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LIPSCHITZ STRATIFICATIONS
IN O-MINIMAL STRUCTURES

 N NGUYEN  G VALETTE

A. – This paper establishes existence of Lipschitz stratifications in the sense of Mostowski
for sets which are definable in a polynomially bounded o-minimal structure. We also improve L. van
den Dries and P. Speissegger’s preparation theorem for definable functions.

R. – Cet article établit l’existence des stratifications lipschitziennes au sens de Mostowski
pour les ensembles définissables dans une structure o-minimale polynomialement bornée. On améliore
aussi le théorème de préparation de L. van den Dries et P. Speissegger.

Introduction

Stratifications naturally appear in many contexts of modern geometry. They are needed
to perform differential geometry on singular sets, to prove stability theorems, or to establish
finiteness properties. Recall that a stratification of a set X ⊂ Rn is a locally finite partition
of X into smooth submanifolds of Rn, called strata. We often generally require some extra
conditions on the strata in order to describe the way these sets glue together. The most
famous regularity conditions for stratifications are the Whitney’s conditions (a) and (b). One
can prove that many sets occurring in algebraic or analytic geometry, such as semi-algebraic
or subanalytic sets, do admit Whitney stratifications [16, 2, 7]. Whitney’s (b) condition turned
out to have many properties. It was used by R. Thom and then J. Mather to establish the now
famous isotopy lemmas.

The first Thom-Mather isotopy lemma ensures that if X has a Whitney (b) regular strati-
fication and if f : X → Rp is a proper continuous map which induces a submersion on every
stratum then f is a topologically trivial fibration. This is a generalization of Ehresmann’s
theorem to singular sets.

The topological equivalence considered in Thom-Mather isotopy lemma is often too weak
to investigate the geometry of singular sets. It was also observed that C1 equivalence is too
strong to investigate the stability of singularities since it admits continuous moduli even in
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400 N. NGUYEN AND G. VALETTE

the algebraic category. People therefore set about investigating an intermediate equivalence
relation: the bi-Lipschitz equivalence. Metric stability naturally appeared as an intermediate
notion between C1 and topological equivalence. Bi-Lipschitz equivalence provides a much
more accurate information than its topological counterpart. For instance, bi-Lipschitz maps
preserve the Hausdorff dimension and negligible sets.

In order to study the singularities from the metric point of view, T. Mostowski introduced
the Lipschitz stratifications [19]. These stratifications satisfy a bi-Lipschitz version of first
Thom-Mather isotopy lemma (Theorem 2.8). T. Mostowski also established that every
complex analytic set can be stratified in this way. Existence of Lipschitz stratifications was
then extended to the (real) semi-analytic and subanalytic sets by A. Parusiński ([20] [22]). We
show in this paper that every set which is definable in a polynomially bounded o-minimal
structure admits a Lipschitz stratification (Theorem 2.6). This generalizes Parusiński’s
theorem to a much wider class of sets enclosing, for instance, all the sets which are definable
in the quasi-analytic Denjoy-Carleman classes [25]. O-minimal structures have recently been
proved to have many applications to analysis. Their study from the metric point of view is
hence definitely of interest and valuable for applications.

Existence of Lipschitz stratifications for globally subanalytic sets was used for instance
in [3] in order to establish that the set of parameters at which the fibers of a globally suban-
alytic family have finite volume is globally subanalytic. The argument used in the latter
article indeed also applies to any o-minimal structure that admits Lipschitz stratifications.
Theorem 2.6 therefore makes it possible to extend this result to the o-minimal framework
(polynomially bounded). For families of surfaces, this result was obtained by T. Kaiser [8]
without using Lipschitz stratifications.

Bi-Lipschitz triviality of families that are definable in a polynomially bounded o-minimal
structure was proved by the second author without using integration of vector fields [26].

The polynomially bounded o-minimal structures are those which satisfy the so-called
Łojasiewicz inequality. These categories of sets can thus be considered as generalizations of
the semi-algebraic and subanalytic sets.

If it is well known that sets which are definable in an o-minimal structure (polynomially
bounded or not) admit Whitney regular stratifications [14, 15], it was however unclear
whether they admit Lipschitz stratifications. If the structure is not polynomially bounded
then it is possible to show that there is a definable set for which the bi-Lipschitz version of
Thom-Mather isotopy lemma (Theorem 2.8) does not hold (for any stratification of this set,
see Example 2.9). Consequently, Lipschitz stratifications do not always exist for definable
sets if the o-minimal structure is not required to be polynomially bounded. This is the reason
why this work definitely settles the issue of the existence of Lipschitz stratifications for sets
which are definable in an o-minimal structure expanding the real field.

The main ingredient of A. Parusiński’s proof of existence of Lipschitz stratifications for
subanalytic sets [22] is the Preparation Theorem (see also [13]). This theorem offers a nice
description of subanalytic functions (up to a partition) in terms of convergent series. This
statement unfortunately no longer holds true in the o-minimal framework. It is even actually
unclear whether the quasi-analytic o-minimal structures [25] satisfy a preparation theorem as
in [13, 22]. In [7], the authors have proved an o-minimal version of the preparation theorem
but this statement does not provide estimates on the partial derivatives of the unit (see
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LIPSCHITZ STRATIFICATIONS IN O-MINIMAL STRUCTURES 401

Definition 3.2, see also Remark (1) after Theorem 2.1 of [7]). One of the major difficulties of
the proof was therefore to achieve an adequate version of the preparation theorem. In this
article, we improve L. van den Dries and P. Speissegger’s preparation theorem by showing
that the unit can be expressed as a composite of a map with bounded derivative together with
a map of the same form as in the subanalytic setting (see [13, 22]). This result which is of its
own interest is one the key ingredients of the proof of existence of Lipschitz stratifications
for definable sets.

Acknowledgment. – This work was carried out in Cracow, while the first author was a guest
of the Polish Academy of Science. We thank this institution for its support and hospitality.
It is also our pleasure to thank David Trotman who asked the question which led us to write
this article.

1. Lipschitz stratifications in o-minimal structures

We start by recalling the notion of o-minimal structure. For a more detailed introduction
on the subject, we refer the reader to [6, 4].

1.1. O-minimal structures

A structure on an ordered field (R,+, .) is a family D = ( Dn)n∈N such that for each n the
following properties hold

(1) Dn is a Boolean algebra of subsets of Rn.
(2) If A ∈ Dn then R×A and A× R belong to Dn+1.
(3) Dn contains {x ∈ Rn : P (x) = 0}, where P ∈ R[X1, . . . , Xn].
(4) If A ∈ Dn then π(A) belongs to Dn−1, where π : Rn → Rn−1 is the standard

projection onto the first (n− 1) coordinates.

Such a family D is said to be o-minimal if in addition:

(5) Any set A ∈ D1 is a finite union of intervals and points.

A set belonging to the structure D is called a D-set (or a definable set) and a map whose graph
is in the structure D is called a D-map (or a definable map).

A structure D is said to be polynomially bounded if for each D-function f : R→ R, there
exists a positive number a and an n ∈ N such that |f(x)| < xn for all x > a.

Examples of polynomially bounded o-minimal structures are the semi-algebraic sets, the
globally subanalytic sets [5, 13] but also the so called xλ-sets [18, 13] as well as the structures
defined by the Denjoy-Carleman classes of functions [25].

Let p ∈ N. We say that a subset C of Rn is a Cp D-cell if

n = 1 : C is either a point or an open interval.
n > 1 : C is of one of the following forms

Γξ := {(x, y) ∈ B × R : y = ξ(x)},
(ξ1, ξ2) := {(x, y) ∈ B × R : ξ1(x) < y < ξ2(x)},

(−∞, ξ) := {(x, y) ∈ B × R : y < ξ(x)}
(ξ,+∞) := {(x, y) ∈ B × R : ξ(x) < y},

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



402 N. NGUYEN AND G. VALETTE

where B is a Cp cell of Rn−1, ξ, ξ1, ξ2 are D-functions of class Cp on B and
ξ1(x) < ξ2(x), ∀x ∈ B. The cell B is called the basis of C.

