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GEOMETRIC BAUM-CONNES ASSEMBLY MAP
FOR TWISTED DIFFERENTIABLE STACKS

 P CARRILLO ROUSE  B-L WANG

A. – We construct the geometric Baum-Connes assembly map for twisted Lie groupoids,
that means for Lie groupoids together with a given groupoid equivariantPU(H)-principle bundle. The
construction is based on the use of geometric deformation groupoids, these objects allow in particular
to give a geometric construction of the associated pushforward maps and to establish the functoriality.
The main results in this paper are to define the geometric twisted K-homology groups and to construct
the assembly map. Even in the untwisted case the fact that the geometric K-homology groups and the
geometric assembly map are well defined for Lie groupoids is new, as it was only sketched by Connes in
his book for general Lie groupoids without any restrictive hypothesis, in particular for non Hausdorff

Lie groupoids.
We also prove the Morita invariance of the assembly map, giving thus a precise meaning to the

geometric assembly map for twisted differentiable stacks. We discuss the relation of the assembly map
with the associated assembly map of the S1-central extension. The relation with the analytic assembly
map is treated, as well as some cases in which we have an isomorphism. One important tool is the
twisted Thom isomorphism in the groupoid equivariant case which we establish in the appendix.

R. – Nous construisons le morphisme d’assemblage géométrique de Baum-Connes pour des
groupoïdes de Lie tordus, à savoir des groupoïdes de Lie avec un PU(H)-fibré principal équivariant.
La construction est basée sur l’utilisation des groupoïdes de déformation, ces objets permettent en
particulier de donner une construction géométrique des morphismes shriek associés et d’établir la
fonctorialité. Les principaux résultats de cet article sont la définition des groupes de K-homologie
géométrique tordue et la construction du morphisme d’assemblage. Même dans le cas non tordu le
fait que les groupes de K-homologie géométrique et le morphisme d’assemblage (géométrique) pour
des groupoïdes de Lie sont bien définis est nouveau ; en effet, ceci a été esquissé par Connes dans son
livre pour des groupoïdes de Lie générales sans aucune restriction, en particulier pour des groupoïdes
non séparés.

Nous montrons aussi l’invariance par Morita du morphisme d’assemblage, donnant ainsi un sens
précis au morphisme d’assemblage géométrique de Baum-Connes pour des champs différentiables
tordus. Nous discutons la relation de notre morphisme d’assemblage avec le morphisme associé à la
S1-extension centrale. La relation avec le morphisme analytique est traitée, ainsi que quelques cas où
il y a isomorphisme. Un outil important est le morphisme de Thom tordu dans le cas équivariant par
rapport à un groupoïde que nous établissons dans l’appendice.
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278 P. CARRILLO AND B.-L. WANG

1. Introduction

The present paper is a natural sequel of [11] where we started a study of an index theory
for foliations with the presence of PU(H)-twistings (see also [10]).

In [4] Baum and Connes introduced a geometrically defined K-theory for Lie groups,
group actions and foliations. Its main features are its computability and simplicity of its
definition, besides, in some cases they were able to construct a (also geometric) Chern
character. Using classic ideas from index theory they constructed a natural map from this
group to the analytic K-theory. This so-called Baum-Connes assembly map gave rise to
many research developments due to its connection to many areas of mathematics and math-
ematical physics. Very interesting geometric and analytic corollaries can be deduced from
the injectivity, surjectivity or bijectivity of the Baum-Connes map. Shortly after the paper
by Baum-Connes, the powerful tools of KK-theory took over the originally geometrically
defined map. Indeed, the use of KK-theory to define the assembly map have given extraor-
dinary results. However the original geometrically defined map was somehow lost. In fact
for some years experts assume both approaches to be the same but it took some years to
give the actual proof for some cases.

The geometric approach is very interesting for several reasons, for instance the use of
geometric K-homology in index theory and hence a completely geometric way of doing
index theory, the possibility of defining a (geometric) Chern character from the geometric
K-homology and hence to obtain explicit formulae. It is more suitable for geometric situation
for which the analytic approach is not yet understood, for example for general Lie groupoids
the analytic assembly is only defined for Hausdorff groupoids.

In this paper we construct the geometric Baum-Connes map for a twisted Lie
groupoid (G , α), that is a Lie groupoid G together with a given equivariant (with respect to
the groupoid action) PU(H)−principle bundle on G . Equivalently, a twisting is given by a
Hilsum-Skandalis morphism

α : G // PU(H).

Even in the untwisted case this was not done before. In fact, in Connes book ([13] II.10.α),
he proposes a definition for the geometric group of a Lie groupoid and he sketches the
construction for the assembly map using deformation groupoids ideas that englobes what he
did in [4] with Baum. We utilize these ideas to study the assembly map for the twisted case.

Let G ⇒ M be a Lie groupoid with a given twisting α on G . Given such a data we
can consider the maximal C∗-algebra C∗(G , α) (or reduced if indicated), the algebra is
constructed by taking a S1-central extensionRα associated to α via the canonical S1-central
extension S1 −→ U(H) −→ PU(H) and using one factor of the algebra associated to such
extension(1); for complete details, see Section 3.1 below.

Now, consider a G -manifold P with momentum map πP : P −→M which is assumed to
be a submersion. Denote by T vP the vertical tangent bundle associated to πP . In this paper
we will assume that for any G -manifold P , T vP is an oriented vector bundle which admits a

(1) The extension depends of the choice of a cocycle defining α, however two such extensions are Morita equivalent
via an explicit equivalence and hence the algebras they define are Morita equivalent as well.
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GEOMETRIC BAUM-CONNES ASSEMBLY MAP FOR TWISTED DIFF. STACKS 279

G -invariant metric, for instance when G acts on P properly or when P = M . We will denote
the twisted analytic K-theory groups of the action groupoid P o G by

K∗(P o G , α) := K−∗(C
∗(P o G , π∗Pα))

where π∗Pα is the pull-back twisting on P oG by the groupoid morphism πP : P oG −→ G

(we use the same notation for πP at the level of the arrows). One can consider a S1-central
extensionRα over a Cech groupoid GΩ (Morita equivalent to G ). If there is an extra twisting
we will add it in the notation and explain it case by case.

Let P,N be two G -manifolds and f : P −→ N a G -equivariant oriented smooth map.
Using only geometric deformation groupoids, we construct a morphism(2) , the shriek map,

(1.1) K∗(P o G , α+ of )
f! // K∗(N o G , α)

where of is the orientation twisting(3) over P o G of the G -vector bundle f∗T vN ⊕ T vP .
We remark that the construction of the shriek map is by means of deformation groupoids,

this gives an explicit geometric pushforward map that gives exactly the corresponding equiv-
ariant family index when f is a submersion. Moreover, we establish the functoriality of the
construction by again only using deformation groupoids, this gives a very geometric flavor
to the proof, indeed one can understand the functoriality via a double deformation from
one groupoid to another one. As we mentioned above, this was not done before even in the
untwisted case, in fact, in [13] (Section II.6) Connes sketched the construction for the classic
pushforward between manifolds using deformation groupoids and left the proof of the func-
toriality as an exercise. We remark that the result below (Theorem 4.2) was proved (for f, g
submersions) using analytic methods by Tu and Xu ([41] 4.19), the statement is the following:

T 1.1. – The push-forward morphism (1.1) is functorial, that means, if we have

a composition of smooth G -oriented smooth maps between G -manifolds P
f−→ N

g−→ L,

and a twisting α : G // PU(H) , then the following diagram commutes

K∗(P o G , α+ og◦f )
(g◦f)! //

f! **

K∗(Lo G , α)

K∗(N o G , α+ og).

g!

55

The above theorem enables us to define the associated geometric K-homology group for
a Lie groupoid with a twisting.

D 1.2 (Twisted geometric K-homology). – Let G ⇒ M be a Lie groupoid
with a twisting α : G −−− >PU(H). The twisted geometric K-homology group associated
to (G , α) is the abelian group denoted byKgeo

∗ (G , α) with generators and relations described
as follows. A generator is called a cycle (P, ξ) where

(1) P is a smooth co-compact G -proper manifold,

(2) In [11] the special case where G is the holonomy groupoid of a foliation and the action on P is free is treated, we
proved there in particular the functoriality as an application of a longitudinal index theorem.
(3) in the sense of Example 2 in 2.12.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



280 P. CARRILLO AND B.-L. WANG

(2) πP : P −→ M is the smooth momentum map which is supposed to be an oriented
submersion, and

(3) ξ ∈ K∗(P o G , π∗Pα+ oTvP ),

and two cycles (P, ξ) and (P, ξ′) are called equivalent if there is a smooth G -equivariant
map g : P −→ P ′ such that

(1.2) ξ′ = g!(ξ).

One of the reasons for calling this group “geometric” is that the groupoid P oG is proper
and hence its twisted K-theory can be expressed in good cases by twisted vector bundles ([42]
Theorem 5.28). Another important reason is that from the twisted K-theory for proper étale
groupoids Tu and Xu constructed the Baum-Connes delocalized Chern character with values
in the twisted cohomology of the associated inertia groupoid, they prove that their Chern
character gives a rational isomorphism, [40]. We will come to this discussion later. For the
moment let us mention that we can perform some basic computations, see Example 5.3.

Now we summarize Theorems 5.4, 6.1 and 6.4 in this paper as follows.

T 1.3. – Let (P, x) be a geometric cycle over (G , α). Let µα(P, x) = (πP )!(x)

be the element in K∗(G , α). Then µα(P, x) only depends upon the equivalence class of the
twisted cycle (P, x). Hence we have a well defined assembly map

(1.3) µα : Kgeo
∗ (G , α) −→ K∗(G , α).

Moreover, the assembly map satisfies the Morita invariance in the following sense: Let G

and G ′ be two Morita equivalent groupoids. Let us denote by G
φ

−−− > G ′ the generalized
isomorphism (the Morita bi-bundle). Given a twisting α′ : G ′ −−− > PU(H), there is a
commutative diagram

(1.4) Kgeo(G , α)
φ∗

∼=
//

µα

��

Kgeo(G ′, α′)

µ′α
��

K∗(G , α)
φ∗

∼= // K∗(G ′, α′)

where α := α′ ◦ φ is the induced twisting on G .

R 1.4. – The Morita invariance of the assembly map(4) is important in many
applications. It justifies in one hand the fact that the construction does not depend on the
given cocycle representing the twisting neither on the given associated extension (modulo an
explicit induced Morita isomorphism), more importantly it gives a precise meaning to the
twisted assembly map for differentiable stacks. This last point is essential since in practice
one usually changes the groupoid model by a Morita equivalent one (for some examples on
Morita equivalences see Section 2.2 below).

(4) The Morita invariance of the geometric assembly map is proven for the untwisted case in [35], but in that paper
the author did not discuss that the assembly map is well defined.
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For the case of a proper groupoid G ⇒ M with M/G compact, the assembly map is an
isomorphism (cf. Proposition 5.2). This covers the case of compact orbifold groupoids. For
a connected Lie group G with a projective representation α : G −→ PU(H), let L be a
maximal compact subgroup of G. Then we have a commutative diagram

(1.5) Kgeo
∗ (G,α)

µα &&

µL

∼=
// K∗(L, i∗α+ oTe(L\G))

i!vv
K∗(G,α)

where i : L ↪→ G is the restriction morphism. In the case α and oTe(L\G) are trivial, the
above diagram gives a meaning to Mackey’s observations on unitary representations for
Lie groups, at least in the case where the assembly map is an isomorphism. For an almost
connected Lie group G, this is known as the Connes-Kasparov conjecture proved in [12]. In
the twisted case there should also be a relation between the projective representations of some
Lie groups and certain related semi-direct product group’s projective representations(5). This
will be discussed elsewhere.

Next, we discuss the relation of the assembly maps with the associated assembly map for
the groupoid extension. This gives a precise meaning to the twisted assembly as the degree
one part of a classic assembly map under the S1-action. More explicitly, given an extension
groupoid Rα associated to (G , α), the S1-action on Rα induces a Z-grading in C∗(Rα)

(Proposition 3.2 in [42]). We have

K∗(Rα) ∼=
⊕
n∈Z

K∗(G , nα).

Now, for the Lie groupoid Rα there is a geometric assembly map µRα . The following results
(see Proposition 7.1) relates the assembly map µRα with the assembly map for the twisted Lie
groupoid.

P 1.5. – We have an isomorphism of groups

(1.6) Kgeo
∗ (Rα) ∼=

⊕
n∈Z

Kgeo
∗ (G , nα)

and under this isomorphism µRα =
⊕

n∈Z µnα. In particular the geometric twisted assembly
map is an isomorphism whenever the geometric assembly map for the corresponding exten-
sion is.

Comparison with the analytic assembly

Up to now, we have not supposed our groupoids to be Hausdorff. In the Hausdorff case
there is an analytic version of the assembly map that has been widely studied, in particular
thanks to Kasparov’s KK-theory. In this case, we have the following comparison result (cf.
Proposition 7.3):

(5) By Thom isomorphism K∗(L, i∗α+ oTe(L\G)) ∼= K∗(Te(L \G) o L, i∗α).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



282 P. CARRILLO AND B.-L. WANG

P 1.6. – Let R be a Hausdorff groupoid. There exists a homomorphism
λR : Kgeo

∗ (R) −→ Kana
∗ (R) such that, denoting by µana

R the analytic assembly map ([38]), the
following diagram commutes

(1.7) Kgeo
∗ (R)

µR %%

λR // Kana
∗ (R)

µana
Ryy

K∗(R).

Moreover, the Morita invariance of each morphism in the above commutative diagram holds.

