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QUANTITATIVE STOCHASTIC HOMOGENIZATION
OF CONVEX INTEGRAL FUNCTIONALS

 S N. ARMSTRONG  C K. SMART

A. – We present quantitative results for the homogenization of uniformly convex integral
functionals with random coefficients under independence assumptions. The main result is an error
estimate for the Dirichlet problem which is algebraic (but sub-optimal) in the size of the error, but
optimal in stochastic integrability. As an application, we obtain quenched C0,1 estimates for local
minimizers of such energy functionals.

R. – Nous présentons des résultats quantitatifs pour l’homogénéisation de fonctionnelles
intégrales uniformément convexes avec coefficients aléatoires sous hypothèses d’indépendance. Le ré-
sultat principal est une estimation d’erreur pour le problème de Dirichlet qui est algébrique (mais sous-
optimale) en la taille de l’erreur, mais optimale en intégrabilité stochastique. Comme application, nous
obtenons des estimées C0,1 pour les minimiseurs locaux de telles fonctionnelles d’énergie.

1. Introduction

1.1. Informal summary of results

We consider stochastic homogenization of the variational problem

(1.1) minimize
∫
U

L
(
Du(x),

x

ε

)
dx subject to u ∈ g +H1

0 (U).

Here 0 < ε� 1 is a small parameter, U ⊆ Rd is a smooth bounded domain and g ∈ H1(U)

is given. The precise hypotheses on the Lagrangian L are given below; here we mention that
L(p, x) is uniformly convex in p and that L is a random field sampled by a given probability
measure P. The crucial hypothesis on the statistics of L is a finite range of dependence
condition: roughly, for all Borel sets U, V ⊆ Rd, the families {L(p, x) : p ∈ Rd, x ∈ U} and
{L(p, x) : p ∈ Rd, x ∈ V } of random variables are assumed to be P-independent provided
that dist(U, V ) ≥ 1.
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424 S. N. ARMSTRONG AND C. K. SMART

An important special case of the model occurs if the Lagrangian is the quadratic form
L(p, x) = p · A(x)p. The corresponding Euler-Lagrange equation is then linear and the
problem is equivalent to the stochastic homogenization of the equation

(1.2) − div
(
A
(x
ε

)
Duε

)
= 0.

This is also a continuum version of what is known in the probability literature as the random
conductance model.

Dal Maso and Modica [8, 9] proved, in a somewhat more general setting, the basic
qualitative homogenization result for (1.1): there exists a (deterministic) function L : Rd → R
called the effective Lagrangian such that, with probability one, the unique minimizer uε

of (1.1) converges, as ε→ 0, to the unique minimizer of the variational problem

(1.3) minimize
∫
U

L (Du(x)) dx subject to u ∈ g +H1
0 (U).

This result was a generalization to the nonlinear setting of earlier qualitative results for linear
elliptic partial differential equations in divergence form due to Kozlov [18], Papanicolaou
and Varadhan [26] and Yurinkskii [28], using new variational ideas based on subadditivity
that were not present in earlier works.

An intense focus has recently emerged on building a quantitative theory of stochastic
homogenization in the case of the linear Equation (1.2). This escalated significantly with
the work of Gloria and Otto [15, 16], who proved optimal quantitative bounds for the
energy density of modified correctors and then that of Gloria Neukamm and Otto [14, 13],
who proved optimal bounds for the error in homogenization. These results were proved for
discrete elliptic equations, but have been extended to the continuum setting in [17]. See also
Mourrat [20, 21], Marahrens and Otto [19], Conlon and Spencer [7] as well as earlier works
of Yurinskii [28], Naddaf and Spencer [24], Bourgeat and Piatnitski [6] and Boivin [5]. For
some recent work on limit theorems for the stochastic fluctuations, see [23, 22, 25, 27, 4]. The
analysis in the present paper was informed by some ideas from our previous work [1], which
contained similar results for equations in nondivergence form.

In this paper, we present the first quantitative results for the homogenization of (1.1)
which are also the first such results for divergence-form elliptic equations outside of the
linear setting. We prove two main results: estimates for the L2 and L∞ error in homoge-
nization of the Dirichlet problem, which is algebraic (yet sub-optimal) in its estimate of the
typical size of the error, and essentially optimal in stochastic integrability; and a “stochastic
higher regularity” result which states that local minimizers of (1.1), for a typical realiza-
tion of the coefficients, satisfy the same a priori C0,1 and C1,β regularity estimates as local
minimizers of constant-coefficient energy functionals, down to microscopic and mesoscopic
scales, respectively.

The first main result (Theorem 1.1) gives a sub-optimal algebraic error estimate in homog-
enization with strong stochastic integrability: it asserts roughly that, for any s < d, there
exists an exponent α > 0, depending on s, the dimension d and the constants controlling
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STOCHASTIC HOMOGENIZATION OF CONVEX INTEGRAL FUNCTIONALS 425

the uniform convexity of L and a constant C ≥ 1, depending additionally on the given data,
such that, for every δ ∈ (0, 1],

(1.4) P
[
∃ε ∈ (0, δ], −

∫
U

|uε(x)− uhom(x)|2 dx ≥ Cεα
]
≤ C exp

(
−δ−s

)
,

where uε and uhom denote the unique minimizers in g+H1
0 (U) of (1.1) and (1.3), respectively.

Depending on the smoothness of the given Dirichlet boundary data g, this L2 estimate
may be upgraded to L∞ by interpolating the latter between L2 and C0,γ and using the
nonlinear De Giorgi-Nash-Moser estimate. There is no loss in stochastic integrability in this
interpolation and essentially no loss in the size of the error, since the exponent α is already
sub-optimal. (See Corollary 4.2.) We remark that, at this stage in the development of the
theory, we are less concerned with the sub-optimality of the size of the error than with the
strength of the stochastic integrability; the former will be improved later. In (1.4) we have
obtained the best possible stochastic integrability in the sense that such an estimate is false
for s > d.

The second main result (Theorem 1.2) asserts that local minimizers of the energy func-
tional in (1.1) are much smoother than minimizers for general functionals with measurable
coefficients: it states roughly that any local minimizer uε of the energy functional satisfies the
estimate

(1.5) sup
x∈B1/2\Bε

|uε(x)− uε(0)|
|x|

≤ Y
(
1 + ‖uε‖L2(B1)

)
,

where Y is a random variable (i.e, it depends on the coefficients but not on uε) which, for
any s < d, can be chosen to satisfy

E [exp( Ys)] <∞.

This is a quenched Lipschitz estimate “down to the microscopic scale" since the left side
of (1.5) is a finite difference approximation of |Duε(0)|.

The estimate (1.5) can be written in other forms, such as

(1.6) −
∫
Br

|Duε(x)|2 dx ≤ C
(

1 + ‖uε‖2L2(B1)

)
for every r ∈

[
εY,

1

2

]
.

The latter gives very good control of the spatial averages of the energy density of uε. As was
shown by Gloria and Otto [15] in the linear setting, if the probability measure P satisfies a
spectral gap hypothesis, then an estimate like (1.6) implies optimal bounds on the variance
of the energy of, e.g., minimizers with periodic boundary conditions. In a future work, we
will prove this and other optimal quantitative estimates from higher regularity estimates.

Theorem 1.2 also asserts that local minimizers behave even more smoothly on mesoscopic
scales (those of order εβ for some β ∈ (0, 1)) by giving an improvement of flatness estimate:
see (1.16).

The proof of the error estimates, like the arguments of [8, 9], is variational and centers
on the analysis of certain subadditive and superadditive energy quantities. However, the
methods here differ substantially from those of [8, 9], as quantitative results present difficul-
ties which do not appear in the qualitative theory and which require not just a harder analysis
but also a new approach to the problem. The qualitative theory is based on the observation
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426 S. N. ARMSTRONG AND C. K. SMART

that the energy of a minimizer with respect to affine Dirichlet conditions is subadditive with
respect to the domain. This monotonicity allows one to obtain a deterministic limit for this
energy, as the domain becomes large, via a relatively soft argument based on the ergodic
theorem.

To obtain a convergence rate for this limit (see Theorem 3.1), we introduce a new
superadditive energy quantity by removing the boundary condition and adding a linear
term to the energy functional. This is a kind of convex dual of the subadditive quantity, as
we explain in more detail in Section 2. The main part of the analysis is to show that mini-
mizers of the dual quantity are close to affine functions in a suitable sense, which implies
that the subadditive and superadditive quantities are close to each other, up to a small error.
Thus the quantities are in fact additive, up to a suitably small error, which gives the desired
rate for the limits. This is the focus of Sections 2 and 3, and the proof of Theorem 1.1 is then
completed in Section 4 with the help of an oscillating test function argument.

The proof of the quenched Lipschitz estimate is inspired by Avellaneda and Lin [2, 3] who
showed, using a perturbation argument in the context of periodic media and linear equations,
that solutions of a heterogeneous equation inherit higher regularity from the homogenized
equation. While we cannot make use of compactness arguments in the stochastic setting, the
error estimates in Theorem 1.1 are strong enough to implement a quantitative version of this
technique.

The closest previous result to the quenched Lipschitz estimate is a quenched Hölder
estimate due to Marahrens and Otto [19] (recently extended to the continuum case by Gloria
and Marahrens [12]). They proved a C0,1−δ estimate for linear equations, for every δ > 0,
with somewhat weaker stochastic integrability (in our notation, they obtained that all finite
moments of Y are bounded). The methods of proof in all of these works are completely
different from the one here and based on logarithmic Sobolev or spectral gap inequalities.
Here we also apply concentration of measure, but we use it in a more elementary form and
in a modular way. We therefore believe our results will extend in a straightforward way to
coefficients satisfying only much weaker mixing conditions. Moreover, Hölder estimates, as
noted by Avellaneda and Lin [2, 3] in the periodic case, are significantly easier to obtain than
a Lipschitz estimate, which is the critical estimate for this problem.

While the results in this paper are completely new in the nonlinear setting, we emphasize
that even for linear equations we prove new results: compared to previous works, our error
estimates exhibit stronger stochastic integrability and the quenched Lipschitz estimate is new.
Moreover, while we prove our results under an independence assumption, we believe that the
arguments can be modified in a simple way to handle quantitative ergodicity assumptions
in other forms (such as weaker mixing conditions or spectral gap-type assumptions) and to
generalize easily to systems of equations under strong ellipticity assumptions.

In the next three subsections, we present the precise hypotheses and the statements of the
main results.

1.2. Modeling assumptions

We take d ∈ N, d ≥ 2 and Λ ≥ 1 to be parameters which are fixed throughout the paper.
We require the integrands L of our energy functionals to satisfy the following conditions:
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STOCHASTIC HOMOGENIZATION OF CONVEX INTEGRAL FUNCTIONALS 427

(L1) L : Rd × Rd → R is a Carathéodory function, that is, L(p, x) is measurable in x and
continuous in p.

(L2) L is uniformly convex in p: for every p1, p2, x ∈ Rd,

1

4
|p1 − p2|2 ≤

1

2
L(p1, x) +

1

2
L(p2, x)− L

(
1

2
p1 +

1

2
p2, x

)
≤ Λ

4
|p1 − p2|2.

Note that (L2) implies L(·, x) is C1, for each x ∈ Rd, and [DpL(·, x)]C0,1(Rd) ≤ Λ, where
DpL denotes the gradient of L with respect to the first variable.

We define Ω to be the set of all such functions:

Ω := {L : L satisfies (L1) and (L2)} .

Note that Ω depends on the fixed parameter Λ > 1. We endow Ω with the following family
of σ-algebras: for each Borel U ⊆ Rd, define

F (U) := the σ-algebra generated by the family of random variables

L 7→
∫
U

L(p, x)φ(x) dx, p ∈ Rd, φ ∈ C∞c (Rd).

The largest of these is denoted by F := F (Rd). It is also convenient to define a subset of Ω

consisting of Lagrangians L such that L and DpL are locally bounded in p, uniformly in x.
For each K ≥ 0, We set

Ω(K) :=
{
L ∈ Ω : ∀p, x ∈ Rd, |p|2 −K(1 + |p|) ≤ L(p, x) ≤ Λ|p|2 +K(1 + |p|)

}
.

The random environment is modeled by a given probability measure P on (Ω, F ). The
expectation with respect to P is denoted by E. We require P to satisfy the following three
assumptions:

(P1) P has a unit range of dependence: for all Borel subsets U, V ⊆ Rd such that
dist(U, V ) ≥ 1,

F (U) and F (V ) are P-independent.

(P2) P is stationary with respect to Zd-translations: for every z ∈ Zd and E ∈ F ,

P [E] = P [TzE] ,

where the translation group {Tz}z∈Zd acts on Ω by (TzL)(p, x) = L(p, x+ z).

(P3) L andDpL are bounded locally uniformly in p and uniformly on the support ofP: there
exists K0 ≥ 1 such that

P
[
L ∈ Ω(K0)

]
= 1.

These hypotheses are stronger than those of [9] in several respects. First, for the sake
of simplicity, we consider only the case of quadratic growth. This assumption is probably
not essential, and we speculate that adaptations of our arguments should give results, for
example, in the case of Lagrangians growing like |p|m for m > 1. Second, in (L2) we
have strengthened the assumption of convexity to uniform convexity. While this assumption
can probably be relaxed, some form of strict convexity is essential to our method. Third,
the assumption of ergodicity has been strengthened to the independence condition (P1).
Quantitative ergodicity assumptions are of course required for quantitative results, although
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428 S. N. ARMSTRONG AND C. K. SMART

our methods yield quantitative homogenization results under, for example, much weaker
uniform mixing conditions as well.

1.3. A sub-optimal error estimate for the Dirichlet problem

The first main result of the paper is an estimate for the error in homogenization of the
Dirichlet problem. It gives a sub-optimal algebraic estimate for the size of the error but with
essentially optimal stochastic integrability.

In the following statement and throughout the paper, we denote the Lebesgue measure of
a set E ⊆ Rd by |E| and set −

∫
U
f(x) dx := |U |−1

∫
U
f(x) dx.

T 1.1. – LetU ⊆ Rd be a bounded Lipschitz domain,M ≥ 1, t > 2 and s ∈ (0, d).
There existα(d,Λ, t) > 0,C(d,Λ, s, t, U) ≥ 1 and a nonnegative random variable X on (Ω, F ),
depending on (d,Λ,M, t, s) and satisfying

(1.7) E
[

exp( X)
]
≤ CMd,

such that the following holds: for every L ∈ Ω, ε ∈ (0, 1] and g ∈W 1,t(U) such that

(1.8) K0 +

(
−
∫
U

|Dg(x)|t dx
)1/t

≤M,

the unique functions uε, uhom ∈ g +H1
0 (U) for which

(1.9)
∫
U

L
(
Duε(x),

x

ε

)
dx ≤

∫
U

L
(
Dw(x),

x

ε

)
dx for every w ∈ g +H1

0 (U),

and

(1.10)
∫
U

L(Duhom(x)) dx ≤
∫
U

L(Dw(x)) dx for every w ∈ g +H1
0 (U),

satisfy the estimate

(1.11) −
∫
U

|uε(x)− uhom(x)|2 dx ≤ CM2 (1 + Xεs) εα(d−s).

By Chebyshev’s inequality, the conclusion of Theorem 1.1 implies, in the notation of the
theorem, that for some C(d,Λ, s, t, U) ≥ 1 and every s ∈ (0, d) and δ ∈ (0, 1],

P
[
∃ε ∈ (0, δ], −

∫
U

|uε(x)− uhom(x)|2 dx ≥ CM2εα(d−s)
]
≤ CMd exp

(
−δ−s

)
.

This is an algebraic estimate for the size of the homogenization error with very strong bounds
on the probability of deviations. However, there is more information in (1.11) than the latter,
and the former is often more convenient to work with since it is in the form of an a priori
estimate (i.e., X is independent of ε, g, etc). Note the tradeoff between our control on the
error threshold and the probability of deviations: as the exponent loses power, we gain
more stochastic integrability, and vice versa. The dependence of X on M can of course be
removed in the linear case (i.e., L a quadratic form), but in the general nonlinear setting the
integrability of X necessarily exhibits some mild dependence on M .

While Theorem 1.1 measures the error only in L2 in space, we also obtain interior error
estimates in L∞ by interpolating between the L2 error and the De Giorgi-Nash-Moser C0,γ

estimates. See Corollary 4.2.
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1.4. Stochastic higher regularity

It is well known that minimizers of variable-coefficient energy functionals do not, in
general, have better Hölder regularity than that provided by the De Giorgi-Nash-Moser
estimate (C0,γ for a small γ > 0) or Sobolev regularity than that provided by the Meyers
estimate (which is W 1,2+δ for a small δ > 0). Nevertheless, the following theorems asserts
that the regularity is typically much better for energy functionals sampled by a probability
measure P with a finite range of dependence: minimizers haveC0,1 = W 1,∞ regularity, down
to microscopic scales, and even C1,β regularity down to mesoscopic scales.

T 1.2. – Fix M ≥ 1 and s ∈ (0, d). Then there exists C(d,Λ, s) ≥ 1 and a
nonnegative random variable Y on (Ω, F ), depending on (d,Λ,M, s), satisfying

(1.12) E
[

exp ( Ys)
]
≤ CMd

and the following: for every L ∈ Ω, R ≥ 2 and u ∈ H1(BR) satisfying

(1.13) K0 +
1

R

(
−
∫
BR

|u(x)|2 dx
)1/2

≤M

and

(1.14)
∫
BR

L (Du(x), x) dx ≤
∫
BR

L (Dw(x), x) dx for every w ∈ u+H1
0 (BR),

we have the estimate

(1.15)
1

r
osc
Br

u ≤ CM for every Y ≤ r ≤ 1

2
R.

Moreover, there exist β(d,Λ) > 0 and c(d,Λ, s) > 0 such that, for every γ ∈ (0, β] and
r ∈ [Rcγ , R/2],

(1.16) inf
p∈Rd

1

r
osc
x∈Br

(u(x) + p · x) ≤ C YM
( r
R

)γ
.

It is appropriate to consider a coarsening of the C0,1 seminorm by removing the effect of
microscopic oscillations, as in the left side of (1.15), because the regularizing effect is due to
the correlation structure of the coefficients: which of course cannot have influence on scales
smaller than the correlation length scale. Here we coarsen down to a random scale Y. Of
course, we may also coarsen at the unit scale if we allow the right side to be random, as (1.15)
implies

1

r
osc
Br

u ≤ C YM for every 1 ≤ r ≤ 1

2
R.

On the other hand, if the L’s sampled by P are uniformly smooth, then (1.15) implies a
full C0,1 estimate without the coarsening because in this case we may control the smaller
scales by applying local Schauder estimates.

By the Caccioppoli inequality, the estimate (1.15) also implies

sup
Y≤r≤R/4

−
∫
Br

|Du(x)|2 dx ≤ CM2.

