.

We check that (Y, q) belongs to the stratum Q(−1, 1, 4) and has a decomposition into a
connected sum of two tori. This proves the claim in this case.

We now turn into the case R(n0)(π′) ∈ E3.

C 8.3. – Assume that R(n0)(π′) ∈ E3 then the followings hold:

1. (Y, q) 6∈ Q(8) t Q(−1, 2, 3).
2. If (Y, q) ∈ Q(−13, 1, 2) t Q(−14, 4) then (Y, q) is the connected sum of a flat torus and

a flat sphere, irrationally foliated with opposite SAF-invariants.
3. If (Y, q) ∈ Q(−1, 1, 4) then (Y, q) is the connected sum of two flat tori, irrationally foliated

with opposite SAF-invariants.
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Proof. – Set E′3 := {( π′′ A B
B A )}, and E′′3 := {( A B

B A
π′′ )}, where π′′ is a generalized

permutation defined over 3 letters. We first remark that E′3 is invariant by Rauzy inverse
induction, while E′′3 is not, for instance R1 ( A B C D D A

B E C E ) = ( A B C D D
B A E C E ).

If R(n0)(π′) ∈ E′3 then π′ ∈ E′3, hence π ∈ R−1
sing E′3. An irreducible generalized

permutation π in R−1
sing E′3 belongs to one of the following two families: either π = (π1 | π2),

where π1, π2 are generalized permutations defined over 3 letters, or π =
(
... | A B | ∗
... | B A | ∗

)
. In

the first case, the claim follows from the arguments of Case (a). In the second case, Y is
a connected sum of a slit torus (corresponding to the permutation ( A B

B A )), and another
flat surface which is the suspension of the (irreducible) generalized permutation defined
over 4 letters, which is obtained by deleting the letters A and B from π. The assertions of
the claim can be verified by a case-by-case check.

Finally, assume that π = R(n0)(π′) ∈ E′′3 . Set T := R(n0)(T ′). Applying Rauzy induc-
tions and using the assumption that T (hence T ) is not periodic, we can reduce to the
case

π̄ ∈ {( A B C C D
B A D E E ) , ( A B C D D

B A E C E )} .
We now use a lemma (see Lemma 8.4 below) saying that there exists an irreducible gener-
alized permutation π̂, which is obtained by adding a pair of letters {α, α} to π̄, such that
(Y, q) is obtained by a zippered rectangle construction from a suspension of π̂, where we
allow the width of the rectangle labelled by α to be zero. Here again, the assertions of the
claim can be verified by a case-by-case check.

Hence the proof of Theorem 8.1 will be complete once we prove Lemma 8.4.

L 8.4. – Let T := (π, λ) be the linear involution defined by the first return map
of the vertical foliation on a quadratic differential (Y, q) to a full transversal interval I,
the left endpoint of which is a singular point. Assume that R(T ) is not well defined, and
let T ′ = (π′, λ′) := Rsing(T ). Then for any T ′′ = (π′′, λ′′) which is obtained from T ′ by a
sequence of Rauzy inductions, there exists an irreducible generalized permutation π̂ that
satisfies

(a) there is a pair of letters α such that if we delete this pair from π̂, then we get π′′,
(b) the surface (Y, q) can be represented by a zippered rectangle construction from π̂ where

the width of the rectangle labeled by α is zero.

Proof of Lemma 8.4. – Assume that π is a generalized permutation defined over an
alphabet A of d letters. By definition, the quadratic differential (Y, q) is constructed
from (π, λ) by a zippered rectangle construction. The singular Rauzy induction consists
of cutting the rightmost rectangle and gluing it to another one. Thus we get a zippered
rectangle construction of (Y, q) with d− 1 rectangles (see Figure 4).

By construction, T ′ and T ′′ are the first return map of the vertical foliation on (Y, q) to
some segments I ′ and I ′′ respectively, where I ′′ ⊂ I ′ ⊂ I. Since T ′′ is obtained from T ′ by
Rauzy inductions, the surface (Y, q) is also constructed by a zippered rectangle construction
with d−1 rectangles associated to T ′′. Note that there is a vertical saddle connection αwhich
does not intersect the interior of I ′ and I ′′, this saddle connections must be contained in the
border of some rectangle.
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A B C C D

B A D E E

A

B
C C

D

B

A

D

E

E

α

α

π′′ = ( A B C C D
B A D E E ) , π̂ = ( αα A B C C D

B A D E E )

F 4. Degeneration of a linear involution defined over 6 letters to a linear
involution defined over 5 letters. The associated quadratic differential belongs
to Q(−14, 4), and decomposes as connected sum of a torus (the colored part) and
a sphere.

