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BLOCK DECOMPOSITION OF THE CATEGORY
OF `-MODULAR SMOOTH REPRESENTATIONS

OF GLn(F) AND ITS INNER FORMS

 V SÉCHERRE  S STEVENS

A. – Let F be a nonarchimedean locally compact field of residue characteristic p, let D be
a finite dimensional central division F-algebra and let R be an algebraically closed field of characteristic
different from p. To any irreducible smooth representation of G = GLm(D), m > 1 with coefficients
in R, we can attach a uniquely determined inertial class of supercuspidal pairs of G. This provides us
with a partition of the set of all isomorphism classes of irreducible representations of G. We write R(G)

for the category of all smooth representations of G with coefficients in R. To any inertial class Ω of
supercuspidal pairs of G, we can attach the subcategory R(Ω) made of smooth representations all of
whose irreducible subquotients are in the subset determined by this inertial class. We prove that the
category R(G) decomposes into the product of the R(Ω)’s, where Ω ranges over all possible inertial
class of supercuspidal pairs of G, and that each summand R(Ω) is indecomposable.

R. – Soit F un corps commutatif localement compact non archimédien de caractéristique
résiduelle p, soit D une F-algèbre à division centrale de dimension finie et soit R un corps algébriquement
clos de caractéristique différente de p. A toute représentation lisse irréductible du groupe G = GLm(D),
m > 1 à coefficients dans R correspond une classe d’inertie de paires supercuspidales de G. Ceci définit
une partition de l’ensemble des classes d’isomorphisme de représentations irréductibles de G. Notons
R(G) la catégorie des représentations lisses de G à coefficients dans R et, pour toute classe d’inertie
Ω de paires supercuspidales de G, notons R(Ω) la sous-catégorie formée des représentations lisses
dont tous les sous-quotients irréductibles appartiennent au sous-ensemble déterminé par cette classe
d’inertie. Nous prouvons que R(G) est le produit des R(Ω), où Ω décrit les classes d’inertie de paires
supercuspidales de G, et que chaque facteur R(Ω) est indécomposable.

Introduction

When considering a category of representations of some group or algebra, a natural step
is to attempt to decompose the category into blocks; that is, into subcategories which are
indecomposable summands. Thus any representation can be decomposed uniquely as a direct
sum of pieces, one in each block; any morphism comes as a product of morphisms, one in
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670 V. SÉCHERRE AND S. STEVENS

each block; and this decomposition of the category is the finest decomposition for which
these properties are satisfied. Then a full understanding of the category is equivalent to a
full understanding of all of its blocks.

In the case of representations of a finite group G, over an algebraically closed field R, there
is always a block decomposition. In the simplest case, when the characteristic of R is prime to
the order of G, this is particularly straightforward: all representations are semisimple so each
block consists of representations isomorphic to a direct sum of copies of a fixed irreducible
representation. In the general case, there is a well-developed theory, beginning with the work
of Brauer and Nesbitt, and understanding the block structure is a major endeavor.

Now suppose G is the group of rational points of a connected reductive algebraic group
over a nonarchimedean locally compact field F, of residue characteristic p. When R has char-
acteristic zero, a block decomposition of the category RR(G) of smooth R-representations
of G was given by Bernstein [1], in terms of the classification of representations of G by their
cuspidal support. Any irreducible representations π of G is a quotient of some (normalized)
parabolically induced representation iGM%, with % a cuspidal irreducible representation of a
Levi subgroup M of G; the pair (M, %) is determined up to G-conjugacy by π and is called
its cuspidal support. Then each such pair (M, %) determines a block, whose objects are those
representations of G all of whose subquotients have cuspidal support (M, %χ), for some
unramified character χ of M.

One important tool in proving this block decomposition is the equivalence of the
following two properties of an irreducible R-representation π of G:

• π is not a quotient of any properly parabolically induced representation; equivalently,
all proper Jacquet modules of π are zero (π is cuspidal);

• π is not a subquotient of any properly parabolically induced representation iGM% with %
an irreducible representation (π is supercuspidal).

When R is an algebraically closed field of positive characteristic different from p (the modular
case), these properties are no longer equivalent and the methods used in the characteristic
zero case cannot be applied. Instead, one can attempt to define the supercuspidal support of
a smooth irreducible R-representation π of G: it is a pair (M, %) consisting of an irreducible
supercuspidal representation % of a Levi subgroup M of G such that π is a subquotient of iGM%.
However, for a general group G, it is not known whether the supercuspidal support of a
representation is well-defined up to conjugacy; indeed, the analogous question for finite
reductive groups of Lie type is also open.

In any case, one can define the notion of an inertial supercuspidal class Ω = [M, %]G:
it is the set of pairs (M′, %′), consisting of a Levi subgroup M′ of G and a supercuspidal
representation %′ of M′, which are G-conjugate to (M, %χ), for some unramified character χ
of M. Given such a class Ω, we denote by RR(Ω) the full subcategory of RR(G) whose objects
are those representations all of whose subquotients are isomorphic to a subquotient of iGM′%

′,
for some (M′, %′) ∈ Ω.

The main purpose of this paper is then to prove the following result:
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T . – Let G be an inner form of GLn(F) and let R be an algebraically closed field
of characteristic different from p. Then there is a block decomposition

RR(G) =
∏
Ω

RR(Ω),

where the product is taken over all inertial supercuspidal classes.

This theorem generalizes the Bernstein decomposition in the case that R has character-
istic zero, and also a similar statement, for general R, stated by Vignéras [24] in the split
case G = GLn(F); however, the authors were unable to follow all the steps in [24] so our proof
is independent, even if some of the ideas come from there.

Our proof builds on work of Mínguez and the first author [16, 15], in which they give a
classification of the irreducible R-representations of G, in terms of supercuspidal representa-
tions, and of the supercuspidal representations in terms of the theory of types. In particular,
they prove that supercuspidal support is well-defined up to conjugacy, so that the irreducible
objects in RR(Ω) are precisely those with supercuspidal support in Ω.

One question we do not address here is the structure of the blocks RR(Ω). Given the
explicit results on supertypes here, it is not hard to construct a progenerator Π for RR(Ω)

as a compactly-induced representation; for G = GLn(F) this was done (independently) by
Guiraud [11] (for level zero blocks) and Helm [12]. Then RR(Ω) is equivalent to the category
of EndG(Π)-modules. In the case that R has characteristic zero, the algebra EndG(Π) was
described as a tensor product of affine Hecke algebras of type A in [22] (or [7] in the split
case); indeed, we use this description in our proof here. For R an algebraic closure F` of
a finite field of characteristic ` 6= p, and a block RR(Ω) with Ω = [GLn(F), %]GLn(F),
Dat [9] has described this algebra; it is an algebra of Laurent polynomials in one variable
over the R-group algebra of a cyclic `-group. It would be interesting to obtain a description
in the general case.

We now describe the proof of the theorem, which relies substantially on the theory
of semisimple types developed in [22] (see [7] for the split case). Given an inner form G

of GLn(F), in [22] the authors constructed a family of pairs (J,λ), consisting of a compact
open subgroup J of G and an irreducible complex representation λ of J. This family
of pairs (J,λ), called semisimple types, satisfies the following condition: for every iner-
tial cuspidal class Ω, there is a semisimple type (J,λ) such that the irreducible complex
representations of G with cuspidal support in Ω are exactly those whose restriction to J

contains λ.

In [16], Mínguez and the first author extended this construction to the modular case: they
constructed a family of pairs (J,λ), consisting of a compact open subgroup J of G and an
irreducible modular representation λ of J, called semisimple supertypes. However, they did
not give the relation between these semisimple supertypes and inertial supercuspidal classes
of G. In this paper, we prove:

– for each inertial supercuspidal class Ω, there is a semisimple supertype (J,λ) such that
the irreducible R-representations of G with supercuspidal support in Ω are precisely
those which appear as subquotients of the compactly induced representation indG

J (λ);

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



672 V. SÉCHERRE AND S. STEVENS

– two semisimple supertypes (J,λ) and (J′,λ′) correspond to the same inertial supercus-
pidal class if and only if the compactly induced representations indG

J (λ) and indG
J′(λ

′)

are isomorphic, in which case we say the supertypes are equivalent.

Thus we get a bijective correspondence between the inertial supercuspidal classes for G and
the equivalence classes of semisimple supertypes.

To each semisimple supertype, we attach a crucial tool, already used in [15] to obtain the
classification of the irreducible R-representations of G. This is a functor which associates,
to each smooth R-representation of G, a representation of the finite reductive quotient
of J. More precisely, given a semisimple supertype (J,λ), there is a normal compact open
subgroup J1 of J such that:

– the quotient J/J1 is isomorphic to a group of the form GLn1(k1) × · · · × GLnr (kr),
where ki is a finite extension of the residue field of F and ni is a positive integer,
for i ∈ {1, . . . , r};

– the representation λ decomposes (non-canonically) as κ ⊗ σ, where κ is a particular
irreducible representation of J andσ is the inflation to J of a supercuspidal irreducible
representation of GLn1(k1)× · · · ×GLnr (kr);

– in the particular case where the semisimple supertype is homogeneous (see § 6.2), there
is a normal compact open subgroup H1 of J1 such that the restriction of κ to H1 is a
direct sum of copies of a certain character θ, called a simple character.

Given a choice of decomposition λ = κ⊗ σ, we define a functor

K = Kκ : π 7→ HomJ1(κ, π)

from R(G) to R(J/J1), with J acting on HomJ1(κ, π) via

x · f = π(x) ◦ f ◦ κ(x)−1,

for all x ∈ J and f ∈ HomJ1(κ, π). Since J1 is a pro-p group, this functor is exact.
An important property of this functor K is its behavior with respect to parabolic induction

(see Theorem 6.2): for a parabolic subgroup of G compatible with the data involved in the
construction of (J,λ), this functor commutes with parabolic induction. This result is related
to a remarkable property of simple characters (see Lemma 4.2) which, to our knowledge, was
not previously known even in the split case.

This allows a somewhat surprising back-and-forth argument between the complex case,
where the compatibility of K with parabolic induction was already known (see [17]), and
the modular case; this is because, in the case of a homogeneous supertype, the condition
on the simple character θ holds for R-representations if and only if it holds for complex
representations, since H1 is a pro-p group (see the proof of Proposition 5.6). This is the
objective of Sections 2 to 8, and requires the notion of endo-class developed in [21] (see [4]
in the split case).

Now we need to define the subcategories of RR(G) which will be the blocks we seek,
which we do in Section 9. To each semisimple supertype (J,λ) we associate a full subcate-
gory RR(J,λ), whose objects are those smooth representations V which are generated by
the maximal subspace of K(V) all of whose irreducible subquotients have supercuspidal
support in a fixed set determined by σ (see Definition 1.14). This subcategory is indepen-
dent of the choice of decomposition λ = κ ⊗ σ. Note that the existence of a maximal
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subspace of K(V) with the required property depends on a decomposition of the category
of representations of the finite reductive group

J/J1 ' GLn1
(k1)× · · · ×GLnr (kr)

in terms of supercuspidal support (the unicity of which is one of the principal results of [14]).
Moreover, it follows from this decomposition that RR(G) decomposes as a product of the
subcategories RR(J,λ), where (J,λ) runs through the equivalence classes of semisimple
supertypes.

It remains only to prove that the RR(J,λ) are indecomposable and coincide with
the RR(Ω), which is the purpose of Section 10. To prove the indecomposability of the RR(J,λ)

we use the endomorphism algebra of the compactly induced representation indG
J (λ), whose

structure was determined in [22] (and [16] for the modular case). The centre of this algebra
is an integral domain, which implies that indG

J (λ) is indecomposable. Since its irreducible
subquotients coincide with the irreducible objects of RR(J,λ), it follows that this subcate-
gory is indecomposable.

We end the paper, in Section 11, by proving a remarkable property of supercuspidality: if
an irreducible representation of G does not appear as a subquotient any properly paraboli-
cally induced representation iGM%, with % irreducible, then it also does not appear as a subquo-
tient of any properly parabolically induced representation.

Notation

Throughout the paper, we fix a prime number p and an algebraically closed field R of
characteristic different from p.

All representations are supposed to be smooth representations on R-vector spaces. If G is
a topological group, we write R(G) for the abelian category of all representations of G and
Irr(G) for the set of all isomorphism classes of irreducible representations of G. A character
of G is a homomorphism from G to R× with open kernel.

For G the group of points of a connected reductive group over either a finite field of
characteristic p or a nonarchimedean locally compact field of residual characteristic p,
and P = MN a parabolic subgroup of G together with a Levi decomposition, we will
write iGP for the normalized parabolic induction functor from R(M) to R(G), and IndG

P for
the unnormalized parabolic induction functor from R(M) to R(G); these coincide in the
finite field case.

1. Extensions and blocks

We begin with some general results which apply to connected reductive groups over both
finite and nonarchimedean locally compact fields. In the finite case, we give some further
results towards a block decomposition, in particular for the group GLn; these will be needed
in the nonarchimedean case later.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



674 V. SÉCHERRE AND S. STEVENS

1.1.

Let G be the group of points of a connected reductive group over either a finite field of
characteristic p or a nonarchimedean locally compact field of residual characteristic p.

D 1.1. – An irreducible representation π of G is supercuspidal if it does not
appear as a subquotient of any representation of the form iGP (τ), where P is a proper
parabolic subgroup of G with Levi component M and τ is an irreducible representation
of M.

A supercuspidal pair of G is a pair (M, %) made of a Levi subgroup M ⊆ G and an
irreducible supercuspidal representation % of M.