This gives very strong control of the energy density of local minimizers down to the unit scale.
In the linear setting, special cases of this kind of estimate (applied to modified correctors and
the Green’s functions) lie at the heart of the quantitative theory of Gloria and Otto [15, 16]

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



430 S. N. ARMSTRONG AND C. K. SMART

and Gloria, Neukamm and Otto [14, 13]. Theorem 1.2 can therefore be used, together with
spectral gap-type concentration inequalities, to obtain an alternative proof of the optimal
quantitative estimates obtained in these papers.

The proof of Theorem 1.2 is a nonlinear and quantitative version of an idea of Avel-
laneda and Lin [2, 3]: since the heterogeneous energy functional is close to the homogenized
functional on large scales, we can obtain higher regularity by treating minimizers of the
former as a perturbations of those of the latter. This idea was formalized in [2, 3] in the
context of periodic media, via compactness arguments. In the stochastic setting here, we do
not have compactness and therefore the perturbation argument must be more quantitative.
The perfect tool is actually Theorem 1.1: what is needed is an algebraic rate of convergence
in homogenization and strong control of the stochastic fluctuations. Note that the algebraic
exponent in Theorem 1.1 disappears “into the constant" in Theorem 1.2 (so it is irrelevant
that the exponent is sub-optimal), but the strong stochastic integrability Y is inherited from
that of X .

1.5. Outline of the paper

Section 3 is the heart of the paper, wherein we state and prove the core result, Theorem 3.1,
on the convergence of the subadditive and superadditive energies. In Section 2 we introduce
the key concepts and make some preliminary observations in preparation for the proof of
this result. We derive the error estimate for the Dirichlet problem in Section 4 by reducing it
to Theorem 3.1, and from it we obtain the stochastic C0,1 estimate in Section 5.

2. Subadditive and superadditive energies

The analysis in the first part of this paper is centered on two monotone quantities
involving the energy. Up to normalizing factors, one is subadditive and the other is superad-
ditive. The former was considered already in [8, 9] and was the basis of the qualitative proof
of homogenization there, while the latter is considered for the first time here. In this section
we define these quantities and review some of their elementary properties, explain why they
are convex duals of each other. We begin by reviewing some notation.

2.1. Convention for constants

Throughout the paper, unless otherwise indicated, the symbols C and c denote constants
which depend on the dimension d and the parameter Λ in (L2) and may vary in each
occurrence.

2.2. Suppressing the dependence on L

Throughout, the probability space is (Ω, F ,P) and L denotes the canonical element of Ω

that is sampled according to P. Since it is cumbersome to display dependence on L in each
of our quantities, we often suppress this dependence in our notation (for example, in the
statement of Theorem 1.1, each of uε, u and X depend on L). However, the reader should
keep in mind that any quantity implicitly defined in terms of L is random, and the symbols P
and E should always be understood with respect to this randomness.

4 e SÉRIE – TOME 49 – 2016 – No 2
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2.3. Definition of the energy quantities µ and ν

For each p, q ∈ Rd, bounded open subsetU ⊆ Rd andL ∈ Ω, we define the two quantities

µ(U, q, L) := min

{
−
∫
U

(L(Dw(x), x)− q ·Dw(x)) dx : w ∈ H1(U)

}
and

ν(U, p, L) := min

{
−
∫
U

L(Dw(x), x) dx : w − `p ∈ H1
0 (U)

}
,

where `p denotes the plane `p(x) := p · x. The quantity ν was introduced by Dal Maso and
Modica [8, 9] and was central to their proof of qualitative homogenization. Note that, for
every p ∈ Rd, U ⊆ Rd and L ∈ Ω,

(2.1) sup
q∈Rd

(q · p+ µ(U, q, L)) ≤ ν(U, p, L).

To build some intuition for µ and ν, and to see that they are convex dual to each other in
some sense, we examine the case that L has no spatial dependence, i.e., L(p, x) = L(p). The
values of µ and ν are then easy to compute, as there is no dependence on U and the integrals
may be removed. We obtain

µ(U, q, L) = µ(q, L) = min
p∈Rd

(L(p)− q · p) and ν(U, p, L) = ν(p, L) = L(p).

The Legendre transform L∗ of L may therefore be written as

L∗(q) = sup
p∈Rd

(p · q − L(p)) = −µ(q, L).

We thus observe that ν identifies L while µ naturally identifies L∗. We may also write L in
terms of µ by duality:

(2.2) L(p) = sup
q∈Rd

(p · q − L∗(q)) = sup
q∈Rd

(p · q + µ(q, L)) .

In Section 3.4, we generalize (2.2) to the stochastic case.

As mentioned in the previous subsection, we usually suppress the dependence of µ and ν
on L, unless required for clarity, by writing µ(U, q) and ν(U, p). However, the reader should
keep in mind that these quantities are random variables.

We note that µ(U, q) is well-defined and finite. Indeed, by (P3) we have

(2.3) P
[
for every bounded, open U ⊆ Rd, −2(K0 + |q|)2 ≤ µ(U, q) ≤ K0

]
= 1.

The first inequality holds because the left side (rather crudely) bounds L(p, x) − q · p from
below, uniformly in p, on the support of P, which we see from the first inequality in (P3). We
get the second inequality in (2.4) by taking zero as a test function in the definition of µ and
using the second inequality in (P3). In particular, as K0 ≥ 1, we obtain

(2.4) |µ(U, q)| ≤ 2(K0 + |q|)2 P-a.s.

A similar argument as the one for (2.4) leads to the bound

(2.5) |p|2 −K0 (1 + |p|) ≤ ν(U, p) ≤ Λ|p|2 +K0 (1 + |p|) P-a.s.

Here we used Jensen’s inequality in the expression for the energy of a minimizer to get the
left side, and test with the zero function to get the right side.
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2.4. The minimizers u and v

Up to an additive constant, the minimization problem in the definition of µ has a unique
minimizer in H1(U). (The uniqueness of the minimizer follows from uniform convexity, see
Lemma 2.1 below.) We denote the unique minimizer which has mean zero on every connected
component of U by u(·, U, q). In other words, u(·, U, q) is the unique element of H1(U)

satisfying

−
∫
U

(L(Du(x, U, q), x)− q ·Du(x, U, q)) dx

≤ −
∫
U

(L(Dw(x), x)− q ·Dw(x)) dx ∀w ∈ H1(U),

−
∫
V

u(x, U, q) dx = 0 ∀V ⊆ U with V and U \ V open.

We denote the spatial average of Du(·, U, q) by

(2.6) P (U, q) := −
∫
U

Du(x, U, q) dx.

We let v(·, U, p) denote the minimizer for ν(U, p), that is, the unique function in H1(U)

satisfying −
∫
U

L (Dv(x, U, p), x) dx ≤ −
∫
U

L (Dv(x, U, p) +Dw(x), x) dx ∀w ∈ H1
0 (U),

v(·, U, p)− `p ∈ H1
0 (U).

We stress once again that u(·, U, q), v(·, U, p) and P (U, q) are random elements, as they
depend on L.

2.5. Notation for cubes

For each x ∈ Rd and n ∈ N∗, we define the triadic cube

Qn(x) := 3nb3−nxc+

(
−1

2
3n,

1

2
3n
)d

.

Here brc denotes, for r ∈ R, the largest integer not greater than r and, for a point
x = (x1, . . . , xd) ∈ Rd, we set bxc := (bx1c, . . . , bxdc). We have centered each cube Qn(x)

at a point on the lattice 3nZd in order to keep them disjoint. In particular, we note that
Qn(x) is not necessarily centered at x and, neglecting a subset of Lebesgue measure zero
(the boundary of the open cubes), we see that y ∈ Qn(x) if and only if Qn(x) = Qn(y).
For m,n ∈ N∗, Qn+m is the disjoint union, up to a zero measure set, of 3dm cubes of the
form Qn(x). We write Qn := Qn(0).

We also define the trimmed triadic cube by

Q◦n(x) := 3nb3−nxc+

(
−1

2
(3n − 1) ,

1

2
(3n − 1)

)d
.

The trimmed cube Q◦n(x) is obtained from Qn(x) by removing a layer of thickness 1/2 from
each face. The reason we have trimmed this layer near the boundary is that it ensures that the
trimmed cubes are separated by a unit distance from each other, which is convenient when
we work with the independence assumption (P2). We set Q◦n := Q◦n(0).
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For future reference we note that the proportion of volume occupied by the trimmed
region is of order 3−n since, for any n,m ∈ N,

|Qn+m| − 3dm|Q◦n| = 3d(n+m) − 3dm (3n − 1)
d ≤ C3d(n+m)−n

which implies

(2.7)
3dm |Q◦n|
|Qn+m|

≥ 1− C3−n

We introduce a third family of cubes Q̃n+1 defined for n ∈ N∗ by

Q̃n+1(x) := 3n
⌊
3−nx

⌋
+Qn+1.

Thus Q̃n+1(x) is the cube centered at the same point as Qn(x), but with side lengths three
times larger. These cubes are not disjoint and each cube of the form Q̃n+1(x) intersects
5d − 1 others. Note that Q̃n+1(x) is the translation by an element of 3nZd of the cubeQn+1,
and thus P has the same statistical properties in these cubes by the stationarity assumption.
We use this family of cubes when we compare the energy at different scales in Lemma 3.3, as
the argument there requires some overlapping cubes in the construction.

2.6. Monotonicity of µ and ν and the definition of L

The quantity µ has a monotonicity property which is immediate from its definition,
obtained by simply restricting the minimizers of larger regions to smaller ones. Namely, the
mapU 7→ |U |µ(U,L, q) is superadditive, by which we mean that, for all collections of pairwise
disjoint bounded open subsets U1, . . . , Uk ⊆ Rd and every open set U ⊆ Rd such that

(2.8) U1 ∪ · · · ∪ Uk ⊆ U and |U \ (U1 ∪ · · · ∪ Uk)| = 0,

we have

(2.9) µ(U, q) ≥
k∑
j=1

|Uj |
|U |

µ(Uj , q).

In other words, µ(U, q) is bounded below by a weighted average of {µ(Uj , q)}kj=1. To
obtain (2.9), we note that, for each j,∫

Uj

(L (Du(x, U, q), x)− q ·Du(x, U, q)) dx ≥ |Uj |µ(Uj , q)

and then sum over j ∈ {1, . . . , k}.

The superadditivity of µ implies that E [µ(Qn, q)] is a monotone nondecreasing sequence
in n. Indeed, recall that Qn+m is the disjoint union of 3dm cubes of the form Qn(x), up to a
zero measure set, and therefore (2.9) gives

(2.10) µ(Qn+m, q) ≥ 3−dm
∑

Qn(x)⊆Qn+m

µ(Qn(x), q).

Taking expectations gives

(2.11) E [µ(Qn+m, q)] ≥ E [µ(Qn, q)] .
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In view of (2.4), the quantity

(2.12) µ(q) := sup
n∈N

E [µ(Qn, q)]

is finite and hence, by (2.11), we have the limit

(2.13) lim
n→∞

E [µ(Qn, q)] = µ(q).

We next recall from [9] that, for each p ∈ Rd, the quantity U 7→ |U |ν(U, p) is subadditive,
i.e., for all collections of pairwise disjoint bounded open subsets U1, . . . , Uk ⊆ Rd and
open U ⊆ Rd satisfying (2.8), we have

(2.14) ν(U, p) ≤
k∑
j=1

|Uj |
|U |

ν(Uj , p).

This holds because a candidate for a minimizer for ν(·, p) inU can be obtained by assembling
the minimizers in each of the Uj ’s. Similarly to (2.10) and (2.11), specializing to the triadic
cubes we deduce that, for every m,n ∈ N and p ∈ Rd,

(2.15) ν(Qn+m, p) ≤ 3−dm
∑

Qn(x)⊆Qn+m

ν(Qn(x), p)

and taking expectations and applying stationarity yields

(2.16) E [ν(Qn+m, p)] ≤ E [ν(Qn, p)] .

We define the effective Lagrangian L : Rd → R by

(2.17) L(p) := inf
n∈N

E [ν(Qn, p)] .

Note that this is the same definition for L given in [8, 9]. By (2.16), we have

(2.18) lim
n→∞

E [ν(Qn, p)] = L(p).

2.7. Comparisons between E[µ(Qn, q)] and E[µ(Q◦n, q)]

For our reference, we record here a few observations concerning the expectation of µ in
the trimmed and untrimmed dyadic cubes. We first note that µ is also monotone with respect
to the trimmed cubes, up to a small error. We have:

(2.19) µ(Q◦n+m, q) ≥ 3−dm
∑

Q◦n(x)⊆Qn+m

µ(Q◦n(x), q)− C (K0 + |q|)2 3−n P-a.s.

To obtain (2.19), we note that in view of the remarks in Section 2.5, we may write Q◦m+n,
up to a zero measure set, as the union of 3dm cubes of the form Q◦n(x) ⊆ Q◦m+n and an
open set of measure at most C3m. We then deduce (2.19) from (2.4), (2.7) and (2.9). Taking
expectations and using stationarity gives

(2.20) E
[
µ(Q◦m+n, q)

]
≥ E [µ(Q◦n, q)]− C(K0 + |q|)23−n.

By a similar argument, we obtain

(2.21) ν(Q◦n+m, p) ≤ 3−dm
∑

Q◦n(x)⊆Qn+m

ν(Q◦n(x), q) + C (K0 + |p|)2 3−n P-a.s.
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It is also useful to have some comparison between µ and ν in the trimmed and untrimmed
cubes. By |Qn \Q

◦
n| ≤ 3−n|Qn|, (2.4) and (2.9), we have

(2.22) µ(Q◦n, q) ≤ µ(Qn, q) + C(K0 + |q|)23−n P-a.s.

Similarly, by (2.5) and (2.14), we have

(2.23) ν(Q◦n, p) ≥ ν(Qn, p)− C(K0 + |p|)23−n P-a.s.

We also need an inequality bounding E [µ(Qn, q)] from above by E [µ(Q◦n, q)]:

(2.24) E [µ(Qn, q)]

≤ E [µ(Q◦n, q)] + 3d
(
E
[
µ(Q◦n+1, q)

]
− E [µ(Q◦n, q)] + C(K0 + |q|)23−n

)
.

To get this, observe that the cube Q◦n+1 is the disjoint union (up to a set of measure zero) of
the untrimmed cube Qn, 3d − 1 trimmed cubes of the form Q◦n(x) and a set of measure at
most C3n(d−1). We obtain (2.24) after applying superadditivity, stationarity and (2.4) to this
partition.

2.8. Basic energy estimates

In this subsection we record two simple consequences of the uniform convexity assump-
tion (L2) which are used repeatedly in the paper. The first is the following lemma, which gives
gradient estimates for functions which are close to minimizers. The lemma is classical, e.g.,
it is almost the same as Giaquinta [10, Chapter IX, Lemma 4.1].

L 2.1. – For every L ∈ Ω, q ∈ Rd, bounded open U ⊆ Rd and w, ξ ∈ H1(U),

−
∫
U

|Dw(x)−Dξ(x)|2 dx

≤ 2

(
−
∫
U

(
L(Dw(x), x)− q ·Dw(x)

)
dx+ −

∫
U

(
L(Dξ(x), x)− q ·Dξ(x)

)
dx

− 2µ(U, q, L)

)
.

Proof. – Set ζ := 1
2w + 1

2ξ ∈ H
1(U). Using (L2), we compute

µ(U, q, L) ≤ −
∫
U

(
L(Dζ(x), x)− q ·Dζ(x)

)
dx

≤ 1

2
−
∫
U

(
L(Dw(x), x)− q ·Dw(x)

)
dx

+
1

2
−
∫
U

(
L(Dξ(x), x)− q ·Dξ(x)

)
dx− 1

4
−
∫
U

|Dw(x)−Dξ(x)|2 dx.

A rearrangement of the previous inequality gives the lemma.

In some arguments in the next section, we apply Lemma 2.1 in the case thatw = u(·, U, q)
and ξ = u(·, V, q) for open sets U , V satisfying U ⊆ V and |V \U | = 0 (i.e., V is the interior
of the closure of the disconnected set U ). The conclusion of the lemma gives

(2.25) −
∫
U

|Du(x, U, q)−Du(x, V, q)|2 dx ≤ 2 (µ(V, q)− µ(U, q)) .
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A particular case of (2.25) allows us to compare the gradients of minimizers in the trimmed
and untrimmed cubes. Write U := Q◦n ∪ (Qn \Q◦n), apply the inequality with V = Qn and
then use (2.4) (2.7), (2.9) and to get

−
∫
U

|Du(x, U, q)−Du(x,Qn, q)|2 dx

≤ C (µ(Qn, q)− µ(U, q))

≤ C
(
µ(Qn, q)−

|Q◦n|
|Qn|

µ(Q◦n, q)−
|Qn \Q◦n|
|Qn|

µ(Qn \Q◦n, q)
)

≤ C (µ(Qn, q)− µ(Q◦n, q)) + C
(
K2

0 + |q|2
)

3−n.

Taking expectations and using that

u(·, U, q)|Q◦n ≡ u(·, Q◦n, q) and u(·, U, q)|Qn\Q◦n ≡ u(·, Qn \Q◦n, q),

as well as (2.4) and (2.7) again, we get

(2.26)
1

|Qn|

∫
Q◦n

|Du(x,Q◦n, q)−Du(x,Qn, q)|2 dx+
1

|Qn|

∫
Qn\Q◦n

|Du(x,Qn, q)|2 dx

≤ C (E [µ(Qn, q)]− E [µ(Q◦n, q)]) + C
(
K2

0 + |q|2
)

3−n.

Another consequence of Lemma 2.1 is the gradient bound

(2.27) −
∫
U

|Du(x, U, q)|2 dx ≤ 6(K0 + |q|)2 P-a.s.

This we get by comparing u(·, U, q) to the zero function, using (P3) and (2.4).

We also have the following variation of Lemma 2.1 from a nearly identical argument: for
every w, ξ ∈ H1(U) such that 1

2w + 1
2ξ − `p ∈ H

1
0 (U), we have

(2.28) −
∫
U

|Dw(x)−Dξ(x)|2 dx ≤ 2

(
−
∫
U

(L(Dw(x), x) + L(Dξ(x), x)) dx− 2ν(U, p)

)
.

(Recall that `p is the plane `p(x) = p ·x.) Comparing v(·, U, p) to `p, applying (P3) and (2.28)
and using the triangle inequality, we get

(2.29) −
∫
U

|Dv(x, U, p)|2 dx ≤ C (K0 + |p|)2 P-a.s.

The second consequence of uniform convexity is kind of converse of Lemma 2.1 which
allows us to perturb minimizers without increasing the energy too much.

