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DYNAMICAL ZETA FUNCTIONS
FOR ANOSOV FLOWS

VIA MICROLOCAL ANALYSIS

 S DYATLOV  M ZWORSKI

A. – The purpose of this paper is to give a short microlocal proof of the meromorphic
continuation of the Ruelle zeta function for C∞ Anosov flows. More general results have been recently
proved by Giulietti-Liverani-Pollicott [13] but our approach is different and is based on the study of
the generator of the flow as a semiclassical differential operator.

R. – Cet article donne une courte preuve microlocale du prolongement méromorphe de la
fonction zêta de Ruelle pour les flots d’Anosov lisses. Des résultats plus généraux ont été récemment
obtenus par Giulietti-Liverani-Pollicott [13] mais notre approche est différente et se base sur l’étude du
générateur du flot, que l’on considère comme un opérateur pseudodifférentiel semi-classique.

The purpose of this article is to provide a short microlocal proof of the meromorphic
continuation of the Ruelle zeta function for C∞ Anosov flows on compact manifolds:

T. – SupposeX is a compact manifold and ϕt : X → X is aC∞ Anosov flow with
orientable stable and unstable bundles. Let {γ]} denote the set of primitive orbits of ϕt, with T ]γ
their periods. Then the Ruelle zeta function,

ζR(λ) =
∏
γ]

(1− eiλT
]
γ ),

which converges for Imλ� 1 has a meromorphic continuation to C.

In fact the proof applies to any Anosov flow for which linearized Poincaré maps Pγ for
closed orbits γ satisfy

(1.1) |det(I − Pγ)| = (−1)q det(I − Pγ), with q independent of γ.

A class of examples is provided by X = S∗M where M is a compact orientable negatively
curved manifold with ϕt the geodesic flow—see [13, Lemma B.1]. For methods which can be
used to eliminate the orientability assumptions, see [13, Appendix B].

The meromorphic continuation of ζR was conjectured by Smale [33] and in greater gener-
ality it was proved very recently by Giulietti, Liverani, and Pollicott [13]. Another recent
perspective on dynamical zeta functions in the contact case has been provided by Faure and
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544 S. DYATLOV AND M. ZWORSKI

Tsujii [10, 11]. Our motivation and proof are however different from those of [13]: we were
investigating trace formulæ for Pollicott-Ruelle resonances [28, 30] which give some lower
bounds on their counting function. Sharp upper bounds were given recently in [4, 9].

To explain the trace formula for resonances suppose first that X = S∗Γ\H2 is a compact
Riemann surface. Then the Selberg trace formula combined with the Guillemin trace
formula [17] gives

(1.2)
∑

µ∈Res(P )

e−iµt =
∑
γ

T#
γ δ(t− Tγ)

|det(I − Pγ)|
, t > 0,

see [24] for an accessible presentation in the physics literature and [6] for the case of higher
dimensions. On the left hand side Res(P ) is the set of resonances of P = −iV where V is the
generator of the flow,

Res(P ) =
{
µj,k = λj − i(k + 1

2 ), j, k ∈ N
}
,

where λj ’s are the zeros of the Selberg zeta function included according to their multiplicities.
On the right hand side γ’s are periodic orbits, Pγ is the linearized Poincaré map, Tγ is the
period of γ, and T#

γ is the primitive period.

The point of view of Faure-Sjöstrand [9] stresses the analogy between analysis of the
propagator ϕ∗−t = e−itP with scattering theory for elliptic operators on non-compact
manifolds: for flows, the fiber infinity of T ∗X is the analogue of spatial infinity for scattering
on non-compact manifolds. Melrose’s Poisson formula for resonances valid for Euclidean
infinities [26, 32, 36] and some hyperbolic infinities [18] suggests that (1.2) should be valid
for general Anosov flows but that seems to be unknown.

In general, the validity of (1.2) follows from the finite order (as an entire function) of the
analytic continuation of

(1.3) ζ1(λ) := exp

(
−
∑
γ

T#
γ e

iλTγ

Tγ |det(I − Pγ)|

)
.

The µ’s appearing on the left hand side of (1.2) are the zeros of ζ1-–see [18, § 5] or [36] for an
indication of this simple fact. Under certain analyticity assumptions onX and ϕt, Rugh [31]
and Fried [12] showed that the Ruelle zeta function ζR(λ) is a meromorphic function of finite
order but neither [13] nor our paper suggest the validity of such a statement in general.

One reason to be interested in (1.2) in the general case is the following consequence based
on [19, § 4]: the counting function for the Pollicott-Ruelle resonances in wide strips cannot
be sublinear. More precisely, there exists a constant C0 such that for each ε ∈ (0, 1),

(1.4) #{µ ∈ Res(P ) : Imµ > −C0/ε, |µ| ≤ r} 6< r1−ε, r ≥ C(ε),

see [23] and comments below.

We arrived at the proof of main Theorem while attempting to demonstrate (1.2) for C∞

Anosov flows. We now indicate the idea of that proof in the case of analytic continuation
of ζ1(λ) given by (1.3). It converges for Imλ� 1-–see Lemma 2.2 for convergence and (2.5)

4 e SÉRIE – TOME 49 – 2016 – No 3



DYNAMICAL ZETA FUNCTIONS VIA MICROLOCAL ANALYSIS 545

below for the connection to the Ruelle zeta function. The starting point is Guillemin’s
formula,

(1.5) tr[ e−itP =
∑
γ

T#
γ δ(t− Tγ)

|det(I − Pγ)|
, t > 0

where the trace is defined using distributional operations of pullback by ι(t, x) = (t, x, x) and
pushforward by π : (t, x)→ t: tr[ e−itP := π∗ι

∗Ke−itP , whereK• denotes the distributional
kernel of an operator. The pullback is well-defined in the sense of distributions [21, § 8.2]
because the wave front set of Ke−itP satisfies

(1.6) WF(Ke−itP ) ∩N∗(Rt ×∆(X)) = ∅, t > 0,

where ∆(X) ⊂ X × X is the diagonal and N∗(Rt × ∆(X)) ⊂ T ∗(Rt × X × X) is the
conormal bundle. See Appendix B and [17, § II] for details.

Since

d

dλ
log ζ1(λ) =

1

i

∑
γ

T#
γ e

iλTγ

|det(I − Pγ)|
=

1

i

∫ ∞
0

eitλ tr[ e−itP dt,

it is enough to show that the right hand side has a meromorphic continuation to C with
simple poles and residues which are non-negative integers. For that it is enough to take t0 > 0

smaller than Tγ for all γ (note that tr[ e−itP = 0 on (0, t0)) and consider a continuation of

1

i

∫ ∞
t0

eitλ tr[ e−itP dt =
1

i
eit0λ

∫ ∞
0

eitλ tr[ ϕ∗−t0e
−itP dt.

We now note that

(1.7) i

∫ ∞
0

eitλϕ∗−t0e
−itP dt = ϕ∗−t0(P − λ)−1 for Imλ� 1.

With a justification provided by a simple approximation argument (see the proof of [22,
Theorem 19.4.1] for a similar construction) it is then sufficient to continue

(1.8) tr[
(
ϕ∗−t0(P − λ)−1

)
, Imλ� 1,

meromorphically. As recalled in § 3.2, (P − λ)−1 : C∞(X) → D′(X) continues meromor-
phically so to check the meromorphy of (1.8) we only need to check the analogue of the
wave front set relation (1.6) for the distributional kernel of ϕ∗−t0(P − λ)−1, namely that
this wave front set does not intersect N∗(∆(X)). But that follows from an adaptation of
propagation results of Duistermaat-Hörmander [22, § 26.1], Melrose [27], and Vasy [35].
The Faure-Sjöstrand spaces [9] provide the a priori regularity which allows an application
of these techniques. In fact, we use somewhat simpler anisotropic Sobolev spaces in our
argument and provide an alternative approach to the meromorphic continuation of the
resolvent—see §§ 3.1, 3.2.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



546 S. DYATLOV AND M. ZWORSKI

Remarks. – (i) If the coefficients of the generator of the flow are merely Ck for large
enough k, then microlocal methods presented in this paper show that the Ruelle zeta func-
tion can still be continued meromorphically to a strip {Imλ ≥ −k/C}, whereC is a constant
independent of k. That follows immediately from the fact that wavefront set statements inHs

regularity depend only on a finite number of derivatives of the symbols involved. In [13] a
more precise estimate on the width of the strip was provided.
(ii) One conceptual difference between [13] and the present paper is the following. In [13,
(2.11), (2.12)], the resolvent (P − λ)−1 is decomposed into two pieces, one of which corre-
sponds to resonances in a large disk and the other one to the rest of the resonances; using an
auxiliary determinant [13, (2.7)], it is shown that it is enough to study mapping properties of
large iterates of (P − λ)−1, which implies that resonances outside the disk can be ignored in
a certain asymptotic regime. In our work, however, we show directly that (P − λ)−1 lies in a
class where one can take the flat trace. In terms of the expression (1.7), this requires uniform
control of the wavefront set of ϕ∗−t as t → +∞. Such a statement does not follow from the
analysis for bounded times and this is where the matters are considerably simplified by using
radial source/sink estimates originating in scattering theory.
(iii) In this paper we only provide analysis at bounded frequencies, but do not discuss the
behavior of ζR(λ) as λ goes to infinity. However, a high frequency analysis of the zeta
function is possible using the methods of semiclassical analysis, which recover the structure
of (P − λ)−1 modulo O(|λ|−∞), rather than just compact, errors. An example is provided
by the bounds on the number of Pollicott-Ruelle resonances in [9, 4].

Some further developments. – Since this paper was first posted arXiv:1306.4203 related
results have appeared. In [8] the authors showed that Pollicott-Ruelle resonances are the
limits of eigenvalues of V/i+iε∆g, as ε→ 0+, where−∆g is any Laplace-Beltrami operator
on X. In addition, for contact Anosov flows the spectral gap is uniform with respect to ε.
In [23], Jin-Zworski proved that for any Anosov flow there exists a strip with infinitely many
resonances and a counting function which cannot be sublinear (1.4). For weakly mixing flows
the estimate for the size of that strip in terms of topological pressure was provided by Naud
in the appendix to [23]. Guillarmou [15] used the methods of [9] and of this paper to study
regularity properties of cohomological equations and to provide applications.

Meromorphic continuation (of (P−λ)−1 and of zeta functions) for flows on non-compact
manifolds (or manifolds with boundary) with compact hyperbolic trapped sets was recently
established by Dyatlov-Guillarmou [7]. That required a development of new microlocal
methods as the escape on the cotangent bundle can occur both at fiber infinity (as in this
paper) and at the manifold infinity. A surprising application was given by Guillamou [16]
who established deformation lens rigidity for a class of manifolds including manifolds with
negative curvature and strictly convex boundary. That is the first result of that kind in which
trapping is allowed.

Organization of the paper. – In §2 we list the preliminaries from dynamical systems and
microlocal analysis. Precise definitions, references and proofs of the statements in §2 are
given in the appendices. They are all standard and reasonably well known but as the paper is
interdisciplinary in spirit we provide detailed arguments. Except for references to texts [21,
22, 37], the paper is self-contained.
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In §3 we simultaneously prove the meromorphic continuation and describe the wave
front set of the Schwartz kernel of (P − λ)−1. This is based on results about propaga-
tion of singularities. The vector field Hp has radial-like sets, that is invariant conic closed
sets which are sources/sinks for the flow—they correspond to stable/unstable directions
in the Anosov decomposition. Away from those sets the results are classical and due to
Duistermaat-Hörmander—see for instance [22, § 26.1]. At the radial points we use the more
recent propagation results of Melrose [27] and Vasy [35]. The a priori regularity needed there
is provided by the properties of the spaces HsG. Finally, in §4 we give our proof of the main
theorem which is a straightforward application of the results in §3 and the more standard
results recalled in §2.

Notation. – We use the following notation: f = O`(g)H means that ‖f‖H ≤ C`g where
the norm (or any seminorm) is in the space H, and the constant C` depends on `. When
either ` or H is absent then the constant is universal or the estimate is scalar, respectively.
When G = O`(g)H1→H2 then the operator G : H1 → H2 has its norm bounded by C`g.

2. Preliminaries

2.1. Dynamical systems

Let X be a compact manifold and ϕt : X→X be a C∞ flow, ϕt = exp tV , V∈C∞(X;TX).
The flow is Anosov if the tangent space to X has a continuous decomposition

TxX = E0(x)⊕ Es(x)⊕ Eu(x)

which is invariant, dϕt(x)E•(x) = E•(ϕt(x)), E0(x) = RV (x), and for some C and θ > 0

fixed

|dϕt(x)v|ϕt(x) ≤ Ce−θ|t||v|x, v ∈ Eu(x), t < 0,

|dϕt(x)v|ϕt(x) ≤ Ce−θ|t||v|x, v ∈ Es(x), t > 0,
(2.1)

where | • |y is given by a smooth Riemannian metric on X. Note that we do not assume that
the dimensions of Eu and Es are the same.

Fix a smooth volume form µ on X. We present here some basic results: an upper bound
on the number of closed trajectories of ϕt (Lemma 2.2) and on the volume of the set of
trajectories that return to a small neighborhood of their originating point after a given time
(Lemma 2.1). These bounds are used in the proof of Lemma 4.1. See Appendix A for the
proofs. The constant L is defined in (A.3).

