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ON THE CRITICAL ONE COMPONENT REGULARITY
FOR 3-D NAVIER-STOKES SYSTEM

BY JEAN-YVES CHEMIN AND PING ZHANG

ABSTRACT. — Given an initial data vo with vorticity ¢ = V X vg in L3 (which implies that v
belongs to the Sobolev space H %), we prove that the solution v given by the classical Fujita-Kato
theorem blows up in a finite time T* only if, for any p in |4, 6] and any unit vector e in R®, there holds
fOT* lv(t) .e||i; 142 dt = oo. We remark that all these quantities are scaling invariant under the scaling

transformation of Navier-Stokes system.

RESUME. — On considére une donnée initiale vy dont la vorticité Q¢ = V X vo appartient a L3 (ce
qui implique que vy appartient a 'espace de Sobolev H %). Nous démontrons que si la solution v de
I’équation de Navier-Stokes tridimensionnelle associée a vo par le théoréme de Fujita-Kato développe
une singularité a I'instant 7™ (fini) alors, pour tout p dans 'intervalle ]4, 6 et tout vecteur unitaire e
deR® ona fOT* lv(t) - ell? 142 dt = oo. Remarquons que toutes ses quantités sont invariantes par

p
les changements d’échelle de I’équation de Navier-Stokes.

1. Introduction

In the present work, we investigate necessary conditions for the breakdown of the regu-
larity of regular solutions to the following 3-D homogeneous incompressible Navier-Stokes
system

8yv + div(v ® v) — Av + VII = 0, (t,z) € RY x R3,
(NS) divo =0,
v|t:0=v0,
1 2

where v = (v!,v?%,v3) stands for the velocity of the fluid and II for the pressure. Let us first
recall some fundamental results proved by J. Leray in his seminal paper [19].

0012-9593/01/© 2016 Société Mathématique de France. Tous droits réservés
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132 J.-Y. CHEMIN AND P. ZHANG

THEOREM 1.1. — Let us consider an initial data vg which belongs to the inhomogeneous
Sobolev space HY, (R®). There exists a (unique ) maximal positive time of existence T* such that
a unique solutionv of (N S) exists on [0, T*[ x R* which is continuous with value in H. (R*) and
the gradient of which belongs to L2, ([0, T*[; H} (R®)). Moreover, if ||vol|z2||Vvol| 2 is small
enough, then T* is infinite. If T* is finite, we have, for any q greater than 3,

VEST o)l > ——— 0
(T — t)i(l—a)

Let us also mention that in [19], J. Leray proved also the existence (but not the uniqueness)
of global weak (turbulent in J. Leray’s terminology) solutions of (V.S) with initial data only
in LZ(R‘O’). In the present paper, we only deal with solutions which are regular to be unique.

In [19], J. Leray emphasized two basic facts about the homogeneous incompressible

Navier-Stokes system: the L? energy estimate and the scaling invariance.

Because the vector field v is divergence free, the energy estimate formally reads
5 llv@®llZe + [Vo@)z: = 0.

After time integration, this gives

1 ¢ 1
(1.1) §Ilv(t)lliz +/0 [Vo(t')[|3-dt’ = 5””0”%2'

This estimate is the cornerstone of the proof of the existence of global turbulent solution
to (N S) done by J. Leray in [19]. The energy estimate relies (formally) on the fact thatifvisa
divergence free vector field, (v-V f|f)r2 = 0 and that (Vp|v) 2 = 0. In the present work, we
shall use the more general fact that for any divergence free vector field v and any function a,
we have

v(z) - Va(z)|a(z)|P 2a(z) dz = 0 for any p € |1, 0.
R3
This will lead to the L? type energy estimate.

The scaling invariance is the fact that if v is a solution of (N.S) on [0, 7] x R® associated
with an initial data vo, then A\v(\*t, \z) is also a solution of (NS) on [0,A\~27] x R®
associated with the initial data Avy(Az). The importance of this point can be illustrated
by this sentence coming from [19] “...les équations aux dimensions permettent de prévoir a
priori presque toutes les inégalités que nous écrirons ... (" The scaling property is also the
foundation of the Kato theory which gives a general method to solve (locally or globally)
the incompressible Navier-Stokes equation in critical spaces, i.e., spaces whose norms are
invariant under the scaling. In the present work, we only use such scaling invariant spaces.
Let us exhibit some examples of scaling invariant norms. For p > 2, the norms of

1.2 3+:85
LP(H?%%) and LP(L, *?)
are scaling invariant norms. The spaces H 2 and L3 are scaling invariant spaces for the initial
data vg. Let us point out that in the case when the space dimension is two, the energy norm

which appears in Relation (1.1) is scaling invariant. This allows to prove that in the two
dimensional case, turbulent solutions are unique and regular.

(D This can be translated by “The scaling allows to guess almost all the inequalities written in this paper”.
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REGULARITY CRITERION FOR 3-D NAVIER-STOKES SYSTEM 133

The first result of local (and global for small initial data) wellposedness of (N S) in a
scaling invariant space was proved by H. Fujita and T. Kato in 1964 (see [13]) for initial data
in the homogeneous Sobolev space H 2. More precisely, we have the following statement.

THEOREM 1.2. — Let us consider an initial datavq in the homogeneous Sobolev space Hz (R®).
There exists a (unique) maximal positive time of existence T* such that a unique solution v
of (NS) exists on [0, T*[ x R® which is continuous in time with value in H? (R®) and belongs
to L2 ([0, T*[; H?2 (R%)). Moreover, if the quantity ||vo ||H% is small enough, then T* is infinite.

If T™ is finite, we have, for any q greater than 3,
1

Vt<T*, v(t qZCﬁ'
IOl 2 o5

Let us point out that the above necessary condition for blow-up implies that
T* 2 3
(1.2) T < oo = / lo@)|[5.dt =c0 with =+ -=1 and p< .
0 P q

Let us mention that it is possible to prove this theorem without using the energy estimate
and this theorem is true for a large class of systems which have the same scaling as the
incompressible Navier-Stokes system.

Using results related to the energy estimate, L. Iskauriaza, G. A. Serégin and V. Sverak
proved in 2003 the end point case of (1.2) when p is infinite (see [16]). This remarkable result
has been extended to Besov space with negative index (see [10]). Let us also mention a blow-
up criterion proposed by Beirao da Veiga [3], which states that if the maximal time T* of
existence of a regular solution v to (IN.S) is finite, then we have

” 2 3 3
(1.3) / [Vo@)||5.dt =00 with =+ -=2 for ¢> -

0 P q 2
Let us observe that because of the fact that homogeneous bounded Fourier multipliers
maps LP into LP, this criteria is equivalent, for ¢ is finite, to

T*
(1.4) / Q) ||Badt = 0o where Q%'V x v
0

In this case when ¢ is infinite, this criteria is the classical Beale-Kato-Majda theorem (see [2])
which is in fact a result about Euler equation and where the viscosity plays no role.

In the present paper, we want to establish necessary conditions for breakdown of regu-
larity of solutions to (IV.S) given by Theorem 1.2 in term of the scaling invariant norms of
one component of the velocity field. Because we shall use the L3 norm of the vorticity, we
work with solutions given by the following theorem, which are a little bit more regular than
that given by Theorem 1.2.

THEOREM 1.3. — Let us consider an initial data vy with vorticity Qg = V X vg in L3. Then
a unique maximal solution v of (N'S) exists in the space C([0, T*[; H2 )N LZ ([0, T*; H?) for
some positive time T*, and the vorticity Q@ = ¥V X v is continuous on [0, T*[ with value in L
and Q satisfies

IVQ| Q7% € L ([0, T*[; L?).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



134 J.-Y. CHEMIN AND P. ZHANG

This theorem is classical. For the reader’s convenience, we prove it in the third section
where we insist on the importance of L3 energy estimate for the vorticity.

The main theorem of this paper is the following.

THEOREM 1.4. — We consider a maximal solution v of (N S) given by Theorem 1.3. Let p

d
be in |4, 6[, e a unit vector of R*, and v, zefv -e. Then if T* < oo, we have
T‘k
(1.5) |l . i =
0 Hz »

T
Let us remark that the quantity / lve@)II” 1, » dtisscalinginvariant. Moreover, it gives
H2"p

0
a necessary blow-up condition which involves only a scaling invariant norm to one compo-
nent of the velocity. Or equivalently, it claims that if the maximal time of existence 7 is finite,
v blows up in any direction and thus is in some sense isotropic.

The first result in that direction is obtained in a pioneer work by J. Neustupa and P. Penel
(see [21]) but the norm involved was not scaling invariant. A lot of works (see [5, 6, 15, 17,
20, 23, 24, 25, 26]) generalized established conditions of the type

T T*
[ 1ol =co or [ ot )l = o
0 0
with relations on p and ¢ which do not make these quantities scaling invariant.