There exists a family S of saddle connections and segments joining the right endpoint
of I ′′ to some singular points such that

– α ∈ S,
– for every segment s in this family, either s is contained in a vertical side of a rectangle,

or s is a segment joining a point in the left side to a point in the right side of the same
rectangle,

– cutting Y along the segments in S, what we get is a polygon P in R2, each side of P is
paired up with another one which is parallel and has the same length.

Note that the vertices of P are the singular points of Y and the right endpoint of I ′′. One
can deform P slightly so that the paired sides are still parallel and have the same length,
and the sides corresponding to α are no longer vertical. We then get a polygon P′ that gives
rise to a quadratic differential (Y ′, q′) close to (Y, q). By construction, there exists a full
transversal segment J in Y ′ corresponding to I ′′. The first return map of the vertical foliation
on Y ′ to J is a linear involution T̂ := (π̂, λ̂) defined over d letters, the additional letter
(with respect to T ′′) arises from the sides of P′ corresponding to α. In particular, we see
that π̂ is an irreducible generalized permutation. Moreover, as one deforms P′ to get back P,
T̂ becomes T ′′. Thus, if we delete the pair of new letter from π̂, we obtain π′′. The lemma is
then proved.

R 8.5. – It follows from a result by McMullen [23], Theorem 6.1, that if (X,ω)

is an Abelian differential having relative periods in a real quadratic field and vanishing
SAF -invariant in the vertical direction, then there exists a loop in X which is a union of
vertical saddle connections. Thus, Theorem 8.1 gives a more precise description of this
situation where (X,ω) is the orientation double cover of some quadratic differential in
Table 1.

– Using the same analysis, one can also prove that if (Y, q) ∈ Q(−16, 2) satisfies the
hypothesis of Theorem 8.1, then either the vertical flow is periodic, or Y decomposes as
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a connected sum of two flat spheres, which are glued together along a vertical loop. This
statement was proved in [23], Theorem 8.2.

We end this section by some consequences of Theorem 8.1 in terms of Prym eigenforms.

C 8.6. – Let (X,ω) ∈ ΩED(κ) be a Prym eigenform and assume that ω has all
its periods (absolute and relative) in K(ı), where K = Q(

√
D). Let θ be a direction in KP1.

1. If (X,ω) ∈ ΩED(1, 1, 4) t ΩED(4, 4)even then F θ is completely periodic.
2. If (X,ω) ∈ ΩED(1, 1, 2) and the spine of the foliation in direction θ contains a regular

fixed point of the Prym involution then F θ is completely periodic. The spine of F θ is the
union of geodesic rays emanating from the zeros of ω in direction ±θ.

Again we emphasize that assertion (8.6) of above corollary is false for other Prym loci,
see e.g., Example 8.8 and Figure 5 when (X,ω) ∈ ΩED(2, 2).

Proof of Corollary 8.6. – As usual we will assume that θ is vertical. We begin by observing
that Theorem 1.4 implies SAF (X,ω) = 0. Let T be the cross section of the vertical foliation
to some full transversal interval on the quotient (Y, q) = (X,ω)/〈τ〉. We have SAF (T ) = 0.
Complete periodicity of F θ is equivalent to complete periodicity of T .
Since (X,ω) ∈ Prym(1, 1, 4) (respectively, (X,ω) ∈ Prym(4, 4)even) is equivalent
to (Y, q) ∈ Q(−1, 2, 3) (respectively, (Y, q) ∈ Q(8)), assertion (1) is a reformulation of
Theorem 8.1.
Let us prove (2). Again (X,ω) ∈ Prym(1, 1, 2) is equivalent to (Y, q) ∈ Q(−13, 1, 2). If T is
not completely periodic then by Theorem 8.1 (Y, q) is the connected sum of a flat torus and a
flat sphere, irrationally foliated with opposite SAF-invariants. Hence there exists a geodesic
loop γ based at the zero of multiplicity 1 which cuts Y into a flat sphere Y0, and a flat torus Y1