L 2.1. – Define the following measure on X × R: µ̃ = µ × dt and fix te > 0. Then
there exists C such that for each ε > 0, T > te, and n = dimX,

(2.2) µ̃
(
{(x, t) | te ≤ t ≤ T, d(x, ϕt(x)) ≤ ε}

)
≤ CεnenLT .

In particular, by letting ε→ 0, we get a bound on the number of closed trajectories:

L 2.2. – LetN(T ) be the number of closed trajectories ofϕt of period no more thanT .
Then

(2.3) N(T ) ≤ Ce(2n−1)LT .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



548 S. DYATLOV AND M. ZWORSKI

2.2. Trace identities

Let ϕt = etV be as in § 2.1 and P : C∞(X; E) → C∞(X; E) be defined by P = 1
i LV on

the vector bundle of differential forms of all orders on X, see (3.1). Let Ek0 be the smooth
invariant subbundle of E given by all differential k-forms u satisfying ιV u = 0, where
ι denotes the contraction operator by a vector field—see also [13, (3.5)]. We recall the trace
formula of Guillemin [17, Theorem 8, (II.22)] which is valid for any flow with nondegenerate
periodic trajectories—see Appendix B for a self-contained proof in the Anosov case. In our
notation it says that

(2.4) tr[ e−itP|C∞(X; Ek0 ) =
∑
γ

T#
γ tr(∧k Pγ) δ(t− Tγ)

|det(I − Pγ)|
, t > 0,

where γ’s are periodic orbits, Pγ := dϕ−Tγ |Es⊕Eu is the linearized Poincaré map, Tγ is
the period of γ, and T#

γ is the primitive period. See § 2.4 for definition and properties of
the flat trace tr[. By the Anosov property, and since we use negative times in the definition
of Pγ , the eigenvalues of Pγ |Eu satisfy |µ| < 1, therefore det(I − Pγ |Eu) > 0. Similarly
det(I − P−1

γ |Es) > 0. If Es is orientable, then det( Pγ |Es) = det(dϕ−Tγ |Es) > 0; since

det(I − Pγ |Es) = det(−Pγ |Es) det(I − P−1
γ |Es),

|det(I − Pγ)| = (−1)dimEs det(I − Pγ),

that is (1.1) holds with q = dimEs. We now assume (1.1) for some integer q.
Consequently we relate the expressions on the right hand side of (2.4) to the Ruelle zeta

function using

det(I − Pγ) =

n−1∑
k=0

(−1)k tr∧k Pγ .

This is a standard argument going back to Ruelle [29] but the particular determinants here
seem to be rather different than the one related to his transfer operators:

ζR(λ) =
∏
γ#

(1− eiλT
#
γ ) = exp

−∑
γ#

∞∑
m=1

1

m
eiλmT

#
γ


= exp

(
−
∑
γ

T#
γ e

iλTγ/Tγ

)
=

n−1∏
k=0

exp

(
−
∑
γ

T#
γ e

iλTγ tr∧k Pγ
Tγ |det(I − Pγ)|

)(−1)k+q

.

(2.5)

We note that thanks to Lemma 2.2 the sums on the right hand side converge for Imλ� 1.

2.3. Microlocal and semiclassical analyses

In this section we present concepts and facts from microlocal/semiclassical analysis which
are needed in the proofs. Their proofs and detailed references are provided in Appendix C.

Let X be a manifold. For a distribution u ∈ D′(X), a phase space description of
its singularities is given by the wave front set WF(u), a closed conic subset of T ∗X \ 0.
A more general object is the semiclassical wave front set defined using a (small) asymptotic
parameter h for h-tempered families of distributions {u(h)}0<h<1: WFh(u) ⊂ T

∗
X where

T
∗
X is the fiber-radially compactified cotangent bundle, a manifold with interior T ∗X and

boundary ∂T
∗
X = S∗X = (T ∗X \0)/R+, the cosphere bundle. In addition to singularities,
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B1

AB

F 1. The assumptions of Proposition 2.5, displaying the wave front sets
of A, B, B1 and the flow lines of Hp.

WFh measures oscillations on the h-scale. The relation of the two wave front sets is the
following: if u is an h-independent distribution, then

(2.6) WF(u) = WFh(u) ∩ (T ∗X \ 0),

see § C.2 and for a more general statement, [37, (8.4.8)].
For operators we define the wave front set WF′(B) (or WF′h(B) for h-dependent families

of operators) using the Schwartz kernel—see (C.2). This way WF′(I) = ∆(T ∗X), the diag-
onal in T ∗X × T ∗X, rather than N∗∆(X), the conormal bundle to the diagonal in X ×X.

The following result, proved in § C.2, will allow us to calculate WF′h((P−λ)−1), and thus,
by (2.6), WF′((P − λ)−1). It states that away from the fiber infinity, the semiclassical wave
front set of an operator is characterized using its action on distributions:

L 2.3. – Let B : C∞c (X) → D′(Y ) be an h-tempered family of operators. A point
(y, η, x, ξ) ∈ T ∗(Y × X) does not lie in WF′h(B) if and only if there exist neighborhoods U
of (x, ξ) and V of (y, η) such that

(2.7) WFh(f) ⊂ U =⇒ WFh(Bf) ∩ V = ∅

for each h-tempered family of functions f(h) ∈ C∞c (X).

We next state several semiclassical estimates used in §3. To be able to work with differential
forms, we consider a semiclassical pseudodifferential operator P ∈ Ψk

h(X; Hom( E)) acting
on h-tempered families of distributions u(h) ∈ D′(X; E) with values in a vector bundle E
over X. For simplicity, we assume below that X is a compact manifold. We provide esti-
mates in semiclassical Sobolev spacesHm

h (X, E) (denotedHm
h for simplicity) and the corre-

sponding restrictions on wave front sets. Each of the estimates (2.8), (2.10), (2.13), (2.15) is
understood as follows: if the right-hand side is well-defined, then for h small enough, the
left-hand side is well-defined and the estimate holds. For example, in the case of (2.10), if
Pu ∈ Hm

h and Bu ∈ Hm
h , then we have Au ∈ Hm

h . See § C.3 for the proofs.

P 2.4 (Elliptic estimate). – Let u(h) ∈ D′(X; E) be h-tempered. Then:

1. If A ∈ Ψ0
h(X) (acting on D′(X; E) diagonally) and P is elliptic on WFh(A), then for

each m,

(2.8) ‖Au‖Hmh (X; E) ≤ C‖Pu‖Hm−kh (X; E) + O(h∞).

2. If ellh(P) ⊂ T ∗X denotes the elliptic set of P, then

(2.9) WFh(u) ∩ ellh(P) ⊂WFh(Pu).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



550 S. DYATLOV AND M. ZWORSKI

P 2.5 (Propagation of singularities). – Assume that P ∈ Ψ1
h(X; Hom( E))

and the semiclassical principal symbol

σh(P) ∈ S1
h(X; Hom( E))/hS0

h(X; Hom( E))

is diagonal with entries (1) p − iq, with p ∈ S1(X;R) independent of h and q ≥ 0 everywhere.
Assume also that p is homogeneous of degree 1 in ξ, for |ξ| large enough. Let etHp be the
Hamiltonian flow of p on T

∗
X and u(h) ∈ D′(X; E) be an h-tempered family of distributions.

Then (see Figure 1):

1. Assume that A,B,B1 ∈ Ψ0
h(X) and for each (x, ξ) ∈WFh(A), there exists T ≥ 0 with

e−THp(x, ξ) ∈ ellh(B) and etHp(x, ξ) ∈ ellh(B1) for t ∈ [−T, 0]. Then for each m,

(2.10) ‖Au‖Hmh (X; E) ≤ C‖Bu‖Hmh (X; E) + Ch−1‖B1Pu‖Hmh (X; E) + O(h∞).

2. If γ(t) is a flow line of Hp, then for each T > 0,

(2.11) γ(−T ) 6∈WFh(u), γ([−T, 0]) ∩WFh(Pu) = ∅ =⇒ γ(0) 6∈WFh(u).

Propagation of singularities states in particular that if Pu = O(h∞)C∞ and u = O(1)Hmh
microlocally near some (x, ξ) ∈ T

∗
X, then u = O(1)Hmh microlocally near etHp(x, ξ)

for t ≥ 0; in other words, regularity can be propagated forward along the Hamiltonian flow
lines. (If q ≤ 0 instead, then regularity could be propagated backward.) We next state less
standard estimates guaranteeing regularity of u near sources/sinks, provided that u lies in a
sufficiently high Sobolev space.

Denote by κ : T ∗X \ 0 → S∗X = ∂T
∗
X the natural projection map. Let p be a real-

valued function on T ∗X; for simplicity, we assume that it is homogeneous of degree 1 in ξ.
Assume that L ⊂ T ∗X \ 0 is a closed conic set invariant under the flow etHp and there exists
an open conic neighborhood U of L with the following properties for some constant θ > 0:

d
(
κ(e−tHp(U)), κ(L)

)
→ 0 as t→ +∞;

(x, ξ) ∈ U =⇒ |e−tHp(x, ξ)| ≥ C−1eθt|ξ|, for any norm on the fibers.
(2.12)

We call L a radial source. A radial sink is defined analogously, reversing the direction of
the flow. The following propositions come essentially from the work of Melrose [27, Propo-
sitions 9,10] and Vasy [35, Propositions 2.3, 2.4]. The first one shows that for sufficiently
regular distributions the wave front set at radial sources is controlled.

P 2.6. – Assume that P ∈ Ψ1
h(X; Hom( E)) is as in Proposition 2.5 and

L ⊂ T ∗X \ 0 is a radial source. Then there exists m0 > 0 such that (see Figure 2(a))

1. For eachB1 ∈ Ψ0
h(X) elliptic on κ(L) ⊂ S∗X = ∂T

∗
X, there existsA ∈ Ψ0

h(X) elliptic
on κ(L) such that if u(h) ∈ D′(X; E) is h-tempered, then for each m ≥ m0,

(2.13) Au ∈ Hm0

h =⇒ ‖Au‖Hmh ≤ Ch
−1‖B1Pu‖Hmh + O(h∞).

2. If u(h) ∈ D′(X; E) is h-tempered and B1 ∈ Ψ0
h(X) is elliptic on κ(L), then

(2.14) B1u ∈ Hm0

h , WFh(Pu) ∩ κ(L) = ∅ =⇒ WFh(u) ∩ κ(L) = ∅.

(1) Strictly speaking, this means that p − iq is some representative of the equivalence class σh(P) satisfying the
specified conditions.
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B1

L S∗X

A

B1

B

L S∗X

A

(a) (b)

F 2. (a) The assumptions of Proposition 2.6. (b) The assumptions of Propo-
sition 2.7. Here S∗X is the boundary of T

∗
X and the flow lines of Hp are pictured.

The second result shows that for sufficiently low regularity we have a propagation result
at radial sinks analogous to (2.10).

P 2.7. – Assume that P ∈ Ψ1
h(X; Hom( E)) is as in Proposition 2.5 and

L ⊂ T ∗X \ 0 is a radial sink. Then there existsm0 > 0 such that for eachB1 ∈ Ψ0
h(X) elliptic

on κ(L), there exists A ∈ Ψ0
h(X) elliptic on κ(L) and B ∈ Ψ0

h(X) with
WFh(B) ⊂ ellh(B1) \ κ(L), such that if u(h) ∈ D′(X; E) is h-tempered, then for each
m ≤ −m0 (see Figure 2(b))

(2.15) ‖Au‖Hmh ≤ C‖Bu‖Hmh + Ch−1‖B1Pu‖Hmh + O(h∞).

Remarks. – (i) In the case q = 0, we can replace P by −P in Propositions 2.6 and 2.7 to
make both of them apply to sources and sinks.
(ii) The precise value of the threshold m0 can be computed by being slightly more careful in
the proofs (using a regularizer 〈εξ〉−δ for small δ > 0 in place of 〈εξ〉−1 and an additional
regularization procedure to justify (C.10))—see for example [35, Propositions 2.3, 2.4].

2.4. The flat trace

We now consider an operator B : C∞(X)→ D′(X) satisfying

(2.16) WF′(B) ∩∆(T ∗X) = ∅, ∆(T ∗X) := {(x, ξ, x, ξ) | (x, ξ) ∈ T ∗X},

on a compact manifold X, and define the flat trace

(2.17) tr[B :=

∫
X

(ι∗KB)(x) dx, ι : x 7→ (x, x).

Here KB is the Schwartz kernel of X with respect to the density dx on X; the trace tr[B

does not depend on the choice of the density. The pullback ι∗KB ∈ D′(X) of the Schwartz
kernel KB ∈ D′(X ×X) is defined under the condition (2.16) as in [21, Theorem 8.2.4].

To obtain a concrete expression for tr[B we use traces of regularized operators. For
that we introduce a family of mollifiers. Let d(x, y) be the geodesic distance for (x, y)

in a neighborhood of ∆(X) ⊂ X ×X with respect to some fixed Riemannian metric.
Let ψ ∈ C∞c (R, [0, 1]) be equal to 1 near 0. We define Eε : D′(X)→ C∞(X),

Eεu(x) =

∫
X

Eε(x, y)u(y) dy, Eε(x, y) =
1

Fε(x)
ψ

(
d(x, y)

ε

)
,(2.18)
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where Fε(x) is chosen so that Eε(1) = 1 and satisfies εn/C ≤ Fε(x) ≤ Cεn. We have

(2.19) Eε ∈ Ψ−∞(X), Eε −→ I in Ψ0+(X).