It is obvious that a Cp D-cell in Rn is a connected submanifold of Rn.
ACp cylindrical D-cell decomposition (Cp cdcd for short) of Rn is defined by induction as

follows

(i) A Cp cdcd of R is a finite collection of points and intervals

(a0, a1), . . . , (ak, ak+1), {a1}, . . . , {ak},

where −∞ = a0 < a1 < a2 < . . . < ak < ak+1 =∞.
(ii) A Cp cdcd of Rn is a partition C of Rn into Cp cells such that the collection of all

images of these cells under the natural projection onto the first (n − 1) coordinates
π : Rn → Rn−1 forms a Cp cdcd of Rn−1 (that will be denoted π(C)).

We say that a Cp cdcd of Rn is compatible with X = {X1, . . . , Xk}, a family of D-subsets
of Rn, if each Xi is the union of some Cp D-cells of the decomposition.

T 1.1 (Cell decomposition). – Let D = ( Dn)n∈N be an o-minimal structure and
fix p ∈ N.

(1) Given any family X = {X1, . . . Xk} of D-subsets of Rn, there exists a Cp cdcd of Rn

compatible with X .
(2) Let f : X → R be a D-function. There exists a Cp cdcd of Rn compatible with X such

that the restriction of f to each cell of the cdcd is of class Cp.

In the sequel, D = ( Dn)n∈N will stand for a fixed polynomially bounded o-minimal structure
on R and Λ for the set of all r ∈ R such that the function x 7→ xr is a D-function. Note that
such a Λ is a subfield of R. We will generally not mentionCp, but all the considered cdcd will
be Cp, with p ≥ 2.

2. Lipschitz stratifications

We recall the definition of the Lipschitz stratifications in the sense of Mostowski [19] and
state the Main Theorem of the article.

Let X be a D-subset of Rn. A D-stratification of X is a partition of X into finitely many
connected C2 D-manifolds(1), called strata. Let X1, . . . , Xm be a family of D-subsets of X.
We say that a D-stratification of X is compatible with X1, . . . , Xm if each Xi is a union of
some strata of this stratification.

Given a D-stratification Σ of X, denote by Xi the i-th skeleton of the stratification Σ,
which is union of all the strata of dimension less than or equal to i. We thus get a sequence
X = {Xi}di=l satisfying

(2.1) X = Xd ⊃ Xd−1 ⊃ · · · ⊃ X l

and such that each difference X̊i = Xi \ Xi−1 is an i-dimensional D-submanifold of Rn

or empty. The strata coincide with the connected components of X̊i. We will sometimes
abusively regard the sequence X as a stratification of X.

(1) A D-manifold in Rn is a submanifold which is also a D-subset of Rn.
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LIPSCHITZ STRATIFICATIONS IN O-MINIMAL STRUCTURES 403

In the above definition, we said D-stratification in order to emphasize that strata are
definable. Nevertheless, as we will only deal with definable strata, we will generally shorten
it into “stratification”.

D 2.1. – Let c > 1 be a fixed constant. A c-chain of q ∈ X̊j is a strictly
decreasing sequence of indices

j = j1 > j2 > · · · > jr = l

and a corresponding sequence of points qjs ∈ X̊js such that qj1 = q and each js is the greatest
integer for which

(2.2) d(q,Xk) ≥ 2c2d(q,Xjs) ∀k < js and |q − qjs | ≤ cd(q,Xjs),

where d(., .) denotes the usual distance function.

Roughly speaking, a c-chain is characterized by a sequence (js)s≤r such that the distances
from q to the subsequent skeletons Xjs increase rapidly. The successive qjs are then points
close to the points realizing these distances.

For each q ∈ X̊j , let Pq : Rn → TqX̊
j and P⊥q = Id − Pq : Rn → T⊥q X̊

j respectively
denote the orthogonal projections from Rn onto the tangent and normal spaces to X̊j .

D 2.2 (Mostowski, [19]). – A stratification X = {Xi}di=l is said to be a
Lipschitz stratification if for every c > 1 there is some C > 0 such that for every c-chain
{q = qj1 , . . . , qjr}, we have for every 1 ≤ k ≤ r,

|P⊥qj1Pqj2 . . . Pqjk | ≤ C
|q − qj2 |

d(q,Xjk−1)
;

and, for q′ ∈ X̊j1 and |q − q′| ≤ 1
2cd(q,Xj1−1) then

|(Pq − Pq′)Pqj2 . . . Pqjk | ≤ C
|q − q′|

d(q,Xjk−1)
;

in particular,

|Pq − Pq′ | ≤ C
|q − q′|

d(q,Xj1−1)
,

(set d(q,X l−1) = 1,∀q ∈ X).

R 2.3. – A Lipschitz stratification of a locally closed set X always satisfies the
frontier condition, in the sense that the closure in X of one stratum is the union of some
strata of the stratification. Indeed, the first inequality of the above definition entails Verdier
(w)-condition, which, in the framework of o-minimal structures, implies Whitney’s (b) condi-
tion [15]. It is well known that Whitney’s (b) condition implies the frontier condition [17].

Let Σ be a stratification of X. A vector field v defined on a subset of X is said to be
Σ-compatible if v(x) ∈ TxS for all S ∈ Σ and for all x ∈ S.

The following proposition gives a geometric interpretation of Definition 2.2.

P 2.4 ([19, 20, 22]). – The following condition is equivalent to the definition of
Lipschitz stratifications:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



404 N. NGUYEN AND G. VALETTE

(?) There exists C > 0 such that for every W ⊂ X such that Xj−1 ⊆ W ⊂ Xj for some
j = l, . . . , d, each Lipschitz Σ-compatible vector field on W with Lipschitz constant L
and bounded on W ∩X l by K can be extended to a Lipschitz Σ-compatible vector field
on Xj with Lipschitz constant C(L+K).

R 2.5. – (i) It is indeed enough to check the above property (?) for definable
Lipschitz Σ-compatible vector fields (see [20, 21]).

(ii) It is well known that every Lipschitz function defined on a subset ofRn can be extended
to a Lipschitz function on Rn (with the same Lipschitz constant, see [1] (7.5) p. 121). It
is therefore easily derived from the above proposition that if X ∈ Dn is n-dimensional
then any Lipschitz stratification of Xsing (the set of points at which X fails to be
a C2 manifold of dimension n) gives rise to a stratification of X (whose maximal
dimension strata are the connected components of X \Xsing).

In [22] (Theorem 1.4), Parusiński proved that every compact subanalytic subset of Rn

admits a Lipschitz stratification. In this paper we show that this result still holds for D-sets
in Rn (we recall that D = ( Dn)n∈N is a fixed polynomially bounded o-minimal structure
on R).

T 2.6 (Main Theorem). – Let X be a compact D-subset of Rn. There exists a
Lipschitz D-stratification of X.

R 2.7. – In the definition of stratifications, we required the strata to be C2 mani-
folds. The stratifications that we will construct in this article could indeed be required to
have Cp regular strata, for any given p ∈ N. In the framework of o-minimal structures, it
is however not possible to demand the strata to be C∞ [12].

The main feature of Lipschitz stratifications is that, by integrating Lipschitz vector fields
on the strata of a Lipschitz stratification, one can prove a Lipschitz version of Thom-Mather
Isotopy Lemma.

T 2.8 ([19] Lipschitz Isotopy Lemma). – Let Σ be a Lipschitz stratification of a
D-set X ⊂ Rn.

