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MODULAR PERVERSE SHEAVES
ON FLAG VARIETIES I:

TILTING AND PARITY SHEAVES

 P N. ACHAR  S RICHE
     G WILLIAMSON

A. – In this paper we prove that the category of parity complexes on the flag variety
of a complex connected reductive group G is a “graded version” of the category of tilting perverse
sheaves on the flag variety of the dual group Ǧ, for any field of coefficients whose characteristic is
good for G. We derive some consequences on Soergel’s modular category O, and on multiplicities and
decomposition numbers in the category of perverse sheaves.

R. – Dans cet article nous démontrons que la catégorie des complexes à parité sur la variété
de drapeaux d’un groupe réductif complexe connexe G est une « version graduée » de la catégorie
des faisceaux pervers basculants sur la variété de drapeaux du groupe dual Ǧ, pour tout corps de
coefficients dont la caractéristique est bonne pour G. Nous en déduisons des conséquences sur la
catégorie O modulaire de Soergel, et sur le calcul des multiplicités et des nombres de décomposition
dans la catégorie des faisceaux pervers.

1. Introduction

1.1. – This paper is the first in a series devoted to investigating the structure of the category of
Bruhat-constructible perverse sheaves on the flag variety of a complex connected reductive
algebraic group, with coefficients in a field of positive characteristic. In this part, adapting
some constructions of Bezrukavnikov-Yun [14] in the characteristic-0 setting, we show that
in good characteristic, the category of parity sheaves on the flag variety of a reductive group
is a “graded version” of the category of tilting perverse sheaves on the flag variety of the
Langlands dual group. We also derive a number of interesting consequences of this result,
in particular on the computation of multiplicities of simple perverse sheaves in standard
perverse sheaves, on Soergel’s “modular category O,” and on decomposition numbers.

P.A. was supported by NSF Grant No. DMS-1001594. S.R. was supported by ANR Grants No. ANR-09-JCJC-
0102-01, ANR-2010-BLAN-110-02 and ANR-13-BS01-0001-01.
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326 P. N. ACHAR AND S. RICHE

1.2. Some notation

Let G be a complex connected reductive algebraic group, and let T ⊂ B ⊂ G be a
maximal torus and a Borel subgroup. The choice of B determines a choice of positive
roots of (G,T ), namely those appearing in Lie(B). Consider also the Langlands dual
data Ť ⊂ B̌ ⊂ Ǧ. That is, Ǧ is a complex connected reductive group, and we are given an
isomorphismX∗(T ) ∼= X∗(Ť ) which identifies the roots ofG with the coroots of Ǧ (and the
positive roots determined by B with the positive coroots determined by B̌).

We are interested in the varieties B := G/B and B̌ := Ǧ/B̌, in the derived categories

Db
(B)(B,k), resp. Db

(B̌)
(B̌,k)

of sheaves of k-vector spaces on these varieties, constructible with respect to the stratification
by B-orbits, resp. B̌-orbits (where k is a field), and in their abelian subcategories

P(B)(B,k), resp. P(B̌)(B̌,k)

of perverse sheaves (for the middle perversity). The category P(B)(B,k) is highest weight,
with simple objects { ICw, w ∈ W}, standard objects {∆w, w ∈ W}, costandard objects
{∇w, w ∈ W}, indecomposable projective objects {Pw, w ∈ W} and indecomposable
tilting objects { T w, w ∈W} naturally parametrized by the Weyl groupW of (G,T ). Similar
remarks apply of course to P(B̌)(B̌,k), and we denote the corresponding objects by ǏCw,

∆̌w, ∇̌w, P̌w, Ť w. (Note that the Weyl group of (Ǧ, Ť ) is canonically identified with W .)

1.3. The case k = C

These categories have been extensively studied in the case k = C: see in particular [10, 9,
14]. To state some of their properties we need some notation. We will denote by IC(B̌)(B̌,C)

the additive category of semisimple objects in Db
(B̌)

(B̌,C) (i.e., the full subcategory whose
objects are direct sums of shifts of simple perverse sheaves). If A is an abelian category, we
will denote by Proj-A the additive category of projective objects in A. And finally, if A, B are
additive categories, if T is an autoequivalence of A, and if For : A→ B is a functor endowed
with an isomorphism ε : For ◦ T ∼−→ For, we will say that For realizes A as a graded version
of B if For is essentially surjective and, for any M,N in A, the natural morphism

(1.1)
⊕
n∈Z

Hom
(
M,Tn(N)

)
→ Hom(ForM,ForN)

induced by For and ε is an isomorphism.
With these notations, some of the main properties of our categories can be roughly stated

as follows.

1. (“Beı̆linson-Bernstein localization”) There exists an equivalence of abelian categories
P(B)(B,C) ∼= O0(G), where O0(G) is the principal block of the category O of the Lie
algebra of G.

2. (“Soergel theory”) There exists a functor ν : IC(B̌)(B̌,C) → Proj- O0(G) which real-
izes IC(B̌)(B̌,C) (endowed with the shift autoequivalence [1]) as a graded version
of Proj- O0(G).

3. (“Kazhdan-Lusztig conjecture”) The multiplicities [∇w : ICv] are determined by the
specialization at q = 1 of a canonical basis of the Hecke algebra HW of W .
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MODULAR PERVERSE SHEAVES ON FLAG VARIETIES I 327

4. (“Koszul duality”) There exists a triangulated category Dmix endowed with an auto-
equivalence and a diagram

Db
(B)(B,C)←− Dmix −→ Db

(B̌)
(B̌,C)

where both functors are such that (1.1) is an isomorphism for all M,N (for a suit-
able T ), and where simple perverse sheaves on the left correspond to tilting perverse
sheaves on the right. As a consequence, the category P(B)(B,C) is equivalent to the
category of (ungraded) modules over a Koszul ring.

5. (“Koszul self-duality”) The diagram in (4) is symmetric in the sense that tilting perverse
sheaves on the left also correspond to simple perverse sheaves on the right.

6. (“Ringel duality”) There exists an autoequivalence of the triangulated category
Db

(B)(B,C) sending ∇w to ∆ww0
and T w to Pww0

. (Here, w0 is the longest element
in W .) As a consequence, we have

( T w : ∇v) = ( Pww0 : ∆ww0).

7. (“formality”) If we set ICB :=
⊕

w∈W ICw and if we consider the graded algebra
E =

(⊕
n∈Z ExtnDb

(B)
(B,C)( ICB, ICB[n])

)op
as a differential graded algebra with

trivial differential, then there exists an equivalence of triangulated categories

Db
(B)(B,C) ∼= E-dgDerf

where the right-hand side is the derived category of finitely generated differential
graded E-modules.

The goal of this series of papers is to give analogues of these properties in the case where
k is of characteristic ` > 0.

1.4. Known results

First, let us recall what is known about the properties of § 1.3 when C is replaced by a finite
field k of characteristic ` > 0. (This case will be referred to as the “modular case,” as opposed
to the “ordinary case” when ` = 0.)

Property (6) can be immediately generalized, with the same proof (see § 2.3). Property (2)
was generalized by Soergel in [28]. Here the main difference with the ordinary case appears: in
the modular case the category IC(B̌)(B̌,k) is not well behaved, and the “nice” additive cate-
gory which should replace IC(B̌)(B̌,C) is the category Parity(B̌)(B̌,k) of parity complexes
in the sense of [21]. With this replacement, (2) still holds (when ` is bigger than the Coxeter
number ofG) when O0(G) is replaced by Soergel’s “modular category O,” a certain subquo-
tient of the category of rational representations of a reductive algebraic group over k which
has the same root datum as G.

Property (7) was also generalized to the modular case (again, where simple perverse
sheaves are replaced by parity sheaves) in [24], under the assumption that ` is at least the
number of roots of G plus 2. Using this result, a representation-theoretic analogue of (4)
(which can be obtained, in the ordinary case, by combining properties (1) and (4)) was also
obtained in [24], under the same assumptions.

In [24] a second, more technical, difference between the modular setting and the ordi-
nary one appears, related to eigenvalues of the Frobenius. In fact, to obtain a “formality”

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



328 P. N. ACHAR AND S. RICHE

statement as in (7) one needs to introduce a differential graded algebra whose cohomology
isE and which is endowed with an additional Z-grading. This additional grading is obtained
using eigenvalues of a Frobenius action, which are all of the form pn where n ∈ Z and p is
the image of a fixed prime number p 6= ` in k. If ` = 0 then pn 6= pm if n 6= m, and one
obtains directly the grading. But if ` > 0 this property no longer holds. In [24] this difficulty
was overcome, but at the price of unnecessary assumptions on `.

1.5. Main result

In this paper we explain how to adapt properties (1) and (3) of § 1.3 to the modular setting
(when ` is good forG). In the ordinary case, historically these questions were treated first, and
Koszul duality was discovered later as a convenient way to express many nice features of this
situation. In the modular case we will first establish a weak form of Koszul duality (which is a
first step in the direction of properties (4), (5) and (7), as explained in [2]) and then deduce (1)
and (3).

In fact we construct a functor

ν : Parity(B̌)(B̌,k)→ Tilt(B)(B,k)

from the additive category of Bruhat-constructible parity complexes on B̌ to the additive
category of tilting objects in P(B)(B,k), which realizes the former category as a graded
version of the latter category, and which sends the indecomposable parity sheaf parametrized
by w to the tilting perverse sheaf parametrized by w−1. (See Theorem 2.1 for a more precise
statement.)

Our construction is adapted from the main constructions in [14]: we describe both cate-
gories in terms of some categories of “Soergel modules” for the coinvariant algebra, using
a “functor H” for parity sheaves and a “functor V” for tilting perverse sheaves. The case of
parity sheaves is a relatively easy generalization of [14]. (A similar equivalence was already
considered in [28] in case ` is bigger than the Coxeter number of G.) In this case, the functor
of tensoring with a “basic” Soergel bimodule associated with a simple reflection corresponds
to a “push-pull” functor associated with the projection to the associated partial flag variety.

The case of tilting perverse sheaves is more subtle, and requires some new ideas, in partic-
ular to define what it means to “take the logarithm of the monodromy” (see § 5.3). In this case,
the functor of tensoring with a “basic” Soergel bimodule corresponds to taking an “aver-
aging functor” with respect to a “Whittaker type” action of a unipotent group. (It would
have been possible to follow the proofs in [14] more closely, using an “equivariant” setting
for parity sheaves, and a “free monodromic” setting for tilting perverse sheaves. However,
to obtain simpler proofs we combine some constructions from [14] with some arguments
from [28].)

1.6. Applications

As an application of our construction, in § 2.6 we prove that, if ` is bigger than the Coxeter
number of G, the abelian category P(B)(B,k) is equivalent, as a highest weight category, to
Soergel’s modular category O, thereby obtaining a modular analogue of property (1).
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Regarding property (3), recall that the graded dimension of the cohomology of the stalk of
a simple perverse sheaf ICw at a T -fixed point corresponding to v is given by the Kazhdan-
Lusztig polynomial attached to (v, w) up to some normalization (see [22, 29]). Hence the
multiplicity [∇C

w : ICC
v ] is given by the value at 1 of an inverse Kazhdan-Lusztig polynomial.

But the inversion formula for Kazhdan-Lusztig polynomials (which can be seen as a combi-
natorial manifestation of Koszul duality) implies that inverse Kazhdan-Lusztig polynomials
are also Kazhdan-Lusztig polynomials (for the dual group); in other words, with standard
notation (see §§ 2.1–2.2 for details) we have

[∇C
w : ICC

v ] = dimH•(B̌w0w−1 , ı̌∗w0w−1 ǏCC
w0v−1).

In § 2.5 we show that this formula still holds in the modular setting (in good characteristic),
if ǏCw0v−1 is replaced by the corresponding parity sheaf Ěw0v−1 . By definition (see [34]) the
basis of HW determined by the graded dimensions of stalks of parity sheaves is the `-canon-
ical basis. Our result shows that this basis also describes composition multiplicities for
the dual group. Note that this `-canonical basis can be computed algorithmically,(1) so the
same holds for the multiplicities [∇w : ICv].

This result can be deduced from the modular analogue of (4) that will be proved in [2].
But we need not wait for that: a direct proof, using only properties of the functor ν, is also
possible. Indeed, by the usual reciprocity formula in the highest weight category P(B)(B,k),
we have [∇w : ICv] = ( Pv : ∆w). Now by Ringel duality (see property (6) in § 1.3) this
multiplicity can be computed in terms of multiplicities for tilting perverse sheaves. Finally,
our functor ν allows us to express this multiplicity in terms of the cohomology of stalks of
parity sheaves.

As a last application of our constructions, in § 2.7 we prove that the decomposition
matrices for parity sheaves, tilting perverse sheaves, projective perverse sheaves and intersec-
tion cohomology complexes are related in a very simple way.

1.7. Perspectives

In [2, 3] we use the functor ν of § 1.5 to provide modular analogues of properties (4),
(5) and (7) of § 1.3. Note that these constructions do not involve any consideration about
Frobenius weights as mentioned in § 1.4. In fact the “grading” that shows up in (4) and (5)
(and in a hidden way in (7)) will come purely from the grading that shows up in (2). We are
even able to define a “modular version” of the category of mixed perverse sheaves considered
in [10, § 4.4] without using any theory of étale sheaves over finite fields.

Regarding the last sentence in property (4), it was expected for some time that if ` is not
too small (say, bigger than the Coxeter number of G) then (Bruhat-constructible) parity
sheaves on B or B̌ are just intersection cohomology complexes. (In fact, thanks to [28],
this assertion is equivalent to the validity of Lusztig’s conjecture on characters of modular
simple representations of reductive algebraic groups “around the Steinberg weight.”)
However, recent results of Williamson [35] have shown that this was too optimistic, even in

(1) This algorithm is due to L. T. Jensen and G. Williamson (see [19]). It is based on the interpretation of the local
intersection forms appearing in the computation of convolutions of parity sheaves (see [21, § 3.3]) in terms of the
“Soergel calculus” of [17], and allows us to compute the `-canonical basis elements by induction on the Bruhat
order.
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330 P. N. ACHAR AND S. RICHE

the case G = GLn(C). As a consequence, one cannot hope that the category P(B)(B,k) is
governed by a Koszul ring unless ` is very large. (In this case, Koszulity was shown in [24,
§ 5.7]; see also [32].) We consider this question further in [2, 3].

1.8. Further notation and conventions

The notations related toG and Ǧ introduced in § 1.2 will be retained throughout the paper.
In addition, we will denote byw0 the longest element inW , and byU (resp.U−) the unipotent
radical of B (resp. of the opposite Borel subgroup).