The next lemma shows that the flat trace is well approximated by regular traces—see § C.1
for a proof.

L 2.8. – For B satisfying (2.16) and Eε given by (2.18) we have

(2.20) tr[B = lim
ε→0

trEεBEε

where the trace on the right hand side is well-defined since EεBEε is smoothing and thus trace
class on L2(X).

If an operator B instead acts on sections of a smooth vector bundle, B : C∞(X; E) →
D′(X; E), and satisfies (2.16), then we can define the trace of B by the formula

tr[B = tr[
r∑
j=1

Bjj , B(fel) =

r∑
j=1

(Bjlf)ej , f ∈ C∞(X),

if e1, . . . , er is a local frame of E and B is supported in the domain of the local frame—the
general case is handled by a partition of unity and the independence of the choice of the frame
is easily verified.

3. Properties of the resolvent

In this section we use the anisotropic Sobolev spaces HsG and the propagation results
recalled in §2.3 to describe the microlocal structure of the meromorphic continuation of the
resolvent. Our proof is different from the argument in [9] in the sense that we use a less refined
weight to define anisotropic Sobolev spaces and derive the Fredholm property of P−λ from
propagation of singularities.

Anisotropic Sobolev spaces appeared in the study of Anosov flows in the works of
Baladi [1], Baladi-Tsujii [2], Gouëzel-Liverani [14], Liverani [25], and other authors.
However, the use of microlocally defined exponential weights allows a more direct study
using PDE methods.

3.1. Anisotropic Sobolev spaces

Let (X,ϕt) be as in § 2.1 and consider the vector bundle, E, of differential forms of all
orders on X. (The resolvents on forms of different degree are decoupled from each other,
however we treat them as a single resolvent to simplify notation.) Consider the first order
differential operator

(3.1) P : C∞(X; E)→ C∞(X; E), P(u) =
1

i
LV u, E :=

n⊕
j=0

Λj(T ∗X),

where V is the generator of the flow ϕt, L denotes the Lie derivative, and u is a differential
form on X.
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The principal symbol σ(P) = p ∈ S1(X;R), as defined in § C.1, is diagonal and homoge-
neous of degree 1: p(x, ξ) = ξ(V (x)), (x, ξ) ∈ T ∗X. This follows immediately from the fact
that for any basis e1, . . . , er of E, and all u1, . . . , ur ∈ C∞(X),

LV
r∑
j=1

ujej =

r∑
j=1

V uj ej +

r∑
j=1

uj LV ej ,

where the second term in the sum is a differential operator of order 0.

The Hamilton flow is etHp(x, ξ) = (ϕt(x), (T dϕt(x))−1ξ). Define the decomposition

T ∗xX = E∗0 (x)⊕ E∗s (x)⊕ E∗u(x),

where E∗0 (x), E∗s (x), E∗u(x) are dual to E0(x), Eu(x), Es(x). From (2.1) it follows that

(3.2)
ξ 6∈ E∗0 (x)⊕ E∗s (x) =⇒ d

(
κ(etHp(x, ξ)), κ(E∗u)

)
→ 0 as t→ +∞,

ξ 6∈ E∗0 (x)⊕ E∗u(x) =⇒ d
(
κ(etHp(x, ξ)), κ(E∗s )

)
→ 0 as t→ −∞.

Here κ : T ∗X \ 0 → S∗X is the projection defined before (2.12). Moreover, under the
assumptions of (3.2) we have |etHp(x, ξ)| ≥ C−1eθ|t||ξ|, and the convergence in (3.2) and
the constant C are locally uniform in (x, ξ). In particular (3.2) implies that, in the sense
of Definition (2.12), the closed conic sets E∗s and E∗u are a radial source and a radial sink,
respectively—see Figure 3 below.

Anisotropic Sobolev spaces have a long tradition in microlocal analysis going back to
the work of Duistermaat [5] and Unterberger [34]. To define a version on which P − λ is a
Fredholm operator, we use a functionmG ∈ C∞(T ∗X\0; [−1, 1]), homogeneous of degree 0

and such that

mG = 1 near E∗s , mG = −1 near E∗u,

HpmG ≤ 0 everywhere.
(3.3)

A function with these properties, supported in a small neighborhood of E∗s ∪ E∗u, can
be constructed using Part 1 of Lemma C.1. A more refined version, not needed here, can
be found in [9, Lemma 1.2]. With mG in place we choose a pseudodifferential operator
G ∈ Ψ0+(X) satisfying

(3.4) σ(G)(x, ξ) = mG(x, ξ) log |ξ|,

where | · | is any smooth norm on the fibers of T ∗X. Then, using [37, §§ 8.3, 9.3, 14.2] as in [4,
(3.9)], exp(±sG) ∈ Ψs+(X) for any s > 0. The anisotropic Sobolev spaces are defined using
this exponential weight:

HsG := exp(−sG)(L2(X)), ‖u‖HsG := ‖ exp(sG)u‖L2 .

Note that Hs(X) ⊂ HsG ⊂ H−s(X). This is because the symbol of exp(±sG) lies in the
class Ss1−ε,ε for each ε > 0, see [22, (18.1.1)′′], and thus mapsHk(X)→ Hk−s(X) for each k,
see [22, Theorem 18.1.13].

Define the domain, DsG, of P as the set of u ∈ HsG such that the distribution Pu is
in HsG. The Hilbert space norm on DsG is given by ‖u‖2DsG := ‖u‖2HsG + ‖Pu‖2HsG .
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3.2. Ruelle-Pollicott resonances for forms

Here we state the properties of the resolvent of P:

P 3.1. – Fix a constantC0 > 0. Then for s > 0 large enough depending onC0,
P− λ : DsG → HsG is a Fredholm operator of index 0 in the region {Imλ > −C0}.

P 3.2. – Let s > 0 be fixed as in Proposition 3.1. Then there exists a
constant C1 depending on s, such that for Imλ > C1, the operator P − λ : DsG → HsG is
invertible and

(3.5) (P− λ)−1 = i

∫ ∞
0

eiλtϕ∗−t dt,

where ϕ∗−t : C∞(X; E)→ C∞(X; E) is the pullback operator by ϕ−t on differential forms and
the integral on the right-hand side converges in operator norm Hs → Hs and H−s → H−s.

The Fredholm property and the invertibility of P−λ for large Imλ show that the resolvent
R(λ) = (P− λ)−1 : HsG → HsG is a meromorphic family of operators with poles of finite
rank—see for example [37, Proposition D.4]. Note that Ruelle-Pollicott resonances, the poles
of R(λ) in the region Imλ > −C0, are then the poles of the meromorphic continuation
of the Schwartz kernel of the operator given by the right-hand side of (3.5), and thus are
independent of the choice of s and the weightG. Microlocal structure of R(λ) is described in

P 3.3. – LetC0 and s be as in Proposition 3.1 and assume Imλ0 > −C0. Then
for λ near λ0,

(3.6) R(λ) = RH(λ)−
J(λ0)∑
j=1

(P− λ0)j−1Π

(λ− λ0)j

where RH(λ) is holomorphic near λ0, Π : HsG → HsG is the commuting projection onto the
kernel of (P− λ0)J(λ0), and

(3.7) WF′(RH(λ)) ⊂ ∆(T ∗X) ∪ Ω+ ∪ (E∗u × E∗s ), WF′(Π) ⊂ E∗u × E∗s ,

where ∆(T ∗X) is the diagonal and Ω+ is the positive flow-out of etHp on {p = 0}:

Ω+ = {(etHp(x, ξ), x, ξ) | t ≥ 0, p(x, ξ) = 0}.

In § 3.3, we construct a semiclassical nontrapping parametrix and study its h-wave front
set. In § 3.4, we express R(λ) via the parametrix and use the results of § 3.3 to finish the proofs
of Propositions 3.1–3.3.

3.3. Complex absorbing potential near the zero section

We will modify P−λ by a complex absorbing potential which will eliminate trapping and
guarantee invertibility of the modified operator.
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It is convenient now to introduce a semiclassical parameter h and use the algebra Ψh

of semiclassical pseudodifferential operators, see § C.2. If P is defined in (3.1), then
hP ∈ Ψ1

h(X; Hom( E)) is a semiclassical differential operator with principal symbol
p = σh(hP).

The original operator P is independent of h. However, the parameter h enters in the
parametrix Rδ(z) defined in Proposition 3.4 below, which is a convenient tool to show the
Fredholm property of P − λ. Moreover, the semiclassical wavefront set of Rδ(z) can be
computed by studying the dependence of WFh(Rδ(z)f) on WFh(f); this is not possible
for nonsemiclassical wavefront sets as we lose information on how the lengths of covectors
in WF(f) and WF((P−λ)−1f) are related. Therefore, semiclassical methods are convenient
for the proof of Proposition 3.3, which is the key component of the present paper.

We need a semiclassical adaptation, G(h) ∈ Ψ0+
h (X), of the operator G, such that

(3.8) σh(G(h))(x, ξ) = (1− χ(x, ξ))mG(x, ξ) log |ξ|,

where χ ∈ C∞0 (T ∗X) is equal to 1 near the zero section, and WFh(G(h)) does not intersect
the zero section. Note that, since Hp log |ξ| is homogeneous of degree zero,

(3.9) Hpσh(G(h))(x, ξ) = (HpmG(x, ξ)) log |ξ|+ O(1)S0
h
.

Define the space HsG(h) = exp(−sG(h))(L2(X)). For each fixed h > 0, the operator G(h)

lies in Ψ0+(X) and σ(G(h))(x, ξ) = σh(G(h))(x, hξ); therefore, σ(G(h) − G) is bounded
as |ξ| → ∞. By [37, Theorem 8.8], HsG(h) = HsG and the norms are equivalent, with the
constant depending on h. We also use the semiclassical analogue of the space DsG, with the
norm

‖u‖2DsG(h)
:= ‖u‖2HsG(h)

+ ‖hPu‖2HsG(h)
.

We modify hP by adding an h-pseudodifferential complex absorbing potential
−iQδ ∈ Ψ0

h(X), which provides a localization to a neighborhood of the zero section:

WFh(Qδ) ⊂ {|ξ| < δ}, σh(Qδ) > 0 on {|ξ| ≤ δ/2}, σh(Qδ) ≥ 0 everywhere,

here | · | is a fixed norm on the fibers of T ∗X. The action of

Pδ(z) := hP− iQδ − z

on HsG is equivalent to the action on L2 of the conjugated operator

Pδ,s(z) := esG(h)Pδ(z)e
−sG(h) = Pδ(z) + s[G(h), hP] + O(h2)Ψ−1+

h
,

where the asymptotic expansion follows from [37, §§ 8.3, 9.3, 14.2]—see [4, (3.11)]. We note
that [G(h), Qδ] = O(h∞)Ψ−∞ for small enough δ, because WFh(G(h)) does not intersect
the zero section.

We now use the propagation of semiclassical singularities and the elimination of trapping
due to the complex absorbing potential to establish existence and properties of the inverse
of Pδ(z). The relation between propagation and solvability has a long tradition—see [22,
§ 26.1]. Although the details below may look complicated the idea is simple and natural, given
the dynamics of the flow pictured on Figure 3: given bounds on ‖Pδ(z)u‖HsG(h)

, we first
establish bounds on u microlocally near the sources κ(E∗s ) by Proposition 2.6. By ellipticity
(Proposition 2.4) we can also estimate u on {p 6= 0} and in {|ξ| < δ/2}, where the latter
is made possible by the potential Qδ. The resulting estimates can be propagated forward
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κ(E∗u)

κ(E∗u)

κ(E∗s )κ(E∗s )

S∗X = ∂T
∗
X

F 3. Dynamics of the flow etHp on {p = 0} = E∗s ⊕ E∗u ⊂ T
∗
X, projected

onto the fibers of T ∗X. The shaded region is the wave front set of Qδ.

along the flow etHp , using Proposition 2.5, to the whole T
∗
X \ κ(E∗u); finally, to bound u

microlocally near κ(E∗u), we use Proposition 2.7. The spaces HsG(h) provide the correct
regularity for Propositions 2.6 and 2.7.

P 3.4. – Fix a constant C0 > 0 and ε > 0. Then for s > 0 large enough
depending on C0 and h small enough, the operator

Pδ(z) : DsG(h) → HsG(h), −C0h ≤ Im z ≤ 1, |Re z| ≤ hε,

is invertible, and the inverse, Rδ(z), satisfies

‖Rδ(z)‖HsG(h)→HsG(h)
≤ Ch−1, WF′h(Rδ(z)) ∩ T ∗(X ×X) ⊂ ∆(T ∗X) ∪ Ω+,

with ∆(T ∗X),Ω+ defined in Proposition 3.3, and WF′h(•) ⊂ T ∗(X ×X) is defined in § C.2.

Proof. – We first prove the bound

(3.10) ‖u‖HsG(h)
≤ Ch−1‖f‖HsG(h)

, u ∈ DsG(h), f = Pδ(z)u.

Without loss of generality, we assume that ‖u‖HsG(h)
≤ 1. By a microlocal partition of unity,

it suffices to obtain bounds onAu, whereA ∈ Ψ0
h(X) falls into one of the following five cases:

Case 1. – WFh(A)∩{p = 0}∩{|ξ| ≥ δ/2} = ∅. Then Pδ,s(z) is elliptic on WFh(A). We have
‖Au‖HsG(h)

= ‖AsesG(h)u‖L2 , where As = esG(h)Ae−sG(h) ∈ Ψ0
h and WFh(As) ⊂WFh(A).

