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ON THE CYCLE CLASS MAP FOR ZERO-CYCLES
OVER LOCAL FIELDS

 H ESNAULT  O WITTENBERG
    S BLOCH

A. – We study the Chow group of 0-cycles of smooth projective varieties over local
and strictly local fields. We prove in particular the injectivity of the cycle class map to integral `-adic
cohomology for a large class of surfaces with positive geometric genus, over local fields of residue
characteristic 6= `. The same statement holds for semistable K3 surfaces defined over C((t)), but does
not hold in general for surfaces over strictly local fields.

R. – Nous étudions le groupe de Chow des 0-cycles des variétés projectives et lisses sur les
corps locaux et strictement locaux. Nous prouvons en particulier l’injectivité de l’application classe
de cycle vers la cohomologie `-adique entière pour de nombreuses surfaces de genre géométrique non
nul, sur les corps locaux de caractéristique résiduelle 6= `. Le même énoncé vaut pour les surfaces K3

semi-stables définies sur C((t)), mais ne vaut pas en général pour les surfaces sur les corps strictement
locaux.

1. Introduction

Let X be a smooth projective variety over a field K, let CH0(X) denote the Chow group
of 0-cycles on X up to rational equivalence and let A0(X) ⊂ CH0(X) be the subgroup of
cycle classes of degree 0.

WhenK is algebraically closed, the groupA0(X) is divisible and its structure as an abelian
group is, conjecturally, rather well understood, thanks to Roitman’s theorem and to the
Bloch-Beilinson-Murre conjectures. A central tool for the study of A0(X) over other types
of fields is the cycle class map

ψ : CH0(X)/nCH0(X)→ H2d
ét (X,Z/nZ(d))

to étale cohomology, where n denotes an integer invertible in K and d = dim(X). The
group H2d

ét (X,Z/nZ(d)) is easier to understand, thanks to the Hochschild-Serre spectral

The first author is supported by the the ERC Advanced Grant 226257, the Chaire d’excellence 2011 of the
Fondation Sciences Mathématiques de Paris and the Einstein Foundation.
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484 H. ESNAULT AND O. WITTENBERG

sequence; for instance, if K has cohomological dimension ≤ 1 and X is simply connected,
then H2d

ét (X,Z/nZ(d)) = Z/nZ and ψ may be interpreted as the degree map.

According to one of the main results of higher-dimensional unramified class field theory,
due to Kato and Saito [43], if K is a finite field, the group A0(X) is finite and ψ is an
isomorphism. More recently, Saito and Sato [69] have shown that ifK is the quotient field of
an excellent Henselian discrete valuation ring with finite or separably closed residue field, the
group A0(X) is the direct sum of a finite group of order prime to p and a group divisible by
all integers prime to p (see also [11, Théorème 3.25]). In this case, however, the map ψ need
not be either injective or surjective. What Saito and Sato prove, instead, is the bijectivity of
the analogous cycle class map for cycles of dimension 1 on regular models ofX over the ring
of integers of K (see [69, Theorem 1.16]).

Following a method initiated by Bloch [4], one may approach the torsion subgroup
of A0(X), as well as the kernel of ψ, with the help of algebraic K-theory, when X is a
surface. We refer to [10] for a detailed account of this circle of ideas. Strong results were
obtained in this way for rational surfaces, and more generally for surfaces with geometric
genus zero, over number fields, p-adic fields, and fields of characteristic 0 and cohomological
dimension 1 (see [5], [6], [16], [9], [14], [68]). We note that over algebraically closed fields of
characteristic 0, surfaces with geometric genus zero are those surfaces for which the Chow
group A0(X) should be representable, according to Bloch’s conjecture (see [5, § 1]).

The first theorem of this paper establishes the injectivity of ψ for a large class of surfaces
over local fields, when n is divisible enough and prime to the residue characteristic, without
any assumption on the geometric genus. In principle, this theorem should be applicable to
all simply connected surfaces, a generality in which the injectivity of ψ may not have been
expected. Before we state it, we set up some notation. Let X be a regular proper flat scheme
over an an excellent Henselian discrete valuation ringR. LetX = X ⊗RK andA = X ⊗Rk
denote the generic fiber and the special fiber, respectively. We assume the reduced special
fiberAred has simple normal crossings, and write CH0(X) ⊗̂ Z` = lim←−CH0(X)/`nCH0(X).

T 1 (Theorem 3.1 and Remark 3.2). – Assume the residue field k is finite andX is
a surface whose Albanese variety has potentially good reduction. If the irreducible components
of A satisfy the Tate conjecture, then for any ` invertible in k, the cycle class map

CH0(X) ⊗̂ Z` → H4
ét(X,Z`(2))(1.1)

is injective. Equivalently, the natural pairing CH0(X) × Br(X) → Q/Z is non-degenerate on
the left modulo the maximal `-divisible subgroup of CH0(X).

The assumption on the irreducible components of A holds as soon as X has geometric
genus zero, as well as in many examples of nontrivial degenerations of surfaces with nonzero
geometric genus (see § 3). Theorem 1 is due to Saito [68] when X is a surface with geometric
genus zero over a p-adic field. An example of Parimala and Suresh [62] shows that the
assumption on the Albanese variety cannot be removed. Finally, we note that Theorem 1 may
be viewed as a higher-dimensional generalization of Lichtenbaum-Tate duality for curves,
according to which the natural pairing CH0(X)× Br(X)→ Q/Z is non-degenerate if X is
a smooth proper curve over a p-adic field (see [54]).
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ON THE CYCLE CLASS MAP FOR ZERO-CYCLES OVER LOCAL FIELDS 485

Our starting point for the proof of Theorem 1 is the theorem of Saito and Sato alluded
to above about the cycle class map for 1-cycles on X [69, Theorem 1.16], which allows
us to express the kernel of ψ purely in terms of the scheme A and of the cohomology
of X, when k is either finite or separably closed (Theorem 2.1 and Theorem 2.2). The
dimension of X plays no role in this part of the argument; an application to the study
of 0-cycles on a cubic threefold over Qp may be found in Example 2.12. Theorem 1 is
then obtained by analyzing the various cohomology groups which appear in the resulting
expression for Ker(ψ). More precisely, in the situation of Theorem 1, we prove the stronger
assertion that the 1-dimensional cycle class map ψ1,A : CH1(A) ⊗̂ Z` → H4

A(X ,Z`(2))

to integral `-adic étale homology is surjective. This provides a geometric explanation for
the assumption that the Albanese variety of X have potentially good reduction, a condition
which first appeared in [68] and which turns out to be essential for the surjectivity of ψ1,A to
hold (see Lemma 3.7 and § 4.3).

When the residue field k is separably closed instead of finite, the arguments used in the
proof of Theorem 1 fail in several places. They still lead to the following statement, which
may also be deduced from results of Colliot-Thélène and Raskind [13] (see § 4 for comments
on this point).

T 2 (Theorem 4.1 and Remark 4.3). – Assume k is separably closed and K has
characteristic 0. If X is a surface with geometric genus zero, then for any ` invertible in k, the
cycle class map

CH0(X) ⊗̂ Z` → H4
ét(X,Z`(2))(1.2)

is injective. If in additionX is simply connected, thenA0(X) is divisible by ` and the unramified
cohomology group H3

nr(X,Q`/Z`(2)) vanishes.

This leaves open the question of the injectivity of the cycle class map (1.2) when k is
separably closed and X is a surface with positive geometric genus over K. In this situation,
the 1-dimensional cycle class map ψ1,A is far from being surjective. Building on the work of
Kulikov, Persson, Pinkham [51] [64], and of Miranda and Morrison [59], we nevertheless give
a positive answer for semistable K3 surfaces over C((t)).

T 3 (Theorem 5.1). – Let X be a K3 surface over C((t)). If X has semistable
reduction, the group A0(X) is divisible.

The proof of Theorem 3 hinges on the precise knowledge of the combinatorial structure
of a degeneration of X. It would go through over the maximal unramified extension of a
p-adic field, as far as prime-to-p divisibility is concerned, if similar knowledge were available.
This is in marked contrast with the situation over p-adic fields, where such knowledge is not
necessary for the proof of Theorem 1.

In the final section of this paper, with the help of Ogg-Shafarevich theory and of a
construction due to Persson, we show that the hope for a statement analogous to Theorem 1
over the quotient field of a strictly Henselian excellent discrete valuation ring is in fact too
optimistic, even over the maximal unramified extension of a p-adic field.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



486 H. ESNAULT AND O. WITTENBERG

T 4 (Theorem 6.1). – There exists a simply connected smooth projective surfaceX
over C((t)) such that A0(X)/2A0(X) = Z/2Z. For infinitely many prime numbers p, there
exists a simply connected smooth projective surface X over the maximal unramified extension
of a p-adic field such that A0(X)/2A0(X) = Z/2Z.

By a theorem of Kato and Saito [43, § 10], the group A0(X) is finite for any smooth
projective variety X over a finite field and it vanishes if X is simply connected. Theorem 4
answers in the negative the question whether the same result might also hold over the quasi-
finite field C((t)), for the quotient of A0(X) by its maximal divisible subgroup.

In higher dimension, the statement of Theorem 1 is known to fail for rationally connected
threefolds over local fields (see [62, Proposition 6.2]; this example is even unirational over Q3,
by [48, Corollary 1.8]). It would be interesting to find an example of a rationally connected
threefold X over C((t)) such that A0(X) 6= 0. Some constraints on the possible degenera-
tions of such an X may be gathered from the proof of Theorem 2 given below.

Acknowledgements. – We are grateful to Spencer Bloch for his interest and for contributing
to our article in the form of an appendix, in which he simplifies the proof of [69, Theorem 1.16].
We thank Pierre Berthelot, Jean-Louis Colliot-Thélène, Bruno Kahn, Shuji Saito, and
Takeshi Saito for discussions on this or related topics. In addition we thank the referees for
their work and their helpful comments.

Notation. – If M is an abelian group and ` is a prime number, we write M ⊗̂ Z` for the
Z`-module lim←−M/`nM . We say that M is divisible by ` if M/`M = 0, and that it is
divisible if it is divisible by all prime numbers. Unless otherwise specified, all cohomology
groups are Galois or étale cohomology groups. Cohomology with coefficients in Z` stands
for the inverse limit of the corresponding cohomology groups with coefficients in Z/`nZ,
and will only be considered in situations in which the latter groups are all finite. If V is
a proper variety over a field k, we denote by NS(V ) the quotient of Pic(V ) by algebraic
equivalence, and we denote by A0(V ) the group of 0-cycles of degree 0 on V up to rational
equivalence, i.e., the kernel of the degree map CH0(V ) → Z. We let V̄ = V ⊗k k̄, where
k̄ denotes a separable closure of k. Finally, we say that a variety V over a field k has simple
normal crossings if it is reduced and if for any finite collection of pairwise distinct irreducible
components V1, . . . , Vn of V , the scheme-theoretic intersection

⋂
1≤i≤n Vi is smooth over k

and has codimension n− 1 in V at every point.

2. A criterion for the injectivity of the `-adic cycle class map

Let X denote an irreducible regular projective flat scheme over an excellent Henselian
discrete valuation ring R, with special fiber A and generic fiber X. Let ` be a prime number
invertible in R. The goal of this section is to establish a criterion, in terms of A and of the
cohomology of X, for the `-divisibility, up to rational equivalence, of homologically trivial
zero-cycles on X, when k is either finite or separably closed. This criterion is derived from
the main theorem of Saito and Sato [69] (see also the appendix to this article).

We denote byK the quotient field ofR. Let d = dim(X) and let (Ai)i∈I denote the family
of irreducible components of A.
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T 2.1. – Assume k is separably closed. The kernel of the cycle class map

CH0(X) ⊗̂ Z` −→ H2d(X,Z`(d))

is a finite group, canonically Pontrjagin dual to the homology group of the complex

H1(X,Q`/Z`(1)) // H2
A(X ,Q`/Z`(1)) //

⊕
i∈I

H2(Ai,Q`/Z`(1))

CH1(Ai)⊥
.(2.1)

T 2.2. – Assume k is finite. The kernel of the cycle class map

CH0(X) ⊗̂ Z` −→ H2d(X,Z`(d))

is a finite group, canonically Pontrjagin dual to the homology group of the complex

H2(X,Q`/Z`(1)) // H3
A(X ,Q`/Z`(1)) //

⊕
i∈I

H3(Ai,Q`/Z`(1))

CH1(Ai)⊥
.(2.2)

Let us explain how the complexes (2.1) and (2.2) are defined.

For any i ∈ I, the cycle class map CH1(Ai) → H2d
Ai

(X ,Z`(d)) and cup-product give
rise together to a natural pairing Hm(Ai,Q`/Z`(1)) × CH1(Ai) → Q`/Z`, where m = 2

if k is separably closed and m = 3 if k is finite (see Proposition 2.6 below, and see [69, § 1]
for the definition of the cycle class map). The notation CH1(Ai)

⊥ refers to the left kernel of
this pairing. Concretely CH1(Ai)

⊥ is the group of those classes inHm(Ai,Q`/Z`(1)) whose
restriction to Hm(C,Q`/Z`(1)) vanishes for any irreducible curve C lying on Ai.