Let us mention that I. Kukavica and M. Ziane proved in [18] further that
” 2 3
T < 00 = / 10sv(t, ) |5 4dt = co  with » + p =2 and g¢€[9/4,3].
0

The restriction “p less than 6 is probably technical. As we shall see, it comes from the
domain of validity of law of product in some Sobolev or Besov spaces. It is not clear how to
overcome this difficulty if we remain in the frame of solutions which have only the critical
regularity. Nevertheless, if we assume that the solution is more regular, for instance contin-
uous in H1, it is probably possible to prove the theorem for all finite p with much more
technical difficulties. On the other hand, the case when p = co seems out of reach. Indeed in
the isotropic case, if the maximal time of existence 7 of a solution w is finite, then

limsup ||u(t)].,1 = o0

t—T* H%
(see [16] or [14] for the proof). The proof uses the fact that if the initial data is small then the
solution is global. The equivalence of this result in our framework would be that, if [[vo-e]| 1
is small for some unit vector e, then the solution is globally regular. Such a result, if it is true,

seems out of reach for the time being.

The proof of Theorem 1.4 uses a result which claims that the control (in term of Besov
spaces of negative indices) can be different for each component of the Jacobian matrix Dv.
In order to state the theorem, let us recall the definition of some class of Besov spaces.

4¢ SERIE - TOME 49 — 2016 — N° 1



REGULARITY CRITERION FOR 3-D NAVIER-STOKES SYSTEM 135

DEFINITION 1.1. — If'o is a positive real number, we define the space B3, as the space of
tempered distributions f such that

def =
11l pze, = suptZ | fllz < oo
! t>0

def _—2+2
For p in]1, 0o, we shall use the notation B, ) Boo,;”.

These spaces are in some sense the largest ones which have a fixed scaling. Indeed, let
us consider any Banach space E which can be continuously embedded into the space of
tempered distribution ¢’ (R?) such that

V(A, @) € 10,00 x B?, A7[f(A - +7) |5 ~ [Ifl|5-
The first hypothesis on E implies that a constant C exists such that
.12
(fre” )y <Clfls.

The scaling hypothesis on E implies, after a change of variables in the left-hand side of the
above inequality, that

vt €10, 00, t% e fll= < Ol f5-

As an example, let us apply the above inequality with the Sobolev space £ = H =35 This
gives immediately that

(1.6) 10calls, < 10eall 32 < lall 4.
Then the following theorem can be understood as an end point blow-up theorem for the

incompressible Navier-Stokes equation.

loc([oa T*[a H%)
If T is the maximal time of existence and T* < oo, then for any (py ) in |1, oo[g, one has

T*
k DPk,e _
> [ toaren a .

1<k,6<3

THEOREM 1.5. — Letvbeasolutionof (NS) in the space C([0, T*[; Hz) N L?

It is easy to observe that

(1.7 ol g, < llvllpe  with 2+ 3_ ,p>2, and L?C B, with g—}— 3_s.
rp q p q

In particular, Theorem 1.5 implies blow-up criteria (1.2) and (1.3). It generalizes also the

result by D. Fang and C. Qian (see [12]) who proved sort of combined version of blow-up

criteria (1.2) and (1.3), like for instance critical Lebesgue norms of horizontal components

of the vorticity and of derivative to the third component of the velocity.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



136 J.-Y. CHEMIN AND P. ZHANG

2. Ideas and structure of the proof

First of all, let us remark that it makes no restriction to assume that the unit vector e
is the vertical vector (0,0,1). The first idea of the present work consists in writing the
incompressible homogeneous Navier-Stokes system in terms of two unknowns:

— the third component of the vorticity €2, which we denote by
w = 010 — Hyv?

and which can be understood as the 2D vorticity for the vector field v" def (vl,v?),

— the quantity d3v® which is — divy, v" = —9;v' — 8202 because v is divergence free.
Immediate computation gives

Ow + v - Vw — Aw = 0503w + 0503930 — 91039302
(NS) -
0,050 + v - VO30® — Af5v® + 03v - Vi = 8§A_1( Z 8gvm6mvz>.

£L,m=1

Keeping in mind that we control v® in the norm L%, (H %J’%) with p greater than 4, which
implies that the order of regularity in space variables is less than 1. Let us analyze this system.
We first introduce the notations

Q.1
Vi =(-02,81), Ap=02+082, ", ¥ VEiATw and ol & -v,A 0505

curl
Let us observe that thanks to the divergence free condition on v, we have
divy, 'Ugiv = VhAgl divy ol
Then we have, using the Biot-Savart’s law in the horizontal variables

2.2) V" = U + Vi
Thus the right-hand side term of the equation on w in (ﬁé ) contains terms which are linear
in w, namely

0303w + 090> D32y — 1030302,

and a term that appears as a forcing term, namely
621}3531}'}“‘, — 811)363?]2“\,.

The only quadratic term in w is v2 | - Vyw. A way to get rid of it is to use an energy

type estimate and the divergence free condition on v. As we want to work only with scaling
invariant norms, the only way is to perform a L3 energy estimate in the equation on w. This
is possible thanks to the following lemma.

LEMMA 2.1. — Let p be in |1,2[ and ag a function in LP. Let us consider a function f
in LY (R*; LP) and v a divergence free vector field in L2 _(R™; L>). If a solves

loc

(T,) {6ta—Aa+v-Va:f

ajt=0 = Qo
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REGULARITY CRITERION FOR 3-D NAVIER-STOKES SYSTEM 137

then a is such that |a|? belongs to LS (RY; L2)N L2 (RT; H') and

loc loc

¢
1/ |a(t,3:)|"dw+(p—1)// |Va(t',z)|*|a(t’, z)|P~2dx dt’
2.3) P Jgrs 0 JRr3

1 ¢
= 7/ |a0(x)|pda:+/ / f x)alt', 2)|a(t',z)P~2dx dt’.
D Jrs 0 JR®

Then it seems reasonable to control w using some norm on v3. Unfortunately, we need
more regularity on v3 than the H 3t3 regularity. As shown by the forthcoming Proposi-
tion 2.1, we need higher order regularity on v3. Indeed, the application of the above lemma
leads in particular to the control of

_1
/3 (020°0308;, — 01020503, )w|w| ™ 2 da.
R

It is clear that we need more regularity on 930 than v3 belongs to H 3+3 . This leads to
investigate the second equation of (N.S), which is

3
Du05v’ +v - Vv — A0’ + 030 Vo' = BAT (D B Do),
£,m=1
The main feature of this equation is that it contains only one quadratic term with respect
to w, namely the term

N 22: OV Ot )

Lm=1

A way to get rid of this term is to perform an energy estimate on d3v3, namely an estimate
on

1050° ()]

for an adapted Hilbert space # . Indeed, we hope that if we control v3, we can control terms
of the type

(03 A (0000 10mvEn) | 030°) “

curl

with quadratic terms in w and thus it fits with || 0303 ||%, and we can hope to close the estimate.
Again here, the scaling helps us for the choice of the Hilbert space J¢. The scaling of J¢
must be the scaling of H -3, Moreover, because of the operator Vy A it is natural to
measure horizontal derivatives and vertical derivatives differently. This leads to the following
definition.

DEFINITION 2.1. — For (s,s') in R%, H>* denotes the space of tempered distribution a

such that

ol [ e € PdE < 00 with &= (61,2).

For 0in0,1/2[, we denote #y % H~3+0.-0,

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



138 J.-Y. CHEMIN AND P. ZHANG

Let us first remark that

(2.4) (s,5') € 0,00 = [lall o' < lallgrer and
: 2
(s5,5') €]=00, 01> = [lallgrose < ] o0

We want to emphasize the fact that anisotropy in the regularity is highly related to the

divergence free condition. Indeed, let us consider a divergence free vector field w = (w", w®)

in H2 and let us estimate ||93w3|| s, By definition of the # ¢y norm, we have

/ 6015|720 | T (5™ (€) e,
&nl<I€s|

|0sw® )%, = Ap + Ap with A, &

In the case when |£,| > |€3], we write that
An < [ lGllB@Fde < 2.
In the case when |£},| < |£3], we use divergence free condition and write that

O A ECE R IO
[€n|<[€s]

2 hy2
< [ lellah e = o2,
Thus for any divergence free vector field w in H 2, we have
2.5) s, < Cllwl],,

The first step of the proof of Theorem 1.4 is the following proposition:

PROPOSITION 2.1. — Let us consider a solution v of (N S) given by Theorem 1.3. Then for p
in)4,6[, a constant C exists such that for any t < T*

2 2 ) ¢ INIEZ ’ 2 2012
§||wg(t)||m+f/ [Veos @72 ¢ < 50 wol 13-

¢ 3
/ /
([ 18800, ) ) ew(e [ 1@ ).

