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UNBOUNDED POTENTIAL RECOVERY
IN THE PLANE

 K ASTALA, D FARACO  K M. ROGERS

Dedicated to the memory of Tuulikki

A. – We reconstruct compactly supported potentials with only half a derivative in L2

from the scattering amplitude at a fixed energy. For this we draw a connection between the recently
introduced method of Bukhgeim, which uniquely determined the potential from the Dirichlet-to-
Neumann map, and a question of Carleson regarding the convergence to initial data of solutions to
time-dependent Schrödinger equations. We also provide examples of compactly supported potentials,
with s derivatives in L2 for any s < 1/2, which cannot be recovered by these means. Thus the recovery
method has a different threshold in terms of regularity than the corresponding uniqueness result.

R. – Nous reconstruisons des potentiels à support compact avec une demi-derivée dans L2

à partir de l’amplitude de diffusion à énergie fixe. Pour cela, nous établissons un lien entre une mé-
thode récemment introduite par Bukhgeim pour déterminer de façon unique le potentiel à partir de
l’application Dirichlet-to-Neumann, et une question de Carleson qui concerne la convergence vers la
donnée initiale des solutions de l’équation de Schrödinger dépendante du temps. Nous fournissons éga-
lement des exemples de potentiels à support compact, avec s dérivées dans L2 pour tout s < 1/2, qui
ne peuvent pas être reconstruits par cette méthode. Ainsi, la méthode de reconstruction a un seuil en
termes de la régularité qui diffère du résultat d’unicité.

1. Introduction

We consider the Schrödinger equation ∆u = V u on a bounded domain Ω in the plane.
For each solution u, we are given the value of both u and∇u ·n on the boundary ∂Ω, where
n is the exterior unit normal on ∂Ω. The goal is then to recover the potential V from this
information.

Supported by the Academy of Finland grant SA-12719831, ERC grants 277778 and 307179, and MINECO
grants MTM2011-28198, MTM2013-41780-P and SEV-2015-0554 (Spain).
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1028 K. ASTALA, D. FARACO AND K. M. ROGERS

We suppose throughout that V ∈ L2 is supported on Ω and that 0 is not a Dirichlet
eigenvalue for the Hamiltonian −∆ + V . Then for each f ∈ H1/2(∂Ω), there is a unique
solution u ∈ H1(Ω) to the Dirichlet problem

(1)

{
∆u = V u

u
∣∣
∂Ω

= f,

and the Dirichlet-to-Neumann (DN) map ΛV can be formally defined by

ΛV : f 7→ ∇u · n|∂Ω.

Then a restatement of our goal is to recover V from knowledge of ΛV .

We come to this problem via a question of Calderón regarding impedance tomo-
graphy [14], where f is the electric potential and ∇u · n is the boundary current, however
the DN map ΛV−κ2 and the scattering amplitude at energy κ2 are uniquely determined by
each other, and indeed the DN map can be recovered from the scattering amplitude (see the
appendix for explicit formulae). Thus we are also addressing the question of whether it is
possible to recover a potential from the scattering data at a fixed positive energy.

In higher dimensions, Sylvester and Uhlmann proved that smooth potentials are uniquely
determined by the DN map [56] (see [43, 44, 16] for nonsmooth potentials and [11, 46,
29] for the conductivity problem). The uniqueness result was extended to a reconstruction
procedure by Nachman [38, 39]. The planar case is quite different mathematically as it is
not overdetermined. Here the first uniqueness and reconstruction algorithm was proved by
Nachman [40] via ∂-methods for potentials of conductivity type (see also [12] for uniqueness
with less regularity). Sun and Uhlmann [52, 54] proved uniqueness for potentials satisfying
nearness conditions to each other. Isakov and Nachman [31] then reconstructed the real
valued Lp-potentials, p > 1, in the case that their eigenvalues are strictly positive. The
∂-method in combination with the theory of quasiconformal maps gave the uniqueness
result for the conductivity equation with measurable coefficients [3]. The problem for the
general Schrödinger equation was solved only in 2008 by Bukhgeim [13] for C1-potentials.
Bukhgeim’s result has since been improved and extended to treat related inverse problems
(see for example [8, 9, 26, 27, 28, 45, 30]).