L 2.2. – For every L ∈ Ω, q ∈ Rd, bounded open U ⊆ Rd and w, ξ ∈ H1(U),

−
∫
U

(
L(Dw(x), x)− q ·Dw(x)

)
dx

≤ 2 −
∫
U

(
L(Dξ(x), x)− q ·Dξ(x)

)
dx− µ(U, q, L) + 2Λ−

∫
U

|Dw(x)−Dξ(x)|2 dx.
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Proof. – We set ζ := 2ξ − w ∈ H1(U) so that ξ = 1
2w + 1

2ζ and then use (L2) to get

−
∫
U

(
L(Dξ(x), x)− q ·Dξ(x)

)
dx

≥ 1

2
−
∫
U

(
L(Dw(x), x)− q ·Dw(x)

)
dx+

1

2
−
∫
U

(
L(Dζ(x), x)− q ·Dζ(x)

)
dx

− Λ

4
−
∫
U

|Dw(x)−Dζ(x)|2 dx

≥ 1

2
−
∫
U

(
L(Dw(x), x)− q ·Dw(x)

)
dx+

1

2
µ(U, q, L)

− Λ−
∫
U

|Dw(x)−Dξ(x)|2 dx.

A rearrangement now yields the lemma.

Similar to Lemma 2.1, we often use Lemma 2.2 in the case that ξ = u(·, U, q) is the
minimizer for µ(U, q), in which case the conclusion gives, for every w ∈ H1(U),

(2.30) −
∫
U

(
L(Dw(x), x)− q ·Dw(x)

)
dx ≤ µ(U, q) + 2Λ−

∫
U

|Dw(x)−Du(x, U)|2 dx.

We also obtain a version of Lemma 2.2 for planar boundary conditions, which states that,
for every p ∈ Rd and w, ξ ∈ H1(U) such that 2ξ − w − `p ∈ H1

0 (U), we have

(2.31) −
∫
U

L(Dw(x), x) dx

≤ 2−
∫
U

L(Dξ(x), x) dx− ν(U, p, L) + 2Λ−
∫
U

|Dw(x)−Dξ(x)|2 dx.

2.9. Further properties of µ, ν and L

For our reference, we record here some properties of µ and ν and their minimizers,
particularly regarding their dependence on p and q.

An immediate consequence of (2.28) and (2.31) is that p 7→ ν(x, U, p) is uniformly convex
in p. Precisely, we claim that

(2.32)
1

4
|p1 − p2|2 ≤

1

2
ν(U, p1) +

1

2
ν(U, p2)− ν(U, 1

2p1 + 1
2p2) ≤ Λ

4
|p1 − p2|2.

To get the first inequality of (2.32), apply (2.28) with w = v(·, U, p1) and ξ = v(·, U, p2); to
get the second inequality, apply (2.31) with p = p1,w = v(·, U, p2) and ξ = v(·, U, 1

2p1+ 1
2p2).

A further consequence of (2.5) and (2.32) is the continuity of ν in p: for every p1, p2 ∈ Rd,
we have

(2.33) |ν(U, p1)− ν(U, p2)| ≤ C (K0 + |p1|+ |p2|) |p1 − p2| P-a.s.

Applying (2.28) to w := v(·, U, p1) and ξ := v(·, U, p2) and using (2.32), we get

(2.34) −
∫
U

|Dv(x, U, p1)−Dv(x, U, p2)|2 dx ≤ Λ |p1 − p2|2 .

Specializing to U = Qn and applying the Poincaré inequality, we get

(2.35) 3−2n −
∫
Qn

(v(x,Qn, p1)− v(x,Qn, p2))
2
dx ≤ C |p1 − p2|2 .
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The effective Lagrangian L defined in (2.17) satisfies the same growth and uniform
convexity conditions as L: for every p, p1, p2 ∈ Rd,

(2.36) |p|2 −K0(1 + |p|) ≤ L(p) ≤ Λ|p|2 +K0(1 + |p|),

(2.37)
1

4
|p1 − p2|2 ≤

1

2
L(p1) +

1

2
L(p2)− L

(
1

2
p1 +

1

2
p2

)
≤ Λ

4
|p1 − p2|2

and

(2.38)
∣∣L(p1)− L(p2)

∣∣ ≤ C (K0 + |p1|+ |p2|) |p1 − p2|.

These are immediate consequences of (2.5), (2.32) and (2.33). Observe that (2.37) implies
that L is differentiable at every p ∈ Rd and DL is Lipschitz continuous. In fact, for
every p, p1, p2 ∈ Rd, we have

(2.39)
∣∣DL(p)

∣∣ ≤ C(K0 + |p|) and
∣∣DL(p1)−DL(p2)

∣∣ ≤ 2Λ|p1 − p2|.

Finally, we record the continuity of the maps q 7→ µ(U, q) and q 7→ u(·, U, q). Using
u(·, U, q1) as a minimizer candidate for µ(U, q2) and the estimate (2.27), we discover that

µ(U, q2) ≤ µ(U, q1) + C|q1 − q2| (K0 + |q1|) P-a.s.

We deduce that, for every q1, q2 ∈ Rd and bounded open U ⊆ Rd,

(2.40) |µ(U, q1)− µ(U, q2)| ≤ C (K0 + |q1|+ |q2|) |q1 − q2| P-a.s.

Lemma 2.1 and a similar computation yield that

(2.41) −
∫
U

|Du(x, U, q1)−Du(x, U, q2)|2 dx ≤ C (K0 + |q1|+ |q2|) |q1 − q2| P-a.s.

Specializing to the case U = Qn and applying the Poincaré inequality, we get

(2.42) 3−2n −
∫
Qn

(u(x,Qn, q1)− u(x,Qn, q2))
2
dx ≤ C (K0 + |q1|+ |q2|) |q1 − q2| P-a.s.

3. Convergence of the energy and flatness of minimizers

In this section we prove our first quantitative result: a sub-optimal algebraic estimate
for the rate of convergence in the limits (2.13) and (2.18) as well as for the flatness of the
respective minimizers. It is the main step toward the results stated in the introduction.

T 3.1. – Fix q ∈ Rd. There exist α(d,Λ) > 0, c(d,Λ) > 0, C(d,Λ) ≥ 1 and a
unique P (q) ∈ Rd such that

(3.1) µ(q) + P · q = L(P )

and, for every s ∈ (0, d), R ≥ 1, n ∈ N∗ and t ≥ 1,

(3.2) P
[

sup
y∈BR

(
|µ(y +Qn, q)− µ(q)|+

∣∣ν(y +Qn, P )− L(P )
∣∣ )

≥ C(K0 + |q|)23−nα(d−s)t

]
≤ CRd exp (−c3snt)
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and

(3.3)

P
[

sup
y∈BR

3−2n −
∫
y+Qn

(
u(x, y +Qn, q)− P · (x− y)

)2
+
(
v(x, y +Qn, P )− P · x

)2
dx

≥ C(K0 + |q|)23−nα(d−s)t

]
≤ CRd exp (−c3snt) .

We prove Theorem 3.1 in Section 3.3 using the flatness theory we construct in Section 3.2
plus an elementary concentration argument. The final subsection contains extensions of
Theorem 3.1 and a demonstration of the fact that −µ and L are convex dual functions.

3.1. Reduction to the case q = 0

It suffices to prove Theorem 3.1 in the case that q = 0. To see this, suppose that the
statement of the theorem holds in this special case and fix q ∈ Rd. Consider the probability
measure Pq on (Ω, F ) which is the pushforward of P under the mapL 7→ Lq, where the latter
is defined by

(3.4) Lq(p, x) := L(p, x)− q · p.

(Recall that if π : Ω → Ω is an F -measurable map, then the pushforward of P under π is the
probability measure denoted by π#P and defined for E ∈ F by π#P [E] := P

[
π−1(E)

]
.)

Then it is easy to check that Pq satisfies the assumptions (P1), (P2) and (P3) after we replace
the constant K0 in (P3) by K0 + |q|. Applying the special case of Theorem 3.1 with Pq in
place of P and rewriting the statement in terms of P itself, we obtain the general statement
of the theorem.

Therefore, in Sections 3.2 and 3.3 we assume q = 0 and drop q from our notation by
writing, for example, µ(U), u(·, U) and P (U) in place of µ(U, 0), u(·, U, 0) and P (U, 0). The
variable q is reintroduced in Section 3.4 once the proof of Theorem 3.1 is complete.

3.2. The flatness of minimizers

The primary task in the proof of Theorem 3.1 is to quantify the limit (2.13). The main
step, which is the focus of this subsection, is to show that, for n� 1, the minimizer u(·, Qn)

is close to a plane. This allows us to compare µ to ν(·, p) for an appropriate choice of p ∈ Rd.

In the first step, we use the finite range of dependence assumption to show that, unless
the expectation of µ increases significantly when passing to a larger scale, the variance of the
average slope vector P must be small (recall that P is defined in (2.6)). Since the argument is
based on independence, we work with the trimmed cubes.

L 3.2. – There exists C(d,Λ) ≥ 1 such that, for every n ∈ N,

(3.5) var [P (Q◦n)] ≤ C
(
E
[
µ(Q◦n+1)

]
− E [µ(Q◦n)] + CK2

03−n
)
.
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Proof. – Fix n ∈ N and a unit vector e ∈ ∂B1. Select a smooth vector field

B : Q◦n+1 → Rd

with
divB = 0 in Q◦n+1

such thatB has compact support inQ◦n+1 and satisfiesB ≡ e inQ◦n and the estimate |B| ≤ C
in Q◦n+1. To see that such a solenoidal vector field exists, consider without loss of generality
the case n = 0 the take h ∈ H1((Q0+B1/2)\(Q0+B1/4)) to be the solution of the Neumann
problem 

−∆h = 0 in (Q0 +B1/2) \ (Q0 +B1/4),

∂νh = e · ν on ∂(Q0 +B1/2),

∂νh = 0 on ∂(Q0 +B1/4),

where (unlike in the rest of the paper) in the previous line ν denotes the outer unit normal
vector. Then we define a vector field B̃ : Rd → Rd by

B̃(x) :=


e if x ∈ Q0 +B1/4,

e−Dh(x) if x ∈ (Q0 +B1/2) \ (Q0 +B1/4),

0 if x ∈ Rd \ (Q0 +B1/2).

It is clear from the construction that B̃ ∈ L∞(Rd;Rd) is solenoidal in Rd and has support
in Q0 +B1/2. We may then obtain B as above by mollifying B̃.

Observe that

(3.6) −
∫
Q◦n+1

B(x) ·Du
(
x,Q◦n+1

)
dx = 0.

Let U be the union of the trimmed subcubes of Q◦n+1 of the form Q◦n(x) ⊆ Q◦n+1 and set
V := Q◦n+1 \ U . Since U and V are disjoint, we have

u(·, U ∪ V )|U = u(·, U) and u(·, U ∪ V )|V = u(·, V ).

Similarly, for each x ∈ Q◦n+1, we have

u(·, U ∪ V )|Q◦n(x) = u(·, Q◦n(x)).

By previous two lines and stationarity, we have E [µ(U)] = E [µ(Q◦n)]. Thus we may
rewrite (3.6) as∫

U

B(x) ·Du(x, U) dx

=

∫
U∪V

B(x) ·
(
Du(x, U ∪ V )−Du(x,Q◦n+1)

)
dx−

∫
V

B(x) ·Du(x, V ) dx.

Applying (2.25) and (2.27), using |B| ≤ C, |V | ≤ C3−n|Qn+1| and (2.4), we obtain

(3.7)
(
−
∫
U

B(x) ·Du(x, U) dx

)2

≤ C
(
µ(Q◦n+1)− µ(U ∪ V ) + CK2

03−n
)
.

Using again that |V | ≤ C3−n|Qn+1| with (2.4), we see from (2.9) that

E [µ(U ∪ V )] ≥ |U |
|U ∪ V |

E [µ(U)]− CK2
03−n ≥ E [µ(Q◦n)]− CK2

03−n.
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Taking the expectation of (3.7) and using the previous line, we get

(3.8) E

[(
−
∫
U

B(x) ·Du(x, U) dx

)2
]
≤ C

(
E
[
µ(Q◦n+1)

]
− E [µ(Q◦n)] + CK2

03−n
)
.

Finally, we note that dist(Q◦n, U \Q◦n) ≥ 1 by construction and therefore, using (P2), we see
that the random variables

−
∫
Q◦n

B(x) ·Du(x,Q◦n) dx and −
∫
U\Q◦n

B(x) ·Du(x, U \Q◦n) dx

are P-independent.

Therefore, using that B(x) = e in Q◦n as well as

u(·, Q◦n) = u(·, U)|Q◦n and u(·, U \Q◦n) = u(·, U)|U\Q◦n ,

we obtain from independence and (3.8) that

var [e · P (Q◦n)] = var

[
−
∫
Q◦n

e ·Du(x,Q◦n) dx

]

≤ var

[
−
∫
Q◦n

e ·Du(x,Q◦n) dx

]
+ var

[
−
∫
U\Q◦n

B(x) ·Du(x, U \Q◦n) dx

]

= var

[
−
∫
U

B(x) ·Du(x, U) dx

]
≤ E

[(
−
∫
U

B(x) ·Du(x, U) dx

)2
]

≤ C
(
E
[
µ(Q◦n+1)

]
− E [µ(Q◦n)] + CK2

03−n
)
.

Summing over e in the standard basis for Rd yields the lemma.

Motivated by the previous lemma, we define, for each n ∈ N, the deterministic
slope Pn ∈ Rd at the nth scale by

Pn := E [P (Q◦n)] .

We note for future reference that (2.27) implies

(3.9)
∣∣Pn∣∣ ≤ 3K0.

We may formulate the previous lemma in terms of the untrimmed cubes. Indeed, by (2.11),
(2.26) and (3.5), we have

(3.10) E
[∣∣P (Qn)− Pn

∣∣2] ≤ C (E [µ(Qn+1)]− E [µ(Q◦n)] + CK2
03−n

)
.

We next present the key assertion regarding the flatness of minimizers. It states that, if
E[µ(Qn+1)]−E[µ(Q◦n)] is small, then we can construct a candidate for the minimizer of µ on
an arbitrarily large scale which is very close to a plane of slope Pn and has expected energy
not much more than E [µ(Qn)]. By modifying the latter a little so that it has affine boundary
conditions, we get a minimizer candidate for ν(Q◦2n, Pn), which gives an upper bound
for E[ν(Q◦2n, Pn)] in terms of E[µ(Qn)]. The argument uses Lemma 3.2 and a patching
construction.
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L 3.3. – There exists a constant C(d,Λ) > 0 and a universal α > 0 such that, for
every n ∈ N,

(3.11) E
[
ν(Q◦2n, Pn)

]
≤ E [µ(Qn)] + C

(
E [µ(Qn+1)]− E [µ(Q◦n)] + CK2

03−αn
)
.

Proof. – Throughout, we fix n ∈ N, let C denote a positive constant depending only
on (d,Λ) which may vary in each occurrence, and denote

τn :=
(
E [µ(Qn+1)]− E [µ(Q◦n)] + CK2

03−n/60
)
.

To prove the lemma, it suffices to construct v ∈ H1
0 (Q◦2n) satisfying

(3.12) E

[
−
∫
Q◦2n

L
(
Pn +Dv(x), x

)
dx

]
≤ E [µ(Qn)] + Cτn.

In the first step we give the construction of v. The rest of the argument is concerned with the
proof of (3.12).

Step 1. – We construct the candidate minimizer v ∈ H1
0 (Q◦2n). We build v by patching

the minimizers for µ on the family
{
z +Qn+1 : z ∈ 3nZd

}
of overlapping triadic cubes. We

consider a partition of unity subordinate to this family by denoting, for each z ∈ 3nZd,

ψ(y) :=

∫
Qn

ψ0(y − x) dx,

where ψ0 ∈ C∞c (Rd) is a smooth function satisfying

0 ≤ ψ0 ≤ C3−dn,

∫
Rd
ψ0(x) dx = 1, |Dψ0| ≤ C3−(d+1)n, suppψ0 ⊆ Qn.

It follows then that ψ is smooth and supported in Qn+1, satisfies 0 ≤ ψ ≤ 1, and the
translates of ψ form a partition of unity:

(3.13)
∑

z∈3nZd
ψ(x− z) = 1.

Moreover, we have

(3.14) sup
x∈Rd

|Dψ(x)| ≤ C3−n.

We next two smooth cutoff functions ξ, ζ ∈ C∞c (Q2n) satisfying

(3.15) 0 ≤ ξ ≤ 1, ξ ≡ 1 on
{
x ∈ Q2n : dist(x, ∂Q2n) > 32n/(1+δ)

}
,

ξ ≡ 0 on
{
x ∈ z +Qn : z ∈ 3nZd, z +Qn+1 6⊆ Q◦2n

}
, |Dξ| ≤ C3−2n/(1+δ),

where δ ∈ (0, β] will be selected below in Step 6, and

(3.16) 0 ≤ ζ ≤ 1, ζ ≡ 1 on
{
x ∈ z +Qn : z ∈ 3nZd, z +Qn+3 ⊆ Q2n

}
,

ζ ≡ 0 on
{
x ∈ z +Qn+1 : z ∈ 3nZd, z +Qn+1 6⊆ Q2n

}
, |Dζ| ≤ C3−n.

To construct v, we first define a vector field f ∈ L2(Rd;Rd) by

(3.17) f(x) := ζ(x)
∑

z∈3nZd
ψ(x− z)

(
Du(x, z +Qn+1)− Pn

)
.
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Since f is not necessarily the gradient of an H1 function, due to the errors made by intro-
ducing the partition of unity and the cutoff function, we need to take its Helmholtz-Hodge
projection. We may write

(3.18) f = f +Dw − div S in Q2n,

where

f := −
∫
Q2n

f(x) dx,

w ∈ H1
loc(Rd) is defined as the unique solution of

−∆w = −div f in Q2n,

−
∫
Q2n

w(x) dx = 0,

w is Q2n-periodic,

and S is a skew-symmetric matrix with entries Sij ∈ H1
loc(Rd) uniquely determined (up to a

constant) by {
−∆Sij = ∂jfi − ∂ifj in Q2n,

Sij is Q2n-periodic.

Here fi is the ith entry of f and div S is the vector field with entries
∑d
j=1 ∂jSij . Indeed,

one may check via a straightforward computation that each component of the vector field
f −Dw + div S is harmonic and therefore constant by periodicity. This constant must be f

since Dw and div S have zero mean in Q2n. This confirms (3.18).

We define v ∈ H1
0 (Q◦2n) by cutting off w:

v(x) := ξ(x)w(x), x ∈ Q2n.

The cutoff function ξ is supported in Q◦2n and thus v ∈ H1
0 (Q◦2n).

The rest of the proof concerns the derivation of (3.12). This is accomplished by showing
that Dv is expected to be close to f in L2(Q◦2n) due to the fact that w, f and div S each have
a small expected L2 norm.