For π an irreducible representation of G, the supercuspidal support of π is the set:

scusp(π)

of supercuspidal pairs (M, %) of G such that π occurs as a subquotient of iGP (%), for some
parabolic subgroup P with Levi component M.

R 1.2. – In the finite field case, the word irreducible may be omitted from the
definition of supercuspidal (see Proposition 1.10); we will see that, for G an inner form
of GLn over a nonarchimedean locally compact field, the same is true (see Proposition 11.1).

Similarly, an irreducible representation π of G is cuspidal if it does not appear as a
quotient of any representation of the form iGP (τ), and we have the notion of cuspidal pair
and cuspidal support cusp(π). It is known that the cuspidal support cusp(π) consists of a
single G-conjugacy class of cuspidal pairs ([15, théorème 2.1]) but there is no such general
result for supercuspidal support; indeed, it is not even known that the possible supercuspidal
supports form a partition of the set of supercuspidal pairs.

In this section, we make the following hypotheses:

(H1) for π, π′ irreducible representations of G, if scusp(π) ∩ scusp(π′) 6= ∅ then
scusp(π) = scusp(π′).

(H2) for supercuspidal pairs (M, %), (M, %′) of G, if the space ExtiM(%′, %) is nonzero for
some i > 0, then %′ ' %;

P 1.3. – Assume hypotheses (H1) and (H2) are satisfied. Let π and π′ be
irreducible representations of G with unequal supercuspidal supports. Then ExtiG(π′, π) = 0

for all i > 0.

The idea of computing all the Exti rather than Ext1 only (which allows us to reduce to
the case where π, π′ are supercuspidal) comes from Emerton-Helm [10, Theorem 3.2.13].

Proof. – Let π and π′ be irreducible representations of G with unequal supercuspidal
supports.

L 1.4. – Assume that π′ is cuspidal and π is not. Then we have ExtiG(π′, π) = 0 for
all i > 0.

4 e SÉRIE – TOME 49 – 2016 – No 3



BLOCKS FOR `-MODULAR SMOOTH REPRESENTATIONS OF GLn(F) 675

Proof. – The proof is by induction on i, the case where i = 0 being immediate. Let us
embed π in iGP (τ) with τ an irreducible cuspidal representation of a proper Levi subgroup M

and P a parabolic subgroup of Levi component M and unipotent radical N. We have an exact
sequence

Exti−1
G (π′, ξ)→ ExtiG(π′, π)→ ExtiG(π′, iGP (τ)),

where ξ is the quotient of iGP (τ) by π. Since π, π′ have unequal supercuspidal supports, we
have, by the inductive hypothesis, Exti−1

G (π′, λ) = 0 for all the irreducible subquotients λ
of ξ, thus we have Exti−1

G (π′, ξ) = 0. By [23, I.A.2], we have an isomorphism:

ExtiG(π′, iGP (τ)) ' ExtiM(π′N, τ) = 0

(whereπ′N is the Jacquet module ofπ′ with respect to P = MN). This gives us ExtiG(π′, π) = 0

as expected.

In the case where π is cuspidal and π′ is not, we reduce to Lemma 1.4 by taking contra-
gredients. Indeed, we have:

ExtiG(π′, π) ' ExtiG(π∨, π′∨)

and this is 0 by the previous case. We now treat the case where π and π′ are both cuspidal.

L 1.5. – Assume that π is not supercuspidal. Then ExtiG(π′, π) = 0 for all i > 0.

Proof. – The proof is by induction on i, the case where i = 0 being immediate. By
assumption, π occurs as a subquotient of iGP (τ), with τ an irreducible supercuspidal repre-
sentation of a proper Levi subgroup M and P a parabolic subgroup of Levi component M

and unipotent radical N.
Let V be the minimal subrepresentations of X = iGP (τ) such that π is a (sub)quotient

of V, and let W ⊆ V be a subrepresentation such that V/W ' π; thus π is not a
subquotient of W. Denote by k = k(π) the number of irreducible cuspidal subquotients
of W. Now we proceed by induction on k, noting that any irreducible subquotient π′′ of W

must have k(π′′) ≤ k(π)− 1.
We have an exact sequence:

Exti−1
G (π′,X/V)→ ExtiG(π′,V)→ ExtiG(π′, iGP (τ)) = 0.

We claim that Exti−1
G (π′, λ) = 0 for all the irreducible subquotients λ of X. Indeed, this

follows from Lemma 1.4 if λ is not cuspidal and from the inductive hypothesis (on i) if λ is
a cuspidal irreducible subquotient of X. This gives us Exti−1

G (π′,X/V) = 0, and it follows
from the above exact sequence that ExtiG(π′,V) = 0. Now we have an exact sequence:

0 = ExtiG(π′,V)→ ExtiG(π′, π)→ Exti+1
G (π′,W).

If k = 0 then all the irreducible subquotients of W are non-cuspidal and Lemma 1.4 implies
that we have Exti+1

G (π′,W) = 0; thus ExtiG(π′, π) = 0, which completes the base step of the
induction on k. For the general case, since every irreducible subquotient π′′ of W is either
non-cuspidal or has k(π′′) < k, we again have Exti+1

G (π′,W) = 0, by Lemma 1.4 and the
inductive hypothesis (on k).

We have the same result when π′ is not supercuspidal, by taking contragredients as above.

C 1.6. – Suppose that π, π′ are cuspidal. Then ExtiG(π′, π) = 0 for all i ≥ 0.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



676 V. SÉCHERRE AND S. STEVENS

Proof. – If either π or π′ is not supercuspidal then the result follows from Lemma 1.5. If
both are supercuspidal then this is the hypothesis (H2).

We now treat the general case. The proof is by induction on i, the case i = 0 being trivial.
We have an exact sequence:

0 = Exti−1
G (π′, iGP (τ))→ ExtiG(π′, π)→ ExtiG(π′, iGP (τ)) ' Ext1

M(π′N, τ)

where π embeds in iGP (τ) with τ an irreducible cuspidal representation of M. From the
cuspidal case, we have ExtiM(σ, τ) = 0 for all irreducible representations σ of M that are
nonisomorphic to τ . If we prove that τ does not appear as a subquotient of π′N, then we will
get ExtiM(π′N, τ) = 0 and the result will follow.

Assume that τ appears as a subquotient of π′N. Let λ′ be an irreducible supercuspidal
representation of a Levi subgroup M′ such that π′ occurs as a subquotient of iGP′(λ

′), for
some parabolic subgroup P′ with Levi component M′. By the Geometric Lemma (see for
example [15, (1.3)]), there is a permutation matrix w such that τ occurs in:

iMM∩P′w(λ′w).

By replacing λ′ by λ′w, we may assume that w = 1, so that τ occurs in iMM∩P′(λ
′). By

applying iGP , we deduce that π occurs in iGP′(λ
′). This contradicts the fact that π, π′ have

unequal supercuspidal supports.

P 1.7. – Assume hypotheses (H1) and (H2) are satisfied. Let V be a represen-
tation of G of finite length. There is a decomposition:

V = V1 ⊕ · · · ⊕Vr

of V as a direct sum of subrepresentations where, for each i ∈ {1, . . . , r}, all irreducible
subquotients of Vi have the same supercuspidal support.

Proof. – Write n for the length of V and r for the number of distinct sets scusp(π), for π
an irreducible subquotient of V. We may and will assume that r > 1. The proof is by
induction on n.

Since r 6 n, the minimal case with r > 1 is r = n = 2. Assume we are in this case. Then
the result follows from Proposition 1.3 with i = 1.

Assume now that n > 2. Let ω0 be the supercuspidal support of an irreducible subrep-
resentation of V and V0 be the maximal subrepresentation of V all of whose irreducible
subquotients have supercuspidal support ω0. By the inductive hypothesis, V/V0 decomposes
as a direct sum:

W1 ⊕ · · · ⊕Ws

of nonzero subrepresentations, with s 6 r and where, for each i ∈ {1, . . . , s}, there is a
supercuspidal support ωi such that all irreducible subquotients of Wi have supercuspidal
supportωi. If there is i > 1 such thatωi = ω0, then the preimage of Wi in V would contradict
the maximality of V0. Thus we have ω0 /∈ {ω1, . . . , ωs} and it follows that r = s+ 1.

L 1.8. – For each i ∈ {1, . . . , s}, there is an injective homomorphism fi : Wi → V.
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Proof. – For i ∈ {1, . . . , s}, write Yi for the preimage of Wi in V. If Yi 6= V, then it
follows from the inductive hypothesis that Yi decomposes into the direct sum of V0 and a
subrepresentation isomorphic to Wi.

Assume now that Yi = V, thus r = 2 and i = 1. By passing to the contragredient if
necessary (and thus exchanging the roles of V0 and V1) we may assume that V0 is reducible.
Let π denote an irreducible subrepresentation of V0. By the inductive hypothesis, V/π has
a direct summand isomorphic to W1. Its preimage in V is denoted X1 and we can apply the
inductive hypothesis to it. Thus W1 embeds in V.

We thus have injective homomorphisms f1, . . . , fs, and write f0 for the canonical inclu-
sion of V0 in V. We write Vi = fi(Wi) for all i ∈ {0, . . . , s} and claim that we have:

V = V0 ⊕ · · · ⊕Vs.

Indeed, we have a homomorphism:

f : V0 ⊕
( s⊕
i=1

Wi

)
= X→ V.

Since X and V have the same length, it is enough to prove that f is injective.

L 1.9. – We have:

Ker(f) = (Ker(f) ∩V0)⊕

(
s⊕
i=1

(Ker(f) ∩Wi)

)
.

Proof. – Since f is nonzero, we have Ker(f) ( V, thus we can apply the inductive
hypothesis to Ker(f). The decomposition that we obtain is the right hand side of the expected
equality.

Since f1, . . . , fs are injective, we get Ker(f) ∩Wi = 0 for all i ∈ {1, . . . , s}. Thus f is
injective and the result is proved.

1.2.

Now we specialize to the case that G is a connected reductive group over a finite field. We
begin with a general result which is independent of the hypotheses (H1) and (H2).

P 1.10. – Let P be a proper parabolic subgroup of G and σ be a representation
of a Levi component M of P. Then iGP (σ) has no supercuspidal irreducible subquotient.

Proof. – When σ is irreducible, the result follows from the definition of a supercuspidal
representation. Assume E = iGP (σ) contains a supercuspidal irreducible subquotient π, and
let us fix a projective envelope Π of π in R(G). By [13, Proposition 2.3], all its irreducible
subquotients are cuspidal (indeed, this is a characterization of supercuspidal represen-
tations). Let V be a subrepresentation of E having a quotient isomorphic to π. As Π is
projective, we get a nonzero homomorphism from Π to V, whence it follows that some
irreducible subquotient π′ of Π occurs as a subrepresentation of V, thus of E. By Frobenius
reciprocity, we get that the space π′N of N-coinvariants, where N is the unipotent radical
of P, is nonzero, contradicting the cuspidality of π′.
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Let R[G] be the group algebra of G over R. It decomposes as a direct sum:

R[G] = B1 ⊕ · · · ⊕ Bt

of indecomposable two-sided ideals, called blocks of R[G]. This corresponds to a decompo-
sition:

1 = e1 + · · ·+ et

of the identity of R[G] as a sum of indecomposable central idempotents. This implies a
decomposition:

R(G) = R(B1)⊕ · · · ⊕R(Bt)

of the category R(G) of R-representations of G (that is, of left R[G]-modules) into the direct
sum of the subcategories R(Bi), i ∈ {1, . . . , t}, where R(Bi) is made of all representations V

of G such that eiV = V.

L 1.11. – Assume that hypotheses (H1) and (H2) are satisfied. Let V ∈ R(Bi) for
some i ∈ {1, . . . , t}. Then all the irreducible subquotients of V have the same supercuspidal
support.

Proof. – If we apply Proposition 1.7 to the regular representation R[G], which has finite
length, we get that all the irreducible subquotients of Bi have the same supercuspidal support.
Since all the irreducible subquotients of V are isomorphic to subquotients of Bi, we get the
result.

We deduce the following decomposition theorem.

T 1.12. – Assume hypotheses (H1) and (H2) are satisfied. Let V be a representa-
tion of G. For any supercuspidal supportω of G, let V(ω) denote the maximal subrepresentation
of V all of whose irreducible subquotients have supercuspidal support ω. Then we have:

V =
⊕
ω

V(ω).

1.3.

Finally, we specialize to the case where G is the finite group GLn(q), with n > 1 an integer
and q a power of p. In this case, it is known ([14]) that the supercuspidal support consists of
a single G-conjugacy class of supercuspidal pairs, so (H1) is satisfied. We prove that (H2) is
also satisfied.

L 1.13. – Let π, π′ be irreducible supercuspidal representations of G such that the
space ExtiG(π′, π) is nonzero for some i > 0. Then π′ ' π.

Proof. – The proof is by induction on i, the case i = 0 being trivial. Let us fix a
projective envelope Π of π in R(G). By [23, III.2.9], it has finite length, and all its irreducible
subquotients are isomorphic to π. Consider the exact sequence:

0→ Π1 → Π→ π → 0

where Π1 is the kernel of Π→ π. Then we have an exact sequence:

Exti−1
G (π′, π)→ ExtiG(π′,Π1)→ ExtiG(π′,Π).
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By the inductive hypothesis, we have Exti−1
G (π′, π) = 0. Since Π is projective in R(G),

we have ExtiG(π′,Π) = 0. It follows that we have ExtiG(π′,Π1) = 0. Since all irreducible
subquotients of Π1 are isomorphic to π, we can consider an exact sequence:

0→ Π2 → Π1 → π → 0

where Π2 is the kernel of Π1 → π. By induction, we define a finite decreasing sequence:

Π = Π0 ) Π1 ) Π2 ) · · · ) Πr ) Πr+1 = 0

of subrepresentations of Π such that Πj/Πj+1 ' π and ExtiG(π′,Πj) = 0 for all j > 0.
For j = r, we get the expected result.