Here and in all that follows, for scalar function a and for o in the interval |0, 1[, we always denote

(2.6)

def a

so that in particular ws = wlw| ™1 andwy = wlw|™2

2.7) o &

orlal®

Next we want to control ||02v3 || L2(#,)- As already explained, a way to get rid of the only
quadratic term in w, namely

a3a~( 5 D1 O

£,m=1

is to perform an energy estimate for the norm 4.
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REGULARITY CRITERION FOR 3-D NAVIER-STOKES SYSTEM 139

PROPOSITION 2.2. — Let us consider a solution v of (N S) given by Theorem 1.3. For any p
in]4,6[and 0 in |5 — 2, ¢, a constant C exists such that for any t < T*, we have

t t
0O, + [ 190* @)1, dt' < Cexp(C [ WP@I ., )
0 0 H2'P
t 1,1 _1
28 < (2 + [ (190033 by OIS rwg @0
0
IO 4 oy @ 90 02072 dt').

As aforementioned observation, the non-linear terms of the equation on d3v3 contains
quadratic terms in w. In spite of that, the terms in w and in G3v% have the same homogeneity
in (2.8). Let us point out that this is also the case in the estimate of Proposition 2.1. This will
allow us to close the estimates using Gronwall type arguments. More precisely, we have the
following proposition.

PROPOSITION 2.3. — Let v be the unique solution of (NS) given by Theorem 1.3. Then for
any p in)4,6] and 6 in ] % — %, % [, a constant C exists such that, for any t < T*, we have

+

2p+

2233 i3
g )HL2 + ||VW3||L2(L2) = C”QO” L3 6(t) and
1850° ()15, + IV 030> )1 725,y < IIQolng &(t)

. t
oK exp(CeXp(C/ [ERGI dt’)).
0 H=2 P

The proof of this proposition from Propositions 2.1 and 2.2 is the purpose of Section 7.
It consists in plugging the estimate of Proposition 2.2 into the one of Proposition 2.1 and
making careful use of Holder and convexity inequalities.

A

loos (

with

Now in order to conclude the proof of Theorem 1.4, we need to prove that the control of

ollmty [ Vs ar, [ 1800, @ aa [,

allows to apply Theorem 1.5.

The paper is organized as follows. In the third section, we first prove Lemma 2.1
and explain how this estimate applied to the vorticity equation allows to prove the local
existence of a solution to (N.S) which satisfies the smoothing effect “V|Q2|% belongs
to L} ([0, T*[; L*(R%)”.

loc

Because of the term w|w|_% which appears when we perform the L3 energy estimate for
the vorticity, it is not possible to remain in the framework of Sobolev spaces, instead we have
to deal with anisotropic spaces. In the fourth section, we present the anisotropic Littlewood-
Paley theory and some properties of anisotropic Besov spaces, in particular laws of products
which come from paraproduct decomposition in both horizontal and vertical variable and
which play a key role in the proof of Propositions 2.1 and 2.2.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



140 J.-Y. CHEMIN AND P. ZHANG

The fifth section is devoted to the proof of Proposition 2.1. The main point is the study of
expression of the type

/ WAL fovaw|w| 2dx .
R3

The first step is the description of the regularity of w|w|‘% in term of Besov space knowing
that w belongs to L3 and Vwi belongs to L? which is essentially made with forthcoming
Lemma 5.1. Then we use anisotropic Sobolev type embedding and law of products. This is a
place where the technical restriction “p less than 6 ” appears.

The sixth section is devoted to the proof of Proposition 2.2. The main point is the control
of trilinear terms of the type
2 A—1 m 4 3
(83 AT (O™ O v )|63v )ﬁ'e

and especially the terms

(8§A_1 (8ev$rlamvﬁurl) |63U3)j{9 .
The main tool is the law of products for anisotropic Besov spaces. Again the technical

restriction “p less than 6 ” appears.

In the seventh section, we explain how to deduce Proposition 2.3 from Propositions 2.1
and 2.2. The proof relies on a mixing between Gronwall type arguments and Holder
inequality.

In the eighth section, we first prove Theorem 1.5. Let us point out that the proof uses
the particular structure of the incompressible Navier-Stokes system in the case when some
index p is less than or equal to 2. Indeed the skew-symmetry of the operator v - V plays
a key role. After this, we conclude the proof of Theorem 1.4 using Biot-Savart’s law in the
horizontal variable and Sobolev type inequalities in the spirit of Inequality (1.6).

Before going on, let us introduce some notations that will be used in all that follows.
For a < b, we mean that there is a uniform constant C, which may be different on different
lines, such that a < Cb. We denote by (a|b) > the L?(R?®) inner product of a and b. For X a
Banach space and I an interval of R, we denote by C(I; X) the set of continuous functions
on I with values in X. For ¢ in [1, +00], the notation L?([; X) stands for the set of measur-
able functions on I with values in X, such that ¢ — || f(¢)||x belongs to L?(I). Finally,
we denote by L4.(L{(L%)) the space LP([0,T]; LY(Ry,;L"(Ry,))) with zn = (21,22),
Vi = (0s,,04,) and Ay, = 82 + 02,

3. The local wellposedness of (IV.S) for vorticity in L5 revisited

The first step of the proof is the proof of Lemma 2.1.

Proof of Lemma 2.1. — Note that for pin|1,2[, Va = Va|a|pa;2 X |a|27Tp, which belongs
to the space L2 _(R™; L) according to the energy inequality (2.3). Moreover, v belongs to

loc

the space L2 _(R™; L>), so that v - Va is in L. _(R™; LP), and hence arguing by density, we

loc loc
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REGULARITY CRITERION FOR 3-D NAVIER-STOKES SYSTEM 141

can assume that all the functions in (T7,) are smooth. As the function 7 — 7P is C!, we first
write that

1d
pt s la(t, z)|Pdx = /]RS draala|lP~2dx
1
= —7/ v(t,x)~V|a|p(t,x)dw+/ Aa(t, z)a(t, z)|a(t, z)|P~2dx
b Jgs R3
+/ f(t,z)a(t, z)|a(t, z)|P~2dz.
]RS

As v is assumed to be divergence free, we get

1d

pdt /Ra lalt, @)[de = /]Rs Aa(t, z)a(t, )la(t, 2)["~*dz + /Rs ft,z)a(t, ) a(t, )P~ *dz.

Integrating the above inequality over [0, ¢] yields

1 1 K
, la(t,z)Pdx = ;)/ |a0(:c)|pdx+/ / Aa(t' z)a(t',2)|a(t', x) P2 dzdt!
3.0 R3 RS 0 Jr3

+/0t /]RS f(t/,l‘)a(t/,x”a(t/’x)lp_de.

In the case when p > 2, the function r — rP~1 is C! and then an integration by parts implies
that

/ Aa(t,z)a(t, z)la(t, )P *dz = —(p — 1) / |Va(t,z)|*|a(t, z)|P*dz.
R3 R3

In the case when p is less than 2, some regularization has to be made. Indeed, even for smooth
function, the fact that |a|? belongs to H' is not obvious. As a is supposed to be smooth, in
particular, we have that a is bounded and Aa |a[P~! belongs to L (R*, L!). Thus, using
Lebesgue’s theorem, we infer that

¢
(3.2) }in})/ Aa(t',z)a(t',z)(la(t',z)| + 5)p_2 dzx dt’
—0Jo Jgs

t
_ / Aa(t, z)a(t,z)|a(t’, 2) P2 do dt'.
o Jre
As the function r — (r + §)P~2 is smooth for any positive &, we obtain

— | Aal',z)a(t',z)(|a(t’, z)| + 6)* da =/ Va(t', ) (la(t', z)| + 6)° " da
R3 R3

+(p—2) /R3 Va(t',z) - (V]a|)(t',z)a(t',z) (Ja(t’, z)| + 5)p_3d:6.

It is well-known that
a

V0a| = Va
lal
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Thus we get by time integration that
t
| [ satt0palt o) at ) + 6)""
o Jrs
t
:/ Va(t',2)[2 (ja(t', )] + 6)" 2 dz dt’
(p—2 / / \Va(t',z)|a(t’,z)|(Ja(t’, z)| + 5)"~ *drdt’.

For the term in the right-hand side of the above inequality, thanks to (3.2) and to the
monotonic convergence theorem, we get that |Va|?|a|?~2 belongs to Li. (RT; L!) and that

t
—/ Aa(t',2)a(t', x)|a(t',z) [P~ 2 dz dt’ = / / [Va(t',2)|*|a(t’, z)|P~2 dx dt'.
0 JR3
Resuming the above estimate into (3.1) leads to (2.3). This proves the lemma. O

We remark that we shall use Lemma 2.1 in the case when p = 3/2. Indeed, by virtue
of (2.7), one has

3 3 _1
|Vas| = |Vl]a|1]| = 1|Va| la| 5.
Then (2.3) applied for p = 2 gives rise to

2
(3.3) §||a%(t)||2Lz /||va3 t)|7.dt' = f|||a0|4||L2 //f Jay (t',z)dzdt’.