Let us fix, once and for all, a prime number ` that is good for G (or equivalently for Ǧ).
Recall that this condition excludes ` = 2 if the root system R of our group has a component
not of type A, ` = 3 ifR has a component of type E, F or G, and ` = 5 ifR has a component
of type E8. Fix a finite extension O of Z`. Denote by K its field of fractions and by F its
residue field. (Thus, ` is the characteristic of F.) Typically, we will use the letter E to denote
any of K, O, or F. On various occasions we will have to use separate arguments for the cases
of K, O, F. In this case we will add superscripts or subscripts to the notations to emphasize
the ring of coefficients. In Sections 5–6, we will assume in addition that #F > 2.

These three rings will serve as coefficients for derived categories of sheaves. Only field
coefficients appeared in § 1.2, but the same notions make sense forE = O as well. (In this case,
the perversity we use is the middle perversity p, and not the perversity p+ from [8, § 3.3.4].)
Additional background and references concerning the various classes of perverse sheaves,
especially for the case E = O, will be given in Section 2.

We define the shift 〈1〉 in the category of Z-graded E-modules as follows: if M = ⊕n∈ZMn is
a graded E-module, then M〈1〉 is the graded E-module with (M〈1〉)n = Mn+1. Note that
this convention is opposite to the convention chosen in [24]. If A is a Noetherian algebra we
will denote by A-mod the category of finitely generated left A-modules. If A is a Z-graded
Noetherian algebra we will denote by A-gmod the category of finitely generated Z-graded
left A-modules.

Throughout the paper, we use the convention that For generically represents an obvious
forgetful functor (of the Z-grading).

1.9. Contents

In Section 2 we state our main result, and deduce the applications mentioned in § 1.6.
The proof of the main result occupies Sections 3–6. Section 3 introduces “Soergel modules,”
which will provide the bridge between tilting perverse sheaves on B and parity sheaves on B̌.
In Section 4 we relate parity sheaves to Soergel modules via the functor H. In Section 5 we
relate tilting perverse sheaves to Soergel modules via the functor V. We finish the proof of
our main theorem in Section 6.

The paper ends with two appendices. Appendix A collects some well-known results on
equivariant derived categories that we were not able to find in the literature, and Appendix B
(joint with Geordie Williamson) explains how to generalize standard results on tilting
perverse sheaves to the case of integral coefficients.
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2. Main result and applications

2.1. Background on tilting sheaves

For any w ∈W one can consider the orbit

Bw := BwB/B

and the inclusion iw : Bw ↪→ B. Then the standard and costandard perverse sheaves on B

are defined as

∆w := iw!EBw
[dim Bw], ∇w := iw∗EBw

[dim Bw],

where EBw
denotes the constant sheaf on Bw with value E. (The fact that ∆w and ∇w are

perverse sheaves follows from [8, Corollaire 4.1.3] in the case E = K or F; in the case E = O
this property can be deduced from the case E = F, see [24, Lemma 2.1.2].(2))

Recall that an object T in P(B)(B,E) is called tilting if it admits both a standard filtration
(i.e., a filtration with subquotients isomorphic to ∆v for v ∈W ) and a costandard filtration
(i.e., a filtration with subquotients isomorphic to∇v for v ∈W ). We denote by Tilt(B)(B,E)

the full additive subcategory of P(B)(B,E) consisting of tilting objects. It is well known in
case E = K or F (see [25, 9]), and proved in Appendix B in case E = O, that this category is
Krull-Schmidt, and that its indecomposable objects are parametrized by W ; we denote
by T w the indecomposable object associated with w ∈W . We also denote by

( T : ∇v)

the number of times ∇v appears in a costandard filtration of the tilting object T . (This
number does not depend on the choice of the filtration; it is equal to the rank of the free
E-module Hom(∆v, T ).) The extension of scalars functors

F(−) := F
L
⊗O (−) : Db

(B)(B,O)→ Db
(B)(B,F),

K(−) := K⊗O (−) : Db
(B)(B,O)→ Db

(B)(B,K)

restrict to functors between the categories of tilting perverse sheaves, which we denote simi-
larly.

(2) Here is an alternative argument, suggested by a referee. Recall that an object F is in pDb
(B)

(B,O)≤0 iff F( F ) is

in pDb
(B)

(B,F)≤0. Using this observation and the results of [8] we deduce that ∆O
w and∇O

w are in pDb
(B)

(B,O)≤0

Using Verdier duality it follows that both of these objects are also in p+
Db

(B)
(B,O)≥0. Hence (see [8, § 3.3.4,

Equation (ii)]) they are torsion-free perverse sheaves.
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2.2. Background on parity sheaves

On the dual side, for any w ∈W one can consider the orbit

B̌w := B̌wB̌/B̌,

and the inclusion ı̌w : B̌w ↪→ B̌. Recall (following [21]) that an object F̌ of Db
(B̌)

(B̌,E) is

called ∗-even if for any w ∈ W and n ∈ Z the sheaf H n(̌ı∗w F̌ ) is zero if n is odd, and a
free E-local system otherwise. Similarly, F̌ is called !-even if for any w ∈ W and n ∈ Z the
sheaf H n(̌ı!w F̌ ) is zero if n is odd, and a free E-local system otherwise. The object F̌ is called
even if it is both ∗-even and !-even, and odd if F [1] is even. Finally, an object is called a parity
complex if it is a direct sum of an even object and an odd object. We denote by Parity(B̌)(B̌,E)

the full additive subcategory ofDb
(B̌)

(B̌,E) consisting of parity complexes. This subcategory
is stable under the shift [1]. It follows from [21, § 4.1] that this category is Krull-Schmidt, and
that its indecomposable objects are parametrized by W ×Z. More precisely, for any w ∈W
there exists a unique indecomposable object Ěw in Parity(B̌)(B̌,E) which is supported on
the closure of B̌w, and whose restriction to B̌w is EB̌w

[dim B̌w]. Such an object is called a
parity sheaf. Then any indecomposable object in Parity(B̌)(B̌,E) is a shift of a parity sheaf.
Note finally that the functors F(−) and K(−) also restrict to functors between categories of
parity complexes.

2.3. Background on projective sheaves and Radon transform

(This subsection is not needed for the statement of the main result, but it will be needed
for the subsequent applications.) It follows from [10] in case E = K or F and from [24,
§ 2.4] in case E = O that the category P(B)(B,E) has enough projective objects, that the full
subcategory Proj(B)(B,E) of P(B)(B,E) consisting of projective objects is Krull-Schmidt,
and that its indecomposable objects are naturally parametrized by W . We denote by Pw
the projective object associated with w ∈ W . (If E = K or F then by definition PE

w is the
projective cover of the simple object ICE

w. If E = O these objects are defined in [24, § 2.4];
one can show in this case as well that PO

w is the projective cover of ICO
w.) It is known that

each Pw admits a standard filtration, i.e., a filtration with subquotients isomorphic to ∆v

for v ∈W . We denote by

( Pw : ∆v)

the number of times ∆v appears in such a filtration. (This number does not depend on the
filtration; it is equal to the rank of the free E-module Hom( Pw,∇v).)

Let U denote the open G-orbit in B ×B, and consider the diagram

Up

ww
q

''
B B,

where p and q denote the projection on the first and second factors, respectively. Following [7,
9, 36] we consider the “Radon transform” (or “geometric Ringel duality”)

R := q!p
∗[dim B] : Db

(B)(B,E)→ Db
(B)(B,E).
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It is well known that this functor is an equivalence of triangulated categories, with inverse
isomorphic to p∗q![−dim B]; moreover, this equivalence satisfies

R(∇w) ∼= ∆ww0 , R( T w) ∼= Pww0

for all w ∈W . (More precisely, these properties are proved in [9, 36] in the case E = K. The
same arguments apply to the case E = F. The case E = O is not much more difficult; details
are treated in § B.5.) In particular, this equivalence restricts to an equivalence of categories

R : Tilt(B)(B,E)
∼−→ Proj(B)(B,E).

We also deduce that for any v, w ∈W we have

(2.1) ( T w : ∇v) = ( Pww0 : ∆vw0).

2.4. Statement

The following theorem is the main result of the paper.

T 2.1. – Assume that ` is good for G, and that #F > 2.
For E = K, O or F there exists a functor

νE : Parity(B̌)(B̌,E)→ Tilt(B)(B,E)

and an isomorphism of functors ε : νE ◦ [1]
∼−→ νE such that the following hold.

1. For any Ě, F̌ in Parity(B̌)(B̌,E), the functor νE and the isomorphism ε induce an
isomorphism ⊕

n∈Z
Hom

(
Ě, F̌ [n]

) ∼−→ Hom
(
νE( Ě), νE( F̌ )

)
.

2. For any w ∈W we have νE( Ěw) ∼= T w−1 .
3. For any Ě in Parity(B̌)(B̌,E) and v ∈W we have

(νE( Ě) : ∇v) = rkE
(
H•(B̌v−1 , ı̌∗v−1 Ě)

)
.

4. The functors νE are compatible with extension of scalars in the sense that the following
diagram commutes up to isomorphisms of functors:

Parity(B̌)(B̌,K)

νK o
��

Parity(B̌)(B̌,O)
F(−) //K(−)oo

νO o
��

Parity(B̌)(B̌,F)

νFo
��

Tilt(B)(B,K) Tilt(B)(B,O)
F(−) //K(−)oo Tilt(B)(B,F).

(The requirement that #F > 2 arises because technical aspects of our study
of Tilt(B)(B,E) require F to contain nontrivial roots of unity. The proof of this theorem
will be given in Sections 3–6.)

Properties (1) and (2) say that ν realizes Parity(B̌)(B̌,E) as a graded version
of Tilt(B)(B,E), in the sense of § 1.3. Then property (3) says that the cohomologies of stalks
of parity sheaves provide graded versions of the multiplicities of costandard objects in tilting
objects. This point of view is used and developed further in the companion papers [2, 3].

In the case E = K the category Parity(B̌)(B̌,E) coincides with the category IC(B̌)(B̌,K)

of § 1.3. In this case Theorem 2.1 can be deduced from [14]. (It can also be deduced from
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the more standard Koszul duality of [10] together with the Radon transform of [9]; see
Property (6) in § 1.3.) Our strategy in the general case will be similar to the one used in [14],
relating our categories to certain categories of Soergel modules.

The remainder of Section 2 is devoted to various applications of Theorem 2.1.

2.5. Application to multiplicities

In this subsection we consider the case E = F. The first consequence of Theorem 2.1 is the
following description of composition multiplicities of costandard objects (or equivalently—
using Verdier duality—of standard objects) in the category P(B)(B,F).

T 2.2. – Assume that ` is good for G. For any v, w ∈W we have

[∇w : ICv] = ( Pv : ∆w) = ( T vw0
: ∇ww0

) = dimH•(B̌w0w−1 , ı̌∗w0w−1 Ěw0v−1).

Proof. – By standard arguments one can assume that #F > 2. Then the first equality is
the usual reciprocity formula in the highest weight category P(B)(B,F); for instance, see [10].
The second equality is given by (2.1). Finally, the third equality follows from (2) and (3) in
Theorem 2.1.

R 2.3. – 1. The matrix
(
[∇w : ICv]

)
v,w∈W =

(
[∆w : ICv]

)
v,w∈W is invertible,

and its inverse is the matrix
(
(−1)dim Bvχv( ICw)

)
v,w∈W , where χv( F ) is the Euler

characteristic of the cohomology of the stalk of F at vB/B. Hence Theorem 2.2 also
enables to compute the values of χv( ICw) for v, w ∈W .

2. Recall from § 1.6 that the rightmost term in Theorem 2.2 can be computed algorithmi-
cally. Thanks to this result, the same holds for the other quantities as well.

3. Computations in low rank (by G. Williamson and P. Polo) indicate that Theorem 2.2
might also hold in bad characteristic. Hence Theorem 2.1 may hold without any
assumption on `.

4. One can show that dimH•(B̌x, ı̌
∗
x Ěy) = dimH•(B̌x−1 , ı̌∗x−1 Ěy−1) for any x, y ∈ W .

Hence in Theorem 2.2 one can replace the last quantity by dimH•(B̌ww0
, ı̌∗ww0

Ěvw0
).

2.6. Application to Soergel’s modular category O

In this subsection we assume that ` is bigger than the Coxeter number of G. We denote
by GF a split simply-connected semisimple algebraic F-group whose root system is isomor-
phic to that ofG. We choose a maximal torus TF inGF, and denote byB−F the Borel subgroup
of GF containing TF whose roots are the negative roots.

In [28], Soergel defines the “modular category O” associated withGF as a certain subquo-
tient of the category of finite dimensional (rational) GF-modules “around the Steinberg
weight.” To emphasize the difference with the ordinary category O, we denote this category
by OF. It is a highest weight category with weight poset W (endowed with the inverse of the
Bruhat order). In particular we have simple objects {Lw, w ∈ W} (where, as in [28], Lw is
the image in the quotient category of the simple Gk-module L((` − 1)ρ + wρ) of highest
weight (`− 1)ρ+wρ, with ρ the half sum of positive roots), standard objects {Mw, w ∈W}
(where Mw is the image of the Weyl module V ((` − 1)ρ + wρ)) and costandard objects
{Nw, w ∈ W} (where Nw is the image of the induced modules IndGF

B−F
((` − 1)ρ + wρ)). We

also denote by Pw the projective cover of Lw.
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The following result is an analogue of a well-known result for the ordinary category O;
see e.g., [10, Proposition 3.5.2].

T 2.4. – Assume that ` is bigger than the Coxeter number of G. There exists an
equivalence of abelian categories

Ψ: OF
∼−→ P(B)(B,F)

such that

Ψ(Lw) ∼= ICw−1w0
, Ψ(Mw) ∼= ∆w−1w0

, Ψ(Nw) ∼= ∇w−1w0
, Ψ(Pw) ∼= Pw−1w0

.

R 2.5. – 1. By construction, one can see the “multiplicities around the Steinberg
weight” for GF-modules in the category OF. More precisely, for v, w ∈W the multi-
plicity [IndGF

B−F
((`−1)ρ+wρ) : L((`−1)ρ+vρ)] of the simpleGF-moduleL((`−1)ρ+vρ)

in the induced GF-module IndGF
B−F

((` − 1)ρ + wρ) equals the multiplicity [Nw : Lv].

It follows from Theorem 2.4 that this multiplicity is also the multiplicity of ICv−1w0

in ∇w−1w0
. Hence our theorem provides multiplicity formulas which are different

from those of [28, Theorem 1.2]. The relation between these multiplicity formulas is
explained by Theorem 2.2.

2. One can give a more direct proof of Theorem 2.4 using directly Theorem 5.1 below;
however to state the latter result requires introducing more notation.

Proof. – Recall (see § 1.3) that Proj- OF denotes the additive full subcategory of OF
consisting of projective objects. This category is Krull-Schmidt, and its indecomposable
objects are the Pw’s (w ∈W ). By the main results of [28], there exists a functor

η : Parity(B̌)(B̌,F)→ Proj- OF

and an isomorphism of functors ε′ : η ◦ [1]
∼−→ η such that:

1. for any Ě, F̌ in Parity(B̌)(B̌,E), the functor η and the isomorphism ε′ induce an
isomorphism ⊕

n∈Z
Hom

(
Ě, F̌ [n]

) ∼−→ Hom
(
η( Ě), η( F̌ )

)
;

2. for any w ∈W we have ηE( Ěw) ∼= Pw.