In the case of Hausdorff groupoids, assuming λRα : Kgeo
∗ (Rα) −→ Kana

∗ (Rα) is an
isomorphism, the geometric twisted assembly map for (G , α) is an isomorphism whenever
the analytic assembly map for Rα is. An interesting example of the this situation is when the
groupoid G satisfies the so called Haagerup property. Indeed, in this case, one can check that
for any twisting α, the correspondent extension groupoid Rα satisfies as well the Haagerup
property. Then by Tu’s theorem ([36] Theorem 9.3, see also [38] Theorem 6.1) the analytic
assembly map forRα is an isomorphism. This was already mentioned in Tu’s habilitation [39]
page 16. Some examples of Lie groupoids for which the (reduced, see remark below) analytic
assembly map is known to be an isomorphism or injective are

1. injectivity for bolic groupoids (Tu [37]),
2. isomorphism for groupoids having the Haagerup property (Tu [36]),
3. isomorphism for almost connected Lie groups (Chabert-Echterhoff-Nest [12]),
4. isomorphism for hyperbolic groups (Lafforgue [24]).

A very interesting question then is the following one:

Question. – For which Lie groupoids is the comparison map λ an isomorphism?
Let us mention that different models for K-homology (at least in the untwisted case) were

assumed by the experts to be isomorphic for many years. It was not until some years ago that
a complete proof for some models was provided ([5, 6]). So the above question is far from
trivial and as we stated above a positive answer would have some interesting applications.
In this paper we have only discussed two models for twisted K-homology, but, as we indicate
in [10] for foliations, there is also a Baum-Douglas geometric model for twisted Lie groupoids
(see [43] where the second author introduced the case for twisted manifolds). The Baum-
Douglas geometric model is easily seen to be isomorphic to the geometric one proposed here
and it has the advantage that similar methods as in [5, 6] apply for a very large family of Lie
groupoids. We will discuss this in a forthcoming paper.

R 1.7 (About the use of maximal or reduced C∗-algebras)
The reduced C∗-algebra is in principle more geometrical. For instance, the twisted

K-theory can be described in some cases by twisted vector bundles, Theorem 5.28 in [42].
For some groupoids (amenable, K-amenable, etc.) the reduced and the maximal completions
coincide. For example, in the definition of the geometric K-homology group above, one has
cycles in K∗(C∗red(P o G , π∗Pα + oTvP )) = K∗(C∗(P o G , π∗Pα + oTvP )) since P o G

is proper. By taking the canonical induced morphism from the K-theory of a maximal
C∗-algebra to the K-theory of the reduced one, we can define the assembly map with values

4 e SÉRIE – TOME 49 – 2016 – No 2



GEOMETRIC BAUM-CONNES ASSEMBLY MAP FOR TWISTED DIFF. STACKS 283

in the K-theory of the reduced C∗-algebra of a twisted groupoid. All the results above
concerning the assembly map still hold for the “reduced” assembly map.

The problem in adapting directly our results to the reduced case is a problem of exactness.
In his thesis [25], Lassagne studies under which conditions the pushforward maps between
foliation groupoids can be performed directly in the reducedC∗-algebra level. Another possi-
bility is to adapt to groupoids the recent reformulated Baum-Connes conjecture proposed by
Baum-Guenter-Willett in [3], there the authors define a minimal (Morita invariant) crossed
product for which one does not have anymore the exactness problems mentioned above. One
can certainly define in this context the reformulated twisted Baum-Connes assembly map.

Acknowledgements. – We would like to thank the referee for carefully reading our work
and for making important remarks on the twisted Thom isomorphism that led us to a
net improvement of the paper. The first author would like to thank the excellent working
conditions he had at the Max Planck Institut for Mathematics at Bonn where part of this
work was realized.

2. Preliminaries on groupoids

In this section, we review the notion of twistings on Lie groupoids and discuss some
examples which appear in this paper. Let us recall what a groupoid is:

D 2.1. – A groupoid consists of the following data: two sets G and G (0), and
maps

(1) s, r : G → G (0) called the source map and target map respectively,
(2) m : G (2) → G called the product map (where G (2) = {(γ, η) ∈ G ×G : s(γ) = r(η)}),

together with two additional maps, u : G (0) → G (the unit map) and i : G → G (the inverse
map), such that, if we denote m(γ, η) = γ · η, u(x) = x and i(γ) = γ−1, we have

(i) r(γ · η) = r(γ) and s(γ · η) = s(η).
(ii) γ · (η · δ) = (γ · η) · δ, ∀γ, η, δ ∈ G whenever this makes sense.

(iii) γ · x = γ and x · η = η, ∀γ, η ∈ G with s(γ) = x and r(η) = x.
(iv) γ · γ−1 = u(r(γ)) and γ−1 · γ = u(s(γ)), ∀γ ∈ G .

For simplicity, we denote a groupoid by G ⇒ G (0). A strict morphism f from a groupoid
H ⇒ H (0) to a groupoid G ⇒ G (0) is given by maps

H

����

f // G

����
H (0)

f0

// G (0)

which preserve the groupoid structure, i.e., f commutes with the source, target, unit, inverse
maps, and respects the groupoid product in the sense that f(h1 · h2) = f(h1) · f(h2) for
any (h1, h2) ∈H (2).

In this paper we will only deal with Lie groupoids, that is, a groupoid in which G and G (0)

are smooth manifolds, and s, r,m, u are smooth maps (with s and r submersions, see [27, 31]).
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284 P. CARRILLO AND B.-L. WANG

2.1. The tangent groupoid

In this subsection, we review the notion of Connes’ tangent groupoids from deformation
to the normal cone point of view.

2.1.1. Deformation to the normal cone. – The tangent groupoid is a particular case of a
geometric construction that we describe here.

Let M be a C∞ manifold and X ⊂ M be a C∞ submanifold. We denote by N M
X the

normal bundle to X in M . We define the following set

DM
X :=

(
N M
X × 0

)
t (M × R∗) .(2.1)

The purpose of this section is to recall how to define a C∞-structure in DM
X . This is more or

less classical, for example it was extensively used in [20].

Let us first consider the case where M = Rp×Rq and X = Rp×{0} (here we identify X
canonically with Rp). We denote by q = n− p and by Dn

p for DRn
Rp as above. In this case we

have that Dn
p = Rp×Rq ×R (as a set). Consider the bijection ψ : Rp×Rq ×R→ Dn

p given
by

(2.2) ψ(x, ξ, t) =

{
(x, ξ, 0) if t = 0

(x, tξ, t) if t 6= 0

whose inverse is given explicitly by

ψ−1(x, ξ, t) =

{
(x, ξ, 0) if t = 0

(x, 1
t ξ, t) if t 6= 0.

We can consider the C∞-structure on Dn
p induced by this bijection.

We pass now to the general case. A local chart (U , φ) of M at x is said to be an X-slice if

1) U is an open neighborhood of x inM and φ : U → U ⊂ Rp×Rq is a diffeomorphism
such that φ(x) = (0, 0).

2) Setting V = U ∩ (Rp × {0}), then φ−1(V ) = U ∩X , denoted by V .

With these notations understood, we have DU
V ⊂ Dn

p as an open subset. For x ∈ V we have
φ(x) ∈ Rp × {0}. If we write φ(x) = (φ1(x), 0), then

φ1 : V → V ⊂ Rp

is a diffeomorphism. Define a function

(2.3) φ̃ : DU
V → DU

V

by setting φ̃(v, ξ, 0) = (φ1(v), dNφv(ξ), 0) and φ̃(u, t) = (φ(u), t) for t 6= 0. Here
dNφv : Nv → Rq is the normal component of the derivative dφv for v ∈ V . It is clear that
φ̃ is also a bijection. In particular, it induces a C∞ structure on DU

V . Now, let us consider an
atlas {(Uα, φα)}α∈∆ of M consisting of X−slices. Then the collection {(DUα

Vα
, φ̃α)}α∈∆ is a

C∞-atlas of DM
X (Proposition 3.1 in [9]).

D 2.2 (Deformation to the normal cone). – Let X ⊂M be as above. The
set DM

X equipped with the C∞ structure induced by the atlas of X-slices is called the
deformation to the normal cone associated to the embedding X ⊂M .
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One important feature about the deformation to the normal cone is the functoriality.
More explicitly, let f : (M,X) → (M ′, X ′) be a C∞ map f : M → M ′ with f(X) ⊂ X ′.
Define D(f) : DM

X → DM ′

X′ by the following formulas:

1) D(f)(m, t) = (f(m), t) for t 6= 0,
2) D(f)(x, ξ, 0) = (f(x), dNfx(ξ), 0), where dNfx is by definition the map

(N M
X )x

dNfx−→ (N M ′

X′ )f(x)

induced by TxM
dfx−→ Tf(x)M

′.

Then D(f) : DM
X → DM ′

X′ is aC∞-map (Proposition 3.4 in [9]). In the language of categories,
the deformation to the normal cone construction defines a functor

(2.4) D : C∞2 −→ C∞,

where C∞ is the category of C∞-manifolds and C∞2 is the category of pairs of C∞-mani-
folds.

D 2.3 (Tangent groupoid). – Let G ⇒ G (0) be a Lie groupoid. The tangent
groupoid associated to G is the groupoid that has

DG
G (0) =

(
N G

G (0) × {0}
)
t (G × R∗)

as the set of arrows and G (0) × R as the units, with:

1. sT (x, η, 0) = (x, 0) and rT (x, η, 0) = (x, 0) at t = 0.
2. sT (γ, t) = (s(γ), t) and rT (γ, t) = (r(γ), t) at t 6= 0.
3. The product is given by mT ((x, η, 0), (x, ξ, 0)) = (x, η + ξ, 0) and mT ((γ, t), (β, t)) =

(m(γ, β), t) if t 6= 0 and if r(β) = s(γ).
4. The unit map uT : G (0) → G T is given by uT (x, 0) = (x, 0) and uT (x, t) = (u(x), t)

for t 6= 0.

We denote G T = DG
G (0) and AG = N G

G (0) as a vector bundle over G (0). Then we have a
family of Lie groupoids parametrized by R, which itself is a Lie groupoid

G T = (AG × {0}) t (G × R∗) ⇒ G (0) × R.

As a consequence of the functoriality of the deformation to the normal cone, one can
show that the tangent groupoid is in fact a Lie groupoid compatible with the Lie groupoid
structures of G and AG . Here AG ⇒ G (0) is considered as a Lie groupoid defined by the
vector bundle structure. Indeed, it is immediate that if we identify in a canonical way DG (2)

G (0)

with (G T )(2), then

mT = D(m), sT = D(s), rT = D(r), uT = D(u)

where we are considering the following smooth maps of pairs:

m : (G (2),G (0))→ (G ,G (0)),

s, r : (G ,G (0))→ (G (0),G (0)),

u : (G (0),G (0))→ (G ,G (0)).
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2.2. The Hilsum-Skandalis category

Lie groupoids form a category with strict morphisms of groupoids. It is now a well-
established fact in Lie groupoid’s theory that the right category to consider is the one in which
Morita equivalences correspond precisely to isomorphisms. We review some basic definitions
and properties of generalized morphisms between Lie groupoids, see [42] Section 2.1, or [20,
29, 28] for more detailed discussions.

D 2.4 (Generalized homomorphisms). – Let G ⇒ G (0) and H ⇒ H (0)

be two Lie groupoids. A generalized groupoid morphism, also called a Hilsum-Skandalis
morphism, from H to G is given by principal G -bundle over H , that is, a right principal
G -bundle over H (0) which is also a left H -bundle over G (0) such that the the right G -action
and the left H -action commute, formally denoted by

f : H // G

or by

H

����

Pf

}}}} !!

G

����
H (0) G (0),

if we want to emphasize the bi-bundle Pf involved.

Notice that a generalized morphism (or Hilsum-Skandalis morphism), f : H // G ,
is given by one of the three equivalent data:

1. A locally trivial right principal G -bundle Pf over H as Definition 2.4.
2. A 1-cocycle f = {(Ωi, fij)}i∈I on H with values in G . Here a G -valued 1-cocycle

on H with respect to an indexed open covering {Ωi}i∈I of H (0) is a collection of
smooth maps

fij : H Ωi
Ωj
−→ G ,

satisfying the following cocycle condition: ∀γ ∈Hij and ∀γ′ ∈Hjk with s(γ) = r(γ′),
we have

fij(γ)−1 = fji(γ
−1) and fij(γ) · fjk(γ′) = fik(γ · γ′).

We will denote this data by f = {(Ωi, fij)}i∈I .
3. A strict morphism of groupoids

HΩ =
⊔
i,j H Ωi

Ωj

����

f // G

����⊔
i Ωi // G (0),

for an open cover Ω = {Ωi} of H (0).

Associated to a G -valued 1-cocycle on H , there is a canonical defined principal G -bundle
over H . In fact, any principal G -bundle over H is locally trivial (cf. [28]).
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E 2.5. – 1. (Strict morphisms) Consider a (strict) morphism of groupoids

H

����

f // G

����
H (0)

f0

// G (0).

Using the equivalent Definitions 2 or 3 above, it is obviously a generalized morphism
by taking Ω = {H (0)}. In terms of the language of principal bundles, the bi-bundle is
simply given by

Pf := H (0) ×f0,t G ,

with projections tf : Pf −→H (0), projection in the first factor, and sf : Pf −→ G (0),
projection using the source map of G . The actions are the obvious ones, that is,
on the left, h · (a, g) := (t(h), f(h) ◦ g) whenever s(h) = a and, on the right,
(a, g) · g′ := (a, g ◦ g′) whenever s(g) = t(g′).