The aim of this article is to emphasize a surprising connection between the pioneering
work of Bukhgeim [13] and Carleson’s question [15] regarding the convergence to initial data
of solutions to time-dependent Schrödinger equations. Elaborating on this new point of view
we obtain a reconstruction theorem for general planar potentials with only half a derivative
in L2, which is sharp with respect to the regularity. The precise statements are given in the
forthcoming Corollary 1.3 and Theorem 1.4.

To describe the results in more detail, we recall that the starting point in [13] was to
consider solutions to ∆u = V u of the form u = eiψ

(
1 + w

)
, where from now on

ψ(z) ≡ ψk,x(z) = k
8 (z − x)2, z ∈ C, x ∈ Ω.

Solutions of this type have a long history (see for example [22, 56, 34, 21]), and in this
form they were considered first by Bukhgeim. We will recover the potential by measuring
a countable number of times on the boundary, so we take k ∈ N. We will require the
homogeneous Sobolev spaces with norm given by ‖f‖Ḣs = ‖(−∆)s/2f‖L2 , where (−∆)s/2

4 e SÉRIE – TOME 49 – 2016 – No 5



UNBOUNDED POTENTIAL RECOVERY IN THE PLANE 1029

is defined via the Fourier transform as usual. In Section 3.2, we prove that if the potential V is
contained in Ḣs with 0 < s < 1, and k is sufficiently large, then we can take w ≡ wk,x ∈ Ḣs

with a bound for the norms which is decreasing to zero in k. We write uk,x = eiψ
(
1 +w

)
for

these w ∈ Ḣs.

The definition of the DN map, which maps into the dual of H1/2(∂Ω) (see the appendix),
yields the basic integral formula in inverse problems; Alessandrini’s identity. Indeed, if u, v ∈
H1(Ω) satisfy ∆u = V u and ∆v = 0, then the formula states that〈

(ΛV − Λ0)
[
u|∂Ω

]
, v|∂Ω

〉
=

∫
Ω

V u v.

Taking u = uk,x, which is also in H1(Ω), and v = eiψ this yields

(2)
〈

(ΛV − Λ0)[uk,x], eiψ
〉

=

∫
Ω

ei(ψ+ψ)V (1 + w) ,

and so the integral over Ω can be obtained from information on the boundary.

The bulk of the article is concerned with recovering the potential from the integral on
the right-hand side of (2). However, in order to calculate the value of the integral, without
knowing the value of the potential V inside Ω, we need to calculate the value of the left-hand
side of (2). That is to say, we must determine the values of uk,x on the boundary from the
DN map. In the case of linear phase, this was achieved by Nachman [40] for Lp-poten-
tials V , with p > 1, and Lipschitz boundary (at least for potentials of conductivity type).
For C1-potentials, with C2-boundary, the result was extended by Novikov and Santacesaria
to quadratic phases [45]. Here we show that for quadratic phases almost no regularity is
needed. We consider potentials in the inhomogeneous L2-Sobolev space Hs, defined as
before with (−∆)s/2 replaced by (I−∆)s/2. Our starting point is similar to [40] but we give
a shorter argument, avoiding single layer potentials.

T 1.1. – Let V ∈ Hs with s > 0 and suppose that Ω is Lipschitz. Then, for
sufficiently large k, we can identify compact operators Γk,x : H1/2(∂Ω) → H1/2(∂Ω),
depending on ΛV − Λ0, such that

uk,x|∂Ω = (I− Γk,x)−1
[
eiψ|∂Ω

]
.

For C1-potentials, Bukhgeim [13] proved that the right-hand side of (2), multiplied
by (4π)−1k, converges to V (x) for all x ∈ Ω, when k tends to infinity. In Section 4, we
obtain this convergence for potentials inHs with s > 1. For discontinuous potentials we are
no longer able to recover at each point. Instead we bound the fractal dimension of the sets
where the recovery fails. As Sobolev spaces are only defined modulo sets of zero Lebesgue
measure, we consider first the potential spaces Ls,2 = (−∆)−s/2L2(R2), and bound the
Hausdorff dimension of the points where the recovery fails.