(i) Let Y be a C2 D-submanifold and let f : Rn → Y be a C2 mapping. Assume that f|S
is submersive for each stratum S of Σ and f |X is proper. Then f|X is locally bi-Lipschitz
trivial over Y , i.e., for each y ∈ Y there are a neighborhoodUy of y in Y and a bi-Lipschitz
homeomorphism

f−1(Uy) ∩X h−→ Uy × (f−1(y) ∩X),

such that π(h(x)) = f(x), for all x ∈ f−1(Uy), where π : Uy × (f−1(y) ∩X) → Uy is
the projection onto the first factor.

(ii) The set X is locally bi-Lipschitz trivial along each stratum, that is for each stratum S

of Σ, for each p ∈ S there are a neighborhood Up of p in Rn, a D-submanifold Np of Up
transverse to S at p and of dimension (n− dim S), and a bi-Lipschitz homeomorphism

Up ∩X
h−→ (Up ∩ S)× (Np ∩X).
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LIPSCHITZ STRATIFICATIONS IN O-MINIMAL STRUCTURES 405

Theorem 2.6 is not true for D-sets definable in arbitrary o-minimal structures (not neces-
sarily polynomially bounded). Below is a counterexample given by Parusiński.

E 2.9. – LetX(t) = {(x, y) ∈ R2 : |y| = xt, x ≥ 0}. The Lipschitz types ofX(t)

at the origin, t > 1, are all pairwise distinct.

Proof. – Let 1 < t2 < t1. We are going to show that the two set-germs X(t1) and
X(t2) are not bi-Lipschitz equivalent at (0, 0). Assume otherwise, i.e., assume that there
exists a germ of bi-Lipschitz homeomorphism h : (X(t1), 0) → (X(t2), 0). In particular,
there is a constant C such that |y|C ≤ |h(y)| ≤ C|y|, for all y ∈ X(t1) near the origin.
Let z1 = (x1, x

t1
1 ) ∈ X(t1), x1 > 0, be close to the origin. We have:

(2.3) |z1| =
√
x2

1 + x2t1
1 ≤

√
2|x1|.

Set z2 := h(z1) := (x2, y2). Since |z1|C ≤ |z2| ≤ C|z1|, we easily see (with a similar
computation like in (2.3)) that:

(2.4)
|x1|√

2C
≤ |x2| ≤ C

√
2|x1|.

Let z′1 = (x1,−xt11 ) ∈ X(t1) as well as z′2 = h(z′1). Observe that

|z1 − z′1| = 2xt11 ,

and, since z2 and z1 lie on different branches, there is ε > 0 such that (using (2.4))

|z2 − z′2| ≥ εx
t2
1 .

x

y

X(t2)

X(t1)

z1

z′1

z2

z′2

F 1.
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406 N. NGUYEN AND G. VALETTE

Therefore,
|z1 − z′1|

|h(z1)− h(z′1)|
=
|z1 − z′1|
|z2 − z′2|

≤ 2

ε
x

(t1−t2)
1 .

Because of t1− t2 > 0, the right hand side of the latter inequality tends to 0 as x1 tends to 0,
contradicting that h is bi-Lipschitz.

Thanks to Miller’s dichotomy [18] (which ensures that every non polynomially bounded
o-minimal structure expanding the real field must contain the graph of the function x 7→ ex),
the set X := {(q, t) : q ∈ X(t)} is definable in every non polynomially bounded o-minimal
structure on R. Theorem 2.8 is still valid even if the o-minimal structure is not polynomially
bounded (even definability is not really needed in fact). As the computations of the above
example contradict the conclusion of Theorem 2.8, this means in particular that X does not
admit a Lipschitz stratification. In other words, Theorem 2.6 fails on every non polynomially
bounded o-minimal structure expanding R.

3. The Preparation Theorem

The preparation theorem originates in [22] (see also [13]) where it was established for
the subanalytic functions. It is so-called because it bears some resemblance with the Weier-
strass Preparation Theorem. A few years later, van den Dries and Speissegger achieved an
o-minimal version of this theorem which can be stated as follows.

We recall that D = ( Dn)n∈N is a fixed polynomially bounded o-minimal structure on R
and Λ is the set of r ∈ R such that x 7→ xr is a D-function.

T 3.1 ([7], Theorem 2.1). – Let X ∈ Dn and let f1, . . . , fk : X → R be
D-functions. There is a cdcd Σ of Rn compatible with X and such that for each cell C ∈ Σ

there are r1, . . . , rk in Λ and D-functions θ, a1, . . . , ak : B → R, u1, . . . , uk : C → R, where
B is the basis of C, such that for each (x, y) = (x1, . . . , xn−1, y) ∈ C, we have for all i ≤ k:

(3.5) fi(x, y) = ai(x)|y − θ(x)|riui(x, y), |ui(x, y)− 1| < 1

2
.

This theorem will be used in the proof of Theorem 3.5. We shall also improve this
result by giving a more precise description of the functions ui (called D-units, see Defi-
nition 3.2). Parusiński’s (or Lion and Rolin’s) Preparation Theorem actually provides an
explicit description of the unit as a composite of a suitable mapping with an analytic func-
tion. We shall establish a result of the same nature on polynomially bounded o-minimal
structures in Theorem 3.5 where the analyticity is replaced with a boundedness assumption
on the derivative (and subanalyticity with definability, see Definitions 3.2 and 3.3 below).
This improvement will be needed in the proof of the Main Theorem.

D 3.2. – Let C ⊂ Rn be a cell of basis B and let θ : B → R be a D-function.
A D-unit in the variable (y − θ) on C is a D-function u : C → R bounded away from zero
and infinity that can be written u = ψ ◦ V , where for (x, y) ∈ C ⊂ Rn−1 × R

V (x, y) = (a1(x), . . . , as(x), b1(x)|y − θ(x)|
1
p1 , . . . , bk(x)|y − θ(x)|

1
pk ),
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LIPSCHITZ STRATIFICATIONS IN O-MINIMAL STRUCTURES 407

for some s, k ∈ N, pi ∈ Λ, 1 ≤ i ≤ k, with a1, . . . , as, b1, . . . , bk D-functions on B, and
where ψ is a C2 D-function on V (C), with Dψ bounded(2) and V (C) relatively compact.

D 3.3. – Let C ⊂ Rn be a cell of basis B and let θ : B → R be a D-function.
A D-function ξ : C → R is said to be reduced with D-translation θ if

ξ(x, y) = a(x)|y − θ(x)|ru(x, y), (x, y) ∈ C ⊂ Rn−1 × R,

where r ∈ Λ, u(x, y) is a D-unit in the variable (y− θ) on C and a : B → R is a D-function.

Let X be a D-subset of Rn. A D-function f : X → R is said to be reducible if there is a
cdcd of Rn compatible with X such that the restriction of f to each cell in X of the cdcd is
reduced.

R 3.4. – Let ξ : C → R be a reduced function with D-translation θ. It easily
follows from the above definitions that if (y− θ) is reduced on C with D-translation θ′, then
so is ξ.

This section is devoted to the proof of the following theorem.

T 3.5. – Every D-function f : X → R is reducible.

The proof of Theorem 3.5 will be given in the end of the section, after some preliminary
lemmas. The first three lemmas below list facts that were already used by J.-M. Lion and
J.-P. Rolin in their proof of the preparation theorem for globally subanalytic functions [13]
(see Section 1.1 of the latter article) and that we establish in our framework.

Given x ∈ R, let sign(x) := 1 if x is positive, sign(0) := 0, and sign(x) := −1 whenever
x is negative. We say that a function ξ : A → R has constant sign on B ⊂ A if the function
sign(ξ(x)) is constant on B (thus, nonnegative functions will not necessarily have constant
sign, they can vanish).

L 3.6. – Let ξ1, . . . , ξk : C → R be reduced functions with D-translations θ1, . . . , θk
respectively,C ∈ Dn. There exists a cdcd ofRn compatible withC such that on each cellD ⊂ C,
ξ1, . . . , ξk are reduced with the same D-translation.