Let us turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. — We use the equation of the vorticity. By virtue of (N.S), the
vorticity {2 = V x v satisfies the equation

0 — AQ VQ-Q-Vo=0
(NSV) { ‘ v v
Qlt:O = Q().
Biot-Sarvart’s law claims that vg = —VA~! x g. This implies that ||v0||H% < ”QOHH—%'

Using the dual Sobolev embedding ||f||H_% < ||f||L%, we deduce that vy belongs to Hz.
Then applying Fujita-Kato theory [13] ensures that (/V.S) has a unique solution v on [0, T*[
in the space C([0, T*[; H2) N L2 ([0,7%; H3). Moreover, it follows from Proposition B.1
of [9] that v belongs to L2 ([0, T*[; L>). Then to apply Lemma 2.1 for (NSV) with the
external force f = 2-Vu, we only need to estimate this term. Indeed as the solution v belongs

to L2 ([0, T*[; H?), we use Sobolev inequality to get

loc
| / / Q. vealol -t / 19 Vo)l 5 )
]Ri’»

< [ 1900 I9o@ sl y a
0
t 1
/ 2 !/ 2 /
<c [ Ivue, 19l ar.

By virtue of (N.SV), by applying Lemma 2.1 and using the convexity inequality

2 1 . 2 1
ab< Zat 4 07 with a= Vo', and b= |[Vo@)|®, )]s,
3 3 H?2 L2

1
2

ool
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we infer that
2 3 1t r 21O [~k /
= |Q(t, x)|2 dz + = VO, z)|* |t , x)| 72 da dt
3 R3 2 0 R3
2 3 t t 3
<z 3 NIV L dt N2 ) N ’
<3 L@t des [ VoI, ae £ [ I9e@l, el a
Applying Gronwall Lemma gives rise to

2 3 1 [t L
7/ |Q(t,m)|§dsc+f/ / IV, 2) 2, 2)| "~} do dt
3 R3 2 0 R3

2 3 ! INTE ’ ! INTE ’
< (3 [, 1@t de+ [ 9o,y de)esn(c [ 1vow)12,, ).

Thus Theorem 1.3 is proved. O

As a conclusion of this section, let us establish some Sobolev type inequalities which
involve the regularities of as and Va% in L2.

LemMA 3.1. — We have

(3.4) ||Va|| 3 < HVa%

1
L2 ~ ||L2||a%HZ2'

Moreover, for s in [—1/2 , 5/6], we have

5_ 14
(3.5) lallgs < Cllag . IVas |22

4
Proof. — Notice that due to (2.7), |Va| = 3 |Va% ||al i, then we get (3.4) by using Holder
inequality. The dual Sobolev inequality claims that
4
(3.6) lall, 3 < Cllall, 5 = Cllas ..

2

Moreover, using again that |Va| = %|Va%| |a| 7, Holder inequality implies that

4 1
IVall 2 < SlVaglzalllal*]|zs
4 3
< §||V‘13||L2||ag||ys-

Sobolew embedding of H! into L® then ensures that

4
3.7 [Vall, s < ClVas| ;..
Sobolev embedding of W5 into Hé leads to

4

lall s < ClIVas 15,

from which and (3.6), we conclude the proof of (3.5) and hence the lemma by using the
interpolation inequality between H* Sobolev spaces. O
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4. Some estimates related to Littlewood-Paley analysis

As we shall use the anisotropic Littlewood-Paley theory, we recall the functional space
framework we are going to use in this section. As in [8], [11] and [22], the definitions of the
spaces we are going to work with require anisotropic dyadic decomposition of the Fourier
variables. Let us recall from [1] that

Ara =T (p(27*&n))a), ta= 9 (p(27" & )a),
(4.1) Sta=9 ' (x(2 7M@),  Sfa=9 ' (x(2"&))a) and
Aja =T (277 I€))a), Sja =g (x(277[¢])a),
where &, = (£1,£2), Fa and @ denote the Fourier transform of the distribution a, x(7)

and ¢(7) are smooth functions such that

3 8 ;
Supp (pC{TER/ ZS|T|S§} and VT>0,Zcp(2’JT):1,
JET

4 .
Supp x C {7‘ eER/ |7 < g} and  x(7)+ ZQP(Q_JT) =1.
Jj=0

DEFINITION 4.1. — Let (p,7) be in [1,400]? and s in R. Let us consider u in J}, (R*), which
means that w is in ' (R*) and satisfies lim ||S;ul|p~ = 0. We set
j——o0

def’ .
Bs. def 127 [1A5ullr),

ez

— Fors < 2 (ors=2ifr=1), wedefine B R?’) def{ € dh(R3 ) | llullgs , < oo}

- Ifkisapositiveinlegerandif%—|—k <s < s S4k+1(ors= s —|—k—|—llfr =1),
then we define B;’T(R?’) as the subset of distributions u in J, (R*) such that d°u belongs
to B;;k(]Rg) whenever || = k.

Let us remark that in the particular case when p = r = 2, B, ,. coincides with the classical
homogeneous Sobolev spaces H*®. Moreover, in the case when p = r = oo, it coincides with
the spaces defined in Definition 2.1 (see for instance Theorem 2.34 on page 76 of [1]).

Similar to Definition 4.1, we can also define the homogeneous anisotropic Besov space.

DEFINITION 4.2. — Let us define the space (B;}ql)h(B;?qz)v as the space of distribution
in J}, such that

d v % a1
||u||(B;}q1)h(B;?q2) éf <22q1k51 (Z2q2482||A£AZU’H%ZP) 2)

v kEZ LEL
is finite.

We remark that when p = ¢; = ¢ = 2, the anisotropic Besov space (B3, ), (Bs2,),

coincides with the classical homogeneous anisotropic Sobolev space H**>*2 and thus the

space (B, 2+0) (B35), is the space # ¢ defined in Definition 2.1. Let us also remark that
in the case when ¢ is different from ¢o, the order of summation is important.
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For the convenience of the readers, we recall the following anisotropic Bernstein type
lemma from [11, 22]:

LEMMA 4.1. — Let By, (resp. B,) a ball of R} (resp. R, ), and €y, (resp. €,) a ring of R}
(resp. Ry ) let 1 < ps <p; <ocoandl < gy < q1 < 00. Then there hold:

If the support of @ is included in 2% By,, then
a E(la|+2( -1
102, al s ooy S 250257 Jall o o

If the support of G is included in 2° B,,, then

0B+ (L—L
105 all g1 oy S 270 @) o o 02,

If the support of @ is included in 2% €}, then
9—kN

sup ||33ha||L§1(L31)'

lall o gy S
Lh (Lvt) ~ |a|:N

If the support of @ is included in 2° 6, then
—EN | N
||a||Lﬁ1 (L) S2 ||8z3a||L§1 (L91y-
As a corollary of Lemma 4.1, we have the following inequality, if 1 < py < pq,

(4.2) el

<
(321—2(i—ﬁ))h(352—(%—ﬁ)) S el (Bib o), (Bi2ay)

541 P1,92

To consider the product of a distribution in the isentropic Besov space with a distribution
in the anisotropic Besov space, we need the following result which allows to embed isotropic
Besov spaces into the anisotropic ones.

LEMMA 4.2. — Let s be a positive real number and (p, q) in [1, 00] withp > q. Then one has

< s
Il p (g5 ) S lallz .

Proof. — Once noticed that, an integer Ny exists such that, if j is less than or equal
to £ — Ny then the operator AjA; is identically 0, we can write that

2| AYalle S 2 Y 1AVAallLe
£<j+No
< > 27920 Al e
£<j+No
Because s is positive, Young inequality on Z implies that

12 1AYallze) [l oz < llallsg,-

Due to p > ¢, Minkowski inequality implies that

”a”Lﬁ((B;q)v) = ”(QZSHAZG(%")||L€)e||eq(2)||L§
N ||(2£S”Aza””)e“zq(z)
S llalls; -
The lemma is proved. O

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



146 J.-Y. CHEMIN AND P. ZHANG

LEMMA 4.3. — For any s positive and any 0 in |0, s[, we have
Hf”(BSI/’)h(B;’;,l)V 5 ||f||B;7q-

Proof. — This lemma means exactly that

def

@3 VY ARA flle S erg2 OO fllpy, With (ewoi € £(2).

~
LeZ

We distinguish the case when £ is less than or equal to &k from the case when £ is greater than k.
Using the fact that the operators A} are uniformly bounded on LP, we write

k=0, = o= N "o ABAY f 1o + 2570 > " 28 ARAY f]| v
<k 0>k
(4.4) S 25 AR S| e + 25670 2 ARAY £ 1o

>k

In the case when / is greater than k, the set 2 &}, x 2¢€, is included in a ring of type 2° ©.
Thus, if |§ — ¢| is greater than some fixed integer Ny, then we have A;ARAY = 0. This gives

ZWHA}Q vfllee S Z 21| A ARAY f Lo
>k | —£1< No
>k

Then using again that the operators A} and A% are uniformly bounded on L?, we infer that
Do 2PNARA e S D 27T D20 A f | s
1>k Jj>k—No
Moreover, we have A; Al = 0if j < k — N;. We thus deduce from (4.4) that
Ve S Y 27U A Sl + Y 27RO A |
j>k—N; Jj=k—No

This gives (4.3) and thus the lemma. O

One of the main motivations of using anisotropic Besov space is the proof of the following
proposition.

