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ABUNDANCE FOR KÄHLER THREEFOLDS

 F CAMPANA, A HÖRING
 T PETERNELL

A. – Let X be a compact Kähler threefold with terminal singularities such that KX is
nef. We prove that KX is semiample, i.e., some multiple mKX is generated by global sections.

R. – Soit X une variété kählérienne compacte à singularités terminales. Si KX est nef,
nous montrons que KX est semi-ample, c’est-à-dire qu’un multiple mKX est engendré par ses sections
globales.

1. Introduction

1.A. Main results

Since the 1990’s, the minimal model program for smooth complex projective threefolds is
complete: every such manifold X admits a birational model X ′, which is Q-factorial with
only terminal singularities such that either

– X ′ carries a Fano fibration, in particular, X ′ is uniruled, or
– the canonical bundleKX′ is semi-ample, i.e., some positive multiplemKX′ is generated

by global sections.

There are basically two parts in the program: first to establish the existence of a model X ′

which is either a Mori fibre space or has nef canonical divisor, and then to show that
nefness implies semi-ampleness. This second part, known as “abundance”, is established by
[53, 42, 49].

The aim of the present paper is to fully establish the minimal model program in the category
of Kähler threefolds. The first part of the program, i.e., the existence of a bimeromorphic
model X ′ which either is a Mori fibre space or has nef canonical divisor, was carried out in
the papers [38] and [37]. Thus it remains to show that nefness of the canonical divisor implies
semi-ampleness, i.e., abundance holds for Kähler threefolds:
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972 F. CAMPANA, A. HÖRING AND T. PETERNELL

T 1.1. – Let X be a normal Q-factorial compact Kähler threefold with at most
terminal singularities such that KX is nef. Then KX is semi-ample, that is some positive
multiple mKX is globally generated.

The paper [24] established the existence of some section in mKX for non-algebraic minimal
models, so the assumption above implies κ(X) ≥ 0. In [60] abundance was shown for
non-algebraic minimal models, excluding however the case when X has no non-constant
meromorphic function. Our arguments do not use any information on the structure of X
and work both for algebraic and non-algebraic Kähler threefolds.

As a corollary, we establish a longstanding conjecture [26] on Kähler threefolds:

T 1.2. – Let X be a smooth compact Kähler threefold. Assume that X is simple, i.e.,
there is no positive-dimensional proper subvariety through a very general point ofX. Then there
exists a bimeromorphic morphism X → T/G where T is a torus and G a finite group acting
on T .

1.B. Outline of the paper

Let X be a normal compact Q-factorial Kähler threefold X with only terminal singularities
and nef canonical divisor KX . Denote by κ(X) its Kodaira dimension and by ν(X) the
numerical dimension, which is defined as

ν(X) := max{m ∈ N | c1(KX)m 6≡ 0}.

Both invariants are subject to the inequality κ(X) ≤ ν(X), with equality if KX is semi-
ample. Conversely, as Kawamata observed in [39, Thm. 6.1], in order to prove abundance, it
is sufficient to prove equality:κ(X) = ν(X). By the base-point free theorem and an argument
of Kawamata [39, Thm. 7.3] the main challenge is to rule out the possibility

κ(X) = 0 and 0 < ν(X) < 3.

Since we know that κ(X) ≥ 0, there exists a positive number m and an effective divisor D
such that D ∈ |mKX |. A natural way to prove that κ(X) ≥ 1 is to consider the restriction
map

r : H0(X, d(m+ 1)KX)→ H0(D, dKD).

Arguing by induction on the dimension we want to prove that H0(D, dKD) 6= 0 for some
d ∈ N and that some non-zero section u ∈ H0(D, dKD) lifts via r to a global section
ũ ∈ H0(X, d(m+ 1)KX) on X. Since D might be very singular it is however not possible to
analyse the divisorD directly. In order to circumvent this difficulty, Kawamata [42] developed
the strategy, further explored in [49], to consider log pairs (X,B) with B = SuppD and
to improve the singularities of this pair via certain birational transformations. This requires
deep techniques of birational geometry of pairs within the theory of minimal models. In
particular we have to run a log MMP for certain log pairs (X,∆).

Therefore the first part of the paper (Sections 3 and 4) establishes the foundations for a
minimal model program for log pairs on Kähler threefolds. As a first step we prove the cone
theorem for the dual Kähler cone:
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ABUNDANCE FOR KÄHLER THREEFOLDS 973

T 1.3. – LetX be a normalQ-factorial compact Kähler threefold that is not uniruled.
Let ∆ be an effective Q-divisor on X such that the pair (X,∆) is dlt. Then there exists an at
most countable family (Γi)i∈I of rational curves on X such that

0 < −(KX + ∆) · Γi ≤ 4

and
NA(X) = NA(X)(KX+∆)≥0 +

∑
i∈I

R+[Γi].

The dual Kähler cone NA(X) replaces the Mori cone of curves NE(X) which is obviously
too small in the non-algebraic setting (cf. [38, Sect. 1]). Our result is actually more general:
first we prove a weak form of the cone theorem for lc pairs (X,∆) such that X has rational
singularities (cf. Theorem 4.1). Then we derive Theorem 1.3 on page 992 as a consequence
of the weak cone theorem and some contraction results. The second step is to prove that
the (KX + ∆)-negative extremal rays appearing in the cone theorem can be contracted by a
bimeromorphic morphism.

T 1.4. – LetX be a normalQ-factorial compact Kähler threefold that is not uniruled.
Let ∆ be an effective Q-divisor such that the pair (X,∆) is dlt. Let R be a (KX + ∆)-negative
extremal ray in NA(X). If the rayR is divisorial with exceptional divisor S (cf. Definition 4.2),
suppose that S has slc singularities.

Then the contraction of R exists in the Kähler category.

These two theorems generalize the analogous statements for terminal threefolds [38,
Thm. 1.2,Thm. 1.3]. While the global strategy of the proofs is similar to [38], it is not
an extension of earlier work: in this paper we have to deal with threefolds with non-isolated
singularities. This leads to new geometric problems (cf. the proof of Theorem 4.2) and is
more representative of the challenges that appear in higher dimension.

Based on these results we show in Section 6 how to replace the threefold X with some
bimeromorphic model having a pluricanonical divisorD ∈ |mKX | such thatDred is not too
singular. In this section we follow the arguments of [49, Ch. 13, 14], and we also address some
technical points which do not appear in the literature. While these reduction steps assure the
existence of some effective pluricanonical divisor onDred, it is not obvious that it extends to
a pluricanonical divisor on X (cf. [22] for recent progress in the projective case). Following
a deformation argument of Miyaoka [54] [49, Ch. 11], the case κ(X) = 0, ν(X) = 1 can be
excluded without too much effort.

For the case ν(X) = 2 the idea is to prove via a Riemann-Roch computation that
h0(X,mKX) grows linearly. Establishing the results necessary for this Riemann-Roch
computation is the second part of the paper (Sections 7 and 8). First we extend Enoki’s
theorem [25] to show that the cotangent sheaf of a non-uniruled threefold with canon-
ical singularities is generically nef, then we want to use this positivity result to prove that
(KX +B) · ĉ2(X) ≥ 0 where KX +B is a nef log-canonical divisor and ĉ2(X) is the second
Chern class of the Q-sheaf Ω̂X . Since X is not smooth in codimension two, the proof of
this inequality in the projective case ([42], [49, Ch. 14]) uses some involved computation
for the second Todd class of the Q-sheaf Ω̂X . We give a new argument which should be of

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



974 F. CAMPANA, A. HÖRING AND T. PETERNELL

independent interest: let X ′ → X be a terminal modification of X. Since X ′ is smooth in
codimension one, the Riemann-Roch computation on X ′ can be done using the classical
second Chern class c2(X ′). Although the (log-)canonical divisor of X ′ is not necessarily
nef, a generalization of Miyaoka’s inequality for the second Chern class (cf. Theorem 7.2)
allows us to conclude.

Acknowledgements. – We thank S. Boucksom and V. Lazić for some very helpful commu-
nications. We thank the Forschergruppe 790 “Classification of algebraic surfaces and
compact complex manifolds” of the Deutsche Forschungsgemeinschaft for financial
support. A. Höring was partially also supported by the A.N.R. project CLASS (1).

2. Notation and basic facts

We will use frequently standard terminology of the minimal model program (MMP) as
explained in [51] or [21]. We will also use without further comment results which are stated
for algebraic varieties in [51, 49] if their proof obviously works for complex spaces.

Recall that a normal complex space X is Q-factorial if for every Weil divisor D there exists
an integer m ∈ N such that OX(mD) is a locally free sheaf, i.e., mD is a Cartier divisor.
Since however the canonical sheaf KX = ωX need not be a Q-Weil divisor, we include in the
definition of Q-factoriality also the condition that there is a number m ∈ N such that the
coherent sheaf

(K⊗mX )∗∗ = (ω⊗mX )∗∗

is locally free. We shall write

mKX = (K⊗mX )∗∗

for short.

D 2.1. – Let X be a normal complex space. A boundary divisor is an effective
Q-divisor ∆ =

∑
i ai∆i such that 0 ≤ ai ≤ 1.

Given a boundary divisor ∆, we refer to (X,∆) as a “pair”. For pairs (X,∆), the notions
“lc” (log-canonical), “klt” (Kawamata log-terminal),“dlt” (divisorial log-terminal) and
“terminal” are defined exactly as in the algebraic context; we refer to [51].

D 2.2. – LetX be a normal Q-factorial compact Kähler space that is not uniruled,
and let ∆ be a boundary divisor on X such that the pair (X,∆) is lc (resp. dlt, klt, terminal).
Set (X0,∆0) := (X,∆). A terminating (K + ∆)-MMP is a finite sequence of bimeromorphic
maps

ϕi : (Xi,∆i) 99K (Xi+1,∆i+1 := (ϕi)∗∆i)

where i ∈ {0, . . . , n} for some n ∈ N that has the following properties:

a) For every i ∈ {0, . . . , n+1}, the complex spaceXi is a normalQ-factorial compact Kähler
space and the pair (Xi,∆i) is lc (resp. dlt, klt, terminal).

(1) ANR-10-JCJC-0111
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b) For every i ∈ {0, . . . , n}, the map ϕi is either the contraction of a (KXi
+ ∆i)-negative

extremal ray Ri ∈ NA(Xi) that is divisorial or the flip of a KXi
+ ∆i-negative extremal

ray Ri ∈ NA(Xi) that is small.
c) The class KXn+1

+ ∆n+1 is nef.

We will abbreviate such a (K + ∆)-MMP by

(X,∆) 99K (X ′,∆′)

where (X ′,∆′) := (Xn+1,∆n+1) and the bimeromorphic map is the composition ϕn ◦ · · · ◦ϕ0.

In the definition, NA(X) denotes the “dual Kähler cone”, as defined in [38, 3.8]. We will
review this notion in Definition 3.3 below.

2.A. Bimeromorphic models

Bimeromorphic models arising as partial resolutions of singularities play an important role
in the recent development of the MMP for projective manifolds. The existence of these
models is usually—in the algebraic setting, see [29, 10.4], [50, 3.1], [48, Ch. 1.4]—derived
as a consequence of the existence and termination of some MMP for pairs, which is at this
point not yet established in the Kähler category. We may nevertheless assume their existence
since they are constructed by taking first a log-resolution Y ′ → X of the pair (X,∆) and
then running some MMP over X. Since we may choose the log-resolution to be a projective
morphism, the usual relative versions of the cone and contraction theorem [56] [51, Ch. 3.6]
together with termination results in dimension three allow to conclude. The Kähler property
of Y follows again from [65, 1.3.1], since µ is a projective morphism. We will now apply this
argument in two situations:

T 2.1. – LetX be a normal compact Kähler threefold with lc singularities, i.e., (X, 0)

is lc. Then there exists a bimeromorphic morphismµ : Y → X from a normalQ-factorial Kähler
threefold Y with terminal singularities and a boundary divisor ∆Y such that the pair (Y,∆Y )

is lc and

KY + ∆Y ∼Q µ
∗KX .

Proof. – Let π : X̂ → X be a resolution of singularities. Let X̂ 99K Y be a K•-MMP
over X. The outcome of this MMP is a normal Q-factorial threefold µ : Y → X with
terminal singularities such that KY is µ-nef. We write

KY + ∆Y ∼Q µ
∗KX ,

where the support of ∆Y is contained in theµ-exceptional locus. By the negativity lemma [51,
Lemma 3.39] we see that ∆Y is effective and since X has lc singularities, ∆Y is a boundary
divisor. The pair (Y,∆Y ) is lc since this property is invariant under crepant bimeromorphic
morphisms [51, Lemma 2.30].

T 2.2. – Let X be a normal compact Kähler threefold, and let ∆ be a boundary
divisor on X such that the pair (X,∆) is lc. Then (X,∆) has a dlt model, i.e., there exists

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



976 F. CAMPANA, A. HÖRING AND T. PETERNELL

a bimeromorphic morphism from a normal Q-factorial Kähler threefold Y and a boundary
divisor ∆Y such that the pair (Y,∆Y ) is dlt and

KY + ∆Y ∼Q µ
∗(KX + ∆).

Proof. – The same reasons as in Theorem 2.1 apply also here; we refer to [50, 3.1] and
[29, 10.4], based on [10, Thm. 1.2], which is a result on projective morphisms. The deduction
from [10] is basically a computation of discrepancies including an application of the nega-
tivity lemma.

2.B. Adjunction

Let X be a normal complex space and let S ⊂ X be a prime divisor that is Q-Cartier. Let B
be an effective Q-divisor such that KX + B is Q-Cartier and S 6⊂ Supp(B). Let ν : S̃ → S

be the normalization, then Shokurov’s different [62, Ch. 3] is a naturally defined effective
Q-divisor BS̃ on S̃ such that

(1) KS̃ +BS̃ ∼Q ν
∗(KX + S +B)|S .

From the construction in [62, Ch. 3] one sees immediately that

Supp ν∗(BS̃) ⊂ Ssing ∪ (SuppB ∩ S) ∪ (Xsing ∩ S).

Suppose now that dimX = 3 and let µ : Ŝ → S̃ be the minimal resolution. Then we have

KŜ ∼Q µ
∗KS̃ −N,

where N is an effective µ-exceptional divisor [61, 4.1]. Set E := N + µ∗BS̃ , then E is a
canonically defined effective Q-divisor, such that

(2) KŜ + E ∼Q π
∗(KX + S +B)|S ,

where π : Ŝ → S is the composition ν ◦ µ. Since E is µ-exceptional, we obtain

Suppπ∗(E) ⊂ Ssing ∪ (SuppB ∩ S) ∪ (Xsing ∩ S).

Let C ⊂ S be a curve such that

C 6⊂ Ssing ∪ (SuppB ∩ S) ∪ (Xsing ∩ S).

Then the morphism π is an isomorphism in the generic point of C, and we can define the
strict transform Ĉ ⊂ Ŝ as the closure of C \ Ssing. By what precedes, Ĉ 6⊂ E, thus by the
projection formula and (2), we deduce

(3) KŜ · Ĉ ≤ (KŜ + E) · Ĉ = (KX + S +B) · C.

3. Singular Kähler spaces

3.A. Bott-Chern cohomology

In this section we review very briefly—following [38]—the cohomology groups that replace
the Néron-Severi space NS(X) ⊗ R from the projective setting. For details, we refer to [38]
and the literature given there.

4 e SÉRIE – TOME 49 – 2016 – No 4
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We recall that Ap,qX denotes the sheaf of C∞-forms of type (p, q), and A0
X denotes the sheaf

of C∞-functions; DX denotes the sheaf of distributions.

D 3.1 ([14, Defn. 4.6.2]). – Let X be an irreducible reduced complex space.
Let H X be the sheaf of real parts of holomorphic functions multiplied (2) with i. A (1, 1)-form
(resp. (1, 1)-current) with local potentials onX is a global section of the quotient sheaf A0

X/H X

(resp. DX/H X). We define the Bott-Chern cohomology

N1(X) := H1,1
BC(X) := H1(X, H X).

Using the exact sequence

0→ H X → A0
X → A0

X/H X → 0,

and the fact that A0
X is acyclic, we obtain a surjective map

H0(X, A0
X/H X)→ H1(X, H X).

Thus we can see an element of the Bott-Chern cohomology group as a closed (1, 1)-form
with local potentials modulo all the forms that are globally of the form ddcu. Using the exact
sequence

0→ H X → DX → DX/H X → 0,

we see that one obtains the same Bott-Chern group, if we consider (1, 1)-currents with local
potentials.

Recall the following basic lemma [38, Lemma 3.3.].

L 3.1. – Letϕ : X → Y be a proper bimeromorphic morphism between compact normal
spaces in class C with at most rational singularities. Then we have an injection

ϕ∗ : H1(Y, H Y ) ↪→ H1(X, H X)

and

Im ϕ∗ = {α ∈ H1(X, H X) | α · C = 0 ∀ C ⊂ X curve s.t. ϕ(C) = pt}.

Furthermore, let α ∈ H1(X, H X) ⊂ H2(X,R) be a class such that α = ϕ∗β with
β ∈ H2(Y,R). Then there exists a smooth real closed (1, 1)-form with local potentials ωY on Y
such that α = ϕ∗[ωY ].

Following [58], we define the notion of a pseudo-effective resp. nef class:

D 3.2. – LetX be an irreducible reduced compact complex space and u ∈ N1(X).

a) u is pseudo-effective if it can be represented by a current T which is locally of the form
T = i∂∂ϕ with a psh function ϕ.

b) u is nef if it can be represented by a form α with local potentials such that for some positive
(1, 1)-form ω on X and for all ε > 0, there exists fε ∈ A0(X), such that

α+ i∂∂fε ≥ −εω.

(2) We “twist” the definition from [14] in order to get a group that injects in H2(X,R) rather than H2(X, iR)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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D 3.3. – LetX be a normal compact complex space in class C .We defineN1(X) to
be the vector space of real closed currents of bidimension (1, 1) modulo the following equivalence
relation: T1 ≡ T2 if and only if

T1(η) = T2(η)

for all real closed (1, 1)-forms η (with local potentials).

We furthermore define NA(X) ⊂ N1(X) to be the closed cone generated by the classes of
positive closed currents. The closed cone of curves is the subcone

NE(X) ⊂ NA(X)

of those positive closed currents arising as currents of integration over curves.

For the proof of the contraction Theorem 1.4 we will need the following statements, gener-
alizing [38, Prop. 8.1].

P 3.1. – Let X be a normal Q-factorial compact Kähler space. Let ∆ be a
boundary divisor such that the pair (X,∆) is dlt. Let R+[Γi] be a (KX + ∆)-negative extremal
ray in NA(X). Suppose that there exists a bimeromorphic morphism ϕ : X → Y onto a normal
complex space Y such that−(KX +∆) is ϕ-ample and a curveC ⊂ X is contracted if and only
if [C] ∈ R+[Γi].

a) Then we have two exact sequences

(4) 0→ H2(Y,R)
ϕ∗→ H2(X,R)

α 7→α·Γi−→ R→ 0

(5) 0→ N1(Y )
ϕ∗→ N1(X)

[L]7→L·Γi−→ R→ 0.