By Proposition 2.4,

‖AsesG(h)u‖L2 ≤ C‖Bs1Pδ,s(z)e
sG(h)u‖L2 + O(h∞),

where Bs1 ∈ Ψ0
h(X) is microlocalized in a neighborhood of WFh(A). Putting

B1 := e−sG(h)Bs1e
sG(h), we obtain

(3.11) ‖Au‖HsG(h)
≤ C‖B1f‖HsG(h)

+ O(h∞).
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Case 2. – WFh(A) is contained in a small neighborhood of κ(E∗s ), where κ : T ∗X \ 0 →
S∗X = ∂T

∗
X is the natural projection. By [37, Theorem 8.6], exp(sG(h)) ∈ Ψs

h(X) and
σh(exp(sG(h))) = exp(sσh(G(h))) = |ξ|s near κ(E∗s ). Therefore, HsG(h) is microlocally
equivalent to the space Hs

h(X; E) near κ(E∗s ) in the sense that

(3.12) ‖Bv‖Hsh ≤ C‖v‖HsG(h)
+ O(h∞), ‖Bv‖HsG(h)

≤ C‖v‖Hsh + O(h∞),

for each B ∈ Ψ0
h(X) with WFh(B) contained in a neighborhood of κ(E∗s ) and each h-tem-

pered v.

Since Im z ≥ −C0h, we get Imσh(Pδ(z)) ≤ 0. The set E∗s is a radial source (see the
discussion following (3.2)) and we can apply Proposition 2.6 and (3.12) to obtain, for s
sufficiently large,

(3.13) ‖Au‖HsG(h)
≤ Ch−1‖B1f‖HsG(h)

+ O(h∞),

where B1 ∈ Ψ0
h(X) is some operator with WFh(B1) in a neighborhood of κ(E∗s ).

Case 3. – WFh(A) is contained in a small neighborhood of some (x0, ξ0) ∈ {p = 0} \ E∗u,
where E∗u = E∗u ∪ κ(E∗u) is the closure of E∗u in T

∗
X. Then by (3.2) and the discussion

following it, d(etHp(x0, ξ0), κ(E∗s )) → 0 in T
∗
X as t → −∞. Therefore, for any fixed

neighborhood U of κ(E∗s ), there exists B ∈ Ψ0
h(X) with WFh(B) ⊂ U and T > 0 such

that e−THp(WFh(A)) ⊂ ellh(B).

From (3.3),(3.9) and the fact that Im z ≥ −C0h,

Imσh(Pδ,s(z)) = −σh(Qδ)− Im z + shHpσh(G(h)) ≤ 0, in S1
h(X)/hS0

h(X).

Applying Proposition 2.5 to the operator Pδ,s(z) and arguing similarly to Case 1, we get
‖Au‖HsG(h)

≤ C‖Bu‖HsG(h)
+Ch−1‖B2f‖HsG(h)

+ O(h∞), whereB2 ∈ Ψ0
h is microlocalized

in a small neighborhood of
⋃
t∈[−T,0] e

tHp(WFh(A)). Now, ‖Bu‖HsG(h)
can be estimated by

Case 2, yielding

(3.14) ‖Au‖HsG(h)
≤ Ch−1(‖B1f‖HsG(h)

+ ‖B2f‖HsG(h)
) + O(h∞),

where B1 ∈ Ψ0
h(X) is microlocalized in a small neighborhood of κ(E∗s ).

Case 4. – WFh(A) is contained in a small neighborhood of some (x0, ξ0) ∈ E∗u. Then
etHp(x0, ξ0) converges to the zero section as t→ −∞; therefore, there exists T > 0 such that
e−THp(WFh(A)) ⊂ {|ξ| < δ/2}. Similarly to Case 3, by propagation of singularities we find
‖Au‖HsG(h)

≤ C‖Bu‖HsG(h)
+ Ch−1‖B2f‖HsG(h)

+ O(h∞), where WFh(B) ⊂ {|ξ| < δ/2}
and WFh(B2) is contained in a small neighborhood of

⋃
t∈[−T,0] e

tHp(WFh(A)). Estimating
‖Bu‖HsG(h)

by Case 1, we get

(3.15) ‖Au‖HsG(h)
≤ Ch−1(‖B1f‖HsG(h)

+ ‖B2f‖HsG(h)
) + O(h∞),

where B2 is microlocalized in a small neighborhood of e−THp(WFh(A)).
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Case 5. – WFh(A) is contained in a small neighborhood of κ(E∗u). Note that the space
HsG(h) is microlocally equivalent to the space H−sh (X) near κ(E∗u), similarly to Case 2.
Since E∗u is a radial sink, by Proposition 2.7 we get, for s sufficiently large, ‖Au‖HsG(h)

≤
C‖Bu‖HsG(h)

+Ch−1‖B1f‖HsG(h)
+ O(h∞), where B,B1 ∈ Ψ0

h(X) are microlocalized in a
small neighborhood of κ(E∗u) and WFh(B)∩κ(E∗u) = ∅. Then ‖Bu‖HsG(h)

can be estimated
by a combination of the preceding cases, using a microlocal partition of unity; this gives

(3.16) ‖Au‖HsG(h)
≤ Ch−1‖f‖HsG(h)

+ O(h∞).

Combining (3.11), (3.13)–(3.16), we get (3.10).

For the dynamics of−Hp, E∗s is a sink and E∗u a source. Hence the proof of (3.10) applies
to −Pδ(z)

∗ = −(hP− iQδ − z)∗, and we obtain the adjoint bound

(3.17) ‖v‖H−sG(h)
≤ Ch−1‖Pδ(z)

∗v‖H−sG(h)
, v ∈ D−sG(h).

We now show that Pδ(z) is invertible DsG(h) → HsG(h). Injectivity follows immediately
from (3.10); we also get the bound on the inverse once surjectivity is proved. To see surjec-
tivity, note first that (3.10) implies that if uj ∈ DsG(h) and Pδ(z)uj is a Cauchy sequence
in HsG(h), then uj is a Cauchy sequence in HsG(h) as well; since the operator Pδ(z) is
closed on HsG(h) with domain DsG(h), we see that the image of Pδ(z) is a closed subspace
ofHsG(h). Now,H−sG(h) is the dual toHsG(h) under the L2 pairing (fixing an inner product
on the fibers of E)—see [37, (8.3.11)]. Therefore, it suffices to show that if v ∈ H−sG(h) and
〈Pδ(z)u,v〉L2 = 0 for all u ∈ DsG(h), then v = 0. Taking u ∈ C∞, we see that Pδ(z)

∗v = 0;
it remains to use (3.17).

To show the restriction on the wave front set of Rδ(z), by Lemma 2.3 it is enough
to show that for each (y, η, x, ξ) ∈ T ∗(X ×X) \ (∆(T ∗X) ∪ Ω+), there exist neigh-
borhoods U of (x, ξ) and V of (y, η) such that for each h-tempered u ∈ HsG(h) and
f := (hP− iQδ − z)u, if WFh(f) ⊂ U , then WFh(u) ∩ V = ∅. This follows similarly
to the proof of Part 2 of Proposition 2.4 from the estimates (3.11), (3.14), (3.15), keeping in
mind that κ(E∗s ∪ E∗u) ∩ T ∗X = ∅.

3.4. Proofs of Propositions 3.1–3.3

We assume that λ varies in some compact subset of {Imλ > −C0} and choose h small
enough so that z = hλ satisfies −C0h ≤ Im z ≤ 1, |Re z| ≤ h1/2.

Proposition 3.1 follows immediately from Proposition 3.4, given that HsG, DsG are
topologically isomorphic to HsG(h), DsG(h) and Qδ : DsG → HsG is smoothing and thus
compact.

To show Proposition 3.2, we first note that since derivatives of the flow ϕt are bounded
exponentially in t, we have ϕ∗t = O(eC1|t|)H±s→H±s , where C1 is a constant depending on s.
Therefore, if Imλ > C1, u ∈ HsG ⊂ H−s, and (P− λ)u = f ∈ HsG, then we see

u = −
∫ ∞

0

∂t(e
iλtϕ∗−tu) dt = i

∫ ∞
0

eiλtϕ∗−tf dt,

where the integrals converge in H−s. This implies that P − λ is injective DsG → HsG and
thus invertible, and (3.5) holds.
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For (3.6) in Proposition 3.3 we note that the Fredholm property shows that, near a poleλ0,
R(λ) = RH(λ) +

∑J(λ0)
j=1 Aj/(λ − λ0)j , where Aj are operators of finite rank—see for

instance [37, § D.3]. We have

(3.18) Π := −A1 =
1

2πi

∮
λ0

(λ−P)−1dλ,

[Π,P] = 0 and, using Cauchy’s theorem, Π2 = Π. Equating powers of λ−λ0 in the equation
(P− λ)R(λ) = IHsG shows that Aj = −(P− λ0)j−1Π, and (P− λ0)J(λ0)Π = 0.

Finally, to show (3.7) we use the formula

(3.19) R(λ) = h
(
Rδ(z)− iRδ(z)QδRδ(z)

)
−Rδ(z)QδR(λ)QδRδ(z),

where R(λ) = (P−λ)−1, Rδ(z) = (hP−z− iQδ)−1, and z = hλ. Now, by Proposition 3.4,
and since Qδ is pseudodifferential, we get

WF′h(Rδ(z)− iRδ(z)QδRδ(z)) ∩ T ∗(X ×X) ⊂ ∆(T ∗X) ∪ Ω+.

To handle the remaining term in (3.19), we first assume that λ is not a pole of R. Applying
again Proposition 3.4, we see that

WF′h(Rδ(z)QδR(λ)QδRδ(z)) ∩ T ∗(X ×X) ⊂ Υδ,

Υδ := {(ρ′, ρ) | ∃t, s ≥ 0 : etHp(ρ) ∈WFh(Qδ), e
−sHp(ρ′) ∈WFh(Qδ)}.

Therefore, WF′h(R(λ)) ∩ T ∗(X ×X) ⊂ ∆(T ∗X) ∪ Ω+ ∪ Υδ. Since R(λ) does not depend
on δ and h, by (2.6),

WF′(R(λ)) ⊂ ∆(T ∗X) ∪ Ω+ ∪
⋂
δ>0

Υδ = ∆(T ∗X) ∪ Ω+ ∪ (E∗u × E∗s ),

as claimed.

In a neighborhood of a pole λ0 of R, we replace R(λ) in (3.19) by (λ − λ0)J(λ0)R(λ).
Arguing as before, we get WF′((λ−λ0)J(λ0)R(λ)) ⊂ ∆(T ∗X)∪Ω+∪ (E∗u×E∗s ) uniformly
in λ near λ0. By taking J(λ0) derivatives at λ = λ0 we obtain the first part of (3.7). By taking
J(λ0) − 1 derivatives at λ = λ0, we get Π = −Rδ(z0)QδΠQδRδ(z0), which implies the
second part of (3.7).

4. Proof of the main theorem

The proof is based on (3.5) which relates the resolvent and the propagator. The description
of the wave front set of (P−λ)−1 allows us to take the flat trace of the left hand side composed
with ϕ∗−t0 and that formally gives the meromorphic continuation.

To justify this we first use the mollifiers Eε to obtain trace class operators to which
Lemma 2.8 can be applied:

L 4.1. – Suppose that Eε is given by (2.18) and that T ≥ t0 > 0. Then there exists a
constant C, independent of ε, T such that

‖Eεϕ∗−TEε‖tr ≤ CeCT ε−n−2 and
∫ T+1

T

| trEεϕ∗−tEε| dt ≤ CeCT .(4.1)
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Proof. – We replace ϕ∗−t by ϕ∗t (considering the flow in the opposite time direction). The
first estimate follows from

‖Eεϕ∗TEε‖tr ≤ ‖Eε‖tr · ‖ϕ∗T ‖L2→L2 · ‖Eε‖L2→L2

≤ CeCT ‖Eε‖tr ≤ CeCT ‖(−∆g + 1)−k(−∆g + 1)kEε‖tr
≤ CeCT ‖(−∆g + 1)−k‖tr · ‖(−∆g + 1)kEε‖L2→L2 ≤ C ′eCT ε−2k,

provided 2k > n. Here g is any fixed Riemannian metric on X. For the second estimate in
(4.1) we use the definition of Eε:∫ T+1

T

| trEεϕ∗tEε| dt =

∫ T+1

T

∫
X×X

Eε(x, y)Eε(ϕt(y), x) dxdydt

≤ Cε−2n

∫ T+1

T

∫
X×X

1l{d(x,y)<c1ε}1l{d(x,ϕt(y))<c1ε} dx dy dt

≤ Cε−n
∫ T+1

T

∫
X

1l{d(y,ϕt(y))<2c1ε} dy dt ≤ C
′enLT ,

where the last estimate comes from Lemma 2.1.

We now complete the proof of the meromorphic continuation of ζR(λ). Thanks to
Formula (2.5) we need to show that

(4.2) fk(λ) :=
1

i

∑
γ

T#
γ e

iλTγ tr∧k Pγ
|det(I − Pγ)|

=
∂

∂λ
log exp

(
−
∑
γ

T#
γ e

iλTγ tr∧k Pγ
Tγ |det(I − Pγ)|

)

has a meromorphic continuation to Imλ > −C0 for any C0, with poles that are simple and
residues which are integral.