(with geodesic boundary).
Observe that the three poles of q are contained in the interior ofY0. SinceY ∈ Q(−13, 1, 2)

the component Y0 lifts to a fixed torus X0 and Y1 to two permuted tori X1,j , j = 1, 2,
in X. One has SAF (X0) = −2SAF (X1,1). By assumption the spine of the foliation on X0

contains a fixed point of the Prym involution; hence Fθ |X0
is periodic. Thus SAF (X0) = 0

and we conclude that Fθ is periodic.

R 8.7. – The above proof fails if (Y, q) ∈ Q(−14, 4), even though we also have a
connected sum of a flat sphere and a flat torus. This is because the existence of a pole in the
torus component. Indeed the decomposition into three tori (of (X,ω)) still holds but it could
happen that the pole on the spine of the foliation on Y is the one contained in Y1 (see Figure 5).
In this case, the foliation on Y0 may not be periodic, for instance, in Example 8.8, if we choose
the lengths λα, λ3 of the intervals labelled by α and 3 so that λα

λ3
6∈ Q .

E 8.8. – In Figure 5 below the surface (Y, q) decomposes along the saddle connec-
tion γ into a connected sum of a flat torus and a flat sphere, as we can notice by the underlying
permutation ( 0 0 1 3 α 3 α

1 2 2 4 4 ). One can arrange the parameters so that SAF (T ) = 0 and T is not
completely periodic. Moreover, there exists a regular fixed point of the Prym involution in the
spine of the double cover (X,ω). Namely (X,ω) decomposes into two permuted tori and one
invariant torus along the lifts of γ and γ′.
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4
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4

γ

γ′

(Y, q) ∈ Q(−14, 4)

F 5. Decompositions of (Y, q) into a connected sum of a flat torus and a flat
sphere (colored in blue).

9. Limit set of Veech groups

In this section, we prove the result on the limit sets of Veech groups of Prym eigen-
forms i.e., Theorem 1.11. In the sequel we fix a form

(X,ω) ∈ ΩED(4, 4)even t ΩED(1, 1, 4) t ΩED(1, 1, 2).

A periodic direction is said to be stable if there is no saddle connection in this direction that
connects two different zeros, it is said to be unstable otherwise.

L 9.1. – Any direction θ that decomposes (X,ω) ∈ H (κ) into g + |κ| − 1 cylinders,
where g is the genus of X, is stable.

Proof. – We begin by observing that any periodic direction decomposes the surface X
into at most g + |κ| − 1 cylinders. Now if the direction θ is not stable then there exists
necessarily a saddle connection between two different zeros that we can collapse to a
point (in direction θ) without destroying any cylinder. But in this way we get a surface
(X ′, ω′) ∈ H (κ′) of genus g where |κ′| < |κ|, and having g + |κ| − 1 cylinders . This is a
contradiction.

We now prove the following proposition about unstable periodic directions on Prym
eigenforms.

P 9.2. – Let (X,ω) ∈ Prym(4, 4)even t Prym(1, 1, 4) t Prym(1, 1, 2).
Assume that (X,ω) is completely algebraically periodic, and all the relative periods of ω belong
to K(ı), where K is a real quadratic field. Then any unstable periodic direction θ decomposes
the surface into cylinders with commensurable moduli. As a consequence, SL(X,ω) contains a
parabolic element fixing θ.

Proof. – Assume that (X,ω) ∈ Prym(4, 4)even t Prym(1, 1, 4) then the decomposition
in direction θ has at most 6 cylinders by Lemma 9.1. Since the direction θ is not stable and
none of the cylinders is fixed by the Prym involution (otherwise the quotient (Y, q) by the
Prym involution would have at least 2 poles) one has n ∈ {2, 4}. We denote the cylinders

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



122 E. LANNEAU AND D.-M. NGUYEN

by Ci, i = 1, . . . , 2r = n, so that Ci+r = τ(Ci). By Theorem 7.2 the moduli of the cylinders
satisfies

2

r∑
i=1

h(Ci)w(Ci)
′ = 2

r∑
i=1

ki · µ(Ci) = 0.

where ki = w(Ci)w(Ci)
′ ∈ Q \ {0}. Hence

r∑
i=1

ki · µ(Ci) = 0.