Proof. – As a consequence of Theorem 1.1, there is a cdcd of Rn compatible withC such
that on each cell D ⊂ C, the functions |y − θi|, |θi − θj |, i < j ≤ k, are comparable with
each other (for relation ≤) and the functions (y − θi), (θi − θj), i < j ≤ k, are of constant
signs. Fix a cell D and choose j such that for all i:

(3.6) |y − θj | ≤ |y − θi|.

We are going to show that for all i, the function (y−θi) is reduced onDwith D-translation θj .
The statement of the lemma will then follow from Remark 3.4. Fix i ≤ k. The proof now
breaks down into two cases.

(2) Here and in the sequel we say that a mapping F : A → Rp is bounded to express that supx∈A |F (x)| < ∞.
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Case 1. – Assume |y − θj | ≤ |θj − θi| on D.
If there is x in the basis of D such that θj(x) = θi(x) then y ≡ θj ≡ θi on D, so the result

is trivial. Otherwise, either (y−θj) and (θj−θi) have the same sign or
∣∣ y−θj
θj−θi

∣∣ ≤ 1
2 (by (3.6)).

This means that (1+
y−θj
θj−θi ) is a D-unit in the variable (y−θj) and hence, the function (y−θi)

can be reduced by

y − θi = (θj − θi)(1 +
y − θj
θj − θi

).

Case 2. – Assume |y − θj | ≥ |θj − θi| on D.
If there is (x, y) ∈ D such that y = θj(x) then y ≡ θj on D and it is clear that

all the respective D-translations of the reductions of the θi can be chosen identically zero.
Otherwise, by (3.6), (y − θj) and (θj − θi) are of the same sign, and hence the function
(1 +

θj−θi
y−θj ) is a D-unit. As a matter of fact, the function (y − θi) is reduced by writing

y − θi = (y − θj)(1 +
θj − θi
y − θj

).

R 3.7. – A direct consequence of Lemma 3.6 is that the product of two reducible
functions ξ1 : X → R and ξ2 : X → R is reducible. So is the quotient if it is well defined.

Given two functions f, g : B → R. We write f ∼ g if there exist positive numbers C1, C2

such that C1g ≤ f ≤ C2g.

L 3.8. – Let X be a D-subset of Rn and let ξ : X → R be a reducible function.
There exists a cdcd of Rn compatible with X such that on every cell E ⊂ X, ξ is reduced with
D-translation θE satisfying on E either y ∼ θE(x) or θE(x) ≡ 0.

Proof. – By assumption, there is a cell decomposition compatible with X such that ξ is
reduced on every cell included in X. Fix a cell C ⊂ X of this cdcd and denote by θ the
corresponding D-translation. By Remark 3.4, it is enough to show, up to a refinement, that
either y ∼ θ or (y − θ) is a reduced function with D-translation 0.

There is a refinement of our cell decomposition such that on each cell E ⊂ C either
|y| ∼ |θ| or |y| > 2|θ| or 2|y| < |θ|. We can also assume that y and θ are of constant signs on
each cell E ⊂ C of this refinement.

On a cell such that |y| > 2|θ|, write

(3.7) y − θ(x) = y
(
1− θ(x)

y

)
.

Since (1 − θ(x)
y ) is a D-unit (in the variable y), this yields that (y − θ) is a reduced function

with D-translation 0.
Similarly, if on a cell we have 2|y| < |θ|, write then

y − θ(x) = −θ(x)
(
1− y

θ(x)

)
.

Since (1− y
θ(x) ) is a D-unit, this establishes that (y − θ) is a reduced function with D-trans-

lation 0.
Finally, assume that |y| ∼ |θ|. If the two functions have the same sign, we are done.

Otherwise, by (3.7), we again can identify the translation function with 0.
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L 3.9. – Let C ∈ Rn be a cell of basis B and let H : C → Rn be a mapping of type

(3.8) H(x, y) = (x, α(x)|y − β(x)|
1
p ),

where p ∈ Z and α(x) and β(x) are D-functions onB. If v : H(C)→ R is a reducible function,
then the function u := v ◦H is reducible.

Proof. – It is clear from the definitions that a translation (x, y) 7→ (x, y+β(x)) preserves
reducible functions. We thus can suppose that β ≡ 0. Up to a cell decomposition, we can
assume that y and α are of constant (nonzero) sign on C (we will assume that they are
positive for simplicity). Note that H(C) is a cell of basis B and the inverse image under
the mapping H of a cell included in H(C) is also a cell. We also assume that v is a reduced
function in the variable (y − θ(x)) on H(C), where θ : B → R is a D-function on the basis
of C.

Since the inverse image under H of a cell is a cell and because H preserves the (n − 1)

first coordinates, it directly follows from the definition of reduced functions that, in order
to show that u(x, y) = v ◦ H(x, y) is reducible, it suffices to show that the function
y1 := |α(x)y

1
p − θ(x)| = |y − θ| ◦H is a reducible function.

There is a refinement of our cdcd such that θ has constant sign on every cell E that is
contained in C. Fix such a cell E. If θ ≡ 0, then the function y1 is obviously reduced on this
cell. Otherwise, thanks to Lemma 3.8, we can suppose that y ∼ θ(x) onH(E). It means that,
on E,

(3.9) α(x) · y
1
p ∼ θ(x).

Consequently, as α was assumed to vanish nowhere, if we set θ′(x) := θ(x)
α(x) , we have

y ∼ θ′(x)p on E, and we get y1 = α(x)|y
1
p − θ′(x)|.

Write then,

(3.10) y1 = α(x)|y
1
p − θ′(x)| =

∣∣∣∣∣ α(x)(y − θ′(x)p)

y
p−1
p + y

p−2
p θ′(x) + · · ·+ θ′(x)p−1

∣∣∣∣∣ .
Denote by F (x, y) the denominator of the fraction (3.10). Since F is a finite sum of

nonnegative functions which are all ∼ to θ′(x)p−1, we have F (x, y) ∼ θ′(x)p−1. Hence, the
function W (x, y) := θ′(x)1−pF (x, y) is bounded away from zero and infinity. It is therefore
a D-unit. This is enough to conclude that y1 is a reduced function.

We shall also need the following theorem:

T 3.10 ([9], Proposition 1). – Let ξ : B × [a, b] → R be a bounded D-func-
tion, where B is a bounded D-subset of Rn−1. Assume that for every x ∈ B the function
ξx : [a, b]→ R, ξx(y) := ξ(x, y), is Lipschitz with Lipschitz constant L independent of x. Then
there exist a bounded D-subset S of Rn−1 and a Lipschitz D-bijection φ : S → B such that
ξ ◦ (φ× id[a,b]) : S × [a, b]→ R, (s, y) 7→ ξ(φ(s), y) is Lipschitz.

This theorem has the following consequence:

L 3.11. – Letu(x, y) be aC2 D-function on a bounded cellC ofRn with ε < |u| < 1
ε ,

ε positive real number. If |∂u∂y | is bounded then there is a cdcd of Rn compatible withC such that
on each cell E ⊂ C, the restriction of the function u coincides with a D-unit of E.
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Proof. – Write C as (ξ1, ξ2) where ξ1 < ξ2 are D-functions on the basis B of C (if the
cell C is a graph there is nothing to prove). Let H(x, y) := (x, y−ξ1

ξ2(x)−ξ1(x) ). By Lemma 3.9,

it is enough to show that v := u ◦H−1 is a D-unit (as ε < u < 1
ε , if u is reducible then it is a

D-unit on the cells of a cdcd).

Apply Theorem 3.10 to the function v : B × (0, 1) → R (observe that |∂v∂y | is bounded

since so are ∂u
∂y , ξ1, and ξ2). This provides a definable bijection φ : S → B such that

ψ(x, y) := v(φ(x), y) has bounded first derivative (up to a cell decomposition, we may
assume φ to be C2). But then v = ψ ◦W , whereW (x, y) := (φ−1(x), y). This shows that v is
a D-unit on H(C).