2. (Classic principal bundles) Let X be a manifold and G be a Lie group. By definition a
generalized morphism between the unit groupoidX ⇒ X (that is a manifold seen as a
Lie groupoid all structural maps are the identity) and the Lie group G ⇒ {e} seen as
a Lie groupoid is given by a G-principal bundle over X.

As the name suggests, generalized morphism generalizes the notion of strict morphisms
and can be composed. Indeed, if P and P ′ are generalized morphisms from H to G and
from G to L respectively, then

P ×G P ′ := P ×G (0) P ′/(p, p′) ∼ (p · γ, γ−1 · p′)

is a generalized morphism from H to L . Consider the category GrpdHS with objects Lie
groupoids and morphisms given by isomorphism classes of generalized morphisms. There is
a functor

(2.5) Grpd −→ GrpdHS

where Grpd is the strict category of groupoids.

D 2.6 (Morita equivalent groupoids). – Two groupoids are called Morita
equivalent if they are isomorphic in GrpdHS .

We list here a few examples of Morita equivalence groupoids which will be used in this
paper.

E 2.7 (Pullback groupoid). – Let G ⇒ G (0) be a Lie groupoid and let
φ : M −→ G (0) be a map such that t◦pr2 : M×G (0) G −→ G (0) is a submersion (for instance
if φ is a submersion), then the pullback groupoid φ∗G := M ×G (0) G ×G (0) M ⇒ M is
Morita equivalent to G , the strict morphism φ∗G −→ G being a generalized isomorphism.
For more details on this example the reader can see [28] Examples 5.10(4).
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E 2.8 (The basic example: the Čech groupoid). – Given a Lie groupoid
H ⇒ H (0) and an open covering {Ωi}i of H (0), the canonical strict morphism of
groupoids HΩ −→ H is a Morita equivalence. It corresponds to the pullback groupoid by
the canonical submersion

⊔
i Ωi −→H (0).

E 2.9 (Foliations ∼ étale groupoids). – In this paper, one main example to have
in mind will be the holonomy groupoid associated to a regular foliation. LetM be a manifold
of dimension n. Let F be a subvector bundle of the tangent bundle TM . We say that F is
integrable if C∞(F ) := {X ∈ C∞(M,TM) : ∀x ∈ M,Xx ∈ Fx} is a Lie subalgebra
of C∞(M,TM). This induces a partition ofM in embedded submanifolds (the leaves of the
foliation), given by the solution of integrating F .

The holonomy groupoid of (M,F ) is a Lie groupoid

GM ⇒M

with Lie algebroid AG = F and minimal in the following sense: any Lie groupoid inte-
grating the foliation, that is having F as Lie algebroid, contains an open subgroupoid
which maps onto the holonomy groupoid by a smooth morphism of Lie groupoids. The
holonomy groupoid was constructed by Ehresmann [17] and Winkelnkemper [44] (see also
[7], [19], [31]).

2.3. Twistings on Lie groupoids

In this paper, we are only going to considerPU(H)-twistings on Lie groupoids whereH is
an infinite dimensional, complex and separable Hilbert space, and PU(H) is the projective
unitary group PU(H) with the topology induced by the norm topology on the unitary
group U(H).

D 2.10. – A twisting α on a Lie groupoid G ⇒ G (0) is given by a generalized
morphism

α : G // PU(H).

Here PU(H) is viewed as a Lie groupoid with the unit space {e}. Two twistings α and α′ are
called equivalent if they are equivalent as generalized morphisms.

So a twisting on a Lie groupoid G is a locally trivial right principal PU(H)-bundle Pα
over G hence, is given by a PU(H)-valued 1-cocycle on G

(2.6) gij : G Ωi

Ωj −→ PU(H)

for an open cover Ω = {Ωi} of G (0). That is, a twisting datum α on a Lie groupoid G is given
by a strict morphism of groupoids

(2.7) GΩ =
⊔
i,j G Ωi

Ωj

����

f // PU(H)

����⊔
i Ωi // {e},

for an open cover Ω = {Ωi} of G (0).
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R 2.11. – The definition of generalized morphisms given in the last subsection
was for two Lie groupoids. The group PU(H) it is not precisely a Lie group but it makes
perfectly sense to speak of generalized morphisms from Lie groupoids to this infinite dimen-
sional groupoid following exactly the same definition, see (2.6) and (2.7).

E 2.12. – For a list of various twistings on some standard groupoids, see
Example 1.8 in [11]. Here we will only present a few basic examples used in this paper.

1. (Twisting on manifolds) Let X be a C∞-manifold. We can consider the Lie groupoid
X ⇒ X where every morphism is the identity over X. A twisting on X is given by
a locally trivial principal PU(H)-bundle over X, or equivalently, a twisting on X is
defined by a strict homomorphism

XΩ =
⊔
i,j Ωi,j

����

f // PU(H)

����⊔
i Ωi // {e},

with respect to an open cover {Ωi} ofX, where Ωij = Ωi∩Ωj . Therefore, the restriction
of a twisting α on a Lie groupoid G ⇒ G (0) to its unit G (0) defines a twisting α0 on
the manifold G (0).

2. (Orientation twisting) LetX be a manifold with an oriented real vector bundleE. The
bundle E −→ X defines a natural generalized morphism

X // SO(n).

Note that the fundamental spinor representation of Spinc(n) gives rise to a commuta-
tive diagram of Lie group homomorphisms

Spinc(n)

��

// U(C2[n/2]

)

��

SO(n) // PU(C2[n/2]

).

With a choice of inclusion C2[n/2]

into a Hilbert spaceH, we have a canonical twisting,
called the orientation twisting, denoted by

(2.8) oE : X // PU(H).

If now G ⇒ X is a Lie groupoid andE is an oriented G -vector bundle overX, we have
in the same way an orientation twisting

(2.9) oE : G // SO(n) // PU(H)

in the case where E admits a G -invariant metric. In particular when G acts properly
on P and on E, see [32] Proposition 3.14 and [16] Theorem 4.3.4.

3. (Pull-back twisting) Given a twisting α on G and for any generalized homomorphism
φ : H −→ G , there is a pull-back twisting

φ∗α : H // PU(H)
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defined by the composition of φ and α. In particular, for a continuous map
φ : X −→ Y , a twisting α on Y gives a pull-back twisting φ∗α on X. The principal
PU(H)-bundle overX defines by φ∗α is the pull-back of the principal PU(H)-bundle
on Y associated to α.

4. (Twisting on fiber product groupoid.) Let N
p→ M be a submersion. We consider the

fiber product N ×M N := {(n, n′) ∈ N × N : p(n) = p(n′)},which is a manifold
because p is a submersion. We can then take the groupoid

N ×M N ⇒ N

which is a subgroupoid of the pair groupoid N ×N ⇒ N . Note that this groupoid is
in fact Morita equivalent to the groupoid M ⇒ M . A twisting on N ×M N ⇒ N is
given by a pull-back twisting from a twisting on M .

5. (Twisting on the space of leaves of a foliation.) Let (M,F ) be a regular foliation with
holonomy groupoid GM . A twisting on the space of leaves is by definition a twisting
on the holonomy groupoid GM . We will often use the notation

M/F // PU(H)

for the corresponding generalized morphism.
Notice that by definition a twisting on the spaces of leaves is a twisting on the baseM

which admits a compatible action of the holonomy groupoid. It is however not enough
to have a twisting on base which is leafwisely constant, see for instance Remark 1.4 (c)
in [20].

A twisting on a Lie groupoid G ⇒ M gives rise to a U(1)-central extension over the
Morita equivalent groupoid GΩ by pulling back the U(1)-central extension of PU(H)

1 −→ U(1) −→ U(H) −→ PU(H) −→ 1.

We will not call a U(1)-central extension of a Morita equivalent groupoid of G a twisting
on G as in [42]. This is due to the fact that the associated principal PU(H)-bundle might
depend on the choice of Morita equivalence bibundles, even though the isomorphism class
of principal PU(H)-bundle does not depend on the choice of Morita equivalence bibundles.
It is important in applications to remember the PU(H)-bundle arising from a twisting, not
just its isomorphism class.

Denote by Tw(G ) the set of equivalence classes of twistings on G . There is a canonical
abelian group structure on Tw(G ) as follows. Fix an isomorphism H ⊗H −→ H, we have
a group homomorphism

m : PU(H)× PU(H) −→ PU(H ⊗H) ∼= PU(H).

Then given two twistings α and β on G , we can define

(2.10) α+ β : G
(α,β) // PU(H)× PU(H)

m // PU(H).

In terms of U(1)-central extension over the Morita equivalent groupoid GΩ, we can choose
a common open cover Ω of G (0) such that α and β define U(1)-central extensions

S1 −→ Rβ −→ GΩ and S1 −→ Rβ −→ GΩ
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respectively. Then α+β corresponds to the tensor product of the two extensions. See [42] for
more discussions of twistings using the language of U(1)-central extensions.

R 2.13. – LetPα be the principalPU(H)-bundle over G defined a twistingα, and
K(H) be the elementary C∗-algebra of the compact operators on H. There is an associated
bundle of elementary C∗-algebras over G defined by

Aα = Pα ×Ad K(H) −→ G (0)

where Ad denotes the adjoint action of PU(H) on K(H). The bundle Aα −→ G (0) satis-
fies Fell’s condition and continuous actions of G in the sense of [23], where the Brauer
group Br(G ) of G is defined to be the group of Morita equivalence classes of elementary
C∗-algebras over G . Then the addition structure on Tw(G ) corresponds to the tensor
product of bundles of elementary C∗-algebras over G . Therefore, there is a canonical
isomorphism between Tw(G ) and the Brauer group Br(G ).

3. Twisted deformation indices

3.1. Twisted groupoid’s C∗-algebras

Let (G , α) be a twisted groupoid. With respect to a covering Ω = {Ωi} of G (0), the
twisting α is given by a strict morphism of groupoids

α : GΩ −→ PU(H),

where GΩ is the covering groupoid associated to Ω. Consider the central extension of groups

S1 −→ U(H) −→ PU(H),

we can pull it back to get a S1-central extension of Lie groupoid Rα over GΩ

(3.1) S1

��

// S1

��
Rα

��

// U(H)

��
GΩ α

// PU(H).

In particular, Rα ⇒
⊔
i Ωi is a Lie groupoid and Rα −→ GΩ is a S1-principal bundle.

We recall the definition of the convolution algebra and the C∗-algebra of a twisted Lie
groupoid (G , α) [34, 42]:

D 3.1. – Let Rα be the S1-central extension of groupoids associated to a
twisting α. The convolution algebra of (G , α) is by definition the following sub-algebra
of C∞c (Rα):

(3.2) C∞c (G , α) = {f ∈ C∞c (Rα) : f(γ̃ · λ) = λ−1f(γ̃),∀γ̃ ∈ Rα,∀λ ∈ S1}.

The maximal (resp. reduced) C∗-algebra of (G , α), denoted by C∗(G , α) (resp. C∗r (G , α)), is
the completion of C∞c (G , α) in C∗(Rα) (resp. C∗r (Rα)).
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Let Lα := Rα ×S1 C be the complex line bundle over GΩ which can be considered as a
Fell bundle (using the groupoid structure of Rα) over GΩ. Then the algebra of compactly
supported smooth sections of this Fell bundle, denoted by C∞c (GΩ, Lα), is isomorphic
to C∞c (G , α). Therefore as C∗-algebras,

C∗(GΩ, Lα) ∼= C∗(G , α),

see (23) in [42] for an explicit isomorphism.

R 3.2 ([42]). – Given the extension Rα as above, the S1-action on Rα induces
a Z-grading in C∗(Rα) (Proposition 3.2, ref. cit.). More precisely, we have

(3.3) C∗(Rα) ∼=
⊕
n∈Z

C∗(G , nα)

where C∗(G , nα) is the maximal C∗-algebra of the twisted groupoid (G , nα) corresponding
to the Fell bundle

Lnα = L⊗nα −→ GΩ,

for all n 6= 0, and C∗(G , α0) = C∗(GΩ) by convention. Similar results hold for the
reduced C∗-algebra.

D 3.3. – Following [42], we define the twisted K-theory of the twisted
groupoid (G , α) by

(3.4) Ki(G , α) := K−i(C
∗(G , α)).

In particular if α is trivial we will be using the notation (unless specified otherwise) Ki(G )

for the respective K-theory group of the maximal groupoid C∗-algebra.

By the next lemma, the group Ki(G , α) is well defined, up to a canonical isomorphism
coming from the respective Morita equivalences.

L 3.4. – Let G be a Lie groupoid. Let α1, α2 : G −−− >PU(H) be two twistings
on G . Suppose we have a given isomorphism η : Pα1

∼= Pα2 between the principal bundles
associated to α1 and α2. We have an induced isomorphism between the respective twisted
K-theory groups:

(3.5) K∗(G , α1)
η∗

∼=
// K∗(G , α2).

Proof. – The fact that the K-theory groups are isomorphic follows from [34] or [30]
Theorem 11 (or Proposition 3.3 in [42]). We want here to emphasize how η induces such an
explicit isomorphism. Indeed, the isomorphism η between Pα1 and Pα2 is equivalent to an
equivalence between cocycles GΩ1

α1−→ PU(H) and GΩ2

α2−→ PU(H) representing respec-
tively such principal bundles. Thus giving η is equivalent to give a common refinement Ω

of Ω1 and Ω2 together with a common cocycle extension, i.e., a cocycle GΩ
α−→ PU(H)

with α|Ωi = αi, i = 1, 2. Then, by taking the respective S1-central extensions, we have
Morita equivalences of extensions

Rα1

∼ // Rα Rα2

∼oo
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induced by pullback from the Morita equivalences

GΩ1

∼ // GΩ GΩ2
.