In particular, since every Levi subgroup of G is isomorphic to a product of smaller general
linear groups, the hypothesis (H2) is satisfied and the conclusion of Theorem 1.12 holds
for G.

As a corollary, we will need a weaker result in Section 9, in which we allow for the action
of a Galois group. Fix Γ be a group of automorphisms of the finite field Fq.

D 1.14. – Let (M, %) be a supercuspidal pair of G, with

M ' GLn1
(q)× · · · ×GLnr (q), % ' %1 ⊗ · · · ⊗ %r.

The equivalence class of (M, %) is the set, denoted [M, %], of all supercuspidal pairs (M′, %′)

of G for which there are elements γi ∈ Γ, for each i = 1, . . . , r, such that (M′, %′) is
G-conjugate to (M,

⊗r
i=1 %

γi
i ).

C 1.15. – Let V be a representation of G and, for any equivalence class of super-
cuspidal pairs [ω], write V[ω] for the maximal subrepresentation of V all of whose irreducible
subquotients have supercuspidal support contained in [ω]. Then V decomposes into the direct
sum of the V[ω], where [ω] ranges over the set of equivalence classes of supercuspidal pairs of G.

Further notation

Throughout the rest of the paper, we fix a nonarchimedean locally compact field F of
residue characteristic p. All F-algebras are supposed to be finite-dimensional with a unit. By
an F-division algebra we mean a central F-algebra which is a division algebra.

For K a finite extension of F, or more generally a division algebra over a finite extension
of F, we denote by OK its ring of integers, by pK the maximal ideal of OK and by kK its residue
field.

For A a simple central algebra over a finite extension K of F, we denote by NA/K and
trA/K respectively the reduced norm and trace of A over K.

For u a real number, we denote by buc the greatest integer which is smaller than or equal
to u, that is its integer part.

A composition of an integer m > 1 is a finite family of positive integers whose sum is m.
Given H a closed subgroup of a topological group G and σ a representation of H,

write indG
H(σ) for the representation of G compactly induced from σ.

We fix once and for all an additive character ψF : F → R× that we assume to be trivial
on pF but not on OF.
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2. Preliminaries

We fix an F-division algebra D, with reduced degree d. For all m > 1, we write Am = Mm(D)

and Gm = GLm(D).
Letm > 1 be a positive integer and write A = Am and G = Gm. We will recall briefly the

objects associated to the explicit construction of representations of G; we refer to [18, 19, 20,
21, 22] for more details on the notions of simple stratum, character and type.

Recall that, for P = MN a parabolic subgroup of G together with a Levi decomposition,
we write IndG

P for the unnormalized parabolic induction functor from R(M) to R(G).

2.1.

Recall (see [15, théorème 8.16]) that, for π an irreducible representation of G, the super-
cuspidal support scusp(π) consists of a single G-conjugacy class of supercuspidal pairs of G.

D 2.1. – The inertial class of a supercuspidal pair (M, %) of G is the set,
denoted by [M, %]G, of all supercuspidal pairs (M′, %′) that are G-conjugate to (M, %χ) for
some unramified character χ of M.

2.2.

Let Λ be an OD-lattice sequence of Dm. It defines an hereditary OF-order A(Λ) of A and
an OF-lattice sequence:

ak(Λ) = {a ∈ A | aΛ(i) ⊆ Λ(i+ k), for all i ∈ Z}

of A. For i > 1, we write Ui(Λ) = 1 + ai(Λ). This defines a filtration (Ui(Λ))i>1 of the
compact open subgroup U(Λ) = A(Λ)× of G.

Let [Λ, n, 0, β] be a simple stratum in A (see for instance [21, § 1.6]). The element β ∈ A

generates a field extension F[β] of F, denoted E, and we write B for its centralizer in A.
Attached to this stratum, there are two compact open subgroups:

J = J(β,Λ), H = H(β,Λ)

of G. For all i > 1, we set:

Ji = Ji(β,Λ) = J ∩Ui(Λ), Hi = Hi(β,Λ) = H ∩Ui(Λ).

Together with the choice ofψF, the simple stratum defines a finite set C (Λ, 0, β) of characters
of H1, called simple characters. We do not recall here the definition of these characters, only
the following basic property. Write ψA = ψF ◦ trA/F and, for b ∈ A, set:

ψb : x 7→ ψA(b(x− 1))

for all x ∈ A. If b ∈ a−k(Λ) for some k > 1, then ψb defines a character on Ubk/2c+1(Λ).
Then any simple character θ ∈ C (Λ, 0, β) satisfies θ|Ubn/2c+1(Λ) = ψβ .

Given θ a simple character attached to [Λ, n, 0, β], there is, up to isomorphism, a unique
irreducible representation η of J1 whose restriction to H1 contains θ. Moreover, the repre-
sentation η extends to an irreducible representation of the group J that is intertwined by the
whole of B×. Such extensions of η to J are called β-extensions.

As B is a central simple E-algebra, there are a positive integer m′ > 1, an E-division
algebra D′ and an isomorphism of E-algebras Φ from B to Mm′(D

′). Moreover, we can
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choose Φ so that Φ(A(Λ)∩B) is a standard order, that is, it is contained in Mm′(OD′) and its
reduction mod pD′ is upper block triangular. Since J = (U(Λ) ∩B×)J1, we thus have group
isomorphisms:

J/J1 ' (U(Λ) ∩ B×)/(U1(Λ) ∩ B×) ' GLm′1(kD′)× · · · ×GLm′r (kD′)

for suitable positive integersm′1, . . . ,m
′
r. It allows us to identify these groups and we denote

by G the latter group.

A simple type attached to [Λ, n, 0, β] is an irreducible representation λ of J of the
form κ⊗ σ, where κ is a β-extension and σ is an irreducible representation of J trivial
on J1 which identifies with a cuspidal representation of G of the form τ ⊗ · · · ⊗ τ where τ is
a cuspidal representation of GLm′/r(kD′) (this implies m′1 = · · · = m′r = m′/r). When the
representation τ is supercuspidal, λ is called a simple supertype.

We introduce the following useful definition.

D 2.2. – A simple character (or a β-extension, or a simple type) is said to be
maximal if U(Λ) ∩ B× is a maximal compact open subgroup in B×.

3. An abstract K-functor

A main tool for us will be a family of functors from R(G) to the category of represen-
tations of some finite reductive group. Such functors were first introduced in the split case
for complex representations in [17], where they were used just for simple types; in [16] these
were generalized to apply to any G in the modular case. Since we will need several variants
of these functors, it is convenient to give a general setup which applies to all situations.

Let P = MN be a parabolic subgroup of G, together with a Levi decomposition.
Given g ∈ G, K a compact open subgroup of G and π a representation of M, write:

IndPgK
P (π) = {f ∈ IndG

P (π) | f is supported in PgK}.

This defines a functor from R(M) to R(K) denoted IndPgK
P .

We have the following easy but useful lemma.

L 3.1. – Let K be a compact open subgroup of G. For all representation π of M and
all g ∈ G, there is an isomorphism:

IndPgK
P (π) ' IndK

K∩Pg (πg)

of representations of K, where Pg, πg denote the conjugates of P, π by g.

Proof. – The isomorphism is given by f 7→ fg, where fg(k) = f(gk) for all k ∈ K.

Now we are given a compact open subgroup J of G, together with a normal pro-p
subgroup J1, and an irreducible representation κ of J. We define a functor:

Kκ : π 7→ HomJ1(κ, π)

from R(G) to R(J/J1), by making J act on Kκ(π) by the formula:

x · f = π(x) ◦ f ◦ κ(x)−1
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for all x ∈ J and f ∈ Kκ(π). Note that J1 acts trivially. Since J1 is a pro-p-group, this functor
is exact, and it sends admissible representations of G to finite dimensional representations
of J/J1.

P 3.2. – Let g ∈ G. The following are equivalent:

(i) the functor Kκ ◦ IndPgJ
P is nonzero on R(M);

(ii) the functor Kκ ◦ IndPgJ
P is nonzero on Irr(M);

(iii) HomJ1∩Ng (κ, 1) 6= 0 (or, equivalently, κ has a non-zero J1 ∩Ng-fixed vector).

Proof. – Given π ∈ R(M), by Lemma 3.1 we have an isomorphism:

IndPgJ
P (π) ' IndJ

J∩Pg (πg)

of representations of J. Applying Mackey’s formula and Frobenius reciprocity, and writing η
for the restriction of κ to J1, we get:

Kκ(IndPgJ
P (π)) '

⊕
x∈(J∩Pg)\J/J1

HomJ1∩Pgx(η, πgx).

As η is normalized by J, this implies that:

Kκ(IndPgJ
P (π)) 6= 0 ⇔ HomJ1∩Pg (η, πg) 6= 0.

As π is trivial on N, we have:

HomJ1∩Pg (η, πg) ⊆ HomJ1∩Ng (η, 1).

Therefore, if Kκ◦IndPgJ
P is nonzero on R(M), then HomJ1∩Ng (η, 1) 6= 0. Thus (i) implies (iii),

and it is clear that (ii) implies (i).
Now we assume that HomJ1∩Ng (η, 1) 6= 0 and write P′ = Pg, N′ = Ng, M′ = Mg. Define

the compactly induced representation

V = indP′

J1∩P′(η).

For any π ∈ R(M), as πg is trivial on N′, we have

HomJ1∩P′(η, π
g) ' HomP′(V, π

g) ' HomM′(VN′ , π
g),

where VN′ denotes the space of N′-coinvariants of V. But

VN′ '
⊕

l∈(J1∩M′)\M′

(
indN′

N′∩(J1)l(η
l)
)

N′
'

⊕
l∈(J1∩M′)\M′

(ηl)N′∩(J1)l ,

by Shapiro’s lemma, and the term corresponding to l = 1 is nonzero. Thus VN′ is nonzero
and, moreover, it is of finite type since V is of finite type and Jacquet functors preserve finite
type. Thus (VN′)

g−1

has an irreducible quotient π ∈ Irr(M) and Kκ ◦ IndPgJ
P (π) is nonzero.

Hence (iii) implies (ii).

In some situations, we know more about the representation κ and can conveniently
rephrase the final condition of Proposition 3.2.

C 3.3. – Writeη for the restriction ofκ to J1, and suppose that we have a normal
pro-p subgroup H1 of J1 and a character θ of H1 such that the restriction of η to H1 is θ-isotypic
and that η is the unique irreducible representation of J1 which contains θ. Then the conditions
of Proposition 3.2 are also equivalent to:
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(iv) the character θ is trivial on H1 ∩Ng.

Proof. – (iii) is equivalent to (iv) since indJ1

H1(θ) is a finite sum of copies of η and the
restriction of η to H1 is θ-isotypic.

The usefulness of conditions (iii) and (iv) is that they do not depend on characteristic of
the ground field R; that is, if κ is a Z`-representation then HomJ1∩Ng (κ, 1) 6= 0 if and only
if the same is true for the reduction modulo ` of κ (see [16, Lemme 5.7]).

4. A lemma on simple characters

Let θ be a simple character with respect to a simple stratum [Λ, n, 0, β] in A. Let P = MN

be a parabolic subgroup of G together with a Levi decomposition. The purpose of this section
is to show that, under certain conditions, the criterion of Corollary 3.3 is satisfied.

Given a subset X of A, write X∗ for the set of a ∈ A such that ψA(ax) = 1 for all x ∈ X.

D 4.1. – The pair (M,P) is subordinate to the simple stratum [Λ, n, 0, β] if the
idempotents in A that correspond to M are in B and if there is an isomorphism Φ : B→ Mm′(D

′)

of E-algebras such that Φ(A(Λ) ∩ B) is a standard order and Φ(P ∩ B×) is a standard
parabolic subgroup corresponding to a composition of m′ finer than or equal to that
of Φ(A(Λ) ∩ B).

Assume this is the case. For k > 1 and i ∈ Z, write Hk = Hk(β,Λ) and ai = ai(Λ), and:

nk(β,Λ) = {x ∈ A(Λ) | βx− xβ ∈ ak}.

Write q for the greatest integer i 6 n such that n1−i(β,Λ) ⊆ A(Λ) ∩ B + a1 and
s = b(q + 1)/2c. For k > 1, set:

Ωk = Ωk(β,Λ) = 1 + ak ∩ nk−q(β,Λ) + js(β,Λ),

where js = js(β,Λ) is defined by Js = 1 + js(β,Λ). Write N− for the unipotent radical
opposite to N with respect to M.

L 4.2. – Let g ∈ U1(Λ) ∩ N− and 0 6 m < q. Assume that θ is trivial on the
intersection (U1(Λ) ∩ B×)Hm+1 ∩Ng. Then g ∈ (U1(Λ) ∩ B×)Ωq−m.

Proof. – First note that it is enough to prove the result when m > bq/2c. Indeed, if
m < bq/2c, then the result for bq/2c implies that:

g ∈ (U1(Λ) ∩ B×)Ωs = J1(β,Λ) = (U1(Λ) ∩ B×)Ωq−m.