PROPOSITION 4.1. — Let v be a divergence free vector field. Let us consider (o, 0)

in0,1/2[>. Then we have

i 1— _
o™ HVws . + 1850° 152 1V 850° 157,

+
(B%J)h(BQ%’;a)v N ||w%||22

Proof. — Using horizontal Biot-Savart law (2.1) and Lemma 4.1, we have
(4.5) P 1 Slw 1+ [|0503 I
w1, (27, = 0 ) o), I o), (01,
Applying Lemma 4.1 and Lemma 4.3 gives

g ), (537

(B
@6) S lol,

S el

). (580,

o

o o=

[SEININ]
=
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Now let us estimate ||w|

HL2‘ For sin]—1/3,1[ and any

positive integer N, which we shall choose hereafter, we write that

lolsy = 3 250l + 3 21850,y
:

Bj | in terms of ||w%||L2 and ||Vw%

j<N j>N
< Z 2j(s+%)||A]-w||L% + Z 2j(3—1)||Aij||L%
j<N j>N

S 2V o]y + 2V [Vl g

. Vol sy 2\T
Choosing N = |log, e+(w) yields
3
L2

_s 3(gyl
= v 109,
2 L5

3
lwllzy | S lell;

Using (3.7), we infer that

— 1
lwlsg , S g "1V 1227
Using this inequality with s = g — a and (4.6) gives
14 1—
@) ol gy (mdrey. S leallze™ 192"

Now let us prove the following lemma.
LEMMA 4.4. — Let us consider (a,0) in]0,1/2[>. Then we have

”04” (Bgl)h(Bé;a)v 5 ||(L||;‘[9 ||Va||;[—9a.

Proof. — By definition of || - || (52,) ( %_a) , we have
h v

2,1 2,1

[[all 1.y = Hp(a)+Vy(a) with
(83.),(B2.7),
(48) Hi() =Y [A}AVa]:237)  and
k<¢
def v 1_,
Vi(a) € > |akAyal| 222
k>4

In order to estimate H,(a), we classically estimate differently high and low vertical frequen-
cies which are here the dominant ones. Using Lemma 4.1, we write that for any N in Z,

Hp(a) < Y 1ARAYa) 122G 2) + 37 Ak A 8sal 2275 ),

k<t<N k<t
5N

By definition of the norm of %y, we get
Hi(a) S llallw, Y, 28021040 4 |1ggal, D 2K(E0) g (b em0),

E<t<N k<t
>N
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The hypothesis on («, 8) implies that
Hy(a) S llallw, 3 207 + 19sallwr, )27
<N >N
< llallye,2¥0=) + ||8all 5,27

Choosing N such that 2V ~ 19sall sz, gives
llalls,
(4.9) Hy(a) < llall%, 19sally,”-

The term V7, (a) is estimated along the same lines. In fact, we get, by using again Lemma 4.1,
that

Vi) S Y l1akAyal 226G + 37 | AL AYVya| 223 ) 2k

L<k<N o<k
k>N
5 ||a||j{9 Z 2@(%—a+9)2k(%—€) + ”vha”ﬂg Z 2@(%—a+0)2—k(%+9)
L<k<N o<k
kSN
< llall e, 2V + [ Vnal 4,27
Choosing N such that 2V ~ M yields
lalls,
Vi(a) < llalls, Vnally,*.
Together with (4.8) and (4.9), this gives the lemma. O
The application of Lemma 4.4 together with (4.7) leads to Proposition 4.1. O

To study product laws between distributions in the anisotropic Besov spaces, we need to
modify the isotropic para-differential decomposition of Bony [4] to the setting of anisotropic
version. We first recall the isotropic para-differential decomposition from [4]: let a and b be

in ' (R?),
ab = T(a,b) + T(a,b) + R(a,b) with
T(a,b) =Y Sj_1aA;b, T(a,b)=T(b,a), and

(4.10) jez
j+1

R(a,b) =Y AjaA;b, with Ajp= D" A
JEL L=j—1

As an application of the above basic facts on Littlewood-Paley theory, we present the
following product laws in the anisotropic Besov spaces.

LEMMA 4.5. — Let ¢ > 1,p1 > po > 1 with -+ - < 1,and sy < 2, 55 < = (resp.
slgp%,82<I%ifqzl)withsl—i-sz>O.Let01<%,02<%(resp.01S%,02<pi2

if g =1) withoy + oo > 0. Then for a in (B;iq)h(Bgiq)v and b in (B;;q)h(Bg;q)v , the
s14+sa— % o1+oa— 1

product ab belongs to (Bp, 4 ™ )h (Bpi,g ™ )V, and

<
||ab|| (le+sz—%)h (Bal+02—i) ~ ||a|| (B;%yq)h (Bgllvq)v ”b” (B;;q)h (Bzqu)v .

P1,:9 p1,9 v
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The proof of the above Lemma is a standard application of Bony’s decomposition (4.10)
in both horizontal and vertical variables and Definition 4.2. We skip the details here.

5. Proof of the estimate for the horizontal vorticity

The purpose of this section is to present the proof of Proposition 2.1. Let us recall the first
equation of our reformulation (N S) of the incompressible Navier-Stokes equation which is

Ow+v-Vw—Aw=F def 0303w + Dv305vt — 91030502,

As already explained in the second section, we decompose F' as a sum of three terms. Hence
by virtue of (3.3), we obtain

2 8 [t 2 > .
slles @Iz +3 / Vs ()][72 di” = Zlllwol |7 + 7 Fe(t)  with
=1

Fi(¢) def// 831}3|w|2d:cdt’
5.1

Fy(t) d:ef/ » (020° 030841 — 810383u§ur1)w% drdt’ and

¢
F3(t) d:ef/ g (020° 0308, — 81v383vc21iv)w% dz dt’,

where v®, | (resp. vl ) corresponds the horizontal divergence free (resp. curl free) part of the

horizontal vector v = (v!,v?), which is given by (2.1), and where w L def |w|™ 2 w
Let us start with the easiest term F7. We first get, by using 1ntegrat10n by parts, that

|Fi(t)| < = // |3 (¢, )] |Osw(t’, )| |lw(t, x)|2 dzdt'.

Using that
p—2 2 2

W + g + % = 13
we apply Holder inequality to get
3 t
FRO1< 5 [ 1P, o, 100l g oy (€3, .
As pisin |4, 6], Sobolev embedding and interpolation inequality imply that
3_1 3_3

log @)z S lws O s3-1) S llwg @z " [Ves @22 7

Using (3.4), this gives
¢ 1 2 2_1
RO [ WO 1050y Ol 2o O 190y @ oy ) e

Applying convexity inequality, we obtain
t 2
IBOLS [ IO, g @)l Ty @35

1 t t
(5.2) < §/0 [Vews ()]} dt’+C/O ||v3(t')||’;q%+%||w%(t')||; dt'.

(- ”dt’
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The other two terms require a refined way of the description of the regularity of wi and

demand a detailed study of the anisotropic operator V, A ! associated with the Biot-Savart’s
law in horizontal variables. Now we state the lemmas which allow us to treat the terms F5 and
Fsin (5.1).

LEMMA 5.1. — Let (s, a) bein]0,1[> and (p, q) in [1, 00]2. We consider a function G from R
to R which is Holderian of exponent o Then for any a in the Besov space B, ,, one has

a . def G(r) - G(r'
1G@lss , <IClee(lalls; ) with [|G]ce % sup D =G,

P /e
ol r#r! [r — |

Proof. — Because the indices s and « are between 0 and 1, we use the definition of Besov
spaces coming from integral in the physical space (see for instance Theorem 2.36 of [1]).
Indeed as

|G(a) = G()| S |Glloala — b,
we infer that

6@ - Glat- + )l 2 = ( [ [6tate) ~ Glata+ v))|Fas)

o
p

SlGlle-( [ late) ~ ale + s
R
S IGlleala = a(- +)l.

Then for any ¢ < co, we write that

(/ ||G(a)—G(a(.+y))||L%§ dy)i? < Gl (/ la —a(- +)[%, dy>‘3
R RY

y|asxa |y ly|=a ly|

< Gl (llal

stmz)a'

The case for ¢ = oo is identical. This completes the proof of the lemma. O
. . 1 2
LEMMA 5.2. — Let @ be in0,1/6[, o in]3/4,1], and s = 3 +1- 37 Then we have

2
3
||Hf’ and

[, v sonas da| < 151, o
(5.3)

2
3
w3 ”H‘”

[ o5 vy o] < 1l el

Jfor F g given by Definition 2.1.