∼oo

Hence, η induces an explicit Morita equivalence of S1-central extensions between Rα1

and Rα2
giving then an explicit isomorphism between the respective K−theory groups.

We will also need to understand the compatibility of twistedK-theory with Morita equiv-
alence, more explicitly:

L 3.5. – Let G and G ′ be two Morita equivalent groupoids. Let us denote

by G
φ

−−− > G ′ the generalized isomorphism. Consider two twistings
α′1, α

′
2 : G ′ −−− > PU(H) on G ′ and denote by αi := α′i ◦ φ the induced twistings on G .

Suppose we have a given isomorphism η : Pα1
∼= Pα2

between the principal bundles
associated to α1 and α2. We have the following commutative diagram of K-theory group
isomorphisms:

(3.6) K∗(G , α1)

η∗ ∼=
��

φ∗

∼=
// K∗(G ′, α′1)

φ(η)∗∼=
��

K∗(G , α2)
φ∗

∼= // K∗(G ′, α′2).

Proof. – The generalized isomorphism φ induces a generalized isomorphism

GΩ

φ
−−− > G ′Ω

as a composition of generalized isomorphisms for any given open covers Ω and Ω′. Now, if

we consider two cocycles GΩ
α−→ PU(H) and G ′Ω′

α′−→ PU(H) representing two principal
bundles Pα and Pα′ with Pφ ×G ′ P

′
α
∼= Pα, we have by definition that α′ ◦ φ = α and thus

we have an induced generalized isomorphism of extensions between the respective pullback
extensions

Rα
φ̃

−−− > Rα′ .

Coming back to the notations of the lemma, we will denote by α the common cocycle
extension of α1 and α2 induced by η and by α′ the cocycle such that α′ ◦ φ = α, then it is by
definition the common cocycle extension ofα′1 andα′2 induced byφ(η) (which is by definition
the isomorphism Id×G η between Pα′1 = Pφ−1 ×G Pα1 and Pα′2 = Pφ−1 ×G Pα2 ). We have
the following commutative diagram of extension’s generalized isomorphisms

Rα1

η

∼
!!

φ̃1 ∼
��

∼ // Rα

φ̃ ∼
��

Rα2

φ̃2∼
��

∼oo

Rα′1

φ(η)

∼
<<∼

// Rα′ Rα′2∼
oo
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which implies the desired result.

R 3.6. – For the groupoid given by a manifold M ⇒ M . A twisting on M can
be given by a Dixmier-Douday class on H3(M,Z). In this event, the twisted K-theory, as
we defined it, coincides with twisted K-theory defined in [2, 21]. Indeed the C∗-algebra
C∗(M,α) is Morita equivalent to the continuous trace C∗-algebra defined by the corre-
sponding Dixmier-Douady class (see for instance Theorem 1 in [18]).

3.2. Index morphism associated to an immersion of groupoids

We briefly discuss here the deformation groupoid of an immersion of groupoids which is
called the normal groupoid in [20].

Given an immersion of Lie groupoids G1
ϕ→ G2, let GN

1 = N G2

G1
be the total space of the

normal bundle to ϕ, and (G
(0)
1 )N be the total space of the normal bundle to ϕ0 : G

(0)
1 −→ G

(0)
2 .

Consider GN
1 ⇒ (G

(0)
1 )N with the following structure maps: The source map is the deriva-

tion in the normal direction dNs : GN
1 → (G

(0)
1 )N of the source map (seen as a pair of maps)

s : (G2,G1)→ (G
(0)
2 ,G

(0)
1 ) and similarly for the target map.

As remarked by Hilsum-Skandalis (Remarks 3.1, 3.19 in [20]), GN
1 may fail to inherit a Lie

groupoid structure (see counterexample just before section IV in [20]). A sufficient condition
is when (G

(0)
1 )N is a G1-vector bundle over G

(0)
1 . This is the case when G x

1 −→ G
ϕ(x)
2 is étale

for every x ∈ G
(0)
1 (in particular if the groupoids are étale) or when one considers a manifold

with two foliations F1 ⊂ F2 and the induced immersion (again 3.1, 3.19 in [20]).

The deformation to the normal bundle construction allows us to consider aC∞ structure
on

Gϕ :=
(
GN

1 × {0}
)
t (G2 × R∗) ,

such that GN
1 ×{0} is a closed saturated submanifold and so G2×R∗ is an open submanifold.

The following results are an immediate consequence of the functoriality of the deformation
to the normal cone construction.

P 3.7 (Hilsum-Skandalis, 3.1, 3.19 [20]). – Consider an immersion G1
ϕ→ G2

as above for which (G1)N inherits a Lie groupoid structure. Let
Gϕ0 :=

(
(G

(0)
1 )N × {0}

)
t
(
G

(0)
2 × R∗

)
be the deformation to the normal cone of the

pair (G
(0)
2 ,G

(0)
1 ). The groupoid

(3.7) Gϕ ⇒ Gϕ0

with structure maps compatible with the ones of the groupoids G2 ⇒ G
(0)
2 and

GN
1 ⇒ (G

(0)
1 )N , is a Lie groupoid with C∞-structures coming from the deformation to

the normal cone.

One of the interest of these kind of groupoids is to be able to define deformation
indices. Indeed, restricting the deformation to the normal cone construction to the closed
interval [0, 1] and since the groupoid G2 × (0, 1] is an open saturated subgroupoid of Gϕ
(see 2.4 in [20] or [33] for more details), we have a short exact sequence of C∗−algebras

(3.8) 0→ C∗(G2 × (0, 1]) −→ C∗(Gϕ)
ev0−→ C∗(GN

1 )→ 0,
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with C∗(G2 × (0, 1]) contractible. Then the 6-term exact sequence in K-theory provide the
isomorphism

(ev0)∗ : K∗(C
∗(Gϕ)) ∼= K∗(C

∗(GN
1 )).

Hence we can define the index morphism

Dϕ : K∗(C
∗(GN

1 )) −→ K∗(C
∗(G2))

between the K-theories of the maximal C∗-algebras as the induced deformation index
morphism

Dϕ := (ev1)∗ ◦ (ev0)−1
∗ : K∗(C

∗(GN
1 )) ∼= K∗(C

∗(Gϕ)) −→ K∗(C
∗(G2)).

3.3. The index of a groupoid immersion with a twisting

Now Consider an immersion of Lie groupoids G1
ϕ→ G2 with a twisting α on G2 for

which (G1)N inherits a Lie groupoid structure. We will see that we can still define index
morphisms. First we prove the following elementary result.

P 3.8. – Given an immersion of Lie groupoids G1
ϕ→ G2 as above and a

twisting α on G2. There is a canonical twisting αϕ on the Lie groupoid Gϕ ⇒ Gϕ0
, extending

the pull-back twisting on G2 × R∗ from α.

Proof. – The proof is a simple application of the functoriality of the deformation
to the normal cone construction. Indeed, the twisting α on G2 induces by pullback (or
composition of cocycles) a twisting α ◦ ϕ on G1. The twisting α on G2 is given by a
PU(H)-principal bundle Pα with a compatible left action of G2, and by definition the
twisting α ◦ ϕ on G1 is given by the pullback of Pα by ϕ0 : G

(0)
1 −→ G

(0)
2 . In particular, we

have Pα◦ϕ = G
(0)
1 ×

G
(0)
2

Pα. Hence the action map G2 ×G
(0)
2

Pα −→ Pα can be considered
as in the category of pairs:

(G2 ×G
(0)
2

Pα,G1 ×G
(0)
1

Pα◦ϕ) −→ (G
(0)
2 ×

G
(0)
2

Pα,G
(0)
1 ×

G
(0)
1

Pα◦ϕ).

We can then apply the deformation to the normal cone functor to obtain the desired
PU(H)-principal bundle with a compatible Gϕ-action, which gives the desired twisting.

We will now define the index morphism associated to an immersion G1 → G2 as above
under the presence of a twisting on G2. Associated to the twisted groupoid (Gϕ, αϕ) of the
last proposition there is an S1-central extension Rαϕ which has an open dense subexten-
sion Rα(0,1]

, the S1-central extension associated to (G2 × (0, 1], α(0,1]) where α(0,1] is the
twisting given by the projection G2 × (0, 1] −→ G2. Denoting αN := αϕ|GN1 , there is a short
exact sequence of C∗−algebras

(3.9) 0→ C∗(Rα(0,1]
) −→ C∗(Rαϕ)

ev0−→ C∗(RαN )→ 0,

which respects the Z-grading (3.3) and it defines thus a short exact sequence ofC∗−algebras

(3.10) 0→ C∗(G2 × (0, 1], α(0,1]) −→ C∗(Gϕ, αϕ)
ev0−→ C∗(GN

1 , αN )→ 0.

The disintegration results in [34] also conclude the same result directly with the Fell bundle’s
algebras without passing through the extensions. Hence we can define the index morphism

Dϕ : K∗(C
∗(GN

1 , αN )) −→ K∗(C
∗(G2, α))
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between the K-theories of the maximal C∗-algebras as the induced deformation morphism
Indϕ := (ev1)∗ ◦ (ev0)−1

∗ exactly as in the untwisted case.

4. Groupoid equivariant pushforward and wrong way functoriality

Let G ⇒ M be a Lie groupoid with a given twisting α. A G -manifold P is a smooth
manifold P with a momentum map πP : P −→ M , which is assumed to be an oriented
submersion, and a right action of G on P : P o G −→ P given by (p, γ) = p ◦ γ such that

(p ◦ γ1) ◦ γ2 = p ◦ (γ1 · γ2)

for any (γ1, γ2) ∈ G (2). Here P o G = {(p, γ) ∈ P × G |πP (p) = r(γ)}. We will denote
by T vP the vertical tangent bundle associated to πP . A G -manifold P is called G -proper if
the map

P o G −→ P × P
defined by (p, γ) 7→ (p, p ◦ γ) is proper. Then the induced action groupoid

P o G ⇒ P

with s(p, γ) = p, r(p, γ) = p ◦ γ is a proper Lie groupoid.

Hypothesis. – In what follows, for any G -manifold P as above, we will assume that T vP is
oriented and that it admits a G -invariant metric. This is the case when G acts on P properly.
We will construct the twisted geometric K-homology group and the Baum-Connes assembly
map under this assumption.

Let P,N be two G -manifolds and f : P −→ N be a smooth oriented G -equivariant map
with a twisting α on N oG . Using only geometric deformation groupoids, we will construct
a morphism, called the shriek map f!

(4.1) K∗(P o G , α+ of )
f! // K∗(N o G , α)

where of is the twisting over P o G given by the G -vector bundle f∗T vN ⊕ T vP . The
main result of this section is the functoriality of this shriek map. A main ingredient in
the construction is the twisted equivariant Thom isomorphism which is reviewed in the
appendix.

We recall the definition of the semi-direct product groupoid. Consider a Lie groupoid
HA ⇒ A, we say that it is a G -groupoid if G acts on HA and A such that the source and
target maps of HA are G−equivariant. Under this situation we might form the semi-direct
product groupoid

HA o G ⇒ A.

Typically, but not exclusively, HA ⇒ A will be a G−vector bundle E over P considered as
groupoid E ⇒ P or E ⇒ E considered as a manifold. We will mention every time, if not
obvious, which case we are considering.

4.1. Twisted wrong way functoriality for G -manifolds

The construction of the shriek map (4.1) follows the lines of Connes construction, II.6 in
[13], see also [35] for a complete description in the K-oriented untwisted case. It is divided in
four steps.
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Step 1. – The first step is the twisted G -equivariant Thom isomorphism associated to the
vector bundle T vP −→ P , applied to the twisting α+ of over P o G

(4.2) K∗(P o G , α+ of )
T G
TvP // K∗(T vP o G , α+ of∗TvN ).

Indeed this is due to the fact that of+oTvP is canonically homotopic (as twistings) to of∗TvN .

Step 2. – The second step is the twisted equivariant Thom isomorphism associated to the
action (as a groupoid) of T vP on (f∗T vN)∗, that is, the Thom isomorphism associated to
the T vP o G -vector bundle (f∗T vN)∗ over P , applied to the twisting α+ of∗TvN

(4.3) K∗(T vP o G , α+ of∗TvN )

T TvPoG
(f∗TvN)∗−−−−−−−→ K∗((f∗T vN)∗ o (T vP o G ), α+ of∗TvN + o(f∗TvN)∗)

Step 3. – The third step is the isomorphism in twisted K-theory

(4.4) K∗((f∗T vN)∗ o (T vP o G ), α+ of∗TvN + o(f∗TvN)∗)

F−→ K∗(f∗T vN o (T vP o G ), α)

induced by the Fourier isomorphism of C∗-algebras, Proposition 2.12 [11],
(4.5)

C∗((f∗T vN)∗ o (T vP o G ), α+ of∗TvN + o(f∗TvN)∗)
F // C∗(f∗T vN o (T vP o G ), α)

where the first groupoid is obtained from the semi-direct product of T vP oG ⇒ P acting on
(f∗T vN)∗ ⇒ P and the second is obtained from the semi-direct product of T vP o G ⇒ P

acting on f∗T vN ⇒ f∗T vN .

Step 4. – The final step is to consider the groupoid immersion

(4.6) P
f×4 // N ×M (P ×M P ).

The associated deformation groupoid is Gf ⇒ G
(0)
f where

Gf := f∗(T vN) o T vP × {0} tN ×M (P ×M P )× (0, 1] and(4.7)

G
(0)
f = f∗T vN × {0} tN ×M P × (0, 1].(4.8)

Notice that N ×M (P ×M P ) and N are Morita equivalent groupoids with the Morita
equivalence given by the canonical projection.