In both (2.1) and (2.2), the first map is the natural map, while the second map is the
composition of the natural map Hm

A (X ,Q`/Z`(1)) → Hm(X ,Q`/Z`(1)) with the sum
of the restriction maps Hm(X ,Q`/Z`(1)) → Hm(Ai,Q`/Z`(1)) and the quotient maps
Hm(Ai,Q`/Z`(1))→ Hm(Ai,Q`/Z`(1))/CH1(Ai)

⊥.

R 2.3. – (i) It follows from purity in étale cohomology (see [26]) that there is
a canonical isomorphism H2

A(X ,Λ(1)) = ΛI for Λ = Z/nZ with n invertible in R. For
the reader’s convenience and for lack of an adequate reference, we provide an elementary
proof. Let ι : A ↪→ X and j : X ↪→ X denote the canonical immersions. It is a
general fact that ι∗R2ι!Λ = R1j∗Λ (see [23, p. 107]). On the other hand, the Kummer
exact sequence and the vanishing of R1j∗Gm (see [57, Chapter III, Proposition 4.9]) imply
together that R1j∗Λ(1) = (j∗Gm) ⊗Z Λ. Finally, we have (j∗Gm) ⊗Z Λ = D ⊗Z Λ, where
D denotes the sheaf of Cartier divisors on X supported on A (see [34, Exp. IX, § 3.3.1]).
Thus H2

A(X ,Λ(1)) = H0(X , ι∗R
2ι!Λ(1)) = H0(X , D ⊗Z Λ) = ΛI .

(ii) Assume k is separably closed. In this case K has cohomological dimension 1 and the
Hochschild-Serre spectral sequence presents the group H1(X,Q`/Z`(1)) as an extension
of H0(K,H1(X̄,Q`/Z`(1))) by H1(K,H0(X̄,Q`/Z`(1))) = Q`/Z`, where X̄ = X ⊗K K̄

and where K̄ is a separable closure of K. On the other hand, by the localization exact
sequence, the first map of (2.1) vanishes on the image of H1(X ,Q`/Z`(1)) in H1(X,Q`/Z`(1)).
Lastly, we haveH1(X ,Q`/Z`(1)) = H1(A,Q`/Z`(1)) according to the proper base change

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



488 H. ESNAULT AND O. WITTENBERG

theorem. These three facts, combined with Remark 2.3 (i), show that in the statement of
Theorem 2.1, the complex (2.1) may be replaced with the more explicit complex

Φ // Coker
(
Q`/Z`

α−−→ (Q`/Z`)
I
)

δ //
⊕
i∈I

NS(Ai)⊗Z Q`/Z`
CH1(Ai)⊥

,(2.3)

where Φ = Coker
(
H1(A,Q`/Z`(1)) → H0(K,H1(X̄,Q`/Z`(1)))

)
is a finite group which

measures the “defect of the local invariant cycle theorem with torsion coefficients,” where for
any i ∈ I, the map α, on the ith component, is multiplication by the multiplicity of Ai in A,
and where for any i ∈ I and any λ = (λj)j∈I ∈ (Q`/Z`)

I , the ith component of δ(λ) is the
class of OX (Aj)|Ai ⊗ λj . We note that Φ vanishes as soon as H1(X̄,Z/`Z) = 0.

(iii) When k is separably closed and H1(X̄,Z/`Z) = 0, the Hochschild-Serre spectral
sequence implies that the kernel of the cycle class map CH0(X) ⊗̂ Z` → H2d(X,Z`(d))

coincides with A0(X) ⊗̂ Z`, where A0(X) = Ker(deg : CH0(X) → Z). Hence, in this case,
Theorem 2.1 states that the finite group A0(X) ⊗̂ Z` is canonically Pontrjagin dual to the
kernel of δ.

(iv) Assume k is separably closed. Since OX (Ai)|Aj = OAj (Ai ∩ Aj) whenever i, j ∈ I
are distinct and since, for any i, any element of Coker(α) may be represented by a family
(λj)j∈I ∈ (Q`/Z`)

I with λi = 0, the explicit description of the map δ given above makes
it clear that the group Ker(δ) depends only on the scheme A. Thus, as a consequence of
Theorem 2.1, if X ′ is another proper regular flatR-scheme whose special fiber is isomorphic
to A, and if we assume that H1(X̄,Z/`Z) = H1(X̄ ′,Z/`Z) = 0, where X ′ = X ′ ⊗R K,
then the groups A0(X) ⊗̂ Z` and A0(X ′) ⊗̂ Z` are isomorphic.

E 2.4. – (i) If X is smooth over R, the natural map

Hm
A (X ,Q`/Z`(1))→ Hm(X ,Q`/Z`(1))

identically vanishes for any m ≥ 0, since its composition with the purity isomorphism
Hm−2(A,Q`/Z`)

∼−→ Hm
A (X ,Q`/Z`(1)) (see [26, Theorem 2.1.1]) may be interpreted as

cup-product with the cycle class of the divisor A on X . It follows that the leftmost maps
of (2.1) and (2.2) are surjective in this case. Thus, when X has good reduction and the prime
number ` is invertible in R, the group A0(X) is divisible by ` if k is separably closed and
the cycle class map CH0(X) ⊗̂ Z` → H2d(X,Z`(d)) is injective if k is finite. For separably
closed k this was noted already in [69, Corollary 0.10].

(ii) If X is smooth over R and k is algebraically closed of characteristic p > 0, the
group A0(X) need not, however, be divisible by p. An example of this phenomenon is given
by any elliptic curve with good ordinary reduction. Indeed, let E be such an elliptic curve,
let E denote its smooth proper model over R, let π : E → X denote the quotient by
the unique subgroup scheme isomorphic to µp over R, and let X = X ⊗R K. The group
A0(X)/pA0(X) is then infinite, as it surjects ontoH1

fppf(R,µp) = R∗/R∗p via the boundary
map associated to π, according to [32, Théorème 11.7].

(iii) Assume that k is separably closed and that A is reduced and has two irreducible
componentsA1 andA2, which are smooth and meet transversally along a smooth irreducible
subvariety D of dimension d − 1. Assume moreover that H1(X̄,Z/`Z) = 0 (e.g., that X is
simply connected). Then, according to Theorem 2.1 and to Remarks 2.3 (ii) and (iii), the
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ON THE CYCLE CLASS MAP FOR ZERO-CYCLES OVER LOCAL FIELDS 489

dimension of A0(X)/`A0(X) as a vector space over Z/`Z is ≤ 1, and it is 1 if and only if
for any i ∈ {1, 2} and any irreducible curve C lying on Ai, the intersection number (C ·D),
computed on Ai, is divisible by `.

2.1. Reminders on duality

For lack of an adequate reference, we gather in this paragraph various duality results that
will be used in the proof of Theorems 2.1 and 2.2.

P 2.5. – Let V be an irreducible, proper and smooth variety over a field F , and
let d = dim(V ). Let F be a constructible étale sheaf of Z/nZ-modules on V , where n is an
integer invertible in F , and let F∨(j) = Hom(F ,Z/nZ(j)) for j ∈ Z. Let i ∈ Z.

1. If F is separably closed, then Hi(V,F ) is canonically dual to H2d−i(V,F∨(d)).

2. If F is finite, then Hi(V,F ) is canonically dual to H2d+1−i(V,F∨(d)).

3. If F is the quotient field of a strictly Henselian discrete valuation ring in which n is
invertible, then Hi(V,F ) is canonically dual to H2d+1−i(V,F∨(d+ 1)).

4. If F is the quotient field of a Henselian discrete valuation ring R in which n is
invertible and if the residue field of R is finite, then Hi(V,F ) is canonically dual
to H2d+2−i(V,F∨(d+ 1)).

The first statement of Proposition 2.5 is Poincaré duality. The other three statements
are obtained by combining Poincaré duality with well-known duality theorems for the
Galois cohomology of the fields under consideration. A proof of (4) may be found in [67,
Lemma 2.9]. Over finite or strictly local fields, the same arguments lead to (2) and (3).

P 2.6. – Let X , R, k, A, X be as at the beginning of § 2. Let Λ = Z/nZ

wheren is invertible inR. Assume k is either separably closed or finite. Letm = 2 if k is separably
closed and m = 3 if k is finite. There is a canonical isomorphism H2d+m

A (X ,Λ(d + 1)) = Λ.
Together with cup-product it induces a perfect pairing of finite abelian groups

Hi(A,Λ(j))×H2d+m−i
A (X ,Λ(d+ 1− j))→ Λ(2.4)

for any i, j ∈ Z.

Proof. – Let us fix an embedding e : X ↪→ PN
R and consider the commutative diagram

A
ι //

g

��

X

f

��

e // PN
R

q

{{
Spec(k)

h // Spec(R).

(2.5)

Let c = N − d. In the derived categories of étale sheaves of Λ-modules on Spec(k), on X

and on PN
R , there are canonical isomorphisms Rh!Λ = Λ(−1)[−2], Re!Λ = Λ(−c)[−2c]

and Rq!Λ = Λ(N)[2N ], by purity and Poincaré duality (see [26, Theorem 2.1.1] and [34,
Exp. XVIII, Théorème 3.2.5] respectively). As q ◦ e ◦ ι = h ◦ g, we deduce that
Rg!Λ = Rι!Λ(d+ 1)[2d+ 2], and hence that

RHom(Rg∗Λ,Λ) = Rg∗Rι
!Λ(d+ 1)[2d+ 2].(2.6)
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490 H. ESNAULT AND O. WITTENBERG

Proposition 2.6 follows from this remark and from the fact thatHi(k,F ) is canonically dual
to Hm−2−i(k,RHom(F ,Λ)) for any bounded complex F of étale sheaves of Λ-modules
on Spec(k) (see [58, Chapter I, Example 1.10]).

R 2.7. – The pairings which appear in the statements of Proposition 2.5 and
Proposition 2.6 are compatible with the maps stemming from the localization exact sequence.
In particular, in the situation of Proposition 2.6, the natural maps

Hi(A,Λ(j)) = Hi(X ,Λ(j))→ Hi(X,Λ(j))

(where the first equality comes from the proper base change theorem) and

H2d+m−i−1(X,Λ(d+ 1− j))→ H2d+m−i
A (X ,Λ(d+ 1− j))

form a pair of adjoint maps. So do the natural maps

Hi(X,Λ(j))→ H0(K,Hi(X̄,Λ(j)))

and

H1(K,H2d−i(X̄,Λ(d+ 1− j)))→ H2d+1−i(X,Λ(d+ 1− j))

coming from the Hochschild-Serre spectral sequence when k is separably closed. These two
compatibilities follow immediately from the definitions of the pairings involved.

2.2. Proof of Theorems 2.1 and 2.2

We assume k is either finite or separably closed. The localization exact sequences for Chow
groups and for étale cohomology, the cycle class maps for 0-cycles on X, for 1-cycles on X ,
for 1-cycles on A and for 1-cycles on the Ai’s fit together in a commutative diagram⊕

i∈I
CH1(Ai)/`

n

$$ $$

⊕
ψ1,Ai //

⊕
i∈I

H2d
Ai(X ,Z/`n(d))

''
CH1(A)/`n

ψ1,A //

��

H2d
A (X ,Z/`n(d))

��
CH1(X )/`n ∼

ψ1,X //

����

H2d(X ,Z/`n(d))

��
CH0(X)/`n

ψ0,X // H2d(X,Z/`n(d))

(2.7)

for each n ≥ 1 (see [27, § 20.3], [69, § 1]). According to the main theorem of Saito and
Sato [69], the map ψ1,X is an isomorphism (see Theorem A.1 and Remark A.4). In addition,
the bottom left vertical map of (2.7) is onto. Thus, the kernel of ψ0,X identifies with the
homology group of the complex⊕

i∈I
CH1(Ai)/`

n // H2d(X ,Z/`n(d)) // H2d(X,Z/`n(d))(2.8)
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extracted from this diagram. Let m = 2 if k is separably closed and m = 3 if k is finite. As
the first map of (2.8) factors through

⊕
H2d
Ai

(X ,Z/`n(d)) via the cycle class map
⊕
ψ1,Ai ,

applying Pontrjagin duality to (2.8) yields the complex

Hm−1(X,Z/`n(1)) // Hm
A (X ,Z/`n(1)) //

⊕
i∈I

Hm(Ai,Z/`
n(1))

CH1(Ai)⊥
(2.9)

(see Propositions 2.5 and 2.6). The complexes (2.1) and (2.2) are obtained from (2.9) by
passing to the direct limit over n. On the other hand, the kernel of the cycle class map
CH0(X) ⊗̂ Z` → H2d(X,Z`(d)) is the inverse limit, over n, of Ker(ψ0,X). This concludes
the proof of Theorems 2.1 and 2.2.