Proof of Theorem 3.5. – By Theorem 3.1, there exists a cdcd of Rn compatible with X
such that for each cellE ⊂ X there are D-functions a, θ : D → R, whereD is the basis ofE,
such that on E

f(x, y) = a(x)|y − θ(x)|λu(x, y), for some λ ∈ Λ,

where u : E → R is a D-function bounded away from zero and infinity.

Fix such a cell E. We are going to show that there is a cell decomposition compatible
with E such that u induces a D-unit on every cell C ⊂ E.

Applying now Theorem 3.1 to the partial derivative ∂u/∂y, we see that there exists a cdcd
compatible withE such that on each cellC ⊂ E, there are D-functionsα and θ̃ on the basisB
of C such that

(3.11)
∂u

∂y
(x, y) ∼ α(x)|y − θ̃(x)|s, for some s ∈ Λ.

Refining the cell decomposition, we can assume that on C y has constant sign (say posi-
tive) and that either y ≤ 1 or y ≥ 1 (for all (x, y) ∈ C). If y ≥ 1 then after a change
(x, y) 7→ (x, 1

y ), we see that we are reduced to y ≤ 1 (by Lemma 3.9, we can argue up to
such a map). Up to a definable homeomorphism of Rn−1 (that extends vertically to a defin-
able homeomorphism of Rn) we can assume that the basis of C is bounded. We will thus
assume that 0 < y ≤ 1 and that C is bounded without changing notations.

Write now C as (ξ1, ξ2), where ξ1, ξ2 : B → R are D-functions with 0 < ξ1 < ξ2 (in
the case where C is the graph of a D-function on B, the result is trivial). Refining the cell
decomposition if necessary, we can assume that ∂u∂y is of constant (nonzero) sign on B. For

the same reason, we can assume that y and θ̃ are comparable with each other (for relation≤).
We will assume for simplicity that y ≥ θ̃(x) (which amounts to θ̃ ≤ ξ1).

Let nowH(x, y) := (x, y−θ̃(x)). By Lemma 3.9, it is enough to check that v = u◦H−1
|H(C)

is a D-unit. It means that, possibly changing u with v and C withH(C), we can assume that
θ̃ ≡ 0 (observe thatH(C) is still a bounded cell since y is bounded on C and, by Lemma 3.8,
we can assume that either y ∼ θ̃ or θ̃ ≡ 0). We will thus assume θ̃ ≡ 0.

We are now ready to show that u is a D-unit. The idea is that, in every of the cases we will
distinguish below, we will find a mappingH of type (3.8) such that the partial derivative with
respect to y of the function u′ := u ◦ H−1 is bounded. That the function u′ coincides with
D-units on the cells of a suitable cdcd will then follow from Lemma 3.11. Lemma 3.9 implies
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in turn that so does u. In every of the cases we will distinguish below, we will denote by C ′

the cell (ξ′1, ξ
′
2) := H(C).

Refining one more time the cell decomposition, we may assume that on our cell one of the
following situations occurs:

Case 1. – Assume ξ2 ≥ 2ξ1 and s < −1.

In this case, we first check that ξ1(x) > 0 for all x ∈ B. Indeed, if ξ1(x) vanished for some
x ∈ B (ξ1 ≥ 0 because ξ1 ≥ θ̃ ≡ 0) then for all 0 < y < y0 < ξ2(x) we would have:

|u(x, y0)− u(x, y)| =
∣∣∣∣∫ y0

y

∂u

∂y
(x, y)dy

∣∣∣∣ ∼ |α(x)| · |ys+1
0 − ys+1|,

which means that y 7→ u(x, y) would be unbounded on (0, ξ2(x)) (since s < −1), a
contradiction.

We thus may define a homeomorphism on C by:

H(x, y) :=
(
x, (

ξ1(x)

y
)

1
p
)
,

for some p > −1
s+1 , p ∈ N. Then, H−1(x, y) =

(
x, ξ1(x)yp

)
and for (x, y) ∈ C ′ = (ξ′1, ξ

′
2) =(

( ξ1ξ2 )
1
p , 1
)

we have

(3.12)

∣∣∣∣∂u′∂y (x, y)| ∼ |α(x)ξs+1
1 (x) · 1

yps+p+1

∣∣∣∣ ∼ β(x)yq,

where β(x) := |α(x)ξs+1
1 (x)| and q := −(ps+ p+ 1) > 0.

Note that 0 < ξ′1 ≤ ( 1
2 )

1
p and hence that for all x ∈ B:∣∣∣∣∣
∫ 1

( 1
2 )

1
p

∂u′

∂y
dy

∣∣∣∣∣ ∼
∫ 1

( 1
2 )

1
p

β(x)yqdy ∼ β(x).

Since u is bounded on C, the left-hand integral is bounded. Hence, β(x) is bounded.
By (3.12), this shows ∂u′

∂y (x, y) is bounded on C ′, as required.

Case 2. – Assume ξ2 ≥ 2ξ1 and s > −1.

In this case we set:
H(x, y) :=

(
x, (

y

ξ2(x)
)

1
p
)
,

p ∈ Z, p > 1
s+1 , so that, carrying out the same computation as in case 1, we get:

|∂u
′

∂y
(x, y)| ∼ | − α(x)ξs+1

2 (x)| · yps+p−1 ∼ β(x)yq,

where β(x) := |α(x)ξs+1
2 (x)| and q := ps + p − 1 > 0. Again (see case 1), we have

ξ′1 = ( ξ1ξ2 )
1
p ≤ 2−

1
p and ξ′2 ≡ 1. The same computation of integration as in case 1 then

shows that ∂u
′

∂y (x, y) is bounded on C ′.

Before dealing with the third case, we establish the following fact:

C. – if s = −1 then there is a real number t such that ξ2(x) < tξ1(x) for all x ∈ B.
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Assume otherwise. By Curve Selection Lemma, there exists a D-curve γ : (0, 1]→ B such
that limν→0

ξ2(γ(ν))
ξ1(γ(ν))

=∞.

Since s = −1 we have ∂u
∂y (x, y) ∼ α(x)

y , so that, integrating with respect to y over

[ξ1(γ(ν)), tξ1(γ(ν))], we get that for t ∈ (2, ξ2(γ(ν))ξ1(γ(ν))
) we have gν(t) ∼ ln t (with constants

that are independent of ν), where

gν(t) =:

∣∣∣∣∣u
(
γ(ν), tξ1(γ(ν))

)
− u
(
γ(ν), 2ξ1(γ(ν))

)
α
(
γ(ν)

) ∣∣∣∣∣ .
Applying Theorem 3.1 to the two-variable function gν(t), we see that there are D-func-

tions w, c on a right-hand-side neighborhood of zero such that for t large enough

gν(t) ∼ w(ν)|t− c(ν)|r ∼ ln t,

for any ν ∈ (0, µ(t)], where µ : (M,∞)→ R is a positive D-function, M > 0 real number.

If c(ν) tends to ±∞ as ν tends to 0 then |c(ν)|r ∼ |t− c(ν)|r, for ν small, so that
(for ν ∈ (0, µ(t)] small):

w(ν)|c(ν)|r ∼ w(ν)|t− c(ν)|r ∼ ln t.

Denote by l the limit of the left-hand-side as ν tends to zero (for fixed t > M ). This limit
has to be finite since ln t is constant (for fixed t). Passing to the limit as ν goes to zero, we get
ln t ∼ l for t ∈ [M,∞), a contradiction.

In the case where c(ν) has finite limit then, taking a smaller positive D-function µ if
necessary, we can assume that for ν ∈ (0, µ(t)), t large enough, we have tr ∼ |t − c(ν)|r,
and

w(ν)tr ∼ w(ν)(t− c(ν))r ∼ ln t.