The functoriality of the deformation to the normal cone construction yields an action of G

on Gf . Let αf be the twisting on Gf o G given by Proposition 3.8. It is immediate to check
that

αf |(f∗(TvN)oTvP )oG = π∗f∗TvNoTvPα.

We can hence consider the twisted deformation index morphism associated to (Gf o G , αf ):

(4.9) K∗(f∗T vN o (T vP o G ), α)
Df // K∗(N ×M (P ×M P ) o G , α)

m∼=
��

K∗(N o G , α)
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where we denoted Df instead of Df×4 for keeping the notation short, and m is the isomor-
phism defined by the Morita equivalence between N ×M (P ×M P ) o G and N o G .

D 4.1 (Pushforward morphism). – Let P,N be two manifolds and f : P −→ N

be a smooth oriented G -equivariant map (6). Under the presence of a twisting α on G we let

(4.10) K∗(P o G , α+ of )
f! // K∗(N o G , α)

be the morphism given by the composition of the morphisms given in the last three steps, that
is, the morphism (4.2) followed by (4.3) followed by (4.9). By definition f! fits in the following
commutative diagram:
(4.11)

K∗(P o G , α+ of )

f!

**

T // K∗(T vP o G , α+ of∗TvN )
TF // K∗(f∗T vN o T vP o G , α)

Df

��
K∗(N ×M (P ×M P ) o G , α)

m∼=
��

K∗(N o G , α)

where TF will denote the Thom isomorphism from (4.3) followed by the Fourier isomor-
phism (4.4).

Our first main result is the wrong way functoriality of the precedent construction.

T 4.2. – The above push-forward morphism is functorial, that means, if we have
a composition of smooth G -maps between G−manifolds as above:

(4.12) P
f−→ N

g−→ L,

and a twisting α : G // PU(H), then the following diagram commutes

K∗(P o G , α+ og◦f )
(g◦f)! //

f! **

K∗(Lo G , α)

K∗(N o G , α+ og).

g!

55

Proof. – Let us recall the notations and definitions we used above to define the shriek
maps: f! := m◦Df ◦TF ◦T , g! := m◦Dg ◦TF ◦T and (g◦f)! := m◦Dg◦f ◦TF ◦T , where
m stands for the Morita isomorphisms (induced by Morita equivalences) and T , TF for the
Thom isomorphisms respectively (TF for Fourier isomorphism as in (4.11)). In the following
diagram, for keeping the notations short, we only put the groupoid involved instead of its

(6) Remember we are assuming that both T vP and T vN admit a G -invariant metric.
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twisted crossed product K-theory by G . With this convention understood, we need to prove
that the following diagram is commutative.
(4.13)

f∗TvN o TvP

V

Df //

��

N ×M (P ×M P )
m //

Tm

��
IV

N

g!

��

T

��
TvP

TF

88

TvN ×M (P ×M P )

IIITm
F

��

m // TvN

TF

��
P

f!

$$

(g◦f)!

77

VIII

T

==

T

!!

?

VI

��

// (g∗TvL o TvN)×M (P ×M P )

II

m
//

Dmg

��

g∗TvL o TvN

Dg

��

TvP

TF

��

??

VII

//

m

��

L×M (N ×M N)×M (P ×M P )

I

m
//

m

��

L×M (N ×M N)

m

��
f∗g∗TvL o TvP

Dg◦f
// L×M (P ×M P )

m
// L.

As visually sketched in the diagram, we will separate it in 8 diagrams (I-VIII above). We will
then prove that each of them is commutative.

In the diagrams I, II, III and IV the notation m stands for the isomorphisms in K-theory
induced by the canonical Morita equivalences, it is immediate these diagrams commute by
the naturality of the Thom isomorphisms and the naturality of evaluation morphisms.

More notation. – As we already mentioned above, every time we putαwe mean the pullback
twisting induced by α on the correspondent crossed product groupoid. We will also be
dealing with several twistings coming this time from oriented vector bundles, and again, for
keeping the notation as short as possible we will only denote by oN the orientation twistings
associated to the vector bundle T vN (similarly oL corresponds to T vL) independently of
the crossed product groupoid over which the twisting lives. The context is clear enough to
understand that we are in fact using the twisting of some pullback vector bundle, for example
over P o G the twisting oN corresponds in fact to the twisting coming from the G -vector
bundle f∗T vN over P . For the duration of the proof we will denote KG

α (H) instead of
K∗(H o G , α) for any G -groupoid H.
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Definition and commutativity of diagram V

Consider the twisted equivariant Thom isomorphism associated to the vector bundle
f∗T vN ⊕ f∗T vN over f∗T vN seen as a f∗T vN o (T vP o G )-vector bundle:

(4.14) KG
α+og (f∗T vN o T vP )

T−→ KG
α+og+oN ((f∗T vN ⊕ f∗T vN) o T vP ).

Next, consider also the action of the groupoid (f∗T vN ⊕ f∗T vN) o T vP on the vector
bundle L∗ over f∗T vN given by the pullback of (T vL)∗ −→ L by the canonical map
f∗T vN −→ L. We can consider the associated transformation groupoid and the correspon-
dent twisted equivariant Thom isomorphism
(4.15)

KG
α+og+oN ((f∗T vN ⊕ f∗T vN) o T vP )

T−→ KG
α+og+oN+oL( L∗ o ((f∗T vN ⊕ f∗T vN) o T vP )).

We need now to consider the isomorphism induced by the Fourier isomorphism:

(4.16) KG
α+og+oN+oL( L∗ o ((f∗T vN ⊕ f∗T vN) o T vP ))

F−→ KG
α+og+oN+oL( L o ((f∗T vN ⊕ f∗T vN) o T vP ))

to finally consider the composition of the two precedent morphisms:
(4.17)

KG
α+og+oN ((f∗T vN⊕f∗T vN)oT vP )

TF−→ KG
α+og+oN+oL( Lo((f∗T vN⊕f∗T vN)oT vP )).

Remember that the deformation index morphism Df is defined using the deformation
groupoid

Gf ⇒ G
(0)
f

where G
(0)
f = f∗T vN×{0}tN×MP×(0, 1], the deformation to the normal cone associated

to the immersion P
f×idP→ N ×M P . We will consider a vector bundle over G

(0)
f : take DTvN

to be the deformation to the normal cone of P
s0(f)×idP→ T vN×M P , where s0 : N −→ T vN

stands for the zero section. We have a vector bundle

(4.18) DTvN := f∗T vN ⊕ f∗T vN t T vN ×M P × (0, 1]
D(π)−→ f∗T vN tN ×M P × (0, 1],

with D(π) the deformation of the morphisms of pairs π : (T vN ×M P, P ) −→ (N ×M P, P ).

Now, the groupoid Gf acts on DTvN . Indeed we take the deformation of the trivial action
of N ×M (P ×M P ) on T vN ×M P . We can then consider the twisted equivariant Thom
isomorphism

(4.19) KG
α+og (Gf )

TF−→ Kα+og+oDTvN
(DTvN o Gf ).

Notice that by construction, DTvN o Gf is a groupoid with units

G
(0)
f = f∗T vN tN ×M P × (0, 1]
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and a deformation groupoid over [0, 1] with fibers (f∗T vN ⊕ f∗T vN) o T vP at zero and
T vN ×M (P ×M P ) over (0, 1]. There is then the associated deformation index:

(4.20) KG
α+og+oN ((f∗T vN ⊕ f∗T vN) o T vP )

))

KG
α+og+oDTvN

(DTvN o Gf )

e1

��

e0

∼=oo

KG
α+og+oN (T vN ×M (P ×M P )).

To overcome diagram V, let us consider the map of couples: (remember P ↪→ N ×M P with
f × idP )

(N ×M P, P ) −→ (L,L)

It induces a map between the deformations

G
(0)
f = f∗T vN tN ×M P × (0, 1] −→ L× [0, 1].

We take the pullback of the vector bundle T vL×[0, 1] overL×[0, 1] by this map, we denote it
by DL −→ G

(0)
f . There is a canonical action of the semi-direct product groupoid DTvN oGf

on DL, thus giving the respective twisted equivariant Thom isomorphism (modulo Fourier
isomorphism as 4.15, 4.16 and 4.17 above)

(4.21) KG
α+og+oDTvN

(DTvN o Gf )
TF−→ KG

α+og+oDTvN
+o DL

( DL o (DTvN o Gf )).

By construction, DL o (DTvN o Gf ) is a deformation groupoid over [0, 1] with fibers
L o ((f∗T vN ⊕ f∗T vN) o T vP ) at zero and g∗T vL o (T vN ×M (P ×M P )) out of zero.
There is then the associated deformation index:
(4.22)

KG
α+og+oN+oL( L o ((f∗T vN ⊕ f∗T vN) o T vP ))

,,

KG
α+og+oDTvN

+o DL
( DL o (DTvN o Gf ))

e1

��

e0

∼=oo

KG
α+og+oN+oL(g∗T vLo (T vN ×M (P ×M P ))).

The diagram V looks like:
(4.23)

KG
α+og (f∗T vN o T vP )

T

��

Df

++
KG
α+og (Gf )

T

��

e1 //
e0

∼=oo KG
α+og (N ×M (P ×M P ))

T m

��
KG
α+oL((f∗T vN ⊕ f∗T vN)) o T vP

TF
��

KG
α+oL(DTvN o Gf )

TF
��

e1 //
e0

∼=oo KG
α+oL(T vN ×M (P ×M P ))

T m
F

��
KG
α ( L o ((f∗T vN ⊕ f∗T vN) o T vP )) KG

α ( DL o (DTvN o Gf ))
e1 //

e0

∼=oo KG
α (g∗T vLo T vN)×M (P ×M P ))
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where we have made a simplification of twistings: In the second line the twistings should be in
principle those appearing in (4.20), but notice that the canonical K-orientation of the vector
bundle f∗T vN ⊕f∗T vN induces an equivalence of twistings between og +oN and oL. Also,
in the third line the twistings should be in principle those appearing in (4.22), but for the same
reason as before, og + oN + oL is canonically trivial.

The diagram above is evidently commutative by naturality with respect to morphisms of
the twisted equivariant Thom isomorphism.

Definition and commutativity of diagram VI

The first groupoid we need to consider here is the Thom groupoid ([15] theorem 6.2)
associated to the real vector bundle f∗T vN overP , it consists of taking the tangent groupoid
of the fiber product groupoid f∗T vN ×P f∗T vN ⇒ f∗T vN , it is then given by the
deformation groupoid

TN := f∗T vN ⊕ f∗T vN t f∗T vN ×P f∗T vN × (0, 1] ⇒ f∗T vN × [0, 1].

The groupoid T vP acts (diagonally) on the Thom groupoid TN , we consider the semi-direct
product groupoid TN oT vP . We have as well a crossed product ( L× [0, 1])o (TN oT vP ).
We can consider the associated deformation index
(4.24)

KG
α ( L o ((f∗T vN ⊕ f∗T vN) o T vP ))

))

KG
α (( L × [0, 1]) o (TN o T vP ))

e1

��

e0

∼=oo

KG
α ( L o ((f∗T vN ×P f∗T vN) o T vP )).

Next, consider the following immersion of groupoids

(g ◦ f)× f2 ×∆ : P → L×M (N ×M N)× (P ×M P ),

it gives as well a deformation groupoid G(g◦f,f2) that induces a deformation index
(4.25)

KG
α ( L o ((f∗T vN ×P f∗T vN) o T vP )) KG

α (G(g◦f,f2)) e1
//

e0

∼=oo KG
α (L×M (N ×M N)× (P ×M P )).

Now we consider the deformation groupoid

D := DL o (DTvN o Gf ) t G(g◦f,f2) × (0, 1].

The fact that the zero component of DL o (DTvN o Gf ), that is Lo((f∗T vN ⊕ f∗T vN) o T vP ),
can be glued (by the Lie groupoid ( L × [0, 1]) o (TN o T vP )) with the zero component
of G(g◦f,f2), and the same for any t 6= 0 (glued for any such t by the Lie groupoid Gm

g ), tells
us that there is a Lie groupoid structure over D compatible with the smooth structures of
the departing groupoids (see [14], or [15] Section 2 for more details on smooth structures on
deformation groupoids).
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The diagram VI follows from the following commutative diagram:
(4.26)

KG
α ( L o ((f∗T vN ⊕ f∗T vN) o T vP )) KG

α (DL o (DTvN o Gf ))
e1 //

e0

∼=oo KG
α ((g∗T vLo T vN)×M (P ×M P ))

Dmg

{{

KG
α (( L × [0, 1]) o (TN o T vP ))

e1

��

e0 ∼=

OO

KG
α (D)

e1

��

e0 ∼=

OO

e1 //
e0

∼=oo KG
α (Gm

g )

e1

��

e0 ∼=

OO

KG
α ( L o ((f∗T vN ×P f∗T vN) o T vP )) KG

α (G(g◦f,f2))
e1 //

e0

∼=oo KG
α (L×M (N ×M N)×M (P ×M P )).

Definition and commutativity of diagram VII

The canonical projection of couples

L×M (N ×M N)×M (P ×M P )
π // L×M (P ×M P )

P

(g◦f)×f2×∆

OO

=
// P

g◦f×∆

OO

induces a canonical projection between the deformations groupoids

G(g◦f,f2) −→ Gg◦f

which is a Morita equivalence of groupoids. Fiberwise, the above projection corresponds to
the Morita equivalence

f∗T vN ×P f∗T vN −→ P

at zero, and

N ×M N −→M

out of zero.