From this and Theorem 2.1 (in case E = F) one can easily check that there exists a unique
(up to isomorphism) equivalence of categories

Φ: Proj- OF
∼−→ Tilt(B)(B,F)

which satisfies Φ(Pw) ∼= T w−1 and which is compatible with η and ν in the natural sense.
Composing this equivalence with R (see § 2.3) we obtain an equivalence

Φ′ : Proj- OF
∼−→ Proj(B)(B,F)

which satisfies Φ′(Pw) ∼= Pw−1w0
.

Consider now the following equivalence:

Db OF
∼←− Kb

(
Proj- OF

) Φ′−→
∼

Kb
(
Proj(B)(B,F)

) ∼−→ DbP(B)(B,F).
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(Here, the left, resp. right, equivalence is the natural functor, which is an equivalence
since OF, resp. P(B)(B,F), has finite global dimension; these properties follow from [10,
Corollary 3.2.2].) Since the standard t-structure on the left-hand side, resp. right-hand side,
can be described in terms of morphisms from projective objects, this equivalence is t-exact,
and hence restricts to an exact equivalence

Ψ: OF
∼−→ P(B)(B,F).

By construction this equivalence sendsPw to Pw−1w0
, so it also sendsLw (which is the unique

simple quotient of Pw) to ICw−1w0
(which is the unique simple quotient of Pww0 ). To prove

that Ψ sendsMw to ∆w−1w0
we use the fact thatMw is the projective cover of Lw in the Serre

subcategory of OF generated by objects Lv with v ≥ w, and that ∆w−1w0
is the projective

cover of ICw−1w0
in the Serre subcategory of P(B)(B,F) generated by objects ICv−1w0

with v > w. A similar argument applies to costandard objects.

2.7. Application to decomposition numbers

We come back to our general assumption that ` is good for G.
First we consider projective objects in P(B)(B,E), for E = K, O, or F. By construction

(see [24, Corollary 2.4.2]), for any w ∈W we have F( PO
w) ∼= PF

w. On the other hand the
perverse sheaf K( PO

w) is projective in P(B)(B,K), so there exist coefficients pv,w ∈ Z≥0

(for v, w ∈W ) such that
K( PO

w) ∼=
⊕
v∈W

(
PK
v

)⊕pv,w
.

We denote by P the matrix (pv,w)v,w∈W , and by P′ the matrix (pvw0,ww0)v,w∈W .
Similarly, for any w ∈ W we have F( T O

w) ∼= T F
w (see Proposition B.3) and there exist

coefficients tv,w ∈ Z≥0 such that

K( T O
w) ∼=

⊕
v∈W

(
T K
v

)⊕tv,w
.

We denote by T the matrix with coefficients tv,w.
Likewise, by [21, Proposition 2.40], for w ∈W we have

(2.2) F( Ě
O
w) ∼= Ě

F
w

and there exist coefficients ěiv,w ∈ Z≥0 such that

K( Ě
O
w) ∼=

⊕
v∈W,i∈Z

(
Ě
K
v [i]
)⊕ěiv,w .

We denote by Ě the matrix whose (v, w)-coefficient is
∑
i ě
i
v−1,w−1 .

Finally we consider simple objects in the category P(B)(B,E). It follows from the defini-

tions that we have K( ICO
w) ∼= ICK

w, and moreover F( ICO
w) is a perverse sheaf. (This follows

from the fact that ICO
w is torsion-free, since the functor iw!∗ preserves injections, see [20,

Proposition 2.27].) We denote by I the matrix
(
[F( ICO

w) : ICF
v]
)
v,w∈W , and by tI its trans-

pose.

T 2.6. – Assume that ` is good for G. We have equalities

P′ = T = Ě, tI = P.
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Proof. – By standard arguments one can assume that #F > 2. Then the equalityP′ = T

follows from the existence of the Radon transform over O and K, and their compatibility
with extension of scalars (see § 2.3). The equality T = Ě follows from the existence of the
functors ν over O and K, and their compatibility with extension of scalars (see Theorem 2.1).

The last equality is an instance of Brauer reciprocity. More precisely, consider the
O-module

Hom( PO
w, IC

O
v ).

By Lemma 5.2 below, this O-module is free, and we have

F⊗O Hom( PO
w, IC

O
v ) ∼= Hom

(
F( PO

w),F( ICO
v )
)

= Hom
(
PF
w,F( ICO

v )
)
.

We deduce that the rank of our O-module is [F( ICO
v ) : ICF

w]. On the other hand we have

K⊗O Hom( PO
w, IC

O
v ) ∼= Hom

(
K( PO

w),K( ICO
v )
) ∼= Hom

(
K( PO

w), ICK
v

)
.

Hence the rank of our O-module is also equal to pv,w. We thereby obtain

pv,w = [F( ICO
v ) : ICF

w],

and our last equality follows.

3. Soergel modules

In this section, we begin laying the foundations for the proof of Theorem 2.1. In particular
we define the “Soergel modules” which will play a key role in our arguments. (It will turn out
that these modules over the coinvariant algebra are nothing but the global cohomology of
parity sheaves on B̌, see Corollary 4.4, just as characteristic-0 Soergel modules are the global
cohomology of semisimple complexes on B̌.)

Note that the categories appearing in that result depend only on the root systems of G
and Ǧ, so we may restrict our attention to some family of reductive groups that covers all
possible root systems.

3.1. Additional notation and conventions

For the remainder of the paper, we assume thatG is a product of groups isomorphic either
to GLn(C) or else to a simple group (of adjoint type) not of type A. This assumption implies
that the Langlands dual group Ǧ is a product of groups isomorphic either to GLn(C) or else
to a simply-connected quasi-simple group not of type A. We also assume that ` is good forG.

Let Y := X∗(T ) = X∗(Ť ). We set h := E ⊗Z Y and S := SE(h) (i.e., the symmetric
algebra of the free E-module h), considered as a graded E-algebra where h is in degree 2.
We endow S with the natural action of W . We denote by SW+ ⊂ S the ideal generated
by homogeneous elements in SW (the W -invariants in S) of positive degree. The graded
E-algebra C := S/SW+ (usually called the coinvariant algebra) will play a major role in the
paper.

If s is a simple reflection, we denote by Cs ⊂ C the image of the s-invariants Ss ⊂ S

in C. Note that unless E is a field of characteristic 2 (in which caseG is necessarily a product
of general linear groups), Cs coincides with the s-invariants in C (see e.g., the proof of
Lemma 3.1 below).
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3.2. Coinvariants and extension of scalars

The following lemma collects some technical results (contained in or easily deduced
from [15]) that will be needed later.

L 3.1. – 1. The natural morphisms

F⊗O (SO)W → (SF)W and K⊗O (SO)W → (SK)W

are isomorphisms.
2. The natural morphisms

F⊗O CO → CF and K⊗O CO → CK

are isomorphisms.
3. The (SE)W -module SE is free of rank #W , and CE is E-free of rank #W .
4. For any simple reflection s, the natural morphisms

F⊗O (SO)s → (SF)s and K⊗O (SO)s → (SK)s

are isomorphisms.
5. The CE

s -module CE is free of rank 2.

Proof. – Let us begin with (1). Set SZ = SZ(Y). Then under our assumptions, by [15,
corollaire on p. 296], the natural morphism

E⊗Z (SZ)W → (SE)W

is an isomorphism for E = K,O or F, which proves the claim.
(2) is a direct consequence of (1): in fact one can define CZ in the natural way, and the

morphism E⊗Z CZ → CE is an isomorphism for E = K,O or F.
(3) follows from [15, Théorème 2(c)] and the proof of (1).
Let us finally consider (4) and (5). These claims are clear in case G = GLn(C). If G is

a simple group not of type A then since ` 6= 2 we have h = ker(s − 1) ⊕ ker(s + 1), and
ker(s+ 1) is free of rank 1; hence the claims are clear also. The general case follows, since by
assumptionG is a product of groups either isomorphic toG = GLn(C) or to a simple group
not of type A.

3.3. Bott–Samelson modules

For any sequence s = (s1, . . . , si) of simple reflections of W we will consider the graded
C-module

BSgr(s) := S ⊗Ssi S ⊗Ssi−1 ⊗ · · · ⊗Ss1 E〈i〉.
Here, E is considered as a graded S-module via the canonical identification S/hS ∼= E
(and the Ss1 -module structure is obtained by restriction). Note that the S-module structure
on E factors through an action of C, and that we have

BSgr(s) = C ⊗Csi C ⊗Csi−1
⊗ · · · ⊗Cs1 E〈i〉.

Note also the inversion of the order of the simple reflections.
We denote by Sgr the smallest strictly full subcategory of the category of graded

C-modules which contains the graded module BSgr(s) for any sequence s of simple reflec-
tions and which is stable under shifts 〈1〉, direct sums and direct summands. We will call
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objects of Sgr Soergel modules. This is justified by the fact that these objects can be obtained
from what are usually called Soergel bimodules by killing one of the two actions of S.(3)

Note also that by Lemma 3.1(4) we have

F⊗O BSgr
O (s) ∼= BSgr

F (s).

We deduce that the functor F ⊗O (−) induces a functor F(−) : Sgr
O → Sgr

F . Similar remarks
show that the functor K⊗O (−) induces a functor K(−) : Sgr

O → Sgr
K .

We will also denote by S the smallest strictly full subcategory of the category of
(ungraded) C-modules which contains the module BS(s) := For

(
BSgr(s)

)
for any sequence

s = (s1, . . . , si) of simple reflections and which is stable under direct sums and direct
summands. As above, the functor F ⊗O (−) induces a functor F(−) : SO → SF, and the
functor K⊗O (−) induces a functor K(−) : SO → SK.

Note that the categories Sgr and S are Krull-Schmidt. This is clear if E = K or F; for the
case E = O, see the arguments in the proof of [24, Lemma 2.1.6].

We also have the functor For : Sgr → S which forgets the grading. We will generalize the
following result to the case E = O later (see § 4.4).

L 3.2. – If E = K or F and if D is an indecomposable object of Sgr, then For(D) is
indecomposable in S.

Proof. – This follows from general results on graded modules over finite-dimensional
E-algebras; see [18, Theorem 3.2].

4. Parity sheaves and the functor H

In this section, we relate parity sheaves on B̌ to Soergel modules. The results of this
subsection are well known (and due to Soergel) in case E = K, see [27]. In case E = F and
` is bigger than the Coxeter number of Ǧ, they are also proved (using different arguments)
in [28]. (Our notation follows Soergel’s notation in [28].)

The conventions of § 3.1 remain in effect.

(3) Following a referee’s suggestion, let us be more specific about this claim. In fact, Theorem 4.5 below can be
generalized to the case of B̌-equivariant parity sheaves, if one replaces Sgr

E by the appropriate category of Soergel
bimodules. In particular, it follows that (graded) indecomposable Soergel bimodules are classified by W × Z
in the natural way. Then, using the fact that if F is a B̌-equivariant parity sheaf on B̌, the natural morphism
E⊗H•

B̌
(pt;E)H•B̌(B̌, F )→ H•(B̌, F ) is an isomorphism (as follows from [21, Proposition 2.6]), one can check that

the functor E ⊗S (−) sends the indecomposable bimodule associated with (w, 0) to the indecomposable Soergel
module Dgr

w of § 4.4.
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4.1. Cohomology of B̌

The following result is well known, but we couldn’t find a reference treating this question
under our assumptions. For completeness, we explain how it can be deduced from the existing
literature.

P 4.1. – There exists a natural isomorphism of graded algebras

CE
∼−→ H•(B̌;E).

Proof. – Recall the algebras SZ andCZ considered in the proof of Lemma 3.1. The Chern
character provides a natural algebra morphism SZ → A(B̌) (where A(B̌) is the Chow ring
of B̌), which factors through a morphism CZ → A(B̌); see e.g., [15, Corollaire 2 and §8].
By [15, Théorème 2(a) and §8], under our assumptions this morphism induces a surjection

E⊗Z CZ � E⊗Z A(B̌).

By the proof of Lemma 3.1(2), we have E⊗ZCZ ∼= CE. On the other hand, by [1, Lemma 4.1]
there exists a canonical isomorphism E⊗ZA(B̌)

∼−→ H•(B̌;E). Hence we obtain a surjection

CE � H•(B̌;E).

Since both E-modules are free of rank #W by Lemma 3.1(3) and the Bruhat decomposition,
this surjection must be an isomorphism.

If s is a simple reflection, we denote by P̌ s ⊂ Ǧ the minimal standard parabolic subgroup
associated with s, and set P̌s := Ǧ/P̌ s. We will denote by π̌s : B̌ → P̌s the natural
projection.

C 4.2. – The morphism induced by (π̌s)∗ provides an isomorphism

H•(P̌s;E) ∼= Cs.

Proof. – Assume first that E is not a field of characteristic 2. In this case it is well known
(see e.g., [27, § 3.2 and references therein]) that the isomorphism of Proposition 4.1 commutes
with the natural actions of W , and that the morphism

(π̌s)∗ : H•(P̌s;E)→ H•(B̌;E)

is injective and identifies the left-hand side with the s-invariants in the right-hand side, which
proves the claim.

If E is a field of characteristic 2, then Ǧ is a product of general linear groups, and the result
can be deduced from the case E = O.
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4.2. The functor H and Bott-Samelson parity sheaves

Using the isomorphism of Proposition 4.1 one can consider the functor

H•(B̌,−) : Parity(B̌)(B̌,E)→ C-gmod.

(Note that it would be more natural to consider this functor as taking values in the category
of graded right C-modules. However, since C is commutative, right and left C-modules are
the same.)

For any simple reflection s, we define the functor

ϑs := (π̌s)∗(π̌s)∗ : Db
(B̌)

(B̌,E)→ Db
(B̌)

(B̌,E).

L 4.3. – For any F̌ in Db
(B̌)

(B̌,E) and any simple reflection s, there exists a functo-
rial isomorphism of graded C-modules

H•(B̌, ϑs F̌ ) ∼= C ⊗Cs H•(B̌, F̌ ).

Proof. – This claim follows from [28, Proposition 4.1.1], Proposition 4.1 and Corol-
lary 4.2. (In the proof of [28, Proposition 4.1.1] the author assumes that the coefficients are
a field of characteristic 6= 2, but this assumption is not needed: all that one needs is the
existence of an isomorphism (π̌s)∗EB̌

∼= EP̌s ⊕EP̌s [−2], which follows from the facts that

H n((π̌s)∗EB̌

)
=

{
EP̌s if n ∈ {0, 2};
0 otherwise

and that H3(P̌s;E) = 0.)