2.3. Further examples

In § 3–6, we shall apply Theorems 2.1 and 2.2 to establish various results on the injectivity
of the cycle class map for zero-cycles on varieties defined over local or strictly local fields. The
next three examples do not fall into the scope of these results. We include them to illustrate
the applicability of the above criteria.

E 2.8. – Let K = C((t)) and let X ⊂ P3
K denote the K3 surface defined by

x4
0 + x4

1 + t2(x4
2 + x4

3) = 0.(2.10)

Let X0 ⊂ P3
R denote the projective scheme over R = C[[t]] defined by the same equation,

and let X be the blow-up of X0 along the closed subscheme defined by the homogeneous
ideal (x3

0, x
3
1, x

2
0x1, x0x

2
1, x0t, x1t, t

2). One checks that X is regular, and that its special
fiber A may be written, as a divisor on X , as A = 2S + P1 + · · · + P4 + Q1 + · · · + Q4,
where the Pi’s are pairwise disjoint projective planes, the Qi’s are pairwise disjoint smooth
projective rational surfaces, and S is a smoothK3 surface endowed with an elliptic fibration
π : S → P1

C with four singular fibers, each of type I∗0 in Kodaira’s notation [46]. Moreover,
the schemesPi∩S (resp.Qi∩S) are smooth irreducible rational curves with self-intersection 1

on Pi (resp. on Qi), and we have Pi ∩ Qj = ∅ for all i, j. The curves Pi ∩ S are the four
2-torsion sections of π, and the curvesQi∩S are the irreducible components of multiplicity 2

of the singular fibers of π. With this geometric description of the special fiber of a regular
model of X in hand, it is now an exercise to check the exactness of the complex (2.3) for
any prime number `. Note that Φ = 0 since X is simply connected. By Theorem 2.1 and
Remarks 2.3 (ii) and (iii), it follows that the group A0(X) is divisible.

E 2.9. – LetK = C((t)) and letX ⊂ P3
K denote the simply connected isotrivial

surface defined by

xn0 + txn1 + t2xn2 + t3xn3 = 0.(2.11)

Let Ke = C((t1/e)). For n ≤ 3, the surface X is (geometrically) rational, which implies
that A0(X) = 0 according to [9, Theorem A (iv)] (see also Example 4.2 below). For n = 4,
the index of X over k, i.e., the greatest common divisor of the degrees of the closed points
ofX, is equal to 2 (see [22, Proposition 4.4]). As every finite extension ofK is cyclic, it follows
that K2 embeds into the residue field of any closed point of X. Therefore the norm map
A0(X ⊗K K2)→ A0(X) is surjective. On the other hand, the surface X ⊗K K2 over K2 is,
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after an obvious change of notation, the one considered in Example 2.8; thusA0(X⊗KK2)

is divisible. We conclude that for n = 4, the groupA0(X) itself is divisible. Finally, let us note
that a similar (though simpler) argument shows that for n = 5, or more generally for any n
prime to 6, the group A0(X) is again divisible. Indeed, on the one hand, if n is prime to 6,
then, by [22, Proposition 4.4], the index of X over K is equal to n; and on the other hand,
the group A0(X ⊗K Kn) is divisible, as the surface X ⊗K Kn has good reduction over Kn.

All these observations support the guess that the groupA0(X) may in fact be divisible for
any value of n.

E 2.10. – Let K = Qp for some prime number p 6= 3 and let X ⊂ P4
K denote

the cubic threefold defined by

x3
0 + x3

1 + x3
2 + px3

3 + p2x3
4 = 0.(2.12)

Theorem 2.2 may be used to show that A0(X) = 0. This answers a question of Colliot-
Thélène [12, § 12.6.2].

We briefly sketch the structure of the argument. The smooth cubic hypersurface X

acquires good reduction over K ′ = Qp( 3
√
p). By a theorem of Kollár and Szabó, it follows

that A0(X ⊗K K ′) = 0 (see [50, Theorem 5], [49, Example 4.5]). In particular A0(X) is a
3-torsion group. On the other hand, the group H6(X,Z3(3)) is torsion-free, by the weak
Lefschetz theorem. Thus the vanishing of A0(X) is equivalent to the injectivity of the cycle
class map CH0(X) ⊗̂Z3 → H6(X,Z3(3)), which in turn is equivalent to the exactness of the
complex (2.2). Starting from the hypersurface defined by (2.12) in P4

Zp
, one obtains a proper

regular model X of X by three successive blow-ups of the singular locus. The exactness
of (2.2) may then be proved by a careful analysis of the geometry and the cohomology of
the irreducible components of the special fiber of X .

It remains an open question whether the Chow group of zero-cycles of degree 0 vanishes
for any smooth cubic hypersurface of dimension ≥ 3 over a p-adic field. We recall that for
a cubic surface over a local field, the Brauer group may be responsible for an obstruction
to the vanishing of A0(X) (see, e.g., [15, Exemple 2.8]), whereas cubic hypersurfaces of
dimension ≥ 3, on the other hand, satisfy Br(X) = Br(K) (see [65, Appendix A]).

3. Surfaces over p-adic fields

A theorem of Saito [68, Theorem A] asserts that if X is a smooth projective surface
over a p-adic field, if H2(X,OX) = 0, and if the Albanese variety of X has potentially
good reduction, then for any prime `, the cycle class map CH0(X) ⊗̂ Z` → H4(X,Z`(2))

is injective on the torsion of CH0(X) ⊗̂ Z`. In this section, we prove that the assumption
that H2(X,OX) = 0 may be dropped from Saito’s theorem, when ` 6= p and the irreducible
components of the special fiber of a regular model ofX satisfy the Tate conjecture. It should
be noted that the assumption on the Albanese variety, on the other hand, cannot be
dispensed with: Parimala and Suresh have given an example of a smooth proper surface X
over Q3, withH2(X,OX) = 0, such that the cycle class map CH0(X)⊗̂Z2 → H4(X,Z2(2))

is not injective (see [62, Example 8.2 and Proposition 7.5]).
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T 3.1. – With the notation of § 2, assume that d = 2, that k is finite, that the
reduced special fiber Ared of X has simple normal crossings, and that the surfaces Ai satisfy
the Tate conjecture. Let ` be a prime number invertible in k. If the Albanese variety of X has
potentially good reduction, then the cycle class map CH0(X)⊗̂Z` → H2d(X,Z`(d)) is injective.

The hypothesis that the surfaces Ai satisfy the Tate conjecture automatically holds if K
has characteristic 0 and H2(X,OX) = 0 (see Lemma 4.4 and Lemma 4.5). Even when
H2(X,OX) 6= 0, it often happens that the surfacesAi are all birationally ruled and therefore
satisfy the Tate conjecture. This phenomenon is illustrated by theK3 surfaces of Example 3.3
below. We refer the reader to § 6 for an example of a simply connected surfaceX with positive
geometric genus, over a p-adic field, which satisfies the assumptions of Theorem 3.1 even
though the Ai’s are not birationally ruled (see Remark 6.7).

We note that Theorem 3.1 should be applicable to any surface with H1(X,OX) = 0; for
instance, to any K3 surface. As far as we are aware, Theorem 3.1 is the first general result
about the kernel of the cycle class map for 0-cycles on surfaces defined over a p-adic field
which goes beyond the assumption H2(X,OX) = 0 of Saito’s theorem. See [78] and the
references therein for a discussion of this point and for a positive result in the case of surfaces
of the shape C × C ′ where C and C ′ are Mumford curves over a p-adic field.

In the proof of Theorem 3.1 given below, the Tate conjecture is used in Lemma 3.8 and
in the application of Lemma 3.6, while the hypothesis that the Albanese variety ofX should
have potentially good reduction plays a role only in Lemma 3.7. It would be interesting to
understand the kernel of the cycle class map for 0-cycles on surfaces defined over a p-adic
field when the Albanese variety of X does not have potentially good reduction. See [72] for
some work in this direction under the assumption that H2(X,OX) = 0.

R 3.2. – When X is a proper variety over a p-adic field, the natural pairing

CH0(X)× Br(X)→ Q/Z(3.1)

defined by Manin [56] has been used as a tool to study the Chow group of 0-cycles of X
(see [15], [70]). Theorem 3.1 may be reinterpreted as asserting that for the surfaces X which
appear in its statement, the left kernel of (3.1) is divisible by `. (See, e.g., [10, p. 41] for
this reformulation.) This answers, for the prime-to-p part and conditionally on the Tate
conjecture, the question raised in [62, p. 85], under the assumption that the Albanese variety
of X has potentially good reduction.

E 3.3. – The K3 surfaces over Qp considered by Sato in [73] possess a regular
model over Zp whose special fiber is a union of smooth rational surfaces, with normal
crossings (see [73, Example 3.7 and Corollary A.7]). As a consequence, they satisfy the
assumptions of Theorem 3.1. In particular, for theseK3 surfaces, the left kernel of the natural
pairing CH0(X)× Br(X)→ Q/Z is divisible by ` for any ` 6= p.
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3.1. Local invariant cycle theorem

In both § 3 and § 4 we shall apply some of the arguments of [20, (3.6)] in an unequal
characteristic situation. For ease of reference we spell out the relevant fact in Lemma 3.4
below. Let us take up the notation of § 2 and assume k is separably closed. Recall that
for i ≥ 0, one defines a specialization map

Hi(A,Q`) −→ H0(K,Hi(X̄,Q`))(3.2)

by composing the inverse of the proper base change isomorphismHi(X ,Q`)
∼−→ Hi(A,Q`)

with the natural maps Hi(X ,Q`) → Hi(X,Q`) → H0(K,Hi(X̄,Q`)) (see [19, p. 256]).
The term “local invariant cycle theorem” refers to the conjecture that the map (3.2) is surjec-
tive for any i ≥ 0. This conjecture holds in equal characteristic (see [75, Theorem 5.12],
[35], [20, Théorème 3.6.1], [40], [38, § 3.9]). It is also known to hold in mixed characteristic,
when k is an algebraic closure of a finite field and either d ≤ 2 or i ≤ 2 (see [66, Satz 2.13], [71,
Lemma 3.9]). The local invariant cycle theorem for any i and any separably closed k would
follow from the monodromy-weight conjecture (see [38, Corollaire 3.11]). We note that even
though some of the above references assume that A is a simple normal crossings divisor
in X , the general case reduces to this one thanks to de Jong’s theorem on the existence of
alterations [41] and a trace argument.

L 3.4. – Let i ≥ 0. Under the assumptions of Theorem 2.1, the specialization
map (3.2) is surjective if and only if the sequence

Hm
A (X ,Q`) // Hm(X ,Q`) // H0(K,Hm(X̄,Q`))(3.3)

is exact for m = 2d+ 1− i.

Proof. – The localization exact sequence for étale cohomology and the Hochschild-Serre
spectral sequence give rise to a commutative diagram

H0(K,Hm(X̄,Q`))

Hm
A (X ,Q`) // Hm(X ,Q`) //

66

Hm(X,Q`)

OO

// Hm+1
A (X ,Q`)

H1(K,Hm−1(X̄,Q`))
� ?

OO 66

with exact row and column. The bottom slanted arrow is dual, up to a twist, to the special-
ization map (3.2) (see § 2.1 and Remark 2.7), therefore it is injective if and only if (3.2) is
surjective. The lemma follows by a diagram chase.

3.2. From rational to divisible torsion coefficients

The following lemma will play a crucial role both in the proof of Theorem 3.1 and in § 4.
It fails for varieties of dimension ≥ 3, both in the case of separably closed fields and in that
of finite fields. This is the main reason why Theorem 3.1 requires the assumption d = 2.
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L 3.5. – Let V be a proper surface with simple normal crossings over a field k.
Assume k is either finite or separably closed. Denote by (Vi)i∈I the family of irreducible
components of V , and let m = 2 if k is separably closed, m = 3 if k is finite. Let ` be a prime
number invertible in k. If the restriction map

Hm(V,Q`(1))→
⊕
i∈I

Hm(Vi,Q`(1))(3.4)

is injective, then so is the restriction map

Hm(V,Q`/Z`(1))→
⊕
i∈I

Hm(Vi,Q`/Z`(1)).(3.5)

Proof. – Let us fix a total ordering on the finite set I. For n ≥ 0, set

V (n) =
∐

i1<···<in+1

(
Vi1 ∩ · · · ∩ Vin+1

)
and let an : V (n) → V denote the natural finite map. For n = 0, this is the normalization
map. The maps appearing in the statement of Lemma 3.5 fit into the following commutative
diagram, whose rows are exact:

Hm−1

(
V,
a0∗Q`(1)

Q`(1)

)

��

// Hm(V,Q`(1))

��

// Hm(V, a0∗Q`(1))

��
Hm−1

(
V,
a0∗(Q`/Z`)(1)

Q`/Z`(1)

)
// Hm(V,Q`/Z`(1)) // Hm(V, a0∗Q`/Z`(1)).