In particular we have b2(X) = b2(Y ) + 1.
b) We have an exact sequence

(6) 0→ Pic(Y )
ϕ∗→ Pic(X)

[L] 7→L·Γi−→ Z.

c) If the contraction is divisorial, the variety Y is Q-factorial and its Picard number is
ρ(X)− 1. Moreover the pair (Y, ϕ∗∆) is dlt

d) If the contraction is small with flip ϕ+ : X+ → Y , the complex space X+ is Q-factorial
and its Picard number is ρ(X). Moreover the pair (X+, (ϕ+)−1

∗ ◦ ϕ∗∆) is dlt.

Proof. – Since −(KX + ∆) is ϕ-ample, the morphism ϕ is projective. Since (X,∆) is dlt
andX is Q-factorial, the pair (X, (1−ε)∆) is klt for small positive ε. Since−(KX+(1−ε)∆)

is ϕ-ample, possibly after passing to a smaller ε, we obtain Rqϕ∗( OX) = 0 for q ≥ 1 by [2,
Thm. 3.1]. Since X has rational singularities ([51, 5.22]), so does Y ; moreover a) is proved
by Lemma 3.1. The property b) follows from [51, Thm. 3.25(4)] and implies the properties c)
and d) as in [51, Prop. 3.36, Prop. 3.37, Cor. 3.44].

L 3.2. – Let X be a normal Q-factorial compact Kähler threefold, and let ∆ be a
boundary divisor such that the pair (X,∆) is dlt. Let

ϕ : X → Y resp. ϕ : X 99K X+

be the divisorial contraction resp. the flip of a KX + ∆-negative extremal ray R ∈ NA(X).
Then the following hold:
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a) Let D be a nef divisor such that D ·R = 0. Then ϕ∗(D) is nef and

ν(D) = ν(ϕ∗(D)).

Moreover if S ⊂ X is a prime divisor that is not contracted by ϕ, then D · S 6= 0

in H4(X,R) if and only if ϕ∗(D) · ϕ(S) 6= 0 in H4(Y,R).
b) Let B be a boundary divisor such that the pair (X,B) is lc. If (KX +B) ·R = 0, then the

pair (Y, ϕ∗(B)) is lc.

Proof. – Set L := OX(D). We first treat the case when ϕ is divisorial: by Proposi-
tion 3.1,b) we have L ' ϕ∗M with M a line bundle on Y and obviously M ' OY (ϕ∗D).
Being nef is invariant under pull-back [58] [38, Lemma 3.13], so M is nef. The numer-
ical dimension is invariant since the pull-back commutes with the intersection product. If
S′ = ϕ(S), then L|S = (ϕ|S)∗(M |′S), hence L · S 6= 0 if and only if M · ϕ(S) 6= 0 by the
projection formula. For the property b) we refer to [51, Lemma 2.30].

In the flipping case, consider the small contraction f : X → Y associated to R and the flip
f+ : X+ → Y . For a) apply the considerations above first to f and then to f+. For b),
apply [51, 2.30] to see that (Y, f∗(B)) is lc and then again to conclude that (X+, ϕ∗(B) =

(f+)−1
∗ ◦ f∗(B)) is lc.

3.B. Kähler criteria

In this subsection we generalize some Kähler criteria given in [38] to threefolds with non-
isolated singularities.

T 3.1. – LetX be a normal compact threefold in class C . Let η ∈ A1,1(X) be a closed
real (1,1)-form with local potentials such that T (η) > 0 for all [T ] ∈ NA(X) \ 0. Suppose
that for every irreducible curve C ⊂ X we have [C] 6= 0 in N1(X). Then {η} ∈ N1(X) is
represented by a Kähler class, in particular X is Kähler.

Proof. – We slightly generalize the arguments of [38, Thm. 3.18] by removing the assump-
tion that the singularities are isolated. If X is smooth, then [38, Thm. 3.18] applies, so that
{η} is a Kähler class.

We shall now reduce ourselves to this case by considering a resolution µ : X̂ → X with
X̂ a compact Kähler manifold such that a suitable exceptional divisorE of X̂ is µ-ample. As
in [38], we argue that the class of an irreducible curve in X̂ does not vanish. Furthermore, we
check as in Step 2 of the proof of [38, Thm. 3.18] that

T (µ∗(η)− 1

n
E) > 0

for all classes [T ] ∈ NA(X̂) if n is a sufficiently big positive integer. Hence, by the solution in
the smooth case, we may choose a Kähler form η̂ on X̂ in the class {µ∗(η)− 1

nE}. Consider
the Kähler current

{µ∗(η̂)} = {η}.
Let Z be an irreducible component of the Lelong level sets of µ∗(η̂); then Z is either a point
or an irreducible curve. By our assumption, {η}|Z is a Kähler class on Z. Note also that the
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Kähler current µ∗(η̂) has local potentials, since by assumption η has local potentials. Thus
we can apply [23, Prop. 3.3(iii)] to see that {η} is a Kähler class on X.

C 3.1. – Let X be a normal Q-factorial compact Kähler threefold that is not
uniruled. Let ∆ be an effective Q-divisor such that the pair (X,∆) is dlt. Let R+[Γi] be a
(KX + ∆)-negative extremal ray in NA(X).

Suppose that there exists a bimeromorphic morphism ϕ : X → Y such that −(KX + ∆) is
ϕ-ample and a curve C ⊂ X is contracted if and only if [C] ∈ R+[Γi]. Then Y is a Kähler
space.

Proof. – As in the proof of Proposition 3.1 we argue that Y has rational singularities. By
assumption, R+[Γi] is extremal in NA(X); denote by α ∈ N1(X) a nef supporting class (cf.
Proposition 4.3). Consequently

α · Z ′ > 0

for every class Z ′ ∈ NA(X) \ R+
0 [Γi]. By Proposition 3.1,a) there exists a β ∈ N1(Y ) with

α = ϕ∗(β) and by what precedes we have

β · Z > 0

for any Z ∈ NA(Y ) \ 0.

We claim that for any irreducible curve C ⊂ Y , there exists a curve C ′ ⊂ X such that
C = ϕ(C ′). SinceC ′ is not contracted by ϕwe have α ·C ′ > 0, so β ·C > 0 by the projection
formula. In particular, [C] 6= 0 in N1(X), so the statement follows from Theorem 3.1.

For the proof of the claim note first that if C is not contained in the image of the exceptional
locus, then we can just take the strict transformC ′ ⊂ X. IfC is in the image of the exceptional
locus, then ϕ is divisorial and maps a surface S onto C. Since the morphism ϕ|S : S → C is
projective, the surface S is projective. Thus some multisection C ′ ⊂ S has the required
property.

4. MMP for pairs

In this section we prove several results on the MMP for pairs for Kähler threefolds. While
we are not able to establish the log-MMP in full generality, the results are sufficient for the
application to the abundance problem in Section 6. We start by proving the cone theorem
and (parts of) the contraction theorem in the Subsections 4.A and 4.B, while Subsection 4.C
merely collects the relevant results on existence of flips and termination. In order to simplify
the statements we make the following

A 4.1. – Let X be a normal Q-factorial compact Kähler threefold with rational
singularities. Let ∆ =

∑
i ai∆i be an effective Q-divisor on X such that the pair (X,∆) is lc.

We also assume that X is not uniruled, so by [38, Cor. 1.4] the Kodaira dimension κ(X̂) of a
desingularization X̂ is non-negative, hence κ(X) ≥ 0. Thus we have

(7) KX ∼Q
∑

λjSj ,

where the Sj are integral surfaces in X, the coefficients λj ∈ Q+.
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Note that in the situation of Theorem 1.3 and Theorem 1.4 the conditions above are satisfied:
dlt pairs have rational singularities [51, 5.22].

4.A. Cone theorem

In this section we will prove a weak form of the cone theorem for non-uniruled lc pairs.
The stronger cone Theorem 1.3 will then be a consequence of the contraction results in
Subsection 4.B which are based on the weak cone theorem:

T 4.1. – Let X be a normal Q-factorial compact Kähler threefold with rational
singularities. Let ∆ be a boundary divisor on X such that the pair (X,∆) is lc. If X is not
uniruled, there exists a positive integer d ∈ N and an at most countable family (Γi)i∈I of curves
on X such that

0 < −(KX + ∆) · Γi ≤ d

and

NA(X) = NA(X)(KX+∆)≥0 +
∑
i∈I

R+[Γi].

We will prove this statement on page 985, but this will take some technical preparation.

L 4.1. – Under the Assumption 4.1, let S ⊂ X be a prime divisor such that (KX +∆)|S
is not pseudoeffective. Then S is Moishezon and any desingularization Ŝ is a uniruled projective
surface.

Proof. – Let π : Ŝ → S be the composition of the normalization followed by the minimal
resolution of the normalized surface. Our goal is to show that there exists an effective
Q-divisor E such that KŜ + E is not pseudoeffective, in particular we have κ(Ŝ) = −∞. It
then follows from the Castelnuovo-Kodaira classification that Ŝ is covered by rational curves,
in particular it is a projective surface [6]. Thus S is Moishezon.

First case. Suppose that KX |S is not pseudoeffective. – Since KX is Q-effective this implies
that S is one of the surfaces appearing in the decomposition (7). Up to renumbering we may
suppose that S = S1. Observe

S = S1 =
1

λ1
KX −

r∑
j=2

λj
λ1
Sj .

Applying (2) with B = 0, there exists an effective Q-divisor E such that

KŜ + E ∼Q π
∗(KX + S)|S =

(λ1 + 1)

λ1
π∗KX |S −

r∑
j=2

λj
λ1
π∗Sj |S .

By assumption KX |S is not pseudoeffective, and −
∑r
j=2

λj

λ1
π∗Sj |S is anti-effective. Thus

KŜ + E is not pseudoeffective.
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Second case. Suppose thatKX |S is pseudoeffective. – ThenS ⊂ ∆, hence, up to renumbering,
we may suppose that S = ∆1. We claim that

(KX + ∆1 +
∑
i≥2

ai∆i)|S

is not pseudoeffective. Otherwise, by 0 ≤ a1 ≤ 1 and the pseudo-effectivity of KX |S , the
divisor

(KX + ∆)|S = a1(KX + ∆1 +
∑
i≥2

ai∆i)|S + (1− a1)(KX +
∑
i≥2

ai∆i)|S

is a convex combination of pseudoeffective classes, hence itself pseudoeffective, a contradic-
tion. Applying (2) with S = ∆1 and B =

∑
i≥2 ai∆i, there exists an effective Q-divisor E

such that
KŜ + E ∼Q π

∗(KX + ∆ +
∑
i≥2

ai∆i)|S .

Thus KŜ + E is not pseudoeffective.

C 4.1. – Under the Assumption 4.1, the divisor KX + ∆ is nef if and only if

(KX + ∆) · C ≥ 0

for every curve C ⊂ X.

Proof. – One implication is trivial. Suppose now that KX + ∆ is nef on all curves C.
We will argue by contradiction and suppose that KX + ∆ is not nef. Since KX + ∆ is
pseudo-effective and the restriction to every curve is nef, there exists by [12, Prop. 3.4] an
irreducible surface S ⊂ X such that (KX + ∆)|S is not pseudo-effective. By Lemma 4.1 a

desingularization π : Ŝ → S of the surface S is projective, so (by [13]) there exists a covering
family of curves Ct ⊂ S such that for the strict transforms

π∗(KX + ∆)|S · Ĉt < 0.

Hence we obtain (KX + ∆) · Ct < 0, a contradiction.

If X is a projective manifold, the cone theorem is a consequence of Mori’s bend-and-break
technique. We will now show that an analogue of this technique is available for threefolds
that are lc pairs.

D 4.1. – Let X be a normal Q-factorial compact Kähler threefold, and let ∆ be a
boundary divisor. We say thatKX+∆ has the bend-and-break property if there exists a positive
number d = dKX+∆ ∈ Q+ such that the following holds: given any curve C ⊂ X such that

−(KX + ∆) · C > d,

there exist non-zero effective 1-cycles C1 and C2 such that

[C] = [C1] + [C2].

P 4.1. – Under the Assumption 4.1, the divisor KX + ∆ has the bend-and-break
property.

The proof of this result needs some preparation:
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L 4.2. – Let X be a normal Q-factorial compact Kähler threefold with rational singu-
larities, and let ∆ be a boundary divisor on X. Let µ : Y → X be a bimeromorphic morphism
from a normal Q-factorial threefold Y such that there exists a boundary divisor ∆Y satisfying

KY + ∆Y ∼Q µ
∗(KX + ∆).

Suppose that KY + ∆Y has the bend-and-break property for some integer dKY +∆Y
. Then

KX + ∆ has the bend-and-break property.

Proof. – Since dimX = 3, there are at most finitely many curves in the image of the
µ-exceptional locus E. Hence

d := max{dKY +∆Y
,−(KX + ∆) · Z | Z an irreducible curve s.t. Z ⊂ µ(E)}

is a positive rational number. Let now C ⊂ X be a curve such that

−(KX + ∆) · C > d,

in particular C 6⊂ µ(E). Thus the strict transform Ĉ ⊂ Y is well-defined and

−(KY + ∆Y ) · Ĉ = −(KX + ∆) · C > d ≥ dKY +∆Y
.

Consequently, there exist effective non-zero 1-cycles Ĉ1 and Ĉ2 on Y such that

[Ĉ] = [Ĉ1] + [Ĉ2].

We claim that we can find a decomposition such that µ∗[Ĉ1] and µ∗[Ĉ2] are both non-zero.
Since

[C] = µ∗[Ĉ] = µ∗[Ĉ1] + µ∗[Ĉ2]

this will finish the proof.

To prove the claim, fix a Kähler form ωY on Y such that ωY ·B ≥ 1 for every curve B ⊂ Y .
We will prove the claim by induction on the degree l := ωY · Ĉ. The start of the induction
for l = 1 is trivial, since the class of a curve Ĉ with ωY · Ĉ = 1 does not decompose. For
the induction step suppose that the claim holds for every curve B ⊂ Y with ωY ·B < l and
−(KY + ∆Y ) ·B > d. Suppose that l ≤ ωY · Ĉ < l + 1 and consider the decomposition

[Ĉ] = [Ĉ1] + [Ĉ2].

If both µ∗[Ĉ1] and µ∗[Ĉ2] are non-zero, there is nothing to prove, so suppose that (up to
renumbering) µ∗[Ĉ2] = 0. Since Ĉ2 is effective, all the irreducible components of Ĉ2 are
contracted by µ. Now KY + ∆Y is µ-numerically trivial, so we get

−(KY + ∆Y ) · Ĉ1 = −(KY + ∆Y ) · Ĉ > d.

Moreover since ωY · Ĉ2 ≥ 1, we have ωY · Ĉ1 < l. Thus the induction hypothesis applies
to C1, and since [C] = µ∗[Ĉ] = µ∗[Ĉ1] this proves the claim.

L 4.3. – In the situation of Assumption 4.1, suppose that KX has the bend-and-break
property for some integer d0. Then KX + ∆ has the bend-and-break property.
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Proof. – Since X is a threefold, the set (Supp ∆)sing ∪ Xsing is a finite union of curves
and points. Hence

d := max{3, d0,−(KX + ∆) · Z | Z a curve s.t. Z ⊂ (Supp ∆)sing ∪Xsing}

is a positive rational number. Let now C ⊂ X be a curve such that −(KX + ∆) · C > d. If
∆ · C ≥ 0, then we have −KX · C > d ≥ d0, so we can apply the bend-and-break property
for KX . Therefore we may suppose

0 > ∆ · C =
∑

ai∆i · C,

so, up to renumbering, we may suppose that ∆1 ·C < 0. Since 0 ≤ ai ≤ 1 (∆ is a boundary),
this implies

−(KX + ∆1 +
∑
i≥2

ai∆i) · C ≥ −(KX + ∆) · C > d.

Set S := ∆1 and B :=
∑
i≥2 ai∆i, and denote by π : Ŝ → S the composition of the

normalization and the minimal resolution. Note that by definition of d, the curve C is not
contained in the set Ssing∪(

∑
i≥2 ∆i∩S)∪(Xsing∩S). Therefore the strict transform Ĉ ⊂ Ŝ

is well-defined and (3) yields

−KŜ · Ĉ ≥ −(KX + ∆1 +
∑
i≥2

ai∆i) · C > d.

Since d ≥ 3, an application of [38, Lemma 5.5.b)] yields an effective 1-cycle
∑m
k=1 Ĉk in Ŝ

with m ≥ 2 such that

[

m∑
k=1

Ĉk] = [Ĉ],

such that KŜ · Ĉ1 < 0, and KŜ · Ĉ2 < 0. Since KŜ is π1-nef, we conclude π∗[Ĉ1] 6= 0 and
π∗[Ĉ2] 6= 0. Thus

[C] = π∗[Ĉ] =

m∑
k=1

π∗[Ĉk]

and the first two terms of this sum are non-zero.

Proof of Proposition 4.1. – We will first prove the statement under some additional
assumptions, then reduce the general case to this situation.

Step 1. Suppose that (X,∆) is a lc pair and X has terminal singularities. – By [38, Cor. 5.7]
we know thatKX has the bend-and-break property. Thus by Lemma 4.3 the divisorKX +∆

has the bend-and-break property.

Step 2. Suppose thatX has klt singularities, i.e., (X, 0) is klt. – By Theorem 2.1 there exists a
bimeromorphic morphism µ : Y → X from a normal complex Kähler space Y with terminal
singularities and a boundary divisor ∆Y such that (Y,∆Y ) is lc and

KY + ∆Y ∼Q µ
∗KX .

By Step 1 and Lemma 4.2 the divisor KX has the bend-and-break property.

Step 3. Suppose that (X,∆) is dlt. – Then (X, 0) is klt [51, 2.39, 2.41]. By Step 2 and
Lemma 4.3 this implies that KX + ∆ has the bend-and-break property.
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Step 4. General case. – By Theorem 2.2 there exists a bimeromorphic morphism µ : Y → X

and a boundary divisor ∆Y on Y such that (Y,∆Y ) is dlt and

KY + ∆Y ∼Q µ
∗(KX + ∆).

By Step 3 and Lemma 4.2 this implies that KX + ∆ has the bend-and-break property.

We can now prove the weak cone theorem for the classical Mori cone.

P 4.2. – Under the Assumption 4.1 there exists a number d ∈ Q+ and an at most
countable family (Γi)i∈I of curves on X such that

0 < −(KX + ∆) · Γi ≤ d

and
NE(X) = NE(X)(KX+∆)≥0 +

∑
i∈I

R+[Γi].