It is well known (see [21, § 4.1]) that the functors (π̌s)∗ and (π̌s)∗ send parity complexes
to parity complexes. We deduce that the functor ϑs restricts to a functor

ϑs : Parity(B̌)(B̌,E)→ Parity(B̌)(B̌,E).

For each sequence s = (s1, . . . , si) of simple reflections we will consider the “Bott-Samelson”
parity complex

Ě(s) := ϑsi · · ·ϑs1EB̌e
[i].

(Here, EB̌e
is the skyscraper sheaf at the origin B̌e = {B̌/B̌}.)

The following result is an immediate consequence of Lemma 4.3.

C 4.4. – For any sequence s of simple reflections, there exists a canonical
isomorphism of graded C-modules

H•
(
B̌, Ě(s)

) ∼= BSgr(s).
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4.3. Equivalence

The main result of this section is the following. It follows rather easily from known results,
and is a direct analogue of Soergel’s results in [27] which motivated the general study of
Soergel bimodules.

T 4.5. – The functor H•(B̌,−) : Parity(B̌)(B̌,E)→ C-gmod is fully faithful, and
induces an equivalence of categories

H : Parity(B̌)(B̌,E)
∼−→ Sgr

E

which satisfies H ◦ [1] = 〈1〉 ◦ H. Moreover, the following diagram commutes (up to natural
isomorphisms):

Parity(B̌)(B̌,K)

HK o
��

Parity(B̌)(B̌,O)
F(−) //K(−)oo

HOo
��

Parity(B̌)(B̌,F)

HFo
��

Sgr
K Sgr

O
F(−) //K(−)oo Sgr

F .

Proof. – The fact that H•(B̌,−) is fully faithful is proved in [4, Theorem 4.1]. (In loc. cit.
the authors assume that the ring of coefficients is a field, but the same proof applies also to
the case E = O.) To identify the essential image of this functor we note that the category
Parity(B̌)(B̌,E) is generated (under taking direct summands, direct sums and shifts) by the

objects Ě(s); see [21, § 4.1]. Then the result follows from Corollary 4.4 and the definition
of Sgr

E .

The compatibility of H with the functors K(−) is obvious; the compatibility with F(−)

follows from [21, Eq. (2.13)]. (Note that the constant sheaf EB̌ is a parity complex.)

4.4. Consequences for the structure of S and Sgr

Recall from § 2.2 that the indecomposable objects in the Krull-Schmidt category
Parity(B̌)(B̌,E) are parametrized by W × Z. It follows from Theorem 4.5 that the same is
true for the category Sgr. More precisely, for any w ∈ W we define the indecomposable
object

Dgr
w := H( Ěw).

If w = s1 · · · s`(w) is any reduced expression for w, then Dgr
w is characterized by the fact

that it appears as a direct summand of BSgr(s1, . . . , s`(w)), and does not appear as a direct
summand of BSgr(s)〈n〉 for any n ∈ Z and any sequence s of simple reflections of length
strictly less than `(w). Moreover, any indecomposable object of Sgr

E is isomorphic to Dgr
w 〈n〉

for some unique w ∈W and n ∈ Z.

Note also that by (2.2) and the commutativity of the right-hand side of the diagram in
Theorem 4.5 we have

(4.1) F(Dgr
w,O) ∼= Dgr

w,F.

(The analogous result for K does not hold in general: the decomposition of K(Dgr
w,O) is

governed by the integers ěiv,w of § 2.7.)
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The following technical result, which we obtain as a corollary of Theorem 4.5, will be
needed later on. (Note that this result is not obvious from definitions, and that our proof
uses geometry, hence cannot be adapted to a general Coxeter group.)

C 4.6. – For any D and D′ in SO, the natural morphism

F⊗O HomCO

(
D,D′

)
→ HomCF

(
F(D),F(D′)

)
is an isomorphism.

Proof. – It is enough to prove the claim when D = BSO(s) and D′ = BSO(t) for some
sequences of simple reflections s and t. In this case, using equivalences HO and HF (and their
compatibility with functors F(−)) this claim reduces to the claim that the natural morphism

F⊗O Hom( ĚO(s), ĚO(t)[i])→ Hom( ĚF(s), ĚF(t)[i])

is an isomorphism for any i ∈ Z, and this follows from [21, Eq. (2.13)].

For any w ∈W , we define the object

Dw := For(Dgr
w )

of S. From (4.1) we deduce that

(4.2) F(Dw,O) ∼= Dw,F.

C 4.7. – 1. For any w ∈W , the object Dw is indecomposable.
2. The objects {Dw, w ∈W} form a complete set of pairwise nonisomorphic indecompos-

able objects in the Krull-Schmidt category S.

Proof. – (1) If E = F or K, Dw is indecomposable by Lemma 3.2. If E = O, by (4.2) we
have F(Dw,O) = Dw,F; in particular, this object is indecomposable. It follows that Dw,O is
itself indecomposable.

(2) It is enough to prove that if v 6= w then Dv is not isomorphic to Dw. Using (4.2), it
is enough to prove this property when E = K or F. In this case, the claim follows from (1)
and [10, Lemma 2.5.3].

In complement to Corollary 4.7, let us note that if w = s1 · · · s`(w) is any reduced
expression for w, then Dw is characterized by the fact that it appears as a direct summand
of BS(s1, . . . , s`(w)), and does not appear as a direct summand of BS(s) for any sequence s
of simple reflections of length strictly less than `(w).

R 4.8. – When w = w0, the variety B̌w0
= B̌ is smooth, so that we have

Ěw0
= EB̌[dim B̌]. It follows that Dw0

= H•(B̌;E) = C.
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5. Tilting perverse sheaves and the functor V

In this section, we relate tilting sheaves on B to Soergel modules through a “functor V.”
As in characteristic 0 this functor is given by Hom( Pe,−) for an appropriate object Pe
in P(B)(B,E), where the morphism C → End( Pe) is obtained by “taking the logarithm
of the monodromy.” In § 5.3 we make sense of this “logarithm.” The rest of the argument
proceeds by reduction to the (known) case of coefficients K, by carefully developing the
constructions in the three settings of coefficients O, F and K, and exploiting, at each step,
the most favorable case to deduce the other ones via the functors F(−) and K(−).

The conventions of § 3.1 remain in effect. We also assume from now on that #F > 2.

5.1. Statement

The main result of this section is the following.

T 5.1. – There exist equivalences of additive categories

VE : Tilt(B)(B,E)
∼−→ SE,

such that the following diagram commutes (up to isomorphisms of functors):

Tilt(B)(B,K)

VK o
��

Tilt(B)(B,O)
F(−) //K(−)oo

VOo
��

Tilt(B)(B,F)

VFo
��

SK SO
F(−) //K(−)oo SF.

The proof of Theorem 5.1 requires a change in setting. Choose a prime number p 6= ` such
that there exists a primitive p-th root of unity in F (which is possible under our assumption
that #F > 2). In this section only, we replace the complex algebraic groupG by the reductive
algebraic group over Fp with the same root datum. Likewise, T ⊂ B and B are taken to be
defined over Fp, and Db

(B)(B,E) and Tilt(B)(B,E) are subcategories of the étale derived
category of B. So far, there is no harm in making this change: it is well known that this
“new”Db

(B)(B,E) (in the étale setting over Fp) is equivalent to the “old” one (in the classical
topology over C). See [24, Remark 7.1.4(ii)] for details.

The full constructible derived category Db
c (B,E), however, is rather different in the étale

and classical settings. In the étale setting, it contains “Whittaker-type” objects [13], which
will be a crucial tool in the proof.

5.2. Preliminary results

In this subsection we collect a few preliminary lemmas that will be needed in the section.

L 5.2. – Let P, F ∈ P(B)(B,O), and assume that P is projective. (In particular,
this implies that F( P) is perverse; see [24, Proposition 2.4.1].)

1. If F( F ) is perverse, then the O-module Hom( P, F ) is free, and the natural morphism

F⊗O Hom( P, F )→ Hom
(
F( P),F( F )

)
is an isomorphism.

2. If F( P) ∼= F( F ), then P ∼= F .
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Proof. – (1) follows from the argument of the proof of [24, Proposition 2.4.1(ii)]: in fact
we have

F
L
⊗O RHom( P, F ) ∼= RHom(F( P),F( F )).

Now the left-hand side is concentrated in nonpositive degrees, and the right-hand side in
nonnegative degrees (since F( P) and F( F ) are perverse). Hence both of them are concen-
trated in degree 0, which implies our claim.

To prove (2), we observe that F⊗OHom( P, F ) ∼= Hom(F( P),F( F )) by (1). Choose some
isomorphism g : F( P)

∼−→ F( F ), and let f : P → F be a morphism such that F(f) = g. Then
the cone of f is annihilated by the functor F(−) (since F(f) is an isomorphism), so it is zero
(see [24, Lemma 2.2.1]). In other words, f is an isomorphism.

A standard construction (see e.g., [14, § 3.2]) defines a “convolution product”

(−) ?B (−) : Db
(B)(B,E)×Db

B(B,E)→ Db
(B)(B,E).

(Here, Db
B(B,E) is the B-equivariant constructible derived category in the sense of

Bernstein-Lunts [12].(4)) The objects ∆w, w ∈ W have obvious analogues in Db
B(B,E),

which we denote the same way. The following lemma is well known; see [9, § 2.2] or [14,
Lemma 3.2.2].

L 5.3. – If v, w ∈W and `(vw) = `(v) + `(w) then we have

∆v ?
B ∆w

∼= ∆vw, ∇v ?B ∇w ∼= ∇vw.

We finish with another easy lemma, which is probably well known too.

L 5.4. – Let V be a finite-rank free O-module, endowed with a perfect pairing(5) κ,
and let M ⊂ V be a submodule such that the restriction of κ to M is also nondegenerate. If
M⊥ := {v ∈ V | ∀m ∈ M, κ(v,m) = 0} is the orthogonal to M , then the natural morphism
M ⊕M⊥ → V is an isomorphism.

Proof. – Since our O-modules are free, it suffices to prove that the image of our
morphism under the functor F⊗O (−) is an isomorphism. Now we observe that the natural
map F⊗O M → F⊗O V is injective (otherwise the restriction of κ toM could not be nonde-
generate), that the restriction of the bilinear form κF on F⊗O V induced by κ to the image of
this morphism is nondegenerate, and finally that the natural morphism F⊗O M

⊥ → F⊗O V

is injective and identifies F⊗OM
⊥ with the orthogonal complement of F⊗OM with respect

to κF. (Indeed, injectivity is easy to check. It is also clear that this morphism factors through
(F ⊗O M)⊥; we conclude by a dimension argument.) Hence our claim follows from the
analogous claim in the case of F-vector spaces, which is standard.

(4) In [12], Bernstein and Lunts work in a topological setting. However their constructions can be adapted to the
algebraic setting (in particular to the setting of étale derived categories), see e.g., [33, § 3.1] for a detailed treatment.
(5) Here we mean a symmetric bilinear form κ : V × V → O which induces an isomorphism V

∼−→ HomO(V,O).
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5.3. Logarithm of the monodromy

Theorem 5.1 is proved in case E = K in [14]. The main tool of this proof is the “logarithm
of monodromy” construction. In our modular (or integral) setting this construction cannot
be performed directly. In this subsection we introduce a replacement which is available in our
context.

We denote by EY the group algebra of Y = X∗(T ) (over E). We will also consider the
completion

ÊY, resp. Ŝ,

of EY, resp. S, for the topology associated with the ideal m generated by elements of the
form y− 1 for y ∈ Y, resp. the ideal generated by h. Each of these algebras is endowed with
a natural action of W .

The following result will be crucial in this section. (But the details of the proof will not be
needed.)

P 5.5. – There is a continuous, W -equivariant algebra isomorphism

Ŝ
∼−→ ÊY

which identifies h · Ŝ with m · ÊY.

R 5.6. – If E = K there is a natural choice for the isomorphism of Proposi-
tion 5.5, namely the logarithm. This is the choice made (from a different point of view)
in [14]. However, for us it will be more convenient to choose such isomorphisms over O, K,
and F which are compatible (in the obvious sense).

To prove Proposition 5.5 we adapt an argument from [5], which itself relies on a technical
result from [30]. To explain this we need some preparation. Observe first that it is enough
to prove the proposition in the case where the root system of G is irreducible (in addition
to satisfying the assumptions of § 3.1). Therefore, from now until the end of the proof of
Proposition 5.5, we assume that G is either GLn(Fp) or else a simple group (of adjoint type)
not of type A.

If G = GLn(Fp), we set G̃ := GLn(E), and we let T̃ ⊂ G̃ denote the maximal torus of
diagonal matrices. Otherwise, we choose a split simply-connected semisimple E-group G̃, a
maximal torus T̃ ⊂ G̃, and an isomorphism Y ∼= X∗(T̃ ) which identifies the coroot system
of (G,T ) with the root system of (G̃, T̃ ). We denote by g̃, resp. t̃, the Lie algebra of G̃, resp. T̃ .
Note that in all cases the Weyl group of (G̃, T̃ ) can be identified with W and there exists a
W -equivariant isomorphism h ∼= HomE(̃t,E).

L 5.7. – There exists a free E-module V , a representation σ : G̃ → GL(V ) whose
differential dσ is injective, and a subspace i ⊂ gl(V ) such that

1. gl(V ) = dσ(g̃)⊕ i;
2. i is stable under the (adjoint) action of G̃.
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Proof. – If G = GLn(Fp) then G̃ ∼= GLn(E) and we can take V = En, i = {0}. So we
assume that G̃ is simply connected and quasi-simple, not of type A. If E = K or F the result
is proved in [30, Lemma I.5.3]. If E = O, one can repeat the arguments in the proof in loc. cit.
to choose a free O-module V and a representation σ : G̃ → GL(V ) whose differential is
injective, and such that the symmetric bilinear form κ : (X,Y ) 7→ tr(XY ) on gl(V ) restricts
to a nondegenerate form on dσ(g̃). (In fact it is enough to check the latter condition after
specializing O to F; in this case it is proved in loc. cit.) Then the orthogonal complement of g̃
with respect to κ provides the desired choice for i, by Lemma 5.4.

Proof of Proposition 5.5. – We fix V , σ, i as in Lemma 5.7. We observe that the compo-
sition

G̃
σ−→ GL(V )→ gl(V )→ dσ(g̃)

∼−→ g̃
(where the second morphism sends x to x−1 and the third one is the projection with respect
to the decomposition gl(V ) = dσ(g̃) ⊕ i) defines a G̃-equivariant morphism sending 1

to 0 and whose differential at 1 is the identity. Restricting to T̃ -fixed points, we obtain a
W -equivariant morphism T̃ → t̃ with the same properties. The latter morphism is defined
at the level of algebras of functions by a W -equivariant morphism S → EY which sends hS
inside m. (Recall that we have h ∼= HomE(̃t,E) and Y ∼= X∗(T̃ ).) Completing this map we
obtain the desired isomorphism Ŝ

∼−→ ÊY.