(3.6)

In order to establish Lemma 3.5, it suffices to prove that the leftmost vertical arrow of this
diagram is onto.

As V is a surface with simple normal crossings, we have dim
(
V (n)

)
≤ 2 − n for any n,

and the choice of the ordering on I determines a natural exact sequence of Z`-sheaves

0 // Z`(1) // a0∗Z`(1) // a1∗Z`(1) // a2∗Z`(1) // 0.(3.7)

For any irreducible curve C proper over k, we have Hm(C,Z`(1)) = Z`. Therefore the
group Hm(V, a1∗Z`(1)) =

⊕
i<j H

m(Vi ∩ Vj ,Z`(1)) is torsion-free. Similarly, we have
Hm−1(V, a2∗Z`(1)) = 0 for reasons of cohomological dimension. As k is finite or separably
closed, short exact sequences of Z`-sheaves give rise to long exact sequences of coho-
mology groups; hence from the previous remarks and from (3.7) we deduce that the group

Hm

(
V,
a0∗Z`(1)

Z`(1)

)
is torsion-free. In view of the exact sequence

0 // a0∗Z`(1)

Z`(1)
// a0∗Q`(1)

Q`(1)
// a0∗(Q`/Z`)(1)

Q`/Z`(1)
// 0,

we conclude that the leftmost vertical arrow of (3.6) is indeed onto.
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3.3. Two lemmas on cohomology with rational coefficients

In the next two lemmas, we study the kernel of (3.4) when k is a finite field. Following
Tate [77, p. 72], we say that an endomorphism ϕ of a finite-dimensional vector space is
partially semisimple if the map Ker(ϕ−1)→ Coker(ϕ−1) induced by the identity is bijective
(equivalently, if 1 is not a multiple root of the minimal polynomial of ϕ).

L 3.6. – Let V be a proper variety with simple normal crossings over a finite field k.
Denote by (Vi)i∈I the family of irreducible components of V . Let ` be a prime number invertible
in k. If the Frobenius endomorphism of H2(V̄i,Q`(1)) is partially semisimple for all i ∈ I, the
restriction map

H1(k,H2(V̄ ,Q`(1))) −→
⊕
i∈I

H1(k,H2(V̄i,Q`(1)))

is injective.

Proof. – As k is finite, we may consider the weights of Frobenius acting onH2(V̄ ,Q`(1))

and on M =
⊕

i∈I H
2(V̄i,Q`(1)). Let r : H2(V̄ ,Q`(1)) → M denote the restriction

map. According to the Mayer-Vietoris spectral sequence associated with the finite covering
V =

⋃
i∈I Vi and to Deligne’s theorem [20, Théorème 1], the weights of Ker(r) are ≤ −1.

Therefore H1(k,Ker(r)) = 0 and hence the map H1(k,H2(V̄ ,Q`(1))) → H1(k, Im(r))

induced by r is injective. On the other hand, since the Frobenius endomorphism acts partially
semisimply onM , it also acts partially semisimply on Im(r). We may thus identify the groups
Hi(k, Im(r)) andHi(k,M) for i = 0 with the same groups for i = 1. AsH0(k, Im(r)) injects
into H0(k,M), it follows that H1(k, Im(r)) injects into H1(k,M).

L 3.7. – With the notation of § 2, assume that d = 2, that k is finite, and
that the Albanese variety of X has potentially good reduction. Then the restriction map
H3(Ā,Q`(1))→

⊕
i∈I H

3(Āi,Q`(1)) is injective.

Proof. – LetRnr denote the strict henselization ofR, letKnr denote its quotient field and
let X nr = X ⊗R Rnr. The local invariant cycle theorem holds for H2(X̄,Q`), according
to Rapoport and Zink [66, Satz 2.13]. As a consequence, by Lemma 3.4, we have an exact
sequence of finite-dimensional vector spaces endowed with an action of Frobenius

H3
Ā

(X nr,Q`(1)) // H3(Ā,Q`(1)) // H0(Knr, H3(X̄,Q`(1))).(3.8)

Let T denote the `-adic Tate module, with rational coefficients, of the Albanese variety
of X. Let Lnr/Knr be a finite field extension over which this abelian variety acquires
good reduction. The vector space H3(X̄,Q`(2)) is canonically isomorphic to T , since
both spaces are canonically dual to H1(X̄,Q`). As the Albanese variety of X has good
reduction over Lnr, we know, by Weil, that the action of Frobenius on H0(Lnr, T ), and
therefore also on the subspace H0(Knr, T ), is pure of weight −1 (see [33, Exp. I, § 6.4]).
It follows that H0(Knr, H3(X̄,Q`(1))) is pure of weight 1. On the other hand, the vector
space H3

Ā
(X nr,Q`(1)) is dual to H3(Ā,Q`(2)) (see Proposition 2.6), so that its weights

are positive, by [20, Théorème 1]. We conclude, thanks to (3.8), that H3(Ā,Q`(1)) has
positive weights (and is in fact pure of weight 1). Now, as in the proof of Lemma 3.6, the
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Mayer-Vietoris spectral sequence and [20] imply together that the kernel of the restriction
map H3(Ā,Q`(1))→

⊕
i∈I H

3(Āi,Q`(1)) has weights ≤ 0. Hence the lemma.

3.4. Proof of Theorem 3.1

Let us assume the hypotheses of Theorem 3.1 are satisfied. For i ∈ I, the Frobenius endo-
morphism of H2(Āi,Q`(1)) is partially semisimple since the Tate conjecture holds for the
surface Ai (see [77, Proposition 2.6], which may be applied thanks to [44, Théorème 4.6]). It
thus follows from Lemma 3.6, Lemma 3.7, and from the Hochschild-Serre spectral sequence,
that the restriction map

H3(A,Q`(1)) −→
⊕
i∈I

H3(Ai,Q`(1))(3.9)

is injective.

L 3.8. – For all i ∈ I, the subgroup ofH3(Ai,Q`/Z`(1)) denoted CH1(Ai)
⊥ in (2.2)

vanishes.

Proof. – As Ai is a surface over a finite field satisfying the Tate conjecture, the cycle
class map CH1(Ai) ⊗̂ Z` → H2(Ai,Z`(1)) is surjective (see [77, Proposition 4.3]). On the
other hand, the cup-product pairingH3(Ai,Q`/Z`(1))×H2(Ai,Z`(1))→ Q`/Z` is perfect
(see § 2.1). The lemma follows.

Putting together Lemma 3.5, Lemma 3.8 and the injectivity of (3.9), we deduce that the
natural map

H3(A,Q`/Z`(1)) −→
⊕
i∈I

H3(Ai,Q`/Z`(1))

CH1(Ai)⊥
(3.10)

is injective. In view of the localization exact sequence

H2(X,Q`/Z`(1)) // H3
A(X ,Q`/Z`(1)) // H3(A,Q`/Z`(1)),(3.11)

the injectivity of (3.10) implies, in turn, the exactness of the complex (2.2). Applying
Theorem 2.2 then concludes the proof.

4. Surfaces with H2(X,OX) = 0 over K with K = C((t)) or [K : Qnr
p ] <∞

If V is a finite type scheme over a separably closed or finite field, we say thatH2(V,Q`(1))

is algebraic if the natural injection Pic(V ) ⊗̂ Q` ↪→ H2(V,Q`(1)) is an isomorphism.
Recall that when V is smooth and projective (or proper) over an algebraically closed field
of characteristic 0, this condition is equivalent to H2(V,OV ) = 0, by Hodge theory.

In a series of papers originating with the work of Bloch [4], K-theoretic methods were
applied to the study of torsion cycles of codimension 2 on smooth projective varieties defined
over various types of fields. By combining a result stemming from this series, namely, a
theorem of Colliot-Thélène and Raskind [13, Theorem 3.13], with the finiteness theorem of
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Saito and Sato [69, Theorem 9.7] and with Roitman’s theorem, it is not hard to deduce(1) the
following statement.

T 4.1. – With the notation of § 2, assume that d = 2, that k is separably closed,
and that the reduced special fiber Ared of X has simple normal crossings. If H2(X̄,Q`(1)) is
algebraic, then the cycle class map CH0(X) ⊗̂ Z` → H2d(X,Z`(d)) is injective. If in addition
H1(X̄,Z/`Z) = 0, then the group A0(X) is divisible by `.

In this section, we give a new proof of Theorem 4.1, based on the criterion established
in § 2. The argument proceeds by an analysis of the special fiber of the model X and is
thus quite different from the K-theoretic approach alluded to above. We hope that it may
shed some light on the problem at hand, especially in the higher-dimensional case, where
codimension 2 cycles are no longer relevant for the study of zero-cycles.

The general strategy for the proof of Theorem 4.1 follows the same lines as that for
the proof of Theorem 3.1. Two new difficulties arise, however. First, as is clear from the
statements of Theorems 2.1 and 2.2, the relevant restriction map is no longer

H3(A,Q`(1))→
⊕
i∈I

H3(Ai,Q`(1)),

where A is a surface with simple normal crossings over a finite field, but

H2(A,Q`(1))→
⊕
i∈I

H2(Ai,Q`(1)),

where A is now defined over a separably closed field. In contrast with the situation of § 3,
the latter map need not be injective, even if the Albanese variety of X is trivial. The
second difficulty is that the groups denoted CH1(Ai)

⊥ in (2.1), contrary to the groups
denoted CH1(Ai)

⊥ in (2.2), need not vanish. This phenomenon is related to the defect of
unimodularity of the intersection pairing on NS(Ai). We prove in § 4.1 that both of these
difficulties disappear whenH2(X̄,Q`(1)) is algebraic. We refer the reader to § 5–6 for results
in two situations in which H2(X̄,Q`(1)) has a nontrivial transcendental quotient.

E 4.2. – Theorem 4.1 applies to the surface considered in Example 2.9 when n≤ 3.
More generally, if X is a (geometrically) rational surface over K = C((t)), then A0(X) has
finite exponent (being killed by the degree of any extension of K over which X becomes
rational), and is divisible according to Theorem 4.1, so that A0(X) = 0. Thus we recover in
this case the conclusion of [9, Theorem A (iv)].

R 4.3. – Theorem 4.1 may be reinterpreted as a statement about the unramified
cohomology of X. Let us assume that its hypotheses are satisfied and, for simplicity, that K
has characteristic 0 and that H1(X̄,Z/`Z) = 0. The group A0(X) is then divisible by ` if

(1) Strictly speaking, the reference [13, Theorem 3.13] can only be applied when K has characteristic 0 and
H1(X̄,Q/Z) = 0. It is nevertheless possible to show, even though we do not do it here, that variants of the argu-
ments contained in loc. cit. are sufficient to deduce Theorem 4.1 in full generality by K-theoretic methods, the main
point being that the finiteness result [69, Theorem 9.7] implies the surjectivity of the natural map from the `-primary
torsion subgroup of A0(X) to A0(X) ⊗̂ Z`.
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and only if the unramified cohomology groupH3
nr(X,Q`/Z`(2)) vanishes. Indeed, according

to [17, Théorème 8.7], we have an exact sequence

0 // A0(X) // H0(K,A0(X̄)) // H3
nr(X,Q/Z(2)) // 0

(noting that H3
nr(X̄,Q/Z(2)) = 0 as X is a surface), and Roitman’s theorem implies

that A0(X̄), and therefore also H0(K,A0(X̄)), is a Q-vector space.

4.1. Algebraicity of H2, specialization, and normalization

We keep the notation introduced at the beginning of § 2, and assume henceforth that k is
separably closed. The goal of § 4.1 is to establish the following three lemmas.

L 4.4. – If H2(X̄,Q`(1)) is algebraic, then H2(A,Q`(1)) is algebraic.

L 4.5. – Assume d = 2 andAi is smooth for every i ∈ I. IfH2(A,Q`(1)) is algebraic,
then H2(Ai,Q`(1)) is algebraic for all i ∈ I.

L 4.6. – Let π : W → V be a surjective morphism between proper schemes over a
separably closed field k. Let ` be a prime number invertible in k. If H2(V,Q`(1)) is algebraic,
the map π∗ : H2(V,Q`(1))→ H2(W,Q`(1)) is injective.

Lemma 4.6 will be applied to V = Ared and to the normalization morphism π : W → V .

The statement of Lemma 4.5 fails when d > 2, as shown by the example of P3
R blown up

along a smooth quartic surface contained in the special fiber (in this exampleH2(A,Q`(1)) is
algebraic by Lemma 4.4).

We note that when k has characteristic 0, Lemmas 4.4 and 4.5 may be rephrased in terms
of Hodge theory and are then straightforward consequences of Kollár’s torsion-freeness
theorem [47] (see also [21], [76, Theorem 2.11]) or of the Clemens-Schmid exact sequence
(see [63, Theorem 2.7.5]). Similarly, when k has characteristic 0, the reduction to finite fields
which appears in the proof of Lemma 4.6 could be replaced with a reduction to k = C and
the use of Hodge theory.