Proof. – By Proposition 4.1 there exists a positive number d ∈ Q+ realizing the bend-
and-break property (cf. Definition 4.1) for KX + ∆. Since there are only countably many
curve classes [C] ⊂ NE(X), we may choose a representative Γi for each class such that
0 < −(KX + ∆) · Γi ≤ d. We set

V := NE(X)(KX+∆)≥0 +
∑

0<−(KX+∆)·Γi≤d

R+[Γi].

Fix a Kähler form ηX on X such that ηX · C ≥ 1 for every curve C ⊂ X.

We need to prove that NE(X) = V . By [38, Lemma 6.1] (3) it is sufficient to show that

NE(X) = V ,

i.e., the class [C] of every irreducible curve C ⊂ X is contained in V . We will prove the
statement by induction on the degree l := ηX · C. The start of the induction for l = 0 being
trivial, we suppose that we have shown the statement for all curves of degree at most l − 1

and let C be a curve such that
l − 1 < ηX · C ≤ l.

If −(KX + ∆) ·C ≤ d we are done. Otherwise, there exists by the bend-and-break property
a decomposition

[C] = [C1] + [C2]

with C1 and C2 non-zero effective 1-cycles on X. Since ηX · Ci ≥ 1 for i = 1, 2 we have
ηX · Ci ≤ l − 1 for i = 1, 2. By induction both classes are in V , so [C] is in V .

Proof of Theorem 4.1. – We follow the strategy of the proof of [38, Prop. 6.4]. By Propo-
sition 4.2 there exists a number d ∈ Q+ and an at most countable family (Γi)i∈I of curves
on X such that 0 < −(KX + ∆) · Γi ≤ d and

NE(X) = NE(X)(KX+∆)≥0 +
∑
i∈I

R+[Γi].

(3) The statement in [38, Lemma 6.1] is for the canonical class KX , but the proof does not use this hypothesis.
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Set
V := NA(X)(KX+∆)≥0 +

∑
i∈I

R+[Γi].

By [38, Lemma 6.1] it is sufficient to show that NA(X) ⊂ V . Let π : X̂ → X be
a desingularization, then by [38, Prop. 3.14] we have NA(X) = π∗(NA(X̂)). Thus it is
sufficient to prove that for a set of generators α̂i of NA(X̂), we have π∗(αi) ∈ V . By [23,
Cor. 0.3] the coneNA(X̂) is the closure of the convex cone generated by cohomology classes
of the form [ω̂]2, [ω̂] · [Ŝ] and [Ĉ] where ω̂ is a Kähler form, Ŝ a surface and Ĉ a curve on X̂.
Let now α̂ be such a generator, then our goal is to show that the push-forward α := π∗(α̂)

of any of these three types is contained in V .

First case. α̂ = [ω̂]2 with ω̂ a Kähler form. – Since π∗(KX + ∆) is pseudoeffective, we have
π∗(KX + ∆) · [ω̂]2 ≥ 0, hence

(KX + ∆) · α = (KX + ∆) · π∗(α̂) = π∗(KX + ∆) · α̂ ≥ 0,

and thus α ∈ NA(X)(KX+∆)≥0.

Second case. α̂ = [Ĉ] with Ĉ a curve. – Then set C := π∗(Ĉ), so that α = [C]. Since we have
an inclusion

(8) NE(X) = NE(X)(KX+∆)≥0 +
∑
i∈I

R+[Γi] ↪→ NA(X)(KX+∆)≥0 +
∑
i∈I

R+[Γi],

and by hypothesis any curve class [C] is in the left hand side, we see that [C] ∈ V .

Third case. α̂ = [ω̂] · [Ŝ] with Ŝ an irreducible surface and ω̂ a Kähler form. – If

π∗(KX + ∆) · [ω̂] · [Ŝ] ≥ 0,

the class α is in NA(X)(KX+∆)≥0. Suppose now that

π∗(KX + ∆) · [ω̂] · [Ŝ] < 0.

Using the projection formula we see that π(Ŝ) is not a point.

Case a). Suppose that π(Ŝ) is a surface S. – Since π∗(KX + ∆) · [ω̂] · [Ŝ] < 0, the restriction
π∗(KX+∆)|Ŝ is not pseudoeffective. Thus the restriction (KX+∆)|S is not pseudoeffective.

Hence S is covered by rational curves by Lemma 4.1. Since Ŝ → S is bimeromorphic, the
same property holds for Ŝ.

Let π : S̄ → Ŝ be the composition of the normalization and the minimal resolution, then S̄ is
a uniruled projective surface, in particular, H2(S̄, OS̄) = 0. Hence the Chern class map

Pic S̄ → H2(S̄,Z)

is surjective, so π∗(ω̂|Ŝ), which is a real closed form of type (1, 1), is represented by a
R-divisor which is nef and big. As in the proof of [38, Prop. 6.4], this implies that

α̂ = [ω̂] · [Ŝ] ∈ NE(X̂).

Thus we have
α = π∗([ω̂] · [Ŝ]) ∈ NE(X),

so α is in the image of the inclusion (8).
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Case b). Suppose that π(Ŝ) is a curve C. – We claim that there exists a number λ ∈ R such
that

α = π∗(α̂) = λ[C]

in N1(X), in particular α is in the image of the inclusion (8) which finishes the proof. By
duality it is sufficient to prove that there exists a λ ∈ R such that for every class H ∈ N1(X)

we have
H · π∗(α̂) = λ(H · C).

By the projection formula one has

H · π∗(α̂) = π∗H · α̂ = π∗H · [ω̂] · [Ŝ] = [(π∗H)|S ] · [ω̂|Ŝ ].

By definition of C we have a surjective map Ŝ → C, so [(π∗H)|S ] is numerically equivalent

to (H · C)[F ] where F is a general fibre of Ŝ → C. Thus we see that

[(π∗H)|S ] · [ω̂|Ŝ ] = λ(H · C)

where λ := [ω̂|Ŝ ] · F does not depend on H.

4.B. The contraction theorem

Suppose that the Assumption 4.1 holds. For the whole subsection we fix R := R+[Γi0 ]

a (KX + ∆)-negative extremal ray in NA(X). The following proposition is a well-known
consequence of the weak cone Theorem 4.1, cf. [38, Prop. 7.3] for details:

P 4.3. – There exists a nef class α ∈ N1(X) such that

R = {z ∈ NA(X) | α · z = 0},

and such that, using the notation of Theorem 4.1, the class α is strictly positive onNA(X)(KX+∆)≥0 +
∑

i∈I,i6=i0

R+[Γi]

 \ {0}.
We call α a nef supporting class for the extremal ray R.

Note first that by hypothesis, the cohomology class α−(KX +∆) is positive on the extremal
ray R, moreover we know that α is positive onNA(X)(KX+∆)≥0 +

∑
i∈I,i6=i0

R+[Γi]

 \ {0}.
Thus, up to replacing α by some positive multiple, we can suppose that α − (KX + ∆) is
positive on NA(X) \ {0}. Since X is a Kähler space, this implies by [38, Cor. 3.16] that

(9) ω := α− (KX + ∆)

is a Kähler class. Let now π : X̂ → X be a desingularization. SinceKX+∆ isQ-effective, this
also holds for π∗(KX + ∆). Thus the nef class π∗α is the sum of a Q-effective class π∗(KX + ∆)

and the nef and big (i.e., contains a Kähler current, see [23, Thm. 0.5] ) class π∗α. Thus π∗α is
nef and big and we have

(10) α3 = (π∗α)3 > 0.
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We divide extremal rays into two classes, according to the deformation behavior of the curves
they contain:

D 4.2. – We say that the (KX + ∆)-negative extremal rayR is small if every curve
C ⊂ X with [C] ∈ R is very rigid in the sense of [38, Defn.4.3]. Otherwise we say that the
extremal ray R is divisorial.

4.B.1. Small rays

T 4.2. – Under the Assumption 4.1, suppose that the extremal ray R = R+[Γi0 ] is
small. Then the contraction of the ray R exists.

The proof requires a significant refinement of the argument in [38] since the description of
the non-Kähler locus of α is much more delicate for non-isolated singularities. The following
lemma is a key ingredient:

P 4.4. – Under the Assumption 4.1, suppose that the extremal ray R = R+[Γi]

is small. Let S ⊂ X be an irreducible surface. Then we have α2 · S > 0.

At this point we cannot yet exclude the possibility that there are infinitely many distinct
curves C ⊂ X such that [C] ∈ R (4). However by definition of a small ray no such curve
(or its multiples) deforms. Since the irreducible components of the cycle space are countable
we see that there are at most countably many curves C ⊂ X such that [C] ∈ R.

Proof of Proposition 4.4. – If α|S = 0 then (9) implies that

−(KX + ∆)|S = ω|S .

Thus the divisor −(KX + ∆)|S is ample, in particular S is projective and S is covered by
curves. Since α|S = 0, the classes of all these curves are in R, a contradiction.

Arguing by contradiction we suppose now that α|S 6= 0 but α2 · S = 0. Then we have

0 = α2 · S = (KX + ∆) · α · S + ω · α · S

and
ω · α · S = ω|S · α|S > 0

since α|S is a non-zero nef class. Thus we obtain

(11) (KX + ∆) · α · S < 0.

In particular (KX + ∆)|S is not pseudoeffective, the class α|S being nef.

Let π : Ŝ → S be the composition of normalization and minimal resolution (cf. Subsec-
tion 2.B). We claim that there exists an effective Q-divisor E on Ŝ such that

(12) (KŜ + E) · π∗(α|S) < 0.

Assuming this for the time being, let us see how to derive a contradiction: note first that KŜ

is not pseudoeffective, so Ŝ is uniruled and projective. In particular the nef class π∗(α|S) is

(4) If X has terminal singularities we can use some additional argument to obtain this property, cf. [38, Rem.7.2].
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represented by an R-divisor. Fix an ample divisor A on Ŝ. By [4, Thm. 1.3] we know that
given ε > 0, there exists a decomposition

π∗(α|S) = Cε +
∑

λi,εMi,ε

where λi,ε ≥ 0, (KŜ + εA) · Cε ≥ 0 and the Mi,ε are movable curves. Since Mi,ε belongs to
an (uncountable) deformation family of curves we obtain

π∗(α|S) ·Mi,ε = α · π∗(Mi,ε) > 0.

Since (π∗(α|S))2 = 0 this implies that π∗(α|S) = Cε for all ε > 0. Passing to the limit ε→ 0

we obtain KŜ · π∗(α|S) ≥ 0, a contradiction to (12).

Proof of the claim (12). – As in the proof of Lemma 4.1 we need a case distinction.

First case. Suppose that KX · α · S < 0. – Since KX is Q-effective, S is one of the surfaces
Sj in the decomposition (7) and S · α · S < 0. In particular we have

(13) (KX + S) · α · S < 0.

Applying (2) with B = 0 we obtain an effective Q-divisor E on Ŝ such that
KŜ + E ∼Q π

∗(KX + S)|S . Thus (12) follows from (13).

Second case. Suppose that KX · α · S ≥ 0. – By (11) this implies that ∆ · α · S < 0, so
S is contained in the support of ∆; up to renumbering we may suppose that S = ∆1. Since
∆i · α · S ≥ 0 for every i ≥ 2, it follows S · α · S < 0. Since 0 ≤ ai ≤ 1 we conclude

(14) (KX + S +
∑
i≥2

ai∆i) · α · S ≤ (KX + ∆) · α · S < 0.

Applying (2) with B =
∑
i≥2 ai∆i we obtain an effective Q-divisor E on Ŝ such that

KŜ + E ∼Q π
∗(KX + S +

∑
i≥2 ai∆i)|S . Thus (12) follows from (14).

Proof of Theorem 4.2. – Let π : X̂ → X be a desingularization. By (10) we have
(π∗α)3 > 0, so we can apply the theorem of Collins and Tosatti [19, Thm. 1.1] to π∗α: the
non-Kähler locus EnK(π∗α) is equal to the null-locus, i.e., we have

EnK(π∗α) =
⋃

(π∗α)|dim Z

Z
=0

Z,

where the union runs over all the subvarieties of X̂. If Z ⊂ X is a surface such that (π∗α)|2Z = 0

then it follows from the projection formula and Proposition 4.4 that dimπ(Z) ≤ 1. Thus we
see that EnK(π∗α) is a finite union of π-exceptional surfaces and curves. Since

EnK(α) ⊂ π(EnK(π∗α)),

andXsing is a union of curves and points, we see thatEnK(α) is a union of curves and points.
Clearly EnK(α) contains all the curves C ⊂ X such that [C] ∈ R, in particular

C :=
⋃

Cl⊂X,[Cl]∈R

Cl
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is a finite union of curves. Our goal is to show that the connected components of C can be
contracted onto points. Since it is a-priori not clear that C = EnK(α) we have to improve
the construction from [38, Thm. 7.12]

By [12, Prop. 2.3] (5) there exists a modification µ : X̃ → X and a Kähler class α̃ on X̃ such
that µ∗α̃ = α. Since α̃ − µ∗α is µ-nef, the negativity lemma [51, Lemma 3.39] [10, 3.6.2]
implies that we have

(15) µ∗α = α̃+ E

with E an effective µ-exceptional R-divisor. Let now Cl ⊂ X be an irreducible curve such
that [Cl] ∈ R, and set Dl for the support of µ−1(Cl). Then we have α|Cl

≡ 0, so by (15) we
have

−E|Dl

= α̃|Dl

.

Thus −E|Dl

is ample. If B ⊂ X is an arbitrary curve contained in the image of the

exceptional locus, and DB the support of µ−1(B), we still have

−E|DB

= α̃|DB

− (µ∗α)|DB

.

Thus we see that−E is µ-ample, in particular its support is equal to the µ-exceptional locus.
Since ampleness is an open property we can find an effective Q-divisor E′ ⊂ X̃ that is
µ-ample and such that −E′|Dl

is ample for all l. Up to taking a positive multiple we can

suppose that E′ has integer coefficients. We set

Km := µ∗ OX̃(−mE′),

and we claim that there exists an m ∈ N such that the restriction Km|Cl

is ample for all j.

Note that this implies that the quotient ( Km/K 2
m)|Cl

is ample for all j.

Step 2. Proof of the claim. – By relative Serre vanishing there exists an m0 ∈ N such that

Riµ∗ OX̃(−mE′) = 0 ∀ i > 0,m ≥ m0

and

(16) Riµ∗ OX̃(−Dl −mE′) = 0 ∀ i > 0,m ≥ m0

and all l. Moreover we know by [1, Thm. 3.1.] that there exists anm1 ∈ N such that the direct
image sheaf

(µ|Dl

)∗( OX̃(−mE′)⊗ ODl
)

is ample for all m ≥ m1 and l.

Fix now an m ≥ max{m0,m1} and consider now the exact sequence

0→ OX̃(−Dl −mE′)→ OX̃(−mE′)→ OX̃(−mE′)⊗ ODl
→ 0.

Pushing the sequence down to X and using (16) we obtain an exact sequence

0→ µ∗ OX̃(−Dl −mE′)→ µ∗ OX̃(−mE′)→ (µ|Dl

)∗( OX̃(−mE′)⊗ ODl
)→ 0.

(5) Proposition 2.3. in [12] is for manifolds, but we can adapt the proof as follows: the non-Kähler locus of π∗α is
the union of the π-exceptional locus and the strict transforms of the curves in the non-Kähler locus of α. By [11,
Thm. 3.1.24] there exists a modification µ′ : X̃ → X̂ and a Kähler class α̃ on X̃ such that (µ′)∗π∗α = α̃ + E

where E is an effective R-divisor. Then µ := π ◦ µ′ has the stated properties.
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Since the inclusion OX̃(−Dl −mE′)→ OX̃(−mE′) vanishes on Dl, its direct image

µ∗ OX̃(−Dl −mE′)→ µ∗ OX̃(−mE′)

vanishes on Cl = µ(Dl). In other words we have OX̃(−Dl −mE′) ⊂ J · OX̃(−mE′) where
J is the full ideal sheaf of Cl. Thus we have an epimorphism

µ∗ OX̃(−mE′)⊗ OCl
→ (µ|Dl

)∗( OX̃(−mE′)⊗ ODl
),

which is generically an isomorphism. In particular,µ∗ OX̃(−mE′)⊗ OCl
is ample. This proves

the claim.

Step 3. Conclusion. – The ideal sheaf Km defines a 1-dimensional subspace A ⊂ X such
that C ⊂ A. Let I ⊂ OX be the largest ideal sheaf on X that coincides with Km in the
generic point of every irreducible curve Cl ⊂ C (6) such that [Cl] ∈ R. For every curve Cl,
the natural map

( Km/K 2
m)|Cl

→ ( I / I 2
)|Cl

is generically an isomorphism. Since ( Km/K 2
m)|Cl

is ample and Cl is a curve, this implies

that ( I / I 2
)|Cl

is ample. Thus I / I 2 is ample on its support C. By [3, Cor. 3] [33] there exists

a holomorphic map ν : X → X ′ contracting each connected component of C onto a
point.

4.B.2. Divisorial rays

N 4.1. – Under the Assumption 4.1, suppose that the extremal ray R = R+[Γi0 ]

is divisorial. Since the divisor KX + ∆ is Q-effective and (KX + ∆) · R < 0 there exists an
irreducible surface S ⊂ X such that S ·R < 0. In particular any curveC ⊂ X with [C] ∈ R is
contained in S and S is covered by these curves.

Let ν : S̃ → S ⊂ X be the normalization; then ν∗(α|S) is a nef class on S̃ and we may
consider the nef reduction

f̃ : S̃ → T̃

with respect to ν∗(α|S) (cf. [7, Thm. 2.6] and [37, Thm. 3.19] for details on the Kähler case).

Since S is covered by curves that are α-trivial, the surface S̃ is covered by curves that are
ν∗(α|S)-trivial. By definition of the nef reduction this implies

n(α) := n(ν∗(α|S)) := dim T̃ ∈ {0, 1}.

L 4.4. – Under the Assumption 4.1, suppose that the extremal ray R is divisorial and
n(α) = 0. Then the surface S can be blown down to a point p: there exists a bimeromorphic
morphism ϕ : X → Y to a normal compact threefold Y with dimϕ(S) = 0 such that ϕ|X\S is

an isomorphism onto Y \ {p}.

Proof. – The proof is identical to the proof of [38, Cor. 7.7] which only uses that
S ·R < 0.