We have the induced isomorphism in K-theory and the following commutative diagram:
(4.27)

KG
α ( L o ((f∗T vN ×P f∗T vN) o T vP ))

m

��

KG
α (G(g◦f,f2))

e1 //
e0

∼=oo

m

��

KG
α (L×M (N ×M N)×M (P ×M P ))

m

��
KG
α (f∗g∗T vLo T vP )

Dg◦f

44KG
α (Gg◦f )

e1 //
e0

∼=oo KG
α (L×M (P ×M P )).
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Commutativity of diagram VIII

This diagram looks as follows:
(4.28)

KG
α+og (f∗T vN o T vP )

T

��
KG
α+og+oN (T vP )

A

TF

33

KG
α+og+oN ((f∗T vN ⊕ f∗T vN) o T vP )

TF

��
KG
α+og◦f

(P ) //

T
88

T ''

KG
α ( L o ((f∗T vN ⊕ f∗T vN) o T vP ))

KG
α+oL(T vP )

B

TF

&&

KG
α (( L × [0, 1]) o (TN o T vP ))

e1

��

e0∼=

OO

KG
α (f∗g∗T vLo ((f∗T vN ×P f∗T vN) o T vP ))

m

��
KG
α (f∗g∗T vLo T vP )

where the morphisms T are Thom isomorphisms (with a subscript F if it is modulo Fourier
isomorphism as before). As visually sketched above we will separate diagram VIII in two
diagrams A and B. By Proposition A.3 the arrow that fits the pointed arrow above and that
makes diagram A commutative is

KG
α+og◦f (P )

T0 // KG
α ((f∗g∗T vL)∗ ⊕ ((f∗T vN)∗ ⊕ f∗T vN)⊕ T vP )

σ0 // KG
α ((f∗g∗T vL)∗ o (((f∗T vN)∗ ⊕ f∗T vN) o T vP ))

F

��
KG
α ( L o ((f∗T vN∗ ⊕ f∗T vN) o T vP ))

where T0 is the G -equivariant Thom isomorphism associated to

(f∗g∗T vL)∗ ⊕ ((f∗T vN)∗ ⊕ f∗T vN)⊕ T vP −→ P,
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σ0 is the G -deformation index of the groupoid (f∗g∗T vL)∗ o ((f∗T vN)∗ ⊕ f∗T vN) o T vP

and F is induced from the obvious Fourier isomorphism. We will denote by σ0,F the compo-
sition F ◦ σ0. For diagram B we have the following decomposition into commutative sub-
diagrams:

KG
α+og◦f (P )

T0 // KG
α ((f∗g∗T vL)∗ ⊕ ((f∗T vN)∗ ⊕ f∗T vN)⊕ T vP )

σ0,F // KG
α ( L o ((f∗T vN ⊕ f∗T vN) o T vP ))

KG
α+og◦f (P × [0, 1])

T
[0,1]
0 //

e1 ∼=
��

e0 ∼=

OO

KG
α (((f∗g∗T vL)∗ ⊕ ((f∗T vN)∗ ⊕ f∗T vN)⊕ T vP )× [0, 1])

σT,F //

e1 ∼=

��

e0 ∼=

OO

KG
α (( L × [0, 1]) o (TN o T vP ))

e1

��

e0∼=

OO

KG
α+og◦f (P )

T0 //

Id

��

KG
α ((f∗g∗T vL)∗ ⊕ ((f∗T vN)∗ ⊕ f∗T vN)⊕ T vP )

σ1,F //

σm

��

KG
α ( L o ((f∗T vN ×P f∗T vN) o T vP ))

m

��
KG
α+og◦f (P )

T
// KG

α ((f∗g∗T vL)∗ ⊕ T vP )
σF

// KG
α (f∗g∗T vLo T vP )

where

– σT is the G -deformation index associated to the groupoid (f∗g∗T vL)∗o(TN oT vP ).
In particular it commutes with the respective G -deformation indices corresponding to
the evaluations at zero and one (σ0 and σ1). The subscript F above indicates modulo
Fourier isomorphism.

– T
[0,1]

0 is the Thom isomorphism associated to the G -vector bundle
(f∗g∗T vL⊕ (f∗T vN ⊕ f∗T vN)⊕ T vP )× [0, 1] over P × [0, 1]. In K-theory the
evaluations (e0 and e1) from this morphism give the same morphism T0.

– σm is the composition of the G -deformation index of the groupoid
(f∗g∗T vL)∗ ⊕ (f∗T vN ×P f∗T vN)⊕ T vP followed by the morphism induced by the
Morita equivalence (f∗g∗T vL)∗ ⊕ (f∗T vN ×P f∗T vN)⊕ T vP −→ (f∗g∗T vL)∗⊕ T vP .
The commutativity of the right bottom square is then immediate by construction of
the deformation indices. The commutativity of the left bottom square follows from
Proposition A.3, Property 3.

To finish just let us remark that the Fourier isomorphism part of diagram B above obviously
commutes with evaluations. Diagram VIII is hence commutative and this ends the proof of
the theorem.

5. Twisted geometric K-homology

5.1. Definition and some computations

D 5.1 (Twisted geometric K-homology). – Let G ⇒ M be a Lie groupoid
with a twisting α : G −−− > PU(H). The twisted geometric K-homology group asso-
ciated to (G , α) is the abelian group denoted by Kgeo

∗ (G , α) with generators given by the
cycles (P, x) where

(1) P is a smooth co-compact G -proper manifold,
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(2) πP : P −→ M is the smooth momentum map which supposed to be an oriented
submersion, and

(3) x ∈ K∗(P o G , π∗Pα+ oTvP ),

and the equivalence relations

(5.1) (P, x) ∼ (P ′, g!(x))

where g : P −→ P ′ is a smooth G -equivariant map (in particular πP ′ ◦ g = πP ).

Next, we perform a computation in an explicit case:

P 5.2. – Let (G , α) be a twisted groupoid, and let CG be the category of
proper G -manifolds as above and homotopy classes of smooth G -equivariant maps. Then
if Q is a final object for CG one has an isomorphism

(5.2) Kgeo
∗ (G , α)

µQ

∼=
// K∗(Qo G , π∗Qα+ oTvQ).

Proof. – Let (P, x) be a geometric cycle over (G , α). By hypothesis there is a G -equiv-
ariant map qP : P −→ Q since Q is a final object in CG . We define µQ by

(5.3) µQ([P, x]) = (qQ)!(x)

which is well defined by Theorem 4.2 above.
We will explicitly define the inverse. Let y ∈ K∗(Qo G , π∗Qα+ oTvQ), we define

βQ(y) ∈ Kgeo
∗ (G , α) to be the class of the cycle (Q, y).

In one direction, µQ(βQ(y)) = y is obvious, and in the other direction, βQ(µQ([P, x])) =

[Q, (qP )!(x)] = [P, x].

E 5.3. – (1) The most basic example in which the last proposition applies is
when the groupoid G ⇒M is proper with M/G compact. This covers the case of orbifold
groupoids. Then we have an explicit isomorphism

(5.4) Kgeo
∗ (G , α)

µQ

∼=
// K∗(G , α).

(2) A very interesting example where one can apply the computation above is the following
(Connes book [13] 10.β): Let G be a connected Lie group and α : G −→ PU(H) a
projective representation. Let L be a maximal compact subgroup of G, by a result of Abels
and Borel ([1]), the homogeneous space Q = L \G is a final object of CG. Then there is an
explicit isomorphism

(5.5) Kgeo
∗ (G,α)

µL\G

∼=
// K∗((L \G) oG, p∗α+ oTe(L\G))

where p : (L \ G) o G −→ G is the canonical projection. Note that the action of G on the
homogeneous space L \ G is transitive, hence the groupoid L \ G o G is transitive as well.
Now, we know (Proposition 5.14 in [28]) transitive groupoids are Morita equivalent to Lie
groups, and more explicitly one Lie group model could be given by an isotropy group. In our
case, it is easy to check that the isotropy group of the class of the identity (L \ G o G)[e]

identifies canonically with L. Hence, the canonical inclusion L ↪→ L \GoG given by

l 7→ ([e], l)
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is a Morita equivalence of groupoids (Proposition 5.14 (iv) in [28]). Using (5.5) and the
Morita equivalence just described, we can obtain an isomorphism

(5.6) Kgeo
∗ (G,α)

µL

∼=
// K∗(L, i∗α+ oTe(L\G))

where i : L ↪→ G is the inclusion and where Te(L \ G) is considered as a L-vector space.
Notice that when Te(L \G) is even dimensional and the isotropy representation of L on this
space lifts to Spin(Te(L \ G)), one has that oTe(L\G) is equivalent to the trivial twisting. In
particular if α is also trivial the right-hand side of (5.6) above is isomorphic to R(L), the
representation ring of L.

5.2. Morita invariance

T 5.4 (Morita invariance of the geometric K-homology)

Let G and G ′ be two Morita equivalent groupoids. Let us denote by G
φ

−−− > G ′ the
generalized isomorphism. Given α′ : G ′ −−− > PU(H) a twisting, there is an induced
isomorphism of groups

(5.7) Kgeo(G , α)
φ∗

∼=
// Kgeo(G ′, α′)

where α := α′ ◦ φ is the induced twisting on G .

Proof. – First of all let us write the generalized isomorphism G
φ // G ′ as

G

����

Pφ

tφ

����

sφ

  

G ′

����M M ′

the Morita bi-bundle giving the Morita equivalence.

Step 1. The definition of φ∗. – We will now describe the morphism φ∗ at the geometric cycle
level. Let (P, x) be a geometric cycle over (G , α), we will let

(5.8) φ∗(P, x) := (φ(P ), φ(x)),

where

– φ(P ) := P ×G Pφ = P ×M Pφ/(p, p
′) ∼ with ∼ given by (p · γ, γ−1 · p′).

– The fact that G acts freely and properly on Pφ on the left and properly on P on the
right implies that P ×G Pφ has indeed an induced manifold structure. Now, the action
of G ′ on P ×G Pφ with momentum map φ(πP ) := sφ ◦ π2 is defined as:

[(p, p′)] · γ′ := [p, p′ · γ′],

which is evidently well defined. Notice that the action is proper since the same is true
for the action of G ′ on Pφ but the action is free if and only if G acts freely on P . Hence,
P ×G Pφ is a G ′-proper manifold.

– Letting π2 : P ×G Pφ −→ Pφ the second projection, πP×GPφ := sφ ◦ π2 : P ×G

Pφ −→M ′ is a smooth submersion since sφ is also a submersion as φ is a generalized
isomorphism.
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– The element φ(x): For this purpose, let us consider the inverse Morita bi-bundle

(5.9) G ′
φ−1

// G : G ′

����

Pφ−1

tφ−1

||||

sφ−1

""

G

����
M ′ M.

By definition Pφ×G ′ Pφ−1 is equivalent to the G -bundle over G associated to the iden-
tity G −→ G (which has as total space G itself), and similarly Pφ−1×G Pφ is equivalent
to G ′ as G ′-bundle over G ′. As an immediate consequence we have the following two bi-
bundles between the crossed product groupoids which induce generalized morphisms
inverses of each other:

(5.10)

P o G
φP // (P ×G Pφ) o G ′ : P o G

����

P ×M Pφ

π1

yyyy

q

''

(P ×G Pφ) o G ′

����
P P ×G Pφ,

and
(5.11)

(P ×G Pφ) o G ′
(φP )−1

// P o G : (P ×G Pφ) o G ′

����

P ×M ′ Pφ−1

q′

vvvv

π1

&&

P o G

����
P ×G Pφ P.

Here q and q′ are the obvious projection maps. Notice now that we have by definition
the following two commutative diagrams of generalized morphisms:

(5.12) P o G

φP

��

πP // G
α //

φ

��

PU(H)

(P ×G Pφ) o G ′
π(P×G Pφ)

// G ′
α′

77

and

(5.13) P o G

oTvP
))

φP // (P ×G Pφ) o G ′

oTv(P×G Pφ)

��
PU(H).

Hence we have an induced Morita equivalence between the respective extensions:

(5.14) Rπ∗P+oTvP

φ̃ // Rπ∗
φ(P )

α′+oTvφ(P )
.

This defines a Morita equivalence between the respective C∗-algebras and since it is an
equivalence of extensions it preserves in particular the Z-grading (3.3). We have then an
associated element φ(x) ∈ K(φ(P ) o G ′, α′ + oTvφ(P )).
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Step 2. φ∗ is a well defined morphism. – Consider a G−equivariant map g : P −→ P ′, then
by definition (P, x) ∼ (P ′, g!(x)). We let φ(g) : φ(P ) −→ φ(P ′) the smooth map given
by φ(g)[p, z] := [g(p), z] that is well defined since g is G -equivariant. It is also clear φ(g) is
G ′-equivariant. We have then the following commutative diagram of generalized morphisms:

(5.15) P o G
g //

φP

��

P ′ o G

φP
′

��
φ(P ) o G ′

φ(g)
// φ(P ′) o G ′

from which we get that
φ(g)!(φ(x)) = φ(g!(x))

and hence
φ∗(P, x) ∼ φ∗(P ′, g!(x)),

that is, φ∗ is a well defined morphism from Kgeo
∗ (G , α) to Kgeo

∗ (G ′, α′).