Step 2. – We show that, for every z ∈ 3nZd ∩Q2n,

(3.19) E
[
−
∫
z+Qn

( ∣∣f(x)− ζ(x)
(
Du(x, z +Qn+1)− Pn

)∣∣2 ] ≤ Cτn.
By Lemma 2.1 we have, for every z ∈ 3nZd,∑

y∈{−3n,0,3n}d
−
∫
z+y+Qn

|Du(x, z +Qn+1)−Du(x, z + y +Qn)|2 dx

≤ C
∑

y∈{−3n,0,3n}d

(
−
∫
z+y+Qn

L (Du(x, z +Qn+1), x) dx− µ(y + z +Qn)

)

= C

µ(z +Qn+1)−
∑

y∈{−3n,0,3n}d
µ(z + y +Qn)

 .
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Taking expectations and using the triangle inequality, we get, for every z ∈ 3nZd and
y ∈ {−3n, 0, 3n}d,

(3.20) E
[
−
∫
z+Qn

|Du(x, z + y +Qn+1)−Du(x, z +Qn+1)|2 dx
]
≤ Cτn.

Now observe that (3.19) follows from the previous inequality and the fact that, for every
z ∈ 3nZd and x ∈ z +Qn,

f(x)− ζ(x)
(
Du(x, z +Qn+1)− Pn

)
= ζ(x)

∑
y∈{−3n,0,3n}d

ψ(x− y) (Du(x, z + y +Qn+1)−Du(x, z +Qn+1)) .

Step 3. – We show that

(3.21) E
[∣∣f ∣∣2] ≤ Cτn.

In view of (3.16), it is convenient to denote

(3.22) Zn :=
{
z ∈ 3nZd : z +Qn+3 ⊆ Q2n

}
.

Observe that (3nZd∩Q2n)\ Zn has C3n(d−1) elements. By (3.10), (3.19) and (2.27), we have

E
[∣∣f ∣∣2] ≤ E

3−nd
∑

z∈3nZd∩Q2n

∣∣∣∣−∫
z+Qn

f(x) dx

∣∣∣∣2


≤ 2E

3−nd
∑

z∈3nZd∩Q2n

∣∣∣∣−∫
z+Qn

ζ(x)
(
Du(x, z +Qn+1) dx− Pn

)∣∣∣∣2
+ Cτn

≤ 2E

[
3−nd

∑
z∈ Zn

∣∣∣∣−∫
z+Qn

Du(x, z +Qn+1) dx− Pn
∣∣∣∣2
]

+ CK2
03−n + Cτn

≤ Cτn.

Step 4. – We show that

(3.23) E
[
3−4n −

∫
Q2n

|w(x)|2 dx
]
≤ CK2

03−n/2.

Let φ ∈ H2
loc(Rd) denote the unique solution of

−∆φ = w in Rd,

−
∫
Q2n

φ(x) dx = 0,

φ is Q2n-periodic.

Integrating by parts, we have

(3.24)
∫
Q2n

∣∣D2φ(x)
∣∣2 dx =

∫
Q2n

|w(x)|2 dx =

∫
Q2n

Dφ(x) · f(x) dx

=

∫
Q2n

Dφ(x) ·
(
f(x)− E

[∫
Qn

f(x) dx

])
dx.
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We need a second mesoscale, given by an integer k ∈ (n, 2n) to be selected below. In
what follows, we denote (Dφ)z := −

∫
z+Qk

Dφ(x) dx and
∑
z =

∑
z∈3kZd∩Q2n

as well as

f̃ := f − E
[∫
Qn

f(x) dx
]
. To estimate ‖w‖L2(Q2n), we use the following splitting:

∫
Q2n

|w(x)|2 dx =

∫
Q2n

Dφ(x) · f̃(x) dx

=
∑
z

(∫
z+Qk

(Dφ(x)− (Dφ)z) · f̃(x) dx+ (Dφ)z ·
∫
z+Qk

f̃(x) dx

)
.

To estimate the first term in the sum on the right side of the previous inequality, we use
the Poincaré inequality, the discrete Hölder inequality, (3.24) and (2.27), and then Young’s
inequality:

∑
z

∫
z+Qk

(Dφ(x)− (Dφ)z) · f̃(x) dx

≤
∑
z

3k
(∫

z+Qn

∣∣D2φ(x)
∣∣2 dx) 1

2
(∫

z+Qn

∣∣∣f̃(x)
∣∣∣2 dx) 1

2

≤ 3k

(∑
z

∫
z+Qn

∣∣D2φ(x)
∣∣2 dx) 1

2
(∑

z

∫
z+Qn

∣∣∣f̃(x)
∣∣∣2 dx) 1

2

= 3k
(∫

Q2n

∣∣D2φ(x)
∣∣2 dx) 1

2
(∫

Q2n

∣∣∣f̃(x)
∣∣∣2 dx) 1

2

≤ 3k
(∫

Q2n

|w(x)|2 dx
) 1

2 (
CK2

0 |Q2n|
) 1

2

≤ 1

4

∫
Q2n

|w(x)|2 dx+ CK2
0 |Q2n| 32k.

We next estimate the expectation of the second term in the sum, using two different forms of
Hölder’s inequality:

E

[∑
z

(Dφ)z ·
∫
z+Qk

f̃(x) dx

]
(3.25)

=
∑
z

E
[
(Dφ)z ·

∫
z+Qk

f̃(x) dx

]

≤
∑
z

E
[
|(Dφ)z|

2
] 1

2 E

[(∫
z+Qk

f̃(x) dx

)2
] 1

2

≤

(∑
z

E
[
|(Dφ)z|

2
]) 1

2
(∑

z

E

[(∫
z+Qk

f̃(x) dx

)2
]) 1

2

.
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For the first factor on the right side of the previous inequality, we have, by the Poincaré
inequality and (3.24),∑

z

E
[
|(Dφ)z|

2
]

= E

[∑
z

|(Dφ)z|
2

]
≤ C3−kd E

[∫
Q2n

|Dφ(x)|2 dx
]

(3.26)

≤ C3−kd+4n E
[∫

Q2n

∣∣D2φ(x)
∣∣2 dx]

= C3−kd+4n E
[∫

Q2n

|w(x)|2 dx
]
.

In preparation to estimate the second factor, we use independence to get

E

[(∫
Qk

f̃(x) dx

)2
]

= E

 ∑
y,y′∈3nZd∩Qk

∫
y+Qn

f̃(x) dx

∫
y′+Qn

f̃(x) dx


≤ C (CK0 |Qn|)2

∣∣3nZd ∩Qk∣∣ = CK2
03d(k+n).

By stationarity, the same estimate holds with z + Qk in place of Qk provided that the
cube z +Qk does not touch ∂Q2n. For the cubes which do touch the boundary of the
macroscopic cube (and thus intersect the support of ζ), we use the following cruder, deter-
ministic bound given by (2.27):(∫

Qk

f̃(x) dx

)2

≤ C3dk
∫
Qk

∣∣∣f̃(x)
∣∣∣2 dx ≤ CK2

032dk.

Combining these, using that there are at mostC3(2n−k)(d−1) cubes of the form z+Qk which
touch the boundary of Qn, we get

(3.27)
∑
z

E

[(∫
z+Qk

f̃(x) dx

)2
]
≤ CK2

032dn+dk
(

3−d(k−n) + 3−(2n−k)
)
.

We may now estimate the right side of (3.25) using applying (3.26), (3.27) and Young’s
inequality. The result is:

(3.28) E

[∑
z

(Dφ)z ·
∫
z+Qk

f̃(x) dx

]

≤ 1

4
E
[∫

Q2n

|w(x)|2 dx
]

+K2
0 |Q2n| 34n

(
C ′3−d(k−n) + C3−(2n−k)

)
Combining the above inequalities now yields

E
[∫

Q2n

|w(x)|2 dx
]
≤ K2

034n |Q2n|
(
C ′3−d(k−n) + C3−(2n−k)

)
.

Taking finally k to be the nearest integer to 3n/2, we obtain (3.23).

Step 5. – We estimate the expected size of |div S|2. The claim is

(3.29) E
[
−
∫
Q2n

|div S(x)|2 dx
]
≤ Cτn.
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As in the previous step, we use the abbreviations uz := u(·, z + Qn+1), ψz := ψ(· − z),∑
z :=

∑
z∈3nZd∩Q2n

and
∫
z

:=
∫
z+Qn+1

Observe that, in the sense of distributions, for
every i, j ∈ {1, . . . , d}, we have

∂jfi − ∂ifj =
∑
z

ζ
(
∂jψz(∂iuz − Pn,i)− ∂iψz(∂juz − Pn,j)

)
+
∑
z

ψz
(
∂jζ(∂iuz − Pn,i))− ∂iζ(∂juz − Pn,j)

)
in Q2n.

The right side belongs to L2(Q2n), thus ∂jfi − ∂ifj ∈ L2(Q2n) and Sij ∈ H2
loc(Rd). Using

the fact that, for every x ∈ Rd,

(3.30)
∑
z

ζ(x)Dψz(x) = 0,

we may also express the previous identity slightly differently as

(3.31) (∂jfi − ∂ifj) (x) =
∑
z

ζ(x)
[
Dψz(x), Duz(x)− Pn − f(x)

]
ij

+
∑
z

ψz
[
Dζ,Duz − Pn

]
ij

in Q2n,

where we henceforth use the notation

[v,w]ij := vjwi − viwj

for indices i, j ∈ {1, . . . , d} and vectors v,w ∈ Rd with entries (vi) and (wi), respectively.
Next we define, for each i ∈ {1, . . . , d},

σi := − (div S)i = −
d∑
j=1

∂jSij .

It is evident that σi ∈ H1
per(Q2n) and σi is a solution of the equation

−∆σi = −
d∑
j=1

∂j (∂jfi − ∂ifj) in Q2n.

Since σi has zero mean in Q2n, there exists ρi ∈ H3
loc(Rd), which is unique up to an additive

constant, satisfying {
−∆ρi = σi in Rd,
ρi is Q2n-periodic.

We have the identities

(3.32)
∫
Q2n

∣∣D2ρi(x)
∣∣2 dx =

∫
Q2n

|σi(x)|2 dx =

∫
Q2n

Dρi(x) ·Dσi(x) dx.

Integrating by parts and using the equation for σi, we obtain∫
Q2n

|σi(x)|2 dx =

∫
Q2n

Dρi(x) ·Dσi(x) dx =

d∑
j=1

∫
Q2n

∂jρi(x) (∂jfi − ∂ifj) dx.

To further shorten the notation, in each of the following expressions we keep the sum over j
implicit (note that i is not summed over even though it is repeated) and set
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(∂jρi)z := −
∫
z+Qn+1

∂jρi(x) dx. Continuing then the computation by substituting (3.31),
we obtain∫

Q2n

∂jρi(x) (∂jfi − ∂ifj) dx

=
∑
z

∫
z

(
∂jρi(x)− (∂jρi)z

)
ζ(x)

[
Dψz(x), Duz(x)− Pn − f(x)

]
ij
dx

+
∑
z

(∂jρi)z

∫
z

ζ(x)
[
Dψz(x), Duz(x)− Pn − f(x)

]
ij
dx

+
∑
z

∫
z

∂jρi(x)ψz(x)
[
Dζ(x), Duz(x)− Pn

]
ij
dx.

We put the second sum on the right side into a more convenient form via (3.17), (3.13),
integration by parts and (3.30):∑

z

(∂jρi)z

∫
z

ζ(x)
[
Dψz(x), Duz(x)− Pn − f(x)

]
ij
dx

=
∑
y,z

(∂jρi)z

∫
z

ζ(x)ψy(x)
[
Dψz(x), Duz(x)− Pn − ζ(x)(Duy(x)− Pn)

]
ij
dx

=
∑
y,z

(
(∂jρi)z − (∂jρi)y

)∫
z

−(ζ(x))2ψy(x)
[
Dψz(x), Duy(x)− Pn

]
ij
dx

+
∑
z

(∂jρi)z

∫
z

−ψz(x)
[
Dζ(x), Duz(x)− Pn

]
ij
dx.

Combining this with the previous identity, we get∫
Q2n

|σi(x)|2 dx(3.33)

=
∑
z

∫
z

(
∂jρi(x)− (∂jρi)z

)
ζ(x)

[
Dψz(x), Duz(x)− Pn − f(x)

]
ij
dx

+
∑
y,z

(
(∂jρi)y − (∂jρi)z

)∫
z

(ζ(x))2ψy(x)
[
Dψz(x), Duy(x)− Pn

]
ij
dx

+
∑
z

∫
z

(
∂jρi(x)− (∂jρi)z

)
ψz(x)

[
Dζ(x), Duz(x)− Pn

]
ij
dx.

We now proceed to estimate the three terms on the right side of (3.33). For the first sum,
we use (3.14), the Hölder, discrete Hölder and Poincaré inequalities, (3.32) and Young’s
inequality to get∑

z

∫
z

(∂jρi(x)− (∂jρi)z) ζ(x)
[
Dψz(x), Duz(x)− Pn − f(x)

]
ij
dx

≤ C

(∑
z

∫
z

∣∣D2ρi(x)
∣∣2 dx) 1

2
(∑

z

∫
z

∣∣Duz(x)− Pn − f(x)
∣∣2 dx) 1

2

≤ 1

4

∫
Q2n

|σi(x)|2 dx+ C
∑
z

∫
z

∣∣Duz(x)− Pn − f(x)
∣∣2 dx.
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Taking expectations and using (3.19), we obtain

(3.34) E

[∑
z

∫
z

(
∂jρi(x)− (∂jρi)z

)
ζ(x)

[
Dψz(x), Duz(x)− Pn − f(x)

]
ij
dx

]

≤ 1

4
E
[∫

Q2n

|σi(x)|2 dx
]

+ C |Q2n| τn.

For the second sum, we notice that each entry vanishes unless y ∈ z + Qn+2, there are at
most C such entries y in the sum for any given entry z, and for such y and z, the Poincaré
inequality gives∣∣∣(∂jρi)y − (∂jρi)z

∣∣∣2 ≤ C32n|Qn|−1

∫
z+Qn+3

∣∣D2ρi(x)
∣∣2 dx.

Using this, (3.14), (3.32) and (2.4), the Hölder and Young inequalities and the fact that
3nZd ∩Q2n has C3nd elements, we get∑

y,z

(
(∂jρi)y − (∂jρi)z

)∫
z

(ζ(x))2ψy(x)
[
Dψz(x), Duy(x)− Pn

]
ij
dx

≤ C

(
32n|Qn|−1

∑
z

∫
z+Qn+3

∣∣D2ρi(x)
∣∣2 dx) 1

2
(∑

z

3−2nCK2
0 |Qn|

) 1
2

≤ 1

4

∫
Q2n

|σi(x)|2 dx+ CK2
03nd.

For the third sum on the right side of (3.33), we proceed in almost the same way as for the
first two, except that rather than use (3.14) we use the estimate for Dζ in (3.16) and the
fact that Dζ vanishes except if z 6∈ Zn (recall that Zn is defined in (3.22)) and there are at
most C3n(d−1) such elements in the sum. We obtain:∑

z

∫
z

(
∂jρi(x)− (∂jρi)z

)
ψz(x)

[
Dζ(x), Duz(x)− Pn

]
ij
dx

≤ C

(
32n

∑
z

∫
z

∣∣D2ρi(x)
∣∣2 dx) 1

2

∑
z/∈ Zn

3−2nCK2
0 |Qn|

 1
2

≤ 1

4

∫
Q2n

|σi(x)|2 dx+ CK2
03n(2d−1).

Combining the previous two inequalities with (3.32), (3.33) and (3.34) yields

E
[∫

Q2n

|σi(x)|2 dx
]
≤ CK2

03n(2d−1) + C |Q2n| τn.

Dividing by |Q2n| gives (3.29).

Step 6. – We show that the effect of the cutoff ξ in the definitions of v and h is expected to
be small: precisely,

(3.35) E
[
−
∫
Q2n

|Dv(x)−Dw(x)|2 dx
]
≤ Cτn.
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We use the identity

Dv(x)−Dw(x) = w(x)Dξ(x) + (ξ(x)− 1)Dw(x)

and (3.15) to obtain

(3.36) −
∫
Q2n

|Dv(x)−Dw(x)|2 dx

≤ C3−4n/(1+δ) −
∫
Q2n

|w(x)|2 dx+ C −
∫
Q2n

|ξ(x)− 1|2 |Dw(x)|2 dx.

The expectation of the first integral on the right side is controlled by (3.23):

E
[
3−4n/(1+δ) −

∫
Q2n

|w(x)|2 dx
]
≤ CK2

03−4n/(1+δ)+7n/2 ≤ C3−n/60 ≤ Cτn,

where we have defined

δ :=
1

14
.

For the expectation of the second integral on the right side of (3.36), we recall from (3.15)
that ξ ≡ 1 except in

D :=
{
x ∈ Q2n : dist(x, ∂Q2n) > C32n/(1+δ)

}
.

Therefore, using that D intersects at most C3n(d−2δ/(1+δ)) subcubes of the form z + Qn+1,
with z ∈ 3nZd, and applying (2.27), (3.21) and (3.29), we obtain

E
[
−
∫
Q2n

|ξ(x)− 1|2 |Dw(x)|2 dx
]
≤ 1

|Q2n|
E
[∫

D

|Dw(x)|2 dx
]

(3.37)

≤ C

|Q2n|
E
[∫

D

|f(x)|2 dx+

∫
Q2n

|f(x)−Dw(x)|2 dx
]

≤ C

|Q2n|

(
CK2

03n(d−2δ/(1+δ)) |Qn|+ C|Q2n|τn
)
≤ Cτn.

Combining the previous inequality with (3.23) and (3.36), we obtain the desired estimate for
the first term on the left of (3.35).

Step 7. – We estimate the expected difference inL2(z+Qn) betweenDv andDu(·, z+Qn+1)

for each z ∈ 3nZd ∩Q◦2n. The claim is that

(3.38) E

3−dn
∑

z∈3nZd∩Q◦2n

−
∫
z+Qn

∣∣Dv(x)−Du(x, z +Qn+1) + Pn
∣∣2 dx

 ≤ Cτn.
Indeed, for each z ∈ 3nZd ∩Q◦2n and x ∈ z +Qn, we have

Dv(x)−Du(x, z +Qn+1) + Pn

= (Dv(x)−Dw(x)) +
(
f(x)−Du(x, z +Qn+1) + Pn

)
−
(
f − div S

)
.

The desired estimate is a consequence of the previous inequality, (3.19) (note that ζ ≡ 1

on z +Qn+1 for every z ∈ 3nZd ∩Q◦2n), (3.21), (3.29) and (3.35).
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Step 8. – We complete the argument by deriving (3.12). By Lemma 2.2, we have, for each
z ∈ 3nZd ∩Q◦2n,

−
∫
z+Qn

L(Pn +Dv(x), x) dx ≤ 2−
∫
z+Qn

L(Du(x, z +Qn+1), x) dx− µ(z +Qn)

+ C −
∫
z+Qn

∣∣Dv(x)−Du(x, z +Qn+1) + Pn
∣∣2 dx.