Fix t0 such that 0 < t0 < Tγ for all γ and put Pk := P|C∞(X; Ek0 ) where Ek0 is defined
in § 2.2. For large T > 0, take χT ∈ C∞0 (t0/2, T +1) such that χ = 1 near [t0, T ] and |χ| ≤ 1

everywhere. Integrating (2.4) against the function χT (t)eiλt, we get

1

i

∑
γ

χT (Tγ)T#
γ e

iλTγ tr∧k Pγ
|det(I − Pγ)|

=
1

i
tr[
∫ ∞

0

χT (t)eit(λ−Pk) dt.

Using the bound on the number of closed geodesics given in Lemma 2.2 together with (2.20),
we see that for Imλ� 1,

fk(λ) =
1

i
lim

T→+∞
tr[
∫ ∞

0

χT (t)eit(λ−Pk) dt

=
1

i
lim

T→+∞
lim
ε→0

tr

∫ ∞
t0

χT (t)Eεe
it(λ−Pk)Eε dt

=
1

i
lim
ε→0

lim
T→+∞

tr

∫ ∞
t0

χT (t)Eεe
it(λ−Pk)Eε dt

We can change the order in which limits are taken by (4.1); we can replace the domain of
integration by (t0,∞) since trEεe

−itPkEε = 0 for ε small enough and t ∈ [t0/2, t0].
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Let Rk(λ) = R(λ)|HsG(X; Ek0 ), where R(λ) is the inverse of P − λ on the anisotropic
Sobolev space HsG(X; E), studied in § 3.2, and s is large depending on C0. By Proposi-
tion 3.2, we have for Imλ� 1,

fk(λ) = − lim
ε→0

trEεe
it0(λ−Pk)Rk(λ)Eε.

Because of the choice of t0 (0 < t0 < Tγ for all γ), and as WF′(e−it0Pk) is contained in
the graph of et0Hp , Proposition 3.3 shows that e−it0PkRk(λ) satisfies the assumptions of
Lemma 2.8 with the poles handled as in (3.6). Hence, by another application of (2.20),

fk(λ) = −eiλt0 tr[
(
e−it0PkRk(λ)

)
,

which is a meromorphic function. Finally, to see that fk has simple poles and integral
residues, we use the following elementary result based on the fact that traces of nilpotent
operators are 0:

L 4.2. – Suppose that a linear map A : Cm → Cm satisfies (A− λ0)J = 0 for some
λ0 ∈ C. Then for ϕ holomorphic near λ0 we have

lim
λ→λ0

(λ− λ0) tr

ϕ(A)

J∑
j=1

(A− λ0)j−1

(λ− λ0)j

 = mϕ(λ0),

where ϕ(A) is defined by the power series expansion at λ0 (which is finite).

From (3.6) we have near a pole λ0 of Rk,

eit0λe−it0PkRk(λ) = eit0λRH,k(λ)− eit0λ
J(λ0,k)∑
j=1

e−it0Pk(Pk − λ0)j−1Πk

(λ− λ0)j
,

where RH,k is holomorphic near λ0 and Πk is given by (3.18):

Πk :=
1

2πi

∮
λ0

(λ−Pk)−1dλ, tr[ Πk = trHsG Πk ∈ N.

Here we use the fact that tr[ and trHsG agree on finite rank operators (as follows from
an approximation statement and the fact that the trace of a smoothing operator is the
integral of its Schwartz kernel over the diagonal, see (C.3)). We now apply Lemma 4.2 with
ϕ(µ) = e−it0µ and A = Pk|ker(Pk−λ0)J .

Appendix A

Estimates on recurrence

In this appendix we provide proofs of statements made in §2.1.
It follows immediately from the Anosov property (2.1) that (with I denoting the identity

operator)

(A.1) t 6= 0, ϕt(x) = x =⇒ (dϕt(x)− I)|Eu(x)⊕Es(x) is invertible.

Indeed, if v ∈ Eu(x)⊕ Es(x) and dϕt(x)v = v, then dϕNt(x)v = v for all N ∈ Z, implying
by (2.1) that v = 0.

The following lemma is a generalization of (A.1) to the case when ϕt(x) is close to x. We
fix a smooth distance function d(·, ·) on X and a smooth norm | · | on the fibers of TX.
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L A.1. – Let δ0 > 0 and T x,y : TxX → TyX, d(x, y) < δ0, be a continuous family
of invertible linear transformations such that T x,x = I and T x,y maps Eu(x), Es(x),RV (x)

onto Eu(y), Es(y),RV (y). Fix te > 0. Then there exist δ ∈ (0, δ0) and C such that

(A.2) |v| ≤ C|(dϕt(x)− T x,ϕt(x))v| if d(x, ϕt(x)) < δ, t ≥ te, v ∈ Eu(x)⊕ Es(x).

Proof. – We first note that it suffices to prove (A.2) for sufficiently large t. Indeed, if N is
a large fixed integer, v ∈ Eu(x) ⊕ Es(x), and d(x, ϕt(x)) and |(dϕt(x) − T x,ϕt(x))v| are
both small, then d(x, ϕNt(x)) and |(dϕNt(x)− T x,ϕNt(x))v| are small as well; applying (A.2)
for Nt in place of t, we get that |v| is small.

Assume that the conditions of (A.2) are satisfied and put v = vu + vs, where vu ∈ Eu(x),
vs ∈ Es(x). For t large enough, the Anosov property (2.1) implies

|vu| ≤ 1
2 |dϕt(x)vu|, |dϕt(x)vs| ≤ 1

2 |vs|;

since for δ small enough, ‖ T x,ϕt(x)‖, ‖ T −1
x,ϕt(x)‖ are close to 1, we get

|v| ≤ |vu|+ |vs| ≤ 3
(
|(dϕt(x)− T x,ϕt(x))vu|+ |(dϕt(x)− T x,ϕt(x))vs|

)
≤ C|(d(ϕt(x)− T x,ϕt(x))v|,

where the last inequality is due to the fact that (dϕt(x)− T x,ϕt(x))vu ∈ Eu(ϕt(x)),
(dϕt(x)− T x,ϕt(x))vs ∈ Es(ϕt(x)).

Fix a constant L > 0 such that for some choice of the norm on the space C2(X) of twice
differentiable functions on X, there exists a constant C such that

(A.3) ‖f ◦ ϕt‖C2(X) ≤ CeL|t|‖f‖C2(X), f ∈ C2(X).

SuchL exists sinceX is compact andϕt is a one-parameter group. As a consequence of (A.3)
(since it gives a bound on the Lipschitz norm of ϕt), we get

(A.4) d(ϕt(x), ϕt(x
′)) ≤ CeL|t|d(x, x′).

The next lemma in particular implies (by letting ε→ 0) that two different closed trajecto-
ries of nearby periods t, t′ have to be at least δe−Lt away from each other, where δ is a small
constant.

L A.2. – Fix te > 0. Then there exist C, δ > 0 such that for each ε > 0,

(A.5) d(x, ϕt(x)) ≤ ε, d(x′, ϕt′(x
′)) ≤ ε, t, t′ ≥ te, |t− t′| ≤ δ, d(x, x′) ≤ δe−Lt

=⇒ |t− t′| ≤ Cε, ∃s ∈ (−1, 1) : d(x, ϕs(x
′)) ≤ Cε.

Proof. – Without loss of generality, we may assume that ε is small depending on δ.
By (A.4), we see that d(ϕt(x), ϕt(x

′′)) ≤ Cδ whenever d(x, x′′) ≤ δe−Lt. Therefore, we may
operate in a coordinate neighborhood containing x, x′, ϕt(x), ϕt′(x

′), identified with a ball
in Rn. We replace x′ with ϕs(x′) for some |s| < 1 so that

(A.6) x′ − x ∈ Eu(x)⊕ Es(x).

By (A.3), we have for all j, k,

|∂2
xjxk

ϕt(x
′′)| ≤ CeLt for d(x, x′′) ≤ δe−Lt;
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using the Taylor expansion of ϕt(x) in x, we see that

|ϕt(x′)− ϕt(x)− dϕt(x)(x′ − x)| ≤ CeLt|x′ − x|2 ≤ Cδ|x′ − x|.

Next, |∂2
t ϕt(x

′)| ≤ C; by Taylor expanding ϕt(x′) in t, we get

|ϕt′(x′)− ϕt(x′)− V (ϕt(x
′))(t′ − t)| ≤ C|t′ − t|2 ≤ Cδ|t′ − t|.

Together, these give

|ϕt′(x′)− ϕt(x)− dϕt(x)(x′ − x)− V (ϕt(x
′))(t′ − t)| ≤ Cδ(|x′ − x|+ |t′ − t|).

Since d(x, ϕt(x)) ≤ ε and d(x′, ϕt′(x
′)) ≤ ε, we get

|(dϕt(x)− I)(x′ − x) + V (ϕt(x
′))(t′ − t)| ≤ Cδ(|x′ − x|+ |t′ − t|) + Cε.

Let T x,y be a family of transformations satisfying the conditions of Lemma A.1; it can be
defined for example using parallel transport along geodesics with respect to some Rieman-
nian metric and projectors corresponding to the decomposition TX = E0⊕Eu⊕Es. Then
T x,y maps Eu(x) ⊕ Es(x) onto Eu(y) ⊕ Es(y). Since d(x, ϕt(x)) ≤ ε, we get for ε small
enough depending on δ, |(I − T x,ϕt(x))(x

′ − x)| ≤ δ|x − x′|. Since |ϕt(x′) − ϕt(x)| ≤ Cδ,
we find |V (ϕt(x

′))− V (ϕt(x))| ≤ Cδ. Then

|(dϕt(x)− T x,ϕt(x))(x
′ − x) + V (ϕt(x))(t′ − t)| ≤ Cδ(|x′ − x|+ |t′ − t|) + Cε.

Now, by (A.6), (dϕt(x) − T x,ϕt(x))(x
′ − x) ∈ Eu(ϕt(x)) ⊕ Es(ϕt(x)); since this space is

transverse to V (ϕt(x)), and by Lemma A.1, we get

|x′−x|+ |t′− t| ≤ C(|(dϕt(x)− T x,ϕt(x))(x
′−x)|+ |t′− t|) ≤ Cδ(|x′−x|+ |t′− t|) +Cε.

It remains to choose δ small enough so that Cδ < 1/2.

We now give a volume bound on the set of nearly closed trajectories:

Proof of Lemma 2.1. – First of all, we can replace the range of values of t in (2.2)
by |t− T | ≤ δ/2, where δ is the constant from Lemma A.2. (Indeed, we can write [te, T ]

as a union of such intervals.) Next, let x1, . . . , xN , with N depending on T , be a maximal
set of points in X such that d(xj , xk) ≥ δe−LT /2. Since the metric balls of radius δe−LT /4
centered at xj are disjoint, by calculating the volume of their union we find N ≤ CenLT .
Now,

{(x, t) | |t− T | ≤ δ/2, d(x, ϕt(x)) ≤ ε} ⊂
N⋃
j=1

Aj ,

Aj := {(x, t) | |t− T | ≤ δ/2, d(x, xj) ≤ δe−LT /2, d(x, ϕt(x)) ≤ ε}.

Take some j such that Aj is nonempty and fix (x′, t′) ∈ Aj . Then for each (x, t) ∈ Aj , we
have |t− t′| ≤ δ, d(x, x′) ≤ δe−LT . By Lemma A.2, Aj is contained in an O(ε) sized tubular
neighborhood of the trajectory {(ϕs(x′), t′) | |s| < 1}. Therefore, we get µ̃(Aj) ≤ Cεn,
finishing the proof.
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Proof of Lemma 2.2. – Let γ(t) = ϕt(x0) be a closed trajectory of period t0. Then for
each ε > 0, we have by (A.4),

(A.7) d(x, ϕt(x)) ≤ Cε if |t− t0| ≤ ε and d(x, γ(s)) ≤ εe−Lt0 for some s.

Moreover, for t0 ≤ T and ε small enough depending on T , the tubular neighborhoods on the
right-hand side of (A.7) for different closed trajectories do not intersect. The volume (in x, t)
of each tubular neighborhood is bounded from below by C−1εne−(n−1)Lt0 ; it remains to
let ε→ 0 and apply Lemma 2.1.

Appendix B

Proof of Guillemin’s trace formula

In this appendix, we give a self-contained proof of Guillemin’s trace Formula (2.4)
(including the special case (1.5)) in the case of Anosov flow ϕt = etV on a compact mani-
fold X. The proof is somewhat simplified by the fact that Eu(x) ⊕ Es(x) is a subbundle
of TX transversal to RV and invariant under the flow.

If γ(t) = ϕt(x0) is a closed trajectory with period t0 6= 0 (here t0 need not be the primitive
period), then the linearized Poincaré map is defined by

(B.1) Pγ := dϕ−t0(x0)|Eu(x0)⊕Es(x0).

Note that I− Pγ is invertible by (A.1). The maps dϕ−t0(ϕs(x0)) are conjugate to each other
by dϕs(x0) for all s, therefore the expressions det(I − Pγ) and tr(∧kPγ), used in (2.4), are
independent of the choice of the base point on γ.

Fix a density dx on X and let K(t, y, x) be the Schwartz kernel of ϕ∗−t = e−itP with
respect to this density, that is for f ∈ C∞(X),

(B.2) f(ϕ−t(y)) =

∫
X

K(t, y, x)f(x) dx.