For lack of an adequate reference, we start with a proof of the local invariant cycle theorem
for H2d−1 over an arbitrary strictly Henselian excellent discrete valuation ring.

L 4.7. – The specialization mapH2d−1(A,Q`)→ H0(K,H2d−1(X̄,Q`)) is surjec-
tive.

Proof. – For simplicity we assume that Ared has simple normal crossings. The general
case follows thanks to de Jong’s theorem [41] and a trace argument. Fix an embed-
ding X ↪→ PN

R for some N and let Y denote the intersection of X with d − 1 degree M
hypersurfaces of PN

R which lift general hypersurfaces of PN
k . By the Bertini theorem,
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ifM � 0, the scheme Y is irreducible, regular, flat overR, of dimension 2 (see Lemma A.3).
LetB = Y ⊗R k and Ȳ = Y ⊗R K̄. The specialization maps fit into a commutative diagram

H1(A,Q`(1))

��

// H0(K,H1(X̄,Q`(1)))

��
H1(B,Q`(1))

��

// H0(K,H1(Ȳ ,Q`(1)))

��
H2d−1(A,Q`(d)) // H0(K,H2d−1(X̄,Q`(d)))

(4.1)

where the vertical arrows are the restriction maps and the Gysin maps associated with the
embedding Y ↪→ X . By the Hard Lefschetz theorem, the composition of the two right-
hand side vertical arrows is an isomorphism. It follows that the surjectivity of the middle
horizontal arrow implies that of the bottom horizontal arrow. In other words, we may
replace A and X̄ with B and Ȳ and thus assume d = 1. In this case, the complex (3.3)
for m = 2 identifies, up to a twist, with the complex⊕

i∈I
Q`

//
⊕
i∈I

Q`
// Q`

whose first arrow is given by the intersection matrix of the reduced special fiber Ared, and
whose second arrow maps the ith basis vector to the multiplicity of Ai in A. This complex is
well known to be exact (see, e.g., [74, Chapter III, Remark 8.2.3]). Applying Lemma 3.4 now
concludes the proof.

Proof of Lemma 4.4. – By Lemma 4.7 and Lemma 3.4, we have an exact sequence

H2
A(X ,Q`(1)) // H2(X ,Q`(1)) // H0(K,H2(X̄,Q`(1))).(4.2)

We have H2
A(X ,Q`(1)) =

⊕
i∈I Q` (see Remark 2.3 (i)) and the first arrow of (4.2) maps

the ith basis vector to c(OX (Ai)), where c denotes the natural map

c : Pic(X ) ⊗̂Q` → H2(X ,Q`(1)).

Thus c(Pic(X ) ⊗̂ Q`) contains the image of H2
A(X ,Q`(1)). On the other hand, as

H2(X̄,Q`(1)) is algebraic and X is regular, Lemma 4.8 below implies that c(Pic(X ) ⊗̂Q`)

surjects onto H0(K,H2(X̄,Q`(1))). Hence c is surjective. By the proper base change
theorem, we conclude that H2(A,Q`(1)) is algebraic.

L 4.8. – For any variety X smooth and proper over a field K, the natural map
Pic(X) ⊗̂Q` → H0(K,Pic(X̄) ⊗̂Q`) is onto.

Proof. – We have Pic(X̄)⊗̂Q` = NS(X̄)⊗̂Q` = NS(X̄)⊗ZQ` as Pic0(X̄) is divisible and
NS(X̄) is finitely generated. It follows that the natural map Div(X̄)⊗Z Q` → Pic(X̄) ⊗̂Q`

is surjective. On the other hand, any surjective map between discrete Galois modules which
are Q-vector spaces induces a surjection on Galois invariants. Therefore Div(X)⊗ZQ`, and
thus also Pic(X)⊗Z Q`, surjects onto H0(K,Pic(X̄) ⊗̂Q`).
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Proof of Lemma 4.5. – Fix i ∈ I and set E = Ai and F =
⋃
j∈I\{i}Aj . Note that E is a

smooth and proper surface. Let α ∈ H2(E,Q`(1)) be orthogonal to NS(E) ⊗Z Q` with
respect to the cup-product pairing. As α is in particular orthogonal to the classes of the
irreducible curves contained in E ∩ F , the Mayer-Vietoris exact sequence

H2(A,Q`(1)) // H2(E,Q`(1))⊕H2(F,Q`(1)) // H2(E ∩ F,Q`(1))(4.3)

shows thatα is the restriction of an element ofH2(A,Q`(1)). Assuming thatH2(A,Q`(1)) is
algebraic, it follows that α ∈ NS(E)⊗Z Q`. On the other hand, the pairing on NS(E)⊗Z Q`

induced by cup-product is non-degenerate (see [44, Théorème 4.6]). Hence α = 0. We have
thus shown that the orthogonal subspace to NS(E)⊗ZQ` inH2(E,Q`(1)) is trivial, in other
words H2(E,Q`(1)) is algebraic.

Proof of Lemma 4.6. – Let us choose a finitely generated Z[1/`]-subalgebraR0 ⊂ k such
that π : W → V descends to a surjective morphism π0 : W0 → V0 between proper
R0-schemes. Let f : V0 → Spec(R0) denote the structure morphism of V0 and let C be the
cone of the natural morphism Q`(1)→ Rπ0∗Q`(1). As the group NS(V ) is finitely generated
(see [44, théorème 5.1]), we may assume, after enlarging R0, that every element of NS(V ) is
represented by the inverse image, on V , of a line bundle on V0. Enlarging R0 again allows us
to assume, in addition, that the constructible Q`-sheaves appearing in the exact sequence

R1f∗C // R2f∗Q`(1) // R2f∗ (Rπ0∗Q`(1))(4.4)

are lisse (see [57, Chapter VI, Theorem 2.1], [23, Chapter I, § 12, Proposition 12.10]).
According to [20, Théorème 1], for any i ≥ 0, the ith cohomology sheaf of C is mixed of

weights≤ i−2. Moreover, as π0 is surjective, the complex C is concentrated in non-negative
degrees. Thus C is a mixed complex of weights ≤ −2 in the sense of [20, Définition 6.2.2].
It follows that the Q`-sheafR1f∗C is mixed of negative weights (see loc. cit., Variante 6.2.3).
On the other hand, our hypotheses imply that the global sections of the Q`-sheafR2f∗Q`(1)

generate its geometric generic stalk. Being a lisse sheaf, it must then be constant, and there-
fore, punctually pure of weight 0. As a result, the first map of (4.4) must vanish, and the
second map is an injection. In particular it induces an injection on the geometric generic
stalks.

4.2. Proof of Theorem 4.1

We now assume the hypotheses of Theorem 4.1 are satisfied. Lemma 4.4 and Lemma 4.5
imply that H2(Ai,Q`(1)) is algebraic for all i ∈ I. In particular, we have CH1(Ai) ⊗̂ Z` =

Pic(Ai) ⊗̂ Z` = H2(Ai,Z`(1)) for any i, since the cokernel of the natural injection
Pic(Ai) ⊗̂ Z` ↪→ H2(Ai,Z`(1)) is torsion-free. It follows that the group denoted CH1(Ai)

⊥

in (2.1) vanishes for all i ∈ I, as the cup-product pairing

H2(Ai,Q`/Z`(1))×H2(Ai,Z`(1))→ Q`/Z`

is a perfect pairing. On the other hand, Lemma 4.4 enables us to apply Lemma 4.6 and
Lemma 3.5 to V = A and W =

∐
i∈I Ai. From all of this, we deduce that the natural map

H2(A,Q`/Z`(1)) −→
⊕
i∈I

H2(Ai,Q`/Z`(1))

CH1(Ai)⊥
(4.5)
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is injective, and hence, by the localization exact sequence, that the complex (2.1) is exact.
Theorem 4.1 now results from Theorem 2.1 and from Remark 2.3 (iii).

4.3. A remark on the cycle class map for 1-cycles on the special fiber

In the proofs of Theorem 3.1 and Theorem 4.1, we have shown the exactness of the
complexes (2.1) and (2.2) by establishing a stronger property, namely the injectivity of the
natural map

Hm(A,Q`/Z`(1)) −→
⊕
i∈I

Hm(Ai,Q`/Z`(1))

CH1(Ai)⊥
,(4.6)

where m = 2 if k is separably closed and m = 3 if k is finite. By arguments similar to those
of § 2.2, the injectivity of (4.6) is equivalent to the surjectivity of the `-adic cycle class map

ψ1,A : CH1(A) ⊗̂ Z` → H2d
A (X ,Z`(d))(4.7)

for 1-cycles on A.

We remark that outside the scope of Theorems 3.1 and 4.1, these two equivalent condi-
tions very often fail. A trivial example is given by any surface over C((t)) with positive
geometric genus and good reduction. More generally, analyzing the group H2d

A (X ,Q`(d))

with the help of the Mayer-Vietoris spectral sequence yields the following lemma.

L 4.9. – With the notation of § 2, assume that d = 2, that k is separably closed,
and that the reduced special fiber Ared of X has simple normal crossings. If the map (4.7)
is surjective, then H2(A,Q`(1)) is algebraic. In particular, if k = C and at least one of the
surfaces Ai has positive geometric genus, then (4.7) cannot be surjective.

This lemma applies in particular to the situation considered in Example 2.8, in which we
have shown the injectivity of the cycle class map ψ0,X : CH0(X) ⊗̂ Z` → H4(X,Z`(2))

for a certain isotrivial K3 surface X over C((t)): the map ψ1,A fails to be surjective in this
example. A larger source of examples of this kind is given by K3 surfaces with semistable
reduction over C((t)). For such a surface, ifA denotes the special fiber of a semistable model,
we haveH2(A,OA) 6= 0 by [21], so thatH2(A,Q`(1)) is not algebraic. Thus, by Lemma 4.9,
the map ψ1,A is never surjective in the case of a semistable K3 surface over C((t)). We shall
prove in § 5 that ψ0,X is nonetheless injective for these surfaces.

5. Semistable K3 surfaces

As a first step towards the study of surfaces with nonzero geometric genus over strictly
local fields, we consider, in this section, semistable K3 surfaces, and prove:

T 5.1. – For any semistable K3 surface X over C((t)), the group A0(X) is divis-
ible.
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The proof is based on the criterion established in § 2 and on the results of Kulikov, Persson,
Pinkham, and of Miranda and Morrison about degenerations of analytic K3 surfaces over
the punctured unit disk (see [51], [64], [59]). It is only in order to use these results that we
need the semistability assumption. Theorem 5.1 and Example 2.8 suggest that A0(X) may
in fact be divisible for allK3 surfacesX over C((t)). Similarly, one might hope thatA0(X) is
divisible by ` for any K3 surface X over the maximal unramified extension of a p-adic field,
and any ` 6= p.

Before we start the proof of Theorem 5.1, let us recall the results we shall need on
degenerations of analytic K3 surfaces, and set up the relevant terminology. We say that a
variety over C((t)) is semistable if it admits a proper regular model over C[[t]] whose special
fiber is reduced with local normal crossings (we do not require simple normal crossings).
Let ∆ ⊂ C denote the unit disk and ∆∗ = ∆ \ {0}. A degeneration is a proper, flat, holo-
morphic map π : X → ∆, where X is a complex analytic manifold, such that the complex
analytic space π−1(t) is a connected manifold for every t 6= 0. The degeneration π is semi-
stable if π−1(0) is a reduced divisor with local normal crossings. A model of π : X → ∆

is a degeneration π′ : X ′ → ∆ such that the complex analytic manifolds π−1(∆∗) and
π′−1(∆∗) are isomorphic over ∆∗. A degeneration of K3 surfaces is a degeneration whose
fibers above ∆∗ are K3 surfaces. It is Kulikov if it is semistable and X has trivial canonical
bundle.

T 5.2 (Kulikov [51], Persson-Pinkham [64]). – Let π : X → ∆ be a semistable
degeneration ofK3 surfaces. If the irreducible components of X0 = π−1(0) are algebraic, thenπ
admits a Kulikov model.

Note that the hypothesis “the irreducible components of X0 are algebraic” is preserved
when passing from a semistable model to another one (see [63, Lemma 3.1.1]).

Let (Ai)i∈I denote the family of irreducible components of X0. Let D ⊂ X0 denote the
singular locus of X0. Let Γ0 = I, let Γ1 denote the set of irreducible components of D, and
let Γ2 be the set of triple points, i.e., the singular locus ofD. The three sets Γ0, Γ1, Γ2 may be
organized into a semi-simplicial set Γ, in such a way that x is a face of y if and only if y ⊂ x.
Such a semi-simplicial set Γ is often referred to as the dual graph of X0 in the literature. We
write |Γ| for the geometric realization of Γ.

For i ∈ I, let A′i denote the normalization of Ai, let νi : A′i → X0 denote the canonical
map, and set Di = ν−1

i (D).