Step 3. φ∗ is an isomorphism. – Associated to the inverse Morita bi-bundle (5.9) we have an
analogously defined morphism (φ−1)∗. We will show this is the inverse ofφ∗. For this purpose
it is enough to check it at the cycle level:

– By definition

(P ×G Pφ)×G ′ Pφ−1
∼= P ×G (Pφ ×G ′ Pφ−1) ∼= P ×G G ∼= P

as G -manifolds over M .
– Also, we have

φ−1(φ(x)) = x

by using the inverse φ̃−1 of the extension morphism above (5.14).

We have then (φ−1)∗ ◦ φ∗ = IdKgeo
∗ (G ,α). In a symmetric way we easily verify as well that

φ∗ ◦ (φ−1)∗ = IdKgeo
∗ (G ′,α′).

6. The twisted Baum-Connes assembly map for Lie groupoids

6.1. The assembly map

We are now ready to state and prove one of the main results of this paper.

T 6.1. – Let (P, x) be a geometric cycle over (G , α). Let µα(P, x) = (πP )!(x)

be the element in K∗(G , α). Then µα(P, x) only depends upon the equivalence class of the
twisted cycle (P, x). Hence we have a well defined assembly map

(6.1) µα : Kgeo
∗ (G , α) −→ K∗(G , α).

Proof. – It follows from the functoriality for proper G -manifolds, Theorem 4.2 above.

The following result is an easy consequence of Proposition 5.2:
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C 6.2. – Let (G , α) be a twisted groupoid, and let CG be the category of
proper G -manifolds as above and homotopy classes of smooth G -equivariant maps. Then
if Q is a final object for CG with momentum map πQ : Q −→ M , one has the following
commutative diagram

(6.2) Kgeo
∗ (G , α)

µα
&&

µQ

∼=
// K∗(Qo G , π∗Qα+ oTvQ)

(πQ)!uu
K∗(G , α).

We can discuss the consequence of the last corollary for the two examples treated in 5.3:

E 6.3. – (1) For the case of a proper groupoid G ⇒M with M/G compact we
have an isomorphism of the assembly map. Indeed, in this caseM itself is a final object for CG

and the assembly becomes simply µM which was explicitly shown to be an isomorphism in
Proposition 5.2.

(2) Take again G to be a connected Lie group and α : G −→ PU(H) a projective
representation. Let L be a maximal compact subgroup of G. Putting together the assembly
map and the discussion in 5.3 above, we have a commutative diagram

(6.3) Kgeo
∗ (G,α)

µα &&

µL

∼=
// K∗(L, i∗α+ oTe(L\G))

i!vv
K∗(G,α)

where i : L ↪→ G is the inclusion morphism. In the case α and oTe(L\G) are trivial, the
above diagram gives a meaning to Mackey’s observations on unitary representations for Lie
groups, at least in the case where the assembly map is an isomorphism. In the twisted case
there should also be a relation between the projective representations of some Lie groups
and certain related semi-direct product group’s projective representations(7). We will leave
this very interesting subject of study for further works.

6.2. Morita invariance of the assembly map

T 6.4 (Morita invariance of the assembly map). – Let G and G ′ be two Morita

equivalent groupoids. Let us denote by G
φ

−−− > G ′ the generalized isomorphism (the
Morita bi-bundle). Givenα′ : G ′−−− >PU(H) a twisting, there is a commutative diagram

(6.4) Kgeo(G , α)
φ∗

∼=
//

µα

��

Kgeo(G ′, α′)

µ′α
��

K∗(G , α)
φ∗

∼= // K∗(G ′, α′)

where α := α′ ◦ φ is the induced twisting on G .

(7) By Thom isomorphism K∗(L, i∗α+ oTe(L\G)) ∼= K∗(Te(L \G) o L, i∗α).
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Proof. – Let (P, x) be a geometric cycle over (G , α). We will be using the notations
and terminologies of Theorem 5.4 and its proof. In particular see the induced geometric
cycle (φ(P ), φ(x))) over (G ′, α′) in the proof. It suffices to prove that the following diagram
is commutative

(6.5) K∗(P o G , α+ oTvP )

IT ∼=
��

φ∗

∼=
// K∗(φ(P ) o G ′, α′ + oTvφ(P ))

T ∼=
��

K∗(T vP o G , α)

II

φ∗

∼=
// K∗(T vφ(P ) o G ′, α′)

K∗(Gf o G , αf )

III

e0 ∼=

OO

e1

��

φ∗

∼=
// K∗(Gφ(f) o G ′, αφ(f))

e0 ∼=

OO

e1

��
K∗((P ×M P ) o G , α ◦ µ)

IV

φ∗

∼=
//

µ∗ ∼=
��

K∗((φ(P )×M ′ φ(P )) o G ′, α′ ◦ µ)

µ∗ ∼=
��

K∗(G , α)
φ∗

∼=
// K∗(G ′, α′)

where we are denoting by φ∗ the isomorphisms induced by the Morita equivalences
coming naturally from φ, and Gf and Gφ(f) are the deformation groupoids associated
to f = πP : P −→M and φ(f) = πP×GPφ : φ(P ) −→M ′ respectively. We now describe
them in a more explicit way as below.

– Commutativity of diagram I above: The commutativity follows from A.3 applied to
E = T vP .

– Commutativity of diagrams II and III above: we explicitly described in (5.10) and (5.11)
the Morita bi-bundle between P oG and φ(P )oG ′ and in a complete analogous way
it is possible to describe the Morita equivalences between T vP oG and T vφ(P )oG ′,
between Gf oG and Gφ(f)oG ′ and between (P ×M P )oG and φ(P )×M ′ φ(P ))oG ′.
In fact, the Morita bi-bundle between Gf o G and Gφ(f) o G ′ is simply given by

(6.6)

Gf o G
φGf // (Gf ×G Pφ) o G ′ : Gf o G

����

Gf ×M Pφ

π1

yyyy

q

((

(Gf ×G Pφ) o G ′

����
Gf Gf ×G Pφ.

Exactly as (5.10) and (5.11), φGf is an invertible Hilsum-Skandalis morphism. By
construction, it is compatible with the restrictions to T vP oG and to (P ×M P ) o G ,
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in other words, we have the following two commutative diagrams of generalized
morphisms:

(6.7)

Gf o G
φGf // Gφ(f) o G ′ and Gf o G

φGf // Gφ(f) o G ′

T vP o G

i0

OO

φTvP

// T vφ(P ) o G ′

i0

OO

(P ×M P ) o G

i1

OO

φP×MP

// (φ(P )×M ′ φ(P )) o G ′,

i1

OO

from which the commutativity of diagrams II and III follows immediately.
– Commutativity of diagram IV above: the following diagram of generalized isomor-

phisms, where µ stands for the canonical projections, is commutative

(6.8) (P ×M P ) o G

µ

��

φP×MP // (φ(P )×M ′ φ(P )) o G ′

µ

��
G

φ
// G ′.

It implies the commutativity of diagram IV.

7. Comparison with the classic assembly maps

7.1. The twisted geometric assembly map as the S1-invariant part of the “classic” geometric
assembly map

The definition of the twisted geometric K-homology groups is drawn from Connes defi-
nition ([13] II.10.α) for general Lie groupoids.

Now, given a twisted Lie groupoid (G , α) we can consider the associated S1-central
extension Rα for which we have the geometric assembly map for the Lie groupoid Rα, as
a Lie groupoid with trivial twisting:

(7.1) µRα : Kgeo(Rα) −→ K∗(Rα).

We have the following proposition:

P 7.1. – With the same notations as above we have an isomorphism of
groups

(7.2)
⊕
n∈Z

Kgeo
∗ (G , nα) ∼= Kgeo

∗ (Rα)

and under this isomorphism

(7.3)
⊕
n∈Z

µnα = µRα .
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Proof. – We will first describe a morphism

(7.4) Kgeo
∗ (G , nα) −→ Kgeo

∗ (Rα),

for everyn ∈ Z. Let [P, x] ∈ Kgeo
∗ (G , nα). By using the Thom isomorphism we might assume

oTvP is a trivial twisting. Next consider the pullback diagram

PΩ
//

��

P

f

��⊔
i∈I Ωi // M

that is, PΩ = {((x, i), p) : f(p) = x}. We can consider PΩ as a Rα-manifold with the
following action

((x, i), p) · ((i, γ, j), u) := ((s(γ), j), γ · p),

where γ ·p is the respective action of γ ∈ G on p ∈ P (for that we need f(p) = t(γ)). Because
P is a G -proper manifold it follows immediately that PΩ is a Rα-proper manifold. It is easy
now to verify that the respective crossed product groupoid, PΩ oRα, can be identified as the
S1-central extension associated to the twisted groupoid (P o G , α ◦ πP ), that is,

PΩ oRα = Rα◦πP .

Hence,

K∗(PΩ oRα) ∼=
⊕
n

K∗(P o G , (α ◦ πP )n)

and we can associate to our x ∈ K∗(PoG , nα) the respective element inK∗(PΩoRα) which
we denote also by x. We have then a natural morphism [P, x] 7→ [PΩ, x] from Kgeo

∗ (G , nα)

to Kgeo
∗ (Rα) which is again well defined by wrong way functoriality. Thus, we obtain a

morphism

(7.5)
⊕
n∈Z

Kgeo
∗ (G , nα) −→ Kgeo

∗ (Rα),

that satisfies by construction:

– it is injective and
– it fits in the following commutative diagram

(7.6)
⊕

n∈ZK
geo
∗ (G , nα) //

⊕
n∈Z µnα ))

Kgeo
∗ (Rα)

µRα // K∗(Rα)

∼=ww⊕
n∈ZK

∗(G , nα).

The surjectivity is as follows: Let Z be a proper Rα-manifold and y ∈ K∗(Z oRα) (we can
assume again, modulo the Thom isomorphism, oTvZ trivial). Consider the smooth manifold
X := Z/S1 resulted from the canonical free and proper action of S1 on Z (explained for
instance in [42] Section 2.2, page 850), there is an associated proper action of GΩ onX where
Ω is the open cover associated with α. Now, taking the canonical projection X π−→

⊔
Ωi we

can consider P := X/ ∼ with x ∼ y iff π(x) = π(y), then P is a smooth manifold, there is
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a projection P
πP−→ M and there is an induced proper action of G on P . We can now easily

identify the following two crossed product groupoids

X o GΩ
∼= (P o G )π−1

P (Ω)

and hence we also have an identification between the respective S1-central extensions:

Z oRα ∼= Rα◦πP .

Thus, under these identifications,K∗(ZoRα) = K∗(Rα◦πP ) =
⊕

n∈ZK
∗(PoG , (α◦πP )n)

from where the surjectivity follows.

C 7.2. – µnα is an isomorphism ∀n ∈ Z if and only if µRα is an isomorphism.
In particular the geometric twisted assembly map is an isomorphism whenever the geometric
assembly map for the correspondent extension is.

7.2. Comparison with the analytic assembly map

Until now we have not assumed our groupoids to be Hausdorff. For Hausdorff groupoids
there is an analytic version of the assembly map that has been very productive in many
applications, in particular thanks to the extensive use of Kasparov’s KK-theory methods.

Let R⇒ R0 be a Hausdorff Lie groupoid, we recall briefly the definition of its analytical
K-homology group from [38]:

(7.7) Kana
∗ (R) := lim

Y⊂ER
KK∗R(C0(Y ), C0(R0)).

Here ER is the universal space for proper R-actions.

There is a canonical group morphism between the geometric and the analytical K-homology
groups:

(7.8) Kgeo
∗ (R)

λR // Kana
∗ (R)

that we will now explicitly describe: Let [P, x] ∈ Kgeo
∗ (R). We can construct an

element (πP )! ∈ KK∗R(T vP,R0) exactly as we did in Section 4. Now, by definition of ER

there is a Y ⊂ ER and an element cP ∈ KKR(Y, T vP ) induced by the classifying
map c : T vP −→ Y ⊂ ER. We set

(7.9) λR([P, x]) = [cP ⊗TvP πP ].

P 7.3. – We have the following commutative diagram:

(7.10) Kgeo
∗ (R)

µR %%

λR // Kana
∗ (R)

µana
Ryy

K∗(R)

where µana
R is the analytic assembly map, [38]. We have moreover the Morita invariance of

each morphism in (7.10).
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7.3. Applications: Some cases where the geometric twisted assembly map is an isomorphism

Still in the case of Hausdorff groupoids, Proposition 7.3 implies the following:

C 7.4. – If λR : Kgeo
∗ (R) −→ Kana

∗ (R) is an isomorphism, then µR is
an isomorphism (resp. injective, resp. surjective) iff µana

R is an isomorphism (resp. injective,
resp. surjective).

E 7.5. – Some examples of Lie groupoids for which the analytic assembly map
is an isomorphism (or injective) are the following

1. injectivity for bolic groupoids (Tu [37])
2. isomorphism for groupoids having the Haagerup property (Tu [36])
3. isomorphism for almost connected Lie groups (Chabert-Echterhoff-Nest [12])
4. isomorphism for hyperbolic groups (Lafforgue [24]).

For the twisted case we put the last corollary together with Corollary 7.2 to obtain:

C 7.6. – Let (G , α) be a twisted (Hausdorff) Lie groupoid. TakeRα the corre-
sponding S1-central extension. Assuming λRα : Kgeo

∗ (Rα) −→ Kana
∗ (Rα) is an isomor-

phism we have that the geometric twisted assembly map for (G , α) is an isomorphism when-
ever the analytic assembly map for Rα is.

E 7.7. – A very interesting example of the previous situation is when the
groupoid G satisfies the so called Haagerup property. Indeed, in this case, one can check
that for any twisting α, the correspondent extension groupoid Rα satisfies as well the
Haagerup property. Then by Tu’s theorem ([36] Theorem 9.3, see also [38] Theorem 6.1)
the analytic assembly map for Rα is an isomorphism. This was already mentioned in Tu’s
habilitation [39] page 16. Among the groupoids satisfying the Haagerup property one finds
amenable groupoids.