From now on we fix an isomorphism as in Proposition 5.5. More precisely we fix such
an isomorphism for E = O, and deduce similar isomorphisms for K and F by extension of
scalars.

As explained in [14, § A.1], the construction of [31, § 5] provides, for any F inDb
(B)(B,E),

a group homomorphism (called monodromy)

(5.1) T`(T )→ Aut( F ),

where T`(T ) = lim←−{z ∈ T (Fp) | z`
n

= 1} is the `-adic Tate module of T and
Aut( F ) is the group of automorphisms of F . More precisely, to define this morphism we
consider theU -equivariant derived categoryDb

U (B,E) whereU is the unipotent radical ofB
(see Appendix A), and we observe that the forgetful functor Db

U (B,E) → Db
c (B,E) is

fully faithful (see Proposition A.5), with essential image Db
(B)(B,E); hence we can identify

these categories. Then we observe that Db
U (B,E) is naturally equivalent to the category

Db
Bop(U\G,E), where the Bop-action on U\G is induced by right multiplication on G. Now

we have the T -torsor U\G→ B\G, so that we are in the setting of [14, § A.1].

Let us fix once and for all a topological generator of the `-adic Tate module

T`(Gm) = lim←−
{
ζ ∈ F×p | ζ`

n

= 1
}
.

This choice determines a group homomorphism Y → T`(T ), and hence, via (5.1), an action
Y → Aut( F ) for any F ∈ Db

(B)(B,E). We extend this to an algebra map

µ′F : EY → End( F ).

It is shown in [31] that monodromy commutes with all morphisms in Db
(B)(B,E), in the

sense that if x ∈ EY, F , G ∈ Db
(B)(B,E) and f : F → G is a morphism then we have
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f ◦µ′F (x) = µ′G(x) ◦ f . (In other words, µ′(−) defines a morphism from EY to the algebra of

endomorphisms of the identity functor of Db
(B)(B,E).)

It is easily checked that for all y ∈ Y and F ∈ Db
(B)(B,E) the morphism µ′F (y) is

unipotent. Hence µ′F can be extended to a morphism ÊY → End( F ). Composing with the
isomorphism of Proposition 5.5 we obtain an algebra morphism

µ F : Ŝ → End( F ),

which will play the role of the logarithm of µ′ as considered in [14]. This construction is
compatible with extension of scalars in the natural sense.

R 5.8. – If F ∈ P(B)(B,E), then it follows from definitions that F is B-equiv-
ariant iff µ′F (m) = {0}, i.e., iff µ F (h) = {0}.

5.4. The functors V and V′

In this subsection we define the functor V which will provide the equivalence of
Theorem 5.1, and a variant denoted V′.

We begin with a lemma, whose proof can be copied from [14, Lemma 4.4.7] or [9, § 2.1].

L 5.9. – Assume that E = K or F. For any w ∈W ,

1. the socle of ∆w is isomorphic to IC e, and [∆w : IC e] = 1;
2. the head of ∇w is isomorphic to IC e, and [∇w : IC e] = 1.

In the following corollary we come back to the general setting where E is either K, O, or F.
Recall the object Pe defined in § 2.3.

C 5.10. – 1. For any w ∈W we have ( Pe : ∆w) = 1.
2. There exist isomorphisms F( PO

e ) ∼= PF
e , K( PO

e ) ∼= PK
e .

Proof. – The first isomorphism in (2) follows from the definition of PO
e ; see § 2.7. Hence

it is enough to prove (1) when E = K or F. In this case, the claim follows from Lemma 5.9 (2)

and the reciprocity formula in the highest weight category P(B)(B,E). To prove the second

isomorphism in (2) we note that PK
e is a direct summand in K( PO

e ) (see again § 2.7). And
by (1) these objects have the same length, so they must be isomorphic.

R 5.11. – As suggested to us by G. Williamson, one can also prove the second
isomorphism in Corollary 5.10(2) as follows. By the last equality in the proof of Theorem 2.6,
the isomorphism is equivalent to the claim that ICF

e does not appear as a composition factor
of any F( ICO

w) with w 6= e. However if w 6= e then ICO
w is a shifted pullback of a perverse

sheaf on a minimal partial flag variety Ps for some simple reflection s. Hence the same
holds for F( ICO

w); in particular, all the composition factors of this perverse sheaf are of the
form ICF

v with vs < v in the Bruhat order.
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Let us set A := End( Pe). Observe that, by Lemma 5.2(1), AO is free as an O-module.
Moreover, if we fix isomorphisms as in Corollary 5.10(2), we obtain isomorphisms of alge-
bras

(5.2) F(AO) ∼= AF, K(AO) ∼= AK.

The construction of § 5.3 allows us to define a morphism

(5.3) S ↪→ Ŝ
µ Pe−−→ End( Pe) = A.

This collection of morphisms is compatible with extension of scalars in the obvious sense.

L 5.12. – The morphism (5.3) factors through a morphism φ : C → A. IfE = K, this
morphism is an isomorphism. If E = O, it is injective and the cokernel is a torsion O-module.

Proof. – These claims are well known in case E = K; see § 5.8 below. (See also [27] or [11]
for earlier proofs based on representation theory.) Now, consider the case E = O. By the
remarks above we have a commutative diagram

SO

��

(5.3)O // AO� _

��
SK

(5.3)K // AK.

Since the morphism on the second line is trivial on (SK)W+ , we deduce that the morphism on
the first line must be trivial on (SO)W+ . The resulting morphism φO is such that K(φO) = φK
is an isomorphism (under the second isomorphism in Lemma 3.1(2)). Since both O-modules
are free (see the remarks above and Lemma 3.1(3)), we deduce that φO is injective, and that
its cokernel is torsion.

Using a similar argument, the case E = F follows from the case E = O using Lemma 3.1(1).

Lemma 5.12 and (5.2) imply in particular that the algebra A is commutative (since C is).
We will denote byA-mod, resp.C-mod, the additive category of finitely generatedA-modules,
resp. C-modules, which are free over E. Consider the functors

V′ := Hom( Pe,−) : Tilt(B)(B,E)→ A-mod, ι : A-mod→ C-mod

(here ι is restriction of scalars with respect to φ) and

V := ι ◦ V′.

(In case E = O, the fact that V′ takes values in A-mod follows from Lemma 5.2(1).) By
Lemma 5.2(1) again, the functor V′ commutes with F(−) and K(−) via isomorphisms (5.2).
The same is clearly true for ι, and hence also for V.

L 5.13. – 1. If E = K or O, the functor ι is fully faithful.
2. If E = K or F, the functor V′ is fully faithful.

Proof. – (1) follows from Lemma 5.12 (and the definition of A-mod in case E = O).

(2) follows from Lemma 5.9; see the arguments in [9, § 2.1].
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R 5.14. – If w = w0, by Remark 4.8 we have Dw0
= C. Moreover, once

Theorem 5.1 is established, one can check that V( T w0
) = Dw0

(see § 6.1 below), and that
T w0

∼= Pe (see Proposition 5.26 below). It follows that we have A ∼= C in all cases, and that
ι is an equivalence. However we were not able to prove these facts directly, so that we have to
distinguish these two algebras for the moment.

5.5. Artin-Schreier sheaf and averaging functors

Recall that we have chosen p such that there exists a primitive p-th root of unity in F,
and hence also in O. Let us fix such a p-th root of unity, and denote by ψO : Z/pZ ↪→ O×

the associated group homomorphism. We define ψF and ψK in the obvious way. These
morphisms allow us to define the Artin-Schreier sheaf ASE

ψ over Ga (where Ga is the additive
group overFp) forE = O,K, orF. (Recall that ASE

ψ is defined as theψ-invariants in the direct
image of the constant sheaf under the morphismGa → Ga sending x to xp−x, a Galois cover
with Galois group Z/pZ.) By definition, this sheaf satisfies

(5.4) H•(Ga,ASψ) = H•c(Ga,ASψ) = 0,

and it is multiplicative in the sense of Appendix A.

We denote by g the Lie algebra of G and, for α a root, by gα ⊂ g the corresponding root
subspace. If s is a simple reflection, associated with the simple root α, we denote by Us ⊂ U
the subgroup whose Lie algebra is gα, by U−s ⊂ U− the subgroup whose Lie algebra is g−α,
and by Us ⊂ U the normal subgroup which is the unipotent radical of the minimal standard
parabolic subgroup of G associated with s.

Let us fix, for each s, a group isomorphism U−s
∼= Ga, and denote by χ : U− → Ga the

morphism obtained as the composition

U− � U−/[U−, U−] ∼=
∏
s

U−s
∼=
∏
s

Ga
+−→ Ga.

(Here s runs over simple reflections, ordered in an arbitrary way.) We set Lψ := χ∗ASψ. Then
Lψ is a multiplicative local system in the sense of Appendix A, so that we can consider the
equivariant derived category Db

U−, Lψ
(B,E). One can also consider the equivariant derived

category Db
U (B,E), which is canonically equivalent to Db

(B)(B,E), as explained in § 5.3.

As in [14], for ? = ! or ∗ we consider the functor

Avψ,? : Db
U (B,E)

For−−→ Db
c (B,E)

av?−−→ Db
U−, Lψ (B,E).

(See Appendix A for the notation.) Using (5.4) and copying the arguments in [13] (see
also [14, Lemma 4.4.3]), one can check that the natural morphism of functors Avψ,! → Avψ,∗
is an isomorphism. For simplicity, we will denote both of these functors by Avψ. Similarly,
for ? = ! or ∗ we have a functor

Av? : Db
U−, Lψ (B,E)

For−−→ Db
c (B,E)

av?−−→ Db
U (B,E).

The following lemma follows from Lemma A.3; the proof is identical to that of [14,
Lemma 4.4.5].

L 5.15. – The functor Avψ is right adjoint to Av! and left adjoint to Av∗.
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5.6. Partial analogues

For s a simple reflection, we set Vs := U−s U
s, and we denote by Lsψ the pullback of ASψ

along the morphism

Vs = U−s U
s � U−s

∼−→ Ga.

(Here, the first morphism is projection to U−s .) The local system Lsψ is multiplicative, so as
above we can consider the triangulated category Db

Vs, Lsψ
(B,E).

As observed in § A.2 we have a (partial) forgetful functor For′ : Db
U (B,E)→ Db

Us(B,E).

On the other hand, for ? = ! or ∗, since U−s commutes with Us, the functor av
U−s , L

s
ψ

? induces
a functorDb

Us(B,E)→ Db
Vs, Lsψ

(B,E). (Here, by abuse we denote by Lsψ the Artin-Schreier

sheaf on U−s ∼= Ga.) We denote by

Avsψ,? : Db
U (B,E)→ Db

Vs, Lsψ
(B,E)

the composition of these functors. As above one can show that the natural morphism
Avsψ,! → Avsψ,∗ is an isomorphism, so that one can identify these functors and denote them
by Avsψ.

Similarly, we have functors

Avs! , Avs∗ : Db
Vs, Lsψ

(B,E)→ Db
U (B,E)

defined as the composition of the partial forgetful functor For′′ : Db
Vs, Lsψ

(B,E)→ Db
Us(B,E)

with the averaging functors Db
Us(B,E) → Db

U (B,E) with respect to Us. (To show that the
functor avUs? induces such a functor, we observe that any object in the essential image
of Db

Us(B,E) in Db
c (B,E) is of the form ForU

s

◦ avU
s

? ( G); then the claim follows from the
observation that ForUs ◦ avUs? ◦ ForU

s

◦ avU
s

?
∼= ForU ◦ avU? .)

The proof of the following lemma is analogous to that of Lemma 5.15.

L 5.16. – The functor Avsψ is right adjoint to Avs! and left adjoint to Avs∗.

The same procedure also allows us to define a functor

Ãvs! : Db
U−, Lψ (B,E)

For−−→ Db
U−s , Lsψ

(B,E)
avU

s

!−−−→ Db
Vs, Lsψ

(B,E).

L 5.17. – There exists an isomorphism of functors Avs! ◦ Ãvs!
∼= Av!.

Proof. – The claim follows from the observation that the composition

Db
U−s , Lsψ

(B,E)
avU

s

!−−−→ Db
Vs, Lsψ

(B,E)
For−−→ Db

Us(B,E)

is isomorphic to the composition

Db
U−s , Lsψ

(B,E)
For−−→ Db

c (B,E)
avU

s

!−−−→ Db
Us(B,E)

and easy facts on compositions of forgetful (resp. averaging) functors.
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5.7. Application to projective covers

From now on we will identify the categoriesDb
U (B,E) andDb

(B)(B,E) in the natural way,
as explained in § 5.3. With this identification, the various functors introduced in § 5.5 allow
us (following [14]) to give an explicit construction of Pe.

L 5.18. – There exists an isomorphism Av!Avψ( IC e) ∼= Pe.

Proof. – By Lemma 5.2(2) it is enough to prove the result in case E = K or F. The case
E = K is treated (in a slightly different setting) in [14, Lemma 4.4.11], and the case E = F is
similar: it is enough to prove that

Homi(Av!Avψ( IC e), ICw) =

{
E if w = e and i = 0;

0 otherwise.

Using Lemma 5.15, this easily follows from the fact that Avψ( ICw) = 0 for w 6= e; see the
argument in [14, Lemma 4.4.6].

R 5.19. – Under the isomorphism of Lemma 5.18, the projection Pe � IC e can
be realized as the adjunction morphism Av!Avψ( IC e)→ IC e.

To introduce further notation, we fix a simple reflection s. Below we will make use of the
functor

ξs := Avs! ◦Avsψ : Db
(B)(B,E)→ Db

(B)(B,E).

These functors over O, K and F commute with K(−) and F(−). The same arguments as for
Lemma 5.18 allow to prove that we have

(5.5) ξs( IC e) ∼= T s.

(Here we use the fact that T s is the projective cover of IC e in the abelian category P(B)(Bs,E).
This fact is well known; it can also be deduced from the case G = GL2(Fp) of Proposi-
tion 5.26 below.) As above, if E = K or F the adjunction morphism T s ∼= ξs( IC e) → IC e
realizes IC e as the head of T s.

Finally, it is easy to check that ξs commutes with convolution in the sense that, with
the notation introduced in § 5.2, for any F in Db

(B)(B,E) and G in Db
B(B,E), there is a

functorial isomorphism

(5.6) ξs( F ?B G) ∼= ξs( F ) ?B G.

We set
Pse := Ãvs! Avψ( IC e) ∈ Db

Vs, Lsψ
(B,E).

Using arguments similar to the ones above one can check that, if E = K or F, Pse is the
projective cover in the category PVs, Lsψ (B,E) of (Vs, L

s
ψ)-equivariant perverse sheaves of

the simple object supported on Bs, and also the indecomposable tilting object in this highest
weight category whose support is maximal. (We will use these claims only in case E = K, in
which case they follow from [14, Corollary 5.5.2].)