The proof is by induction on both q and m with bq/2c 6 m < q. Write n, p for the Lie
algebras of N, P in A, and also n− for that of N−.

Assume first that q = n. Then g normalizes Hm+1 = Um+1(Λ). Since we have
Um+1(Λ) ∩ Ng = (Um+1(Λ) ∩ N)g, and since θ is trivial on Um+1(Λ) ∩ N, the condi-
tion on θ implies that

θ([g−1, 1 + y]) = 1,

for all y ∈ am+1 ∩ n. Recall that, for b, x ∈ A, we have ψb(x) = ψA(b(x− 1)).

L 4.3. – We have ψgβg−1−β(1 + y) = 1 for all y ∈ am+1 ∩ n.
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Proof. – Since bq/2c 6 m, the restriction of θ to Hm+1 is given by ψβ . Now:

ψβ(g−1(1 + y)g) = ψA(βg−1yg)

= ψA(gβg−1y)

= ψgβg−1(1 + y)

for all y ∈ am+1 ∩ n, which gives us the desired result.

If we write g = 1 + u, with u ∈ a1 ∩ n−, this gives us:

gβg−1 − β = −aβ(u)g−1 ∈ (am+1 ∩ n)∗ = a−m + n∗,

where aβ is the map x 7→ βx − xβ from A to A. Note that, since n is an F-vector space, we
have for all a ∈ A:

trA/F(an) ⊆ Ker(ψF) ⇔ trA/F(an) = {0}.

It follows that n∗ = p. Together with the fact that aβ(u)g−1 ∈ n− and g ∈ U1(Λ), we get:

aβ(u) ∈ a−m.

This gives us:
u ∈ n−m(β,Λ) ∩ a1 = (A(Λ) ∩ B + an−m) ∩ a1,

where the last equality follows from [21, Proposition 2.29]. But:

Ωn−m = 1 + an−m ∩ n−m(β,Λ) + js(β,Λ) = 1 + an−m + as = 1 + an−m.

We thus get the expected result.

We now assume that q < n, and we fix a simple stratum [Λ, n, q, γ] that is equivalent to
the pure stratum [Λ, n, q, β]. First assume that m = q − 1 and write:

θ|Hq∩Ng = ψcθγ = 1,

where c = β − γ ∈ a−q and θγ ∈ C (Λ, q − 1, γ). Now write g = 1 + u.

L 4.4. – The character ψc is trivial on Hq ∩Ng.

Proof. – Let x = g−1yg ∈ hq ∩ ng, where hk is defined for k > 1 by Hk = 1 + hk. Then:

ψc(1 + x) = ψF(trA/F(gcg−1y))

= ψF(trA/F(cy))ψF(trA/F(−ac(u)g−1y))

= ψF(trA/F(−ac(u)xg−1))

since cy ∈ n has trace 0. Now c ∈ a−q and u ∈ a1 and xg−1 ∈ aq. Since ψF is trivial on pF,
we get the expected result.

Thus θγ is trivial on Hq ∩ Ng. Note that Hq = Hq(γ,Λ). By the inductive hypothesis, we
get:

g ∈ (U1(Λ) ∩ B×γ )Ωq
′−(q−1)(γ,Λ) = (U1(Λ) ∩ B×γ )

(
1 + aq′−(q−1) ∩ n1−q(γ,Λ) + js(γ,Λ)

)
where q′ = −k0(γ,Λ) and Bγ is the centralizer of F[γ] in A.

The following lemma generalizes [5, (8.1.12)].

4 e SÉRIE – TOME 49 – 2016 – No 3



BLOCKS FOR `-MODULAR SMOOTH REPRESENTATIONS OF GLn(F) 685

L 4.5. – Let [Λ, n,m, β] be a simple stratum in A and θ ∈ C (Λ,m, β) be a simple
character. Let z ∈ aq−m ∩ n−m(β,Λ) and ϑ be a character of Hm whose restriction to Hm+1

is θ. Then 1 + z normalizes Hm and ϑ1+z = ϑ · ψaβ(z).

Proof. – We follow the proof of [5, (8.1.12)], replacing the results from [5] used there by
their analogues in [18, 21].

If we apply Lemma 4.5 to the stratum [Λ, n, q−1, γ], the simple character θγ , the element
g−1 = 1+u′ and the character θ, then g normalizes Hq−1(γ,Λ) = Hq−1 and Hq(γ,Λ) = Hq,
and we have:

θ1+u′ = θ · ψaγ(u′)

on Hq. Since c ∈ a−q and u′ ∈ a1, we have ψaγ(u′) = ψaβ(u′) on Hq. We thus get:

θ([g−1, 1 + y]) = ψaβ(u′)(1 + y) = ψA(aβ(u′)y) = 1

for all y ∈ hq ∩ n. We need the following lemma.

L 4.6. – We have (hq)∗ = aβ(js) + a1−q.

Proof. – It is straightforward to check that we have the containment ⊇, so
suppose x ∈ (hq)∗. We denote by s a tame corestriction on A relative to E/F (see for
example [21, définition 2.25]). By [21, Proposition 2.27], s(x) ∈ a1−q ∩ B so, by [21, Propo-
sition 2.29], there exists y ∈ a1−q such that s(x) = s(y). Thus x − y ∈ (hq)∗ ∩ ker(s) and,
again by [21, Proposition 2.27], there is z ∈ a1 ∩ n1−q(β,Λ) + js such that x − y = aβ(z).
Since aβ(a1 ∩ n1−q(β,Λ)) ⊆ a1−q, the result follows.

Therefore we have:

aβ(u′) ∈ (hq)∗ + p = aβ(js) + a1−q + p.

As it is also in n−, we get:
aβ(u′) ∈ aβ(js) + a1−q.

This implies u′ ∈ a1 ∩ n1−q(β,Λ) + js, thus g ∈ Ω1.
Assume now that the result is true for some m 6 q − 1, and that θ is trivial

on Hm ∩Ng. Then it is trivial on Hm+1 ∩Ng. From the inductive hypothesis, we thus get
g ∈ (U1(Λ) ∩ B×)Ωq−m. By Lemma 4.5, this implies that g normalizes Hm and that:

θ1+u′ = θ · ψaβ(u′)

on Hm, with g−1 = 1 + u′. This implies:

θ([g−1, 1 + y]) = 1

for all y ∈ hm ∩ n. Therefore:

aβ(u′) ∈ ((hm)∗ + p) ∩ n− = (aβ(js) + a1−m + p) ∩ n− ⊆ aβ(js) + a1−m.

Thus there is j ∈ js such that:

u′ + j ∈ n1−m(β,Λ) ∩ a1.

From [21, Proposition 2.29] we have:

n1−m(β,Λ) = A(Λ) ∩ B + aq−m+1 ∩ n1−m(β,Λ).
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This implies the expected result, that is g ∈ (U1(Λ) ∩ B×)Ωq−m+1.

Continuing with the same notation, we will also need the following variant of Lemma 4.2.
We put H1

P = H1(J1∩N), which is a normal subgroup of J1, and define the character θP of H1
P

by
θP(hj) = θ(h),

for h ∈ H1 and j ∈ J1 ∩ N. By [21, Proposition 5.4], if we write J1
P = H1(J1 ∩ P), the

intertwining of the character θP is J1
PB×J1

P.

C 4.7. – Let g ∈ U1(Λ) ∩N− and assume that θP is trivial on the intersec-
tion H1

P ∩Ng. Then g ∈ J1
P.

Proof. – Suppose that g ∈ U1(Λ) ∩ N− and θP is trivial on H1
P ∩ Ng. In particular,

intersecting with H1, we see that θ is trivial on H1∩Ng so, by Lemma 4.2, we find g ∈ J1∩N−.
Since g then normalizes θ, we see that it also normalizes θP, so lies in J1

PB×J1
P∩J1 = J1

P.

5. Parabolic induction and the functor K in the simple case

The main result of this section is Theorem 5.6, which says that, in the simple case, the
functor K commutes with parabolic induction; in the next section we will extend this result
to the semisimple case. This fact has been claimed in [16] for representations of finite length
(see [16], Proposition 5.9) but it appears that the proof of ibid., Lemme 5.10 requires more
details.

We give a different proof here, based on our Lemma 4.2, which works for all smooth
representations and not only for representations of finite length.

5.1.

Let [Λmax, n, 0, β] be a simple stratum in Mm(D) and assume that U(Λmax) ∩ B× is a
maximal compact open subgroup in B×. Let θmax be a simple character in C (Λmax, 0, β)

and κmax be a β-extension of θmax. We write Jmax = J(β,Λmax) and J1
max = J1(β,Λmax).

Let K be the functor:
π 7→ HomJ1

max
(κmax, π)

from R(G) to R(Jmax/J
1
max) and set G = Jmax/J

1
max; this is the functor denoted Kκmax

in § 3.

Let M be a standard Levi subgroup of G, associated with a compositionα = (m1, . . . ,mr)

of m. We assume that it is β-admissible, that is, the F-algebra F[β], denoted E, can be
embedded in Ami for all i. Equivalently, mid is a multiple of the degree of E over F for all i.
Let P be the corresponding standard parabolic subgroups of G, and write N for its unipotent
radical.

We fix an isomorphism of E-algebras Φ between B and Mm′(D
′) that identifies A(Λmax) ∩ B

with the maximal standard order made of matrices with integer entries. We choose an E-pure
lattice sequence Λ such that:

(5.1) U(Λ) ∩ B× = (U1(Λmax) ∩ B×)(P ∩U(Λmax) ∩ B×).
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The image Φ(U(Λ)∩B×) is the standard parahoric subgroup of GLm′(D
′) whose reduction

mod pD′ is made of upper block triangular matrices of sizes (m′1, . . . ,m
′
r), with:

m′id
′ =

mid

[E : F]
, i ∈ {1, . . . , r},

where d′ is the reduced degree of D′ over E. Moreover, Λ can be chosen such that it satisfies
the conditions of the following lemma.

L 5.1. – There is an E-pure lattice sequence Λ on Dm satisfying (5.1) and such that:

U(Λ) ⊆ U(Λmax);

U1(Λ) ∩N− = U1(Λmax) ∩N−.

Proof. – We fix a simple left E
⊗

F D-module V0, and form the simple left B-module

VB = HomE
⊗

F D(V0,D
m).

The E-algebra opposite to EndB(VB) is isomorphic to D′. Write A0 = EndD(V0) andA0 for
the unique hereditary order in A0 normalized by E×, and P0 for its Jacobson radical. If we
identify A with Mm′(A0), then A(Λmax) identifies with Mm′(A0). Then choose Λ such that:

A(Λ) =


A0 · · · A0

...
. . .

...

P0 · · · A0

 ⊆

A0 · · · A0

...
. . .

...

A0 · · · A0

 = A(Λmax)

(see [20]). We have:

a1(Λ) =


P0 · · · A0

...
. . .

...

P0 · · · P0

 ⊇

P0 · · · P0

...
. . .

...

P0 · · · P0

 = a1(Λmax).

Therefore both a1(Λ) ∩ n− and a1(Λmax) ∩ n− are made of blocks with values in P0.

Write θ for the transfer of θmax to C (Λ, 0, β) in the sense of [21], and κ for the unique
β-extension of θ such that:

(5.2) Ind
(U(Λ)∩B×)U1(Λ)
J (κ) ' Ind

(U(Λ)∩B×)U1(Λ)
(U(Λ)∩B×)J1

max
(κmax)

where J = J(β,Λ). We also write JP = H1(J ∩ P) and κP for the unique irreducible
representation of JP that is trivial on JP ∩ N and JP ∩ N− and such that, if we restrict κP

to J ∩M, we get:

J ∩M = J1 × · · · × Jr, κP|J∩M = κ1 ⊗ · · · ⊗ κr,

where Ji = J(β,Λi) and κi is a β-extension with respect to some simple stratum [Λi, ni, 0, β]

in Ami . We have an isomorphism of representations of J:

(5.3) IndJ
JP

(κP) ' κ.

We write Jmax,α = J ∩M, J1
max,α = J1 ∩M and κmax,α = κP|J∩M. We have a functor:

KM : π 7→ HomJ1
max,α

(κmax,α, π)

from R(M) to R(Jmax,α/J
1
max,α).
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The groups J∩M/J1 ∩M, (U(Λ)∩B×)J1
max/(U1(Λ)∩B×)J1

max and Jmax,α/J
1
max,α will

all be identified, and all of them will be denoted M . For simplicity, we will write:

U = (U(Λ) ∩ B×)U1(Λ),

U1 = U1(Λ) ∩U = U1(Λ),

S = (U(Λ) ∩ B×)J1
max,

S1 = U1(Λ) ∩ S = (U1(Λ) ∩ B×)J1
max.

5.2.

We write KS for the functor:

π 7→ HomS1(κmax|S, π)

from R(S) to R(M ). Note that this fits in the framework of § 3, with:

J = S, J1 = S1, H1 = (U1(Λ) ∩ B×)H1
max κ = κmax|S,

since, by the construction of β-extensions in [19]:

1. the restriction of κmax to S1 is the unique (irreducible) representation η̃ which
extends ηmax and such that IndU1

S1 (η̃) is equivalent to IndU1

J1 (η);
2. the restriction of η̃ to (U1(Λ) ∩ B×)H1

max is a multiple of the character θ̃ given by:

θ̃(uh) = θ(u)θmax(h),

for u ∈ U1(Λ) ∩ B× and h ∈ H1
max. (Note that this is well-defined, by [21,

Théorème 2.13].)