But r ≤ 2 thus above equality implies that µ(Ci) are commensurable. The direction is
parabolic and a suitable product of Dehn twist in each cylinder gives rise to an affine
automorphism with parabolic derivative fixing θ.

The case (X,ω) ∈ Prym(1, 1, 2) follows from similar arguments since the decomposition
in direction θ has at most 5 cylinders.

C 9.3. – Let (X,ω) ∈ Prym(1, 1, 2) be a Prym form which is completely
algebraically periodic with relative periods in K(ı). If θ ∈ KP1 is the direction of a saddle
connection between the two simple zeros that is invariant under the Prym involution, then
SL(X,ω) contains a parabolic element fixing θ.

Proof of Corollary 9.3. – In view of the previous proposition it suffices to show that θ is
an unstable periodic direction. Since θ is the direction of a saddle connection, we have θ ∈ KP1.
Necessarily the saddle connection contains a regular fixed point of the Prym involution.
By Corollary 8.6, assertion (2), the flow F θ is completely periodic (the spine contains a
regular fixed point of the Prym involution). Since there is a saddle connection connecting
two different zeros, this periodic direction is unstable, and the corollary follows from Propo-
sition 9.2.

9.1. Proof of Theorem 1.11, Case Prym(4, 4)even t Prym(1, 1, 4)

Proof. – If the limit set has at least two points then there is a hyperbolic element
in SL(X,ω) represented by an affine pseudo-Anosov homeomorphism φ. By a result of
McMullen ([23], Theorem 9.4) we can assume that all the periods of ω belong to K(ı).

By Theorem 1.9 and Proposition 9.2, any linear foliation on (X,ω) in the direction θ of a
saddle connection between two different zeros is fixed by a parabolic element of SL(X,ω). It
remains to show that those directions fill out a dense subset of RP1, which implies that the
limit set is the full circle at infinity.

Let θ0 ∈ RP1 and fix ε > 0. By Theorem 1.9, one can find θ ∈ KP1 so that the folia-
tion F θ is completely periodic and |θ − θ0| < ε/2. If the direction θ is not stable then by
Proposition 9.2 we are done. OtherwiseX is decomposed into 6 cylinders in direction θ. Since
X is a connected surface, we claim that there exists a cylinder C such that the top boundary
ofC is made of saddle connections between one zero P and the bottom boundary is made of
saddle connections between one other zeroQ 6= P . By a suitable Dehn twist, it is easy to find
a new direction θ′ satisfying |θ − θ′| < ε/2 such that there is a saddle connection contained
in C between P and Q in direction θ′. This is the desired direction.
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9.2. Proof of Theorem 1.11, Case Prym(1, 1, 2)

Proof. – We now show the result for (X,ω) ∈ ΩED(1, 1, 2). By a result of Masur [20],
we know that the set Θ of directions θ ∈ RP1 such that θ is the direction of a regular closed
geodesic is dense in RP1. Thus, by using Proposition 9.2, it suffices to show that any direction
θ ∈ Θ is contained in the closure of the set of unstable periodic directions.

Let θ0 be a direction in Θ. By Theorem 1.6, we know thatX is decomposed into cylinders
in direction θ0. We can assume that θ0 is the horizontal direction. Obviously, we only need
to consider the case where θ0 is a stable periodic direction. Note that in this case X is
decomposed into 5 cylinders in direction θ0.

If γ is a geodesic segment connecting a regular fixed point of X to one simple zero
of ω, then γ ∪ τ(γ) is a saddle connection joining two simple zeros and invariant under τ.
Following Corollary 9.3, the direction of γ is an unstable periodic direction. We claim that
there exist such geodesic segments whose direction is arbitrarily close to θ0.

We begin by observing that in a cylinder decomposition ofX, only one cylinder (denoted
by C0) is invariant under τ. Recall that τ has three regular fixed points, two of which are
contained in C0, the third one is the midpoint of a saddle connection contained in the
boundaries of two exchanged cylinders. We can divide those decompositions into three types:

(a) The boundary of the C0 only contains the simple zeros, or
(b) The boundary of C0 only contains the double zero, and C0 is a simple cylinder, or
(c) The boundary of C0 only contains the double zero, and C0 is not a simple cylinder.