By construction and Lemma 5.17 we have

(5.7) Avs! ( Pse) ∼= Pe.
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In particular, there exists a natural morphism

(5.8) Pe ∼= Avs! ( Pse)→ Avs! AvsψAvs! ( Pse) = ξs( Pe)

where the middle arrow is induced by adjunction; see Lemma 5.16.

5.8. The case E = K

In this subsection we assume that E = K, and we state some results which are known in
this case, mainly thanks to [14].

L 5.20. – Assume E = K. The morphism End( Pse) → End( Pe) induced by the
functor Avs! (see (5.7)) is injective. Moreover, via the isomorphism of Lemma 5.12, its image
is identified with Cs. In other words, there exists a unique isomorphism Cs

∼−→ End( Pse) which
makes the following diagram commutative:

Cs

o
��

� � // C

o Lem. 5.12
��

End( Pse)
Avs! // End( Pe).

Proof. – Thanks to the “self-duality” of [14, § 5.3] and the “paradromic-Whittavariant
duality” of [14, § 5.5] (with Θ = {s}) we have a commutative diagram

H•(P̌s;K)

o
��

� � (π̌s)∗ // H•(B̌;K)

o
��

End( Pse)
Avs! // End( Pe).

Here we have used the following facts:

1. under the equivalence of [14, Theorem 5.3.1], (the mixed analogue of) Pe = T w0

corresponds to (the mixed analogue of) ǏCw0 ;
2. under the equivalence of [14, Theorem 5.5.1], (the mixed analogue of) Pse-–which

coincides with the object denoted T sw0,χ in [14]—corresponds to (the mixed analogue
of) the constant perverse sheaf on P̌s;

3. these equivalences intertwine (the mixed analogue of) the functors Avs! and (π̌s)∗[1],
cf. [14, Theorem 5.5.1(2)];

4. these equivalences also induce isomorphisms between Hom-spaces in the “non-mixed”
categories, cf. [14, Theorem 5.3.1(4) & Theorem 5.5.1(5)].

On the right-hand side one can identify H•(B̌;K) with C; see Proposition 4.1. The
resulting isomorphism C

∼−→ End( Pe) might not be the isomorphism of Lemma 5.12
(see Remark 5.6), but the two isomorphisms differ by a W -equivariant automorphism of C.
Then one concludes using Corollary 4.2.

Using Lemma 5.20 we can consider the functors

Ṽ := Hom( Pe,−) : PU (B,K)→ C-mod,

Ṽs := Hom( Pse,−) : PVs, Lsψ (B,K)→ Cs-mod.
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(Here, PU (B,K) and PVs, Lsψ (B,K) are the categories of perverse sheaves in the cate-
gories Db

U (B,K) and Db
Vs, Lsψ

(B,K), respectively; the t-structure is induced by the one

on Db
c (B,K).) Since Pe, resp. Pse, is the projective cover of a simple object in PU (B,K),

resp. PVs, Lsψ (B,K), these functors are quotient functors, as explained in [28, § 2.2].

By (5.7) and Lemma 5.16, we have Ṽs◦Avsψ
∼= ResCCs◦Ṽ, where ResCCs : C-mod→ Cs-mod

is the restriction functor. By a standard argument (see e.g., [28, Remark 2.2.4]) one deduces
a canonical isomorphism of functors Ṽ ◦ Avs! (−) ∼= C ⊗Cs Ṽs(−), and hence a canonical
isomorphism of functors

(5.9) C ⊗Cs Ṽ(−)
∼−→ Ṽ ◦ ξs(−).

By construction, this isomorphism sends x⊗f (where x ∈ C and f ∈ Ṽ( F ) = Hom( Pe, F ))
to the composition

Pe
φ(x)−−−→ Pe

(5.8)−−−→ ξs( Pe)
ξs(f)−−−→ ξs( F ).

5.9. The functors ξs and tilting perverse sheaves

In this subsection we fix a simple reflection s.

L 5.21. – 1. For allw ∈W , ξs(∆w) is perverse, and admits a standard filtration with
associated graded ∆w ⊕∆sw.

2. For all w ∈ W , ξs(∇w) is perverse, and admits a costandard filtration with associated
graded∇w ⊕∇sw.

3. ξs restricts to an endofunctor of Tilt(B)(B,E).

Proof. – Let us prove (1). First we assume that sw > w. Then by (5.5) and (5.6) we have

ξs(∆w) = ξs( IC e ?B ∆w) ∼= ξs( IC e) ?B ∆w
∼= T s ?B ∆w.

Now T s fits in an exact sequence ∆s ↪→ T s � ∆e, and we conclude using Lemma 5.3. If
sw < w then similarly we have

ξs(∆w) = ξs(∆s ?
B ∆sw) ∼= ξs(∆s) ?

B ∆sw.

Now we have an exact sequence IC e ↪→ ∆s � IC s, and as in the proof of Lemma 5.18 we
have ξs( IC s) = 0. Hence ξs(∆s) ∼= ξs( IC e). Then one can conclude as in the first case.

The proof of (2) is similar to that of (1). Finally, (3) is an obvious consequence of (1)
and (2).

If T is in Tilt(B)(B,E), we consider the map

(5.10) C ⊗E V( T )→ V
(
ξs( T )

)
sending x ∈ C and f ∈ V( T ) = Hom( Pe, T ) to the composition

Pe
φ(x)−−−→ Pe

(5.8)−−−→ ξs( Pe)
ξs(f)−−−→ ξs( T ).

P 5.22. – The morphism (5.10) factors through an isomorphism of functors

C ⊗Cs V(−)
∼−→ V ◦ ξs(−).
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Proof. – In case E = K, this result was proved in § 5.8; see in particular (5.9). As in the
proof of Lemma 5.12, one can deduce (using Lemma 3.1(4)) that (5.10) factors through a
morphism of functors

C ⊗Cs V(−)→ V ◦ ξs(−),

first for E = O and then for E = F.

Using again an extension-of-scalars argument, to prove that the induced morphism is an
isomorphism for E = O or F it is enough to treat the case E = F. So we assume E = F from
now on. In this case it follows from Lemma 5.21 that ξs restricts to an exact endofunctor
of P(B)(B,F) = PU (B,F). One can also extend V to a functor Ṽ : P(B)(B,F) → C-mod,
and morphism (5.10) to a morphism of functors

C ⊗Cs Ṽ(−)→ Ṽ ◦ ξs(−).

(Indeed, since Ṽ is exact it is enough to prove that the morphism analogous to (5.10), where
now F is projective in P(B)(B,F), factors as claimed. This follows from the analogous
statement when E = O, which itself follows from the case E = K.) We will prove that the
latter morphism is an isomorphism. To prove this, by the five lemma it is enough to prove
that our morphism is an isomorphism when applied to ICw for any w ∈W .

First consider the case w 6= e. Then Ṽ( ICw) = 0, and Ṽ(ξs( ICw)) = 0. (Indeed, ICw is
the shifted pullback of a perverse sheaf on a minimal partial flag variety Pt for some simple
reflection t. It follows that ξs( ICw) has the same property, and hence cannot have IC e as a
composition factor.) Our morphism is thus trivially an isomorphism in this case.

Now, consider the case w = e. Then we have Ṽ( IC e) = F, and Ṽ(ξs( IC e)) = Ṽ( T s)
by (5.5). The vector spaces C ⊗Cs Ṽ( IC e) and Ṽ( T s) both have dimension 2, so to prove
that our morphism is an isomorphism it is enough to prove that it is surjective. The object T s
is indecomposable and has IC e as its head, so there exists a surjection g : Pe � T s.
Composition with g induces an isomorphism

End( T s)
∼−→ Hom( Pe, T s).

(Indeed, both vector spaces have dimension 2, and this map is injective because g is surjec-
tive.) Using this and the fact that monodromy commutes with all morphisms (see § 5.3), we
deduce that it is enough to prove that any endomorphism of T s can be written as a compo-
sition

T s
µ T s (x)
−−−−→ T s → ξs( T s) � ξs( IC e) ∼= T s

for some x ∈ Ŝ. (Here the second morphism is defined using adjunction in a way similar
to (5.8), and the third one is induced by the projection T s � IC e.) This claim would follow
if we prove the following properties:

1. the composition T s → ξs( T s)→ ξs( IC e) ∼= T s is an isomorphism;
2. the morphism µ T s : Ŝ → End( T s) is surjective.

Property (1) follows from general results on adjunction. To prove (2) we observe that the
perverse sheaf T s is not B-equivariant. (Indeed one can easily check that

Ext1
PB(B,F)(∆e,∆s) = HomDb

B(B,F)(∆e,∆s[1]) = 0,
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which implies our claim.) Hence there exists y ∈ Y such that µ′T s(y) is unipotent but not
equal to id, see Remark 5.8. Then the image of µ T s contains both id and µ′T s(y)− 1, so it is
the whole of End( T s).

5.10. Proof of Theorem 5.1

Recall the C-modules BS(s) and the category SE introduced in § 3.3.
If s = (s1, . . . , si) is a sequence of simple reflections we set

T (s) := ξsi · · · ξs1( IC e).

By Lemma 5.21, this object is a tilting perverse sheaf, i.e., an object of Tilt(B)(B,E). More-
over, by Lemma 5.22 we have

(5.11) V( T (s)) ∼= BS(s).

Since any indecomposable object in Tilt(B)(B,E) appears as a direct summand of T (s) for
some s (as follows from Lemma 5.21), we deduce the following proposition.

P 5.23. – The functorV factors through a functor Tilt(B)(B,E)→ SE (which
will be denoted similarly).

Finally we are in a position to finish the proof of Theorem 5.1.

Proof of Theorem 5.1. – The compatibility of V with F(−) and K(−) was noted in § 5.4.
Given (5.11), as in the proof of Theorem 4.5, to prove the equivalence it is enough to prove

that V is fully faithful. If E = K, this claim is known (see Lemma 5.13), so we only consider
the case E = O or F. Let T 1, T 2 ∈ Tilt(B)(B,O), and set T F

i := F( T i). Consider the
following commutative diagram:

FHom
(
T 1, T 2

)
o
��

a // FHomAO

(
V′( T 1),V′( T 2)

)
b

��

∼ // FHomCO

(
V( T 1),V( T 2)

)
o
��

Hom
(
T F

1, T
F
2

) ∼ // HomAF

(
V′( T F

1),V′( T F
2)
) c // HomCF

(
V( T F

1),V( T F
2)
)
.

Here we have simplified F⊗O Hom(−,−) to FHom(−,−). On each line, the first morphism
is induced by V′, and the second one by ι (so that the morphism from left to right is induced
by V). The invertibility of the second morphism on the first line (resp. of the first morphism
on the second line) follows from Lemma 5.13. The invertibility of the rightmost vertical
morphism follows from Corollary 4.6, in view of Proposition 5.23. Finally, the invertibility
of the leftmost vertical morphism follows from Proposition B.3(2).

Using the left part of the diagram we obtain that b is surjective, and using the right part we
obtain that b is injective. Hence it is an isomorphism, and then a and c are also isomorphisms.
This already proves fullness and faithfulness in case E = F. To prove it in case E = O, we
simply remark that the morphism

Hom
(
T 1, T 2

)
→ HomCO

(
V( T 1),V( T 2)

)
induced by V is a morphism between free O-modules of finite rank (see Proposition B.3(2)

for the left-hand side) which becomes invertible after applying F⊗O (−); hence it must be an
isomorphism.
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5.11. Complement: comparison of Pe and T w0

For completeness, we conclude this section with a (geometric) proof of the fact that
Pe ∼= T w0 . This fact is not used in the paper (except in the case G = GL2(Fp) in § 5.7), and
is well known when E = K.

L 5.24. – Assume that E = K or F. For any w ∈W , we have:

1. dim Hom(∆w,∆w0) = 1, and every nonzero map ∆w → ∆w0 is injective;
2. dim Hom(∇w0 ,∇w) = 1, and every nonzero map∇w0 → ∇w is surjective.

Proof. – We only prove (1); the proof of (2) is similar. It is well known (see e.g., [9, § 2.2])
that the functor

(−) ?B ∆w : Db
(B)(B,E)→ Db

(B)(B,E)

is an equivalence of categories, with inverse (−) ?B ∇w−1 . Hence we have

Hom(∆e,∆w0w−1) ∼= Hom(∆e ?
B ∆w,∆w0w−1 ?B ∆w) ∼= Hom(∆w,∆w0

)

(see Lemma 5.3). We deduce the first claim using Lemma 5.9.

L 5.25. – Assume that E = K or F. For any w ∈W , we have:

( T w0
: ∆w) = ( T w0

: ∇w) = 1.

Proof. – The first equality follows from the fact that T w0
is self-dual under Verdier

duality. The second equality follows from Corollary 5.10(1) and (2.1).

P 5.26. – We have T w0
∼= Pe.

Proof. – By Lemma 5.2(2) it is enough to prove the claim when E = K or F, which we
will assume in the proof. Lemma 5.25 implies that

(5.12) dim Hom( T w0
,∇w) = 1

for all w ∈W . We claim that

(5.13) any nonzero map T w0 → ∇w is surjective.

Indeed, in the special case w = w0 this is clear. Otherwise, it follows from (5.12) and
Lemma 5.24(2).

Next, we claim that

(5.14) Hom( T w0 , ICw) = 0 if w 6= e.

Indeed, if there were a nonzero map T w0 → ICw, we could compose it with the inclusion
ICw → ∇w to get a nonzero, nonsurjective map T w0 → ∇w, contradicting (5.13).

On the other hand, we know from (5.12) that dim Hom( T w0
, IC e) = 1. Combining

this with (5.14), we see that T w0
has a unique simple quotient, isomorphic to IC e. It must

therefore be isomorphic to a quotient of Pe. But Corollary 5.10 and Lemma 5.25 imply
that T w0

and Pe have the same length, so T w0
∼= Pe.
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6. Proof of Theorem 2.1

In this section we finish the proof of Theorem 2.1. We retain the conventions of § 3.1, and
we assume from now on that #F > 2. In particular, we continue to assume thatG is a product
of groups isomorphic either to GLn(C) or to an adjoint simple group that is not of type A,
so that the results of Sections 3–5 are available. As explained at the beginning of Section 3,
it suffices to prove Theorem 2.1 for groups of this form.

6.1. Construction of ν

We define the functor ν as the composition:

Parity(B̌)(B̌,E)
Thm. 4.5−−−−−−→
∼

Sgr For−−→ S Thm. 5.1−−−−−−→
∼

Tilt(B)(B,E),

and the isomorphism ε in the obvious way. It is clear by construction that this functor
satisfies condition (1) of Theorem 2.1. Condition (4) follows from the similar properties of
the functors H and V proved in Theorems 4.5 and 5.1, respectively.

Let us prove now that ν also satisfies condition (2). In fact, by definition we have
H( Ěw) = Dgr

w and Dw = For(Dgr
w ). Hence it is enough to check that V( T w) ∼= Dw−1 .