P 5.2. – For any smooth representation π of M, we have

KM(π) ' KS

(
IndPS

P (π)
)

as representations of M .

Proof. – Let π be a smooth representation of M. Then, by inflation, we have

KM(π) = HomJ1
max,α

(κmax,α, π) ' HomJ1∩P(κP, π).

By Frobenius reciprocity and the Mackey formula, this is isomorphic to

HomJ1
P
(κP, IndJP

J∩P(π)).

Again we are in the situation of § 3, with J = JP, J1 = J1
P, κ = κP, and θ = θP, the character

of Corollary 4.7. Thus, using the notation of § 3 and Lemma 3.1, we get

(5.4) KM(π) ' KκP ◦ IndPJP

P (π).

We decompose PU as a disjoint union of double cosets PuJP, where the double
coset representatives u may, and will, be chosen in U ∩N− = U1(Λ) ∩N−; then
IndPU

P (π) =
⊕

u IndPuJP

P (π).
By Corollary 3.3, we have that KκP ◦ IndPuJP

P is non-zero if and only if θP is trivial
on H1

P ∩Nu, which, by Corollary 4.7, implies u ∈ J1
P. Thus (5.4) implies

KM(π) ' KκP
◦ IndPU

P π ' HomJ1
P
(κP, IndU

P∩U(π)).
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Write ρ for the irreducible induced representation IndU
JP

(κP) which, by (5.2) and (5.3), is
isomorphic to IndU

S (κmax|S). Then, again by Frobenius and Mackey, we get

KM(π) ' HomU1(ρ, IndU
P∩U(π)) ' HomS1(κmax|S, IndU

P∩U(π)) ' KS ◦ IndPU
P (π),

applying Lemma 3.1 again.

As before, we decompose PU as a disjoint union of double cosets PuS, where the
double coset representatives u lie in U ∩ N− which, by Lemma 5.1, is U1(Λ) ∩ N−; then
IndPU

P π =
⊕

u IndPuS
P π. Now Corollary 3.3 shows that the functor KS ◦ IndPuS

P is nonzero
on R(M) if and only if θ̃ is trivial on (U1(Λ) ∩ B×)H1

max ∩ Nu; in particular, restricting
to H1

max and applying Lemma 4.2, we see that u ∈ PS so

KM(π) ' KS ◦ IndPU
P (π) = KS ◦ IndPS

P (π).

This ends the proof of Proposition 5.2.

The following lemma relates the functor KS back to our functor K. We put P = S/J1
max,

which is a parabolic subgroup of G = Jmax/J
1
max with Levi component M . We regard

representations of M as representations of P by inflation.

L 5.3. – For any smooth representation π of M, we have

KS

(
IndPS

P (π)
)
' K

(
IndPS

P (π)
)

as representations of P.

Proof. – We clearly have an inclusion of spaces

HomS1(κmax, IndPS
P π) ⊆ HomJ1

max
(κmax, IndPS

P π)

and, if we check that we have equality here, it is then straightforward that the actions of P

are the same. Write V for the space of κmax.

The action of U1(Λ) ∩ B× on V is a multiple of θ̃|U1(Λ)∩B× , which factors through the
reduced norm. Thus, for u ∈ U1(Λ) ∩ B× ∩N, we have κmax(u) = id V . Now let:

f ∈ HomJ1
max

(κmax, IndPS
P π)

and v ∈ V , and put ϕ = f(v). For j ∈ J1
max and u ∈ U1(Λ) ∩ B× ∩N, we have

ηmax(u−1ju) = ηmax(j) and π(u) acts trivially on the space of π so

(u · ϕ)(j) = ϕ(ju) = ϕ(u−1ju) = f(ηmax(u−1ju)v)(1) = f(ηmax(j)v)(1) = ϕ(j).

Since PS = PJ1
max, this implies that u · ϕ = ϕ. Thus

f(κmax(u)v) = f(v) = u · f(v)

and f ∈ HomS1(κmax, IndPS
P π) since S1 = (U1(Λ) ∩ B× ∩N)J1

max.
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5.3.

Then next step is to relate parabolic induction in the finite reductive group G to induction
inside Jmax.

L 5.4. – For any smooth representation τ of S, we have:

K
(

IndJmax

S (τ)
)
' IndG

P (K(τ))

as representations of G .

Note that K(τ) = HomJ1
max

(κmax, τ) is viewed here as a representation of P by restric-
tion.

Proof. – As above, write V for the space of κmax. Given f ∈ K(IndJmax

S (τ)), we define a
function f̄ by:

f̄(ẋ) : v 7→ f(x−1 · v)(x)

for all x ∈ Jmax and v ∈ V , where ẋ is the class of x in G .
We first need to check that f̄ is well defined. Let z ∈ J1

max. For v ∈ V and x ∈ Jmax, we
have:

f(z−1x−1 · v)(xz) = [z−1 · f(x−1 · v)](xz)

= f(x−1 · v)(xz · z−1)

= f(x−1 · v)(x).

We now check that f̄ takes its values in IndG
P(HomJ1

max
(κmax, τ)). Given v ∈ V , x ∈ Jmax

and j ∈ J1
max, we first have:

f̄(ẋ)(j · v) = f(x−1j · v)(x)

= f(x−1j · v)(j · j−1x)

= τ(j)[f(x−1j · v)(j−1x)]

which is equal to τ(j)[f̄(ẋ)(v)] since j−1x and x have the same image in G . Now given s ∈ S,
x ∈ Jmax and v ∈ V , we have:

f̄(ṡẋ)(v) = f(x−1s−1 · v)(sx)

= τ(s)[f(x−1s−1 · v)(x)].

On the other hand, we have:

[ṡ · f̄(ẋ)](v) = [τ(s) ◦ f̄(ẋ) ◦ κmax(s)−1](v)

= τ(s)[f̄(ẋ)(s−1 · v)]

and this coincides with f̄(ṡẋ)(v).
We now check that f 7→ f̄ is a G -homomorphism. Given x, y ∈ Jmax and v ∈ V , we have:

ẏ · f(ẋ)(v) = [IndG
P(τ)(y) ◦ f ◦ κmax(y)−1](x−1 · v)(x)

= f(y−1x−1 · v)(xy)

which is equal to f̄(ẋẏ)(v) and gives us ẏ · f(ẋ) = f̄(ẋẏ), thus the expected relation
ẏ · f = ẏ · f̄ .
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The map f 7→ f̄ is clearly injective. Now let φ be some function in IndG
P(HomS1(κmax|S, τ)).

We define a function f from V to IndJmax

S (τ) by:

f(v)(x) = φ(ẋ)(x · v).

Checking that f ∈ K(IndJmax

S (τ)) and that f̄ = φ is similar to the calculations above, and
this completes the proof of the lemma.

Putting this together with the results of the previous subsection, we get:

C 5.5. – For any smooth representation π of M, we have

K
(

Ind
PJmax

P (π)
)
' IndG

P (KM(π))

as representations of G .

Proof. – Putting together Proposition 5.2 with Lemmas 5.3, 5.4, we get

IndG
P (KM(π)) ' K

(
Ind

Jmax

S

(
IndPS

P (π)
))

,

while Ind
Jmax

S

(
IndPS

P (π)
)
' Ind

PJmax

P (π), from Lemma 3.1 and the fact that P ∩ S = P ∩ Jmax.

P 5.6. – For any smooth representation π of M, we have an isomorphism

(5.5) K
(

IndG
P (π)

)
' IndG

P (KM(π))

as representations of G .

Proof. – Assume first that R is the field of complex numbers. In that case, we may
assume that π belongs to a single Bernstein block of M. If π does not contain the simple
character θmax, then both sides of (5.5) are zero. Otherwise, the method used by Schneider
and Zink in [17], based on equivalences of categories given by the theory of types for
complex representations, applies mutatis mutandis, replacing the reference to [6, (11.4)]
by [8, Theorem 1.5]. Therefore, for any irreducible complex representation π of M, the
canonical inclusion:

K(Ind
PJmax

P (π)) ⊆ K(IndG
P (π))

is an equality by Corollary 5.5, since the right hand side is finite-dimensional. Thus the
functor K ◦ Ind

PgJmax

P is zero on Irr(M), for any g 6∈ PJmax. By Corollary 3.3, this implies
that, for g ∈ G,

(5.6) θmax is trivial on H1
max ∩Ng ⇔ g ∈ PJmax

for any complex maximal simple character θmax. As H1
max is a pro-p-group, (5.6) holds also

for any modular maximal simple character. Thus, by Corollary 3.3 again, the equality

K
(

IndG
P (π)

)
= K

(
Ind

PJmax

P (π)
)

holds for all smooth R-representations π of M. The result follows from Corollary 5.5.
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R 5.7. – We have proved that the functors K ◦ IndG
P and IndG

P ◦ KM from R(M)

to R(G) behave in the same way on objects. It seems likely that similar proofs would show
that they behave in the same way on morphisms so that the two functors are in fact isomor-
phic.

6. Semisimple supertypes

In this section, we first recall briefly the basic properties of, and data attached to,
semisimple supertypes, for which we refer to [22, 16] for more details, and we explain the
functor K in this situation. The main result is Theorem 6.2, which extends to the semisimple
case the main result of the previous section: the functor K commutes with parabolic induc-
tion.

6.1.

Let α = (m1, . . . ,mr) be a composition of m. For all i ∈ {1, . . . , r}, let (Ji, λi) be a
maximal simple type attached to a simple stratum [Λi, ni, 0, βi] in Ami . We write M for the
standard Levi subgroup Gm1 × · · · ×Gmr in G and:

Jα = J1 × · · · × Jr, λα = λ1 ⊗ · · · ⊗ λr.

A pair of the form (Jα, λα) is called a maximal simple type of M. Associated to it, there is a
pair (J,λ) called a semisimple type of G (see [22, 16]). For any parabolic subgroup P of G

with Levi component M, the pair (J,λ) satisfies the following properties:

1. the kernel of λ contains J ∩ N and J ∩ N−, where N and N− denote the unipotent
radicals of P and P−, the parabolic subgroup opposite to P with respect to M;

2. one has J ∩M = Jα and λ|J∩M = λα;

(these two conditions say that (J,λ) is decomposed above the pair (Jα, λα) with respect
to (M,P) in the sense of [6, Definition 6.1]), plus another technical condition saying that
the pair (J,λ) is a cover of (Jα, λα) in the sense of [6, Definition 8.1]. Note that there is
considerable flexibility in the construction of semisimple types; in particular, there is a (not
entirely arbitrary) choice of lattice sequence Λ on Dm such that:

U(Λ) ∩M = U(Λ1)× · · · ×U(Λr)

(see [22, § 7.1] and [16, § 2.8-9] for the precise condition). In particular, we may and will
assume that the lattice sequences Λ1, . . . ,Λr and Λ all have the same period.

Given πi a representation of Gmi for all i ∈ {1, . . . , r}, we write π1 × · · · × πr for
the representation IndG

P (π1 ⊗ · · · ⊗ πr), where P is the parabolic subgroup of G with Levi
component M made of upper triangular matrices.

An important relationship between (J,λ) and (J1, λ1), . . . , (Jr, λr) is that there is an
isomorphism of representations of G:

indG
J (λ) ' ind

Gm1

J1
(λ1)× · · · × ind

Gmr
J1

(λr)

(see [2]). Note, in particular, that this is independent of any choices made in the construction
of (J,λ).
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D 6.1. – 1. When (J1, λ1), . . . , (Jr, λr) are maximal simple supertypes,
(J,λ) is called a semisimple supertype of G.

2. The equivalence class of a semisimple type (J,λ) is the set [J,λ] of all semisimple
supertypes (J′,λ′) of G such that indG

J′(λ
′) is isomorphic to indG

J (λ).

Together with J, we also have a normal open subgroup J1 and an irreducible representa-
tion η of J1 (see [16, § 2.10]). When restricting λ to J1, we get a direct sum of copies of η.
There is a decomposition of the form:

(6.1) λ ' κ⊗ σ,

where κ is an irreducible representation of J extending η and σ is an irreducible representa-
tion of J trivial on J1. The representation κ has the property that its intertwining is the same
as that of η, but is not uniquely determined by this condition; thus there is a choice of κ to
be made in the decomposition (6.1).

For each i ∈ {1, . . . , r}, we have a maximal simple character θi attached to the simple
stratum [Λi, ni, 0, βi], an isomorphism of F[βi]-algebras Bi ' Mm′i

(D′i) for a suitable
F[βi]-division algebra D′i, and isomorphisms of groups:

J/J1 ' J1/J
1
1 × · · · × Jr/J

1
r ' GLm′1(kD′1)× · · · ×GLm′r (kD′r );

we denote by M this latter group. The representation κ is trivial on J ∩N and J ∩N−, and
its restriction to J ∩ M = Jα is of the form κα = κ1 ⊗ · · · ⊗ κr, where κi is a maximal
βi-extension of θi.

For each i, there is a decomposition λi = κi⊗σi, where σi is an irreducible representation
of Ji trivial on J1

i that identifies with a cuspidal representation of GLm′i(kD′i), andσ identifies
with the irreducible cuspidal representation σ1 ⊗ · · · ⊗ σr of M .

6.2.

We will need to recall some more detail of the structure of semisimple supertypes (J,λ),
which we begin in this section.

We write Θi for the endo-class of θi (see [3] for the definition of endo-class) and assume
first that the endo-classes Θi all coincide, the so-called homogeneous case. In this case, we
may and will assume that the elements β1, . . . , βr are all equal to (the image of) a single
element β and that the characters θi are related by the transfer maps (in other words, they
are realizations of the same ps-character—see [3]). We put E = F[β] and denote by B the
centralizer of E in A, so that B ' Mm′(D

′), where D′ is a suitable E-division algebra.
Similarly, we write Bi ' Mm′i

(D′) for the centralizer of E in Ami .