In view of (3.15), it is convenient to denote Z ′n :=
{
z ∈ 3nZd : z +Qn+1 6⊆ Q◦2n

}
and

U :=
⋃
z∈ Z′n

(z + Qn). Note that ξ vanishes on Q◦2n \ U and thus v does as well. Observe
also that

|Q◦2n \ U | ≤ C3−n |Q◦2n| and
∣∣∣∣ Z ′n∣∣ |Qn| − |Q◦2n|∣∣ ≤ C3−n |Q◦2n| .

Now take the expectation of the previous inequality and sum over z ∈ Z ′n, using (2.4), (2.27),
(3.20), Lemma 2.2, (3.38), stationarity and the above to obtain

E

[∫
Q◦2n

L(Pn +Dv(x), x) dx

]

≤
∑
z∈ Z′n

E
[∫

z+Qn

L(Pn +Dv(x), x) dx

]
+ E

[∫
Q◦2n\U

L(Pn, x) dx

]
≤ |Q◦2n| (E [µ(Qn)] + Cτn) .

Dividing by |Q◦2n| yields (3.12) and completes the proof of the lemma.

3.3. The proof of Theorem 3.1

We use Lemma 3.3 and a concentration argument to prove Theorem 3.1.

Proof of Theorem 3.1. – By the reduction explained in Section 3.1, we assume q = 0 and
drop the variable q from our notation, as we did in the previous subsection.

We first argue by iterating Lemma 3.3 that E [µ(Qn)]→ µ as n→∞ at a rate which is at
most a power of the length scale, 3n. We then use this result and a concentration argument
to improve the stochastic convergence to (3.2), and finally obtain (3.3) by from this and
the flatness theory. Throughout, we allow C(d,Λ) ≥ 1 and α(d,Λ) > 0 to vary in each
occurrence.

Step 1. – We iterate Lemma 3.3 to find C(d,Λ) ≥ 1 and α(d,Λ) > 0 such that, for every
n ∈ N∗,

(3.39) |µ− E [µ(Qn)]| ≤ CK2
03−nα.

We first get an analogous estimate for the trimmed cubes and then use (2.22) and (2.24) to
obtain the desired inequality for the untrimmed cubes. By (2.20), if the constantC(d,Λ) ≥ 1

is taken large enough and we define

µn := E [µ(Q◦n)]− CK2
03−nα, n ∈ N,

then µn is an increasing sequence in n. Clearly µn is bounded from above by (2.4). In view
of (2.22) and (2.24), we have

(3.40) lim
n→∞

µn = µ.
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Fix M ∈ N with M ≥ 2 to be selected below. By the pigeonhole principle, the mono-
tonicity of {µn}n∈N and (3.40), we deduce, for each n ∈ N, the existence of m∈{0, . . . ,M − 1}
such that

(3.41) µn+m+2 − µn+m ≤
2

M
(µ− µn) .

We apply Lemma 3.3 to obtain

µ− µn+m = µ− E
[
µ(Q◦n+m)

]
+ CK2

03−nα

≤ µ− E [µ(Qn+m)] + C
(
E
[
µ(Q◦n+m+1)

]
− E

[
µ(Q◦n+m)

]
+ CK2

03−nα
)

≤ C
(
E [µ(Qn+m+1)]− E

[
µ(Q◦n+m)

]
+ CK2

03−nα
)

≤ C
(
E
[
µ(Q◦n+m+2)

]
− E

[
µ(Q◦n+m)

]
+ CK2

03−nα
)

≤ C
(

1

M
(µ− µn) +K2

03−nα
)
.

Here we used (2.24) to obtain the second line, Lemma 3.3 and (2.22) to get the third
line, (2.20) and (2.24) to get the fourth line, and finally (3.41) in the fifth line.

By monotonicity and M ≥ m ≥ 0, we obtain

µ− µn+M ≤ C
(

1

M
(µ− µn) +K2

03−nα
)
.

Taking M := C(d,Λ) large enough, we obtain

µ− µn+M ≤
1

3
(µ− µn) + CK2

03−nα.

Since M ≥ 2, we also have, with the same constant C(d,Λ) on both sides,

µ− µn+M + CK2
03−(n+M)α ≤ 1

3

(
µ− µn + CK2

03−nα
)
.

Therefore, the sequence βk := µ− µkM + CK2
03−kMα satisfies

βk+1 ≤
1

3
βk.

By induction, βk ≤ 3−kβ0. Since β0 ≤ CK2
0 by (2.4), we obtain in particular that

µ− µkM ≤ βk ≤ CK2
03−k.

By monotonicity we get, for every m ≥ kM ,

|µ− µm| = µ− µm ≤ CK2
03−k.

The previous line yields, for each n ∈ N∗, the estimate

(3.42) |µ− E [µ(Q◦n)]| ≤ CK2
03−nα.

By monotonicity, (2.22) and the previous line, we get

|µ− E [µ(Qn)]| = µ− E [µ(Qn)] ≤ µ− E [µ(Q◦n)] + CK2
03−n ≤ CK2

03−nα.

This is (3.39).
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Step 2. – We deduce the existence of P ∈ Rd such that, for every n ∈ N,

(3.43)
∣∣P − Pn∣∣2 ≤ CK2

03−nα.

It is immediate from (2.25) (taking V = Qn+1 and U to be the union of the 3d n-scale
subcubes of Qn+1) and (3.39) that

|E [P (Qn)]− E [P (Qn+1)]|2 ≤ CK2
03−nα.

Then from (3.10) we deduce that∣∣Pn − Pn+1

∣∣2 ≤ CK03−nα.

Summing this over {n, n+ 1, . . .} yields the existence of P ∈ Rd satisfying (3.43). For future
reference we note that, by (3.9),

(3.44)
∣∣P ∣∣2 ≤ CK2

0 .

Step 3. – After possibly redefining α(d,Λ) to be smaller, we obtain

(3.45) E
[
ν(Q◦n, P )− µ(Q◦n)

]
≤ CK2

03−nα.

By (2.20), (2.24), (2.33), (3.9), Lemma 3.3, (3.39), (3.43) and (3.44), we have

E
[
ν(Q◦2n, P )− µ(Q◦2n)

]
≤ E

[
ν(Q◦2n, P )− ν(Q◦2n, Pn)

]
+ E

[
ν(Q◦2n, Pn)− µ(Q◦n)

]
+ CK2

03−n

≤ CK0|P − Pn|+ C
(
E
[
µ(Q◦n+2)

]
− E [µ(Q◦n)] +K2

03−n
)

≤ CK2
03−αn/2.

This yields (3.45) after we replace α by α/4.

Observe also that (3.39) and (3.45) imply that µ = L(P ) and

(3.46)
∣∣E [ν(Q◦n, P )

]
− µ

∣∣ ≤ CK2
03−nα.

Step 4. – We use independence to improve the convergence of the expectations from the
previous step to convergence in L1(Ω,P). The claim is that, after redefining α(d,Λ) > 0 to
be smaller, we have

(3.47) E
[ ∣∣ν(Q◦n, P )− µ

∣∣+ |µ(Q◦n)− µ|
]
≤ CK2

03−nα.

Using the fact that µ(Q◦k) ≤ ν(Q◦k, P ), we have

|ν(Q◦n)− µ| ≤ ν(Q◦n)− µ(Q◦n) + |µ(Q◦n)− µ| .

Observe that

E
[
|µ(Q◦n)− µ|

]
≤ E

[
|µ(Q◦n)− E [µ(Q◦n)]|

]
+ CK2

03−nα

= 2E
[

(E [µ(Q◦n)]− µ(Q◦n))+

]
+ CK2

03−nα.
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Moreover,

E
[(
E
[
µ(Q◦n+1)

]
− µ(Q◦n+1)

)2
+

]
≤ E


E [µ(Q◦n)]− 3−d

∑
Q◦n(x)⊆Q◦n+1

µ(Q◦n(x))

2

+

+ CK4
03−nα

≤ 3−2d
∑

Q◦n(x)⊆Q◦n+1

E
[
(E [µ(Q◦n)]− µ(Q◦n(x)))

2
+

]
+ CK4

03−nα

= 3−dE
[
(E [µ(Q◦n)]− µ(Q◦n))

2
+

]
+ CK4

03−nα.

Here we used (2.4), (2.19) and (3.42) in the first line, independence and (3.45) in the second

line and finally stationarity in the third line. Since E
[
(E [µ(Q◦1)]− µ(Q◦1))

2
+

]
≤ CK4

0 , an

iteration of the previous inequality yields

E
[
(E [µ(Q◦n)]− µ(Q◦n))

2
+

]
≤ CK4

03−nα.

Combining the inequalities above and using (3.45) yields (3.47) after a redefinition of α.

Step 5. – We upgrade the stochastic integrability of (3.47), using an elementary concentra-
tion argument. The claim is that, for every m,n ∈ N and t ≥ C3−nα,

(3.48) P
[ ∣∣ν(Q◦n+m, P )− µ

∣∣+
∣∣µ− µ(Q◦n+m)

∣∣ ≥ K2
0 t
]
≤ exp

(
−c3dmt

)
.

Fix s > 0 and compute, using (2.19), independence, and stationary:

logE
[
exp

(
s3dm

(
µ− µ(Q◦n+m)

)
+

)]
≤ logE

 ∏
Q◦n(x)⊆Q◦n+m

exp
(
s (µ− µ(Q◦n(x)))+

)+ CK2
03dm−n

=
∑

Q◦n(x)⊆Q◦n+m

logE
[
exp

(
s (µ− µ(Q◦n(x)))+

)]
+ CK2

03dm−n

= 3dm logE
[
exp

(
s (µ− µ(Q◦n))+

)]
+ CK2

03dm−n.

By (2.4),

(µ− µ(Q◦n))+ ≤ 4K2
0 P-a.s.

Therefore, using the elementary inequalities{
exp(t) ≤ 1 + 2t for every 0 ≤ t ≤ 1,

log(1 + t) ≤ t for every t ≥ 0,

we deduce that, for each 0 < s ≤ (4K0)−2,

(3.49) logE
[
exp

(
s3dm

(
µ− µ(Q◦n+m)

)
+

)]
≤ 2s3dmE

[
(µ− µ(Q◦n))+

]
+ CsK2

03dm−n.

Now an application of (3.47) yields

3−dm logE
[
exp

(
s3dm

(
µ− µ(Q◦n+m)

)
+

)]
≤ CsK2

03−nα.
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Take s := (4K0)−2 and write the previous inequality in the form

3−dm logE
[
exp

(
c3dmK−2

0

(
µ− µ(Q◦n+m)

)
+

)]
≤ C3−nα.

By a similar argument, replacing (µ− µ(Q◦k))+ by
(
ν(Q◦k, P )− µ

)
+

and using (2.21) rather
than (2.19), we also get

3−dm logE
[
exp

(
c3dmK−2

0

(
ν(Q◦n+m, P )− µ

)
+

)]
≤ C3−nα.

Define

E(U) :=
∣∣ν(U,P )− µ

∣∣+ |µ− µ(U)|

and observe by µ(U) ≤ ν(U,P ) that

(3.50) E(U) ≤ 2
(
ν(U,P )− µ

)
+

+ 2 (µ− µ(U))+ .

Therefore we obtain

3−dm logE
[
exp

(
c3dmK−2

0 E(Q◦n+m)
)]
≤ C3−nα.

An application of Chebyshev’s inequality yields, for every m,n ∈ N and t ≥ C3−nα:

P
[
K−2

0 E(Q◦n+m) ≥ t
]

= P
[
exp

(
c3dmK−2

0 E(Q◦n+m)
)
≥ exp

(
c3dmt

)]
(3.51)

≤ exp
(
−c3dmt

)
E
[
exp

(
c3dmK−2

0 E(Q◦n+m)
)]

≤ exp
(
C3dm−αn − c3dmt

)
≤ exp

(
−c3dmt

)
.

This is (3.48).

Step 6. – We complete the proof of (3.2). The main point still to be addressed is to allow for
arbitrary translations of the cubes, and this is handled by a union bound and a stationarity
argument to get the desired estimate from (3.48). Recall that, for every y ∈ Rd, there exists
z ∈ Zd with |z − y| ≤

√
d and z +Q◦n ⊆ y +Qn for every n ∈ N. Thus by (2.22) we obtain,

for every R > 0 and n ∈ N,

sup
y∈BR

µ(y +Qn) ≥ max
z∈Zd∩BR+

√
d

µ(z +Q◦n)− CK2
03−n P-a.s.

Hence for all R ≥ 1 and n ∈ N,

sup
y∈BR

(µ− µ(y +Qn))+ ≤ max
z∈Zd∩BCR

(µ− µ(z +Q◦n))+ + CK2
03−n P-a.s.

By a union bound, stationarity and (3.48), we obtain, for every n,m ∈ N, R ≥ 1 and
t ≥ C3−nα,

P
[
K−2

0 sup
y∈BR

(µ− µ(y +Qn+m))+ ≥ t
]

≤
∑

z∈Zd∩BCR

P
[
K−2

0

(
µ− µ(z +Q◦n+m)

)
+
≥ t
]

≤ CRd P
[
K−2

0

(
µ− µ(Q◦n+m)

)
+
≥ t
]
≤ CRd exp

(
−c3dmt

)
.
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By an analogous argument, using (2.23) instead of (2.22), we obtain, for t ≥ C3−nα,

P
[
K−2

0 sup
y∈BR

(
ν(y +Qn+m, P )− µ

)
+
≥ t
]
≤ CRd exp

(
−c3dmt

)
.

Using (3.50) again and replacing t by C3−nαt, we obtain, for every n,m ∈ N, R ≥ 1 and
t ≥ 1,

(3.52) P
[
K−2

0 sup
y∈BR

E(y +Qn+m) ≥ C3−nαt

]
≤ CRd exp

(
−c3dm−nαt

)
.

To see that this implies (3.2), fix s ∈ (0, d). Choose m = m(n) to be the smallest positive
integer such that

s <
dm− nα
n+m

.

That is, m(n) := b(s+ α)n/(d− s)c ≥ cn/(d− s). Then (3.52) yields, for every t ≥ 1,

P
[
K−2

0 sup
y∈BR

E(y +Qn+m) ≥ C3−nαt

]
≤ CRd exp

(
−c3s(n+m)t

)
.

This implies (3.2) after a redefinition of α.

Step 7. – We prove the flatness estimates (3.3). It is easier to work with the minimizers
for ν, so we handle them first and obtain the flatness of the µ minimizers as a consequence.
Fix y ∈ Rd and denote

vn(x) := v(x, y +Qn(x), P ), x ∈ Rd.

In other words, for each n ∈ N, the function vn : Rd → R is obtained by splicing together
the minimizers for ν(·, P ) in each triadic cube of the form y + Qn(x) ⊆ Rd. Observe that
vn ∈ H1

loc(Rd).

Fix m,n ∈ N∗ and estimate the L2 difference between the scales n and n + m using the
Poincaré inequality and (2.28):

−
∫
y+Qn+m

(vn+m(x)− vn(x))
2
dx

≤ C32(n+m) −
∫
y+Qn+m

|Dvn(x)−Dvn+m(x)|2 dx

≤ C32(n+m)

(
−
∫
y+Qn+m

L(Dvn(x), x) dx− ν(y +Qn+m, P )

)

= C32(n+m)

(
−
∫
y+Qn+m

ν(y +Qn(x), P ) dx− ν(y +Qn+m, P )

)
.
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Next we observe that, viewed from a length scale much larger than 3n, vn is close to the
plane P · x:

−
∫
y+Qn+m

(
vn(x)− P · x

)2
dx

= −
∫
y+Qn+m

−
∫
y+Qn(ξ)

(
vn(x)− P · x

)2
dx dξ

≤ −
∫
y+Qn+m

C32n −
∫
y+Qn(ξ)

∣∣Dvn(x)− P
∣∣2 dx dξ (by Poincaré ineq.)

≤ −
∫
y+Qn+m

C32n −
∫
y+Qn(ξ)

(
|Dvn(x)|2 +

∣∣P ∣∣2) dx dξ
≤ C32nK2

0 (by (2.4), (3.44)).

Assembling these, we obtain

−
∫
y+Qn+m

∣∣vn+m(x)− P · x
∣∣2 dx

≤ C32nK2
0 + C32(n+m)

(
−
∫
y+Qn+m

ν(y +Qn(x), P ) dx− ν(y +Qn+m, P )

)
.

Since y ∈ Rd was arbitrary, the previous inequality yields, for each R ≥ 1,

sup
y∈BR

3−2(n+m) −
∫
y+Qn+m

∣∣vn+m(x)− P · x
∣∣2 dx

≤ CK2
0

(
3−2m + sup

y∈BR

( ∣∣ν(y +Qn+m, P )− µ
∣∣

+ sup
x∈y+Qn+m

∣∣ν(y +Qn(x), P ) dx− µ
∣∣ )).

Fix s ∈ (3d/4, d) and apply (3.2) to obtain, for every n,m ∈ N, R ≥ 1 and t ≥ 1,

P

[
sup
y∈BR

K−2
0 3−2(n+m) −

∫
y+Qn+m

∣∣vn+m(x)− P · x
∣∣2 dx ≥ C (3−2m + 3−nα(d−s)

)
t

]
≤ C

(
Rd + 3d(n+m)

)
exp (−c3snt) .

Take m to be the smallest integer larger than nα(d − s)/2, replace n + m by n and s

by s− c(d− s) and shrink α, if necessary, to obtain, for every t ≥ 1,

P
[

sup
y∈BR

K−2
0 3−2n −

∫
y+Qn

∣∣vn(x)− P · x
∣∣2 dx ≥ C3−nα(d−s)t

]
≤ C

(
Rd + 3dn

)
exp (−c3snt) .

Replacing s by s− c(d− s) again, we obtain, for every s ∈ (0, d), n ∈ N, R ≥ 1 and t ≥ 1,

(3.53) P
[

sup
y∈BR

K−2
0 3−2n −

∫
y+Qn

∣∣vn(x)− P · x
∣∣2 dx ≥ C3−nα(d−s)t

]
≤ CRd exp (−c3snt) .
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We complete the proof of (3.3) by obtaining the flatness of minimizers for µ. Fix y ∈ Rd.
Observe that, by Lemma 2.1,

−
∫
y+Qn

∣∣Du(x, y +Qn)−Dv(x, y +Qn, P )
∣∣2 dx ≤ ν(y +Qn, P )− µ(y +Qn).

Hence

(3.54)

∣∣∣∣−∫
y+Qn

Du(x, y +Qn) dx− P
∣∣∣∣2

=

∣∣∣∣−∫
y+Qn

(
Du(x, y +Qn)−Dv(x, y +Qn, P )

)
dx

∣∣∣∣2 ≤ ν(y +Qn, P )− µ(y +Qn).

and so, by the Poincaré inequality,

−
∫
y+Qn

(
u(x, y +Qn)− v(x, y +Qn, P ) + y · P

)2
dx

≤ C32n

(
−
∫
y+Qn

∣∣Du(x, y +Qn)−Dv(x, y +Qn, P )
∣∣2 dx

+ ν(y +Qn, P )− µ(y +Qn)

)
≤ C32n

(
ν(y +Qn, P )− µ(y +Qn)

)
.