However, using Lemma 5.21 one can check that, if w = s1 · · · s`(w) is any reduced decom-
position of w, then T w is characterized by the fact that it appears as a direct summand
of T (s`(w), . . . , s1), but does not appear as a direct summand of any T (s) where s is a
sequence of simple reflections of length strictly less than `(w). Since Dw−1 admits a similar
characterization in terms of modules BS(s) (see § 4.4), we conclude using (5.11).

6.2. Proof of condition (3)

We will deduce condition (3) of Theorem 2.1 from (1) and (2). In fact, it is enough to
prove the formula when Ě = Ěw−1 for some w ∈W . Then by (2) the formula reduces to

(6.1) ( T w : ∇v) = rkE
(
H•(B̌v−1 , ı̌∗v−1 Ěw−1)

)
.

We first note that for v, w ∈W we have

rkE Hom( T v, T w) =
∑
u∈W

u≤v, u≤w

( T v : ∆u) · ( T w : ∇u) =
∑
u∈W

u≤v, u≤w

( T v : ∇u) · ( T w : ∇u).

(In the second equality we have used the Verdier self-duality of T v.) This formula allows us
to compute the numbers ( T w : ∇u) by induction if one knows the ranks of the Hom-spaces,
using the formula

(6.2) ( T w : ∇u) = rkE Hom( T u, T w)−
∑
x<u

( T u : ∇x) · ( T w : ∇x)

for u ≤ w.
We have a similar formula for parity sheaves. In fact from [21, Proposition 2.6] we deduce

rkE Hom•( Ěv−1 , Ěw−1) =
∑
u∈W

u≤v, u≤w

rkEH•(B̌u−1 , ı̌∗u−1 Ěv−1) · rkEH•(B̌u−1 , ı̌!u−1 Ěw−1)

=
∑
u∈W

u≤v, u≤w

rkEH•(B̌u−1 , ı̌∗u−1 Ěv−1) · rkEH•(B̌u−1 , ı̌∗u−1 Ěw−1).
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(Here again, the second equality uses Verdier self-duality of Ěw−1 . We also use the fact that
Ěv−1 , resp. Ěw−1 , is supported on the closure of B̌v−1 , resp. B̌w−1 .) This formula gives rise
to an inductive way of computing the ranks of the cohomology groups of stalks, using the
formula

rkEH•(B̌u−1 , ı̌∗u−1 Ěw−1) = rkE Hom•( Ěu−1 , Ěw−1)

(6.3)

−
∑
x<u

rkEH•(B̌x−1 , ı̌∗x−1 Ěu−1) · rkEH•(B̌x−1 , ı̌∗x−1 Ěw−1),

if u ≤ w.
Comparing Formulas (6.2) and (6.3) and using (1), one easily proves (6.1) by induction

on v.

Appendix A

(Twisted) equivariant derived categories for acyclic groups

A.1. Definitions

In this sectionX is either a complex algebraic variety equipped with the classical topology
(in which case k is an arbitrary Noetherian commutative ring of finite global dimension) or a
variety over Fp equipped with the étale topology (in which case k is a finite extension of Q`,
or its ring of integers, or a finite field of characteristic `, with ` 6= p). We denote byDb

c (X,k)

the constructible derived category of k-sheaves on X. We assume that an algebraic group V
(either over C or over Fp) which satisfies

(A.1) H•(V ;k) = k

acts on X, with action morphism a : V ×X → X. (This condition implies in particular that
V is connected.)

We let X be a rank-one local system on V which is a multiplicative sheaf, i.e., which is
endowed with an isomorphism

(A.2) m∗ X ∼−→ X � X

(where m : V × V → V is the multiplication map on V ) satisfying the obvious associativity
condition.

D A.1. – A (V, X)-equivariant complex on X is a pair ( F , β) where
F ∈ Db

c (X,k) and β is an isomorphism a∗ F ∼−→ X � F satisfying the usual cocycle
condition. A morphism of (V, X)-equivariant complexes is a morphism in Db

c (X,k) that
“commutes with β” in the obvious sense. The category of (V, X)-equivariant complexes
on X is denoted Db

V, X (X,k).

In the case where X = kV , we abbreviate Db
V, X (X,k) to Db

V (X,k). (We will see in
Remark A.6 below that the category Db

V (X,k) is equivalent to the V -equivariant derived
category of X in the sense of Bernstein-Lunts [12].)

We let
For : Db

V, X (X,k)→ Db
c (X,k)
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be the forgetful functor.

R A.2. – Consider the case X = V × Y , where Y is any variety and V acts by
left multiplication on itself. Let p2 : X → Y be the projection. Then p∗2 defines in an obvious
way a functor from Db

c (Y,k) to Db
V (X,k). We claim that this functor is an equivalence of

categories. Indeed, by (A.1) the functor p∗2 induces an isomorphism

HomDb
c (Y,k)( F , G)

∼−→ HomDb
c (X,k)(p

∗
2 F , p∗2 G).

From this it easily follows that the morphism

HomDb
V (X,k)(p

∗
2 F , p∗2 G)→ HomDb

c (X,k)(p
∗
2 F , p∗2 G)

induced by For is an isomorphism, and then that p∗2 is fully-faithful. To show that it is
essentially surjective it suffices to restrict the isomorphism β : (m × idY )∗ F ∼−→ kV � F
to the image of the embedding X → V ×X given by (v, y) 7→ (v, 1, y).

The functor Db
V (X,k)→ Db

c (Y,k) defined by p2∗ provides a quasi-inverse to p∗2.

A.2. Averaging functors

We will also consider two “averaging” functors

av! : D
b
c (X,k)→ Db

V, X (X,k),

av∗ : Db
c (X,k)→ Db

V, X (X,k)
defined by

av!( F ) = a!( X � F )[dimV ],

av∗( F ) = a∗( X � F )[dimV ].

In both cases, the isomorphism β is the natural one, obtained from the Künneth formula and
the base change theorem applied to the cartesian square

V × V ×X m×idX //

idV ×a ��

V ×X
a
��

V ×X a // X

using condition (A.2) and, in the second case, the fact that a and m are smooth morphisms.

L A.3. – The functor av! is left-adjoint to For[dimV ]. Similarly, av∗ is right-adjoint
to For[−dimV ].

Proof. – Let p1 : V×X → V and p2 : V×X → X be the projection maps. By Remark A.2
the functor p∗2 defines an equivalence fromDb

c (X,k) toDb
V (V ×X,k) (where V acts on V ×X

via left multiplication on V ), and the functor p2∗ : Db
V (V × X,k) → Db

c (X,k) is a quasi-
inverse (in particular a right adjoint) to p∗2. Similar remarks apply to p!

2 and p2!.
Let Q : Db

V (V × X) → Db
V, X (V × X) be the functor given by Q( G) = p∗1 X ⊗ G. This

functor is an equivalence of categories; the inverse is given by G 7→ p∗1 X−1⊗ G, where X−1 is
the dual local system to X on V . Now, av!

∼= a![dimV ] ◦Q ◦ p∗2, where a! is considered as a
functor fromDb

V, X (V ×X) toDb
V, X (X,k). So av! is left-adjoint to p2∗ ◦Q−1 ◦a![−dimV ] ∼=

p2∗ ◦Q−1 ◦ a∗[dimV ]. The latter is clearly isomorphic to For[dimV ].
Similarly, av∗ ∼= a∗ ◦Q ◦ p∗2[dimV ] ∼= a∗ ◦Q ◦ p!

2[− dimV ] is right-adjoint to
p2! ◦Q−1 ◦ a∗[dimV ] ∼= For[−dimV ].

L A.4. – The composition av! ◦ For[dimV ] : Db
V, X (X,k) → Db

V, X (X,k) is isomor-
phic to the identity functor.
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Proof. – By Lemma A.3 we have an adjunction morphism av! ◦ For[dimV ]→ id, and it
suffices to prove that this morphism is an isomorphism. Now if F is in Db

V, X (X,k) we have

av! ◦ For( F )[dimV ] = a!( X � F )[2 dimV ] ∼= a!a
∗( F )[2 dimV ]

∼= F
L
⊗k a!(kV×X)[2 dimV ]

by the projection formula. However by (A.1) we have H•c(V ;k) = k[−2 dimV ], hence
a!(kV×X) ∼= kX [−2 dimV ], and the claim follows.

As an immediate consequence, we obtain the following facts.

P A.5. – 1. The functor For : Db
V, X (X,k) → Db

c (X,k) is fully faithful. An
object F ∈ Db

c (X,k) is in the essential image ofDb
V, X (X,k) if and only if the adjunction

morphism F → For(av! F [dimV ]) is an isomorphism.
2. The essential image of For : Db

V, X (X,k) → Db
c (X,k) is a triangulated subcategory

ofDb
c (X,k). In particular, the categoryDb

V, X (X,k) has a natural triangulated structure.

Proof. – (1) is a corollary of Lemma A.4. Then (2) follows from the description of the
essential image of For together with standard facts on triangulated categories.

R A.6. – In the case X = kV , the category Db
V (X,k) is equivalent to the

constructible V -equivariant derived category in the sense of Bernstein-Lunts. Indeed
by [12, Theorem 3.7.3], under our assumption (A.1) the latter is also equivalent to a
full triangulated subcategory of Db

c (X,k). Moreover this full subcategory is generated
(as a triangulated subcategory) by constructible V -equivariant sheaves in the sense of [12,
§ 0.2], see [12, Proposition 2.5.3]. The similar claim for the essential image of our functor
For : Db

V (X,k)→ Db
c (X,k) is easy to check, which proves the claim.

Finally we remark that if V ′ ⊂ V is a closed subgroup which also satisfies (A.1), the
restriction X ′ of X toV ′ is multiplicative, and the functor For factors through a (fully faithful)
functor For′ : Db

V, X (X,k)→ Db
V ′, X ′(X,k).

Appendix B

Tilting perverse O-sheaves and Radon transform
(joint with Geordie Williamson(6))

In this section we denote by O the ring of integers in a finite extension K of Q`, and by F
its residue field. We use the letter E to denote either of K, O or F.

(6) Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111, Bonn, Germany. E-mail: geordie@mpim-bonn.
mpg.de.
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B.1. Notation

Let us consider an algebraic variety X endowed with a finite stratification

X =
⊔
s∈S

Xs

by locally closed subvarieties, and denote by is : Xs → X the inclusion. We assume that
each Xs is isomorphic to an affine space, and consider the derived category Db

S (X,O)

of complexes whose cohomology is constant on each stratum Xs, and the subcategory of
perverse sheaves PS (X,O). We assume either that X is defined over C and work with the
classical topology as in the main body of the paper, or that X is defined over Fp, with p 6= `,
and work with étale sheaves as in [24]. In the latter case we assume that the following
condition is satisfied:

(B.1) for all s, t ∈ S and n ∈ Z, H n(i∗t is∗OXs) is constant.

For any s ∈ S we denote by is : Xs → X the inclusion, and consider the objects

∆s := is!OXs [dimXs], ∇s := is∗OXs [dimXs].

Recall that, in this generality, a perverse sheaf T in PS (X,O) is called tilting if it admits
both a standard filtration (i.e., a filtration with subquotients of the form ∆t, t ∈ S ) and a
costandard filtration (i.e., a filtration with subquotients of the form∇t, t ∈ S ).

We can similarly consider the categories Db
S (X,F) and PS (X,F) of sheaves with coeffi-

cients in F, the objects

∆F
s := is!FXs [dimXs], ∇F

s := is∗FXs [dimXs],

and the corresponding notions of standard or costandard filtrations, and tilting perverse
sheaves.

We have a “modular reduction” functor

F := F
L
⊗O (−) : Db

S (X,O)→ Db
S (X,F)

which commutes with all the usual sheaf operations (derived direct and inverse images with
or without support, derived tensor product, bifunctors RHom and RH om). In particular,
this implies that

(B.2) F(∆s) ∼= ∆F
s and F(∇s) ∼= ∇F

s .

B.2. Tilting perverse sheaves: existence

In this subsection we show how standard arguments giving constructions of tilting
modules in highest weight categories (see [25, 16, 23]) can be adapted to prove the existence
of “enough” tilting objects in PS (X,O).

First, the following easy result can be proved as in [9, Proposition 1.3].

L B.1. – Let F be in PS (X,O). Then F admits a costandard filtration iff for
any t ∈ S , the object i!t F is a direct sum of copies of OXt [dimXt].

P B.2. – For any s ∈ S there exists a tilting object T in PS (X,O) supported
on Xs and such that i∗s T ∼= OXs [dimXs].
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Proof. – Assume (without loss of generality) that X = Xs. For any subset I ⊂ S , we
set XI :=

⊔
t∈I Xt. We will prove the following property by induction on #I:

(B.3)
for I ⊂ S containing s with XI ⊂ X open there exists a tilting

perverse sheaf T I in PS (XI ,O) extending OXs [dimXs].

The proposition is the case I = S of this property. Taking T = OXs [dimXs] shows
that (B.3) is satisfied with I = {s}.

So assume that {s} ⊂ I ⊂ S is arbitrary (with XI ⊂ X open), choose t ∈ I such that
Xt ⊂ XI is a closed stratum and write I = J ∪ {t}. By induction there exists a perverse
sheaf T J which satisfies (B.3) for J .

Let j : XJ ↪→ XI denote the (open) inclusion and set T pre
I := j! T J . Note that T pre

I is a
perverse sheaf since it has a filtration (in the triangulated sense) with subquotients ∆u, u ∈ J .
Now set

E := Ext1
PS (XI ,O)(∆I,t, T

pre
I ) = Ext1

Db
S (XI ,O)(∆I,t, T

pre
I )

which is a finitely generated O-module. (Here, in a minor abuse of notation, we still denote
by S the stratification of XI induced by S , and by ∆I,t the shifted !-push-forward of OXt
to XI , i.e., the standard object of PS (XI ,O) associated with t.) Let Efree be a finitely
generated free O-module endowed with a surjection to E, and set E∗free := HomO(Efree,O).
We have a natural map

O→ E∗free ⊗O E = E∗free ⊗O Ext1
PS (XI ,O)(∆I,t, T

pre
I ) ∼= Ext1

PS (XI ,O)(Efree ⊗O ∆I,t, T
pre
I )

and hence a canonical extension in PS (XI ,O)

(B.4) T pre
I ↪→ T I � Efree ⊗O ∆I,t

obtained as the image of 1 ∈ O.

We claim that T I is tilting. First, this object clearly has a standard filtration (as an object
of PS (XI ,O)). Now we show (using Lemma B.1) that it has a costandard filtration. For
any u ∈ I we denote by iIu : Xu ↪→ XI the inclusion, and similarly for J . For u 6= t, it is
easy to check that (iIu)! T I is a direct sum of copies of OXu [dimXu]: indeed in this case we
have iIu = j ◦ iJu , so (iIu)! T I = (iJu)!j! T I = (iJu)! T J . We conclude using the fact that T J has
a costandard filtration.