(A cylinder is simple if each of its boundary component consists of exactly one saddle
connection.)

In Case (a) each simple zero is contained in a boundary component ofC0. Thus there exist
saddle connections contained inC0 and invariant under τ which connect the two simple zeros
whose direction is arbitrarily close to θ0.

In Case (b), let γ be the saddle connection (in direction θ0) that contains the third fixed
point of τ. There exists a pair of cylinder C1, C2 exchanged by τ such that γ is included in
the lower boundary of C1 (resp. in the upper boundary of C2). Note that since the cylinder
decomposition is stable γ must join the double zero to itself. Remark that the upper boundary
of C1 must contain a simple zero (otherwise the angle at the double zero exceeds 6π), and
consequently the lower boundary of C2 also contains a simple zero. Therefore, there exist
saddle connections contained in C1 ∪ C2 joining the simple zeros and invariant under τ
(passing through the third fixed point) whose direction is arbitrarily close to θ0.

In Case (c), the only topological model is presented in Figure 6 below. One can easily see
that there always exists a geodesic segment from a fixed point of τ in the interior of C0 to
a simple zero in the boundary of a cylinder adjacent to C0. Using Dehn twists, we see that
there exist infinitely many such segments whose direction can be made arbitrarily close to θ0.
The theorem is then proved for this case.

R 9.4. – Actually we also proved a slightly different result: the limit set of the Veech
group of any (X,ω) ∈ Prym(4, 4)eventPrym(1, 1, 4)tPrym(1, 1, 2), completely algebraically
periodic, having all periods in K(ı), is the full circle at infinity.
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F 6. Stable cylinder decomposition in Prym(1, 1, 2), the double zero is
colored in white (the “gray” cylinder is the unique cylinder invariant under τ).

10. Infinitely generated Veech groups

We end with the proof of Theorem 1.12

Proof of Theorem 1.12 . – Recall that a Fuchsian group is said to be of the first kind if
its limit set is the full circle at infinity. Such a group is either a lattice, or infinitely generated
(see e.g., [13]). Hence, in view of Remark 9.4, it suffices to exhibit Prym eigenforms (with
relative periods in K(ı)) whose Veech group is not a lattice. But a theorem of Veech [35]
asserts that in the lattice case the directional flow F θ is either uniquely ergodic or parabolic
(i.e., the surface is decomposed into cylinders of commensurable moduli in direction θ).
Hence it suffices to give examples where F θ is periodic, but with incommensurable cylinders.
In what follows we only focus on Prym(1, 1, 2) since similar constructions work for the two
other loci.

We begin by choosing a discriminant D which is not a square, and a tuple (w, h, e) of
integers such that: 

w > 0, h > 0,

e+ 2h < w,

gcd(w, h, e) = 1, and D = e2 + 8wh.

Let λ := e+
√
D

2 > 0 (remark that λ < w). We also choose t ∈ Q(
√
D) so that 0 < t < λ.

Let (X,ω) be the surface represented in Figure 7 having the following coordinates
ω(α1) = (λ, 0), ω(β1) = (0, λ)

ω(α2,1) = ω(α2,2) = (w/2, 0), ω(β2,1) = ω(β2,1) = (0, h/2)

ω(η) = (t, 0).

By construction, there exists an involution τ on X which fixes the colored cylinder and
exchanges the other two. It is not hard to check that (X,ω) ∈ Prym(1, 1, 2). Letting
α2 := α2,1 + α2,2 and β2 := β2,1 + β2,2, the set {αi, βi}i=1,2 is a symplectic basis
ofH1(X,Z)−. Moreover, in these coordinates the restriction of the intersection form is given
by the matrix ( J 0

0 2J ). In particular it is straightforward to check that the endomorphism

T =

(
e 0 w 0
0 e 0 h
2h 0 0 0
0 2w 0 0

)
(in the basis (αi, βi)i=1,2) is self-adjoint and satisfies T 2 = eT + 2whIdR4

4 e SÉRIE – TOME 49 – 2016 – No 1



COMPLETE PERIODICITY OF PRYM EIGENFORMS 125

α1

β1

α2,1

β2,1

α2,2

β2,2
η

F 7. A translation surface (X,ω) ∈ Prym(1, 1, 2). The double zero is
represented in white color (the fixed cylinder is colored in grey). The identifications
of the sides are the “obvious” identifications.

and T ∗(ω) = λω. Hence (X,ω) ∈ ΩED(1, 1, 2), and (X,ω) is completely algebraically
periodic by Theorem 1.4.