T 1.2. – Let V ∈ Ls,2 with 1/2 6 s < 1. Then

dimH

{
x ∈ Ω : k

4π

〈
(ΛV − Λ0)[uk,x], eiψ

〉
6→ V (x) as k →∞

}
6 2− s.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1030 K. ASTALA, D. FARACO AND K. M. ROGERS

As the members of Hs coincide almost everywhere with members of Ls,2, we see that
rough and unbounded potentials can be recovered almost everywhere from information on
the boundary. Note that these results are stable in the sense that k ∈ N can be replaced by
any sequence {nk}k∈N such that nk tends to infinity as k tends to infinity.

C 1.3. – Let V ∈ H1/2. Then

lim
k→∞

k
4π

〈
(ΛV − Λ0)[uk,x], eiψ

〉
= V (x), a.e. x ∈ Ω.

In Section 5, we will prove that this is sharp in the sense of the following theorem. Note
that even though there is divergence on a set of full Hausdorff dimension when s < 1/2, the
dimension of the divergence set is bounded above by 3/2 when s > 1/2.

T 1.4. – Let s < 1/2. Then there exists a potential V ∈ Hs, supported in Ω, for
which ∣∣∣{x ∈ Ω : k

4π

〈
(ΛV − Λ0)[uk,x], eiψ

〉
6→ V (x) as k →∞

}∣∣∣ 6= 0.

Blåsten [8] proved that potentials in Hs with s > 0 are uniquely determined by the DN

map (see also [9] for uniqueness with Lp-potentials, p > 2). It is a curious phenomenon that,
within the Bukhgeim approach, uniqueness and reconstruction have different smoothness
barriers.

The DN map ΛV−κ2 can be recovered from the scattering amplitude at a fixed energy
κ2 > 0 (see the appendix), from which we are able to recover the potential V − κ2χΩ rather
than V . We are free to choose the domain Ω. Taking Ω to be a square, we obtain the following
recovery formula. Here Uk,x are Bukhgeim solutions which solve ∆u = (V − κ2)u in Ω.

T 1.5. – Let V ∈ H1/2 be supported in a square Ω. Then

lim
k→∞

k
4π

〈
(ΛV−κ2 − Λ0)[Uk,x], eiψ

〉
+ κ2 = V (x), a.e. x ∈ Ω.

Interpreting the problem acoustically, it is unsurprising that we are unable to recover
potentials in Hs with s < 1/2. Taking

V (x) = κ2(1− c−2(x)),

where c(x) denotes the speed of sound at x, the scattered solutions u also satisfy c2∆u+ κ2u = 0.
Now there are potentials in Hs, with s < 1/2, which are singular on closed curves (see for
example [58]). Thus the speed of sound is zero on the curve and so a continuous solution u
would be zero. That is to say, the continuous incident waves cannot pass through the curve
and we should not expect to be able to detect modifications of the interior of the potential
which is cloaked in some sense (see [24] for more sophisticated types of cloaking). From this
point of view, the uniqueness results [8, 9] reflect the tunneling phenomenon in quantum
mechanics.

4 e SÉRIE – TOME 49 – 2016 – No 5



UNBOUNDED POTENTIAL RECOVERY IN THE PLANE 1031

2. The Bukhgeim solutions

Writing ∂z = 1
2 (∂x − i∂y) and ∂z = 1

2 (∂x + i∂y), we consider the complex analytic
interpretation of the Schrödinger equation 4∂z∂zu = V u. When looking for solutions of
the form u = eiψ

(
1 + w

)
, the equation is equivalent to the system

2∂zw = e−i(ψ+ψ)v, 2∂zv = ei(ψ+ψ)V (1 + w),

which is solved in Ω whenever

w = 1
4∂
−1
z

[
e−i(ψ+ψ)χQ ∂

−1
z

[
ei(ψ+ψ) V (1 + w)

]]
.

Here, we takeQ to be a fixed, auxiliary, axis-parallel square which properly contains Ω. Thus,
defining the operator SkV ≡ Sk,xV by

SkV [F ] = 1
4∂
−1
z

[
e−i(ψ+ψ)χQ ∂

−1
z

[
ei(ψ+ψ)χQ V F

]]
,

we see that as soon as ‖SkV ‖Ḣs→Ḣs < 1, we can treat (I−SkV )−1 by Neumann series to deduce
that it is a bounded operator on Ḣs. This yields a solution uk,x ≡ eiψ

(
1 + w

)
where

(3) w ≡ wk,x = (I− SkV )−1SkV [1] ∈ Ḣs.