To be able to define the flat trace of ϕ∗−t as a distribution in t ∈ R \ 0, we need to take some
χ(t) ∈ C∞c (R \ 0) and show that the operator

Tχ :=

∫
R
χ(t)ϕ∗−t dt

satisfies the condition (2.16), that is WF′(Tχ) does not intersect the diagonal. By the formula
for the wave front set of a pushforward [21, Theorem 8.2.12], we know that

WF′(Tχ) ⊂ {(y, η, x,−ξ) | ∃t ∈ suppχ : (t, 0, y, η, x, ξ) ∈WF(K)},

and thus it suffices to show that

(B.3) WF(K) ∩ {(t, 0, x, ξ, x,−ξ) | t 6= 0, (x, ξ) ∈ T ∗X \ 0} = ∅.

Note that (B.3) is exactly the condition under which one can define the pullbackK(t, x, x) ∈
D′((R \ 0)×X) of K by the map (t, x) 7→ (t, x, x), and

tr[(Tχ) =

∫
R×X

χ(t)K(t, x, x) dxdt.
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Now, K(t, y, x) is a delta function on the surface {y = ϕt(x)}, therefore by [21, Theorem 8.2.4]
its wave front set is contained in the conormal bundle to that surface:

WF(K) ⊂ {(t,−V (x) · η, ϕt(x), η, x,−Tdϕt(x) · η) | t ∈ R, x ∈ X, η ∈ T ∗ϕt(x)X \ 0}.

Then to prove (B.3), we need to show that if t 6= 0, ϕt(x) = x, V (x) · η = 0, and
(I − Tdϕt(x)) · η = 0, then η = 0; this follows immediately from (A.1).

The principal component of the proof of the trace Formula (2.4) is the following

L B.1. – Let x0 ∈ X and t0 6= 0 be such that ϕt0(x0) = x0. Then there exist
ε > 0 and a neighborhood U ⊂ X of x0 such that ϕs(x0) ∈ U for |s| < ε and for each
χ(t, x) ∈ C∞c ((t0 − ε, t0 + ε)× U), we have

(B.4)
∫
R×X

χ(t, x)K(t, x, x) dx =
1

|det(I − Pγ)|

∫ ε

−ε
χ(t0, ϕs(x0)) ds,

where Pγ is defined in (B.1).

Proof. – We choose a local coordinate systemw = ψ(x),ψ : U1 → B(0, ε1) ⊂ Rn, where
U1 is a neighborhood of x0, such that

ψ(x0) = 0, ψ∗V = ∂w1
, dψ(x0)

(
Eu(x0)⊕ Es(x0)

)
= {dw1 = 0}.

We next choose small ε ∈ (0, ε1) such that for U := ψ−1(B(0, ε)) and |t − t0| < ε, we have
ϕ−t(U) ⊂ U1. We define the maps A : BRn−1(0, ε)→ BRn−1(0, ε1) and F : BRn−1(0, ε)→ (−ε1, ε1)

by the formulas

ϕ−t0(ψ−1(0, w′)) = ψ−1(F (w′), A(w′)), w′ ∈ Rn−1, |w′| < ε.

Then for |t− t0| < ε and (w1, w
′) ∈ B(0, ε), we have

ϕ−t(ψ
−1(w1, w

′)) = ψ−1(−t+ t0 + w1 + F (w′), A(w′)).

Moreover, F (0) = 0 and A(0) = 0.
Since the flat trace does not depend on the choice of density on X, we may choose

the density dx so that ψ∗dx is the standard density on Rn. Then for |t− t0| < ε and
(z1, z

′), (w1, w
′) ∈ B(0, ε), we have

K(t, ψ−1(z1, z
′), ψ−1(w1, w

′)) = δ(w′ −A(z′))δ(w1 + t− t0 − z1 − F (z′)).

The left-hand side of (B.4) is∫
R×B(0,ε)

χ(t, ψ−1(w1, w
′))δ(w′ −A(w′))δ(t− t0 − F (w′)) dw1dw

′dt.

Integrating out t, we get∫
B(0,ε)

χ(t0 + F (w′), ψ−1(w1, w
′))δ(w′ −A(w′)) dw1dw

′.

Now, dA(0) is conjugated by the map dψ(x0) to the Poincaré map Pγ , therefore I−dA(0) is
invertible and for ε small enough and |w′| < ε, the equationw′ = A(w′) has exactly one root
at w′ = 0. We then integrate out w′ to get

1

|det(I − dA(0))|

∫ ε

−ε
χ(t0, ψ

−1(w1, 0)) dw1 =
1

|det(I − Pγ)|

∫ ε

−ε
χ(t0, ϕs(x0)) ds,

which finishes the proof.
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By Lemma B.1 and a partition of unity, we see that for each χ(t, x) ∈ C∞c ((R \ 0)×X),
we have

(B.5)
∫
R×X

χ(t, x)K(t, x, x) dx =
∑
γ

1

|det(I − Pγ)|

∫
γ

χ(Tγ , x) dL(x)

where the sum is over all closed trajectories γ with period Tγ and dL refers to the measure dt
on γ(t) = ϕt(x0). By taking χ(t, x) = χ(t), we obtain (1.5).

To show the more general (2.4), it suffices to prove a local version similar to (B.4):

(B.6)
∫
R×X

χ(t, x)Kk(t, x, x) dx =
tr(∧k Pγ)

|det(I − Pγ)|

∫ ε

−ε
χ(t0, ϕs(x0)) ds,

whereKk is the Schwartz kernel of the operator
∑r
j=1Bjj , r = dim Ek0 , andBjl : C∞0 (U)→

C∞(U) are the operators defined by

ϕ∗−t(fel) =

r∑
j=1

(Bjl(t)f)ej ,

here e1, . . . , er is a local frame of Ek0 defined near x0.
Define the functions bjl on (t0 − ε, t0 + ε)× U by

ϕ∗−tel =

r∑
j=1

bjl(t)ej .

Then Bjl(t)f = bjl(t)(ϕ
∗
−tf), which means that

Kk(t, x, y) =
∑
j

bjj(t, y)K(t, x, y),

with K(t, x, y) defined in (B.2). Then by Lemma B.1,∫
R×X

χ(t, x)Kk(t, x, x) =
1

|det(I − Pγ)|

∫ ε

−ε
χ(t0, ϕs(x0))

∑
j

bjj(t0, ϕs(x0)) ds.

It remains to note that∑
j

bjj(t, ϕs(x0)) = tr∧k(T dϕ−t0(x0)|E∗s (x0)⊕E∗u(x0)) = tr∧k Pγ .

Appendix C

Review of microlocal and semiclassical analysis

In this appendix, we provide details and references for the concepts and facts listed in § 2.3.
All the proofs are essentially well known but we include them for the reader’s convenience.

In standard microlocal analysis the asymptotic parameter is given by |ξ|, where ξ is fiber
variable (here the norm is with respect to some smooth metric on the compact manifold X).
We start our presentation with the review of that theory. In the semiclassical setting a small
parameter h is added to measure the wave length of oscillations. We are then concerned in
asymptotics as both h → 0 and ξ → 0. That is one reason for which the fiber compactifi-
cation is useful as that provides a uniform setting for such asymptotics. In specific applica-
tions the operators depend on additional parameters, in our case the spectral parameter λ
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or its rescaled version z = hλ. If the classical objects (symbols) satisfy uniform estimates
with respect to the parameters, so do their quantizations (operators), as do the derivatives
in λ. That is implicit in many statements but is not stated in order not to clutter the already
complicated notation.

C.1. Microlocal calculus

Let X be a manifold with a fixed volume form. We use the algebra of pseudodifferential
operators Ψk(X), k ∈ R, with symbols lying in the class Sk(X) ⊂ C∞(T ∗X):

(C.1) a ∈ Sk(X) ⇐⇒ sup
x∈K
〈ξ〉|β|−k|∂αx ∂

β
ξ a(x, ξ)| ≤ CαβK , K b X.

See for example [22, § 18.1] for the basic properties of operators in Ψk. In particular,
each A ∈ Ψk(X) is bounded between Sobolev spaces Hm

comp(X)→ Hm−k
loc (X), or simply

Hm(X)→ Hm−k(X) if X is compact. The wave front set WF(A) of A ∈ Ψk(X) is a closed
conic subset of T ∗X \ 0, with 0 denoting the zero section; the complement of WF(A)

consists of points in whose conic neighborhoods the full symbol of A is O(〈ξ〉−∞), see the
discussion following [22, Proposition 18.1.26].

The wave front set WF(u) ⊂ T ∗X \ 0 of a distribution u ∈ D′(X) is defined as follows: a
point (x, ξ) ∈ T ∗X \0 does not lie in WF(u) if there exists a conic neighborhood U of (x, ξ)

such that Au ∈ C∞(X) for each A ∈ Ψ0(X) with WF(A) ⊂ U—see [22, (18.1.35) and
Theorem 18.1.27]. An equivalent definition (see [21, Definition 8.1.2]) is given in terms of
the Fourier transform: (x, ξ) 6∈ WF(u) if and only if there exists χ ∈ C∞c (X) with suppχ

contained in some coordinate neighborhood and χ(x) 6= 0 such that χ̂u(ξ′) = O(〈ξ′〉−∞)

for ξ′ in a conic neighborhood of ξ; here χu is considered a function on Rn using some
coordinate system and ξ is accordingly considered as vector in Rn.

The wave front set WF′(B) ⊂ T ∗(Y ×X) of an operatorB : C∞c (X)→ D′(Y ) is defined
using its Schwartz kernel KB(y, x) ∈ D′(Y ×X):

(C.2) WF′(B) := {(y, η, x,−ξ) | (y, η, x, ξ) ∈WF(KB)}.

Here we use the fixed smooth density on X to define the Schwartz kernel as a distribution
on Y ×X; however, this choice does not affect the wave front set. IfB ∈ Ψk(X), then the set
defined in (C.2) is the image of the wave front set WF(B) ⊂ T ∗X ofB as a pseudodifferential
operator under the diagonal embedding T ∗X → T ∗(X ×X), see [22, (18.1.34)].

The concept of the wave front plays a crucial role in the definition of the flat trace. Before
proving Lemma 2.8 we give

Proof of (2.19). – We first show that Eε ∈ Ψ0+(X) with seminorm estimates indepen-
dent of ε. For that we use Melrose’s characterization of pseudodifferential operators [22,
§ 18.2]: it is enough to show that for any set of vector fields Vj ∈ C∞(X × X;T (X × X))

tangent to the diagonal, we have V1 · · ·VNKEε ∈ H−n/2−(X × X) with norm bounded
uniformly in ε. This can be done in local coordinates, writing ψ(d(x, y)/ε) = Ψ(x, (x− y)/ε, ε),
where Ψ is a smooth function on Rn × Rn × [0,∞), compactly supported in the second
argument. We have Fε(x) =

∫
Rn Ψ(x, (x − y)/ε, ε)J(y) dy, where J is the Jacobian, and

the support of the integrand lies O(ε) close to x. Then ∂αxFε(x) = Oα(εn); indeed, one can
rewrite the x derivatives falling on the second argument of Ψ as derivatives in y and integrate
by parts. This implies that ∂αx (1/Fε(x)) = Oα(ε−n). Locally, vector fields tangent to the
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diagonal are generated by ∂xj + ∂yj and (xj − yj)∂xk and we see that they preserve the class
of smooth functions of x, (x− y)/ε, ε. Therefore, for |α| = |β|,

(x− y)α∂βx (∂x + ∂y)γKEε(x, y) = ε−nFαβγ(x, (x− y)/ε, ε),

where Fαβγ ∈ C∞(R2n × [0,∞)) are smooth functions. The right hand side is in H−n/2−(R2n)

uniformly in ε which proves the claim. To obtain (2) Eε → I in Ψ0+(X) we apply the same
argument to KEε −KI .

Proof of Lemma 2.8. – Let ∆(X) = {(x, x)} ⊂ X × X and let Γ be the complement
of a small conic neighborhood of the conormal bundle N∗∆(X) ⊂ T ∗(X × X). Since
WF(KB) ∩ N∗∆(X) = ∅ by (2.16) we can choose Γ so that WF(KB) ⊂ Γ. This means
that KB ∈ D′Γ(X × X) where the last space consists of all distributions u ∈ D′(X × X)

with WF(u) ⊂ Γ. If we write Bε := EεBEε then Bε : D′(X) → C∞(X), and hence
KBε ∈ C∞(X ×X),

(C.3) trBε =

∫
X

KBε(x, x)dx =

∫
X

ι∗KBε dx.

Since Eε → I in Ψ0+, Eεϕ → ϕ in C∞(X) for ϕ ∈ C∞(X). Hence KBε(ϕ1 ⊗ ϕ2) →
KB(ϕ1 ⊗ ϕ2), ϕj ∈ C∞(X), and consequently KBε → KB in D′(X × X). To show that
KBε → KB in D′Γ(X × X), we adapt [21, Definition 8.2.2] and it suffices to show that for
each A ∈ Ψ0(X ×X) with WF(A) ∩ Γ = ∅, AKBε is bounded in C∞(X ×X) uniformly
in ε. In fact,

AKBε = AEtε,xEε,yKB ,

where Eε,x and Eε,y denote the operator Eε acting on x and y variables in X ×X, and the
superscript t denotes the transpose. SinceEε is uniformly bounded in Ψ0+(X) and WF(A) is
contained in a small neighborhood of N∗∆(X), Cε := AEtε,xEε,y is in Ψ0+(X × X)

with seminorms uniformly bounded with respect to ε, and with WF(Cε) ∩ Γ = ∅. (3)

Hence CεKB ∈ C∞(X × X) uniformly in ε and thus KBε → KB in D′Γ(X × X).
We now invoke [21, Theorem 8.2.4] to conclude that ι∗KBε → ι∗KB in D′(X). Hence∫
X
ι∗KBε dx→

∫
X
ι∗KB dx as ε→ 0, proving the lemma.