We choose a simple stratum [Λmax, nmax, 0, β] in A and an isomorphism of E-algebras Φ

from B to Mm′(D
′) with the following properties:

1. U(Λmax) ∩ B× is a maximal compact subgroup of B× that contains U(Λ) ∩ B×;
2. Φ(U(Λmax) ∩ B×) and Φ(U(Λ) ∩ B×) are both standard parahoric subgroups

of GLm′(D
′).
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By passing to an equivalent type if necessary, we will assume that U(Λ) ⊆ U(Λmax) as in
Lemma 5.1.

We are now in the situation of § 5.1, with θ the transfer of θi to C (Λ, 0, β) (which is
independent of i), and we take the notation from there. We have J = JP and κ = κP for
some choice of β-extension κmax of θmax; it is thus this choice of κmax which imposes the
choice of κ in § 6.1. The group M is a Levi subgroup of:

G = GLm′(kD′) ' Jmax/J
1
max

so we get a supercuspidal pair (M ,σ) of G , where σ = σ1 ⊗ · · · ⊗ σr is as above. Taking Γ

to be the group Gal(kD′/kE), we also get an equivalence class [M ,σ] of supercuspidal pairs,
in the sense of Definition 1.14.

The group G and the conjugacy class of M ⊆ G are uniquely determined by the
semisimple type (J,λ), independently of the decomposition λ = κ ⊗ σ. The represen-
tation κ is not uniquely determined but, once it is fixed (or, equivalently, the representa-
tion κmax is fixed), it determines the equivalence class [M ,σ], as well as the functor:

K = Kκmax
: R(G)→ R(G ).

Moreover, every equivalence class [M ′,σ′] arises from some homogeneous semisimple
supertype: M ′ determines a composition α′ of m′ and hence a Levi subgroup M′ of G

with standard parabolic subgroup P′; then we may make the constructions of § 5.1 to get
a pair (J′,λ′), with J′ = JP′ and λ′ = κP′ ⊗ σ′, which is a homogeneous semisimple
supertype with the required property.

6.3.

Now we consider the general case, when the endo-classes Θi may differ. Let Θ = Θ(J,λ)

be the formal sum:
r∑
i=1

mid

[F[βi] : F]
·Θi

in the semigroup of finitely supported maps {endo-classes over F} → N (with N the
semigroup of nonnegative integers). The fibers of the map i 7→ Θi define a partition:

{1, . . . , r} = I1 ∪ · · · ∪ Il

for some l > 1. Renumbering, we may assume that the Ij (for j ∈ {1, . . . , l}) are of the form:

Ij = {i ∈ {1, . . . , r} | aj−1 < i 6 aj}

for some integers 0 = a0 < a1 < · · · < al = r. For all j ∈ {1, . . . , l}, we write:

nj =
∑
i∈Ij

mi, Mj =
∏
i∈Ij

Gmi ,

and Pj the standard parabolic subgroup of Gnj with Levi subgroup Mj . Let L be the
standard Levi subgroup Gn1×· · ·×Gnl in G; thus we have P∩L = P1×· · ·×Pl. From the
construction of semisimple types, and by passing to an equivalent semisimple type as before
if necessary, we have:

J ∩ L = J1 × · · · × Jl, λJ∩L = λ1 ⊗ · · · ⊗ λl,

4 e SÉRIE – TOME 49 – 2016 – No 3



BLOCKS FOR `-MODULAR SMOOTH REPRESENTATIONS OF GLn(F) 695

where each (Jj ,λj) is a homogeneous semisimple supertype, as described in the previous
section. In particular, for each j ∈ {1, . . . , l}, we choose a pair (Jmax,j , κmax,j) and have the
group Gj and the supercuspidal equivalence class [Lj ,σj ]. The choice of the representations
κmax,j imposes the choice of κ in § 6.1 (and vice versa).

Now write µ = (n1, . . . , nl) and:

Jmax,µ = Jmax,1 × · · · × Jmax,l, κmax,µ = κmax,1 ⊗ · · · ⊗ κmax,l,

so that:

Jmax,µ/J
1
max,µ ' G1 × · · · × Gl;

we denote the latter group by G . We also get an isomorphism of groups M 'M1×· · ·×Ml

which identifies σ with σ1 ⊗ · · · ⊗ σl. Then (M ,σ) is a supercuspidal pair of G and we
define the equivalence class [M ,σ] to be the product of the equivalence classes [Mj ,σj ] (see
Definition 1.14).

The formal sum Θ, the group G and the conjugacy class of M ⊆ G are uniquely
determined by (J,λ) (independently of the decomposition λ = κ⊗σ). In fact, the group G

depends only on Θ, since Gj ' GLn′j (kD′j ), where:

n′j · [kD′j : kEj ] =
njd

[Ej : F]
=
∑
i∈Ij

mid

[F[βi] : F]
,

which is the coefficient of Θi in Θ, for i ∈ Ij .

As in the previous case, the representation κ is not uniquely determined by λ, but once
it is fixed (or, equivalently, once κmax,µ is fixed), it determines the equivalence class [M ,σ].
Further, there is a decomposed pair (Jmax,κmax) above (Jmax,µ, κmax,µ) (see [16]) and we
let J1

max denote the pro-p radical of Jmax; we are now in the situation of § 3, with J = Jmax

and κ = κmax so we have the functor:

K = Kκmax
: R(G)→ R(G ),

which is also determined by the choice of κ. As in the homogeneous case, every equivalence
class [M ′,σ′] arises from some semisimple supertype (J′,λ′), by taking a cover.

We will see below that K induces a bijection between the set of equivalence classes [J,λ] of
semisimple supertypes for G such that Θ(J,λ) = Θ and the set of equivalence classes [M ,σ]

of supercuspidal pairs in G (see Proposition 10.7); it might be possible to prove this directly
but in fact we deduce it as a consequence of our block decomposition of R(G).

6.4.

We continue with a semisimple supertype (J,λ) and all the notation of the previous
section, making a choice of decomposition λ = κ ⊗ σ. In particular we have Levi
subgroups M ⊆ L ⊆ G; a decomposed pair (Jmax,κmax) in G of (Jmax,µ, κmax,µ) in L; a
pair (Jα, κα) in M; and a Levi subgroup M of G . This gives us functors:

K = Kκmax
: R(G)→ R(G ),

KL = Kκmax,µ : R(L)→ R(G ),

KM = Kκα : R(M)→ R(M ),
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using the notation of § 3. Denote by Q = LU the standard parabolic subgroup of G with Levi
component L, and by P the standard parabolic subgroup of G with Levi component M .

T 6.2. – For any smooth representation π of M, one has:

K(IndG
P (π)) ' IndG

P(KM(π)).

Proof. – First note that it is enough to prove the result when M = L. Indeed, assuming
that the theorem is true for M = L, we set π0 = IndL

P∩L(π) and get:

K(IndG
P (π)) ' K(IndG

Q(π0)) ' KL(IndL
P∩L(π))

and the latter representation of G is isomorphic to IndG
P(KM(π)) thanks to Proposition 5.6.

Assume now that M = L. Given π ∈ R(L), by Lemma 3.1, we have an isomorphism:

Ind
QJmax

Q (π) ' Ind
Jmax

Jmax∩Q(π)

of representations of Jmax. Since Jmax = J1
max(Jmax ∩Q), we get:

(6.2) K(Ind
QJmax

Q (π)) ' HomJ1
max∩Q(κ|Jmax∩Q, π) ' HomJ1

max,µ
(κmax,µ, π)

which is KL(π). Therefore it is enough to prove that:

(6.3) K(IndG
Q(π)) = K(Ind

QJmax

Q (π))

for all smooth representations π of L.
First assume R is the field of complex numbers and π is irreducible. Define a representa-

tion V of G by the following exact sequence:

(6.4) 0→ K(Ind
QJmax

Q (π))
ι−→ K(IndG

Q(π))→ V→ 0

of representations of G , where ι is the inclusion map, and assume that V is nonzero. Then
it has an irreducible subquotient, with some supercuspidal support (M ′,σ′). Let P ′ be the
standard parabolic subgroup of G with Levi component M ′ and write N ′ for its unipotent
radical. There is a standard parabolic subgroup P′ = M′N′ of G contained in Q, having the
following property: the intersection P′ ∩ L = M′(N′ ∩ L) is a parabolic subgroup of L such
that:

(U(Λmax) ∩ B× ∩N′ ∩ L)(U1(Λmax) ∩ B×)/(U1(Λmax) ∩ B×) = N ′.

Let [Λ′, n′, 0, β] be a simple stratum such that:

1. the image of U1(Λ′) ∩ B× ∩ L in G is N ′;
2. U(Λ′) ∩ L ⊆ U(Λmax) ∩ L and U(Λ′) ∩N′ ∩ L = U(Λmax) ∩N′ ∩ L as in Lemma 5.1.

(Note that this makes sense because it is happening in L, where we just have a direct sum of
simple strata so we can do it separately in each block of L and then take the sum.)

By using (5.2) and (5.3) in L, there is an irreducible representation κP′∩L of a group JP′∩L

which is compatible with κmax,µ, that is, we have an isomorphism:

Ind
(U(Λ′)∩B×∩L)(U1(Λ′)∩L)
JP′∩L

(κP′∩L) ' Ind
(U(Λ′)∩B×∩L)(U1(Λ′)∩L)
(U(Λ′)∩B×∩L)J1

max,µ
(κmax,µ),

and these induced representations are irreducible. In particular, by the Mackey formula,
there is an element g ∈ (U(Λ′) ∩ B× ∩ L)(U1(Λ′) ∩ L) that intertwines κP′∩L with κmax,µ.
Moreover, the representation κP′∩L is decomposed above the restriction of κmax,µ to JP′∩L ∩ L,
denoted κL, which is a maximal β-extension of JL in L.
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By [16, Proposition 2.33], we get a representationκ′ of a compact open subgroup J′ which
is decomposed above κP′∩L in G, so also above (JL, κL).

L 6.3 (cf. [6, Proposition 6.3]). – For i = 1, 2, let Ki be a subgroup of G with an
Iwahori decomposition with respect to (L,Q), and let ρi be an irreducible representation of Ki

which is trivial on U and U−. Then, for g ∈ L, we have:

HomK1∩(K2)g (ρ1, (ρ2)g) = Hom(K1∩L)∩(K2∩L)g (ρ1, (ρ2)g).

Proof. – One inclusion is obvious and the other follows from the fact that K1∩(K2)g has
an Iwahori decomposition with respect to (L,Q).

Applying this lemma with κ′ and the restriction of κmax to (U(Λ′) ∩ B×)J1
max,µ, we see

that g intertwines these two representations. Thus, by Mackey, there is a non-zero morphism:

Ind
(U(Λ′)∩B×∩L)(U1(Λ′)∩L)
J′ (κ′)→ Ind

(U(Λ′)∩B×∩L)(U1(Λ′)∩L)
(U(Λ′)∩B×)J1

max
(κmax).

Moreover, the intertwining formula given by [16, Proposition 2.31] (together with an
analogue of [16, Lemme 2.2]) implies that both of these representations are irreducible.
Thus they are isomorphic, and we have a compatibility property analogous to (5.2).

We now go back to (6.4). By taking the N ′-fixed vectors and then the σ′-isotypic compo-
nent, and thanks to (6.2), we get an exact sequence

0→ HomJ1
max,µ

(κmax,µ, π)N ′,σ′ → HomJ1
max

(κmax, IndG
P (π))N ′,σ′ → VN ′,σ′ → 0

of complex vector spaces, which are finite-dimensional since π is admissible. Now

HomJ1
max

(κmax, IndG
P (π))N ′,σ′ ' Hom(U1(Λ′)∩B×)J1

max
(κmax, IndG

P (π))σ
′

' Hom(U(Λ′)∩B×)J1
max

(κmax ⊗ σ′, IndG
P (π))

' HomJ′(κ
′ ⊗ σ′, IndG

P (π)),

where κ′ is compatible with κmax as above. Similarly, we have

HomJ1
max,µ

(κmax,µ, π)N ′,σ′ ' HomJP′∩L
(κP′∩L ⊗ σ′, π)

Now, by [22], the semisimple type λ′ = κ′⊗σ′ is a cover of κP′∩L⊗σ′, which is itself a cover
of κL ⊗ σ′. Thus the algebra H = EndG(indG

J′(κ
′ ⊗ σ′) is a free module of rank 1 over:

HL = EndL(indL
JP′∩L

(κP′∩L ⊗ σ′))

(see [16, Corollaire 2.32]) and there is an isomorphism of H -modules

HomJ′(κ
′ ⊗ σ′, IndG

P (π)) ' HomHL(H ,HomJP′∩L
(κP′∩L ⊗ σ′, π)).

Since these are finite-dimensional, we deduce that VN ′,σ′ = 0, a contradiction.

We deduce from Proposition 3.2 that, for g ∈ G, we have:

(6.5) HomJ1
max∩Ug (κmax, 1) 6= 0 ⇔ g ∈ PJmax.

As J1
max is a pro-p-group, (6.5) also holds when R has positive characteristic. Thus, by

Proposition 3.2 again, the equality (6.3) holds for all smooth R-representations π of L.
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7. A semisimple computation

As in Section 6, the notation of which we use, (J,λ) is a semisimple supertype of G. We
fix a decomposition λ = κ ⊗ σ and write K = Kκmax

and [M ,σ] for the functor and the
equivalence class of supercuspidal pairs associated with it.