Now, consider the case u = t. We claim that

(B.5) ExtiDb
S (XI ,O)(∆I,t, T I) = 0 for i ≥ 1.

We first show that (B.5) holds for i = 1. Applying Hom(∆I,t,−) to (B.4) yields a long exact
sequence

· · · → HomDb
S (XI ,O)(∆I,t, Efree ⊗O ∆I,t)→ Ext1

Db
S (XI ,O)(∆I,t, T

pre
I )

→ Ext1
Db

S (XI ,O)(∆I,t, T I)→ Ext1
Db

S (XI ,O)(∆I,t, Efree ⊗O ∆I,t)→ · · ·

Now Ext1
Db

S (XI ,O)(∆I,t,∆I,t) = 0, so it only remains to see that the first arrow is surjective.
But under the canonical identification

HomDb
S (XI ,O)(∆I,t, Efree ⊗O ∆I,t) = Efree ⊗O HomDb

S (XI ,O)(∆I,t,∆I,t) = Efree
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this map corresponds to the surjectionEfree � E = Ext1
Db

S (XI ,O)(∆I,t, T
pre
I ) chosen above.

Hence this map is indeed surjective.

We now turn to (B.5) for i ≥ 2. Because T J has a costandard filtration, T pre
I = j! T J has

a filtration (in the triangulated sense) by objects of the form j!∇J,u for u ∈ J . (Note that
j!∇J,u need not be a perverse sheaf.) Hence it is enough to show that

Homi
Db

S (XI ,O)(∆I,t, j!∇J,u) = 0 for all u ∈ J and i ≥ 2.

Consider the distinguished triangles in Db
S (XI ,O)

(B.6) M → j!∇J,u → IC(XJ ,∇J,u)
[1]−→, IC(XJ ,∇J,u)→ j∗∇J,u → N

[1]−→ .

(Here, IC(XJ ,−) is the intermediate extension for the embedding j.) Note that both M
and N are supported on Xt. Moreover, N is perverse, and M is concentrated in nonpos-
itive perverse degrees. In particular, both of these objects are direct sums of objects of the
form (iIt )! L[dimXt + i], where L is a constant local system on Xt and i ≥ 0. It follows that
Homk

Db
S (XI ,O)(∆I,t, M) = Homk

Db
S (XI ,O)(∆I,t, N ) = 0 for k > 0. Applying Hom(∆I,t,−)

to the second triangle in (B.6) and using the fact that

Homi
Db

S (XI ,O)(∆I,t, j∗∇J,u) = Homi
Db

S (XI ,O)(∆I,t,∇I,u) = 0

for i ≥ 1, we get that ExtiDb
S (XI ,O)

(
∆I,t, IC(XJ ,∇J,u)

)
= 0 for i ≥ 2. Then applying the

same functor to the first triangle in (B.6) we get ExtiDb
S (XI ,O)(∆I,t, j!∇J,u) = 0 as claimed.

Property (B.5) implies that (iIt )
! T I is a perverse sheaf. To show that it is a shifted free

local system, it is enough to prove that F
(
(iIt )

! T I
)

= (iIt )
!F( T I) is in nonnegative perverse

degrees. However, F( T I) is a perverse sheaf since T I has a standard filtration, and (iIt )
! is

left exact. Hence indeed pH kF
(
(iIt )

! T I
)

= 0 for k < 0, which finishes the proof.

B.3. Tilting perverse sheaves: properties

In the case of coefficients F, it is well known that if s ∈ S there exists a unique indecom-
posable tilting perverse sheaf T F

s (up to isomorphism) which is supported on Xs, and such
that i∗s T F

s = FXs [dimXs]. Moreover, any tilting perverse sheaf in PS (X,F) is a direct sum
of objects T F

s for s ∈ S . (Although the case of coefficients F is not considered in [9], the
proofs generalize to this case. Alternatively, one can use the theory of highest weight cate-
gories, see [25].)

P B.3. – 1. For any tilting perverse sheaf T in PS (X,O), F( T ) is a perverse
sheaf. It is tilting in PS (X,F).

2. If T and T ′ are tilting perverse sheaves in PS (X,O), the O-module

HomPS (X,O)( T , T ′)

is free. Moreover, the natural morphism

F⊗O HomPS (X,O)( T , T ′) → HomPS (X,F)

(
F( T ),F( T ′)

)
is an isomorphism.

3. A tilting perverse sheaf T in PS (X,O) is indecomposable iff F( T ) is indecomposable.
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4. For any s ∈ S , there exists a unique indecomposable tilting perverse sheaf T s
in PS(X,O) supported onXs and such that i∗s T s ∼= O

Xs
[dimXs]. We haveF( T s) ∼= T F

s ,
and any tilting perverse sheaf in PS (X,O) is a direct sum of objects T s (s ∈ S ).

Proof. – The proof of (1) is immediate from (B.2). (2) follows from the facts that
T admits a standard filtration, and that T ′ admits a costandard filtration, together with the
property that

ExtiDb
S (X,O)(∆s,∇t) = 0 if i > 0,

and similarly for coefficientsF. Then (3) and (4) can be proved as in [24, Corollary 2.4.2].

R B.4. – From the uniqueness statement in Proposition B.3(4) one deduces that
DX( T s) ∼= T s for any s ∈ S , where DX denotes Verdier duality.

B.4. Extension of scalars

The results of this subsection are not used in this paper, but are needed in [2, 3]. For
simplicity, here we restrict to the case where X is defined over C.

Tilting perverse sheaves can also be defined when the coefficients are K. We use similar
notation as above in this case. We denote by TiltS (X,E) ⊂ PS (X,E) the additive full
subcategory whose objects are tilting perverse sheaves.

L B.5. – The natural functors

KbTiltS (X,E)→ DbPS (X,E)→ Db
S (X,E)

are equivalences of categories.

Proof sketch. – For E = K, this was proved in [9, Proposition 1.5]. The same proof
applies verbatim for E = F. Thanks to the results above (see also [24, Corollary 2.3.4]), these
arguments go through for E = O as well.

The preceding lemma makes it possible to interpret extension of scalars as the derived
functor of a functor between categories of perverse sheaves. Because F(−) : Db

S (X,O) →
Db

S (X,F) is right t-exact, it gives rise to a right exact functor of abelian categories
F0 := pH 0 ◦ F(−) : PS (X,O) → PS (X,F). Since PS (X,O) has enough projectives
(see [24, Corollary 2.3.3]), we can form its left derived functor LF0. On the other hand, by
Proposition B.3(1), F0 restricts to an additive functor TiltS (X,O)→ TiltS (X,F).

L B.6. – The following diagram commutes up to isomorphism of functors:

KbTiltS (X,O)
∼ //

KbF0

��

DbPS (X,O)
∼ //

LF0

��

Db
S (X,O)

F(−)

��
KbTiltS (X,F)

∼ // DbPS (X,F)
∼ // Db

S (X,F).

There is a similar commutative diagram for K(−).
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Proof. – For the right-hand square of this diagram, by adjunction, we may instead
check the commutativity of the corresponding diagram for the restriction-of-scalars functor
Db

S (X,F) → Db
S (X,O) coming from the map O → F. The latter functor is exact on

(ordinary, not perverse) sheaves, so it lifts to a suitable “filtered” version of Db
S (X,F).

In other words, it conforms to the setting of [6, Lemma A.7.1], which asserts the desired
commutativity.

We can now recast Proposition B.3(1) as follows: if T ∈ PS (X,O) is tilting, then
LF0( T ) is perverse and tilting.

For the left-hand square above, commutativity is a consequence of general properties of
derived functors. In more detail, recall that the derived functor LF0 comes equipped with a
natural transformation ε : LF0◦QO → QF◦KbF0, whereQE : KbPS (X,E)→ DbPS (X,E)

is the obvious functor for E = O or F. Moreover, for any object F ∈ PS (X,O) such that
LF0( F ) is perverse, the morphism ε F : LF0(QO( F )) → QF(KbF0( F )) is an isomorphism.
In particular, if T is tilting, then ε T is an isomorphism. Since KbTiltS (X,O) is generated
as a triangulated subcategory of KbPS (X,O) by tilting perverse sheaves, ε becomes an
isomorphism when we restrict the domain of QE to KbTiltS (X,E).

The argument for K(−) is similar and will be omitted.

B.5. Radon transform

In this subsection we recall the formalism of Radon transform (see [7, 9, 36]) and check
that it generalizes to coefficients in O. We follow the approach in [36] closely.

We let B be an algebraic group with maximal torus T and consider two B-varieties X
and Y with finitely manyB-orbits, each of which is isomorphic to an affine space. We denote
by

X =
⊔
s∈S

Xs, Y =
⊔
t∈T

Yt

the stratifications by B-orbits. In the étale case, these stratifications automatically satisfy
condition (B.1). We fix an open B-stable subvariety U ⊂ X × Y , and denote the natural
morphisms as follows:

X U
←−uoo

−→u // Y.

We will assume that the following conditions are satisfied (see [36, § 4.1]):

1. for any s ∈ S (resp. t ∈ T ),Xs (resp. Yt) contains a unique T -fixed point xs (resp. yt);
2. for each s ∈ S (resp. t ∈ T ), the open subset Y s := −→u (←−u −1(xs)) ⊂ Y (resp. Xt :=
←−u (−→u −1(yt)) ⊂ X) contains a unique T -fixed point yŝ for some ŝ ∈ T (resp. xt̂
for some t̂ ∈ S ) and contracts to that fixed point under some one-parameter
subgroup Gm ⊂ T (depending on s or t);

3. for each s ∈ S we have dimXs = codimY Yŝ.

It follows in particular from these assumptions that s 7→ ŝ and t 7→ t̂ are inverse bijections
between S and T . Note also that if dimX = dimY then these assumptions are symmetric
in X and Y . For s ∈ S and t ∈ T , we denote by iXs : Xs ↪→ X and iYt : Yt ↪→ Y the
inclusions.

R B.7. – Our assumptions are satisfied in the setting of § 2.3 by [36, §5.1].
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We set

RX→Y := −→u !
←−u ∗[dimY ] : Db

S (X,O)→ Db
T (Y,O),

RX←Y :=←−u ∗−→u ![−dimY ] : Db
T (Y,O)→ Db

S (X,O).

P B.8. – For any s ∈ S , t ∈ T there exist isomorphisms

RX→Y (∇s) ∼= ∆ŝ, RX←Y (∆t) ∼= ∇t̂.

Proof. – This proof is copied from [36, Proposition 4.1.3]. We only prove the first isomor-
phism; the proof of the second one is similar. For any v ∈ T (resp. w ∈ S ), let us denote
by jYv : {yv} ↪→ Y (resp. jXw : {xw} ↪→ X) the inclusion. As RX→Y (∇s) is T -constructible,
it is sufficient to show that for v ∈ T we have

(B.7) (jYv )∗RX→Y (∇s) ∼=

{
O[dimYu] if v = ŝ;

0 if u 6= ŝ.

By definition and the proper base change theorem we have

(jYv )∗RX→Y (∇s) = (jYv )∗−→u !
←−u ∗(∇s)[dimY ] ∼= H•c

(−→u −1(yv),
←−u ∗(∇s)|−→u−1(yv)

)
[dimY ].

Hence, again by definition, we obtain

(jYv )∗RX→Y (∇s) ∼= H•c(Xv,∇s|Xv )[dimY ].

Now, using assumption (2) and [26, Proposition 1] we have

H•c(Xv,∇s|Xv )[dimY ] ∼= k!
v̂∇s|Xv [dimY ],

where kv̂ : {xv̂} ↪→ Xv is the inclusion. As Xv ⊂ X is open, we finally obtain an
isomorphism

(jYv )∗RX→Y (∇s) ∼= (jXv̂ )!∇s[dimY ].

Now, let lv̂ : {xv̂} ↪→ Xv̂ be the inclusion. We have

(jXv̂ )!∇s[dimY ] ∼= l!v̂(i
X
v̂ )!∇s[dimY ].

If s 6= v̂ (or equivalently if v 6= ŝ) the right-hand side is zero, which proves (B.7) in this case.
If s = v̂, the right-hand side identifies with

l!v̂OXv̂ [dimY + dimXv̂] ∼= O[dimY − dimXv̂].

Using assumption (3), this finishes the proof of (B.7).

C B.9. – 1. The functors RX→Y and RX←Y are quasi-inverse equivalences of
categories between Db

S (X,O) and Db
T (Y,O).

2. For any tilting perverse sheaf T in PS (X,O), the object RX→Y ( T ) is a projective
perverse sheaf in PT (Y,O).

3. For any projective perverse sheaf P in PT (Y,O), the object RX←Y ( P) is a tilting perverse
sheaf in PS (X,O).
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Proof. – (1) This proof is copied from [36, Corollary 4.1.5]. Consider the morphism

(B.8) id→ RX←Y ◦ RX→Y

defined by adjunction. By Proposition B.8, this morphism is an isomorphism when applied
to any object∇s (s ∈ S ). By an easy induction on the number of strata, one can check that
these objects generate the category Db

S (X,O), which proves that (B.8) is an isomorphism.
A similar argument proves that the adjunction morphism RX→Y ◦ RX←Y → id is also an
isomorphism.

(2) This proof is copied from [36, Proposition 4.2.1]. Set P = RX→Y ( T ). As T has a
costandard filtration, by Proposition B.8 P is in the subcategory of Db

T (Y,O) generated by
objects ∆t under extensions, hence is a perverse sheaf. Now, let us show that it is projective,
i.e., that HomDb

T (Y,O)( P, M) = 0 for any M ∈ pDb
T (Y,O)<0. As pDb

T (Y,O)<0 is generated
(under extensions) by objects ∆t[m] for t ∈ T , m ∈ Z>0, it is sufficient to prove that
ExtiDb

T (Y,O)( P,∆t) = 0 for i > 0. Now we have, using Proposition B.8,

ExtiDb
T (Y,O)( P,∆t) ∼= ExtiDb

S (X,O)( T ,RX←Y (∆t)) ∼= ExtiDb
S (X,O)( T ,∇t̂),

which proves the claim since T has a standard filtration.
(3) The proof is similar to that of (2). Set T = RX←Y ( P). As P has a standard filtration,

by Proposition B.8 T is perverse and has a costandard filtration. It follows that DX( T ) is
also perverse. (Here DX is Verdier duality.) To prove that T has a standard filtration, it is
enough to prove that DX( T ) has a costandard filtration. By Lemma B.1, this would follow
if we can prove that ExtiDb

S (X,O)(∆s,D( T )) = 0 for i > 0 and is O-free for i = 0. This
follows from the chain of isomorphisms

ExtiDb
S (X,O)(∆s,DX( T )) ∼= ExtiDb

S (X,O)( T ,∇s)
∼= ExtiDb

T (Y,O)( P,RX→Y (∇s)) ∼= ExtiDb
T (Y,O)( P,∆ŝ)

(see (1) and Proposition B.8), using Lemma 5.2 and the fact that P is projective.
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