An anticanonical pair is a pair (S,C) consisting of a smooth proper surface S and a
reduced, connected, nodal, singular curve C on S, such that ωS ' OS(−C). The curve C is
either an irreducible nodal rational curve with a unique singular point, or a union of smooth
rational curves forming a polygon. If π : X → ∆ is a Kulikov degeneration of K3 surfaces
such that the irreducible components of X0 are algebraic, then one of the following three
possibilities must occur:

(I) X0 is a smooth K3 surface;

(II) X0 is a chain of elliptic ruled surfaces, meeting along disjoint sections, with rational
surfaces on either end;
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(III) X0 is a union of rational surfaces, (A′i, Di) is an anticanonical pair for every i ∈ I,
and |Γ| is homeomorphic to the (2-dimensional) sphere

(see [25, p. 26–29], where on page 27, line 5, one should twist the Čech complex with orien-
tation line bundles in case X0 is not a simple normal crossings divisor). We say that π is a
degeneration of type I, II, or III accordingly. Finally, a type III degeneration of K3 surfaces
is in minus-one-form if for every i ∈ I, every smooth (resp. singular) irreducible component
of Di has self-intersection −1 (resp. 1) on A′i.

T 5.3 (Miranda-Morrison [59]). – Any type III degeneration of K3 surfaces
admits a type III model which is in minus-one-form.

To some extent, Theorem 5.3 reduces the study ofK3 surfaces over C((t)) with semistable
reduction of type III to that of non-negatively curved triangulations of the sphere. This, in
turn, quickly leads to unsolved problems in combinatorics (see [25, p. 22], [53]). It turns out
that for the proof of Theorem 5.1, one can get by with a simple global combinatorial input,
namely the well-known fact that the sphere cannot be tiled with hexagons only.

Proof of Theorem 5.1. – Given a degeneration π : X → ∆, we shall consider the
complex of singular cohomology groups

H1(X,Q/Z(1)) // H2
A(X ,Q/Z(1)) //

⊕
i∈I

H2(Ai,Q/Z(1))

CH1(Ai)⊥
(5.1)

modeled on (2.1), where X = X \X0 and A = X0, and where for any compact complex
analytic manifold V , we denote by CH1(V )⊥ the subgroup of H2(V,Q/Z(1)) consisting of
those classes whose restriction to H2(Z,Q/Z(1)) vanishes for all irreducible closed analytic
subsets Z ⊂ V of dimension 1.

P 5.4. – Let π : X → ∆ be a Kulikov degeneration of K3 surfaces. Assume
the irreducible components of X0 are algebraic. Assume, moreover, that if π is a degeneration
of type III, then it is in minus-one-form. Then the complex (5.1) is exact.

Let us postpone the proof of Proposition 5.4, and instead deduce Theorem 5.1 from it. To
this end, we first remark that the homology group of (5.1) is invariant under blow-ups with
smooth centers.

L 5.5. – Let π : X → ∆ be a degeneration. Let π̃ : X̃ → ∆ be the degeneration
obtained by blowing up X along a smooth complex analytic closed subspace of X0. The
homology groups of the complexes (5.1) associated with π and with π̃ are isomorphic.

Proof. – The natural map H2(A,Q/Z(1))/CH1(A)⊥ →
⊕

i∈I H
2(Ai,Q/Z(1))/CH1(Ai)

⊥

is injective since any irreducible closed analytic subset ofA of dimension 1 is contained inAi
for some i. As a consequence, the complex (5.1) has the same homology group as the complex

H1(X,Q/Z(1)) // H2
A(X ,Q/Z(1)) // H

2(A,Q/Z(1))

CH1(A)⊥
.(5.2)

There is a natural morphism from the complex (5.2) to the analogous complex for the
degeneration π̃. A diagram chase now implies the lemma, thanks to the following remarks.
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First, as X is a manifold, the exceptional divisor E ⊂ X̃ 0 is a projective bundle over the
center of the blow-upL ⊂X0. Therefore, for any irreducible closed analytic subsetZ ⊂ A of
dimension 1, there exists an irreducible closed analytic subset Z̃ ⊂ Ã of dimension 1 which
maps birationally to Z. It follows that the pull-back map

H2(A,Q/Z(1))

CH1(A)⊥
−→ H2(Ã,Q/Z(1))

CH1(Ã)⊥
(5.3)

is injective. Secondly, the first Chern class of OX̃ (E) and the pull-back map induce a canon-
ical decomposition

H2
Ã

(X̃ ,Q/Z(1)) = H2
A(X ,Q/Z(1))⊕Q/Z,(5.4)

and if Z̃ ⊂ E denotes a line contained in a fiber of the projective bundle E → L, then
deg

(
OX̃ (E)|Z̃

)
= −1.

Using Lemma 5.5, we now check that Proposition 5.4 implies the validity of Theorem 5.1
for K3 surfaces defined over the function field of a complex curve.

L 5.6. – Assume Proposition 5.4 holds. Let f : Y → B be a morphism between
smooth complex proper algebraic varieties, where B is a curve and the generic fiber of f
is a K3 surface. Let b ∈ B. Let K ' C((t)) denote the completion of C(B) at b, and
let Yη̂ = Y ×B Spec(K). If the fiber Yb is a reduced divisor with local normal crossings,
then the group A0(Yη̂) is divisible.

Proof. – Let ∆ ⊂ B be a small disk around b. Denote by π : X → ∆ the restriction
of f to f−1(∆). By Theorem 5.2 and Theorem 5.3, there exists a model π′ : X ′ → ∆

of π satisfying the following properties: π′ is Kulikov, the irreducible components of X ′
0

are algebraic, and if π′ is of type III, then it is in minus-one-form. Accordingly, by Proposi-
tion 5.4, the complex (5.1) associated with π′ is exact. Let Y ′ denote the complex analytic
manifold obtained by gluing X ′ with Y \ Yb along X ′ \ X ′

0 = X \ X0. By the weak
factorization theorem for bimeromorphic maps between compact complex analytic mani-
folds [1, Theorem 0.3.1] applied to Y and Y ′, and by Lemma 5.5, the exactness of the
complex (5.1) associated with π′ implies the exactness of the corresponding complex for π.
The latter coincides, term by term, with the complex (2.1) associated with the regular
model Y ×B Spec(ÔB,b) of Yη̂. Applying Theorem 2.1 now concludes the proof (see
Remark 2.3 (iii)).

We finally deduce Theorem 5.1 from Proposition 5.4 in full generality. Let X be a semi-
stableK3 surface over C((t)). Let X be a proper regular semistable model ofX over C[[t]].
By a standard spreading out argument (see [60, Proposition 5.1.2]), one can find a smooth
complex algebraic curve B, a smooth complex algebraic variety Y , a point b ∈ B and a
proper flat morphism f : Y → B such that the special fiber of X is isomorphic to Yb and
such that the generic fiber of f is a K3 surface. After compactifying and resolving singulari-
ties, one may assume thatB is proper. Let us fix a C-linear isomorphism between the comple-
tion of OB,b and C[[t]]. Let Yη̂ = Y ×B Spec(C((t))). By Lemma 5.6, the group A0(Yη̂) is
divisible. It follows, by Remark 2.3 (iv), that A0(X) is divisible as well, thus completing the
proof.
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It remains to establish Proposition 5.4. Let π : X → ∆ be as in its statement. According
to Remark 2.3 (ii) (which also applies in this context), the exactness of (5.1) is equivalent to
that of the complex

Q/Z // (Q/Z)I
δ //

⊕
i∈I

H2(Ai,Q/Z(1))

CH1(Ai)⊥
,(5.5)

where the first map is the diagonal inclusion and where δ is as described in Remark 2.3. We
shall denote by δi : (Q/Z)I → H2(Ai,Q/Z(1))/CH1(Ai)

⊥ the composition of δ with the
projection onto the ith summand.

Let us fix λ = (λi)i∈I ∈ (Q/Z)I such that δ(λ) = 0, and show that all λi’s are equal. If A
is irreducible, there is nothing to prove. Otherwise π is of type II or of type III.

Suppose π is a degeneration of type II, and number the irreducible components of the
special fiber I = {0, . . . , n} in such a way that Ai ∩ Aj 6= ∅ if and only if |i − j| ≤ 1.
Thus A0 and An are rational surfaces, and Ai, for i ∈ {1, . . . , n − 1}, is an elliptic ruled
surface, i.e., a smooth surface ruled over an elliptic curve.

Let Ci = Ai ∩ Ai+1 for i ∈ {0, . . . , n − 1}. As the canonical bundle of X is
trivial, the adjunction formula implies that Ci−1 + Ci is an anticanonical divisor on Ai
for any i ∈ {1, . . . , n− 1}, and that C0 (resp. Cn−1) is an anticanonical divisor on A0

(resp. on An). On the other hand, the self-intersection number (K2
Ai

) vanishes, by [37,
Chapter V, Corollary 2.11], and the curves Ci−1 and Ci are disjoint. Therefore
(C2

i−1)Ai + (C2
i )Ai = 0 for any i ∈ {1, . . . , n− 1}. (The subscript indicates that the inter-

section number is computed on Ai.) Now, by the triple point formula [63, Corollary 2.4.2],
we have (C2

i−1)Ai + (C2
i−1)Ai−1

= 0 for all i ∈ {1, . . . , n}; hence, in the end, we see that
(C2

i )Ai does not depend on i, and in particular

(K2
A0

)A0 = (C2
0 )A0 = (C2

n−1)An−1 = −(C2
n−1)An = −(K2

An)An .(5.6)

The self-intersection number of the canonical divisor of a (smooth, proper) minimal rational
surface being either 8 or 9, we deduce from (5.6) that the two surfacesA0 andAn cannot both
be minimal.

After possibly renumbering the Ai’s, we may assume that A0 is not minimal. Let E ⊂ A0

be an exceptional curve. The hypothesis that δ0(λ) = 0 implies that (C0 · E)A0
⊗ (λ1 − λ0)

vanishes as an element of Q/Z. On the other hand, since C0 is an anticanonical curve onA0

and E is exceptional, we have (C0 · E)A0
= 1. Hence λ0 = λ1. For i ∈ {1, . . . , n − 1}, the

hypothesis that δi(λ) = 0 amounts to the equality

(Ci−1 · F )Ai ⊗ (λi−1 − λi) + (Ci · F )Ai ⊗ (λi+1 − λi) = 0 ∈ Q/Z(5.7)

for any divisor F on Ai. Letting F be a fiber of the ruling, we conclude that if λi = λi−1,
then λi+1 = λi. Thus, by induction, all λi’s are equal.

Suppose now π is a degeneration of type III, in minus-one-form. For i ∈ I, the
surface Ai is rational and (A′i, Di) forms an anticanonical pair. Let γi denote the set of
irreducible components of Di.

D 5.7. – Let i ∈ I. We say that j ∈ I is a neighbor of i if i 6= j andAi∩Aj 6= ∅.
We say that C,C ′ ∈ γi are adjacent if C 6= C ′ and C ∩ C ′ 6= ∅. We say that i is consonant if
λi = λj for every neighbor j of i.
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For i ∈ I and C ∈ γi, we let µC = λj −λi if there exists a (necessarily unique) j ∈ I \ {i}
such that νi(C) ⊂ Ai ∩ Aj . Otherwise we let µC = 0. Note that the hypothesis δi(λ) = 0

implies ∑
C∈γi

(C · F )A′i ⊗ µC = 0 ∈ Q/Z(5.8)

for any divisor F on A′i.

L 5.8. – Let i ∈ I. If there exist adjacent C,C ′ ∈ γi such that µC = µC′ = 0, then i
is consonant.

Proof. – As the curve Di is a (necessarily reducible) polygon, we may write
γi = {C1, . . . , Cn} for some n ≥ 2, in such a way that Ci and Cj are adjacent if and
only if j − i = ±1 mod n. Assume µC1 = µC2 = 0. Applying (5.8) successively with F = Cj
for all j ∈ {2, . . . , n − 1}, we find that µCj = 0 for all j ∈ {1, . . . , n}. In other words i is
consonant.

Our goal is to prove that all i ∈ I are consonant. Lemma 5.9 below reduces this to showing
the existence of at least one consonant i ∈ I.

L 5.9. – Let i ∈ I. If i is consonant, then so is every neighbor of i.

Proof. – Let j ∈ I be a neighbor of i. Choose a C ∈ γj such that νj(C) ⊂ Ai ∩Aj . If i is
the only neighbor of j, then j is consonant. Otherwise, we may further choose a C ′ ∈ γj
adjacent to C. As i is consonant, we have µC = 0. In order to show that j is consonant,
it suffices to check that µC′ = 0, by Lemma 5.8. Now if νj(C ′) is contained in the singular
locus ofAj , then µC′ = 0 by definition. Otherwise, there exists a unique neighbor k of j such
that νj(C ′) ⊂ Aj ∩ Ak. We then have νj(C ∩ C ′) ⊂ Ai ∩ Ak, so that either k = i, or k is
a neighbor of i. As i is consonant, in both cases we obtain λk = λi. Hence λj = λk, or in
other words µC′ = 0, which completes the proof.