Making ν going to zero, we again see that it is impossible.

Case 3. – Consider ξ2 < 2ξ1 or s = −1.

Observe that if s = −1 then, thanks to the above claim, we know that there is a real
number t > 1 such that

(3.13) ξ2(x) ≤ tξ1(x),

for all x in the basis of our cell C. By assumption, this remains true if s 6= −1 (with t = 2).

Inequality (3.13) clearly entails that y ∼ ξ1(x) on C. By (3.11) (recall that θ̃ ≡ 0), this
implies that there is a D-function β on D such that we have on C:

(3.14)
∂u

∂y
(x, y) ∼ β(x).

We now set

H(x, y) := (x,
y − ξ1(x)

ξ2(x)− ξ1(x)
).

By (3.14), a straightforward computation of partial derivative yields that there is a D-func-
tion γ : D → R such that ∂u

′

∂y (x, y) ∼ γ(x) on C ′. Integrating with respect to y, we get:

γ(x) ∼
∫ 1

0

∂u′

∂y
(x, y)dy <∞.
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This proves that the function γ is bounded on D, which entails that ∂u′

∂y (x, y) ∼ γ(x) is
bounded on C ′, as required.

4. Metric properties of D-sets

In this section we recall some basic results about metric properties of definable sets.

4.1. On definable Lipschitz functions

So far, we have regarded definable sets as metric spaces because we endowed these sets
with the Euclidean metric. Given a D-set X ⊂ Rn we also can define the distance between
two points ofX as the infimum of the lengths of the continuous definable curves joining these
two points ( D-curves are piecewise-smooth), with the convention that this distance is infinite
if these two poins are not in the same connected component. This gives another metric onX
that is generally called the inner metric of X. By analogy, we sometimes refer the restriction
to X of the Euclidean metric as the outer metric of X.

A continuous D-map f : X → R which has bounded first derivative (that exists almost
everywhere) is Lipschitz with respect to the inner metric. It may be derived (for instance) from
the existence of Whitney stratifications for definable mappings (and this is no longer true if
we drop the definability assumption on the map f ).

The two metrics are not equivalent as it is shown by the simple example of a cusp. Hence,
a function which is Lipschitz with respect to the inner metric may fail to be Lipschitz for the
outer metric. This is the motivation of the following definition.

D 4.1. – Let us define the L-regular cells C of Rn as follows:

(i) dimC = 0 then C is a point.
(ii) If dimC = n then C is a set of the form:

{(x, y) ∈ D × R : φ1(x) < y < φ2(x)},

where φ1 and φ2 are either±∞ or D-functions on an L-regular cell D of Rn−1, C2, of
bounded first derivative, and satisfying φ1 < φ2, on D.

(iii) If dimC = k < n then C is the graph Γφ of a D-mapping φ : D → Rn−k on an
L-regular cell D of Rk, C2 and of bounded derivative on D.

We then also say that E := cl(C) is an L-regular closed cell of Rn and define ∂E as the
set cl(C) \ C. If dimE = n, then E is said to be thick.

On an L-regular cell the inner and outer metrics are obviously equivalent. Every D-set
can be decomposed into finitely many sets which are L-regular cells, after a suitable change
of coordinates. A proof of this fact can be found in [10, 22] for subanalytic sets and [11, 24]
for sets which are definable in an o-minimal structure. This entails the following useful result:

P 4.2. – Let X be a D-set. There exists a covering of X by finitely many
definable manifolds Y1, . . . , Yk such that for every i, the inner metric and the outer metric of Yi
are equivalent.

A useful consequence of the above proposition is the following fact:
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P 4.3. – Let ξ : X → R be a C1 D-function with X ⊂ Rn submanifold.
If ξ has bounded derivative then there is a stratification of X such that ξ is Lipschitz on every
stratum.

Proof. – The function ξ is Lipschitz with respect to the inner metric. Any stratification
of X compatible with the subsets given by Proposition 4.2 thus has the required properties.

The vector v ∈ Sn−1 is regular for a set X if there exists a positive constant ε such that
for any nonsingular point x of X we have:

d(v, TxX) ≥ ε.

We denote by π the orthogonal projection along en, the last vector of the canonical basis
of Rn. Proposition 4.3 entails:

P 4.4. – For any X ∈ Dn, the following statements are equivalent:

(1) en is regular for X;
(2) there is a stratification ofπ(X) such thatX is the union of the graphs of someC2 Lipschitz

functions defined on the strata.

Proof. – A Lipschitz C2 function has bounded derivative. Hence, if X is the union of
some graphs of Lipschitz functions then en is regular for X. This shows that (2) ⇒ (1). To
show the converse, take a cdcd ofRn compatible withX. This provides a decomposition ofX
into graphs of definable C2 functions. As en is regular, these functions must have bounded
first derivative. The result thus follows from Proposition 4.3.

4.2. Separated sets

This section introduces the notion of separated sets which will help us to glue Lipschitz
vector fields into Lipschitz vector fields. This notion was already used in [22, 23].

D 4.5. – Let Y ⊂ Rn be an L-regular closed cell and let Z ∈ Dn. We say that
Z is L-separated from Y if there exists C > 0 such that for every q ∈ Y

(4.15) d(q, ∂Y ) ≤ Cd(q, Z).

Two L-regular closed cells are L-bi-separated if they are L-separated from each other.

The usefulness of this notion lies in the following proposition:

P 4.6. –

(i) Let Y be an L-regular closed cell of Rn, Z ⊂ Rn be a D-set L-separated from Y , and set
X := Y ∪ Z. Let f : X → R be a continuous function. If f induces Lipschitz functions
on Y and ∂Y ∪ Z then it is a Lipschitz function on X.

(ii) Let Y and Z be two L-regular L-bi-separated closed cells of Rn and set X := Y ∪ Z.
Let f : X → R be a continuous function. If f induces Lipschitz functions on Y , Z, and
∂Y ∪ ∂Z then it is a Lipschitz function on X.
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Proof. – We have to check the Lipschitz condition for two points q and q′ with q in Y and
q′ in Z. Let y be the point of ∂Y that realizes the distance d(q, ∂Y ).

By definition of separated sets we have |y−q| ≤ C|q−q′|, for some constantC independent
of q and q′. This clearly entails that |y − q′| ≤ (C + 1)|q − q′|. It thus suffices to write:

|f(q)− f(q′)| ≤ |f(q)− f(y)|+ |f(y)− f(q′)| ≤M |q − q′|,

for some positive constant M independent of q and q′ (thanks to the Lipschitzness assump-
tions on the respective restrictions of f to the sets Y and ∂Y ∪ Z).

Point (ii) may be proved by applying twice the point (i). It can also be established inde-
pendently by a completely similar argument.

D 4.7. – A tower of L-regular k-dimensional leaves is a set that can be written,
after a possible linear change of coordinates, as the union of the respective graphs of finitely
many Lipschitz D-mappings ξ1, . . . , ξm : B → Rn−k, C2 on the interior of B, with B ∈ Dk
thick L-regular closed cell.

A D-setZ isL-separated from a tower if it isL-separated from all theL-regular closed cells
constituting this tower.

Let us recall the following theorem (Λp-decomposition theorem of [23]) that we translated
in the terminology of the present article. This theorem was actually originally proved in [22]
(Proposition 2.13) in the subanalytic category.

T 4.8. – Let X ∈ Dn be a closed set and let k := dimX. There exists a finite
decomposition

X = A ∪M1 ∪ · · · ∪Ms

such that each Mi is a tower of L-regular k-dimensional leaves, A is a closed definable subset
of dim < k and, for any i, j ∈ {1, ..., s} (i 6= j), Mj is L-separated from Mi, and A is
L-separated from Mi.