The previous inequality, (3.2) and (3.53) yield, for every s ∈ (0, d), n ∈ N, R ≥ 1 and t ≥ 1,

P
[

sup
y∈BR

K−2
0 3−2n −

∫
y+Qn

∣∣u(x, y +Qn)− P · (x− y)
∣∣2 dx ≥ C3−nα(d−s)t

]
≤ CRd exp (−c3snt) .

This completes the proof of (3.3).

3.4. Convex duality between µ and L

An immediate consequence of (3.1) is the following formula for µ in terms of L: for every
q ∈ Rd,

(3.55) µ(q) = − sup
p∈Rd

(
p · q − L(p)

)
.

Indeed, the difficult half of (3.55) is implied by (3.1) and the other, easier half is a consequence
of (2.1).

The expression (3.55) asserts that −µ is the Legendre-Fenchel transform of L. Since the
latter is uniformly convex by (2.37), it follows by convex duality that, for every p ∈ Rd,

(3.56) L(p) = sup
q∈Rd

(p · q + µ(q)) .

Since L is uniformly convex, its gradient DL is a bijective Lipschitz map on Rd. The
Formula (3.56) implies that DL(p) is the unique q achieving the supremum in (3.56).
The inverse of the this map is evidently the function q 7→ P (q) given in the statement of
Theorem 3.1. That is, p = P

(
DL(p)

)
and moreover, for every p ∈ Rd,

L(p) = p ·DL(p) + µ
(
DL(p)

)
.

4 e SÉRIE – TOME 49 – 2016 – No 2



STOCHASTIC HOMOGENIZATION OF CONVEX INTEGRAL FUNCTIONALS 459

In particular, the map P can be inverted, and this allows us to reformulate the statement
of Theorem 3.1 so that the parameter p is given rather than q. It is convenient to gather all
of the errors we wish to measure with respect to a bounded, connected domain U ⊆ Rd and
a given p ∈ Rd into one random variable. Set

(3.57) E(U, p) :=
∣∣L(p)− µ

(
U,DL(p)

)
− p ·DL(p)

∣∣+
∣∣L(p)− ν(U, p)

∣∣
+ |U |−2/d −

∫
U

(
(v(x, U, p)− p · x)

2
+
(
u
(
x, U,DL(p)

)
− p · (x− xU )

)2)
dx,

where xU := −
∫
U
x dx denotes the barycenter of U .

C 3.4. – With α(d,Λ) > 0 as in the statement of Theorem 3.1, there exist
C(d,Λ) ≥ 1 and c(d,Λ) > 0 such that, for every s ∈ (0, d), p ∈ Rd, n ∈ N and t ≥ 1,

P
[
∃y ∈ BR, E(y +Qn, p) ≥ C (K0 + |p|)2 3−nα(d−s)t

]
≤ CRd exp (−c3snt) .

Proof. – Apply Theorem 3.1 to q = DL(p). By the remarks preceding the statement of
the corollary, we have P (q) = p. From the first inequality of (2.39) we have∣∣DL(p)

∣∣ ≤ C(K0 + |p|).

Theorem 3.1 thus yields the corollary.

We conclude this section with a further refinement of Theorem 3.1 which gives some
uniformity in our estimates of E(U, p) with respect to p. This is needed in the next section
in the argument for the error in the Dirichlet problem.

C 3.5. – Fix M,R, k ≥ 1 and s ∈ (0, d). There exist α(d,Λ) > 0, c(d,Λ) > 0

and C(d,Λ, s, k) ≥ 1 such that, for every n ∈ N and t ≥ 1,

P
[
∃p ∈ BM3kn , ∃y ∈ BR3kn , E(y +Qn, p) ≥ C (K0 + |p|)2 3−nα(d−s)t

]
≤ CMdRd exp (−c3snt) .

Proof. – We see from (2.33), (2.35), (2.38), (2.39), (2.40) and (2.42) that the error term is
continuous in p, uniformly on the support of P: that is, for every n ∈ N∗ and p1, p2 ∈ Rd,

(3.58)
∣∣ E(Qn, p1)− E(Qn, p2)

∣∣ ≤ C (K0 + |p1|+ |p2|) |p1 − p2| P-a.s.

Therefore, it is enough to check the error estimate for p’s on a discrete mesh with spacings
hn := 3−nαd. Denoting this mesh byGn :=

(
hnZd

)
∩BM3kn and letting Ω′ ⊆ Ω be the event

with P[Ω′] = 1 on which (3.58) holds, we have, for each n ∈ N and t ≥ 1,

(3.59)
{
∀p ∈ Gn, ∀y ∈ BR3kn E(y +Qn, p) ≤ C (K0 + |p|)2 3−nα(d−s)t

}
∩ Ω′

⊆
{
∀p ∈ BM3kn , ∀y ∈ BR3kn , E(y +Qn, p) ≤ C (K0 + |p|)2 3−nα(d−s)t

}
.

Here the C on the right side is larger than the one on the left to accommodate the discretiza-
tion error of orderC(K0 + |p|)hn . C(K0 + |p|)23−nαd coming from the right side of (3.58).
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By (3.59), a union bound and an application of Corollary 3.4, we find that, for each n ∈ N
and t ≥ 1,

P
[
∃p ∈ BM3kn , y ∈ BR3kn , E(y +Qn, p) ≥ C (K0 + |p|)2 3−nα(d−s)t

]
≤
∑
p∈Gn

P
[
∃y ∈ BR3kn , E(y +Qn, p) ≥ C (K0 + |p|)2 3−nα(d−s)t

]
≤ |Gn|max

p∈Rd
P
[
∃y ∈ BR3kn , E(y +Qn, p) ≥ C (K0 + |p|)2 3−nα(d−s)t

]
≤ CRd3knd|Gn| exp (−c3snt) .

The number of elements of the set Gn is easy to compute:∣∣Gn∣∣ ≤ Ch−dn |BM3kn | = CMd3dn(dα+k).

We thus deduce that, for every s ∈ (0, d), n ∈ N and t ≥ 1,

(3.60) P
[
∀p ∈ BM3kn , ∀y ∈ BR3kn , E(y +Qn, p) ≥ C (K0 + |p|)2 3−nα(d−s)t

]
≤ CMdRd3dn(dα+2k) exp (−c3snt) ≤ CMdRd exp (Cn− c3snt) .

Set s1 := (s + d)/2, note that s1 ∈ (s, d) depends only on d and s and apply (3.60) with s1
in place of s and use the fact that, for t ≥ 1,

exp (Cn− c3s1nt) ≤ C exp
(
−c3−snt

)
,

to obtain

P
[
∀p ∈ BM3kn , ∀y ∈ BR3kn , E(y +Qn, p) ≥ C (K0 + |p|)2 3−nα(d−s1)t

]
≤ CMdRd exp (−c3snt) .

Since d− s1 = (d− s)/2, we get the desired conclusion after replacing α by α/2.

4. The error estimate for the Dirichlet problem

In this section we prove Theorem 1.1, obtaining error estimates in homogenization for
Dirichlet problems in bounded Lipschitz domains with fairly general boundary conditions.
The arguments here are mostly technical and completely deterministic: all of the heavy lifting
was done in the previous section, where in particular we proved error estimates for the
Dirichlet problem in cubes with planar boundary conditions. It turns out that this is enough
to give us Theorem 1.1, as we will see from fairly simple oscillating test function and energy
comparison arguments.

4.1. The proof of Theorem 1.1

We begin with the statement of an abstract tool which provides control of the error for
general Dirichlet problems in terms of the error for the Dirichlet problem in mesoscopic
cubes with planar boundary conditions. This “black box" is oblivious to the randomness and
to much of the precise structure of the problem. Although straightforward, its proof (given in
the appendix) is unfortunately a rather technical and lengthy energy comparison argument
relying on some classical interior regularity results.
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P 4.1. – Let U ⊆ Rd be a bounded Lipschitz domain, K0,M ≥ 1 and t > 2.
Fix ε ∈ (0, 1], L ∈ Ω(K0), g ∈ W 1,t(U) satisfying (1.8) and uε, uhom ∈ g + H1

0 (U)

satisfying (1.9) and (1.10), respectively. Select n ∈ N such that 3−n < ε ≤ 3−n+1 and
fix m, l ∈ N such that m ≤ l ≤ n. Then there exist constants C(d,Λ, t, U) ≥ 1 and
β(d,Λ, t) ∈ (0, 1] such that

(4.1)

∣∣∣∣−∫
U

(
L
(
Duε(x),

x

ε

)
− L(Duhom(x))

)
dx

∣∣∣∣+ −
∫
U

(uε(x)− uhom(x))2 dx

≤ C E′ + CM
√

E′ + CM2
(

3−(l−m) + 3−β(n−l)
)
,

where

E′ := sup { E(y +Qm, p) + E(y′ +Qm+2, p
′) : y, y′ ∈ BC3n , p, p

′ ∈ BCM3(n−m)d/2} .

and E is defined in (3.57).

The proof of Proposition 4.1 is presented in Appendix .
Assuming the proposition, numerological and bookkeeping details and the choices of the

parameters m and l are essentially all that still stand between us and the demonstration of
the first main result.

Proof of Theorem 1.1. – Fix ε ∈ (0, 1] and s ∈ (0, d). Take α(d,Λ) > 0 as in the
statement of Corollary 3.5 and β(d,Λ, t) > 0 as in the statement of Proposition 4.1. Also
set s1 := (2t + d)/3 and s2 := (t + 2d)/3 so that s < s1 < s2 < d, with the gaps between
these numbers bounded by c(d,Λ, s) > 0.

Let n ∈ N be such that 3−n < ε ≤ 3−n+1 and select m = m(n) ∈ N to be the smallest
integer satisfying

(4.2) 3ns1 ≤ 3ms2 and 2d(n−m) ≤ mα(d− s2).

Note that m ≤ n. Pick l ∈ N to be the smallest integer such that l ≥ (m + n)/2. It is then
evident that, for an exponent γ(d,Λ, t) > 0,

3−(l−m) + 3−β(n−l) ≤ Cεγ .

Let E′n be the random variable E′ defined in the statement of Proposition 4.1, with respect
to the choice of n and m(n), above.

Proposition 4.1 gives the estimate

−
∫
U

(uε(x)− uhom(x))2 dx ≤ C E′n + CM

√
E′n + CM2εγ .

To complete the proof of the theorem, it therefore suffices to demonstrate that there exists a
random variable X satisfying (1.7) and γ(d,Λ, s) > 0 such that, for every n ∈ N,

(4.3) E′n ≤ CM2
(
1 + X3−sn

)
3−nγ .

We argue that (4.3) is a consequence of Corollary 3.5. The latter implies that, for every t ≥ 1,

P
[
E′n ≥ C

(
K2

0 +M23(n−m)d
)

3−mα(d−s2)t
]
≤ CMd exp (−c3s2mt) .

Using (4.2), this yields, for t ≥ 1,

P
[
E′n ≥ CM23−(n−m)dt

]
≤ CMd exp (−c3s1nt) .
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Replacing t by 1 + t and rearranging, we obtain, for all t > 0,

P
[(

3(n−m)dM−2 E′n − C
)
≥ Ct

]
≤ CMd exp (−c3s1nt) .

Replacing t by 3−snt, we obtain, for all t > 0,

(4.4) P
[
3sn

(
3(n−m)dM−2 E′n − C

)
+
≥ Ct

]
≤ CMd exp

(
−c3(s1−s)nt

)
.

Let X be the random variable

X := sup
n∈N

3sn
(

3(n−m)dM−2 E′n − C
)

+
,

where m = m(n) is defined as above. As 3−(n−m)d ≤ 3−nγ for some γ(d,Λ, s) > 0, it is
evident that (4.3) holds. By a union bound and summing the right side of (4.4) over n ∈ N,
we obtain

P [ X ≥ Ct] ≤ CMd exp (−ct) .
Replacing X by c X and integrating the previous line yields (1.7). This completes the proof
of Theorem 1.1.

4.2. Uniform approximation in L∞

By interpolating L∞ between L2 and C0,γ and applying Theorem 1.1 and the (nonlinear
version of the) De Giorgi-Nash-Moser estimates, we obtain estimates for the Dirichlet
problem with the spatial error measured in L∞ rather than L2. Since the estimate in
Theorem 1.1 is already suboptimal in the exponent, there is essentially no loss in passing
from L2 to L∞. We present a model result in the following corollary, which, in view of its
application in the next section, is stated as a local approximation result (rather than an error
estimate for the Dirichlet problem) and scaled differently (the microscopic scale is of order
one).

C 4.2. – For every M ≥ 1, s ∈ (0, d), there exist α(d,Λ) > 0, C(d,Λ, s) ≥ 1

and a nonnegative random variable X on (Ω, F ) satisfying

E
[

exp( X)
]
≤ CMd

such that the following holds: for every L ∈ Ω R ≥ 1 and u ∈ H1(BR) satisfying

K0 +
1

R

(
−
∫
BR

|u(x)|2 dx
)1/2

≤M

and

(4.5)
∫
BR

L (Du(x), x) dx ≤
∫
BR

L (Dw(x), x) dx for every w ∈ u+H1
0 (BR),

there exists v ∈ H1(BR/2) such that∫
BR/2

L(Dv(x)) dx ≤
∫
BR/2

L(Dw(x)) dx for every w ∈ v +H1
0 (BR/2),

and

(4.6) sup
x∈BR/2

|u(x)− v(x)| ≤ CM
(
1 + XR−s

)
R−α(d−s).
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Proof. – By the interior Meyers estimate (c.f. [11, Theorem 6.7] and the remarks in
Section A.1), there exists t(d,Λ) > 2 and C(d,Λ) ≥ 1 such that u ∈W 1,t(B3R/4) and(

−
∫
B3R/4

|Du(x)|t dx

)2/t

≤ C
(
K2

0 + −
∫
BR

|Du(x)|2 dx
)
.

We let X be the random variable in the statement of Theorem 1.1 for U = B1 and with t
as in the previous sentence. We take v ∈ u + H1

0 (B3R/4) to be the unique minimizer of the
Dirichlet problem∫

B3R/4

L(Dv(x)) dx ≤
∫
B3R/4

L(Dw(x)) dx for every w ∈ u+H1
0 (B3R/4).

By Theorem 1.1, for some α(d,Λ) > 0, we have

−
∫
BR

|u(x)− v(x)|2 dx(4.7)

≤ C
(
1 +R−s X

)
R2−α(d−s)

(
K2

0 +

(
−
∫
BR

|Du(x)|t dx
)2/t

)

≤ C
(
1 +R−s X

)
R−α(d−s)

(
K2

0R
2 + −

∫
BR

|u(x)|2 dx
)
.

By the De Giorgi-Nash-Moser estimate (see [10] or [11]), there exists γ(d,Λ) ∈ (0, 1] such
that

[u− v]C0,γ(B3R/4)
≤ [u]C0,γ(B3R/4)

+ [v]C0,γ(B3R/4)
(4.8)

≤ CR−γ
(
K0R+

(
−
∫
BR

|u(x)|2 dx
)1/2

)
.

Applying the interpolation inequality

sup
x∈Br

|φ(x)| ≤
(∫

Br

|φ(x)|2 dx
)γ/(2γ+d)(

sup
x,y∈Br

φ(x)− φ(y)

|x− y|γ

)d/(2γ+d)
= Crdγ/(2γ+d)

(
−
∫
Br

|φ(x)|2 dx
)γ/(2γ+d)(

sup
x,y∈Br

φ(x)− φ(y)

|x− y|γ

)d/(2γ+d)
to φ = u− v with r = R/2, and then using (4.7) and (4.8) to estimate the two terms on the
right side, we obtain

sup
x∈BR/2

|u(x)− v(x)|

≤ C(1 +R−s X)R−α(d−s)γ/(2γ+d)

(
K0R+

(
−
∫
BR

|u(x)|2 dx
)1/2

)
.

This yields the result, after we redefine α to be αγ/(2γ + d).

The interpolation inequality is elementary and of course well-known, but for the conve-
nience of the reader we indicate a short proof here. By homogeneity, we may assume that
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|φ(y)| = φ(y) = supx∈Br |φ(x)| = 1. Then the ‖φ‖L2(Br) may be estimated from below
by k := [φ]C0,γ(Br)

by observing that

φ(x) ≥
(
1− k−γ |x− y|γ

)
+
,

and directly computing theL2 norm of the function on the right. This gives the interpolation
inequality.

5. Higher regularity: the quenched Lipschitz estimate

In this section we prove Theorem 1.2. The argument is based on an idea which was first
applied in the context of homogenization by Avellaneda and Lin [2, 3]: functions which can
be approximated in L∞ by functions satisfying an improvement of flatness property must
inherit this property—at least on scales larger enough that the approximation is valid. We
proceed by formalizing this idea in an elementary lemma, which makes it quite evident that
Theorem 1.2 follows from Theorem 1.1. The lemma is a deterministic statement which is
oblivious even to the PDE.

L 5.1. – For r > 0 and θ ∈ (0, 1/2], let A(r, θ) ⊆ L∞(Br) denote the set of
functions w ∈ L∞(Br) satisfying

(5.1)
1

θr
inf
p∈Rd

osc
x∈Bθr

(w(x)− p · x) ≤ 1

2

(
1

r
inf
p∈Rd

osc
x∈Br

(w(x)− p · x)

)
.

Suppose α > 0, K ≥ 0, 1 ≤ r0 ≤ R/4 and u ∈ L∞(BR) have the property that, for every
r ∈ [r0, R/2], there exists v ∈ A(r, θ) satisfying

(5.2)
1

r
sup
x∈Br

|u(x)− v(x)| ≤ r−α
(
K +

1

2r
osc
B2r

u

)
.

Then there exists β(θ) > 0 and C(α, θ) ≥ 1 such that, for every s ∈ [r0, R/2],

(5.3)
1

s
osc
Bs

u ≤ C
(

1

R
osc
BR

u+
( s
R

)α
K

)
and

(5.4)
1

s
inf
p∈Rd

osc
x∈Bs

(u(x)− p · x) ≤ C
(( s

R

)β 1

R
inf
p∈Rd

osc
x∈BR

(u(x)− p · x)

+ s−α
(
K +

1

R
osc
BR

u

))
.

The proof of the lemma is given below. We first apply it to show that Theorem 1.2 is a
consequence of Corollary 4.2.

Proof of Theorem 1.2. – Let M ≥ 1, R ≥ 2 and u ∈ H1(BR) satisfy (1.13) and (1.14).
Note that by the interior De Giorgi-Nash-Moser estimate, we have

2

R
osc
BR/2

u ≤ CM.
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Fix s ∈ (0, d) and let X be as in the statement of Corollary 4.2 with M replaced by C ′M
for C ′ ≥ 1 to be selected below. Then, according to (4.6), there exists C(d,Λ, s) ≥ 1 such
that, for every r ∈ [ X1/s + C,R/4] such that

K0 +
1

2r
osc
B2r

u ≤ C ′M,

there exists a local minimizer v ∈ H1(Br)∩L∞(Br) of the homogenized functional satisfying

sup
x∈Br

|u(x)− v(x)| ≤ r−α(d−s)
(
Kr + osc

B2r

u

)
.