(6) The sheaf I defines the scheme-theoretic image [36, II,Ex.3.11(d)] of the natural map
⋃

l Cl,gen → X where we
endowed the generic points Cl,gen ⊂ A with the open subscheme structure.
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The case n(α) = 1 is much more subtle. If S ⊂ Supp ∆, we can suppose up to renumbering
that S = ∆1 and set B =

∑
i≥2 ai∆i. If S 6⊂ Supp ∆ we simply set B = ∆. In both cases we

have by (1) that

(17) KS̃ +BS̃ ∼Q ν
∗(KX + S +B)|S ,

where BS̃ is a canonically defined effective Q-divisor. Let C̃ be a general fibre of the nef
reduction f̃ : S̃ → T̃ . Since [ν(C̃)] ∈ R we have

(KX + ∆) · ν(C̃) < 0 and S · ν(C̃) < 0.

Since 0 ≤ a1 ≤ 1 this implies

(KX + S +B) · ν(C̃) ≤ (KX + ∆) · ν(C̃) < 0.

Thus we have (KS̃ + BS̃) · C̃ < 0, in particular C̃2 = 0 implies that C̃ ' P1. The normal
surface S̃ being smooth in a neighborhood of the fibre C̃, we conclude KS̃ · C̃ = −2. Since
BS̃ · C̃ ≥ 0 we arrive at

L 4.5. – Under the Assumption 4.1, suppose that the extremal ray R is divisorial and
n(α) = 1. Then the extremal ray R is represented by a rational curve C such that

−(KX + ∆) · C ≤ 2.

This estimate allows us to complete the proof of the cone theorem:

Proof of Theorem 1.3. – The only statement that is not part of Theorem 4.1 is that in
every (KX + ∆)-negative extremal ray Ri we can find a rational curve Γi such that Γi ∈ Ri
and

0 < −(KX + ∆) · Γi ≤ 4.

If the extremal ray Γi is divisorial with n(α) = 1, we conclude by Lemma 4.5 (even if
(X,∆) is only lc). If the extremal ray Γi is small or divisorial with n(α) = 0, the contraction
exists by Theorem 4.2 and Lemma 4.4. Since (X,∆) is dlt, we may simply apply [41] [21,
Thm. 7.46].

R 4.1. – In order to prove Theorem 1.3 in the lc case, it remains to prove the exis-
tence of rational curves if the ray is divisorial contracting a divisor S to a point or if the ray
is small, with the bound d = 4 (cf. [28] for the projective case). The existence of rational
curves in the first case just follows from the arguments preceding Lemma 4.5, which show
that S is uniruled. The existence of rational curves in the small case requires some vanishing
theorem which is not yet established in the Kähler case: if W is the union of the lc centers,
then H1(W, OW ) = 0.

In order to prove the existence of the contraction in the case n(α) = 1 we would like to
construct a fibrationS → T whose normalization is the nef reduction S̃ → T̃ . At the moment
we can only realize this strategy under an additional condition on the singularities of S. We
will use the notion of a semi-log-canonical (slc) surface; see Section 5.
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P 4.5. – Under the Assumption 4.1, suppose that the extremal ray R is divisorial
and n(α) = 1. Suppose moreover S has slc singularities, i.e., (S, 0) is slc. Then there exists a
morphism with connected fibres S → T onto a curve T that contracts a curveC ⊂ S if and only
if α|S · C = 0. Moreover the contraction of the extremal ray R exists.

Proof. – Since (S, 0) is slc, it has normal crossing singularities in codimension one. The
normalization map ν : S̃ → S is finite, so the general curve ν(C̃) is contained in the locus
where S has normal crossing singularities. If ν(C̃) is in Snons the proof of [38, Lemma 7.8]
applies without changes, so suppose that this is not the case. Let

Z =
⋃
Zk ⊂ Ssing

be the union of curves Zk such that ν−1(Zk) meets the general curve C̃. For each k we set
Z̃k := ν−1(Zk) and set Z̃ :=

⋃
Z̃k. Since S has normal crossings in the generic point of Zk,

the natural map Z̃k → Zk has degree two. Note now that every irreducible component of Z̃
is ν∗α-positive: otherwise S̃ would be connected by ν∗α-trivial curves, thus n(α) = 0 in
contradiction to our assumption. In particular every curve in Z̃ dominates T̃ .

Since Z̃ maps into the normal crossings locus of S we can decompose the different (17)

BS̃ = Z̃ +R

where R is an effective Q-divisor with no common component with Z̃. The intersection
points of Z̃ and C̃ are contained in the smooth locus of S̃, so Z̃ · C̃ is a positive integer.
On the other hand we know that KS̃ · C̃ = −2 and

−2 < (KS̃ + Z̃) · C̃ ≤ (KS̃ + Z̃ +R) · C̃ < 0.

Thus Z̃ · C̃ = 1. Since all the irreducible components of Z̃ surject onto T̃ , this shows that
Z̃ is irreducible. In particular Z itself is irreducible. Moreover we conclude that

a) the curves Z and C meet in a unique point q; and
b) we have ν−1(q) = {p1, p2} with p1 ∈ C̃, but p2 6∈ C̃.

Since C̃ is general and ν is finite, the point p2 lies on another general fibre C̄ such that ν(C̃)

and ν(C̄) meet in q. Let now T be the unique irreducible component of the cycle space
Chow(S) such that the general point corresponds to the cycle ν(C̃) + ν(C̄), and let Γ→ T ′

be the semi-normalization [47, p.156] of the universal family over T . By construction we have
a natural bimeromorphic morphism Γ → S and, by what precedes, this morphism is an
isomorphism in the neighborhood of the general fibre F of Γ→ T ′. Thus F defines a Cartier
divisor on S such that F 2 = 0 and κ(S, F ) = 1. Thus some positive multiple of F defines
a morphism with connected fibres S → T and one easily checks that this morphism realises
the nef reduction with respect to α|S . Now conclude as in [38, Cor. 7.9].

4.C. Running the MMP

We first collect a number of results which we could not find in this form in the literature and
give an indication how to adapt the proof.
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T 4.3 ([62], in the algebraic case [49]). – Let X be a normal Q-factorial compact
Kähler threefold. Let ∆ be a boundary divisor such that the pair (X,∆) is dlt. Let R+[Γi] be
a (KX + ∆)-negative extremal ray R in NA(X). Suppose that the contraction of ϕ : X → Y

is small. Then the flip ϕ+ : X+ → Y exists. Moreover X+ is a normal Q-factorial compact
Kähler threefold and (X+, (ϕ+)−1

∗ ◦ ϕ∗∆) is dlt.

Proof. – SinceX isQ-factorial, the pair (X, (1−ε)∆) is klt for every 0 < ε < 1. Moreover
for 0 < ε � 1 the divisor KX + (1 − ε)∆ is negative on the extremal ray R. Thus the flip
ϕ : X+ → Y exists by [62, Thm], see also [20] (and [49, 2.32] for passing to the limit). We
alternatively may apply [49], where the existence of log flips is reduced to the existence of
terminal flips, [55]. The existence of terminal flips is now a local analytic construction. The
reduction to the terminal case as given in Sections 5, 6 and 8 in [49] works in the analytic
setting as well (7). By Corollary 3.1, the complex space Y is Kähler. Since the morphism ϕ+ is
projective,X+ is again Kähler. For the remaining properties we refer to Proposition 3.1.

While the existence of flips is a local property [51, 6.7], this is not necessarily the case for
termination results. However in most cases we will only use special termination for dlt pairs
which is much simpler to prove:

T 4.4 ([62, 49]). – LetX be a normalQ-factorial compact Kähler threefold. Let ∆ be
an effective reduced Weil divisor such that the pair (X,∆) is dlt. Set (X0,∆0) := (X,∆) and
let

(ϕi : (Xi,∆i) 99K (Xi+1,∆i+1 := (ϕi)∗∆i)i∈I

be a sequence of (K + ∆)-flips where I ⊂ N. Then for all i � 0 the flipping locus is disjoint
from ∆i.

In particular, if for every i ∈ I the flipping locus of ϕi is contained in ∆i, then the sequence
of (K + ∆)-flips terminates.

Proof. – The proof of [27, Thm. 4.2.1] applies without changes: obviously the MMP
exists for normal Q-factorial compact Kähler surfaces, the discrepancy calculations are local
properties, so they also apply in the non-algebraic setting.

T 4.5 ([43, 49]). – LetX be a normal Q-factorial compact Kähler threefold such that
(X, 0) is klt. Set X0 := X and let

(ϕi : Xi 99K Xi+1)i∈I

be a sequence of K-flips. Then I is finite, that is any sequence of K-flips terminates.

Proof. – The proof of [43, Thm. 1] is based on three tools:

a) existence of terminal models for klt pairs [43, Thm. 5];
b) crepant extraction of a unique divisor with nonpositive discrepancy [43, Lemma 6];
c) discrepancy calculations.

(7) It is important to notice that the construction is locally analytic near the contracted curves.
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The first two tools are available in the Kähler setting since we can argue as in Subsection 2.A.
Discrepancy calculations are local properties, so they also apply in the non-algebraic setting.

As an application we can run the MMP for certain dlt pairs:

T 4.6. – LetX be a normalQ-factorial compact Kähler threefold that is not uniruled.
LetD ∈ |mKX | be a pluricanonical divisor and setB := SuppD. Suppose that the pair (X,B)

is dlt. Then there exists a terminating (K+B)-MMP, that is, there exists a bimeromorphic map

ϕ : (X,B) 99K (X ′, B′ := ϕ∗B)

which is a composition of K + B-negative divisorial contractions and flips such that X ′ is a
normal Q-factorial compact Kähler threefold, the pair (X ′, B′) is dlt and KX′ +B′ is nef.

Proof. – Set (X0, B0) := (X,B) and D0 := D.

Step 1. Existence of the MMP. – If KXi
+ Bi is nef, there is nothing to prove, so suppose

that this is not the case. Then there exists by Theorem 1.3 a KXi
+Bi-negative extremal ray

Ri ∈ NA(Xi). Since Xi is not uniruled, the extremal ray is divisorial or small.

If the extremal ray is small, the contraction ψi : Xi → Yi exists by Theorem 4.2. By
Theorem 4.3 the flip ψ+

i : X+
i → Yi exists, and we denote by

ϕi : (Xi, Bi) 99K (Xi+1 := X+
i , Bi+1 := (ϕi)∗Bi)

the composition (ψ+
i )−1 ◦ ψi. By Theorem 4.3 we know that Xi+1 is a normal Q-factorial

Kähler space and (Xi+1, Bi+1) is dlt, so we can continue the MMP. Note finally thatDi+1 :=

(ϕi)∗Di is a pluricanonical divisor such that SuppDi+1 = Bi+1.

If the extremal ray is divisorial, let Si be the unique surface such that Si · Ri < 0 (cf.
Notation 4.1). Since KXi

+ Bi is Q-effective and represented by an effective Q-divisor with
support inBi, the surface Si must be an irreducible component ofBi. Since the pair (Xi, Bi)

is dlt, any of the irreducible components of Bi is normal [51, 5.52]. Moreover, there exists a
boundary divisor Bi,S such that

KSi +Bi,S ∼Q KXi +Bi

and the pair (Si, Bi,S) is slc [49, 16.9.1]. Thus by Proposition 4.5 the contraction

ϕi : (Xi, Bi)→ (Xi+1, Bi+1 := (ϕi)∗Bi)

exists and Xi+1 is a Kähler space by Corollary 3.1. Moreover by Proposition 3.1, (Xi+1, Bi+1)

is dlt and Xi+1 is Q-factorial, so we can continue the MMP. Note finally that Di+1 :=

(ϕi)∗Di is a pluricanonical divisor such that SuppDi+1 = Bi+1.

Step 2. Termination. – For every i ∈ I we have SuppDi = Bi, hence KXi + Bi is
Q-effective and represented by an effective Q-divisor with support in Bi. In particular the
support of the extremal contraction is in Bi. Thus any sequence of (K +B)-flips terminates
by Theorem 4.4.
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5. Semi-log canonical Kähler surfaces

In this short section we gather the results concerning abundance in dimension 2 which will
be used in the concluding sections. We refer to [49, Ch. 12] [48, Ch. 5] for basic definitions of
the theory of semi-log canonical (slc) surfaces. All the statements in this section are shown
for projective surfaces in [49, Ch. 12], we will see that the proofs also apply to our case with
some minor modifications.

Let S be a reduced compact complex surface. We say that S is in class C if the desingulariza-
tions of the irreducible components Si of S are Kähler. The Kähler property is a bimeromor-
phic invariant of smooth compact surfaces, so this definition is independent of the choice of
the desingularizations.

P 5.1. – Let S be an irreducible reduced compact complex surface in class C .
Let ∆ be an effective Q-Cartier divisor on S such that the pair (S,∆) is slc. Suppose that
KS + ∆ is nef and numerically trivial. Then KS + ∆ is torsion, i.e., there exists an m ∈ N
such that

OS(m(KS + ∆)) ' OS .

Proof. – Let ν : S̃ → S be the normalization, and let ∆̃ be the different (cf. Subsec-
tion 2.B), so that we have

KS̃ + ∆̃ ∼Q ν
∗(KS + ∆) ≡ 0,

and the pair (S̃, ∆̃) is lc.

First case. ∆̃ 6= 0. – In this case the surface S̃ is projective: indeed the anticanonical
divisor −KS ≡ ∆S is pseudoeffective, so a K-MMP (8) S̃ → S̄ terminates with a Mori fibre
space S̄ → W . Since S̄ is a surface and −KS̄ is relatively ample we see that S̄ is projective.
Since S̃ → S̄ is a projective morphism, the surface S̃ is projective. Thus the statements in [49,
Ch. 12] apply.

Second case. ∆̃ = 0. – In this case S is normal, so if π : Ŝ → S is the minimal resolution,
then we have

κ(Ŝ,KŜ + E) = κ(S,KS),

where E is the canonical defined effective divisor such that KŜ + E ∼Q π∗KS ≡ 0.
Now if E 6= 0, then the smooth surface Ŝ is uniruled, hence projective, and therefore
κ(Ŝ,KŜ + E) = 0 by [49, Thm. 12.1.1]. If E = 0, then Ŝ is a compact Kähler surface
with numerically trivial canonical bundle, so κ(Ŝ,KŜ) = 0 by the Beauville-Bogomolov
decomposition [8, Thm. 1].

L 5.1. – Let S be a normal compact Kähler surface, and let ∆ be a boundary divisor
on S. Suppose that the pair (S,∆) is lc, that the class KS + ∆ is nef and that ν(KS + ∆) = 1.
Then KS + ∆ is semi-ample.

(8) The existence of an MMP for a compact Kähler surface with lc singularities can be established following our
arguments in Section 4.
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Proof. – Let µ : S′ → S be a dlt model, cf. Theorem 2.2, then (S′,∆′) is dlt and
KS′ + ∆′ ∼Q µ∗(KS + ∆). In particular KS + ∆ is semiample if and only if KS′ + ∆′

is semiample. Thus we can assume without loss of generality that (S,∆) is dlt.

Dlt singularities are rational [51, Thm. 5.22], so the surface S is projective if and only if some
desingularization is projective [57]. Thus if the algebraic dimension a(S) is two, we conclude
by [49, Thm. 12.1.1]. If a(S) = 1, let f : S → C be the algebraic reduction. The general
fibre F is an elliptic curve, so KS |F ' OF . Moreover every curve in S is contracted by f , so
∆ ∩ F = ∅. Since KS + ∆ is nef, this implies

KS + ∆ ∼Q f
∗A,

with A an ample Q-divisor on C. Thus KS + ∆ is semiample. Finally we want to exclude
the case a(S) = 0: note first that S contains only finitely many curves, so a desingularization
Ŝ → S is not uniruled. Thus we have

κ(KS) ≥ κ(KŜ) ≥ 0,

in particularKS+∆ is Q-linearly equivalent to an effective divisor. Yet the intersection form
on a surface with a(S) = 0 is negative definite, hence (KS + ∆)2 < 0. In particular KS + ∆

is not nef, a contradiction.

P 5.2. – LetS be a connected reduced compact complex surface in class C . Let ∆

be an effectiveQ-Cartier divisor on S such that the pair (S,∆) is slc. Suppose thatKS+∆ is nef
with numerical dimension ν(KS + ∆) ≤ 1. Suppose also that for every irreducible component
T ⊂ S the restriction (KS + ∆)|T is not zero.

Then the divisor KS + ∆ is semi-ample.

Proof. – Let ν : T → S be the composition of a minimal semi-resolution (cf. [49,
Defn.12.2.1, Prop. 12.2.3]) with the normalization. Since (S,∆) is slc there exists for every
irreducible component Ti ⊂ T a boundary divisor ∆i such that

KTi
+ ∆i ∼Q ν

∗(KS + ∆).

By our assumptionKTi
+∆i is nef of numerical dimension one, soKTi

+∆i is semiample by
Lemma 5.1. The whole point is now to prove that sufficiently many pluricanonical sections
descend to S. However the proof of this descent theorem in [49, Ch. 12.4] is based on [49,
Prop. 12.3.2, Thm. 12.3.4] which are statements about proper morphisms. Thus they apply
in our setting.

T 5.1. – Let S be a compact connected reduced complex space of dimension two in
class C with slc singularities. Then the natural maps induced by C ⊂ OS

Hp(S,C)→ Hp(S, OS)

are surjective for every p ∈ N.

Proof. – Simply note that the proof of Theorem 12.1.2 of [49] works practically word
by word. The main ingredient [49, 12.2.8] is about germs of slc surfaces and works in our
situation.
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6. Abundance: reduction steps

This section corresponds to the preparatory lemmas in [49, Ch. 13,Ch. 14]. While the state-
ments and the basic strategy of proof are quite similar we have to be more careful since we
do not have a full log-MMP at our disposal. Moreover we make several points more precise
which allows us to conclude quicker in Section 8.

L 6.1. – Let X be a normal Q-factorial compact Kähler threefold with terminal singu-
larities. Suppose thatKX is nef and ν(X) > 0. Then there exists a normal Q-factorial compact
Kähler threefold X ′ that is bimeromorphic to X and a D′ ∈ |mKX′ | with the following prop-
erties:

a) Set B′ := SuppD′. Then the pair (X ′, B′) is dlt and X ′ \B′ has terminal singularities.
b) The divisor KX′ +B′ is nef and we have

(i) ν(X) = ν(KX′ +B′); and
(ii) κ(X) = κ(KX′ +B′).

The proof needs some technical preparation:

R 6.1. – Let X be a normal Q-factorial compact Kähler space, and let D ∈ |mKX |
be an effective pluricanonical divisor. If we set B = SuppD, then

κ(KX) = κ(KX +B).

Indeed, B being effective, the inequality κ(KX) ≤ κ(KX + B) is obvious. Yet we also have
an inclusion of effective divisors B ⊂ D, so we get

κ(KX +B) ≤ κ(KX +D) = κ((m+ 1)KX) = κ(X).

The following basic lemma has been shown in the algebraic case in [49, 13.2.4].

L 6.2. – Let ψ : V →W be a bimeromorphic proper Kähler morphism between normal
complex spaces. Let D be an effective Q-Cartier Q-divisor that is ψ-nef. Then we have

Suppψ∗(D) = ψ(SuppD),

i.e., the image of D has pure codimension one.