5. Existence of Lipschitz stratifications

In this section we prove the main result of this article. It is worthy of notice that this
will lead to achieve another improvement of van den Dries and Speissegger’s Preparation
Theorem. We will show that, up to a linear change of coordinates, the D-translation of the
reduction provided by Theorem 3.5 can be chosen in such a way that its first derivative (exists
and) is bounded (Proposition 5.2 below). This result seems to be of its own interest.

5.1. Back to the preparation theorem

We will need the following result to prove the above proposition.

P 5.1 ([26], Proposition 3). – There exist L1, . . . , LN in Sn−1 such that for
any family of D-subsets X1, . . . , Xk of Rn, there is a cdcd of Rn compatible with X1, . . . , Xk

such that for each cell C of this cdcd, we can find i ∈ {1, . . . , N} such that Li is regular
for cl(C) \ int(C).

A stronger result was indeed also proved in [24] where it is shown that the family
{L1, . . . , LN} can be chosen as the canonical basis of Rn.
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P 5.2. – Let X be a D-set and ξ : X → R be a D-function. There is a
stratification of X such that on every stratum S, up to a linear change of coordinates, the
function ξ is reduced with some D-translation θS (see Definition 3.3) which has bounded first
derivative.

Proof of Proposition 5.2. – LetL1, . . . , LN be as Proposition 5.1. We will denote by π the
orthogonal projection onto Rn−1.

For each i, applying Theorem 3.5 to ξ ◦ Ai : A−1
i (X) → R, where Ai is an orthogonal

linear mapping of Rn sending en onto Li (en being the last vector of the canonical basis
of Rn) we obtain a partition of Rn compatible with A−1

i (X). The images of all the elements
of this partition that are subsets of A−1

i (X) under the map Ai provide a partition of X,
denoted by Σi. Let V = (Vj)j∈J be a decomposition of Rn compatible with all the elements
of the Σi, i = 1, . . . , N . Then, for each j ∈ J and each i ≤ N there is a D-function
θi,j : π(A−1

i (Vj))→ R such that ξ ◦Ai is reduced on A−1
i (Vj) with D-translation θi,j .

Applying Proposition 5.1 to the family consisting of all the elements of V and the
Ai(Γθi,j ), i ≤ N , j ∈ J , where Γθi,j stands for the graph of the function θi,j , we obtain a
cdcd compatible with X which gives rise to a stratification Σ of X.

Let E be an element of Σ of dimension n. By the construction and Proposition 5.1,
there is i ≤ N such that Li is regular for cl(E) \ int(E). This means that en is regular
for A−1

i (cl(E) \ int(E)). Hence (see Proposition 4.4), there is a partition of A−1
i (E) into

cells, such that each element C of this partition which is of dimension n is of the form

C = {(x, y) ∈ B × R : ξ1(x) < y < ξ2(x)},

with B ∈ Dn−1, ξ1 < ξ2 C
1 D-functions of bounded first derivative.

Fix such a cellC ⊂ A−1
i (E). There is j such thatC ⊂ A−1

i (Vj). By Remark 3.4, it suffices
to show that (y − θi,j(x)) is reducible with some D-translation θ′C having first derivative
bounded.

Since the cdcd Σ is compatible with Ai(Γθi,j ), we know that the graph of θi,j must lie
outside the cell C. Refining our cell decomposition, we can assume that θi,j is continuous.
This means that we can assume that θi,j ≤ ξ1 or θi,j ≥ ξ2. We will suppose (for simplicity)
that θi,j ≤ ξ1. Up to an extra refinement, we can assume that on C either y ≥ 2ξ1 − θi,j or
y ≤ 2ξ1 − θi,j .

If y ≥ 2ξ1− θi,j (or y− ξ1 ≥ ξ1− θi,j), then (1 +
ξ1−θi,j
y−ξ1 ) is a D-unit. Therefore, (y− θi,j)

is reduced by

y − θi,j = (y − ξ1)
(
1 +

ξ1 − θi,j
y − ξ1

)
.

If y ≤ 2ξ1 − θi,j (or y − ξ1 ≤ ξ1 − θi,j), then (1 + y−ξ1
ξ1−θi,j ) is a D-unit. Hence, (y − θi,j)

is reduced by

y − θi,j = (ξ1 − θi,j)
(
1 +

y − ξ1
ξ1 − θi,j

)
.

In both cases, (y − θi,j) is reduced with D-translation θ′C = ξ1 which has bounded first
derivative.

On a cell which is of positive codimension the result is trivial.
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5.2. Extension of Lipschitz vector fields

We end the proof following a similar method as in [22]. We first establish o-minimal
counterparts of lemmas 3.1 and 3.2 of [22] (Proposition 5.3 and Lemma 5.4 below). We give
full details. We would like to emphasize that, contrarily to [22], we assume the vector field to
be definable in Lemma 5.4.

P 5.3. – LetX be a D-subset of Rn and let f : X → R be a D-function. There
exist a stratification Σ of Rn compatible with X and a constant C > 0 such that f is C2 on
strata and such that we have for every L-Lipschitz Σ-compatible vector field v:

(5.16) |Df(x)v(x)| ≤ CL|f(x)|, ∀x ∈ X.

In particular, any refinement of Σ also satisfies this property.

Proof. – We proceed by induction on n (starting with the case n = 0 which is vacuous).
By Proposition 5.2, there exists a stratification of X such that for every stratum S, there
is a linear change of coordinates A such that f ◦ A is reduced on C := A−1(S) with
a D-translation θS that has bounded first derivative. As A is a linear automorphism, it is
enough to establish the required statement for the restriction of f ◦ A to C. It means that,
without loss of generality, we can assume that f is a smooth function on a cell C such that
for x = (x′, xn) ∈ C:

(5.17) f(x′, xn) = a(x′) · |xn − θS(x′)|r · U(x′, xn), r ∈ Λ,

where U(x′, xn) = ψ ◦W (x′, xn) with ψ bounded away from zero and infinity and such that
|Dψ(x)| is bounded, where W is a bounded D-mapping of type

W (x, y) =
(
u1(x′), . . . , us(x

′), b1(x′)|xn − θS(x′)|
1
p1 , . . . , bk(x′)|xn − θS(x′)|

1
pk

)
,

with a, u1, . . . , us, b1, . . . , bk D-functions on the basis of C.
By the inductive assumption, there is a stratification B of Rn−1 compatible with the basis

of C such that a, u1, . . . , us, b1, . . . , bk satisfy (5.16). The pre-images by π of the strata of B
give rise to a stratification Σ of Rn compatible with C (taking the intersection of these pre-
images with C) and satisfying (5.16) for the D-functions a, u1, . . . , us, b1, . . . , bk (regarding
now these functions as n-variable functions). Refining this stratification, we can assume it to
be compatible with the graph ΓθS of θS .

Notice that a product of functions satisfying (5.16) satisfies this inequality as well. We now
are going check that the D-function µ : (x′, xn) 7→ µ(x′, xn) := xn − θS(x′) satisfies (5.16).

For this purpose, fix a Lipschitz Σ-compatible vector field v = (v′, vn), with Lipschitz
constant L ∈ R. Since v is tangent to Σ,Dµ(x)v(x) = 0, for all x ∈ ΓθS , which is equivalent
to vn(x′, θS(x′))−DθS(x′)v′(x′, θS(x′)) = 0. If M = sup |DθS | we thus have

|Dµ(x)v(x)| = |vn(x)−DθS(x′)v′(x)|
≤ |vn(x)− vn(x′, θS(x′))|+ |DθS(x′)

[
v′(x)− v′(x′, θS(x′))

]
|

≤ (M + 1)L|xn − θS(x′)| = (M + 1)L|µ(x)|.