Define the random variable Y := X1/s + C. Observe that Y satisfies (1.12).

We next establish that local minimizers of the homogenized functional satisfy the improve-
ment of flatness property. SinceL is uniformly convex by (2.37), there exists θ(d,Λ) ∈ (0, 1/2]

such that every local minimizer w ∈ H1(Bs) of the homogenized energy functional satis-
fies (5.1) for every r ≤ s/2. This is a simple consequence of the interior C1,β estimate for
uniformly convex energy functionals, which can be found in Giaquinta [10], and a scaling
argument. In the notation of Lemma 5.1, we have that w ∈

⋂
0<r≤s/2 A(r, θ).

We claim that, for every s ∈ [ Y, R/4],

1

s
osc
Bs

u ≤ C
(
K +

1

R
osc
BR

u

)
.

We argue by induction: let n ∈ N and suppose, for every r ∈ {2−jR : j = 2, . . . , n},

(5.5) K0 +
1

2r
osc
B2r

u ≤ 1

2
C ′M.

This implies that, for every r ∈ [2−nR,R/4],

K0 +
1

r
osc
Br

u ≤ C ′M.

If r ≥ Y, then Lemma 5.1 gives

K0 +
1

r
osc
Br

u ≤ CM ≤ 1

2
C ′M,

if we select C ′ = C(d,Λ,M, s) sufficiently large. Thus (5.5) holds for r = 2−(n+1)R. By
induction, we deduce that, for every r ∈ [ Y, R/4],

K0 +
1

r
osc
Br

u ≤ C ′M ≤ CM.

This is (1.15). We get (1.16) after applying the second conclusion of Lemma 5.1.

We conclude this section with the proof of Lemma 5.1.

Proof of Lemma 5.1. – In this argument, C and c denote positive constants depending
only on (α, θ) which may vary in each occurrence.
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Step 1. – We setup the argument. Using the assumptions, we find that, for every
s ∈ [r0/2, R/4],

1

θs
inf
p∈Rd

osc
x∈Bθs

(u(x)− p · x) ≤ 1

2

(
1

s
inf
p∈Rd

osc
Bs

(u(x)− p · x)

)
+ Cs−α

(
K +

1

2s
osc
B2s

u

)
.

Define s0 := R and, for each j ∈ N, set sj := θj−1R/4. Pick m ∈ N such that
sm+1 < r0/2 ≤ sm. The previous inequality yields, for every j ∈ {1, . . . ,m},

(5.6) Fj+1 ≤
1

2
Fj + Cs−αj (K +Hj−1),

where we have set, for each j ∈ {0, . . . ,m},

Fj :=
1

sj
inf
p∈Rd

osc
x∈Bsj

(u(x)− p · x) and Hj :=
1

sj
osc
Bsj

u

Select pj ∈ Rd such that
1

sj
osc
x∈Bsj

(u(x)− pj · x) = Fj .

Observe that the triangle inequality gives the bounds, for every j ∈ {0, . . . ,m}:

(5.7) Fj ≤ Hj ≤ 2|pj |+ Fj ,

(5.8) |pj | =
1

2

1

sj
osc
x∈Bsj

(p · x) ≤ 1

2
Fj +

1

2
Hj ≤ Hj

and, for every j ∈ {0, . . . ,m− 1},

|pj+1 − pj | =
1

2

1

sj+1
osc

x∈Bsj+1

(pj+1 − pj) · x(5.9)

≤ 1

sj+1
osc

x∈Bsj+1

(u(x)− pj+1 · x) +
1

sj+1
osc
x∈Bsj

(u(x)− pj · x)

= Fj+1 +
1

θ
Fj ≤ C(Fj+1 + Fj).

Note that (5.9) gives |pj+1| ≤ |pj |+ C(Fj+1 + Fj) and hence, by induction and (5.8),

(5.10) |pj | ≤ H0 + C

j∑
i=0

Fi.

By (5.6), (5.7) and (5.10), we obtain, for every j ∈ {0, . . . ,m− 1},

(5.11) Fj+1 ≤
1

2
Fj + Cs−αj

(
K +H0 +

j∑
i=0

Fi

)
.

Step 2. – By iterating (5.11), we show that

(5.12) Fj ≤ 2−jF0 + Cs−αj (K +H0) .

Arguing by induction, we fix A ≥ 1 be a constant to be selected below and suppose that
k ∈ {0, . . . ,m− 1} is such that, for every j ∈ {0, . . . , k},

(5.13) Fj ≤ 2−jF0 +As−αj (K +H0) .
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Using (5.11) and this assumption, we find that

Fk+1 ≤
1

2
Fk + Cs−αk

K +H0 +

k∑
j=0

Fj


≤ 2−(k+1)F0 +

1

2
As−αk (K +H0)

+ Cs−αk

K +H0 +

k∑
j=0

(
2−jF0 +As−αj (K +H0)

)
≤ 2−(k+1)F0 + (K +H0)s−αk+1

(
1

2
A+ C + CAs−αk

)
.

If k ≤ n where n is such that Cs−αn ≤ 1
4 , then we may select A = C sufficiently large that

1

2
A+ C + CAs−αk ≤ 3

4
A+ C ≤ A.

In this case, we obtain

Fk+1 ≤ 2−(k+1)F0 +As−αk+1(K +H0).

This is (5.13) for j = k + 1. Since (5.13) trivially holds for j = 0, we obtain (5.12) for
all j ∈ {0, . . . , n} by induction. Since 1 ≤ sj/sn ≤ C and thus Fj ≤ CFn for all
j ∈ {n+ 1, . . . ,m}, we conclude that (5.12) holds for all j ∈ {0, . . . ,m}.

Step 3. – The conclusion. Notice that (5.12) implies (5.4) for β := (log 2)/| log θ|. To
obtain (5.3), we need to bound Hj , and this is obtained from (5.10) and (5.12) as follows:

Hj ≤ Fj + 2|pj | ≤ 2H0 + C

j∑
i=0

Fi

≤ 2H0 +

j∑
i=0

(
2−iF0 + Cs−αi (K +H0)

)
≤ 2H0 + F0 + Cs−αj (K +H0)

≤ CH0 + Cs−αj K.

This implies (5.3).

Appendix

The proof of Proposition 4.1

The argument for Proposition 4.1 requires some ingredients from the classical regularity
theory in the calculus of variations: we need (i) an interior H2 estimate for minimizers of
the homogenized energy functional and (ii) a global W 1,t estimate (for Lipschitz domains),
for some t(d,Λ) > 2, for minimizers of both the heterogeneous and homogenized energy
functionals. The latter estimate is a generalization to the nonlinear setting of the Meyers
estimate for linear equations and can be found in [11]. The former can be found in either [10]
or [11].
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We now fix some notation used in the rest of this subsection. It is convenient to rescale
the functions in the hypotheses of Proposition 4.1 so that the microscopic scale is of unit size
and the ratio ε > 0 of the length scales is reflected in the size of the domain. We thus fix a
(large) bounded Lipschitz domain U ⊆ Rd and take n,m ∈ N∗ such that

(A.1) 3d(n+m) < |U | ≤ 3d(n+m+1).

Essentially, this means that 3−(n+m) ≈ ε, i.e., the macroscopic scale is of order 3n+m. We
will take the mesoscopic scale to be of order 3n rather than 3n−m, as in the statement of the
proposition. We fix one more parameter l ∈ N such that

n ≤ l and 2l ≤ m+ n,

which describes the (mesoscopic) thickness of a boundary strip we need to remove in the
approximation argument. (In practice, we typically choose m = dcne for a small 0 < c� 1,
and l roughly equidistant between n and n + m.) We also denote the normalized domain
by Û := U/|U |.

Define domains V ◦ ⊆ V ⊆ U by

V :=
{
x ∈ Rd : x+Ql+2 ⊆ U

}
and V ◦ :=

{
x ∈ Rd : x+Ql+4 ⊆ U

}
.

Since U is a Lipschitz domain, we have

(A.2) |U \ V ◦| ≤ C3l−m−n|U |,

where the constantC depends only on d and Û . We note also that dist(V ◦, ∂V ) ≥ 3l. Denote
by η ∈ C∞0 (Rd) a cutoff function satisfying

(A.3) 0 ≤ η ≤ 1, η ≡ 1 on V ◦, η ≡ 0 in Rd \ V and |Dη| ≤ C3−l.

Throughout we fix L ∈ Ω(K0), t > 2, g ∈ W 1,t(U) and denote by u ∈ g + H1
0 (U) the

unique minimizer of the heterogeneous energy functional: that is, u satisfies∫
U

L (Du(x), x) dx ≤
∫
U

L (Dw(x), x) dx for every w ∈ g +H1
0 (U).

Also take uhom ∈ g + H1
0 (U) to be the unique minimizer of the constant-coefficient energy

functional, i.e., v satisfies∫
U

L(Duhom(x)) dx ≤
∫
U

L(Dw(x)) dx for every w ∈ g +H1
0 (U).

For convenience, we denote

M := K0 +

(
−
∫
U

|Dg(x)|t dx
)1/t

.

as well as

E′ := sup { E(y +Qn, p) + E(y′ +Qn+2, p
′) : y, y′ ∈ BC3n+m , p, p′ ∈ BCM3md/2} ,

which is precisely the rescaled version of E′ defined in the statement of Proposition 4.1. The
convention for the constants C and c in this appendix is that they depend on (d,Λ, t, Û) and
may vary in each occurrence.
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In view of the above notation and scaling convention, to obtain Proposition 4.1 it suffices
to prove the estimate

(A.4)

∣∣∣∣−∫
U

(
L (Du(x), x)− L(Duhom(x))

)
dx

∣∣∣∣+ 3−2(n+m) −
∫
U

(u(x)− uhom(x))2 dx

≤ C E′ + CM2
(

3n−l + 3β(l−n−m)
)
.

The main step in the proof of (A.4) is to show that the (heterogeneous) energy of u is very
close to the (effective) energy of uhom. The plan is to modify each minimizer in order to get
a candidate for a local minimizer of the other’s functional, and thus an upper bound for the
energy of the other. These steps are summarized in Lemmas A.1 and A.2, below.

A.1. Classical regularity estimates

Before proceeding with the proof of (A.4), we record here the needed estimates from regu-
larity theory. According to the Meyers estimate [11, Theorem 6.8], there exists r(d,Λ, t)∈(2, t]

such that u, uhom ∈W 1,r(U) and

(A.5)
(
−
∫
U

|Du(x)|r dx
)1/r

+

(
−
∫
U

|Duhom(x)|r dx
)1/r

≤ CM.

We also need the interior H2 estimate [11, Theorem 8.1] for solutions of constant coefficient
functionals which, together with an easy covering argument (using that dist(V, ∂U) ≥ c3l)
implies uhom ∈ H2(V ) and the gives the estimate

(A.6) 3l
(
−
∫
V

∣∣D2uhom(x)
∣∣2 dx)1/2

≤ CM.

We remark that while [11, Theorem 6.8] does not include the a priori estimate we need
(rather just the statement that the functions belong toW 1,r(U)), but it can be extracted from
the proof there. Also, the hypotheses in [11] are slightly stronger, namely they demand that
the integrand L(p, x) be C2 in the p variable rather than just C1,1. However, by inspecting
the arguments, one finds that the estimates do not depend on the modulus of continuity
of D2

pL(·, x), rather only on an upper bound for |D2L(·, x)| = [DpL(·, x)]C0,1 , which in our
case is bounded above by Λ. Therefore we obtain the results we need from [11] after a routine
approximating argument (by smoothing the coefficients).

A.2. Estimate for the (homogenized) energy of uhom

This is the easier of the two directions. The idea is to remove the microscopic oscillations
from u, and for this it is natural to consider a spatial average on a mesoscopic scale. We thus
define

ξ(y) := −
∫
y+Qn

u(x) dx, y ∈ V.

Notice that ξ ∈ H1(V ). We next modify ξ in order to get an element of g+H1
0 (U) by setting

ũ(x) := η(x)ξ(x) + (1− η(x))u(x).

It is clear that ũ ∈ g + H1
0 (U). We estimate the (homogenized) energy of ũ in terms of the

heterogeneous energy of u and the error term E′ defined above.
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L A.1. – There exists C(d,Λ, t, Û) ≥ 1 and r(d,Λ, t) ∈ (2, t] such that

(A.7) −
∫
U

L(Dũ(x)) dx ≤ −
∫
U

L(Du(x), x) dx+ C E′ + CM23(l−n−m)(1−2/r).

Proof. – We divide the argument into several steps.

Step 1. – We show that ξ ∈W 1,∞(V ). Denote, for each y ∈ V ,

p(y) := Dξ(y) = −
∫
y+Qn

Du(x) dx and q(y) := DL(p(y)).

Observe that, by Hölder’s inequality and (A.1), for each y ∈ V ,

|p(y)|2 ≤
(
−
∫
y+Qn

|Du(x)| dx
)2

≤ |U |
|Qn|

(
−
∫
U

|Du(x)|2 dx
)

(A.8)

≤ C3md
(
−
∫
U

|Du(x)|2 dx
)
≤ C3mdM2.

Step 2. – We use (A.5) to show that

(A.9) −
∫
U

|Dũ(x)|r dx ≤ C −
∫
U

|Du(x)|r dx.

Differentiating the formula above for ũ, we find

Dũ(x) = Du(x) + η(x) (Dξ(x)−Du(x)) +Dη(x) (ξ(x)− u(x))

and thus, by (A.3),(
−
∫
U

|Dũ(x)|r dx
)1/r

≤
(
−
∫
U

|Du(x)|r dx
)1/r

+

(
−
∫
V

|Dξ(x)−Du(x)|r dx
)1/r

+ C3−l
(
−
∫
V

|ξ(x)− u(x)|r dx
)1/r

.

We obtain (A.9) from the previous inequality and the following (recall l ≥ n):

(A.10) −
∫
V

|ξ(x)− u(x)|r dx ≤ C3nr −
∫
U

|Du(x)|r dx

and

(A.11) −
∫
V

|Dξ(x)−Du(x)|r dx ≤ C −
∫
U

|Du(x)|r dx.

The second estimate (A.11) follows from the triangle inequality and

−
∫
V

|Dξ(x)|r dx = −
∫
V

∣∣∣∣−∫
x+Qn

Du(y) dy

∣∣∣∣r dx ≤ |U ||V | −
∫
U

|Du(x)|r dx ≤ C −
∫
U

|Du(x)|r dx.

To get (A.10), we use that, for every z ∈ Qn+1,(
−
∫
Qn+1(z)

|u(x)− ξ(x)|r dx

)1/r

≤

(
−
∫
Qn+1(z)

∣∣∣∣∣u(x)− −
∫
Qn(x)

u(y) dy

∣∣∣∣∣
r

dx

)1/r

+

(
−
∫
Qn+1(z)

∣∣∣∣∣−
∫
Qn(x)

u(y) dy − ξ(x)

∣∣∣∣∣
r

dx

)1/r

.
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The first term on the right is estimated by the Poincaré inequality:

−
∫
Qn+1(z)

∣∣∣∣∣u(x)− −
∫
Qn(x)

u(y) dy

∣∣∣∣∣
r

dx = −
∫
Qn+1(z)

−
∫
Qn(ξ)

∣∣∣∣∣u(x)− −
∫
Qn(ξ)

u(y) dy

∣∣∣∣∣
r

dx dξ

≤ C3nr −
∫
Qn+1(z)

−
∫
Qn(ξ)

|Du(y)|r dy dξ

= C3nr −
∫
Qn+1(z)

|Du(x)|r dx,

while, to estimate the second, we observe that, for every x+Qn, x
′ +Qn ⊆ Qn+1(z),∣∣∣∣−∫

x+Qn

u(y) dy − −
∫
x′+Qn

u(y) dy

∣∣∣∣ =

∣∣∣∣−∫
Qn

∫ 1

0

(x− x′) ·Du(tx+ (1− t)x′ + y) dt dy

∣∣∣∣
≤ 3d |x− x′| −

∫
Qn+1(z)

|Du(y)| dy

≤ C3n −
∫
Qn+1(z)

|Du(y)| dy.

This yields

−
∫
Qn+1(z)

∣∣∣∣∣−
∫
Qn(x)

u(y) dy − ξ(x)

∣∣∣∣∣
r

dx ≤ C3n −
∫
Qn+1(z)

|Du(y)|r dy

and completes the proof of (A.9).

Step 3. We prove that

(A.12) −
∫
U

L(Du(x), x) dx ≥ −
∫
V ◦

(µ(y +Qn, q(y)) + p(y) · q(y)) dy

− CM23(l−n−m)(1−2/r).

Taking u as a minimizer candidate in the definition of µ(y+Qn, q(y)) and using that p(y) is
dual to q(y), we have

−
∫
V ◦
L(Du(x), x) dx

≥ −
∫
V ◦
−
∫
y+Qn

L(Du(x), x) dx dy − 1

|V ◦|

∫
U\V ◦

|L(Du(x), x)| dx

≥ −
∫
V ◦

(µ(y +Qn, q(y)) + p(y) · q(y)) dy − C

|U |

∫
U\V ◦

(K0 + |Du|)2 dx.

We next handle the error arising from the boundary strip. Using (A.2), we have

−
∫
U

L(Du(x), x) dx− −
∫
V ◦
L(Du(x), x) dx

≥ −C3l−n−m
∣∣∣∣−∫
U

L(Du(x), x) dx

∣∣∣∣− 1

|U |

∣∣∣∣∣
∫
U\V ◦

L(Du(x), x) dx

∣∣∣∣∣
≥ −C3l−n−m −

∫
U

(K0 + |Du(x)|)2 dx− C

|U |

∫
U\V ◦

(K0 + |Du(x)|)2 dx.
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Assembling the previous two strings of inequalities gives (A.12), after we estimate the error
terms in the following way: by (A.5), we have

−
∫
U

(K0 + |Du(x)|)2 dx ≤ CM2

and then Hölder’s inequality and (A.5) give

1

|U |

∫
U\V ◦

(K0 + |Du(x)|)2 dx ≤
(
|U \ V ◦|
|U |

)1−2/r (
−
∫
U

(K0 + |Du(x)|)r dx
)2/r

≤ C3(l−n−m)(1−2/r)M2.

This completes the proof of (A.12).

Step 4. – The conclusion. According to (A.12),

−
∫
U

L(Du(x), x) dx− −
∫
V ◦
L(p(y)) dy

≥ −−
∫
V ◦

E(y +Qn, p(y)) dy − CM23(l−n−m)(1−2/r)

≥ − E′ − CM23(l−n−m)(1−2/r).