P 7.1. – Every irreducible subquotient of K(indG
J (λ)) has its supercuspidal

support in [M ,σ].

Proof. – Assume first that (J,λ) is a maximal simple type. Then r = l = 1 and we have:

K(indG
J (λ)) '

⊕
J\G/J

K(indJ
J∩Jg (λg)).

By reciprocity, one see that the g ∈ G that contribute to this sum intertwine η. Therefore one
may assume that they are in B×. Since J∩B× is a maximal compact open subgroup in B×, by
the Cartan decomposition one may assume that the g that contribute are diagonal matrices
in B×. As σ is cuspidal, only those g which normalize J ∩ B× contribute to this sum. Fix
$ ∈ B× such that the B×-normalizer of J ∩ B× is generated by J ∩ B× and $. We get:

K(indG
J (λ)) '

⊕
n∈Z

K(λ$
n

) =
⊕
Z

(σ ⊕ σφ ⊕ · · · ⊕ σφ
b−1

) =
⊕
Z

b−1⊕
j=0

σφ
j

,

where φ is a generator of Gal(kD′/kE) and b is the cardinality of the Gal(kD′/kE)-orbit of σ
(see [16, Lemme 5.3])

We treat the general case. Recall that we have the standard parabolic subgroup P of G,
with standard Levi component M. We have an isomorphism:

indG
J (λ) ' IndG

P (indM
J∩M(λα)).

As K commutes with parabolic induction (see Theorem 6.2), we get:

K(indG
J (λ)) ' IndG

P

(
KM(indM

J∩M(λα))
)

' IndG
P

(
K1(ind

Gm1

J1
(λ1))⊗ · · · ⊗ Kr(ind

Gmr
Jr

(λr))
)

where we have Ki = Kκi . For each i ∈ {1, . . . , r} we have:

Ki(indGi
Ji

(λi)) '
⊕
Z

bi−1⊕
j=0

σ
φji
i ,

where φi is a generator of Γi = Gal(kD′i/kF[βi]) and bi is the cardinality of the orbit of σi
under Γi. Thus:

K(indG
J (λ)) '

⊕
Zr

⊕
j

(σ
φ
j1
1

1 × · · · × σφ
jr
r
r )

where j ranges over the r-tuples (j1, . . . , jr) with ji ∈ {0, . . . , bi − 1} for all i ∈ {1, . . . , r},
and where × stands for parabolic induction. The result follows by unicity of supercuspidal
support in G .
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8. Supercuspidal inertial classes and supertypes

Given (J,λ) a semisimple supertype of G, write Irr(J,λ) for the set of all classes of
irreducible subquotients of indG

J (λ).

Given Ω an inertial class of supercuspidal pairs of G, write Irr(Ω) for the set of all classes
of irreducible representations of G having their supercuspidal support in Ω.

P 8.1. – Let (M, %) be a supercuspidal pair of G and (J,λ) be a semisimple
supertype of G associated with a maximal simple type (Jα, λα) of M contained in %. Write Ω

for the inertial class of (M, %). Then we have Irr(Ω) = Irr(J,λ).

Proof. – We begin by proving the containment Irr(Ω) ⊆ Irr(J,λ). Assume M is standard
and write % = ρ1 ⊗ · · · ⊗ ρr, where ρi is a supercuspidal irreducible representation of Gmi

formi > 1. For i ∈ {1, . . . , r}, fix an unramified character χi of Gmi . Then ρiχi is a quotient
of the compact induction of λi to Gmi . It follows that ρ1χ1 × · · · × ρrχr is a quotient of:

(8.1) ind
Gm1

J1
(λ1)× · · · × ind

Gmr
J1

(λr) ' indG
J (λ).

Thus any irreducible subquotient of ρ1χ1 × · · · × ρrχr appears in Irr(J,λ).

For the opposite containment, we need the following lemma.

L 8.2. – Let Ω and (J,λ) be as in Proposition 8.1, and assume that Irr(J,λ) contains
a cuspidal representation π. Then we have π ∈ Irr(Ω).

Proof. – Let (J0, λ0) be a maximal simple type of G contained in π. It is attached to
a simple stratum [Λ0, n0, 0, β0] and we write θ0 for the simple character occurring in the
restriction of λ0 to H1

0 = H1(β0,Λ0). This character occurs as a subquotient (hence a
subrepresentation since H1

0 is a pro-p group) of the restriction of indG
J (λ) to H1

0. Recall that
we have an isomorphism (8.1) and that the compact induction of λi to Gmi is isomorphic to

ρi ⊗ R[X,X−1],

with Gmi acting on R[X,X−1] by g ·Xk = Xk+v(g), for all k ∈ Z, where v(g) is the valuation
of the reduced norm of g ∈ Gmi . Therefore, when restricting (8.1) to H1

0, we deduce that θ0

occurs as a subrepresentation of ⊕
Zr

(ρ1 × · · · × ρr).

Thus θ0 occurs as a subrepresentation of ρ1×· · ·×ρr, and it follows from [16, Proposition 5.6]
that the sum Θ = Θ(J,λ) is equal to

Θ(J0, λ0) =
md

[F[β0] : F]
·Θ0,

where Θ0 is the endo-class of π. We thus are in the homogeneous situation of Section 6.2
so that a decomposition λ = κ ⊗ σ is determined by a pair (Jmax, κmax). Then the simple
character θmax contained in κmax is the transfer of the simple character θ0 in λ0.

We fix a decomposition λ0 = κ0 ⊗ σ0 and write K0 = Kκ0 . By [3], the characters θ0

and θmax are in fact conjugate and, replacing the pair (J,λ) by a suitable G-conjugate, we
may assume that the pairs (Jmax, κmax) and (J0, κ0) coincide. Thus the functor K = Kκmax
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of Section 6.2 coincides with K0. This also induces a decomposition λi = κi ⊗ σi for all
i ∈ {1, . . . , r}.

We now apply this functor to the subquotient π of indG
J (λ). By [16, Lemme 5.3], the repre-

sentation K(π) is a sum of cuspidal irreducible representations of G = GLm′(kD′). By Propo-
sition 7.1, these cuspidal representations have their supercuspidal support in [M ,σ]. By the
classification of cuspidal irreducible representations of G in terms of supercuspidal repre-
sentations (see for instance [15, Proposition 3.7]), there is a supercuspidal representation σ
of GLm′/r(kD′) such that

σi = σγi , γi ∈ Gal(kD′/kF[β0]), i ∈ {1, . . . , r},

and an integer u > 0 such that we have r = e(σ)`u, where e(σ) is a positive integer attached
to σ (see [15, Remarque 3.6]). Since κi⊗σ can be obtained from λi by conjugacy in Gmi , we
may assume without changing indG

J (λ) that we have:

Θi = · · · = Θr = Θ0, σ1 = · · · = σr = σ.

By [16, Corollaire 5.5], it follows that ρ1, . . . , ρr are inertially equivalent to a given supercus-
pidal representation ρ. It also follows from [15, § 6] that π is inertially equivalent to St(ρ, r),
the unique cuspidal irreducible subquotient of the product ρ×ρνρ×· · ·×ρνr−1

ρ (where νρ is
the unramified character associated with ρ in [16, § 4.5]). It follows that the supercuspidal
pair (M, %) is inertially equivalent to (M, ρ⊗ · · · ⊗ ρ) and that π appears in Irr(Ω).

We return to the proof of Proposition 8.1. Let π be an irreducible subquotient of indG
J (λ),

and let (L, τ) be its cuspidal support. Write:

indG
J (λ) ' IndG

P (indL
Jα(λα)) = ind

Gm1

J1
(λ1)× · · · × ind

Gmr
Jr

(λr).

For i ∈ {1, . . . , r}, note that Πi = ind
Gmi
Ji

(λi) is made of supercuspidal irreducible subquo-
tients all of whose are unramified twists of a given supercuspidal irreducible representation ρi
of Gmi . Let Q = LU be a parabolic subgroup of G with Levi component L. We compute
the Jacquet module (indG

J (λ))U. Since it contains πU, it contains an irreducible cuspidal
subquotient which is G-conjugate to τ . By the geometric lemma, there are a permutation w
of {1, . . . , r} and integers 0 = a0 < a1 < · · · < at = r such that, if we write τ = τ1⊗· · ·⊗ τt
with τj cuspidal, then τj appears, for each j ∈ {1, . . . , t}, as a subquotient of:

Σj = Πw(aj−1+1) × · · · ×Πw(aj).

It follows from Lemma 8.2 that τj has its supercuspidal support in Ωj , the inertial class of
the supercuspidal pair:

(Gw(aj−1+1) × · · · ×Gw(aj), ρw(aj−1+1) ⊗ · · · ⊗ ρw(aj)).

It follows that π has its supercuspidal support in Ω, as required.

P 8.3. – Let (J,λ) and (J′,λ′) be semisimple supertypes of G. The repre-
sentations indG

J′(λ
′), indG

J (λ) have an irreducible subquotient in common if and only
if [J,λ] = [J′,λ′].
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Proof. – Since the Irr(Ω) form a partition of the set of all isomorphism classes of irre-
ducible representations of G, it follows from Proposition 8.1 that indG

J′(λ
′), indG

J (λ) have an
irreducible subquotient in common if and only if Irr(J,λ) = Irr(J′,λ′).

Suppose that Irr(J,λ) = Irr(J′,λ′) = Irr(Ω), with Ω = [M, %]G. If M = G then, by
following the proof of Lemma 8.2, we find that (J,λ) and (J′,λ′) are both equivalent to
maximal simple supertypes; by unicity (up to conjugacy) of maximal simple supertypes in a
supercuspidal representation (see [16, Théorème 3.11] and [15, Proposition 6.10]), we deduce
that [J,λ] = [J′,λ′]. In the general case, we have

indG
J (λ) ' IndG

Q(indM
Jα(λα)) ' IndG

Q(indM
J′α

(λ′α)) ' indG
J′(λ

′),

where the middle isomorphism follows from the previous case.

It also follows that there is a bijection:

(8.2) Ω↔ [J,λ]

between inertial classes of supercuspidal pairs of G and equivalence classes of semisimple
supertypes of G, characterized by the equality Irr(Ω) = Irr(J,λ).

9. Splitting of the category

Let (J,λ) be a semisimple supertype of G, together with a decomposition λ = κ ⊗ σ.
Associated with it, there are a formal sum Θ of endo-classes, a functor K = Kκmax

and the
group G = Jmax/J

1
max.

9.1.

We now fix Θ and K, and make [M ,σ] vary among the equivalence classes of supercusp-
idal pairs of G . By Corollary 1.15, we have, for all V ∈ R(G), a decomposition:

(9.1) K(V) =
⊕

[M ,σ]

V(Θ,σ),

where V(Θ,σ) is the maximal subspace of K(V) all of whose composition factors have
supercuspidal support in [M ,σ].

D 9.1. – Given V ∈ R(G) a smooth representation, we write:

1. V[Θ,σ] for the G-subspace of V generated by V(Θ,σ);
2. V[Θ] for the G-subspace of V generated by K(V).

Thus V[Θ] is the sum of all the V[Θ,σ], as [M ,σ] ranges over the set of equiva-
lence classes of supercuspidal pairs of G . We claim that V[Θ] is in fact the direct sum of
the V[Θ,σ].

L 9.2. – Given [M ,σ], [M ′,σ′] equivalence classes of supercuspidal pairs of G , we
have:

V[Θ,σ](Θ,σ′) =

{
V(Θ,σ) if [M ′,σ′] = [M ,σ];

0 otherwise.
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Proof. – We have the containment V[Θ,σ](Θ,σ) ⊆ V(Θ,σ). Since V[Θ,σ] con-
tains V(Θ,σ), this containment is an equality. Write T for the functor

ξ 7→ K(indG
Jmax

(κmax ⊗ ξ)).

We have a surjective map:

indG
Jmax

(κmax ⊗V(Θ,σ))→ V[Θ,σ]

thus a surjective map:

T(V(Θ,σ))→ K(V[Θ,σ]).

To prove the remaining part of the lemma, it is enough to prove that any irreducible subquo-
tient of the left hand side has supercuspidal support in [M ,σ]. As T is exact, it is enough
to prove that, for all irreducible representation ξ with supercuspidal support in [M ,σ], any
irreducible subquotients of T(ξ) has supercuspidal support in [M ,σ]. By the same exactness
argument, it is enough to prove the following lemma.

L 9.3. – Let (M ′,σ′) ∈ [M ,σ] and X = IndG
M ′(σ′). Then all irreducible subquo-

tients of T(X) have supercuspidal support in [M ,σ].

Proof. – We may and will assume that M ′ = M . We seeσ′ as a representation of J trivial
on J1 and write λ′ for the semisimple supertype κ⊗ σ′. Then we have:

indG
Jmax

(κmax ⊗X) ' indG
J (κ⊗ σ′) = indG

J (λ′).

Then the lemma follows from Proposition 7.1.

This ends the proof of Lemma 9.2.

As a corollary, we have the following result.

C 9.4. – For all smooth representations V of G, we have:

V[Θ] =
⊕

[M ,σ]

V[Θ,σ].

R 9.5. – Note that, given V ∈ R(G), the subrepresentation V[Θ] does not
depend on the choice of the functor K; a different choice of κ simply permutes the equiva-
lence classes of supercuspidal pairs [M ,σ] so permutes the terms V[Θ,σ] in V[Θ].