Proof. – The inclusion Suppψ∗(D) ⊂ ψ(SuppD) is trivial. Fix now a point
w ∈ ψ(SuppD) ⊂W . Arguing by contradiction we assume that all the irreducible compo-
nents of ψ(SuppD) passing through w have dimension at most dimW − 2. Thus, up to
replacing W by an analytic neighborhood of w, we assume that ψ(SuppD) has dimension
at most dimW − 2. Then ψ∗(−D) = 0 and −(−D) is ψ-nef, contradicting the negativity
lemma, see e.g., [10, 3.6.2], unless D = 0.

The following crucial lemma seems to be well-known to experts and is used in several places
without further mentioning, but we prefer to write it down in detail:
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L 6.3. – LetX =: X0 be a normal Q-factorial compact Kähler space, and letM =: M0

be an effective Cartier divisor onX that is nef. LetN =: N0 be an effective Cartier divisor such
that SuppM = SuppN , and let

(ϕi : Xi 99K Xi+1)i=0,...,n

be a finite sequence ofN -negative contractions, that is everyXi is a normalQ-factorial compact
Kähler space and ϕi is the divisorial contraction or flip of an extremal ray Ri ∈ NA(Xi) that
is Ni-negative (9). Then for every i = 0, . . . , n the N -MMP induces an isomorphism

(X0 \ SuppM0) ' (Xi+1 \ SuppMi+1).

R. – The essence of Lemma 6.3 is the following. Given the flip ϕ : Xi 99K Xi+1 with
contractions fi : Xi → Yi and f+

i : Xi+1 → Yi, then the exceptional locus of f+
i is contained

in Mi+1.

Proof. – For every i = 1, . . . , n we set Mi+1 := (ϕi)∗Mi. Moreover we denote by Γi the
normalization of the graph of ϕi and by pi : Γi → Xi and qi : Γi → Xi+1 the natural maps.

We will construct inductively a sequence of normal compact Kähler spaces Vi admitting
bimeromorphic morphisms fi : Vi → X and gi : Vi → Xi+1 such that

a) the support of f∗iM contains the gi-exceptional locus;
b) gi factors through Γi, that is there exists a bimeromorphic map βi : Vi → Γi such that

gi = qi ◦ βi.

Assuming this for the time being, let us see how to conclude: arguing by induction we suppose
that we have an isomorphism

(X0 \ SuppM0) ' (Xi \ SuppMi).

Since SuppMi = SuppNi and ϕi is Ni-negative, the image of the pi-exceptional locus is
contained in Mi. Thus we are done if we show that the image of the qi-exceptional locus is
contained in Mi+1. Since X0 99K Xi+1 does not extract a divisor we have

Mi+1 = (gi)∗f
∗
iM.

Yet by the properties above f∗iM contains the strict transforms of the qi-exceptional divi-
sors (10). Thus gi(Supp f∗iM) contains the image of the qi-exceptional locus. By Lemma 6.2
this implies that Supp(gi)∗f

∗
iM contains the image of the qi-exceptional locus.

Proof of the claim. – For the start of the induction we simply set V0 := Γ0. Indeed
since SuppM0 = SuppN0 contains the exceptional locus of the extremal contraction, the
divisor p∗0M0 contains the q0-exceptional locus.

For the induction step we make a case distinction: if ϕi is divisorial we simply set Vi := Vi−1

and note that Mi contains the exceptional divisor since SuppMi = SuppNi. If ϕi is a flip
we define Vi as the normalization of the graph of the bimeromorphic map Vi−1 99K Γi, and

(9) As usual, we define inductively Ni+1 := (ϕi)∗Ni, cf. [49, 2.26].
(10) Note that the qi-exceptional locus is divisorial since Xi+1 is Q-factorial.
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denote by αi : Vi → Vi−1 and βi : Vi → Γi the natural maps. We set fi := fi−1 ◦ αi and
gi := qi ◦ βi and summarize the situation in a commutative diagram:

Vi
αi

}}

βi

  
Vi−1

fi−1

}}

gi−1

!!

Γi
pi

~~

qi

""
X Xi Xi+1.

All we have to show is that the support of f∗iM contains the gi-exceptional locus. Note that
by our induction hypothesis f∗i−1M contains the gi−1-exceptional locus. Moreover we have

Mi = (gi−1)∗f
∗
i−1M

and SuppMi = SuppNi. In particular (gi−1)∗f
∗
i−1M contains the image of the pi-excep-

tional locus (which is of course equal to the qi-exceptional locus). Using these two properties
the claim follows by elementary set-theoretic computations.

Proof of Lemma 6.1. – Since κ(X) ≥ 0 by [24], there exist an m ∈ N and an effective
Cartier divisor D ∈ |mKX |. Since ν(X) > 0, the divisor D is not zero. Let

µ : X0 → X

be a log-resolution of the divisor D in the following sense: the map µ is an isomorphism
on X \ D, the support of µ∗D has simple normal crossings and X0 is smooth in a neigh-
borhood of µ∗D (11). Thus if we set B0 := (µ∗D)red, the pair (X0, B0) is dlt and X0 \B0 has
terminal singularities. Note also that since X has terminal singularities, we have

KX0
∼Q µ

∗KX + E

with E an effective µ-exceptional Q-divisor. By construction

SuppE ⊂ B0,

so the pluricanonical divisor

D0 := µ∗D +mE ∈ |mKX0
|

satisfies SuppD0 = B0. By Remark 6.1 we have

κ(X) = κ(X0) = κ(KX0 +B0).

By Theorem 4.6 there exists a terminating (K +B)-MMP

(ϕi : (Xi, Bi) 99K (Xi+1, Bi+1))i=0,...,n

where ϕi is the flip or divisorial contraction of a ray Ri. Then for every i ∈ {1, . . . , n}

Di+1 := ϕ∗Di ∈ |mKXi+1
|

is a pluricanonical divisor such that SuppDi+1 = Bi+1.

(11) This last condition can be satisfied since X is a terminal threefold, so it has only finitely many singular points.
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For every 0 ≤ i ≤ n, if C ⊂ Xi is a curve with class [C] ∈ Ri, then

(KXi
+Bi) · C = (

1

m
Di +Bi) · C < 0,

and since SuppDi = Bi, the curve C is contained in Bi. Thus the exceptional locus of the
contraction of the extremal ray Ri is contained in Bi. Now apply Lemma 6.3 to establish an
isomorphism

ϕi|Xi\Bi

: (Xi \Bi)→ (Xi+1 \Bi+1).

In conclusion we obtain that Xi+1 \Bi+1 has terminal singularities.

The Kodaira dimension of K + B being invariant under a (K + B)-MMP, so Remark 6.1
yields

κ(X) = κ(KX0
+B0) = κ(KXn+1

+Bn+1).

Let now Γ be a desingularization of the graph of the bimeromorphic mapX0 99K Xn+1, and
denote by p : Γ→ X0 and q : Γ→ Xn+1 the natural projections. Then the effective divisors

(µ ◦ p)∗D ' (µ ◦ p)∗mKX

and
q∗(Dn+1 +mBn+1) ' mq∗(KXn+1 +Bn+1)

are both nef and have the same support. As in [49, 11.3.3], arguing with a Kähler class, this
implies

ν(X) = ν(KXn+1 +Bn+1).

L 6.4. – Let X be a normal compact Kähler space of dimension n ≥ 2, and let L be a
nef Q-Cartier Q-divisor. Let S ⊂ X be an effective Q-Cartier Q-divisor such that L− S is nef.
Let T ⊂ X be a prime divisor such that L|T ≡ 0 and T 6⊂ SuppS. Then

T ∩ SuppS = ∅.

Proof. – Indeed, if T ∩ SuppS 6= ∅, then −S|T is a non-zero antieffective divisor. Thus
the restriction (L− S)|T ≡ −S|T is not nef, a contradiction.

L 6.5. – Let X be a normal Q-factorial compact Kähler threefold. Suppose that there
exists a D ∈ |mKX | with the following properties:

– Set B := SuppD. The pair (X,B) is dlt and X \B has terminal singularities.
– The divisor KX +B is nef.

LetS ⊂ B be a non-zero effective Weil divisor such that the following holds: for every irreducible
component T ⊂ B − S we have

(KX +B)|T ≡ 0.

Set X0 := X,D0 := D and B0 := B. Then there exists a finite sequence K +B − S-negative
contractions

(ϕi : (Xi, Bi − Si) 99K (Xi+1, Bi+1 − Si+1))i=0,...,n

of a ray Ri ∈ NA(Xi) such that the following properties hold:

a) The pair (Xi+1, Bi+1 − Si+1) is dlt.
b) Set Di+1 := (ϕi)∗Di. Then the divisor Di+1 ∈ |mKXi+1 | satisfies SuppDi+1 = Bi+1.
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c) We have (KXi
+Bi) ·Ri = 0 and the divisor KXi+1

+Bi+1 is nef. For every irreducible
component Ti+1 ⊂ Bi+1 − Si+1 we have

(KXi+1
+Bi+1)|Ti+1

≡ 0.

d) Xi+1 isQ-factorial; the pair (Xi+1, Bi+1) is lc andXi+1\Bi+1 has terminal singularities.
e) We have (Bn+1 − Sn+1) ∩ Sn+1 = ∅ and Sn+1 6= 0.

R. – Note that we do not claim that KXn+1 +Bn+1 − Sn+1 is nef, in general this will
not be true.

Proof. – If (B − S) ∩ S = ∅, there is nothing to prove, so suppose (B − S) ∩ S 6= ∅.
Thus KX +B − S is not nef by Lemma 6.4. Note that (X0, B0 − S0) is dlt.

Step 1. Existence of the MMP. – We proceed by induction and assume that Xi, Bi and Di

are already constructed such that properties a), b) and d) hold at level i, moreoverKXi +Bi
is nef andKXi +Bi|Ti ≡ 0 for all irreducible components Ti ofBi−Si. If there is no such Ti
meeting Si, then we stop and set n+ 1 = i. Thus we may assume that Ti ∩ Si 6= ∅ for some
component Ti. We first have to find the extremal ray Ri. Notice that the restriction

(KXi +Bi − Si)|Ti

≡ −Si|Ti

is not nef, so by Corollary 4.1 there exists a curve Zi ⊂ Ti ⊂ (Bi − Si) such that

(KXi +Bi − Si) · Zi < 0.

The inclusion Zi ⊂ (Bi − Si) yields(KXi
+ Bi) · Zi = 0 by c). By the cone Theorem 1.3

applied to the pair (Xi, Bi − Si), there exists a decomposition

(18) Zi =
∑

λjCi,j +Mi,

where λj > 0, the Ci,j are irreducible curves generating a (KXi
+Bi−Si)-negative extremal

in NA(Xi) and Mi ∈ NA(Xi) such that

(KXi
+Bi − Si) ·Mi ≥ 0.

Let Ri be the extremal ray generated by the curve Ci,1. Since KXi
+ Bi is nef and

(KXi
+Bi) · Zi = 0, the decomposition (18) implies that (KXi

+Bi) ·Ri = 0.

Since SuppDi = Bi, the Q-Cartier divisor KXi + Bi − Si is Q-linearly equivalent to an
effective divisor with support in Bi. In particular every curve C ⊂ Xi such that [C] ∈ Ri is
contained in Bi. Since the pair (Xi, Bi) is lc this shows that the support of the extremal ray
is contained in an irreducible surface with slc singularities, [49, 16.9]. Thus the contraction
ofRi exists by Theorem 1.4. Moreover, if the ray is small, then the flip exists by Theorem 4.3.
We denote by

ϕi : (Xi, Bi − Si) 99K (Xi+1, Bi+1 − Si+1)

the flip or divisorial contraction of Ri. As in the proof of Lemma 6.1 we see that the
properties a) and b) hold at level i+ 1.

Since (KXi
+ Bi) · Ri = 0, Lemma 3.2 proves that KXi+1

+ Bi+1 is nef, that the pair
(Xi+1, Bi+1) is lc. and that for every irreducible component Ti+1 ⊂ Bi+1 − Si+1, the
restriction (KXi+1

+ Bi+1)|T ≡ 0 . Finally, the divisor KXi
+ Bi being nef and Q-linearly
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equivalent to an effective divisor with support inBi, Lemma 6.3 implies that (Xi+1\Bi+1) '
(Xi \Bi) has terminal singularities.

Step 2. Termination of the MMP. – By Theorem 4.4 we know that after finitely many steps
the flipping locus is disjoint from Bi − Si. Yet a K + B − S-negative extremal contraction
that is disjoint from B − S is also a K-negative extremal contraction. Thus the sequence
terminates by Theorem 4.5.

L 6.6. – In the situation of Lemma 6.5 suppose additionally that ν(KX +B) = 1, and
let S ⊂ B be an irreducible component.

Then there exists a normalQ-factorial compact Kähler threefoldX ′ that is bimeromorphic toX
and has a D′ ∈ |mKX′ | with the following properties:

a) Set B′ := SuppD′. The pair (X ′, B′) is lc and X ′ \B′ has terminal singularities.
b) The divisorKX′+B

′ is nef with ν(KX′+B
′) = 1. Moreover, κ(KX+B) = κ(KX′+B

′).

c) There exists an irreducible component S′ ⊂ B′ that is a connected component of B′.
d) The pair (X ′, B′ − S′) is dlt.

Proof. – We first check thatB−S satisfies the positivity condition in Lemma 6.5: indeed
if T is any irreducible component of Supp(D), then (KX +B)|T ≡ 0, otherwise ν(KX +B) ≥ 2.

Using the notation of Lemma 6.5, set X ′ = Xn+1 etc. We know that Sn+1 is a non-zero
irreducible divisor that is disjoint from Bn+1 − Sn+1. Thus the property c) holds. Since all
the contractions in Lemma 6.5 are (K +B)-trivial, the Kodaira dimension is invariant:

κ(KX +B) = κ(KXn+1
+Bn+1).

The other properties were already shown in Lemma 6.5.

L 6.7. – Let X be a normal compact Kähler space with rational singularities of dimen-
sion n ≥ 2. Let D be an effective Cartier divisor. Suppose that D is nef and ν(D) ≥ 2. Then
the support of D is connected.

Proof. – It is sufficient to prove that H1(X, OX(−D)) = 0. Since X has rational singu-
larities we may replace it by a resolution of singularities without changing this cohomology
group. Then we have

H1(X, OX(−D)) ' Hn−1(X,KX ⊗ OX(D)) = 0

by [24, Thm. 0.1].

L 6.8. – In the situation of Lemma 6.5 suppose additionally that ν(KX +B) = 2.

Then there exists a normal Q-factorial compact Kähler threefoldX ′, bimeromorphic toX such
that (X ′, 0) is klt and a divisor D′ ∈ |mKX′ | with the following properties:

a) Set B′ := SuppD′. The pair (X ′, B′) is lc and X ′ \B′ has terminal singularities.
b) The divisorKX′+B

′ is nef with ν(KX′+B
′) = 2. Moreover, κ(KX+B) = κ(KX′+B

′).

c) For every irreducible component T ′ ⊂ B′ we have (KX′ +B′)|T ′ 6≡ 0.
d) (KX′ +B′) ·K2

X′ ≥ 0.

Proof. – The construction of the Kähler space X ′ proceeds in two steps.
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Part I. Eliminating the (K + B)-trivial components. – Let S ⊂ B be the union of all the
irreducible components T ⊂ B such that (KX +B)|T 6≡ 0. Since ν(KX +B) = 2, the set S
is not empty. Thus we can apply Lemma 6.5 to obtain a sequence of (K + B − S)-negative
contractions

ψ : X 99K X̂

where X̂ is a normal Q-factorial compact Kähler threefold carrying a divisor D̂ ∈ |mKX̂ |
subject to the following properties:

(α) Set B̂ := Supp D̂. The pair (X̂, B̂) is lc and X̂ \ B̂ has terminal singularities.
(β) The divisorKX̂ + B̂ is nef with ν(KX̂ + B̂) = 2. Moreover, κ(KX +B) = κ(KX̂ + B̂).

(γ) Set Ŝ := ψ∗S. Then the pair (X̂, B̂ − Ŝ) is dlt.
(δ) supp(B̂ − Ŝ) ∩ Ŝ = ∅ and Ŝ 6= 0.

Notice also that KX̂ + B̂ is Q-linearly equivalent to an effective divisor with support in B̂.
By Lemma 6.7 this implies that B̂ = Ŝ + (B̂ − Ŝ) is connected. Thus property (δ) implies
that B̂ − Ŝ = 0. Hence (KX̂ + B̂)|T is non-zero for every irreducible component T ⊂ B̂.

Part II. Eliminating K-negative curves. – Setting

X0 := X̂, B0 := B̂, D0 := D̂,

we will next construct a finite sequence of K-negative contractions and flips

(ϕi : Xi 99K Xi+1)i=0,...,n

of extremal rays Ri ∈ NA(Xi) such that the following properties hold:

(1) Xi+1 is Q-factorial and (Xi+1, 0) is klt.
(2) Set Di+1 := (ϕi)∗Di. Then Di+1 ∈ |mKXi+1

| satisfies SuppDi+1 = Bi+1.
(3) We have (KXi

+Bi) ·Ri = 0, the divisorKXi+1
+Bi+1 is nef and ν(KXi+1

+Bi+1) = 2.
(4) The pair (Xi+1, Bi+1) is lc and Xi+1 \Bi+1 has terminal singularities.
(5) For every irreducible component T ⊂ Bi+1 we have (KXi+1

+Bi+1)|T 6= 0.
(6) (KXn+1

+Bn+1) ·K2
Xn+1

≥ 0.

Note first that (X̂, 0) is klt singularities since (X̂, B̂ − Ŝ) = (X̂, 0) is dlt [51, Prop. 2.41]. If
(KX̂ + B̂) ·K2

X̂
≥ 0, there is nothing to prove, thus we may assume that

(KX̂ + B̂) ·K2
X̂
< 0.

We therefore start by showing that (KXi
+ Bi) · K2

Xi
< 0 implies the existence of a

KXi
-negative contraction that is (KXi

+Bi)-trivial. Let Bi =
∑
Bi,l be the decomposition

of Bi in its irreducible components. Since the pair (Xi, Bi) is lc, the surfaces Bi,l have slc
singularities. Moreover, by adjunction [49, Prop. 16.9], there exists a boundary divisor ∆i,l

such that
KBi,l

+ ∆i,l ∼Q (KXi +Bi)|Bi,l

,

and the pair (Bi,l,∆i,l) is slc. By Proposition 5.2 this implies that

(KXi
+Bi)|Bi,l

∼Q Zi,l

with Zi,l an effective 1-cycle.
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Suppose that KXi |Bi,l

· Zi,l ≥ 0 for all l. Since

KXi ∼Q
∑

ai,lBi,l

with ai,l > 0 we conclude

(KXi
+Bi) ·K2

Xi
=
∑

ai,l(KXi
+Bi) ·KXi

·Bi,l =
∑

ai,lKXi |Bi,l

· Zi,l ≥ 0,

a contradiction. Thus we can suppose (up to renumbering) that

KXi |Bi,1

· Zi,1 < 0.