Note that (X,ω) also admits a cylinder decomposition in the vertical direction. A straight-
forward computation shows that the moduli of the vertical cylinders are given by

t

λ
,

λ− t
2λ + h

, and
w − (λ− t)

h
.

One can easily see that if t/λ ∈ Q, then the first two moduli are incommensurable. Hence the
Veech group of the corresponding surface (X,ω) is infinitely generated.

For the cases Prym(1, 1, 4) and Prym(4, 4)even, examples of surfaces having infinitely
generated Veech groups can be obtained by similar constructions as shown in Figure 8.
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(X, ω) ∈ ΩED(1, 1, 4) α21
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ω(α1i) = λ/2, ω(β1i) = ıλ/2,
ω(α2i) = w/2, ω(β2i) = ıh/2

(X, ω) ∈ ΩED(4, 4)even

F 8. Constructions of Prym eigenforms in ΩED(1, 1, 4) and ΩED(4, 4)even.
For almost all values of t ∈ Q(

√
D), the vertical direction is periodic, but not

parabolic.
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Appendix

Complete algebraic periodicity in H hyp(4)

In this section, we will sketch a proof of the following

T A.1. – Let (X,ω) be a translation surface in the hyperelliptic component
H hyp(4) of the stratum H (4). If (X,ω) is completely algebraically periodic then it is completely
periodic in the sense of Calta.

R A.2. – By a theorem by Calta-Smillie [6], we know that if SL(X,ω) contains
a hyperbolic element then (X,ω) is completely algebraically periodic. Examples of surfaces
in H hyp(4) whose Veech group contains hyperbolic elements can be found in [28]. In those
examples the trace field of SL(X,ω) is cubic (one can also construct examples with quadratic
trace field). It is shown in [28] that such surfaces can be generic (see also [29]), that is their
GL+(2,R)-orbit is dense in H hyp(4). Thus there exist completely periodic surfaces which are
generic in H hyp(4).

Proof of Theorem A.1. – By definition, there exists a double covering ρ : X → CP1, and
a quadratic differential q onCP1 (which has a unique zero of order 3, and 7 simple poles) such
that ρ∗q = ω2. In our notations (CP1, q) ∈ Q(−17, 3). Let C be a cylinder on X, and c be
its core curve. As usual we assume that the direction of C is the vertical direction. We want
to show that the vertical flow is completely periodic. Since (X,ω) is completely algebraically
periodic, we have SAF (X,ω) = 0.

Let C̊ denote the open cylinder which is filled out by simple closed geodesics in the free
homotopy class of c, and C denote the closure of C̊ in X. The set ∂C := C \ C̊ is a union of
several, say k, vertical saddle connections. The case k = 1 only occurs when X is a torus,
therefore we have k ≥ 2. Since a surface in H hyp(4) has at most 5 saddle connections
in a given direction, we have 2 ≤ k ≤ 5. If k = 5 then the vertical flow is completely
periodic (all vertical separatrices are saddle connections). Thus we only need to consider the
cases k = 2, 3, 4.

Note that since (X,ω) belongs to the hyperelliptic component, all the cylinders are fixed
by the hyperelliptic involution τ . It follows that τ(∂C) = ∂C. Therefore τ maps a vertical
saddle connection s in ∂C either to itself or to another one in ∂C. If τ(s) 6= s, then ρ(s) is
a geodesic loop in CP1 based at the unique zero of q and if τ(s) = s then ρ(s) is a segment
joining the unique zero to a pole. Since we only need to consider the cases where C 6= X

(otherwise X is filled by saddle connections in the free homotopy class of c), we can assume
that there exists a saddle connection in ∂C that is not invariant by τ , which implies that ρ(∂C)

contains (at least) a geodesic loop. The configurations of ρ(∂C) containing a geodesic loop are
shown in Figure 9.