The following lemma summarizes well-known facts on anticanonical pairs which we shall
need to establish the existence of a consonant i ∈ I.

L 5.10. – Let (S,C) be an anticanonical pair. Let C1, . . . , Cn denote the irreducible
components ofC. AssumeS is a rational surface. Ifn ≥ 2, assume (C2

i ) = −1 for all i; ifn = 1,
assume (C2

1 ) = 1. Then n ≤ 6. If moreover n < 6, then for every i ∈ {1, . . . , n}, there exists
an exceptional curve E ⊂ S such that (Ci · E) = 1 and (Cj · E) = 0 for all j 6= i.

Proof. – After renumbering theCi’s we may assume thatCi∩Ci+1 6= ∅ for all i. Suppose
that n > 6 and let F = C1 + 2C2 + 2C3 − C4 − 2C5 − 2C6. Then (D2) > 0, (F 2) > 0 and
(D ·F ) = 0, which contradicts the Hodge index theorem. The second assertion relies on the
classification of rational surfaces endowed with an anticanonical cycle of length at most 5

[55, Theorem (1.1)], see [59, Lemma (11.5)], [24, p. 107–108].
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Let ni denote the number of irreducible components ofDi. Since |Γ| is homeomorphic to
the sphere, Euler’s formula may be written as∑

i∈I

(
6− ni

)
= 12(5.9)

(see [25, p. 21]). On the other hand, as X0 is in minus-one-form, Lemma 5.10 implies
that ni ≤ 6 for all i. We conclude that ni < 6 for at least one i. Let us fix such an i ∈ I.
For each C ∈ γi, there exists, according to Lemma 5.10, an exceptional curve E ⊂ A′i such
that (C ·E) = 1 and (C ′ ·E) = 0 for allC ′ ∈ γi\{C}. Applying (5.8) with F = E, we deduce
that µC = 0. Thus µC = 0 for all C ∈ γi, which means that i is consonant. By Lemma 5.9, it
follows that every element of I is consonant, in other words all λi’s are equal, and the proofs
of Proposition 5.4 and of Theorem 5.1 are complete.

6. Homologically trivial zero-cycles need not be divisible

We finally provide a counterexample to the injectivity of the cycle class map

CH0(X) ⊗̂ Z` → H2d(X,Z`(d))

whenX is a smooth projective surface over C((t)) or over the maximal unramified extension
of a p-adic field. Thus, Theorem 4.1 does not extend to surfaces with a possibly nontrivial
transcendental quotient ofH2(X̄,Q`(1)), despite the case of semistableK3 surfaces treated
in § 5 and despite the fact that over p-adic fields, Theorem 3.1 applies to surfaces of arbitrary
geometric genus.

T 6.1. – There exists a simply connected smooth projective surfaceX over C((t)),
with semistable reduction, such that A0(X)/2A0(X) = Z/2Z.

Similarly, for infinitely many prime numbers p, there exists a simply connected smooth
projective surface X over the maximal unramified extension of a p-adic field, with semistable
reduction, such that A0(X)/2A0(X) = Z/2Z.

For any X as in the statement of Theorem 6.1, the kernels of the cycle class maps
CH0(X) ⊗̂Z2 → H4(X,Z2(2)) and CH0(X)/2CH0(X)→ H4(X,Z/2Z) both have order 2

(see Remark 2.3 (iii)).

The surfaces constructed in Theorem 6.1 have Kodaira dimension 1 and geometric
genus 3. They degenerate into the union of two simply connected surfaces of Kodaira
dimension 1 and geometric genus 1, which meet transversally along an elliptic curve, with
a 2-torsion normal bundle. The nonzero element of A0(X)/2A0(X) is represented by the
difference of any two rational points ofX which specialize to distinct irreducible components
of the special fiber.
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6.1. An elliptic surface

We start by constructing the irreducible components of the desired special fiber.

P 6.2. – Let k be an algebraically closed field of characteristic 0. There exists
a simply connected smooth projective surface V over k, endowed with a pencil f : V → P1

k of
curves of genus 1, such that

1. the fiber f−1(0) has multiplicity 2 and its underlying reduced scheme is smooth;
2. all other fibers have multiplicity 1;
3. any divisor on V has degree divisible by 4 on the fibers of f ;
4. the total space of the Jacobian fibration of f is a K3 surface.

By “pencil of curves of genus 1” we mean a morphism whose generic fiber is a geomet-
rically irreducible curve of genus 1. Before proving Proposition 6.2, let us recall a sufficient
condition for an elliptic surface to be simply connected.

L 6.3 ([36, § 2, Theorem 1]). – Let V be a smooth projective surface endowed with a
pencil f : V → P1

k of curves of genus 1, over an algebraically closed field k of characteristic 0.
Assume that f has at most one multiple fiber, and at least one fiber whose underlying reduced
scheme is not smooth. Then V is simply connected.

Proof of Proposition 6.2. – We shall construct V using Ogg-Shafarevich theory. LetE be
a K3 surface over k with a pencil of elliptic curves p : E → P1

k (a section of p is understood
to be chosen). After a change of coordinates, we may assume that p−1(0) is smooth. Let Eη
denote the generic fiber of p. The smooth locus E of p identifies with the Néron model ofEη
and thus has a natural group scheme structure over P1

k. Let K = k(P1). It is well known
that the Leray spectral sequence for the inclusion of the generic point of P1

k gives rise to an
exact sequence of étale cohomology groups

0 // H1(P1
k,E ) // H1(K,Eη) //

⊕
m∈P1

k
(1)

H1(Km, Eη) // 0,(6.1)

where P1
k

(1) denotes the set of codimension 1 points of P1
k andKm stands for the completion

ofK atm (see [18, Proposition 5.4.3 and Corollary 5.4.6]). Moreover, there are isomorphisms

H1(P1
k,E ) = Br(E) ' (Q/Z)b2−ρ,(6.2)

where b2 = 22 and ρ denotes the Picard number ofE (see op. cit., Theorem 5.4.3, noting that
H3(E,Z`) is torsion-free since E is a simply connected surface).

As E is a K3 surface, we have b2 − ρ > 0, so that H1(P1
k,E ) contains elements of any

order, by (6.2). We fix an α ∈ H1(P1
k,E ) of order 4.

Recall that for any closed point m ∈ P1
k of good reduction for Eη, there is an isomor-

phism H1(Km, Eη) ' (Q/Z)2 (see op. cit., Theorem 5.4.1). On the other hand, according
to (6.2), the group H1(P1

k,E ) is divisible. In view of (6.1), it follows that there exists an
element β ∈ H1(K,Eη) of order 2, whose image in H1(K0, Eη) has order 2, and whose
image in H1(Km, Eη) vanishes for all closed points m ∈ P1

k \ {0}.
Let γ = α + β. We have now constructed a class γ ∈ H1(K,Eη) of order 4, whose

image in H1(K0, Eη) has order 2, and whose image in H1(Km, Eη) vanishes for all m 6= 0.
It remains to be checked that the minimal proper regular model f : V → P1

k of the torsor Vη
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under Eη classified by γ satisfies the conclusion of Proposition 6.2. Condition (4) holds by
construction, and (1) follows from the fact that the image of γ in H1(K0, Eη) has order 2

while p−1(0) is smooth (see op. cit., Theorem 5.3.1 and Proposition 5.4.2). Condition (2)
is equivalent to the vanishing of the image of γ in H1(Km, Eη) for m 6= 0. The genus 1

curve Vη has period 4, therefore its index is a multiple of 4 (see [52, Proposition 5]; it is in fact
equal to 4, by [61, Corollary 3]), which implies (3). Finally we need to prove that V is simply
connected. As E is simply connected, the morphism p cannot be smooth, and hence f has
at least one fiber whose underlying reduced scheme is not smooth, by [18, Theorem 5.3.1].
Thus Lemma 6.3 applies.

6.2. Persson’s construction in mixed characteristic

Let V be the surface given by Proposition 6.2. As V is simply connected and the class of a
fiber of f in Pic(V ) is divisible by 2, we may consider, for a general t ∈ P1(k)\{0}, the double
cover of V branched along f−1(t). This is a smooth projective surface over k. Persson [63,
Appendix 1, II] shows that when one lets t specialize to 0, this double cover degenerates, with
a regular total space, to the union of two copies of V glued along the elliptic curve f−1(0)red.
In order to construct the surface S of Theorem 6.1 over the maximal unramified extension
of a p-adic field, we shall need to adapt Persson’s construction to the mixed characteristic
setting.

Let t denote the coordinate of P1
Z, so that A1

Z = Spec(Z[t]). Assume we are given a
discrete valuation ring R of characteristic 0 and residue characteristic 6= 2, a uniformizer π
of R, an irreducible regular scheme V and a proper and flat morphism V → P1

R such
that the divisor of the rational function g on V obtained by pulling back (t − π)/t may be
written as D− 2D′ where D is a regular scheme and D′ is smooth over R. We then consider
OV ⊕ OV (−D′) as an OV -algebra with product (a ⊕ b)(c ⊕ d) = (ac + gbd) ⊕ (ad + bc),
and let X denote the corresponding finite flat V -scheme of degree 2. The following lemma
summarizes the properties of X . Its proof is elementary and is left to the reader.

L 6.4. – The scheme X is irreducible, regular, and it is proper and flat over R.
Letting k and K respectively denote the residue field and the quotient field of R, its fibers are
described as follows.

1. The generic fiber X = X ⊗R K is a double cover of V = V ⊗R K branched only along
the fiber of V → P1

K above π ∈ P1(K). It fits into a commutative square

X

��

// V

��
P1
K

// P1
K

in which the map P1
K → P1

K is a double cover branched along {0, π}. The left-hand side
vertical map is smooth above 0 and the square is cartesian above P1

K \ {0}.

2. The special fiber A = X ⊗R k is the scheme obtained by gluing two copies of V ⊗R k
along the closed subscheme D′ ⊗R k (see [2, § 1.1]). If V ⊗R k is smooth, then A has
simple normal crossings.
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6.3. Proof of Theorem 6.1

We are now in a position to prove the first statement of Theorem 6.1. Let R = C[[t]]

and K = C((t)). Let f : V → P1
C be the surface given by Proposition 6.2 applied to k = C.

Let X denote the R-scheme associated in § 6.2 to V = V ⊗C R and to the morphism V → P1
R

deduced from f by base change. According to Lemma 6.4, the generic fiber X = X ⊗R K
is a smooth projective surface over K. By Lemma 6.3 and Lemma 6.4 (1), it is simply
connected. As X is regular, the quotient of A0(X) by its maximal divisible subgroup can
be read off of A = X ⊗R k, thanks to Theorem 2.1. By Lemma 6.4 (2), the variety A is
reduced and has two irreducible components, which are both isomorphic to V and which
meet transversally along f−1(0)red. Moreover, the properties of V imply that the intersec-
tion number (C · f−1(0)red) is even for any curve C lying on V . We are thus in the situation
considered in Example 2.4 (iii); we conclude that A0(X)/2A0(X) = Z/2Z.

Let us turn to the second part of Theorem 6.1. Proposition 6.2 applied to k = Q̄ yields
a simply connected smooth projective surface V defined over some number field F ⊂ Q̄,
and a pencil f : V → P1

F of curves of genus 1 satisfying the properties (1)–(4) which
appear in its statement. We may extend V and f to a scheme V and a proper and flat
morphism fO : V → P1

O over the ring of S-integers O of F for a large enough finite set S
of places of F , and apply the construction of § 6.2 to the morphism deduced from fO by an
extension of scalars from O to the localization of O at any maximal ideal. This produces,
for all but finitely many places v of F , a smooth projective surface X over F and a regular
proper model of X ⊗F F nr

v over Onr
v (where F nr

v denotes the maximal unramified extension
of the completion of F at v and Onr

v is its ring of integers, with residue field F̄v) whose special
fiber is the union of two copies of V ⊗O F̄v glued along a smooth elliptic curve. According
to Lemma 6.3 and to Lemma 6.4 (1), the surface X is simply connected.

In order to conclude as before by an application of Theorem 2.1 and Example 2.4 (iii), we
must ensure that property (3) of Proposition 6.2 still holds for the pencil

fF̄v : V ⊗O F̄v → P1
F̄v

(6.3)

obtained by reducing fO modulo v. To this end we need to incorporate into the proof of
Proposition 6.2 some control over the reduction of the 2-torsion classes in the Brauer group
of the total space of the Jacobian fibration of f .

Let p : E → P1
F denote the elliptic K3 surface chosen at the beginning of the proof of

Proposition 6.2. If v is a place of F of good reduction for E, we let EF̄v denote the surface
over F̄v obtained by reducing E.

L 6.5. – There exists an α ∈ Br(E ⊗F Q̄) of order 4 whose image in Br(EF̄v ) has
order 4 for infinitely many places v of F .