A very interesting question then is the following one:

Question. – For which Lie groupoids is the comparison map between geometric and analytic
K-homology an isomorphism?

In the twisted case the above question is even more precise: For which twisted Lie
groupoids (G , α) is the comparison map λRα an isomorphism?

Let us mention that different models for K-homology (at least in the untwisted case) were
assumed by the experts to be isomorphic for many years. It was not until some years ago
that a formal proof for some models was achieved ([5, 6]). In conclusion, the questions we
are addressing are not trivial and, as we stated above, a positive answer has very interesting
consequences.

Appendix

The twisted equivariant Thom isomorphism

In this subsection we will establish the Thom isomorphism in G -equivariant twisted
K-theory which generalizes the non-equivariant twisted Thom isomorphism in [8]. We will
need some basics on KK-theory:
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A.1. Hilsum-Skandalis-Le Gall descent functors and suspension maps on KK-theory

In [20] Section 2.1, Hilsum and Skandalis give a very explicit description of a group
morphism

i∗ : KKH(A,B) −→ KK(Aoi G , B oi G )

constructed from a groupoid cocycle

G
i

−−− > H

for any A,B H-algebras. The algebras A oi G , B oi G are the naturally associated crossed
products. In their case G is an étale groupoid and H is a Lie group. Already in their paper
(Lemmas 2.1 and 2.2) they proved some very interesting functoriality properties. The
Hilsum-Skandalis construction can be generalized for any groupoid cocycle between locally
compact groupoids as shown by Le Gall in [26]. Indeed, Le Gall gave in his paper a precise
definition for groupoid equivariant K-theory and constructs for every groupoid cocycle

G
i

−−− > H

a descent morphism

i∗ : KKH (A,B) −→ KKG (i∗A, i∗B)

for every A,B H -algebras, and where i∗A (resp. i∗B) is the naturally associated algebra
in which G acts via the cocycle i. The main result in [26], Theorem 7.2, states the functo-
riality and naturality with respect to the Kasparov product of the descent construction(8).
To see how Hilsum-Skandalis’ construction is contained in Le Gall’s one can consider the
morphism

KKG (i∗A, i∗B)
p∗−→ KK(Aoi G , B oi G )

associated to the projection(9) p : G (0) −−− > G and then

p∗ ◦ i∗ : KKH (A,B) −→ KK(Aoi G , B oi G )

is Hilsum-Skandalis morphism (that we can still denote i∗) for H a Lie group.

We will also need to recall the suspension morphism on KK-theory (or equivariantKK).
Given a locally compact groupoid G ⇒ M , for any A,B,D G − C∗-algebras there is a
suspension map

(A.1) σM,D : KKi
G (A,B) −→ KKi

G (D ⊗C0(M) A,D ⊗C0(M) B)

compatible with the KK-product, Theorem 6.4 in [26].

(8) The Kasparov descent morphisms are a particular case of Le Gall’s construction, Theorem 7.6 in [26].
(9) The inclusion of the units is a projection as a generalized morphism, it corresponds to the “quotient” map if one
interprets the groupoid as a model for the orbit space.
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A.2. The twisted equivariant Thom isomorphism

Let α be a twisting on G and α0 be the induced twisting on the unit space M . Given a
G -manifold P , let E

qE−→ P be a G -oriented vector bundle over P . There are induced
twistings π∗Pα0 on P and q∗Eπ

∗
Pα0 on E.

In [8] (see also [21]) the twisted Thom isomorphism was established, it gives an isomor-
phism

(A.2) Kα0
(P )

T
α0
E

∼=
// Kα0+oE (E)

where oE is the orientation twisting (2.9) and with a possible shift on the degree depending
on the rank of E.

In fact, the isomorphism (A.2) can be explicitly described by the Kasparov product with
an invertible KK-element

(A.3) βα0

E ∈ KK
∗(C∗(P, α0), C∗(E,α0 + oE)).

In the non-equivariant case we can suppose that the vector bundle E is determined by a
groupoid cocycle

P
OE

−−− > SO(n).

Let Cτ (Rn) be the algebra of continuous sections vanishing at infinity of the Clifford
bundle of Rn. We consider the Thom element β ∈ KKSO(n)(C, Cτ (Rn)) constructed by
Kasparov (Lemma 4 in [22]) and usually called the Dual Dirac element. Then the Hilsum-
Skandalis-Le Gall’s construction yields an element

βE := O∗E(β) ∈ KK(C0(P ), C∗(E, oE))

which corresponds by functoriality and naturality with respect to the product of Le Gall’s
construction to the Thom isomorphism for not necessarily Spinc-vector bundles. Notice that
above we can drop equivariant KK-theory since the groupoid is P ⇒ P which acts trivially.
Now, for taking into account α0 one has the following suspension map

(A.4) σP,C∗(P,α0) : KK(C0(P ), C∗(E, oE))

K−→ K(C0(P )⊗C0(P ) C
∗(P, α0), C∗(E, oE)⊗C0(P ) C

∗(P, α0)).

Notice that

KK(C0(P )⊗C0(P ) C
∗(P, α0), C∗(E, oE)⊗C0(P ) C

∗(P, α0))

∼= KK(C∗(P, α0), C∗(E,α0 + oE)))

thanks to Proposition 4.8 in [41]. We then finally obtain the twisted Thom element

βα0

E := σP,C∗(P,α0)(βE) ∈ KK(C∗(P, α0), C∗(E,α0 + oE))

which gives a KK-description of the Thom isomorphism (A.2) in twisted K-theory.
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The equivariant case. – In the equivariant case, ifN −→M is G−manifold and we consider
the twisting α0 induced on N , then there is no canonical action of G on C∗(N,α0). It is
possible however to modify N (by a Morita equivalent groupoid) such that the action is
canonical. This is the subject of Theorem 4.2 in [41]. Here we just do a different reading:
Let N be G -manifold with momentum map πN : N −→M . Take as above a twisting α on G .
There is a groupoid Ñ ⇒ N ′ Morita equivalent to N ⇒ N , admitting an action of G

together with a strict groupoid morphism

Ñ o G
αÑ // PU(H)

and an explicit Morita equivalence

Ñ o G
mN

−−− > N o G

fitting the following commutative diagram of generalized morphisms

(A.5) Ñ o G

mN

��

αÑ // PU(H)

N o G .

π∗Nα

66

In particular, the S1-central extension obtained from αÑ is of the form

(A.6) S1 −→ RÑ o G −→ Ñ o G

where RÑ corresponds to the S1-central extension associated to the twisting α̃0 on Ñ .
The extension (A.6) is Morita equivalent to the S1-central extension associated to π∗Nα.
As an immediate corollary we get a Morita equivalence ([41] Corollary 4.6) between the
C∗-algebras

C∗(RÑ ) o G ∼ C∗(RNα )

preserving the Z-grading (3.3). In particular for degree one we get a Morita equivalence

(A.7) C∗(Ñ , α̃0) o G ∼ C∗(N o G , α).

Let us come back to the definition of the Thom isomorphism in the equivariant case.
NowE is a G -vector bundle over P . We assume(10) thatE can be obtained from a cocycle

OE : P o G −−− > SO(n),

or in other terms E admits a P o G -invariant metric.
By Le Gall’s descent construction we have a morphism

O∗E : KKSO(n)(C, Cτ (Rn)) −→ KKG (C∗(P̃ ), C∗(Ẽ, õE)),

where õE is defined by the equivariant orientation twisting oE (2.9) associated to E.
Next, we consider the suspension map

(A.8) σM,C∗(P̃ ,α̃0) : KKG (C∗(P̃ ), C∗(Ẽ, õE))

−→ KKG (C∗(P̃ )⊗C0(M) C
∗(P̃ , α̃0), C∗(Ẽ, õE)⊗C0(M) C

∗(P̃ , α̃0))

(10) We are only interested in this case in this paper.
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and again by Proposition 4.8 in [41] we have canonical isomorphisms

C∗(P̃ )⊗C0(M) C
∗(P̃ , α̃0) ∼= C∗(P̃ , α̃0)

and

C∗(Ẽ, õE)⊗C0(M) C
∗(P̃ , α̃0) ∼= C∗(Ẽ, α̃0 + õE)

and hence σM,C∗(P̃ ,α̃0) can be considered to take values on KKG (C∗(P̃ , α̃0), C∗(Ẽ, α̃0 + õE)).

Next we can apply the descent functor to get to KK(C∗(P̃ , α̃0) o G , C∗(Ẽ, α̃0 + õE) o G )

and finally we can use the Morita equivalence (A.7) to obtain a canonical isomorphism

KK(C∗(P̃ , α̃0) o G , C∗(Ẽ, α̃0 + õE) o G ) ∼= KK(C∗(P o G , α), C∗(E o G , α+ oE)).

We have a twisted equivariant Thom element

βG ,α
E ∈ KK(C∗(P o G , α), C∗(E o G , α+ oE)),

obtained from βn ∈ KKSO(n)(C, Cτ (Rn)) under the suspension map (A.8) and the above
canonical isomorphisms.

D A.1 (Equivariant twisted Thom isomorphism). – We can consider the
K-theory isomorphism:

(A.9) KG
α (P )

T G ,α
E

∼=
// KG

α+oE (E)

associated to the twisted equivariant Thom element constructed above, more explicitly,

T G ,α
E (x) := x⊗ βG ,α

E ,

where⊗ stands for the Kasparov product overC∗(PoG , α). We will call the morphism given
by the previous equation the G -equivariant twisted Thom isomorphism.

R A.2. – The fact is that indeed the Thom isomorphism comes from the functo-
riality of the Hilsum-Skandalis-Le Gall’s construction together with the compatibility of the
suspension map with the Kasparov’s product, Theorem 7.2 in [26].

The following proposition states some properties that justify the terminology “Thom
isomorphism”. Properties 2 and 3 are the analogs of Propositions 2.9 and 3.6 in [20] in our
setting.

P A.3. – For the twisted equivariant Thom isomorphism we have the
following three properties:

1. Let P be a G -space and let E −→ P be a G -oriented vector bundle over P. Suppose

we have G
φ

−−− > G ′ a generalized isomorphism. Given α′ : G ′ −−− > PU(H) a
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twisting, there is an induced commutative diagram of isomorphisms between twisted
K-theory groups:

(A.10) KG
α (P )

φP∗

∼=
//

T G
E

��

KG ′

α′ (φ(P ))

T G ′
φ(E)

��
KG
α+oE (E)

φE∗

∼= // KG ′

α′+oφ(E)
(φ(E))

where α := α′ ◦ φ.
2. Let P be a G -manifold and E1, E2 two oriented G -vector bundles over P . Let
π1 : E∗1 −→ P be the dual vector vector of E1. We have

(A.11) T G
π∗1E2

◦F1 ◦T G
E1

= F2 ◦T G
E1⊕E2

where F1 is the K-theory isomorphism induced from the C∗-algebra Fourier isomor-
phism(11) ([11] Proposition 2.12)

C∗(E1 oG,α+ oE1) −→ C∗(E∗1 oG,α+ o∗E1
)

and where F2 is the K-theory isomorphism induced from the C∗-algebra Fourier
isomorphism (12)

C∗((E1 ⊕ E2) oG,α+ oE1⊕E2) −→ C∗(π∗1E2 oG,α+ o∗E1⊕E2
).

3. Let P be a G -manifold, E an oriented G -vector bundle over P and E′ an oriented
G -vector bundle over P together with a G -vector bundleE −→ E′ morphism, we have

(A.12) T EoG
E′ ◦T G

E = σG
E′oE ◦T G

E⊕E′

where σ ∈ KK(((E⊕E′)oG , α+oE′⊕E), (E′oE)oG , α)) is the deformation index
associated to the deformation groupoid

GE′oE := (E ⊕ E′) o G t (E′ o E) o G × (0, 1]

which can be obtained as the semidirect product of the tangent groupoid of (E′ o E)

by the action of G .

Proof. – Properties 1 and 2 follow immediately from functoriality of Le Gall’s descent
functors and its naturality with respect to Kasparov products , Theorem 7.2 in [26], together
with the compatibility of the suspension map with Kasparov’s product.

The proof of Property 3 is essentiality the same as the proof 3.6 in [20], that is, one
observes that the tangent groupoid of E′ o E, TE′oE , is a G × [0, 1]-vector bundle

(11) We recall that in this Fourier transform G acts on E ⇒ P (groupoid given by vector bundle structure) for the
first factor and on E∗1 ⇒ E∗1 (trivial groupoid) on the second.
(12) Again,E1 ⊕ E2 ⇒ P as vector bundle groupoid and π1E2 ⇒ E∗1 .
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over P × [0, 1], and one can then consider its twisted Thom isomorphism. We have the
following diagram(13)

K∗(P o G , α)
T G
E // K∗(E o G , α+ oE)

T EoG
E′ // K∗((E′ o E) o G , α+ oE′⊕E)

K∗((P o G )× [0, 1], α)

e0 ∼=
��

e1

OO
e1 ∼=

OO

T G
T
E′oE

// K∗(TE′oE o G , α+ oE′⊕E)

e0∼=
��

e1

OO

K∗(P o G , α)
T G
E′⊕E

// K∗((E′ ⊕ E) o G , α+ oE′⊕E)

which is commutative. Indeed the top rectangle is commutative by using again Le Gall’s
theorem, and the bottom one is trivially commutative (deformation indices are compati-
bles with morphisms induced by evaluations). The result follows from the fact that the left
horizontal arrow is the identity.
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