Proof. — Let us observe that wi = G(wsz) with G(r) def r|r|~%. Using Lemma 5.1, we

obtain

2
(5:4) losll 20 S llwsll o

2
50
3,3
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Let us study the product dna wi. Using Bony’s decomposition (4.10) and the Leibnitz
formula, we write

8haw% = T(aha,w%) + R(aha,w%) + T(w%,aha)
= 0T (wi,a) + A(a,w) with
A(a,w) def T(0ha,wy) + R(Oha,ws) — T (6w, a).
We first get, by using Lemma 4.1, that
18;T(wg, @)z S Y ISy-1wille=[Ayallze

l7—3"1<4
< i 99—d(st30-1) .
NECEP A IIw%IIBﬁgllallH,
which together with (5.4) ensures that
2
T, 0,3 < llalle [ws | .-

Using that the operator 92A; ! is a bounded Fourier multiplier and the dual Sobolev embed-
ding L3 C H %, we get that

‘ WA fOLT (w1, a) dw‘ - ‘/ ORA T (ws,a) dw‘
RS 2 Rii 2

<, 3 1Ty a)l,,
(5.5 < I71 3 Nl

In the case of the anisotropic norm, recalling that #y = H —2+0.=0 and using Lemma 4.3,
we write

2
lzz--

w3
1

[ AT Ty @) do] < 1l 1Ty ]y
< e, Iy 0
(5.6) < [l llal 2=

Now let us take into account the anisotropy induced by the operator oA ! Hardy-
3
Littlewood-Sobolev inequality implies that 9, A, ' f belongs to L (LY) if £ is in L3.So that

2
3
W%HHU'

it amounts to prove that A(a,w) belongs to Lf’,(LE ), which is simply an anisotropic Sobolev
type embedding. Because of s < 1, we get, by using Lemma 4.1, that

18 T@ha,wi)l s S Y ISy-10nallz2]|Ajwy s
15/ —31<4

Y oy s27 5 g

3/ —il<4

A

wi || 2
2 37
33,3

=

< ;52 ¥ al e

w3
~ 1
Along the same line, it is easy to check that the other two terms in A(a,w) satisfy the same
estimate. This leads to

(5.7 [ A(a, )|

%
. 15

< llall e s

SN
o
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While it follows from Lemma 4.2 that
C LE((BE o)),

a Sobolev type embedding theorem (see for instance Theorem 2.40 of [1]) claims that

o pof=

QQ
5°5

B2 ,(R) C BY,(R) C L3(R).

55

As a consequence, by virtue of (5.7), we obtain

/ 005 A, w) do| S 1WA 3 [lA(a,w)]

Ls) 13(L})
SIl, g lA@l o

S AN g llall e
which together with (5.5) leads to the first inequality of (5.3).

In order to prove the second inequality of (5.3), we observe that

||VhA}?1f||H2+9 -0~ ||f||H——+e,—e = ”f”ﬂe

Thus thanks to (5.7), for  given by the lemma, what we only need to prove now is that

3
W%HHU’

(5.8) B, c H 399,
57

. 1 . . 1 .
Choosing a = 3 + 0 gives (5.8) because 6 is less than 6 This completes the proof of the

lemma. O

The estimate of F5(¢) uses the Biot-Savart’s law in the horizontal variables (namely (2.1))
and Lemma 5.2 with f = d3w, a = v3. This gives for any time ¢t < T* and o in ]3/4, 1] that

[, 0202100088 2) = 9007 2) (8. 2)) e (,3) |

2
S0l s PO, 330 l|ws O]

I, (t) def

By virtue of (3.4) and of the interpolation inequalities between L? and H', we thus obtain

LA SO -5 ““’%(t)Hi(z%_%)HVW%(t)Hi(f’L%).

. 1 L . .
Choosing o = 3(5 — 7), which is between 3/4 and 1 because p is between 4 and 6, gives
p

+2
2 P

s ]| || Fws @5,

1

L) S @l
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Then by using convexity inequality and time integration, we get
2
59 IR <. /Hsz }|L2dt’+0/ 1@ 4 g ()]

In order to estimate F3(t), we write that
t
. / (a2v3(t',x)(aIAglagu?’)(t/,m)
R3

_alv?*(t',x)(aQAglagv?’)(t',x)) w (', ) dadt’.

2 2 . . .

As — = 1-— —U, thanks to interpolation inequality between Sobolev spaces, we get, by
p

applying Lemma 5.2 with f = 92v3 and a = v?, that

2
RO % [ 18O O3l @ a
G' 20’
< [ 1RO @ 3 ey O [Py 2 o

p
< [ 1Ol @t

1_1
X (||v3(t/)”2%+%||w%(t')||i2)p s va%(tl)HLQ

Lol (1Y, (1 o1y
2 6 \p 6 2 p) 7

applying Holder inequality ensures that

w2 ([ 1080, @) ([ 1o, a)’
1_1 t 1_1
([ 1Ol a) ([ ooyl

Applying the convexity inequality

) g

As we have

1 1 1 .
ajagaz < —aP* + —aP? + —aP*  with
Y41 p2

b3
1
:
= o( [ 1o t)u,%dt (e, a)
3(p=2) 34\ ||P INIE: / Pk
ar = (9745 ||11 O 4 3llos @Il a)" ",

as = / Vs

1_1
)||L2 )2 " and
1 11 1
6

and — =

e — —

D1 3pzp
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leads to
1 t t
RO <5 [ 1903 @t +C [ 10O 1 oy @]

(5.10) t o .
34\ ||1P A% 2,3 74/\]12 AN
+C(/O l[v (t)llH%+%dt) (/0 |63v (t)||ﬂ9dt) :

Conclusion of the proof of Proposition 2.1. — Resuming the estimates (5.2), (5.9) and
(5.10) into (5.1), we obtain

2 2 5 [ INTEIRP 7Y
Slos Ol +5 [ Ivey@a
2 , g
< Hienlt 3+ o[ 1@ ) ([ i@, a)
2
+C’/0 va(t/)HZI%Jr%Hw%(t/)HIﬁ dt'.

Inequality (2.6) follows from Gronwall lemma once we notice that ziedT < ez forC’ > C.
O

6. Proof of the estimate for the second vertical derivatives of v>

In this section, we shall present the proof of Proposition 2.2. Let # be given by Defini-
tion 2.1. We get, by taking the #, inner product of the d3v° equation of (N.S) with d3v3,
that

3

1d .
5 771950 O3, +IVOsv* )17, = > (Qu(v,v)[050%) ,  with

n=1

Q1(v,v) def (— Id +6§A‘1)(831) + 82 < Z Opv™ O )
(6.1) £m=1

Q2(v,v) def (—Id+203A (Z D50 90 ) and

Q3(v,v) = Vosv3.

The estimate involving ), relies on the following lemma.

LEMMA 6.1. — Let A be a bounded Fourier multiplier. If p and 0 satisfy

1 1
(6.2) 0<f<=-——,
2 p
then we have
(AD)(F9)1950%) | S 1A oyo3lgll ogo s 101 oz
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Proof. — Let us first observe that, for any couple (o, 8) in R?, we have, thanks to Cauchy-
Schwartz inequality, that, for any real valued function a and b,

@Byl = | [ 16722 e a6l el B et

(6.3) < |la|l g-1+20-e.~26-5]|b]| grev.s -

As A(D) is a bounded Fourier multiplier, applying (6.3) with « = 0 and § = —% + g, we
p

obtain
(64 (AD)(9)186%) 1, | S 1S9l a3 allO®] oy
Because H*>* = (Bj,),(B5,), and thanks to Condition (6.2), law of products of
Lemma 4.5 implies in particular that
IFgll ~rv205-2-20 SUFI o 5—0-2ll9ll o503
As ||831)3||H0,,%+% < ||v3||H0,%+% < ||v3||H%+%,the lemma is proved. O

Because both 02A~! and 92A; ! are bounded Fourier multipliers, applying Lemma 6.1
with f and g of the form 8,v",, or dyvh,, or with f = g = 9303 gives,

[(Q10,0)1055%) 4, | S 0% 3oz (1012 0y 0oy +1050°12 4 00

2

Because of Condition (6.2), we get, by using Lemma 4.3 and Lemma 3.1, that

p+3 1—1
ol yoz-o-1 <l 31 < flws |l [[Ves |z

While it follows from Definition 2.1 that
vy = [Pl aOR e

< [ 6@ (ela@)* e+ e 2 de.
R3

.-

Applying Hélder’s inequality with measure |, |2~ 20| ¢5] 29 d¢ yields

1 1—1
lall < llall, Vally,”

1
g2

1
P

we then infer that

|(Q1(v,v)|831} ) | o |ad %(”ws”L2 ||Vw3”L2 + ||83US||J1{9||V83113||% )

2

Convexity inequality ensures

1
) [(Q1(v,v)1950°) , | < gIIV3303||§/9 + C||v3||" 12 ||33v3||§[9
6.5 )
eI P e L ot

The estimates of the two terms involving Q2(v,v) and @s(v,v) rely on the following
lemma.
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LEmMMA 6.2. — Let A be a bounded Fourier multiplier. If p and 0 satisfy Condition (6.2)
and § < 2, we have, for £ in {1,2},