If E is a smooth r-dimensional vector bundle over X (see for example [21, Defini-
tion 6.4.2]), then we can consider distributions u ∈ D′(X; E) with values in E. The wave
front set WF(u), a closed conic subset of T ∗X \ 0, is defined as follows: (x, ξ) 6∈ WF(u)

if and only if for each local basis e1, . . . , er ∈ C∞(U ; E) of E defined in a neighborhood
U of x, and for u|U =

∑r
j=1 ujej , uj ∈ D′(U), we have (x, ξ) 6∈ WF(uj) for all j. Simi-

larly, one can define WF′(B) for an operator B with values in some smooth vector bundle
over Y ×X.

An operator A : D′(X; E)→ D′(X; E) is said to be pseudodifferential in the class Ψk(X),

(2) This specific statement is not used in the paper: all we need isEεϕ→ ϕ in C∞ for ϕ ∈ C∞(X), and thatEε is
uniformly bounded in some Ψk(X).
(3) The slight subtlety here lies in the fact thatEε,x, Eε,y are not pseudifferential operators onX×X. However, the
localization to a region where |ξ| and |η| are comparable makes the composition into a pseudodifferential operator.
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denoted A ∈ Ψk(X; Hom( E)), if WF(Au) ⊂ WF(u) for all u ∈ D′(X; E) and, for each
local basis e1, . . . , er ∈ C∞(U ; E) over some open U ⊂ X, we have on U ,

A(fel) =

r∑
j=1

(Ajlf)ej , for each f ∈ D′(X; E), supp f b U,

where Ajk ∈ Ψk(U). As before, the wave front set WF(A) on U is defined as the union
of WF(Ajl) over all j, l. The principal symbol

σ(A) ∈ Sk(X; Hom( E))/Sk−1(X; Hom( E))

is defined using the standard notion of the principal symbol σ(Ajl) ∈ Sk(X)/Sk−1(X) (see
the discussion following [22, Definition 18.1.20]) as follows:

σ(A)el =

r∑
j=1

σ(Ajl)ej on U.

The operator A is called elliptic in the class Ψk at some point (x, ξ) ∈ T ∗X \ 0, if
〈ξ′〉−kσ(A)(x′, ξ′) is invertible (as a homomorphism E → E) uniformly as ξ′ → ∞
for (x′, ξ′) in a conic neighborhood of (x, ξ); equivalently, |det(〈ξ′〉−kσ(A))| ≥ c > 0 in a
conic neighborhood of (x, ξ). The (open conic) set of all elliptic points of A is denoted ell(A).

C.2. Semiclassical calculus

We now introduce the algebra Ψk
h(X) of semiclassical pseudodifferential operators,

depending on a parameter h > 0 tending to zero [37, § 14.2]. The corresponding sym-
bols a(x, ξ;h) (denoted a ∈ Skh(X)) satisfy a(·, ·;h) ∈ Sk(X) uniformly in h as h→ 0, with
the class Sk defined in (C.1). Each A ∈ Ψk

h(X) has a semiclassical wave front set WFh(A),
a closed (and not necessarily conic) subset of the fiber-radially compactified cotangent
bundle T

∗
X (see [35, § 2.1]); a point (x, ξ) ∈ T ∗X does not lie in WFh(A) if and only if the

full symbol a of A satisfies a(x′, ξ′) = O(h∞〈ξ′〉−∞) for h small enough and (x′, ξ′) ∈ T ∗X
in a neighborhood of (x, ξ) in T

∗
X. The elements of Ψk

h(X) act between semiclassical
Sobolev spaces Hm

h,comp(X)→ Hm−k
h,loc (X) with norm O(1), see [37, § 14.2.4].

Using operators in Ψk
h(X), we define the semiclassical wave front set WFh(u) ⊂ T

∗
X

for an h-tempered family of distributions u = u(h), see for example [37, § 8.4.2], [3, § 3.1].
Similarly to WF(u), the set WFh(u) can be characterized using the Fourier transform as
follows: (x, ξ) 6∈ WFh(u) if and only if there exists χ ∈ C∞c (X) supported in some
coordinate neighborhood, with χ(x) 6= 0, and a neighborhood Uξ of ξ in T

∗
X, such that

F h(χu)(ξ′) := χ̂u(ξ′/h) = O(h∞〈ξ′〉−∞) for ξ′ ∈ Uξ. This characterization immediately
implies (2.6). Similarly, one can define the wave front set WF′h(B) ⊂ T

∗
(Y × X) of an

h-tempered family of operators B(h) : C∞c (X)→ D′(Y ).
The semiclassical principal symbol of A ∈ Ψk

h(X), denoted σh(A), lies in the
space Skh(X)/hSk−1

h (X)—see [37, Theorem 14.1]. Note that this encodes the behavior
of the full symbol of A at h = 0 everywhere on T

∗
X, as well as the behavior at the fiber

infinity ∂T
∗
X for small, but positive, values of h—see [35, § 2.1]. We cannot use the

more convenient space of classical operators, whose principal symbol is just a function
on T ∗X (see [3, § 3.1]) because the symbol of the operator esG(h)Pe−sG(h) (see § 3) has
the form p+ ishHpG, with p ∈ S1(X) and HpG = O(log(2 + |ξ|)) narrowly missing the
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class S0(X). The (open) elliptic set ellh(A) ⊂ T
∗
X is defined as follows: (x, ξ) ∈ ellh(A)

if 〈ξ′〉−k|σh(A)(x′, ξ′;h)| ≥ c > 0 for h small enough and all (x′, ξ′) ∈ T ∗X in a neigh-
borhood of (x, ξ) in T

∗
X. Similarly to § C.1, we can study operators and distributions with

values in smooth vector bundles over X.

Proof of Lemma 2.3. – Using local coordinates, we reduce to the caseX = Rn, Y = Rm.
Assume first that there exist neighborhoods U, V such that (2.7) holds. Take χx ∈ C∞c (X),
χy ∈ C∞c (Y ) with χx(x) 6= 0, χy(y) 6= 0, and neighborhoods Uξ, Vη of ξ, η, such that
suppχx × Uξ ⊂ U and suppχy × Vη ⊂ V .

LetK ′B(y′, x′) = χy(y′)KB(y′, x′)χx(x′), and take arbitrary ξ′ ∈ Uξ, η′ ∈ Vη (depending
on h). Then

F hK ′B(η′,−ξ′) = F h(χyBf)(η′), f(x′) := χx(x′)eix
′·ξ′/h,

where F h denotes the semiclassical Fourier transform [37, § 3.3]. We have WFh(f) ⊂ U (see
[37, (8.4.7)]) and thus by (2.7), WFh(Bf)∩V =∅. It follows that WFh(χyBf)∩(Rn × Vη)=∅
and thus by the semiclassical analog of [21, Proposition 8.1.3], F h(χyBf)(η′) = O(h∞)

for η′ ∈ Vη, yielding, by the characterization of WFh via the Fourier transform,
(y, η, x, ξ) 6∈WF′h(B).

Now, assume that (y, η, x, ξ) 6∈WF′h(B). Take χx ∈ C∞c (X), χy ∈ C∞c (Y ) such that
χx = 1 on a neighborhood Ux of x, χy = 1 on a neighborhood Vy of y, and neighbor-
hoods Uξ, Vη of ξ, η, such that

(C.4) (suppχy × V η × suppχx × Uξ) ∩WF′h(B) = ∅.

PutU := Ux × Uξ, V := Vy × Vη, and assume that f is an h-tempered family of distributions
on X such that WFh(f) ⊂ U . By Fourier inversion formula together with the characteriza-
tion of WFh via the Fourier transform,

f(x′) = χx(x′)(2πh)−n
∫
Uξ

eix
′·ξ′/h F hf(ξ′) dξ′ + (1− χx(x′))f(x′)

+ χx(x′)(2πh)−n
∫
Rn\Uξ

eix
′·ξ′/h F hf(ξ′) dξ′

= (2πh)−n
∫
Uξ

χx(x′)eix
′·ξ′/h F hf(ξ′) dξ + O(h∞)C∞c .

Therefore, if K ′B(y′, x′) = χy(y′)KB(y′, x′)χx(x′), then for bounded η′,

F h(χyBf)(η′) = (2πh)−n
∫
Uξ

F hK ′B(η′,−ξ′) F hf(ξ′) dξ′ + O(h∞)S (Rm).

However, we have by (C.4), F hK ′B(η′,−ξ′) = O(h∞) for (η′, ξ′) ∈ Vη × Uξ; therefore,
F h(χyBf)(η′) = O(h∞) for η′ ∈ Vη, implying that WFh(Bf) ∩ V = ∅.

C.3. Proofs of semiclassical estimates

In this subsection, we denote by boldface letters distributions with values in E or operators
acting on such distributions, and with regular letters, scalar distributions and operators. Note
that anyA ∈ Ψk

h(X) can be viewed as an element of Ψk
h(X; Hom( E)) via the diagonal action.
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Proof of Proposition 2.4. – Part 2 follows immediately from Part 1 and the defini-
tion of WFh. Indeed, assume that (x, ξ) ∈ ellh(P) \WFh(Pu); it suffices to prove that
(x, ξ) 6∈WFh(u). Take a neighborhood U of (x, ξ) such that U b ellh(P) \WFh(Pu), and
choose B ∈ Ψ0

h(X) such that U ⊂ ellh(B) and WFh(B) ∩WFh(Pu) = ∅. Then BP is
elliptic on U and ‖BPu‖Hm−kh

= O(h∞) for all m; by Part 1, applied to the operator BP in

place of P, we get ‖Au‖Hmh = O(h∞) for all m and all A ∈ Ψ0
h(X) such that WFh(A) ⊂ U ,

as required.
It remains to prove Part 1. Similarly to the proof of [22, Theorem 18.1.9] (reducing to

local frames of E and either using Cramer’s rule or repeatedly differentiating the equation
σh(P)−1σh(P) = 1), we see that the inverse σh(P)−1 of σh(P) in C∞(X; Hom( E)) is
well-defined and lies in S−kh (X; Hom( E)) for h small enough and (x, ξ) ∈ ell(P). Using a
cutoff function in T

∗
X, we can then construct q ∈ S−kh (X; Hom( E)) such that q = σh(P)−1

near WFh(A). Take Q0 ∈ Ψ−kh (X; Hom( E)) such that σh(Q0) = q, then Q0P = 1− hR
microlocally near WFh(A), where R ∈ Ψ−1

h (X; Hom( E)). Using asymptotic Neumann
series exactly as in the proof of [22, Theorem 18.1.9] to invert 1 − hR, we construct
Q ∈ Ψ−kh (X; Hom( E)) such that

QP = 1 + O(h∞)Ψ−∞ microlocally near WFh(A).

Then Au = AQPu + O(h∞)C∞ , implying (2.8).

Proof of Proposition 2.5. – Similarly to Proposition 2.4, it is enough to prove Part 1.
Moreover, by a partition of unity, we may assume that WFh(A) is contained in a small
neighborhood of some fixed (x0, ξ0) ∈ T ∗X. Let γ(t) = exp(tHp)(x0, ξ0) and take T ≥ 0

such that γ(−T ) ∈ ellh(B); we may then assume that

(C.5) e−THp(WFh(A)) ⊂ ellh(B), etHp(WFh(A)) ⊂ ellh(B1) for t ∈ [−T, 0].

It is enough to prove the estimate

(C.6) ‖Au‖Hmh ≤ C‖Bu‖Hmh + Ch−1‖B1Pu‖Hmh + O(h1/2)‖B1u‖Hm−1/2
h

+ O(h∞).

Indeed, without loss of generality we may assume that for each (x, ξ) ∈ WFh(B1), there
exists t ∈ [−T, 0] such that etHp(x, ξ) ∈WFh(B); one can then apply (C.6) with A replaced
by B1 and replace O(h1/2)‖B1u‖Hm−1/2

h

by O(h)‖B2u‖Hm−1
h

for certain B2 ∈ Ψ0
h microlo-

calized near γ([−T, 0]); repeating this process, and recalling that u is h-tempered, we can
ultimately make this term O(h∞).

In addition to a smooth density on X, we fix a smooth inner product on the fibers of E;
this defines a Hilbert inner product 〈·, ·〉 on L2(X; E). We denote

Re P =
P + P∗

2
, Im P =

P−P∗

2i
,

so that Re P, Im P ∈ Ψ1
h(X; Hom( E)) are symmetric and P = Re P + i Im P.