By the cone Theorem 1.3 applied to the pair (Xi, 0), there exists a decomposition

(19) Zi,1 =
∑

λjCi,j +Mi,

where λj > 0, the Ci,j are irreducible curves generating aKXi -negative extremal in NA(Xi)

and where Mi ∈ NA(Xi) is a class satisfying KXi ·Mi ≥ 0.

Notice now the following: sinceKXi
+Bi is Q-linearly equivalent to an effective divisor with

support Bi and (KXi
+Bi)

3 = 0 we have

(KXi +Bi)
2 ·Bi,l = 0

for all l. In particular (KXi
+Bi) ·Zi,1 = 0. Since KXi

+Bi is nef we deduce from (19) that

(20) (KXi
+Bi) · Ci,1 = 0.

Let now Ri be the extremal ray generated by Ci,1. As in the proof of Lemma 6.5, the
locus of Ri is contained in a surface with slc singularities (a component of Bi). Thus the
contraction of Ri exists by Theorem 1.4 and, if the extremal ray is small, the flip exists by
Theorem 4.3. We denote by

ϕi : (Xi, 0) 99K (Xi+1, 0)

the flip or divisorial contraction of Ri. As in the proof of Lemma 6.1 we see that the
properties (1) and (2) hold at level i+ 1.

By the induction hypothesis, the divisor KXi
+ Bi is nef of numerical dimension two

and by (20) numerically trivial on the extremal ray Ri. Using Lemma 3.2 this implies that
KXi+1

+ Bi+1 is nef of numerical dimension two, moreover the pair (Xi+1, Bi+1) is lc.
Finally Lemma 6.3 implies that (Xi+1 \Bi+1) ' (Xi \Bi) has terminal singularities.

Part III In total we have constructed a sequence of K-negative contractions satisfying the
properties (1)-(5). By Theorem 4.5 any such sequence terminates after n steps. By construc-
tion this yields

(KXn+1 +Bn+1) ·K2
Xn+1

≥ 0.

Since all the contractions areK+B-trivial, the Kodaira dimension is invariant, i.e., we have
κ(KX̂ + B̂) = κ(KXn+1

+Bn+1).
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7. Positivity of cotangent sheaves

In this section we briefly review stability and Chern classes on singular complex spaces, then
we prove the crucial Chern class inequality Theorem 7.2. For simplicity of notations we
restrict ourselves to the case of threefolds with isolated singularities—which is all we need
later—but all the statements can easily be adapted for spaces of arbitrary dimension that are
smooth in codimension two.

D 7.1. – Let X be a normal compact Kähler threefold with isolated singularities.
Let F 1 and F 2 be coherent sheaves on X, and let π : X̂ → X be a log-resolution.

Then the Chern classes ci(π∗ F 1) and ci(π∗ F 2) are well-defined elements of H2i(X̂,Z) [63],
see also [34]. Thus for every α ∈ N1(X) the intersection numbers

π∗α · c1(π∗ F 1) · c1(π∗ F 2) and π∗α · c2(π∗ F 1)

are well-defined, so by the duality N1(X) = N1(X)∗ we define

c1( F 1) · c1( F 2) ∈ N1(X) : α 7→ π∗α · c1(π∗ F 1) · c1(π∗ F 2)

and
c2( F 1) ∈ N1(X) : α 7→ π∗α · c2(π∗ F 1).

L 7.1. – In the situation of Definition 7.1, the classes c1( F 1) · c1( F 2) and c2( F 1) do
not depend on the choice of the desingularization. Moreover if

0→ F → G → Q → 0

is an exact sequence of coherent sheaves, then we have the usual formula

c2( G) = c2( F ) + c2( Q) + c1( F ) · c1( Q).

Proof. – In order to see for instance that the definition c2( F ) does not depend on the
resolution it suffices to consider the case where π1 : X̂1 → X and π2 : X̂2 → X are two
log-resolutions with a factorization q : X2 → X1. Then we want to show that

(q∗π∗1α) · c2(q∗π∗1 F ) = (π∗1α) · c2(π∗1 F ).

This follows from the general fact, that, given a holomorphic map f : X → Y between
compact complex manifolds and G a coherent sheaf on Y, then cj(f

∗( G)) = f∗(cj( G)),
cf. [34].

Next consider a log-resolution π : X̂ → X with exceptional locus D =
∑
Dk and F

a coherent sheaf with support on D. Let ik : Dk → X be the inclusion. Then by the
Grothendieck-Riemann-Roch formula, see e.g., [34, Thm1.1] (and [32, Thm. 15.2] in the
algebraic case),

ch(ik∗( F |Dk

) = ik∗(td(NDk/X)−1 · ch( F |Dk

)).

Thus if α ∈ N1(X), then the projection formula gives

π∗α · c2(ik∗( F |Dk

) = 0.

Now an easy induction on the number of components of D shows that

(21) π∗(α) · c2( F ) = 0
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For the second statement we consider the pull-back

π∗ F α→ π∗ G → π∗ Q → 0

by a log-resolution π : X̂ → X. In general the morphism α is not injective, but its kernel
has support in the π-exceptional locus. Using the usual rules for computing Chern classes
on compact manifolds and invoking (21), we have

π∗α · c2(π∗ F ) = π∗α · c2(π∗ F / kerα)

and

π∗α · c1(π∗ F ) · c1(π∗ Q) = π∗α · c1(π∗ F / kerα) · c1(π∗ Q).

Thus the statement follows from the standard formula in the smooth case.

R 7.1. – In the proof of Lemma 7.1 we have shown the following. Let π : X̂ → X

be a log resolution of the Kähler threefold X with only isolated singularities. Let F be a
coherent sheaf on X̂, supported on the exceptional divisor D of π and let α ∈ N1(X). Then
we have

π∗(α) · c2( F ) = π∗(α) · c1( F )2 = 0.

Given a normal compact Kähler threefold X with isolated singularities and a torsion-free
sheaf F there is no obvious candidate for the first Chern class c1( F ) ∈ H2(X,R). However
we can define, as in the situation of Definition 7.1, for every α ∈ N1(X) the intersection
number α2 · c1( F ) by pulling-back to some log-resolution π : X̂ → X:

α2 · c1( F ) := (π∗(α))2 · c1(π∗( F )).

D 7.2. – Let X be a normal compact Kähler threefold with isolated singularities
and let α be a nef class onX. We say that a non-zero torsion-free sheaf F is α-semistable (resp.
α-stable) if for every non-zero saturated subsheaf E ⊂ F we have

µα( E) :=
α2 · c1( E)

rk E
≤ α2 · c1( F )

rk F
=: µα( F ) (resp. <).

P 7.1 (Harder-Narasimhan filtration). – Let X be a normal compact Kähler
threefold with isolated singularities, and let α be a nef class on X. Let F be a non-zero torsion-
free coherent sheaf on X. Then there exists a filtration

0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F k = F

such that for every i ∈ {1, . . . , k} the quotient F i/ F i−1 is α-semistable and we have a strictly
decreasing sequence of slopes

µα( F i/ F i−1) > µα( F i+1/ F i) ∀i ∈ 1, . . . , k − 1.

Proof. – We proceed as in [44]; the main point is to show that there is a constant C such
that

µα( F ) ≤ C
for all F ⊂ E. First we reduce to the smooth case: take a log resolution π : X̂ → X such
that π∗( E)∗∗ is locally free and observe that µα( F ) = µπ∗(α)(π

∗( F )/tor)).
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So we may assume X smooth and E locally free. Then the proof of [44, Lemma 7.16] works.
Once the boundedness is settled, the existence of the filtration is shown as in the classical
case.

We shall also use the following elementary result, cf. [44, Thm. 7.18].

P 7.2 (Jordan-Hölder filtration). – LetX be a normal compact Kähler threefold
with isolated singularities, and let α be a nef class on X. Let F be a non-zero α-semi-stable
torsion-free coherent sheaf on X. Then there exists a filtration

0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F k = F

such that for every i ∈ {1, . . . , k} the quotient F i/ F i−1 is α-stable.

D 7.3. – LetX be a normal compact Kähler threefold, and letα be a nef class onX.
A non-zero torsion-free coherent sheaf F on X is α-generically nef if for every torsion-free
quotient sheaf F → Q→ 0 we have

α2 · c1(Q) ≥ 0.

R 7.2. – In the situation of Definition 7.3, let

0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F k = F

be the Harder-Narasimhan filtration with respect to α. If F is α-generically nef, then by
definition α2 · c1( F / F k−1) ≥ 0. Thus

α2 · c1( F i/ F i−1) ≥ 0

for every i ∈ {1, . . . , k}.

We can now prove the Bogomolov inequality for stable sheaves on a singular space.

T 7.1. – LetX be a normal compact Kähler threefold with isolated singularities, and
let α be a Kähler class on X. Let F be an α-stable non-zero torsion-free coherent sheaf on X.
Then we have

α · c2( F ) ≥
(r − 1

2r

)
α · c21( F ).

Proof. – We fix a log-resolution π : X̂ → X.

Step 1. Suppose that F is reflexive. – Set F̂ := (π∗ F )∗∗. Since F is reflexive, the sheaves F̂
and π∗ F coincide in the complement of the π-exceptional locus. In particular by Remark 7.1
one has

α · c2( F ) = π∗α · c2(π∗ F ) = π∗α · c2( F̂ )

and
α · c21( F ) = π∗α · c21(π∗ F ) = π∗α · c21( F̂ ).

Thus it is sufficient to prove the inequality for F̂ . Arguing exactly as in the proof of [24,
Prop. 6.9] we see that F̂ is π∗α-stable. Since stability is an open property [17, Prop. 2.1] we
obtain that F̂ is (π∗α+ εω)-stable where ω is a Kähler form on X̂ and 0 < ε� 1. Thus [5]
yields

(π∗α+ εω) · c2( F̂ ) ≥ r − 1

2r
(π∗α+ εω) · c21( F̂ )
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for every 0 < ε� 1. The claim follows by passing to the limit ε→ 0.

Step 2. Reduction to the case where F is reflexive. – Since F is torsion-free, the injection
i : F ↪→ F ∗∗ is an isomorphism in codimension one. Thus the kernel and cokernel of

π∗( F )→ π∗( F ∗∗)

have support in the union of the π-exceptional locus and a set of dimension at most one.
In particular c1(π∗ F ) = c1(π∗ F ∗∗) + D with D a π-exceptional divisor, so the projection
formula yields

α · c21( F ) = α · c21( F ∗∗).

Thus we are done if we prove that α · c2( F ∗∗) ≥ α · c2( F ). By the second part of Lemma 7.1
it is sufficient to prove that

α · c2( F ∗∗/ F ) = π∗(α) · c2(π∗( F ∗∗/ F )) ≥ 0.

Let S be the union of the 1-dimensional irreducible components of the support of F ∗∗/ F
and Ŝ the strict transform in X̂; we may assume that the irreducible components Ŝi of Ŝ are
smooth. Set

Q := (iŜ)∗(π
∗( F ∗∗/ F )|Ŝ).

Then by Remark 7.1 and Lemma 7.1, it suffices to show

π∗(α) · c2(Q) ≥ 0.

Yet Q has support on a set of dimension one, so the Grothendieck-Riemann-Roch formula
yields

c2(Q) =
∑

aiŜi,

where ai ∈ N0. Since α is nef, the statement follows.

L 7.2. – LetX be a compact Kähler threefold with isolated singularities. Let α be a nef
class on X, and let F be a coherent sheaf. Then we have(

α2 · c1( F )
)2 ≥ (α · c21( F )

)
· α3.

Proof. – By our definition of the intersection numbers 7.1 we may suppose X smooth.
Since α is a limit of Kähler classes, it is sufficient to prove the statement under the stronger
hypothesis that α is a Kähler class. Now the inequality follows from the usual Hodge index
theorem [66, Thm. 6.33] by an elementary computation.

T 7.2. – Let (X,ω) be a compact Kähler threefold with isolated singularities, and
let F be a non-zero reflexive coherent sheaf on X such that det F is Q-Cartier. Suppose that
there exists a pseudoeffective class P ∈ N1(X) such that

L := c1( F ) + P

is a nef class. Suppose furthermore that for all 0 < ε� 1 the sheaf F is (L+ εω)-generically
nef. Then we have

L · c2( F ) ≥ 1

2
(L · c21( F )− L3).

In particular, if L · c21( F ) ≥ 0 and L3 = 0, then

(22) L · c2( F ) ≥ 0.
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R. – This statement (and its proof) is a variation of [53, Thm. 6.1], [49, Prop. 10.12].
However the weaker assumptions will be crucial for the application in the proof of Theorem 8.2.

Proof. – Fix 0 < ε� 1, and consider the Harder-Narasimhan filtration

0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F k = F

for F with respect to Lε := L+ εω. Then by Lemma 7.1

(23) Lε · c2( F ) = Lε ·

 ∑
1≤i<j≤k

c1( F i/ F i−1)c1( F j/ F j−1) +

k∑
i=1

c2( F i/ F i−1)

 .

Since F is Lε-generically nef, by Remark 7.2

(24) L2
ε · c1( F i/ F i−1) ≥ 0 ∀ i ∈ {1, . . . , k}.

For every i ∈ {1, . . . , k}, let

0 = F i,0 ⊂ F i,1 ⊂ · · · ⊂ F i,ki
= F i/ F i−1

be the Jordan-Hölder filtration of F i/ F i−1 with respect to Lε. Then we have

(25) Lε · c2( F i/ F i−1)

= Lε ·

 ∑
1≤p<q≤ki

c1( F i,p/ F i,p−1)c1( F i,q/ F i,q−1) +

ki∑
p=1

c2( F i,p/ F i,p−1)

 .

Since F i/ F i−1 is Lε-semistable with non-negative slope by (24), we obtain

(26) L2
ε · c1( F i,p/ F i,p−1) ≥ 0 ∀ i ∈ {1, . . . , k}, p ∈ {1, . . . , ki}.

Plugging the Equation (25) into the Equation (23) and following the lexicographic order, we
rename the graded pieces F i,p/ F i,p−1 into Gl, where l ∈ {1, . . . , n}. Thus

(27) Lε · c2( F ) = Lε ·

 ∑
1≤l<m≤n

c1( Gl)c1( Gm) +

n∑
l=1

c2( Gl)

 ,

where the Gl are non-zero torsion-free Lε-stable sheaves. Moreover, by (26) we have

(28) L2
ε · c1( Gl) ≥ 0 ∀ l ∈ {1, . . . , n}.

Since we renamed according to the lexicographic order, the sequence of slopes with respect
to Lε is (not necessarily strictly) decreasing. Thus, setting rl := rk Gl and

αl :=
L2
ε · c1( Gl)
rlL3

ε

,

we obtain

(29) α1 ≥ α2 ≥ · · · ≥ αn ≥ 0.
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By Theorem 7.1 we have Lε · c2( Gl) ≥
(
rl−1
2rl

)
Lε · c21( Gl) for all l ∈ {1, . . . , n}. Therefore

using (27) we obtain

Lε · c2( F ) = Lε ·

(
1

2
c1( F )2 +

n∑
l=1

c2( Gl)−
1

2

n∑
l=1

c1( Gl)
2

)

≥ Lε ·

(
1

2
c1( F )2 − 1

2rl

n∑
l=1

c1( Gl)
2

)
.

By Lemma 7.2 we have

(L2
ε · c1( Gl))

2 ≥ (Lε · c21( Gl)) · L
3
ε ∀ l ∈ {1, . . . , n},

so, using the coefficient αl defined above, we get Lε · c21( Gi) ≤ α
2
i r

2
iL

3
ε. Putting this into the

last inequality yields

Lε · c2( F ) ≥ Lε ·

(
1

2
c1( F )2 − 1

2

n∑
l=1

α2
l rlL

2
ε.

)
(30)

=
1

2
Lε ·

(
(c1( F )2 − L2

ε) + (1−
n∑
l=1

α2
l rl)L

2
ε.

)
.(31)

We claim that

(1−
n∑
l=1

α2
l rl) ≥ 0.

Assuming this for the time being, let us see how to conclude : sinceL3
ε > 0, the claim together

with (31) yields

Lε · c2( F ) ≥ 1

2
Lε ·

(
c1( F )2 − L2

ε

)
.

Now we take the limit ε→ 0.

Proof of the claim. – First of all, (29) implies that

1−
n∑
l=1

α2
l rl ≥ 1− α1

n∑
l=1

rlαl.

Now by definition of the numbers αl we have

n∑
l=1

rlαl =

n∑
l=1

L2
ε · c1( Gl)
L3
ε

=
L2
ε · c1( F )

L3
ε

.

Yet by definition of L and Lε,

c1( F ) = L− P = Lε − P − εω.

Since P is pseudoeffective and since ω is Kähler it follows that L2
ε · c1( F ) ≤ L3

ε, hence∑n
l=1 rlαl ≤ 1. Since rl ≥ 1 and αl ≥ 0 for all l ∈ {1, . . . , n} this implies α1 ≤ 1, proving

the claim.
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8. Abundance

In this section, we establish the abundance theorem for non-algebraic Kähler threefolds. The
main difficulty is to show that if the numerical Kodaira dimension ν(X) = 1 or ν(X) = 2,

then κ(X) ≥ 1. This will be done in Theorems 8.1 and 8.2.

8.A. The case ν = 1

T 8.1. – Let X be a normal Q-factorial compact Kähler threefold with at most
terminal singularities such that KX is nef. If ν(X) = 1, then κ(X) = 1.

Proof. – Since 0 ≤ κ(X) ≤ ν(X) = 1, it is sufficient to prove that κ(X) ≥ 1. By
Lemma 6.1 and Lemma 6.6 we are reduced to proving the following statement:

Let X be a normal Q-factorial compact Kähler threefold such that (X, 0) is klt, carrying a
divisor D ∈ |mKX | with the following properties:

a) Set B := SuppD. The pair (X,B) is lc and X \B has terminal singularities.
b) The divisor KX +B is nef and we have ν(KX +B) = 1.
c) There exists an irreducible component S ⊂ B that is a connected component.

Then κ(X) ≥ 1.

We follow the argument in [49, Ch. 13]: by adjunction [49, 16.9.1] there exists a boundary
divisor ∆ on S such that (S,∆) is slc and KS + ∆ is numerically trivial. By Proposition 5.1
the divisorKS+∆ is torsion. Due to a covering trick of Miyaoka [49, 11.3.6] we may suppose
after a finite cover, étale in codimension one, that

ωS = OS(KS) ' OS ' OS(S).