2
P

| (A(D) (v 0e930%) | 830%) | S (e

5+3 1-3 33 313 3
% (lwsllz 2 11Vws 27 + 1959%112, 19 950% 15, ) 178507 -

Proof. — Using (6.4) and the law of product of Lemma 4.5 gives

2 _29 ||83U3||H0,—%+

|(AD) W Bude®) | 850%) 1, | < N 0Ds0% | rvzey 2
< Il .
(51,), (55,

(51, (521 3) 108 ol

2,1 2,1

2
P

%) ||ala3v3||H—1+29,%—29 ||83’U3||H0’,%+%

)

< Iofll
However, notice from Definition 2.1 that
1059° 3 20 = || 661%6aI1 10007 ) e
< [l el R Ion @)F de = 90l

We thus obtain

| (A(D)(v*0¢05v°) | 95v°) | < [Iv"]l IVO50* sy 10°] 342 -

(81.), (82,7),

Then Proposition 4.1 leads to the result. O

In order to estimate (Q2(v, v) |95v%) , , we write that
((—1d+203A71) (950 0,0%) | 830%) ,, = 1 (v,0%) + Go(v*,0°)  with
(6.6) th(v,0%) € ((~1d +203A7 1) (v'0®) | 830%),, and
o (v*,v%) L& (= Td +202A71) (v10,05v%) | O50°) -
The law of product of Lemma 4.5 implies that

|G (v, )] S [[v00v® ||, 1050° L,

4
S ||’U ” l—%) ||8€U3||H—%+9,%—9||8§U3||ﬂ9'

(83.), (B2,

As we have [|0pv°]] 1102 5 S ”03”1{%“”%’9 < ||v3||H%+%,we infer that

0,

y4 14
|G (v, 0%)| < 10"l P o ey 1737 P

1_
(B%,l)h (B22,1 i )v
Because of (6.6), Proposition 4.1 and Lemma 6.2 ensure that
[(Q2(v,0)1850%) ,, | S W7 3+2

1,2 _2 2 _2
% (lwg 2 IVwsll” + 1950%112, 19950% 15, ) V8502 -

I,
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Applying convexity inequality yields

1
[(Q2(v,v)]050%),, | < 5||V03v3||§gg +C|lo%| ez 1050° (1%,
(6.7) 2(1-2)
+Clo°|? 2+z||ws||Lz IIVwalle e

Finally let us estimate (Q3(v, v) | 83v3) . Lemma 6.2 implies that

|( Vh831)3|831} )}’{ | < ||1) || g+
(6.8) 3 35 313 3
x (Jlogll3 7 19ws 17 + lso®1 5, IV0s®ly,” ) 190522 1,

To estimate (v302v® | d5v%) . , we write, according to (6.3), that

Ho

|(£19)5,| < AN o2 -3, llgll

As§ > 3 — 2, we get, by applying law of product of Lemma 4.5 and then Lemma 4.3, that
|(v*85v° |33’03)m’ < ||U33§03||He 2 3 _,[|850% hro-2.-0

SH(Hp) (BZ) ||8§U3||ﬂ9”337)3”

S 10%, 2 1930% o 1959 g o2 o

H2+977 ,—0"

2

S g2
This along with the interpolation inequality which claims that
2 1—2
1050°1 3o2.-0 < 1050° 17, [ 90050% 1,
ensures
2 2_2

(0?0507 [850°) | S 10711 342 105071 5, 1905071, 7

Due to (6.8) and convexity inequality, we thus obtain

1
I(Qs(v,v)lasvg’)ml < 6||V83'U3H§{9 + C|v%|? ez 105v° (1%,
(6.9)
IO 4 g 9 |20,

Now we are in a position to complete the proof of Proposition 2.2.

Conclusion of the proof of Proposition 2.2. — By resuming the estimates (6.5), (6.7) and
(6.9) into (6.1), we obtain

(6.10)
d
S 185> 15, +IV3sv* () 15,

1,2 _2
< O(IPIR 3. o 28 9y 20

2(14+21 2(1-1
+ 07 4 + 0%l 542 nglng””) ||ng||L( ”))-

On the other hand, Inequality (2.5) claims that [|95v3|l0 < ||v0||H%. Thus Gronwall’s
inequality allows to conclude the proof of Proposition 2.2. O
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7. The closure of the estimates to horizontal vorticity and divergence

The main step of the proof of Proposition 2.3 is the proof of the following estimate, for
any ¢t in [0, T™[.

+

pt3 t
(7.1) ||w3(t)||L23 +||w3||L2(L2) < Cl%ll 3 p<CeXp<C/O ||v3(t)||2%+% dt’)).
In order to do it, let us introduce the notation

T
def 3 p
(7.2) o(T) & Cexp(c/0 PO 4,2 dt).

3
4

where the constant C' may change from line to line. As (a + b) ~ a + b, Proposition 2.2

implies that
3 3
/ 16301, dt') " e(T) < e(T) (190l Fy + Va(t) + Va(n))  with
def ! 3y ¢ 2(3+3) / 2(1_l) ’ i
13w /0||11 O poz ws @5 [Vug )35 ') and
3

t 1,2 _2 1
0 ( PRGN oy 2D vy 21 p)dt’)

Let us estimate the two terms V;(t),j = 1, 2. Applying Holder inequality gives

V= </ot ”U?’(tl)”?{é%”wi(tl)Hi(zéJr;)pdt’)iX; (/Ot}lvwi(tl)ﬂizdt')i(l;)
: </ot ””3“/)'|Z%+%||wg(t’)||i?j dtl>fp(/Ot||vwg(t/)||i;,dt’) (1-2)

As we have
1 §(1 1) _pts3

4 p
convexity inequality implies that, for any ¢ in [0, T,

I |12 / i 3.\ 1P w222, ﬁ
() eV < 5 [ Vo3 @]t +e<T>< J I s g @17 dt)

Now let us estimate the term V2 (t). Applying Holder inequality yields

2

e
< ([P0 oy I a )(/ vy @) )

As we have

convexity inequality implies that
1 [ N2 ’ K 3\ |P INTPEE p‘ﬁ
(7.5) e(TVa(t) < ; [Vws ()| 2" + e(T) | I 342 llwsg (E)1L° dt :
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Let us notice that the power of Hw% H L2

Applying Holder inequality with

_p+3 6 _ p+3
3 p+6 p+6
and with the measure ||v3(t') ||’;I 1e2 dt’ gives

here is not the same as that in Inequality (7.4).

o T I BN Ce LS
6
([ 1@ s oy @)™ < ([l ar)

¢ 34\ |1P / QL;P’ / p‘%
([ e g o @l a)

By definition of e(T"), we have

(- 2)x5te

(/Ot ||03(t')||25+§dt’> ! ”Ge(T) < o(T).

Thus we deduce from (7.5) that

I |12 / k 37\ ||D ’ 2p3j / fis
e<T>v2(t>s§/O||ng(t>||mdt +e(T) /o”” N 4oz lleols @2 at

Plugging this inequality and (7.4) into (7.3) gives, for any ¢ in [0, T,

t 2 2 [t 3
([ 1080, ar) ey < 5 [ Vo)) + el
0 0

t 3
34\ ||P NP A
+e(T) [P @ 4o [|ws ()] dt :
0 H=2 P

Hence thanks to Proposition 2.1, we deduce that

2 1 [t 3
B3 Ol + 3 [ 19wy (@1 < 10l g ec)

’ 34\ ||P INTPE==SNPAREE
+€(T)</ [v? N 4o [lws () []72° dt) :
0 HEYE

. 3
Taking the power pt

for any ¢ in [0, T,

p+3
p+3
2 3

t 3
s (825 +(/ ||wg<t'>||izdt') < %]

p+3
e

of this inequality and using that (a+b) 5 ~a

3

3

pt3 , pt3

3 —i—bp;r , we obtain

t
+e(T) | W) 4o ws @) at
0 PEATANE RS '

Then Gronwall lemma leads to Inequality (7.1).
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On the other hand, it follows from Proposition 2.2 that, for any ¢ < T,
t
loso* O, + [ V0" ¢)1, it
2(1-2)
<o) (19123 + 1%, 13, ||LDO(L2>||W3 it

P19 55
H2+7 L°°(L2) L2(r2) |-

Resuming the estimate (7.1) into the above inequality concludes the proof of Proposition 2.3.

8. Proof of the end point blow-up theorem
The proof of Theorem 1.5 relies on the following lemma.

LEMMA 8.1. — Let (pg.¢)1<k.e<3 be a sequence of |1, 00" and v = (v*, v2, v®) be a smooth

divergence free vector field. Then for the norm || - || g, given by Definition 1.1, we have

2

O W E - PO I e 2
k.0

Proof. — Let us choose on H 3 the following inner product
(alb) ;3 =D 27(AjalAzb) e
JEZ
We use Bony’s decomposition (4.10) to deal with the product function v - Vv. Namely, we
write

(8.1) v 9p* = T(v*, 9pv®) + T(9p0*, v%) + R(v*, 8p0*).