This shows that µ satisfies (5.16).
Observe that it easily follows from the chain rule that for every s ∈ Λ, the function

|xn − θS(x′)|s satisfies this inequality as well, which entails that so do the components of
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the mapping W . We claim that so does the function U . Indeed, as (5.16) holds for W , every
L-Lipschitz Σ-compatible vector field v satisfies:

|DU(x)v(x)| = |Dψ(W (x))DW (x)v(x)| ≤ CNL|W (x)|,

where N := supx∈W (C) |Dψ(x)|. As W is a bounded mapping and since U is bounded
away from zero, this yields (5.16) for U . That f also fulfills this inequality now follows
from (5.17).

L 5.4. – Let B be a thick L-regular cell of Rk and let ξ : B → Rn−k (n > k) be a
Lipschitz D-map. Assume that ξ is C2 on B. Let B be a stratification of Rk compatible withB
and satisfying the statement of Proposition 5.3 for all the components of the partial derivatives
of ξ. Then there exists a constantC > 0 such that if v′(x) is a Lipschitz B-compatible D-vector
field on B with Lipschitz constant L then v(x, ξ(x)) := Dξ(x)v′(x), for x ∈ B, is a Lipschitz
vector field with Lipschitz constant CL on the graph of ξ.

Proof. – As B is a thick L-regular cell, it is sufficient to show (see section 4.1) that
Dξ(x)v′(x) has first order partial derivatives (which exist almost everywhere) bounded
by CL, for some constant C independent of L. Applying Proposition 5.3 to the components
of all the mappings Diξ (denoting the ith-partial derivative of ξ) i = 1, . . . , k, we get for
every x ∈ B

|DiDξ(x)v′(x)| = |DDiξ(x)v′(x)| ≤ CL|Diξ(x)|,
which, since |Diξ(x)| is bounded, provides the desired inequality.

Proof of Theorem 2.6. – It suffices to show that there exists a stratification for which
condition (?) of Proposition 2.4 holds for K = 1. We proceed by induction on k = dimX.
For k = 0 the statement is obvious. Take some k > 0. We may assume that k < n for if
k = n any Lipschitz stratification of Xsing (which is of positive codimension) gives rise to a
Lipschitz stratification of X (see Remark 2.5 (ii)). We shall prove the following statement:
given finitely many D-subsetsX1, . . . , Xl ofX, we are going to prove that there is a Lipschitz
stratification of X which is compatible with all the Xi.

Given a stratification S, we will denote by Si the collection of the strata of S whose
dimension does not exceed i.

First case. – We assume that X is a tower of L-regular leaves, i.e., that there exist finitely
many Lipschitz D-mappings ξi : B → Rn−k, i = 1, . . . ,m, where B is an L-regular thick
closed cell of Rk, such that X = ∪mi=1Γξi (where Γξi is the graph of ξi).

Let π : Rn → Rk denote the canonical projection. Take a C2 cdcd C of Rn compatible
with theXi and the Γξi . Let B be a stratification (not necessarily Lipschitz) of Rk compatible
with all the elements of π(C) and satisfying the statement of Proposition 5.3 for all the
components of the mappings (ξi − ξj), for all i < j, as well as for all the components of the
partial derivatives of the ξi (these functions are C2 on the cells of π(C) since C is compatible
with the graphs Γξi ).

Let B′ be the stratification ofX constituted by the respective graphs of the functions ξi|S ,
i ≤ m, S ⊂ B, S ∈ B. By induction on k, there is a refinement B′′ of B′k−1 which is a
Lipschitz stratification. Let now S denote the stratification constituted by the elements of B′′

together with the strata of B′ of dimension k.
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We claim that S is a Lipschitz stratification ofX. To see this, denote byXj the union of the
elements of Sj , take W such that Xj−1 ⊆ W ⊆ Xj , and let v be a Lipschitz S-compatible
D-vector field on W with Lipschitz constant L. If j < k, the result is clear, since B′′ is a
Lipschitz stratification. So, we just have to address the case j = k. To complete the proof,
we have to extend v to a Lipschitz S-compatible D-vector field on X (with a proportional
Lipschitz constant).

Let us write v(x) as (v′(x), v′′(x)) in Rk×Rn−k and extend the mapping v′ : W → Rk to
an L-Lipschitz mapping on the whole of X, keeping the notation v′ for this extension. Fix
S ∈ S and choose α ≤ m such that S ⊂ Γξα . For x = (x′, x′′) ∈ S ⊂ Rk × Rn−k, we define

w(x) = (v′(x), Dξα|π(S)(x
′)v′(x)).

It is easily checked that since the cell decomposition C (from which we constructed our
stratification) was required to be compatible with the graphs of the ξi,w(x) is independent of
the choice of α. Moreover, as B satisfies the assumptions of Lemma 5.4 for the functions ξi,
w induces a Lipschitz vector field on Γξα|int(B)

of Lipschitz constant CL, where C is some
positive constant (independent of v). Because ξα is C1 at almost every boundary point ofB,
we see that the vector field w is indeed Lipschitz on the whole of Γξα , for each α.

To finish the proof of the first case we only need to check the Lipschitz condition of w on
the couples of points (p, q) with p ∈ Γξα and q ∈ Γξβ , α 6= β.

Let p = (x, ξα(x)) and q = (x′, ξβ(x′)) and set p̃ := (x′, ξα(x′)). It follows from
Proposition 5.3 above that

|w(p̃)− w(q)| = |(Dξα(x′)−Dξβ(x′))v′(x)| ≤ CL|ξα(x′)− ξβ(x′)| = CL|p̃− q|.

Let Lα denote the Lipschitz constant of ξα. We conclude

|w(p)− w(q)| ≤ |w(p)− w(p̃)|+ |w(p̃)− w(q)|
≤ CL

(
|p− p̃|+ |p̃− q|

)
≤ CL

(
2|p− p̃|+ |p− q|

)
≤ CL(2Lα + 1)|p− q|.

This completes our first case. We now turn to the general case.
By Theorem 4.8, there is a finite decomposition of X as

X = A ∪ Y1 ∪ · · · ∪ Ys,

where for every i,Yi is a tower ofL-regular k-dimensional leaves, dimA < k,A isL-separated
from Yi, and, for each j, Yi is L-bi-separated from Yj . Since every Yi is a tower, by the first
case, we know that Yi has a Lipschitz stratification, say Σi. Moreover, this stratification may
be required to be compatible with the setsXj∩Yi, j = 1, . . . , l. LetX ′ denote the union ofA
together with all the strata of dimension less than k of all the Σi. SinceX ′ has dimension less
than k, by induction, it admits a Lipschitz stratification Σ′ compatible with the sets Xj ∩A,
j = 1, . . . , l, as well as with all the strata of the Σik−1, i ≤ s.

Let now S be the stratification of X constituted by the strata of Σ′k−1 together with the
connected components of X \ |Σ′k−1|. We claim that S is a Lipschitz stratification of X.
By the construction, it is clear that Sk−1 is a Lipschitz stratification (since so is Σ′ and
Σ′k−1 = Sk−1). It is thus enough to show that any Lipschitz S-compatible D-vector field
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on | Sk−1| ⊂ W ⊂ X may be extended to a Lipschitz S-compatible D-vector field (with a
proportional Lipschitz constant).

Take such a vector field v : W → Rn and let Si denote the stratification of Yi induced
by S (it is easily checked that S is compatible with all the Yi). As, by the construction,
Si is a refinement of Σi, the vector field v is tangent to the strata of Σik−1. It thus can be
extended to a Σi-compatible Lipschitz D-vector field on Yi. Doing this for every i we get
a continuous vector field on X (still denoted v) Lipschitz on every Yi (with a proportional
Lipschitz constant). Since the Yi are bi-separated from each other, by Proposition 4.6 (ii), we
conclude that v is a Lipschitz S-compatible vector field on∪si=1Yi. By Proposition 4.6 (i), we
also see that v is Lipschitz on A ∪ Yi, for all i.
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