It remains to use (A.5), (A.9) and Hölder’s inequality to estimate the energy of ũ in the
boundary strip, much as we did above for u in Step 3. We have

−
∫
U

L(Dũ(y)) dy − −
∫
V ◦
L(p(y)) dy = −|U \ V

◦|
|U |

−
∫
V ◦
L(p(y)) dy +

1

|U |

∫
U\V ◦

L(Dũ(y)) dy

and we estimate the error terms as follows: by (A.9),

|U \ V ◦|
|U |

∣∣∣∣−∫
V ◦
L(p(y)) dy

∣∣∣∣ =
|U \ V ◦|
|U |

−
∫
V ◦

∣∣L(Dũ(y))
∣∣ dy ≤ CM23l−n−m

and, using (A.9) and Hölder’s inequality again,

1

|U |

∫
U\V ◦

L(Dũ(y)) dy ≤ CM23(l−n−m)(1−2/r).

Combining these gives the lemma.

A.3. Estimate of the (heterogeneous) energy of u

We next modify uhom to obtain a minimizer candidate ũhom for the heterogeneous energy
functional by a stitching together mesoscopic minimizers on an overlapping grid, not unlike
the patching construction in the proof of Lemma 3.3.

We begin the construction by defining an affine approximation to uhom in the mesoscopic
cube z +Qn+2 by setting, for each z ∈ V ∩ 3nZd,

`z(x) := p(z) · (x− z) + ζ(z),

where

ζ(z) := −
∫
z+Qn+2

uhom(x) dx and p(z) := Dζ(z) = −
∫
z+Qn+2

Duhom(x) dx.
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For each z ∈ V ∩3nZd, we introduce mesoscopic minimizers in z+Qn+2 of the heterogeneous
energy functional with Dirichlet boundary conditions given by lz:

vz(x) := v (x, z +Qn+2, Dζ(z))−Dζ(z) · z + ζ(z), x ∈ z +Qn+2(z).

Observe that, for each z ∈ V ∩ 3nZd, we have vz ∈ H1(z +Qn+2),

−
∫
z+Qn+2

(vz(x)− uhom(x)) dx = 0 and −
∫
z+Qn+2

(Dvz(x)−Duhom(x)) dx = 0.

Next we patch these functions together to get a function defined on V . Define a smooth
periodic partition of unity by setting

φ(x) :=

∫
Qn

η(x− y) dy,

where η ∈ C∞(Rd) satisfies

0 ≤ η ≤ 1, η ≡ 0 in Rd \Qn−1,

∫
Rd
η(y) dy = 1, and |Dη| ≤ C3−(d+1)n.

Here we have essentially mollified the characteristic function of the cube Qn to obtain a
function φ, which is supported in Qn+1 and satisfies

(A.13) sup
x∈Qn+1

|Dφ(x)| ≤ C3−(d+1)n|Qn| ≤ C3−n

and, for every x ∈ Rd,

(A.14)
∑

z∈3nZd
φ(x− z) = 1.

The latter holds since the cubes {z +Qn : z ∈ 3nZd} form a disjoint partition of Rd, up to
a set of Lebesgue measure zero. Now set

ṽ(x) :=
∑

z∈V ∩3nZd
φ(x− z)vz(x), x ∈ V.

Then ṽ ∈ H1(V ). Finally, we modify ṽ to match the boundary condition. Take η ∈ C∞0 (Rd)
to be the cutoff function satisfying (A.3), as above, and set

ũhom(x) := η(x)ṽ(x) + (1− η(x))uhom(x).

Then ũhom ∈ g+H1(U) is the minimizer candidate for the heterogeneous energy functional.
We estimate its energy from above using an argument similar to the one in Lemma 3.3
combined with some aspects of the proof of Lemma A.1 and relying on Theorem 3.1. This
result is summarized in the following lemma.

L A.2. – There exists C(d,Λ, t, Û) ≥ 1 and r(d,Λ, t) ∈ (2, t] such that

−
∫
U

L (Dũhom(x), x) dx ≤ −
∫
U

L(Duhom(x)) dx+ C E′ + CM2
(

3n−l + 3(l−n−m)(1−2/r)
)
.

Proof. – We divide the proof into several steps.
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Step 1. – We record some estimates on the mesoscopic affine approximations which are
needed below. By Hölder’s inequality and (A.1), we have, for each z ∈ V ,

|p(z)|2 ≤

(
−
∫
z+Qn+2

|Duhom(x)| dx

)2

≤ |U |
|Qn+2|

(
−
∫
U

|Duhom(x)|2 dx
)

(A.15)

≤ C3md
(
−
∫
U

|Duhom(x)|2 dx
)
≤ C3mdM2.

In view of the definition of vz and the previous inequality, we obtain, for z ∈ V ∩ Zd,

(A.16)

∣∣∣∣∣−
∫
z+Qn+2

L(Dvz(x), x) dx− L(p(z))

∣∣∣∣∣ ≤ E′.

We next show that overlapping mesoscopic affine approximations to uhom agree, up to a small
error. Compute, for every z, z′ ∈ V ∩ 3nZd such that z′ ∈ z +Qn+1,

p(z)− p(z′) = −
∫
z+Qn+2

(Duhom(x)−Duhom(x+ z′ − z)) dx

= −
∫
z+Qn+2

(z − z′) ·
∫ 1

0

D2uhom(x+ (1− t)(z′ − z)) dt dx

and, after changing the order of integration, applying Jensen’s inequality and using
|z − z′| ≤ C3n, obtain

(A.17) |p(z)− p(z′)|2 ≤ C32n −
∫
z+Qn+3

∣∣D2uhom(x)
∣∣2 dx.

A similar computation yields

(A.18) |ζ(z)− ζ(z′)|2 ≤ C34n −
∫
z+Qn+3

∣∣D2uhom(x)
∣∣2 dx.

Combining these, we get control over the differences of the affine approximations:

(A.19) sup
x∈z+Qn+3

|`z(x)− `z′(x)|2 ≤ C34n −
∫
z+Qn+3

∣∣D2uhom(x)
∣∣2 dx.

For our reference, we also return to (A.15) and finish the estimate differently, using Jensen’s
inequality to obtain, for all such z, z′ ∈ V ,

(A.20) |p(z′)|2 ≤ C −
∫
z′+Qn+2

|Duhom(x)|2 dx ≤ C −
∫
z+Qn+3

|Duhom(x)|2 dx.

Step 2. – We show that two mesoscopic minimizers vz and vz′ with overlapping domains
agree, up to a small error, on the overlap. The claim is that, for every z, z′ ∈ V ∩ 3nZd and
y ∈ 3nZd such that y +Qn ⊆ (z +Qn+2) ∩ (z′ +Qn+2), we have

(A.21) 3−2n −
∫
y+Qn

(vz′(x)− vz(x))
2
dx+ −

∫
y+Qn

|Dvz(x)−Dvz′(x)|2 dx

≤ C E′ + C3n−l

(
K2

0 + −
∫
z+Qn+3

|Duhom(x)|2 dx

)
+ C3n+l −

∫
z+Qn+3

∣∣D2uhom(x)
∣∣2 dx.
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The estimate of the first term on the left side of (A.21) follows from (A.19), the definition
of E′, the triangle inequality and the fact that n ≤ l. Therefore we focus on estimating the
difference of gradient overlaps.

We first show that the energy of each mesoscopic minimizer vz spreads evenly in the
32d subcubes of z + Qn+2 which are proportional to Qn. We may these enumerate these
subcubes by y+Qn for y ∈ z+Jn where Jn := 3nZd∩Qn+2. Now compute, for y ∈ z+Jn,

−
∫
y+Qn

(L(Dvz(x), x)− q(y) ·Dvz(x)) dx

= 32d −
∫
z+Qn+2

L(Dvz(x), x) dx− 32dq(y) · p(z)

−
∑

y′∈z+Jn\{y}

−
∫
y′+Qn

(L(Dvz(x), x)− q(y) ·Dvz(x)) dx

≤ 32dν(z +Qn+2, p(z))− 32dq(y) · p(z)−
∑

y′∈z+Jn\{y}

µ(y′ +Qn, q(y)) .

Using (2.33) and the triangle inequality, we obtain

−
∫
y+Qn

(L(Dvz(x), x)− q(y) ·Dvz(x)) dx

≤ µ(y +Qn, q(y)) + C E (z +Qn+2, p(y)) +
∑

y′∈z+Jn

E (y′ +Qn, p(y))

+ C (K0 + |p(z)|+ |p(y)|) |p(y)− p(z)|+ C |q(y)| |p(y)− p(z)| .

From the previous inequality, (A.17) and (A.20), we get

(A.22) −
∫
y+Qn

(L(Dvz(x), x)− q(y) ·Dvz(x)) dx− µ(y +Qn, q(y))

≤ C E′ + C3n

(
K2

0 + −
∫
z+Qn+3

|Duhom(x)|2 dx

)1/2(
−
∫
z+Qn+3

∣∣D2uhom(x)
∣∣2 dx)1/2

.

We now apply Lemma 2.1 to obtain, for any z, z′ ∈ 3nZd ∩ V and y ∈ 3nZd such that
y +Qn ⊆ (z +Qn+2) ∩ (z′ +Qn+2),

−
∫
y+Qn

|Dvz(x)−Dvz′(x)|2 dx

≤ C E′ + C3n

(
K2

0 + −
∫
z+Qn+3

|Duhom(x)|2 dx

)1/2(
−
∫
z+Qn+3

∣∣D2uhom(x)
∣∣2 dx)1/2

.

Young’s inequality gives the desired estimate for the L2 difference of the gradients and
completes the proof of (A.21).
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For future reference, we note that

(A.23)

∣∣∣∣−∫
z+Qn

Dvz(x) dx− p(z)
∣∣∣∣2

≤ C E′ + C3n−l

(
K2

0 + −
∫
z+Qn+3

|Duhom(x)|2 dx

)
+ C3n+l −

∫
z+Qn+3

∣∣D2uhom(x)
∣∣2 dx.

To see this, we use Lemma 2.1 and (A.22) to compare the gradients of vz and the minimizer
of µ(z +Qn, q(z)) and then apply (3.54), before using Young’s inequality as above.

Step 3. – We use Lemma 2.2 and (A.21) to derive an upper bound for the (heterogeneous)
energy of ṽ in V . The claim is that

(A.24) −
∫
V

L (Dṽ(x), x) dx ≤ −
∫
V

L(Duhom(x)) dx+ C E′ + CM
√

E′ + C3n−lM2.

For each z ∈W ∩ 3nZd and x ∈ Qn(z) ⊆W , we have

ṽ(x)− vz(x) =
∑

y∈z+J′n

φ(x− y) (vy(x)− vz(x))

where we denote J ′n :=
{
y ∈ 3nZd : (y + Jn) ∩ Jn 6= ∅

}
, which we observe has at most C

elements. Differentiating this expression yields, for all such z and x,

Dṽ(x)−Dvz(x) =
∑

y∈z+J′n

(Dφ(x− y) (vy(x)− vz(x)) + φ(x− y) (Dvy(x)−Dvz(x))) ,

and then applying (A.21), using the bound |Dφ| ≤ C3−n from (A.13), we obtain

(A.25) −
∫
z+Qn

|Dṽ(x)−Dvz(x)|2 dx

≤ C E′ + C3n−l

(
K2

0 + −
∫
z+Qn+3

|Duhom(x)|2 dx

)
+ C3n+l −

∫
z+Qn+3

∣∣D2uhom(x)
∣∣2 dx.

The previous inequality, (A.22) with y = z and Lemma 2.2 yield

−
∫
z+Qn

(L(Dṽ(x), x)− q(z) ·Dṽ(x)) dx− µ(z +Qn, q(z))

≤ C E′ + C3n−l

(
K2

0 + −
∫
z+Qn+3

|Duhom(x)|2 dx

)
+ C3n+l −

∫
z+Qn+3

∣∣D2uhom(x)
∣∣2 dx.

By (A.23) and (A.25), we have∣∣∣∣−∫
z+Qn

Dṽ(x) dx− p(z)
∣∣∣∣2

≤ C E′ + C3n−l

(
K2

0 + −
∫
z+Qn+3

|Duhom(x)|2 dx

)
+ C3n+l −

∫
z+Qn+3

∣∣D2uhom(x)
∣∣2 dx.

4 e SÉRIE – TOME 49 – 2016 – No 2



STOCHASTIC HOMOGENIZATION OF CONVEX INTEGRAL FUNCTIONALS 477

The previous two lines yield

−
∫
z+Qn

L(Dṽ(x), x) dx− q(z) · p(z)− µ(z +Qn, q(z))

≤ C E′ + C3n−l

(
K2

0 + −
∫
z+Qn+3

|Duhom(x)|2 dx

)
+ C3n+l −

∫
z+Qn+3

∣∣D2uhom(x)
∣∣2 dx

+ C
√

E′
(
K2

0 + −
∫
z+Qn+3

|Duhom(x)|2 dx

) 1
2

.

The sum of the last two terms on the left side is −L(p(z)), up to an error of E′. Using this
and (A.16), we get

(A.26) −
∫
z+Qn

L(Dṽ(x), x) dx− L(p(z))

≤ C E′ + C3n−l

(
K2

0 + −
∫
z+Qn+3

|Duhom(x)|2 dx

)
+ C3n+l −

∫
z+Qn+3

∣∣D2uhom(x)
∣∣2 dx

+ C
√

E′
(
K2

0 + −
∫
z+Qn+3

|Duhom(x)|2 dx

) 1
2

.

By the Poincaré inequality,

−
∫
z+Qn+2

|Duhom(x)− p(z)|2 dx ≤ C32n −
∫
z+Qn+2

∣∣D2uhom(x)
∣∣2 dx.

Using this and

L(p) ≥ L(p(z)) + q(z) · (p− p(z))− C|p− p(z)|2,

we obtain from (A.26) that

−
∫
z+Qn

L(Dṽ(x), x) dx− −
∫
z+Qn+2

L(Duhom(x)) dx

≤ C E′ + C3n−l

(
K2

0 + −
∫
z+Qn+3

|Duhom(x)|2 dx

)
+ C3n+l −

∫
z+Qn+3

∣∣D2uhom(x)
∣∣2 dx

+ C
√

E′
(
K2

0 + −
∫
z+Qn+3

|Duhom(x)|2 dx

) 1
2

.

Summing this over all z ∈ V ∩ 3nZd such that z +Qn+2 ⊆ V and applying (A.5) and (A.6),
we at last obtain (A.24).

Step 4. – We estimate the contribution of the energy of ũhom in the boundary strip U \ V ◦.
The claim is that

(A.27) −
∫
U\V ◦

|Dũhom(x)|2 dx ≤ C E′ + C3n−lM2 + C3(l−n−m)(1−2/r)M2.
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By Hölder’s inequality and (A.5),

1

|U |

∫
U\V
|Duhom(x)|2 dx ≤

(
|U \ V |
|U |

)1−2/r (
−
∫
U

|Duhom(x)|r dx
)2/r

(A.28)

≤ C3(l−n−m)(1−2/r)M2.

By the triangle inequality, (A.3) and the expression

(A.29) Dũhom(x) = η(x)Dṽ(x) + (1− η(x))Duhom(x) +Dη(x) (ṽ(x)− uhom(x)) ,

we obtain, for each x ∈ V \ V ◦,

|Dũhom(x)| ≤ |Dṽ(x)|+ |Duhom(x)|+ C3−l |ṽ(x)− uhom(x)| .

By the Poincaré inequality, (A.19) and (A.21), we get, for every z ∈ V ∩ 3nZd,

3−2n −
∫
z+Qn

|ṽ(x)− uhom(x)|2 dx

≤ C E′ + C

(
K2

0 + −
∫
z+Qn+3

|Duhom(x)|2 dx

)
+ C3n+l −

∫
z+Qn+3

∣∣D2uhom(x)
∣∣2 dx.

According to (2.29), (A.20) and (A.25), for every z ∈ V ∩ 3nZd,

−
∫
z+Qn

|Dṽ(x)|2 dx

≤ C E′ + C

(
K2

0 + −
∫
z+Qn+3

|Duhom(x)|2 dx

)
+ C3n+l −

∫
z+Qn+3

∣∣D2uhom(x)
∣∣2 dx.

We now obtain (A.27) after summing the previous two inequalities over all
z ∈ (V \ V ◦) ∩ 3nZd, combining the result with (A.29) and using (A.2), (A.6), (A.28)
and the fact that ũhom ≡ uhom in U \ V .

The lemma now follows from (A.28), (A.24) and (A.27).

We now complete the proof of Proposition 4.1.

Proof of (A.4). – By Lemmas A.1 and A.2,

−
∫
U

L (Du(x), x) dx ≤ −
∫
U

L (Dũhom(x), x) dx

≤ −
∫
U

L (Duhom(x))) dx+ C E′′

≤ −
∫
U

L (Dũ(x))) dx+ C E′′

≤ −
∫
U

L (Du(x), x) dx+ C E′′

where we have set

E′′ := E′ + CM
√

E′ + CM2
(

3n−l + 3β(l−n−m)
)
.

In particular, ∣∣∣∣−∫
U

L (Du(x), x) dx− −
∫
U

L (Duhom(x))) dx

∣∣∣∣ ≤ C E′′,
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which verifies part of (A.4). The above string of inequalities also gives

−
∫
U

L (Dũhom(x), x) dx ≤ −
∫
U

L (Du(x), x) dx+ C E′′

and

−
∫
U

L (Dũ(x))) dx ≤ −
∫
U

L (Duhom(x))) dx+ C E′′.

Then uniform convexity (i.e., an argument analogous to that of Lemma 2.1) yields

−
∫
U

|Du(x)−Dũhom(x)|2 dx+ −
∫
U

|Duhom(x)−Dũ(x)|2 dx ≤ C E′′.

The Poincaré inequality then gives

3−2(n+m) −
∫
U

(
|u(x)− ũhom(x)|2 + |uhom(x)− ũ(x)|2

)
dx ≤ C E′′.

Recall from the definition of ũ that

ũ(x)− u(x) = η(x) (ξ(x)− u(x))

and, according to (A.5) and (A.10), that

−
∫
U

η2(x) (ξ(x)− u(x))
2
dx ≤ −

∫
V

(ξ(x)− u(x))
2
dx ≤ C32nM2.

Therefore the triangle inequality gives

3−2(n+m) −
∫
U

|u(x)− uhom(x)|2 dx ≤ C E′′ + CM3−2m ≤ C E′′.

This completes the proof of (A.4) and therefore of Proposition 4.1.

R A.3. – The argument above and those of Lemma A.1 and A.2 contain more
information than what is stated in Proposition 4.1, namely a quantitative estimate for the
difference between mesoscopic spatial averages of the (heterogeneous) energy of uε and
L(Duhom), and a quantitative statement concerning the weak convergence ofDuε toDuhom,
which can be stated in terms of an estimate on ‖Duε−Duhom‖H−1 . We leave the formulation
of this result and the details of the argument to the reader.
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