Let us start with the terms T'(9,v%, v*). The support of the Fourier transform of the func-

tion Sjr_19pv* A vt is included in a ring of type 23" €. Thus according to Definition 1.1, we
have

AT (8%, v 12 < Z 18— 180v* Aj®|| 12

|74l <4
< > 11Si—100" | pe 1A 0" o
|34l <4
(-1 i (1- 1
S 10kl 2070 3 2 O A

3" —j1<4

Now let us write that

2| (A T@r*, ") | A0%) o] S 100", , (2F 118001 22) 77 (2% 18001 2)' 72

Pkt

' 1 35" 1— 1
(2 2 ”Aj’v”L?) Pkt (2 2 ||Aj’v||L2) Pk, ,

7" —jl<4
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Using the characterization of Sobolev norms in term of Littlewood-Paley theory, we get

3 ) 2 o__2
82 YD P|(AT@* ) [ A 2| S D ||3zvk||73pk,g||v||:§ ||VU||Hf“
k=1 jeZ 1<k <3

The terms R(9,v*, v*) are a little bit more delicate. The support of the Fourier transform
of Aj9pv*Ajiv! is included in a ball of type 27" B. Thus we have

AR v = > Aj(Aj 0 A Y.
J'23—No

Because of the divergence free condition of v, we can write

ZA R(0pv* vf)—Za@ > A (ARA ).

— j'>j—Ng

Using the fact that the Fourier transform of A is supported in a ring of the type 27 "6, we
can write that
3
(8.3) Aok =" 27 AL A9yt with Aba
=1

d:ef g

(¢" 277 ¢)a)

where ¢¢', for ¢/ = 1,2, 3, are functions of D(R*\{0}) (see for instance page 56 of [1] for the
details). We thus obtain

3

3 . N »
[ air@es ), £ 3 2 6e? (“m)||awk||%pkyz||Aj,v||L2,

=1 £=15>j—No

from which, we infer

3

IR(v)dze 2229 (A;R(0p0", v ‘Av |

k=1j€Z

ZzJHZA R(9y0" vf)H 1A]] 12

k=1 j€Z

k
Z 100" | 3, ,

k,e=1

Z/\

A

N S U . 1 o~ 1

« Z 9 (J J)(2+pk,£)(2%||Aj/v||L2)Pk,e (2%”Aj"l)”L2)1 Pk,e
j,4' €L
j'>j—No

J 1 3j 1— 1
X (2§||Ajv||L2)Pk,e (27||AJU||L2) Pkt |

Using the convolution law of Z, we deduce that

3 2 9_
(8.4) In(v) S D 100", [0l (Vo] )™

k=1
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To deal with the terms of the form T'(v*, 9,v*) in (8.1), we use the skew symmetry property of
the operator v- V. Then we follow [7] As the support of the Fourier transform of S;:_1aA ;b
is included in a ring of the type 27" i? we write

A; Zsjl_lu Ajdw = S;_1v*A; 6gw+ZR (v,w) with

J’ =1
R0 w) ST (A, 8510 Ay 0w and
7' —j1<4
Rie(vz,w) d:ef Z (Sjl_l’UZ — Sj_lvz)AjAj/(?gw.
7' —41<4

By definition of the space %6, in Definition 1.1, Lemma 2.97 of [1] implies that

IR (v, w)llze 277 > [IVSy—1v’ || | A5 8pw]

[ —j1<4
3
(8.5) <277 > > 185180t e 1Ay Opw]] 2
|5/ —jl<4 /=1
- (sie)
DA ||6z/vellfzs,,”, > 1400w -
=1 Tolg—gl<a

In order to estimate ||Rie(v, w)l|| L2, we use Lemma 4.1 to get

¢ ¢
RS (s w)lle S D0 1A e 18585 00w]| 2.
3" —jl1<4
J"€li-1,4"~1]
Notice that (8.3) ensures that
3
A0 e $277>  1A;00"| Lo
=1
By virtue of Definition 1.1, this implies that
~ o (7))
¥4 Py gt 4
A0 e S 2 w0l g, ,,
=1
We thus infer that
(o)
T ¢
®6) R0l S D 2N T 0t g, Y A
=1 |5 —4|<4

Because of the divergence free on v, we have

(Sj_l’l} . Ajw|Ajw)L2 = 0,
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this together with (8.5) and (8.6) gives rise to

3
‘ Z Z2j (AjT(ve,agvk) | Ajvk)L2

k=1 j€Z
k
S Y ot
1<k,£<3

i—i V(L1 i’ 1 - 1

30 2R @5 a0l T 2 A vil1e) T

4’ €L

7' —j|<4

x (2% A50]2) 77 (2% | Aj0) ) hE

3 2 g _2
P p
<Y ||3evk||g3pkye||v||;g Vol ™

k=1
which along with Inequalities (8.1), (8.2) and (8.4) yields the lemma. O

We now turn to the proof of Theorem 1.5 and Theorem 1.4.

Conclusion of the proof of Theorem 1.5. — We shall prove that, for any 7" less than 7™,

T
2 2 2 Pk
B DI, + [ 190l i <ol en(c [ lowtor @)

1<k,£<3

As a matter of fact, we get, by taking H 3 energy estimate to (IV.S) and Lemma 8.1, that

2 2 (. .
LS @I2,y + VoI ) = (0 Tolo)

2

S Z [Dev™ (2| ||v(t)||pk2'e ||Vv(t)||2_pk’e
¢ g H? g

Pk, 0
k=1

Using the convexity inequality, we infer that

d 2 2 2 k Pk
Z@IE , + Vo2, S @l (Znaw O )-

k=1
Gronwall lemma implies (8.7). This completes the proof of Theorem 1.5. O

Conclusion of the proof of Theorem 1.4. — We are going to deduce Theorem 1.4 from
Theorem 1.5 and Proposition 2.3. Let us start with a Littlewood-Paley vision of Inequality
(1.6). It follows from Lemma 4.1 that

max (905, <sup2f( 1A e S sup2 R AP 0e S 107y,

+2,
1<4< je ez »

which together with (1.5) ensures that

T T
(8.39) wax [ 100 O, ds [ PO, d <.
P 0 H2 D

1<£<3 Jg

The same argument yields

T T
(8.9 VT < T, / |0R AL 02w (1)1l dt 5 / O 2 dt.
0 ? 0 P
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While for any integer N, we get by using Lemma 4.1 that, for any function ¢ and p > %,

lalls, < 3 22 asallr- + 3 2(-23) 8 a) 1

J<N j>N
25 (4,2
s Y o¥al g + 3 21 v,
J<N j>N

2N N(—442
<2 all 4 +2¥ (38 va) .

e

||Va||Lg)

Choosing N = [log2 <e + (W
3
L2

)] , we obtain

—3
2

! 2z
lallg, < llall 3™ IVal 7.

Applying this inequality with a = 92A; 'w, we get

3

3
108 AL Wi, S IORAL wIl 5™ II3§A£1Vw||z”g.

1
L
Once noticed that LP? = LE(LY), we apply the Riesz theorem in the horizontal variables to
infer that

oA wl s Sllwll, 3 and [ORA Vw9 SVl s

L2 ™~ Ls ™~

Then due to (3.7), we deduce that
2A—1 < 17% % < 17% %
10887 wllg, S Il 3 IVl S ol 37 Vg 7.
Together with (8.9), this gives, for any T less than 7™,
T T s T
[ 19wl des [P e s w7 [ Vg0
0 P 0 H2"»p te[0,T] L2 Jg 4

Proposition 2.3 then implies that
T*
(8.10) /0 ||thh(t)||’;3p dt < oco.

Let us observe from (2.1) and (2.2) that the components of d3v" are sums of terms of the
form On A, 19, f with f = w or H3v3. On the one hand, we get, by applying Lemma 4.1, that

120505, (B)llz= S D NARATVRAL 950 (1)

k<j+No

£<j+No

< Y0 25| ARATOR ()]s

k<j+No

£<j+No

<033 W), Y. 2MGE02GH0)
k<j+No
£<j+No

< 271050* (1)l -
Together with Definition 1.1 this implies

1050 (D)l 5, < 1030° ()1, -
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Proposition 2.3 implies that

T* T
(8.11) | st des [ 1050001, de < o.
On the other hand, we deduce from Lemma 4.1 that
18,0508 ()l S 27 > 25)A;ARdsw(t)

curl
k<j+No
< 2| 9sw(t)

from which and (3.4), we infer that for any T less than 7™,

T T
| oo, e < [ s e

I3

I, 2
L2’

T
2 2
< sup ||ws (8)|||3 / Vws (¢ dt.
te[O,T]H 4()|”L2 o ” 4()||L2
Proposition 2.3 then implies that

T*
| 10l dt < .
0

With Inequalities (8.8), (8.10), (8.11), and by virtue of Theorem 1.5, we conclude the proof
of Theorem 1.4. O
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