Proof. – As the group Br(E⊗F Q̄) is divisible, it suffices to exhibit an α′ ∈ Br(E⊗F Q̄)

of order 2 whose image in Br(EF̄v ) is nonzero for infinitely many places v. If such an α′ did
not exist, the specialization map 2Br(E ⊗F Q̄) → 2Br(EF̄v ) between the corresponding
2-torsion subgroups would have to vanish identically for all but finitely many places v,
since 2Br(E ⊗F Q̄) is finite. Now this map is surjective as it is a quotient of the special-
ization isomorphism H2(E ⊗F Q̄,Z/2Z) ∼−→ H2(EF̄v ,Z/2Z). Therefore we would have

2Br(EF̄v ) = 0 for all but finitely many places v. As EF̄v is a K3 surface, this, in turn,
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would imply that the Picard number of EF̄v is equal to 22 for all but finitely many places v
of F (see (6.2), which is valid in positive characteristic as well when restricted to the prime
to p torsion). But this is well known to be impossible (see [8, Theorem 0.1] for a stronger
result).

Recall that the surface V ⊗F Q̄ was obtained, in the proof of Proposition 6.2, as the
minimal proper regular model, over P1

Q̄
, of the torsor under Eη classified by a certain

element γ = α+β in the corresponding Galois cohomology group, where αwas an arbitrary
class of order 4 in Br(E⊗F Q̄). Let us now run the proof of Proposition 6.2 with the class α
given by Lemma 6.5 instead of an arbitrary α of order 4. As β has order 2, the conclusion of
Lemma 6.5 ensures that the reduction of γ modulo v has order 4 for infinitely many places v
ofF . In other words, for the surfaceV obtained by this procedure, the pencil (6.3) does satisfy
property (3) of Proposition 6.2 for infinitely many places v. Thus the proof of Theorem 6.1
is complete.

R 6.6. – The degeneration X → Spec(C[[t]]) constructed in the proof of
Theorem 6.1 is a counterexample to [63, Proposition 2.5.7].

6.4. A new example over a p-adic field

Let X be the surface given by Theorem 6.1 over the maximal unramified extension K of
a p-adic field, for some p > 2. There exist a p-adic field K0 contained in K, a surface X0

over K0, and a zero-cycle z0 on X0, such that X = X0 ⊗K0 K and the image of z0

inA0(X)/2A0(X) is nonzero. We can moreover assume thatX0(K0) 6= ∅, sinceX(K) 6= ∅.
The cycle class of z0 belongs to the kernel of the natural map H4(X0,Z/2Z)→ H4(X,Z/2Z).
After replacing K0 with a larger p-adic field contained in K, we may assume that the cycle
class of z0 itself vanishes, in view of the fact thatH4(X,Z/2Z) = lim−→H4(X0⊗K0K1,Z/2Z)

where the direct limit ranges over all finite subextensions K1/K0 of K/K0 (see [57,
Chapter III, Lemma 1.16]).

We thus obtain an example of a smooth projective surface X0 defined over a p-adic
field K0, with X0(K0) 6= ∅, such that the cycle class map

CH0(X0)/nCH0(X0)→ H4(X0,Z/nZ(2))(6.4)

fails to be injective for some integer n > 1. Another example of such a surface was given
by Parimala and Suresh [62, § 8]. Contrary to the example of loc. cit., the surface X0 is
simply connected and the kernel of the cycle class map remains nontrivial over the maximal
unramified extension of K0.

R 6.7. – On the other hand, the defect of injectivity of the cycle class map with
integral coefficients does not descend from X to X0. In fact, it follows from Theorem 3.1
that the cycle class map CH0(X0) ⊗̂ Z` → H4(X0,Z`(2)) is injective for any ` 6= p. To
verify this claim, recall thatX0 admits a proper regular model whose special fiber has simple
normal crossings and is the union of two copies of a surface V0 carrying a pencil f0 of curves
of genus 1; moreover, the total space of the Jacobian fibration of f is a K3 surface E0. The
Tate conjecture holds for E0 (see [3]). With the help of the correspondences between E0

and V0 defined in [7, Proof of Prop. 4], one deduces that it also holds for V0. Thus all of the
hypotheses of Theorem 3.1 are satisfied.
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Appendix

The structure of algebraic 1-cycles for regular schemes
over a strictly Henselian discrete valuation ring

by Spencer Bloch

This appendix gives a simpler proof (without use of blowups) of Theorem 1.16 in [69]
which is used in the paper of Hélène Esnault and Olivier Wittenberg. I am indebted to them
for suggestions and corrections and also for showing me drafts of their paper and providing
me with references [28] and [69].

Let T = Spec(Λ), where Λ is a strictly Henselian excellent discrete valuation ring with
quotient field K of characteristic 0 and separably closed residue field k = Λ/πΛ. Let X be
a regular scheme, flat and projective over T with fibre dimension d. Let

(A.1) A := X ×T Speck

be the closed fibre. Let CH1(X ) be the Chow group of algebraic 1-cycles on X .
Let F :=

⊕
i Z ·Ai be the free abelian group on the irreducible components Ai of A.

We have a map [27, § 20.1]

(A.2) deg : CH1(X )→ F∨ = Hom(F,Z); z 7→ {Ai 7→ deg(z ·Ai)}.

Define

(A.3) CH1(X )0 := ker(deg) ⊂ CH1(X ).

T A.1 ([69], Theorem 1.16). – Let notation be as above, and suppose given n ≥ 2

with 1/n ∈ k. Then the cycle map yields an isomorphism

(A.4) CH1(X )/nCH1(X ) ∼= H2d
ét (X , µ⊗dn ).

L A.2. – With notation as above, CH1(X )0 is divisible prime to the characteristic
of the residue field k.

Proof of theorem. – Let p = char(k). Since k is assumed to be separably closed, given i,
we can find x ∈ Ai a k-point not lying in any otherAj ([31, 17.15.10(iii))]. Since X is regular,
we can find an irreducible closed subscheme V ⊂X of dimension 1 meetingAi transversally
at x. Since Λ is strictly Henselian, V is local, meeting A only at x. We have V · Ai = 1 and
V · Aj = 0, j 6= i. It follows that deg : CH1(X )/nCH1(X ) � Hom(F,Z/nZ), and
assuming the lemma, this map is an isomorphism. On the other hand, by base change, writing
A =

⋃
iAi we have

(A.5) H2d
ét (X , µ⊗dn ) ∼= H2d

ét (A,µ⊗dn ) ∼= Hom(F,Z/nZ).

The assertion of the theorem follows.

Proof of Lemma. – By an application of the Gabber-de Jong theorem on alterations [39,
Theorem 1.4] and a trace argument, we may assume that the reduced special fiber Ared is a
simple normal crossings divisor on X .

Suppose first the fibre dimension d = 1 so X is a curve over T . In this case,
CH1(X ) = Pic(X ) and the assertion of the lemma follows from the Kummer sequence

(A.6) Pic(X )
n−→ Pic(X )→ H2(X , µn)
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together with (A.5) above.
Now take d ≥ 2. LetZ =

∑
cµZµ be a 1-cycle on X such that theZµ are integral schemes

and deg(Z ·Ai) = 0 for all i. By an elementary moving lemma, we can assume none of theZµ
are supported onA. Indeed, assumingZµ ⊂ A, we take intersections of hypersurface sections
to construct an irreducible closed subscheme Y ⊂X of dimension 2 such that Zµ ⊂ Y ∩A
and Y meets the irreducible components of A transversally at the generic point of Zµ. In
particular, Y is normal at the generic point of Zµ so we can find a function g in the function
field of Y which has multiplicity 1 alongZµ and is a unit at every other component of Y ∩A.
The cycle −(g)Y + Zµ is then rationally equivalent to Zµ and has no component on A.

A more serious moving lemma ([28], Theorem 2.3) permits us to assume that the Zµ do
not meet the higher strata of the fibreA, i.e., for all µ and all i 6= j we haveZµ∩Ai∩Aj = ∅.

Let Sµ → Zµ be the normalization. Because Λ is excellent, Sµ is finite over T [29,
Prop. (7.8.6)]. Thus for N � 0 we can find a closed immersion ξ :

∐
Sµ ↪→ PN

T of schemes
over T . In this way, we can build a diagram

(A.7)

∐
Sµ

ι−−−−→
↪→

X ×T PN
Ty prX

y∐
Zµ −−−−→ Xy y
T T.

The map ι is a closed immersion of regular schemes. Let I ⊂ OX×TPNT
be the corre-

sponding ideal. Fix a very ample line bundle OX×TPNT
(1). We denote by OAred×kPNk

(1) its
restriction to Ared ×k PN

k .
We consider complete intersections

C = C (σ1, . . . , σd+N−1) ⊂X ×T PN
T

defined by sections σi ∈ Γ(X ×T PN
T , IO(M)) for M � 0.

L A.3. – There are sections σ1, . . . , σd+N−1 such that C is regular of relative dimen-
sion 1 over T , and meets all faces of the normal crossings divisor Ared ×k PN

k transversally.

Proof. – By assumption, the Sµ are regular of dimension 1 and they meet the
(d+N)-dimensional reduced closed fibre Ared ×k PN

k at a finite set of regular points qµ,i.
Because T is Henselian, there is one connected component Sµ,i for each closed point qµ,i.
The residue fields of the qµ,i may be inseparable over k. These intersections may not be
transverse, but the tangent spaces

(A.8) tSµ,i∩(Ared×kPNk ),qµ,i ⊂ tAred×kPNk ,qµ,i

have dimension ≤ 1. Set Ī = Im(I → OAred×kPNk
). For M � 0 we can, by general position

arguments, arrange the following conditions to hold:

(i) The restriction

Γ(I ⊗O
X×TPN

K

OX×TPNK
(M))→ Γ(Ī ⊗O

Ared×kP
N
k

OAred×kPNk
(M))

is surjective.
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(ii) There exist σ1, . . . , σd+N−1 ∈ Γ(I ⊗O
X×TPN

K

OX×TPNK
(M)) such that the subscheme

C̄ ⊂ Ared ×k PN
k defined by (σ̄1, . . . , σ̄d+N−1) meets all the faces of the normal

crossings divisor Ared ×k PN
k transversally(2). Then one has an inclusion of tangent

spaces
tSµ,i∩(Ared×PNk ),qµ,i ⊂ tC ,qµ,i ,

where the lefthand side is as in (A.8), and dim tC ,qµ,i = 1.

(iii) The intersections of C ∩ (Ai,red×PN
k ) with the top dimensional strata are irreducible

(they are smooth by [45], Theorem 7 and connected by [42], Theorem 6.10 and [30],
Proposition 15.5.9).

The subscheme C ⊂X ×T PN
T defined by (σ1, . . . , σd+N−1) then satisfies the conditions of

Lemma A.3.

Let f : C →X denote the projection X ×T Pn
T → Pn

T restricted to C . By construction,
the irreducible components Bi of the special fibre B ⊂ C are the pullbacks Bi = f∗Ai. It
follows that the cycle S :=

∑
cµSµ satisfies

(A.9) S ·Bi = S · f∗Ai = f∗S ·Ai = Z ·Ai = 0.

We conclude from the case d = 1 that the cycle S on C is divisible prime to char(k), and
hence Z = f∗S is divisible as well.

R A.4. – The statement of Theorem A.1 also holds when the residue field k is
finite. This is [69, Theorem 1.16] if Ared has normal crossings, and the general case follows
as above by an application of the Gabber-de Jong theorem. When k is finite, the arguments
of Theorem A.1 may be used instead of Step 1 and Step 3 of loc. cit., § 8, thus leading to a
simpler proof of [69, Theorem 1.16].

(2) The referee inquires about the proof of (ii). To simplify we change notation and takeW to be a smooth, projective
variety over an infinite field k. Let OW (1) be an ample line bundle and J ⊂ OW be an ideal such that OW /J is
supported on a finite set {qi} of closed points. The assertion becomes that for N � 0 there exists a non-empty
open set U in the affine space of sections Γ(W,J(N)) such that for σ ∈ U the zero set V (σ) ⊂ W is smooth
away from the support of OW /J and further, at any point q ∈ {qi} with maximal ideal m ⊂ OW,q such that
Jq/(Jq ∩ m2) 6= (0), we have that the image of σ in Jq/(Jq ∩ m2) is non-zero. Let π : W ′ → W be the blowup
of J , and let L be the tautological line bundle for W ′. For N � 0, its twist L ⊗ π∗OW (N) is very ample on W ′

and moreover Γ(W,J(N)) ∼= Γ(W ′,L ⊗ π∗OW (N)). The classical Bertini theorem now says that for a non-
empty Zariski-open set U ′ of sections s, the zero subscheme V (s) ⊂ W ′ is smooth away from the exceptional
divisor (which may be singular). Clearly, forN � 0 there is another non-empty open U ′′ of sections with non-zero
image in Jq/(Jq ∩ m2) for all q ∈ {qi}. Then we take σ1 ∈ U ′ ∩ U ′′ 6= ∅. Repeating this construction yields the
necessary σi.
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