Note that by [51, Prop. 5.20(4)] the klt property is preserved under a finite morphism which is
étale in codimension one. In particular,X is Cohen-Macaulay. By [49, 11.3.7] we are finished
if we prove that for every infinitesimal neighborhood Sn, the restriction

Hp(Sn, OSn)→ Hp(S, OS)

is surjective for every p ∈ N. Observe here that condition (3) in [49, 11.3.7] is satisfied by [49,
12.1.2], as explained in [49, p.158]. In fact, using the commutative diagram

Hp(Sn,C)

��

// Hp(Sn, OSn)

��
Hp(S,C) // Hp(S, OS)

and the isomorphism Hp(Sn,C) ' Hp(S,C) we see that it is sufficient to prove that

Hp(S,C)→ Hp(S, OS)

is surjective. This is done in Theorem 5.1.
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8.B. The case ν = 2

T 8.2. – Let X be a normal Q-factorial compact Kähler threefold with at most
terminal singularities such that KX is nef. If ν(X) = 2, then κ(X) ≥ 1.

The basic idea of the proof is the same as in the projective case [49, Sect. 14], however the
computations get considerably simplified by our generalization of Miyaoka’s Chern class
inequality [53, Thm. 6.1]. Let us start by recalling the Riemann-Roch formula for terminal
threefolds:

P 8.1. – Let X be a normal compact Kähler threefold with at most terminal
singularities, and let L be a line bundle on X. Then we have

χ(X,L) =
L3

6
− 1

4
KX · L2 + L · K

2
X + c2(X)

12
+ χ(X, OX),

where L · c2(X) := π∗L · c2(X̂) with π : X̂ → X any resolution of singularities (cf.
Definition 7.1).

Proof. – Let π : X̂ → X be a resolution of singularities, which is an isomorphism over
the smooth locus of X. Since X has rational singularities, we have χ(X,L) = χ(X̂, π∗L).

Riemann-Roch on the smooth Kähler threefold X̂ yields

(32) χ(X̂, π∗L) =
π∗L3

6
− 1

4
KX̂ · (π

∗L)2 + π∗L ·
K2
X̂

+ c2(X̂)

12
+ χ(X̂, OX̂).

Now π∗L3 = L3, and, using again the rationality of the singularities of X, χ(X̂, OX̂) =

χ(X, OX). Since X is smooth in codimension two we may write

KX̂ ∼Q π
∗KX + E

with E a divisor such that π(E) is finite. In particular the projection formula gives
KX̂ · (π∗L)2 = KX · L2 and π∗L ·K2

X̂
= L ·K2

X . Thus (32) gives our claim.

We will also need the following Kähler version of Miyaoka’s generic nefness theorem, due to
Enoki in the smooth case:

P 8.2. – LetX be a normal compact Kähler space of dimension n with canonical
singularities. Suppose that KX is nef or κ(X) ≥ 0. Then ΩX is generically nef with respect to
any nef class α, i.e., for every torsion-free quotient sheaf

ΩX → Q → 0,

we have αn−1 · c1( Q) ≥ 0.

Proof. – Fix a nef class α ∈ N1(X), and let ΩX → Q → 0 be a torsion-free quotient
sheaf. Let π : X̂ → X be a desingularization by a compact Kähler manifold, and let K be
the kernel of the induced epimorphism

(π∗ΩX)/torsion→ (π∗ Q)/torsion→ 0.

Using the injective map
(π∗ΩX)/torsion ↪→ ΩX̂
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we may view K as a subsheaf of ΩX̂ , and we denote by K̂ its saturation in ΩX̂ . Set

Q̂ := ΩX̂/ K̂ ,

then Q̂ is a torsion-free quotient of ΩX̂ coinciding with (π∗ Q)/torsion in the complement of
the exceptional locus. In particular we have

αn−1 · c1( Q) = (π∗α)n−1 · c1((π∗ Q)/torsion) = (π∗α)n−1 · c1( Q̂).

We will now verify the conditions of [25, Thm. 1.4] in order to conclude that (π∗α)n−1 · c1( Q̂) ≥ 0:
since X has canonical singularities we have

KX̂ = π∗KX + E,

with E an effective, π-exceptional Q-divisor.

Thus if KX is nef the conditions of [25, Thm. 1.4] hold by setting L = π∗KX and D = E. If
κ(X) ≥ 0 we have π∗KX = F with F an effective Q-divisor, so the conditions are satisfied
by setting L = 0 and D = F + E. In both cases Enoki’s theorem tells us that

ωn−1 · c1( Q̂) ≥ 0

for every Kähler form ω on X̂. Since π∗α is nef, the statement follows by passing to the
limit.

We will use the following Serre vanishing property:

L 8.1. – Let X be a normal Q-factorial compact Kähler threefold, and let B1, . . . , Bk
be prime Weil divisor on X such that Bi is Cohen-Macaulay for every i ∈ {1, . . . , k}. Let L
be a nef Cartier divisor on X such that L|Bi

6≡ 0 for every i ∈ {1, . . . , k}. Let Y ⊂ X be a

subscheme such that Yred ⊂
∑k
i=1Bi and let F be a coherent sheaf on Y . Then there exists a

number n0 ∈ N such that
H2(Y, F ⊗ OY (L⊗n)) = 0

for every n ≥ n0.

Proof. – Note first that we may suppose that Y is defined by an ideal sheaf OX(−
∑k
i=1 aiBi)

with ai ∈ N. Indeed, at the general point of every surface Bi, the scheme Y is isomorphic to
a scheme

∑k
i=1 aiBi defined by the ideal sheaf OX(−

∑k
i=1 aiBi). Thus if we consider the

restriction map

F � F ⊗ O∑k
i=1 aiBi

,

its kernel has support on a scheme of dimension at most one. Hence

H2(Y, F ⊗ OY (L⊗n)) ' H2(

k∑
i=1

aiBi, F ⊗ O∑k
i=1 aiBi

(L⊗n))

for every n ∈ N. We will now argue by induction on
∑k
i=1 ai. The start of the induction is

the case where F is a coherent sheaf on one of the surfacesBi. SinceBi is Cohen-Macaulay,
Serre duality gives

H2(Bi, F ⊗ OBi
(L⊗n)) ' Hom( F ⊗ OBi

(L⊗n), ωBi
).
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Let ν : B̃i → Bi denote the normalization. Since Hom( F , ωBi
) is torsion free, the natural

map
Hom( F , ωBi)→ ν∗(ν

∗( Hom( F , ωBi))

is injective. Since ν∗(ν
∗( Hom( F , ωBi

)) and ν∗(ν
∗( Hom( F , ωBi

)/Tor) coincide at the
generic point of Bi and Hom( F , ωBi

) is torsion free, the map

Hom( F , ωBi
)→ ν∗(ν

∗( Hom( F , ωBi
)/Tor)

is injective, too. Thus it suffices to show that for any torsion-free sheaf S on B̃i one has

H0(B̃i, S ⊗ OB̃i
(L̃−⊗n)) = 0

for n � 0 and L̃ := ν∗(L|Bi

). Passing to a desingularization, we may assume B̃i smooth

and S locally free. Fix now a Kähler form ω on B̃i, and let G1 ⊂ S be the first sheaf of the
Harder-Narasimhan filtration with respect to ω. Since L|Bi

is a non-zero nef divisor we have

L̃ · ω > 0. Thus there exists a number n0 ∈ N such that G1 ⊗ OB̃i
(L̃−⊗n) has negative slope

for all n ≥ n0. In particular S ⊗ OBi(L
−⊗n) has no global sections.

For the induction step we simply choose a surface Bj such that aj > 0. Then the kernel of
the restriction map

F � F ⊗ O(
∑k

i=1 aiBi)−Bj

is a sheaf G with support onBj . Thus by the induction hypothesis we know that forn� 0 the
second cohomology vanishes for both G ⊗ OBj (L⊗n) and F ⊗ O(

∑k
i=1 aiBi)−Bj

(L⊗n).

C 8.1. – Let X be a normal Q-factorial compact Kähler threefold, and let L be a
nef Cartier divisor onX. LetD ∈ |L| be effective and setB := SuppD andB1, . . . , Bk for the
irreducible components of B. Suppose that Bi is Cohen-Macaulay for every i ∈ {1, . . . , k}.
Suppose also that L|Bi

6≡ 0 for every i ∈ {1, . . . , k}. Then there exists a number n0 ∈ N and
constants c1, c2 ∈ N such that for all n ≥ n0:

dimH2(X,L⊗n) = c1

and
dimH2(X,L⊗n ⊗ OX(−B)) = c2.

Proof. – For all n ∈ N we have an exact sequence

0→ L⊗n−1 → L⊗n → OD(L⊗n)→ 0.

By Lemma 8.1,
H2(D, OD(L⊗n)) = 0

for all n� 0. Thus the map H2(X,L⊗n−1)→ H2(X,L⊗n) is surjective for all n� 0. This
shows the first statement.

For the second statement assume without loss of generality that D − B 6= 0. Note that
D −B is an effective Weil divisor whose support is contained inB. For all n ∈ N we have an
exact sequence

0→ L⊗n−1 → L⊗n−1 ⊗ OX(D −B)→ OD−B(L⊗n−1)→ 0.

Again by Lemma 8.1
H2(D −B, OD−B(L⊗n−1)) = 0
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for all n� 0. Thus the map

H2(X,L⊗n−1)→ H2(X,L⊗n−1 ⊗ OX(D −B))

is surjective for n � 0 and by the first statement H2(X,L⊗n−1) is constant for n � 0. We
conclude by noting that

L⊗n−1 ⊗ OX(D −B) ' L⊗n ⊗ OX(−B)

since both sheaves are reflexive and coincide on the smooth locus of X.

Proof of Theorem 8.2. – By Lemma 6.1 and Lemma 6.8 we are reduced to proving the
following statement:

Let X be a normal Q-factorial compact Kähler threefold such that (X, 0) is klt, carrying a
divisor D ∈ |mKX | with the following properties:

a) Set B := SuppD. The pair (X,B) is lc and X \B has terminal singularities.
b) The divisor KX + B is nef and we have ν(KX + B) = 2. Moreover we have κ(X) =

κ(KX +B).

c) For every irreducible component T ⊂ B we have (KX +B)|T 6= 0.
d) We have (KX +B) ·K2

X ≥ 0.

Then κ(X) ≥ 1.

Step 1: Singularities of X. – We claim that there is a finite set S ⊂ X such that X \ S
has canonical singularities. By hypothesis X \ B has only terminal singularities, which are
isolated. Thus it remains to consider the singular points of X which are contained in B.
Taking a finite covering of X by analytic neighborhoods we see that it is sufficient to prove
the claim for X a Stein variety. Thus we can take a hyperplane section H of X. Now for
general H, the pair (H,BH) is lc by [46, Prop. 7.7], so by [40, Thm. 9.6] every point p ∈
BH ⊂ H is a rational double point inH. Hence by [51, Thm. 5.34], the point p is a canonical
singularity of X.

Step 2: A Chern class inequality. – Let µ : X ′ → X be a terminal modification of X
(cf. Theorem 2.1). Thus X ′ has only terminal singularities, and there exists an effective
Q-divisor ∆ such that

KX′ + ∆ ∼Q µ
∗KX .

Let m be the Cartier index of KX +B, then

L := m(KX +B)

is Cartier, and we set L′ := µ∗(L). We prove the basic Chern class inequality

(33) L′ · (K2
X′ + c2(X ′)) ≥ 0.

In fact, since X has only finitely many non-canonical points, µ(∆) is finite. Therefore the
projection formula and our assumption d) yield

(34) L′ ·K2
X′ = µ∗L ·K2

X′ = m(KX +B) ·K2
X ≥ 0.

By Proposition 8.2 the sheaf ΩX′ is generically nef. Since

KX′ + ∆ + µ∗B ∼Q µ
∗(KX +B)
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is nef, the conditions of Theorem 7.2 are satisfied for F := (ΩX′)
∗∗ and P := ∆ + µ∗B.

Having in mind that L3 = m3(KX +B)3 = 0 and using (34), Theorem 7.2 yields

L′ · c2(X ′) ≥ 0,

hence the Chern class inequality (33) is established.

Step 3: A Riemann-Roch computation. – Since KX + B is nef and Q-linearly equivalent to
an effective divisor with support B, the equality (KX +B)3 = 0 implies that

(35) (KX +B)2 · T = 0

for every irreducible component T ⊂ B. Since KX is Q-linearly equivalent to an effective
divisor with support B, we conclude

(KX +B)2 ·KX = 0.

Since µ(∆) is finite the projection formula yields

KX′ · (L′)2 = KX · L2 −∆ · (µ∗L)2 = m2KX · (KX +B)2 = 0.

Thus Proposition 8.1 gives

χ(X ′, OX′(nL′)) = nL′ · K
2
X′ + c2(X ′)

12
+ χ(X ′, OX′)

for all n ∈ N. Thus (33) yields a constant k such that

χ(X ′, OX′(nL′)) ≥ k

for all n ∈ N. Since X has rational singularities, we conclude that

χ(X, OX(nL)) ≥ k

for all n ∈ N. Since H3(X,nL) = 0 for n� 0 and dimH2(X,nL) is constant for n� 0 by
Corollary 8.1 (note that the components of B are Cohen-Macaulay by [51, 5.25]), we arrive
at

(36) h0(X,nL) ≥ h1(X,nL) + c

with some constant c ∈ Z.

Step 4. A simple case. – Although not really necessary, it is instructive to give the simple
concluding argument in the case of strict inequality in (33). Then the preceding computation
yields that

h0(X,nL) ≥ h1(X,nL) +Dn

with some positive constant D. Thus

κ(KX +B) = κ(X,L) > 0,

so κ(X) ≥ 1 by assumption b).
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Step 5: Conclusion. – By (36) it suffices to show that h1(X,nL) grows at least linearly. We
consider the exact sequence

(37) 0→ OX(nL−B)→ OX(nL)→ OB(nL)→ 0.

By Corollary 8.1 we know that h2(X, OX(nL − B)) is constant for n � 0. Taking coho-
mology of the exact sequence (37), it remains to show that h1(B, OB(nL)) grows at least
linearly. To this extent, we will prove that χ(B, OB(nL)) is constant. Assuming this for the
time being, let us see how to conclude: by Lemma 8.1 we haveH2(B, OB(nL)) = 0 forn� 0.
Moreover by adjunction [49, 16.9.1] OB(KB) ' OB(KX +B), so by Proposition 5.2

h0(B, OB(nL)) = h0(B, OB(nm(KX +B))) = h0(B, OB(nmKB))

grows linearly. Thus h1(B, OB(nL)) grows linearly.

Proof of the claim. – By [52, Thm. 3.1] the Euler characteristic χ(B, OB(nL)) on the slc
surface B is computed by the usual Riemann-Roch formula (12)

χ(B, OB(nL)) = χ(B, OB) +
1

2
(nL|B) · (nL|B −KB).

Yet by (35) we have 0 = L2 · B = (L|B)2. Since OB(KB) ' OB(KX + B) is a multiple
of L|B , this also implies that L|B ·KB = 0.

8.C. Proof of Theorem 1.1

Proof. – By [24, Thm. 0.3] we have κ(X) ≥ 0. If ν(X) = 3, then KX is big, hence
X is Moishezon and therefore projective [57]. Thus the result follows from the base point
free theorem. If κ(X) = ν(X) ≤ 2 the statement follows from Kawamata’s theorem [39,
Thm. 1.1], [56, Thm. 5.5], [29, Sect. 4].

By Theorem 8.1 and Theorem 8.2 we are thus left to exclude the possibility that κ(X) = 1

and ν(X) = 2. This is done exactly as in [39, Thm. 7.3].

9. Applications

In this concluding section we apply the MMP to explore the structure of non-algebraic
compact Kähler threefolds X with Kodaira dimension κ(X) ≤ 0.

9.A. Uniruled threefolds

T 9.1. – LetX be a smooth non-algebraic compact Kähler threefold with κ(X)=−∞.
Then X is bimeromorphic to a normal compact Kähler threefold X ′ with at most terminal
singularities with the following properties. There exists a contraction

ϕ : X ′ → Y

of an extremal ray in NA(X ′) such that

(1) Y is a normal non-algebraic Kähler surface with only rational singularities.
(2) There is a finite set A ⊂ Y such that ϕ|X ′ \ ϕ−1(A)→ Y \A is a conic bundle.

(12) We refer to [52, Ch. 2.3] for the definition of the intersection product on the non-normal surface B.
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(3) ϕ realizes the MRC fibration ofX ′, and κ(Ŷ ) ∈ {0, 1} for any desingularization Ŷ → Y .

Proof. – By [38, Cor. 1.4] the manifold X is uniruled. We first claim that “the” base B,
chosen smooth, of the MRC-fibration X 99K B has dimension two. Indeed, if dimB = 1,
then the MRC fibration is realized by a morphism X → B and the general fibre F is
rationally connected, hence H2(F, OF ) = 0. This immediately implies H2(X, OX) = 0, so
X is projective by Kodaira’s criterion. The same of course applies when dimB = 0 which is
to say that X is rationally connected. Notice also that B is non-algebraic, otherwise X were
algebraic.

By [37, Thm. 1.1] we can run a MMP which terminates with a Mori fibre space ϕ : X ′ → Y .
Moreover the properties (1) and (2) are shown in [37, Thm. 1.1] and [37, Rem.4.2]. We have
seen above that the base of the MRC fibration has dimension two, so ϕ realizes this fibration
for X ′. In particular Y is not algebraic, so any desingularization Ŷ is not uniruled. Thus we
have κ(Ŷ ) ≥ 0. The non-algebraicity of Y also yields κ(Ŷ ) ≤ 1.

We describe the structure of X resp. X ′ more closely. If the algebraic dimension a(Y ) = 1,

we denote by f : Y → C the algebraic reduction.

C 9.1. – In the setting of Theorem 9.1, the algebraic dimensions (a(X), a(Y )) can
take the following values.

(1) (0, 0), and Y is bimeromorphic to a K3-surface or a torus.
(2) (1, 0), and X is bimeromorphic (up to an étale quotient possibly) of a product of a K3-

surface or a tori with an elliptic curve.
(3) (1, 1), and f ◦ ϕ is the algebraic reduction of X ′; the general fiber f ◦ ϕ being a ruled

surface P(V ) over a (possibly varying) elliptic curve E with V = OE ⊕ L and L ≡ 0 but
not torsion or V the non-split extension of two trivial line bundles.

(4) (2, 1), and X ′ ' Y × P1, possibly after a base change C̃ → C.

Proof. – Assertion (1), (2) and (3) are contained in [31, 14.1], [16, 9.1]. As to (4), since it
is shown in [16, 9.1] that a more precise structure property holds: after passing to X̃ and Ỹ
via a finite (ramified) cover C̃ → C, we obtain

X̃ ' Z ×C̃ Ỹ ,

where Z → C̃ is bimeromorphic to P1 × C̃, hence the claim.