9.2.

We now make Θ vary among all possible formal sums of endo-classes arising from a
semisimple supertype of G.

T 9.6. – For all smooth representation V of G, there is an isomorphism:

V '
⊕
Θ

V[Θ]

of representations of G.
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Proof. – Let V be a smooth representation of G. We have a morphism:

f :
⊕
Θ

V[Θ] = Y → V.

Write W for its kernel.

L 9.7. – We have:

W =
⊕
Θ

(W ∩V[Θ]).

Proof. – Let Z denote the quotient of W by the right hand side, and assume that it is
nonzero. Let π be an irreducible subquotient of Z. For all sums of endo-classes Θ, the
representation π is an irreducible subquotient of W/(W ∩V[Θ]), thus of:

V/V[Θ] =
⊕

Θ′ 6=Θ

V[Θ′],

which implies that π[Θ] = 0. Since π contains some semisimple supertype (J,λ) by [22, 16],
for any decomposition λ = κ ⊗ σ with associated functor K and formal sum Θ, we
have K(π) 6= 0 so that π[Θ] 6= 0, a contradiction.

Since f is injective on each V[Θ], we have W ∩V[Θ] = 0 for all Θ and it follows that we
have W = 0. Assume that f is not surjective, and let π be an irreducible subquotient in its
cokernel. Write Ω for the inertial class of its supercuspidal support. Its corresponds to some
semisimple supertype (J,λ). Write Θ = Θ(J,λ) and fix a decomposition λ = κ ⊗ σ. By
applying K, we get that K(π) is a subquotient of:

K(V)/K(Y) = K(V)/K(V[Θ]) = K(V)/
⊕

[M ,σ]

K(V[Θ,σ]) = K(V)/
⊕

[M ,σ]

V(Θ,σ)

by Corollary 9.4 and Lemma 9.2. But the right hand side is zero by (9.1): contradiction.

10. Blocks of the category

Recall that an abelian category A is the direct sum of two full subcategories A1,A2 if every
object V of A decomposes uniquely as V = V1⊕V2, with Vi an object of Ai for i = 1, 2, and
HomA (V1,V2) = 0. In this case, we say that A1,A2 are direct summands of A . We say that
A is indecomposable if it cannot be expressed as the direct sum of two proper subcategories.

D 10.1. – A block in R(G) is a direct summand of R(G) which is indecom-
posable.
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10.1.

Given Ω an inertial class of a supercuspidal pair of G, we write R(Ω) for the full subcat-
egory of representations all of whose irreducible subquotients have their supercuspidal
support in Ω.

Given (J,λ) a semisimple supertype of G, we fix a decompositionλ = κ⊗σ and associate
to it the sum Θ, the functor K = Kκmax and the equivalence class [M ,σ]. We write R(J,λ)

for the full subcategory of representations V ∈ R(Ω) such that V = V[Θ,σ]. This does not
depend on the choice of the decomposition of λ.

Assume that Ω = [L, %]G and [J,λ] correspond to each other (see Section 8).

P 10.2. – One has R(Ω) = R(J,λ).

Proof. – Given V ∈ R(Ω), we apply Theorem 9.6 and thus get a decomposition:

(10.1) V =
⊕
Θ′

V[Θ′].

Assume V[Θ′] is nonzero for some sum Θ′, and let W be an irreducible subquotient of it.
Note that W has supercuspidal support in Ω. We first prove that Θ′ = Θ. For this, it is
enough to prove the following lemma.

L 10.3. – We have K(W) 6= 0.

Proof. – If Ω is homogeneous, that is, if Ω is the inertial class of a tensor product of copies
of a given supercuspidal representation, the result is given by [16, Proposition 5.8]. In general,
we use [15, théorème 8.19] together with Theorem 6.2 to reduce to the homogeneous case.

We thus have Θ′ = Θ, and K(W) is a subquotient of:

K(V[Θ]) =
⊕

[M ′,σ′]

V(Θ,σ′).

But there is also an unramified character χ of L such that K(W) is a subquotient of:

K(IndG
Q(%χ)) ' IndG

M (KL(%χ)),

which is a finite direct sum of representations of the form IndG
M ′(σ′) for (M ′,σ′) ∈ [M ,σ].

Thus all irreducible subquotients of K(W) have supercuspidal support in [M ′,σ′], and the
decomposition (10.1) reduces to V = V[Θ,σ]. Conversely, let V ∈ R(J,λ) and let W be
an irreducible subquotient of V. All irreducible subquotients of K(W) have supercuspidal
support in [M ,σ]. Write ϕ for the canonical surjective map:

indG
Jmax

(κmax ⊗ K(W))→W.

Choose a composition series 0 = Z0 ( Z1 ( · · · ( Zn = K(W) and write
Wi = indG

Jmax
(κmax ⊗ Zi). There is a minimal i such that ϕ is nonzero on Wi+1. Thus

W is isomorphic to a quotient of:

Wi+1/Wi ' indG
Jmax

(κmax ⊗ (Zi+1/Zi))

and Zi+1/Zi has supercuspidal support in [M ,σ]. Thus W is a subquotient of indG
J (λ). Now

the result follows from Proposition 8.1.
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10.2.

Theorem 9.6 and Corollary 9.4 can now be restated as follows.

T 10.4. – The category R(G) decomposes into the product of the subcate-
gories R(Ω), where Ω ranges over all possible inertial classes of supercuspidal pairs of G.

The following result says that the decomposition given by Theorem 10.4 is the best
possible.

P 10.5. – Each subcategory R(Ω) is indecomposable.

Proof. – Assume this is not the case. There are two subcategories A and A ′ such that:

R(Ω) = A ⊕A ′.

Let [J,λ] be the equivalence class of semisimple supertypes which corresponds to Ω and
consider V = indG

J (λ). By Proposition 10.2, we have V ∈ R(Ω), and there is a decomposi-
tion V = W ⊕W′ with W ∈ A and W′ ∈ A ′, and with no nonzero intertwining between
W and W′. We get:

EndG(V) = EndG(W)⊕ EndG(W′).

This implies that EndG(V) possesses a nontrivial central idempotent. By [22, 16], this
algebra is isomorphic to a finite tensor product of affine Hecke algebras H (ni, q

fi), with
1 6 i 6 r. Thus its centre is isomorphic to the finite tensor product of the centers of the alge-
bras H (ni, q

fi), with 1 6 i 6 r. The centre of H (n, qf ) is isomorphic to R[X±1
1 , . . . ,X±1

n ]Sn ,
whereSn is the nth symmetric group acting on X1, . . . ,Xn. This is an integral domain. Thus
the centre of EndG(V) does not contain any nontrivial idempotent. Therefore W′, say, is
zero. Now let X be a simple object in A ′. There is a G-subspace Y of V such that X is a
quotient of Y. As V ∈ A , we get Y ∈ A . But Hom(Y,X) is nonzero: contradiction.

R 10.6. – We remark that the representation V = indG
J (λ) used in the proof

of Proposition 10.5 is not, in general, a progenerator for the subcategory R(Ω): in general
this representation is not projective, nor is every irreducible subquotient isomorphic to a
quotient. However, given the explicit results on supertypes here, it is not hard to construct
a progenerator as a compactly-induced representation; for G = GLn(F) this was done
(independently) by Guiraud [11] (for level zero blocks) and Helm [12].

10.3.

Let π be a supercuspidal irreducible representation of G. The endo-class of a simple
character in π is well-defined (see [3, § 9.2]) and we denote it Θπ. Moreover, if (J,λ) is a
maximal simple supertype of G occurring in π and attached to a simple stratum [Λ, n, 0, β],
then we have:

Θ(J,λ) =
md

[F[β] : F]
·Θπ.

It does not depend on the choice of the simple type (J,λ) nor of the simple stratum [Λ, n, 0, β],
and we denote it Θ(π). In fact, it depends only on the inertial class [G, π]G.

Now let Ω be the inertial class of a supercuspidal pair (M, %) of G. We may (and will)
assume that M = Gm1 × · · · ×Gmr and % = ρ1 ⊗ · · · ⊗ ρr with m1 + · · ·+mr = m and ρi

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



706 V. SÉCHERRE AND S. STEVENS

an irreducible supercuspidal representation of Gmi , for each i ∈ {1, . . . , r}. Then the formal
sum:

Θ(Ω) =

r∑
i=1

Θ(ρi)

is well-defined. Moreover, if (J,λ) is a semisimple supertype of G such that [J,λ] corre-
sponds to Ω in the sense of (8.2), then we have Θ(J,λ) = Θ(Ω).

P 10.7. – Let (J0,λ0) be a semisimple supertype, put Θ = Θ(J0,λ0) and
write G for the finite reductive group associated with it. Then the following finite sets have the
same cardinality:

1. the set of supercuspidal inertial classes Ω of G with Θ(Ω) = Θ;
2. the set of equivalence classes [J,λ] of semisimple supertypes of G with Θ(J,λ) = Θ;
3. the set of equivalence classes [M ,σ] of supercuspidal pairs in G .

Moreover any choice of functor K associated with (J0,λ0) induces a bijection between the sets
in (2) and (3).

Proof. – We have already seen the bijection between the first two sets. We make a choice
of a functor K associated with (J0,λ0). We have already seen that K induces a surjective map
from the set in (2) to that in (3). Thus it is enough to check that the sets in (1) and (3) have
the same cardinality. Moreover, it is enough to treat the case where Θ is homogeneous, thus

Θ =
md

[E : F]
·Θ1 = m′d′ ·Θ1

as in § 6.2.
By the unicity (up to conjugacy) of maximal simple supertypes in a supercuspidal

representation (see [22, Theorem 7.2] and also [16, Corollaire 5.5]), the number of inertial
classes [G, π]G of supercuspidal representations with a given endo-class Θ1 is precisely the
number of Gal(kD′/kE)-conjugacy classes of supercuspidal representations of GLm′(kD′),
where the notation is as in § 5.1.

We think of an inertial class of supercuspidal pairs of G as a finitely supported map:

φ :
⋃
k>1

{inertial classes [Gk, π]Gk of supercuspidal irreducible representations of Gk} → N

such that ∑
k≥1

k
∑

[Gk,π]

φ([Gk, π]Gk) = m.

We deduce that the number of inertial classes of supercuspidal pairs Ω with a given homo-
geneous Θ is precisely the number of finitely supported maps:

ψ :
⋃
f>1

{Gal(kD′/kE)-conjugacy classes [σ] of supercuspidal representations of GLf (kD′)} → N

such that ∑
f≥1

f
∑
[σ]

ψ([σ]) = m′,

where we are again using the notation of § 5.1. But this is also the number of equivalence
classes of supercuspidal pairs in G = GLm′(kD′).
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11. A remarkable property of supercuspidal representations

We end this article by the following result. When G is split, that is when G = GLn(F),
n > 1, it is proven by Dat [9, corollaire B.1.3] in a different manner.

P 11.1. – Let P be a proper parabolic subgroup of G and σ be a representation
of a Levi component M of P. Then IndG

P (σ) has no supercuspidal irreducible subquotient.

Proof. – When σ is irreducible, the result follows from the definition of a supercusp-
idal representation (Definition 1.1). Assume IndG

P (σ) contains a supercuspidal irreducible
subquotient π. There is a simple stratum [Λmax, nmax, 0, β] in A = Mm(D) such that the
restriction of π to the pro-p-subgroup H1

max = H1(β,Λmax) contains a simple character
θmax ∈ C (Λmax, 0, β).

L 11.2. – There is an irreducible subquotient τ of σ such that θmax occurs in the
restriction of IndG

P (τ) to H1
max.

Proof. – Since any representation of H1
max is semisimple, θmax is a direct summand of

the restriction of IndG
P (σ) to H1

max. We fix an embedding ι of θmax in IndG
P (σ) and write W

for the (one-dimensional) image of θmax by ι. Write V for the representation of finite
type indG

H1
max

(θmax). If we write N for the unipotent radical of P, Frobenius reciprocity gives
us a nonzero homomorphism:

ι∗ : VN → σ.

Write σ1 for the image of this homomorphism. It has the following properties:

1. if σ′ is a proper subrepresentation of σ1 then IndG
P (σ′) ∩W = 0;

2. it is of finite type, since V is of finite type and Jacquet functors preserve finite type.

This implies that σ1 has a maximal proper subrepresentation σ2 and that the image of V in
the representation IndG

P (σ1/σ2) is non-zero. In particular θmax occurs in IndG
P (σ1/σ2) and

σ1/σ2 is an irreducible subquotient of σ.

We may assume that M is a standard Levi subgroup, attached to a composition
(m1, . . . ,mr) of m. Thus τ can be written on the form τ1 ⊗ · · · ⊗ τr, with τi an irreducible
representation of Gmi , for each i ∈ {1, . . . , r}. Let (Ji,λi) be a semisimple supertype of Gmi

occurring in τi. Then θmax occurs in:

ind
Gm1

J1
(λ1)× · · · × ind

Gmr
Jr

(λr) ' indG
J (λ)

where (J,λ) is a suitable semisimple supertype of G. We fix a decomposition λ = κ ⊗ σ
and thus get a functor K. As in the first part of the proof of Lemma 8.2, it follows that
K(π) is nonzero. By [16, Lemme 5.3], it is a finite direct sum of supercuspidal irreducible
representations of G = J/J1. By Theorem 6.2, it is a subquotient of:

K(IndG
P (σ)) ' IndG

P(KM(σ)).

Thus Proposition 1.10 gives us a contradiction.
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