We will use an escape function f(x, ξ) ∈ C∞(T
∗
X), such that supp f ⊂ ellh(B1) and

f ≥ 0 everywhere;(C.7)

f > 0 near WFh(A);(C.8)

Hpf ≤ −C0f outside of ellh(B).(C.9)
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Here C0 > 0 is a large constant to be chosen later. To construct such f , we use (C.5) and
identify a tubular neighborhood of γ([−T, 0]) contained in ellh(B1) with

{|θ| < δ} × (−T − δ, δ)τ ⊂ R2n−1
θ × Rτ ,

for small δ > 0, so that Hp is mapped to ∂τ . We then put f(θ, τ) = χ(θ)ψ(τ), where
χ ∈ C∞c ({|θ| < δ}; [0, 1]) satisfies χ = 1 on {|θ| ≤ δ/2}, and ψ ∈ C∞c (−T − δ, δ) satisfies
ψ ≥ 0 everywhere, ψ(0) > 0, and ψ′ ≤ −C0ψ outside of (−T − δ,−T + δ). (To construct ψ
we first choose ψ0 ∈ C∞c (−T −δ, δ) such that ψ0 ≥ 0, ψ0(0) = 1, and ψ′ ≤ 0 on (−T +δ, δ).
We then put ψ(τ) := e−C0τψ0(τ).)

We now prove (C.6) by a positive commutator argument, going back to [20]. Because
WFh(A) might intersect the fiber infinity ∂T

∗
X, we have to put in regularizing pseu-

dodifferential operators. Assume that Sε ∈ Ψm−1
h , ε ∈ (0, 1), quantizes the symbol

σh(Sε) := 〈ξ〉m〈εξ〉−1. Note that Sε is bounded uniformly in Ψm
h for ε > 0. Take F ∈ Ψ0

h

such that σh(F ) = f and WFh(F ) ⊂ ellh(B1), and put Fε = SεF ∈ Ψm−1
h , so that

σh(Fε) = fε := 〈ξ〉m〈εξ〉−1f . Assume that B1u ∈ Hm−1/2
h (X; E). For each ε > 0

(C.10) Im〈Pu, F ∗ε Fεu〉 =
i

2
〈[Re P, F ∗ε Fε]u,u〉+

1

2
〈(F ∗ε Fε Im P + (Im P)F ∗ε Fε)u,u〉,

where the product on the left-hand side makes sense because B1Pu ∈ Hm
h ⊂ H

m−3/2
h ,

WFh(Fε) ⊂ ellh(B1) and F ∗ε Fεu ∈ H
−m+3/2
h .

We now estimate the terms on the right-hand side of (C.10). Denote

(C.11) Tε :=
i

2h
[Re P, F ∗ε Fε] ∈ Ψ2m−2

h (X; Hom( E)),

which is bounded in Ψ2m
h , uniformly in ε. The principal symbol of Tε in Ψ2m

h is independent
of h and diagonal with entries

(C.12) fεHpfε = 〈ξ〉m〈εξ〉−1fεHpf + f2
ε

(
m

2
〈ξ〉−2 − ε2

2
〈εξ〉−2

)
Hp(|ξ|2).

Since Hp(|ξ|2) = O(|ξ|2), we get(
m

2
〈ξ〉−2 − ε2

2
〈εξ〉−2

)
Hp(|ξ|2) = O(1),

uniformly in ε, ξ. Therefore, forC0 large enough depending onm, and some large constantC,
(C.9) implies that

fεHpfε +
C0

2
f2
ε ≤ C|〈ξ〉mσh(B)|2.

The sharp Gårding inequality [37, Theorem 9.11] applied to Tε + C0

2 F
∗
ε Fε − C(S0B)∗(S0B),

where σh(S0) = 〈ξ〉m, gives, uniformly in ε,

(C.13) 〈Tεu,u〉+
C0

2
‖Fεu‖2L2 ≤ C‖Bu‖2Hmh + Ch‖B1u‖2Hm−1/2

h

+ O(h∞).

We next claim that, uniformly in ε,

(C.14)
1

2
〈(F ∗ε Fε Im P+ (Im P)F ∗ε Fε)u,u〉 ≤ C1h‖Fεu‖2L2 +Ch2‖B1u‖2Hm−1/2

h

+ O(h∞),

4 e SÉRIE – TOME 49 – 2016 – No 3



DYNAMICAL ZETA FUNCTIONS VIA MICROLOCAL ANALYSIS 573

where C1 is a constant independent of the choice of f . Indeed, the left-hand side of (C.14)
can be written as

〈(Im P)Fεu, Fεu〉+
1

2
〈(F ∗ε [Fε, Im P]− [F ∗ε , Im P]Fε)u,u〉.

Since σh(Im P) = −q is diagonal and nonpositive, the first term is bounded from
above by C1h‖Fεu‖2L2 by the sharp Gårding inequality. The second term is bounded
by Ch2‖B1u‖2

H
m−1/2
h

+ O(h∞), since the principal symbol calculus shows that

F ∗ε [Fε, Im P]− [F ∗ε , Im P]Fε ∈ h2Ψ2m−1
h

uniformly in ε.

Combining (C.10), (C.13), (C.14), taking C0 > 4C1, we get uniformly in ε,

C0

4
‖Fεu‖2L2 ≤ C‖Bu‖2Hmh + Ch−1‖B1Pu‖Hmh ‖Fεu‖L2 + Ch‖B1u‖2Hm−1/2

h

+ O(h∞).

Therefore, we have uniformly in ε,

‖Fεu‖L2 ≤ C‖Bu‖Hmh + Ch−1‖B1Pu‖Hmh + Ch1/2‖B1u‖Hm−1/2
h

+ O(h∞).

Now, Fε = SεF and Sε → S0 in Ψ
m+1/2
h as ε → 0; therefore, Fεu → S0Fu in H−1

h . Since
‖Fεu‖L2 is bounded uniformly in ε, by the compactness of the unit ball in L2 in the weak
topology we get S0Fu ∈ L2; therefore, Fu ∈ Hm

h , and

‖Fu‖Hmh ≤ C‖Bu‖Hmh + Ch−1‖B1Pu‖Hmh + Ch1/2‖B1u‖Hm−1/2
h

+ O(h∞).

It remains to apply the elliptic estimate (2.8) together with (C.8).

To prove Propositions 2.6 and 2.7 we need the following

L C.1. – Suppose L is a radial source in the sense of Definition (2.12). Then there
exist:

1. f0 ∈ C∞(T ∗X \ 0; [0, 1]), homogeneous of degree 0 and such that f0 = 1 near L,
supp f0 ⊂ U , and Hpf0 ≤ 0;

2. f1 ∈ C∞(T ∗X \0; [0,∞)), homogeneous of degree 1 and such that f1 ≥ c|ξ| everywhere
and Hpf1 ≤ −cf1 on U , for some c > 0.

Proof. – To obtain Part 1 we adapt the proof of [9, Lemma 2.1]. Let V = κ∗Hp, where
κ : T ∗X \ 0 → S∗X ' (T ∗X \ 0)/R+ is the natural projection. Since p is homogeneous of
degree 1, κ∗Hp is a smooth vector field on S∗X, and the closed set κ(L) is invariant under
the flow e−tV . We will construct F ∈ C∞(S∗X; [0, 1]) such that V (F ) ≤ 0, suppF ⊂ κ(U)

and F = 1 on a neighborhood of κ(L). Then f0 = κ∗F will be a function satisfying the
condition in Part 1.

To obtain F , fix F0 ∈ C∞(S∗X; [0, 1]) such that F0 = 1 near κ(L) and suppF0 ⊂ κ(U).
By the first assumption in (2.12), we have for T > 0 large enough,

(C.15) e−tV supp(F0) ⊂ {F0 = 1}, for t ≥ T,
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and by the invariance of κ(U) by the flow, supp(F0◦etV ) ⊂ κ(U) for all t ≥ T . Furthermore,
F0(ρ) ≥ F0(eTV (ρ)) for all ρ; indeed, if eTV (ρ) ∈ suppF0, then F0(ρ) = 1 and otherwise
F0(eTV (ρ)) = 0, and 0 ≤ F0 ≤ 1 everywhere. Then the function

F :=
1

T

∫ 2T

T

F0 ◦ etV dt, V (F ) =
1

T
(F0 ◦ e2TV − F0 ◦ eTV ),

satisfies the required assumptions.

The proof of Part 2 is “orthogonal” to the proof of Part 1 in the sense that we are
concerned about the radial component of Hp. To find f1, fix a smooth norm | · | of the fibers
of T ∗X. By the second part of (2.12), we have for T1 large enough,

|e−tHp(x, ξ)| ≥ 2|ξ|, for (x, ξ) ∈ U, t ≥ T1.

Then the function

f1(x, ξ) :=

∫ T1

0

|e−tHp(x, ξ)| dt, Hpf1(x, ξ) = |ξ| − |e−T1Hp(x, ξ)|,

is homogeneous of degree 1, 0 < c|ξ| ≤ f1(x, ξ) ≤ c−1|ξ| everywhere, and Hpf1(x, ξ) ≤
−|ξ| ≤ −cf1(x, ξ) for (x, ξ) ∈ U .

Proof of Proposition 2.6. – As before, it is enough to prove Part 1. Similarly to (C.6), it
suffices to prove that for each B1 ∈ Ψ0

h elliptic on κ(L), there exists A ∈ Ψ0
h elliptic on κ(L)

such that for each m ≥ m0,

(C.16) ‖Au‖Hmh ≤ Ch
−1‖B1Pu‖Hmh + O(h1/2)‖B1u‖Hm−1/2

h

+ O(h∞).

Indeed, without loss of generality we may assume that WFh(B1) ⊂ U ; then by (2.12), each
backward flow line of Hp starting on WFh(B1) reaches ellh(A). Combining (C.16) with
propagation of singularities (Proposition 2.5), we see that for eachB′1 ∈ Ψ0

h elliptic on κ(L),
there exists A ∈ Ψ0

h elliptic on κ(L) such that for each m ≥ m0,

‖Au‖Hmh ≤ Ch
−1‖B′1Pu‖Hmh + O(h1/2)‖Au‖

H
m−1/2
h

+ O(h∞).

Iterating this estimate, we arrive to

(C.17) ‖Au‖Hmh ≤ Ch
−1‖B′1Pu‖Hmh + O(h∞)‖Au‖Hm0

h
+ O(h∞),

and the O(h∞)‖Au‖Hm0
h

error term can be trivially removed provided that Au ∈ Hm0

h .

To prove (C.16), we shrink the conic neighborhood U of L so that κ(U) ⊂ ellh(B1); here
κ : T ∗X \0→ S∗X = ∂T

∗
X is the natural projection to the fiber infinity. Let f0, f1 be given

by Lemma C.1 and consider R > 0 large enough so that supp f0 ∩ {f1 ≥ R} ⊂ ellh(B1).
Let χ ∈ C∞(R; [0, 1]) satisfy suppχ ⊂ (R,∞), χ = 1 on [2R,∞), and χ′ ≥ 0 everywhere.
Define f ∈ C∞(T

∗
X) by

(C.18) f(x, ξ) = f0(x, ξ)χ(f1(x, ξ)).

It follows from Lemma C.1 that supp f ⊂ ellh(B1), f = 1 near κ(L), and Hpf ≤ 0

everywhere.

We now proceed as in the proof of Proposition 2.5, putting

σh(Sε) = fm2 〈εξ〉−1.
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Here f2 ∈ C∞(T
∗
X) is positive everywhere and is equal to f1 for large |ξ|, in particular

for f1(x, ξ) ≥ R. If fε = σh(Sε)f , then similarly to (C.12), we find

(C.19) fεHpfε = fm2 〈εξ〉−1fεHpf + f2
ε

(
m
Hpf2

f2
− ε2Hp|ξ|2

2〈εξ〉2

)
.

Since Hpf ≤ 0 and Hpf2 ≤ −cf2 < 0 on supp f , we see that for any fixed C0 > 0, m0 large
enough depending on C0, and m ≥ m0,

fεHpfε + C0f
2
ε ≤ 0.

Moreover, m0 can be chosen independently of B1. For Tε defined by (C.11), the sharp
Gårding inequality gives, uniformly in ε,

〈Tεu,u〉+ C0‖Fεu‖2L2 ≤ Ch‖B1u‖2Hm−1/2
h

+ O(h∞).

Arguing as in the proof of Proposition 2.5, we obtain (C.16) with A := F .

Proof of Proposition 2.7. – We proceed as in the proof of Proposition 2.6, showing that
for each B1 ∈ Ψ0

h elliptic on κ(L), there exists A ∈ Ψ0
h(X) elliptic on κ(L) and B ∈ Ψ0

h(X)

with WFh(B) ⊂ ellh(B1) \ κ(L) such that for m ≤ −m0,

(C.20) ‖Au‖Hmh ≤ C‖Bu‖Hmh + Ch−1‖B1Pu‖Hmh + O(h1/2)‖B1u‖Hm−1/2
h

+ O(h∞).

Take f ∈ C∞(T
∗
X; [0, 1]) such that supp f ⊂ ellh(B1) and f = 1 near κ(L), and define f2

using Lemma C.1 with the sign of p reversed, so thatHpf2 ≥ cf2 on supp f . We define Sε, fε
as in the proof of Proposition 2.7 and analyze the terms on the right-hand side of (C.19).
The first term vanishes near κ(L) since f = 1 there. Using the second term, we see that for
each C0, m0 large enough depending on C0, and m ≤ −m0,

fεHpfε + C0f
2
ε ≤ |〈ξ〉mσh(B)|2,

for some choice of B ∈ Ψ0
h with WFh(B) ⊂ ellh(B1) \ κ(L). By sharp Gårding inequality,

we have uniformly in ε

〈Tεu,u〉+ C0‖Fεu‖2L2 ≤ C‖Bu‖2Hmh + Ch‖B1u‖2Hm−1/2
h

+ O(h∞);

arguing as in the proof of Proposition 2.5, we obtain (C.20) with A := F .
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