E 9.1. – The cases (2) and (4) can obviously be realized by products, we give exam-
ples for the other cases.

a) Let Y be a K3 surface with Pic(Y ) = 0 and setX = P(TY ). ThenX does not contain any
divisor, hence a(X) = a(Y ) = 0.

b) Let Y be a two-dimensional torus of algebraic dimension 1, and denote by F the general
fibre of the algebraic reduction f : Y → C. Let L ∈ Pic(Y ) be a line bundle such
that L|F is numerically trivial but not torsion, and set X := P( OY ⊕ L). We claim that
a(X) = a(Y ) = 1: it suffices to prove that κ(X, G) ≤ 1 for any line bundle G on X. Now
any line bundle G on X is of the form

G = OP( OY ⊕ L)(k)⊗ π∗( F )
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with a line bundle F on Y. If κ( G) ≥ 1, then k ≥ 0 and

h0(X, G⊗m) = h0(Y, Skm( OY ⊕ L)⊗ F m) =

km∑
l=0

h0(Y, Ll ⊗ F m).

Since f is the algebraic reduction, the line bundle F has degree 0 on F . Since L|F is not

torsion there exists a unique l0 ∈ {0, . . . , km} such that ( Ll ⊗ F m)|F ' OF . Thus we have

h0(X, G⊗m) = h0(Y, Ll0 ⊗ F m).

We immediately obtain κ(X, G) ≤ 1.

9.B. Threefolds with trivial canonical bundles

We will study the Albanese map for certain threefolds with terminal singularities (cf. [9, 2.4.1]
for the existence of Albanese maps in the presence of rational singularities).

L 9.1. – Let X be a (non-algebraic) compact Kähler threefold with terminal singular-
ities. If κ(X) = 0, then the Albanese map α : X → A = Alb(X) is surjective with connected
fibres. In particular we have q(X) ≤ 3.

Proof. – Apply [64, Main Thm.I] to a desingularization X̂ → X.

T 9.2. – Let X be a non-algebraic compact Kähler threefold with terminal singular-
ities. If KX ≡ 0, there exists a Galois cover f : X̃ → X that is étale in codimension one such
that either X̃ is a torus or a product of an elliptic curve and a K3 surface.

Proof. – By Theorem 1.1, the divisor KX is semi-ample. Thus we can choose m ∈ N
minimal such that OX(mKX) = OX . Let X ′ → X be the induced cyclic cover, then
we have OX′(KX′) ' OX′ . In particular X ′ is Gorenstein with terminal singulari-
ties [51, Cor. 5.21]. Thus the Riemann-Roch Formula 8.1 gives χ(X ′, OX′) = 0. Since
h2(X ′, OX′) ≥ 1, the variety X ′ being non-algebraic with rational singularities only, we
conclude that h1(X ′, OX) ≥ 1.

Now consider the Albanese map α : X ′ → Alb(X ′) =: A. By Lemma 9.1 the morphism α

is surjective with connected fibres.

Case 1: q(X ′) = 3. – Then α is bimeromorphic. Since A is smooth, KX′ ≡ E with E an
effective divisor whose support equals the α-exceptional locus. Since KX′ ≡ 0 we conclude
that X ′ ' A.

Case 2: q(X ′) = 2. – By [64, Main Thm.I,2)] there exists a finite set S ⊂ A such that α is an
elliptic bundle overA\S. By [16, Prop. 6.7(i)] this implies that (after finite étale base change)
the fibration α is bimeromorphic to a compact Kähler manifoldX ′′ that is an elliptic bundle
X ′′ → A. Yet a Kähler manifold which is an elliptic bundle over a torus is an étale quotient
of a torus [8], so after finite étale cover we have q(X ′) = q(X ′′) = 3. We conclude by applying
Case 1.
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Case 3: q(X ′) = 1. – By [64, Main Thm.I,3)] there exists an analytic fibre bundle X∗ → A

that is bimeromorphic to X ′. Since the Kodaira dimension is an invariant of varieties with
terminal singularities, we have κ(X∗) = 0. In particular the general fibre F of X∗ → A

is the blow-up of a torus or a K3 surface (13). We next run a relative MMP over the elliptic
curve A. Since X∗ → A is a fibre bundle, every step of this MMP is the blow-up along an
étale multisection of the fibration, so the outcome is an analytic fibre bundle X̄ → A such
that the general fibre F is a torus or K3 surface. If F is covered by a torus, then X̄ is a torus
after finite étale cover, see e.g., [8]. If F is a K3 surface, the fibre bundle trivializes after finite
étale base change A′ → A ([30, Cor. 4.10], cf. [18, Lemma 2.15] for more details). Thus we
have X̄ ' A′×F . In conclusion we see that (up to finite étale cover) we have a bimeromorphic
map

µ : X ′ 99K X̄

with X̄ a torus or a product A′ × F . Since both KX′ and KX̄ are numerically trivial, we see
that µ is an isomorphism in codimension one [35], [45, 4.3]. Moreover µ decomposes into a
finite sequence of flops by [45, 4.9]. Note however that the last flop of this sequence yields a
rational curve in X̄ that is very rigid (in the sense of [38, Defn. 4.3]). Since X̄ is a torus or a
product A′ × F such a curve does not exist on X̄. Thus µ is an isomorphism.

Using the existence of minimal models for a smooth compact Kähler threefold, we deduce

C 9.2. – LetX be a non-algebraic compact Kähler threefold with κ(X) = 0.There
exists a finite cover which is bimeromorphic to a torus or a product of an elliptic curve and a
K3 surface.

It was known since some time that Theorem 1.2 is a consequence of the existence of
good minimal models [59, p.731]. We will now derive Theorem 1.2 from the more general
Theorem 9.2:

Proof of Theorem 1.2. – Since X is not uniruled, KX is pseudo-effective [15]. By [38,
Thm. 1.1] there exists a minimal model X 99K X ′. Since X has algebraic dimension zero,
we see that κ(X) = 0. Thus we have ν(X ′) = κ(X ′) = 0 by Theorem 1.1, i.e., the
canonical divisorKX′ is numerically trivial. SinceX (and henceX ′) is not covered by curves
Theorem 9.2 yields that X ′ ' T/G with T a torus and G a finite group. Since X (and
hence X ′) is not covered by positive-dimensional subvarieties, the torus T has no positive-
dimensional subvarieties. In particular T/G has no positive-dimensional subvarieties, so
X 99K T/G extends to a morphism.

BIBLIOGRAPHY

[1] V. A, Faisceaux amples sur les espaces analytiques, Trans. Amer. Math. Soc. 274
(1982), 89–100.

(13) If F were bimeromorphic to an Enriques or bielliptic surface we would have 0 = H2(X∗, OX∗ ) =

H2(X′, OX′ ), a contradiction.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#1


1022 F. CAMPANA, A. HÖRING AND T. PETERNELL

[2] V. A, Vanishing and nonvanishing theorems for numerically effective line
bundles on complex spaces, Ann. Mat. Pura Appl. 149 (1987), 153–164.

[3] V. A, V. V. T, On the blowing down problem in C-analytic geometry, J. reine
angew. Math. 350 (1984), 178–182.

[4] C. A, The cone of pseudo-effective divisors of log varieties after Batyrev, Math.
Z. 264 (2010), 179–193.

[5] S. B, Y.-T. S, Stable sheaves and Einstein-Hermitian metrics, in Geometry and
analysis on complex manifolds, World Sci. Publ., River Edge, NJ, 1994, 39–50.

[6] W. P. B, K. H, C. A. M. P, A. V  V, Compact complex
surfaces, Ergebn. Math. Grenzg. 4, Springer, 2004.

[7] T. B, F. C, T. E, S. K, T. P, S. R, T. S-
, L. W, A reduction map for nef line bundles, in Complex geometry
(Göttingen, 2000), Springer, Berlin, 2002, 27–36.

[8] A. B, Variétés kählériennes dont la première classe de Chern est nulle,
J. Differential Geom. 18 (1983), 755–782.

[9] M. C. B, A. J. S, The adjunction theory of complex projective
varieties, de Gruyter Expositions in Mathematics 16, Walter de Gruyter & Co.,
Berlin, 1995.

[10] C. B, P. C, C. D. H, J. MK, Existence of minimal models
for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405–468.

[11] S. B, Cônes positifs des variétés complexes compactes, thèse de doctorat,
Université de Grenoble, 2002.

[12] S. B, Divisorial Zariski decompositions on compact complex manifolds, Ann.
Sci. École Norm. Sup. 37 (2004), 45–76.

[13] S. B, J.-P. D, M. P , T. P, The pseudo-effective cone
of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Alge-
braic Geom. 22 (2013), 201–248.

[14] S. B, P. E, V. G (eds.), An introduction to the Kähler-Ricci
flow, Lecture Notes in Math. 2086, Springer, Cham, 2013.

[15] M. B, A positivity property for foliations on compact Kähler manifolds,
Internat. J. Math. 17 (2006), 35–43.

[16] F. C, T. P, Complex threefolds with non-trivial holomorphic
2-forms, J. Algebraic Geom. 9 (2000), 223–264.

[17] J. C, A remark on compact Kähler manifolds with nef anticanonical bundles and its
applications, preprint arXiv:1305.4397.

[18] B. C, A. H, Compact Kähler manifolds with compactifiable universal
cover, with an appendix by Frédéric Campana, Bull. Soc. Math. France 141 (2013),
355–375.

[19] T. C. C, V. T, Kähler currents and null loci, Invent. math. 202 (2015),
1167–1198.

[20] A. C (ed.), Flips for 3-folds and 4-folds, Oxford Lecture Series in Mathematics and
its Applications 35, Oxford Univ. Press, Oxford, 2007.

4 e SÉRIE – TOME 49 – 2016 – No 4

http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#2
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#3
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#4
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#5
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#6
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#7
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#8
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#9
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#10
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#11
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#12
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#13
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#14
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#15
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#16
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#17
http://arxiv.org/abs/1305.4397
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#18
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#19
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#20


ABUNDANCE FOR KÄHLER THREEFOLDS 1023

[21] O. D, Higher-dimensional algebraic geometry, Universitext, Springer, New
York, 2001.

[22] J.-P. D, C. D. H, M. P , Extension theorems, non-vanishing and the
existence of good minimal models, Acta Math. 210 (2013), 203–259.

[23] J.-P. D, M. P , Numerical characterization of the Kähler cone of a
compact Kähler manifold, Ann. of Math. 159 (2004), 1247–1274.

[24] J.-P. D, T. P, A Kawamata-Viehweg vanishing theorem on compact
Kähler manifolds, J. Differential Geom. 63 (2003), 231–277.

[25] I. E, Stability and negativity for tangent sheaves of minimal Kähler spaces, in
Geometry and analysis on manifolds (Katata/Kyoto, 1987), Lecture Notes in Math.
1339, Springer, Berlin, 1988, 118–126.

[26] A. F, On the structure of compact complex manifolds in C , in Algebraic varieties
and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math. 1, North-Holland,
Amsterdam, 1983, 231–302.

[27] O. F, Special termination and reduction to pl flips, in Flips for 3-folds and 4-folds,
Oxford Lecture Ser. Math. Appl. 35, Oxford Univ. Press, Oxford, 2007, 63–75.

[28] O. F, Non-vanishing theorem for log canonical pairs, J. Algebraic Geom. 20
(2011), 771–783.

[29] O. F, On Kawamata’s theorem, in Classification of algebraic varieties, EMS Ser.
Congr. Rep., Eur. Math. Soc., Zürich, 2011, 305–315.

[30] T. F, On Kähler fiber spaces over curves, J. Math. Soc. Japan 30 (1978), 779–794.

[31] T. F, On polarized manifolds whose adjoint bundles are not semipositive, in
Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math. 10, North-Holland,
Amsterdam, 1987, 167–178.

[32] W. F, Intersection theory, second ed., Ergebn. Math. Grenzg. 2, Springer, Berlin,
1998.

[33] H. G, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann.
146 (1962), 331–368.

[34] J. G, Chern classes in Deligne cohomology for coherent analytic sheaves, Math.
Ann. 347 (2010), 249–284.

[35] M. H, On the birational automorphism groups of algebraic varieties, Compo-
sitio Math. 63 (1987), 123–142.

[36] R. H, Algebraic geometry, Graduate Texts in Math. 52, Springer, New
York-Heidelberg, 1977.

[37] A. H, T. P, Mori fibre spaces for Kähler threefolds, J. Math. Sci. Univ.
Tokyo 22 (2015), 219–246.

[38] A. H, T. P, Minimal models for Kähler threefolds, Invent. math. 203
(2016), 217–264.

[39] Y. K, Pluricanonical systems on minimal algebraic varieties, Invent. math. 79
(1985), 567–588.

[40] Y. K, Crepant blowing-up of 3-dimensional canonical singularities and its
application to degenerations of surfaces, Ann. of Math. 127 (1988), 93–163.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#21
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#22
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#23
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#24
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#25
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#26
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#27
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#28
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#29
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#30
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#31
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#32
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#33
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#34
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#35
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#36
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#37
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#38
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#39
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#40


1024 F. CAMPANA, A. HÖRING AND T. PETERNELL

[41] Y. K, On the length of an extremal rational curve, Invent. math. 105 (1991),
609–611.

[42] Y. K, Abundance theorem for minimal threefolds, Invent. math. 108 (1992),
229–246.

[43] Y. K, Termination of log flips for algebraic 3-folds, Internat. J. Math. 3 (1992),
653–659.

[44] S. K, Differential geometry of complex vector bundles, Publications of the
Mathematical Society of Japan 15, Princeton Univ. Press, Princeton, NJ; Iwanami
Shoten, Tokyo, 1987.

[45] J. K, Flops, Nagoya Math. J. 113 (1989), 15–36.

[46] J. K, Singularities of pairs, in Algebraic geometry Santa Cruz 1995, Proc.
Sympos. Pure Math. 62, Amer. Math. Soc., Providence, RI, 1997, 221–287.

[47] J. K, Kodaira’s canonical bundle formula and adjunction, in Flips for 3-folds and
4-folds, Oxford Lecture Ser. Math. Appl. 35, Oxford Univ. Press, 2007, 134–162.

[48] J. K, Singularities of the minimal model program, Cambridge Tracts in Mathe-
matics 200, Cambridge Univ. Press, Cambridge, 2013.

[49] J. K et al., Flips and abundance for algebraic threefolds, Astérisque 211, Soc.
Math. France, 1992.

[50] J. K, S. J. K, Log canonical singularities are Du Bois, J. Amer. Math. Soc.
23 (2010), 791–813.

[51] J. K, S. M, Birational geometry of algebraic varieties, Cambridge Tracts in
Mathematics 134, Cambridge Univ. Press, Cambridge, 1998.

[52] W. L, S. R, Geography of Gorenstein stable log surfaces, Trans. Amer.
Math. Soc. 368 (2016), 2563–2588.

[53] Y. M, The Chern classes and Kodaira dimension of a minimal variety, in
Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math. 10, North-Holland,
Amsterdam, 1987, 449–476.

[54] Y. M, Abundance conjecture for 3-folds: case ν = 1, Compositio Math. 68
(1988), 203–220.

[55] S. M, Flip theorem and the existence of minimal models for 3-folds, J. Amer. Math.
Soc. 1 (1988), 117–253.

[56] N. N, The lower semicontinuity of the plurigenera of complex varieties,
in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math. 10, North-Holland,
Amsterdam, 1987, 551–590.

[57] Y. N, Projectivity criterion of Moishezon spaces and density of projective
symplectic varieties, Internat. J. Math. 13 (2002), 125–135.

[58] M. P , Sur l’effectivité numérique des images inverses de fibrés en droites, Math.
Ann. 310 (1998), 411–421.

[59] T. P, Towards a Mori theory on compact Kähler threefolds. II, Math. Ann.
311 (1998), 729–764.

[60] T. P, Towards a Mori theory on compact Kähler threefolds. III, Bull. Soc.
Math. France 129 (2001), 339–356.

4 e SÉRIE – TOME 49 – 2016 – No 4

http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#41
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#42
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#43
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#44
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#45
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#46
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#47
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#48
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#49
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#50
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#51
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#52
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#53
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#54
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#55
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#56
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#57
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#58
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#59
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#60


ABUNDANCE FOR KÄHLER THREEFOLDS 1025

[61] F. S, Weil divisors on normal surfaces, Duke Math. J. 51 (1984), 877–887.
[62] V. V. S, Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat.

56 (1992), 105–203; English translation: Russian Acad. Sci. Izv. Math. 40 (1993), 95–
202.

[63] D. T, Y. L. L. T, Green’s theory of Chern classes and the Riemann-
Roch formula, in The Lefschetz centennial conference, Part I (Mexico City, 1984),
Contemp. Math. 58, Amer. Math. Soc., Providence, RI, 1986, 261–275.

[64] K. U, On compact analytic threefolds with nontrivial Albanese tori, Math. Ann.
278 (1987), 41–70.

[65] J. V, Kähler spaces and proper open morphisms, Math. Ann. 283 (1989), 13–
52.

[66] C. V, Théorie de Hodge et géométrie algébrique complexe, Cours spécialisés 10,
Soc. Math. France, Paris, 2002.

(Manuscrit reçu le 20 avril 2015 ;
accepté, après révision, le 22 septembre 2015.)

Frédéric C

Institut Élie Cartan
Université Henri Poincaré

BP 239
54506 Vandœuvre-lès-Nancy Cedex, France

et
Institut Universitaire de France

E-mail: frederic.campana@univ-lorraine.fr

Andreas H

Laboratoire de Mathématiques J.-A. Dieudonné
UMR 7351 CNRS

Université de Nice Sophia-Antipolis
06108 Nice Cedex 02, France
E-mail: hoering@unice.fr

Thomas P

Mathematisches Institut
Universität Bayreuth

95440 Bayreuth, Germany
E-mail: thomas.peternell@uni-bayreuth.de

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#61
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#62
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#63
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#64
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#65
http://smf.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_4.html#66



	1. Introduction
	1.A. Main results
	1.B. Outline of the paper

	2. Notation and basic facts
	2.A. Bimeromorphic models
	2.B. Adjunction

	3. Singular Kähler spaces
	3.A. Bott-Chern cohomology
	3.B. Kähler criteria

	4. MMP for pairs
	4.A. Cone theorem
	4.B. The contraction theorem
	4.C. Running the MMP

	5. Semi-log canonical Kähler surfaces
	6. Abundance: reduction steps
	7. Positivity of cotangent sheaves
	8. Abundance
	8.A. The case =1
	8.B. The case = 2
	8.C. Proof of Theorem 1.1

	9. Applications
	9.A. Uniruled threefolds
	9.B. Threefolds with trivial canonical bundles

	Bibliography