Let Y ′ be the metric completion of ρ(X \C). Remark that Y ′ is a union of flat discs with
geodesic boundary, each boundary component corresponds to a geodesic loop in ρ(∂C).
One can “fold up” the boundaries of Y ′ to get closed flat surfaces defined by quadratic
differentials on the sphere. Let us denote this union by Ŷ ′. Note that in each component
of Ŷ ′ we have a vertical saddle connection corresponding to a geodesic loop in ρ(∂C). By
assumption, we have SAF (Ŷ ′) = 0. We need to show that the vertical direction is completely
periodic on Ŷ ′.
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k = 2 k = 3 k = 4(a) k = 4(b)

zero of order 3

simple pole

F 9. Configurations of ρ(∂C) having a geodesic loop. The projection of C̊ is
the open disc represented by the unbounded component of CP1 \ ρ(∂C), note that
this open disc contains two poles of q. The exterior angle between two consecutive
rays at the zero of q is π. The projection of X \C is a union of open discs bounded
by the loops based at the unique zero of q.

In the case k = 4(a), Ŷ ′ has two connected components: one belongs to Q(−14) and the
other belongs to Q(−14, 0). The orientation double cover of both connected components are
flat tori, one of which has a vertical closed geodesic, the other one has vanishing SAF for the
vertical foliation and a vertical saddle connection. We easily draw that the vertical flow is
completely periodic.

In the cases k = 2, 3, 4(b), Ŷ ′ has only one connected component, and (Ŷ ′, q′) belongs
to one of the following components respectively Q(−16, 2), Q(−15, 1), Q(−14, 0). The orien-
tation double cover belongs to H (1, 1), H (2) and H (0, 0) respectively. By assumption, we
know that there exists a vertical saddle connection and the SAF-invariant of the vertical
direction vanishes. From this we can easily conclude that the vertical direction is periodic
if (Ŷ ′, q′) ∈ Q(−15, 1) or (Ŷ ′, q′) ∈ Q(−14, 0) (using Lemma 5.2 and Lemma 5.1). Thus the
cases k = 3 and k = 4(b) are done.

We are left with the case k = 2. We denote by (X ′, ω′) ∈ H (1, 1) the orientation double
cover of (Ŷ ′, q′). By above discussion SAF (X ′, ω′) = 0 and there exists a vertical saddle
connection σ connecting two zeros of ω′. It is not difficult to see that σ is invariant by the
hyperelliptic involution τ ′ of X ′.

Assume that by moving vertically in the leaf of the kernel foliation, one can collapse the
two zeros of ω′ along σ to get a surface (X ′′, ω′′) ∈ H (2). We then have SAF (X ′′, ω′′) =

SAF (X ′, ω′) = 0 by Proposition 3.3. But the first return map (to a full transversal interval)
of the vertical flow on X ′′ gives an irreducible IET defined over 4 letters. It follows from
Lemma 5.2 that the vertical foliation on X ′′ is periodic, and we are done.

The only obstruction to the collapsing of the zeros of ω′ along σ (so that the resulting
surface belongs to H (2)) is the existence of another vertical saddle connection σ′ joining
the two zeros of ω′ such that |σ′| ≤ |σ| (as σ is shortened, σ′ is also shortened by the same
amount). For a detailed account on collision of singularities along kernel foliation leaves we
refer to [26]. Since there exist exactly two geodesic rays in the same direction (in S1) from each
zero of ω′, if σ′ exists, then it is unique, and in particular it is also invariant by τ ′. It follows
that σ ∪ σ′ is a non-separating curve on X ′. If |σ′| < |σ|, one can collapse the zeros along σ′

(shortening both σ′ and σ until the two zeros collide). The resulting surface belongs to H (2),
and the argument above shows that the vertical direction is periodic. In the case |σ′| = |σ|,
we can cut X ′ along σ ∪ σ′ and glue the pair of segments in each boundary component of
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the new surface, what we obtain is a flat torus (X ′′, ω′′) (since the closed curve σ ∪ σ′ is
non-separating). By construction, SAF (X ′′, ω′′) = SAF (X ′, ω′) = 0. Hence the vertical
foliation onX ′′ is periodic which implies that the vertical foliation onX ′ is also periodic.
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