In what remains of this section, we prove that SkV is contractive for sufficiently large k.
This property will be crucial in the proof of Theorem 1.1 as well as in Section 4. We write
SkV [f ] = 1

4Sk1 [V f ], where
Sk1 = ∂−1

z ◦M−k ◦ ∂−1
z ◦Mk

and the multiplier operators M±k are defined by M±k[F ] = e±i(ψ+ψ)χQ F. The key ingre-
dient in the proof of the following estimate, is the classical lemma of van der Corput [18].

L 2.1. – Let 0 6 s1, s2 < 1. Then

‖M±k[F ](·, x)‖Ḣ−s2 6 Ck
−min{s1,s2}‖F (·, x)‖Ḣs1 , x ∈ Ω, k > 1.

Proof. – By the Hölder and Hardy-Littlewood-Sobolev inequalities, we have

(4) ‖M±k[F ]‖L2 6 C‖F‖Ḣs1 ,

and

(5) ‖M±k[F ]‖Ḣ−s2 6 C‖F‖L2 ,

with 0 6 s1, s2 < 1. So by complex interpolation, it will suffice to prove that

(6) ‖M±k[F ]‖Ḣ−s 6 Ck
−s‖F‖Ḣs .

Indeed, if s2 < s1 we interpolate with (4), taking s = s1, and if s1 < s2 we interpolate
with (5), taking s = s2. Now by real interpolation with the trivialL2 bound, (6) would follow
from

(7) ‖M±kF‖Ḃ−1
2,∞
6 Ck−1 ‖F‖Ḃ1

2,1

(see Theorem 6.4.5 in [6]), where the Besov norms are defined as usual by

‖f‖Ḃ−1
2,∞

= sup
j∈Z

2−j‖Pjf‖L2 and ‖f‖Ḃ1
2,1

=
∑
j∈Z

2j‖Pjf‖L2 .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1032 K. ASTALA, D. FARACO AND K. M. ROGERS

Here, P̂jf = ϑ(2−j | · |)f̂ with ϑ satisfying suppϑ ⊂ (1/2, 2) and∑
j∈Z

ϑ(2−j ·) = 1.

As ‖F‖Ḃ−1
2,∞
6 C‖F̂‖L∞ and ‖F̂ ‖L1 6 C‖F‖Ḃ1

2,1
, the estimate (7) would in turn follow from

(8) ‖M̂±kF‖L∞ 6 Ck−1 ‖F̂‖L1 .

Now, by the Fourier inversion formula and Fubini’s theorem,

|M̂±kF (ξ)| = 1

(2π)2

∣∣∣ ∫
Q

e±i(ψ(z)+ψ(z))

∫
F̂ (ω) eiz·ωdω e−iz·ξdz

∣∣∣
6
∫ ∣∣∣ ∫

Q

e±ik
(z1−x1)2−(z2−x2)2

4 eiz·(ω−ξ)dz
∣∣∣|F̂ (ω)| dω

so that (8) follows by two applications of van der Corput’s lemma [18] (factorising the integral
into the product of two integrals).

In the following lemma, we optimize the decay in k, which will be important in Section 4.

L 2.2. – Let 0 < s < 1. Then

‖Sk1 [F ](·, x)‖Ḣs 6 Ck
−1‖F (·, x)‖Ḣs , x ∈ Ω, k > 1.

Proof. – By two applications of Lemma 2.1,

‖Sk1‖Ḣs→Ḣs 6 ‖M
−k ◦ ∂−1

z ◦Mk‖Ḣs→Ḣs−1 6 Cks−1‖∂−1
z ◦Mk‖Ḣs→Ḣ1−s

6 Cks−1‖Mk‖Ḣs→Ḣ−s
6 Cks−1−s = Ck−1,

and we are done.

In the following lemma, we use Lemma 2.1 only once, and gain some integrability
using the Hardy-Littlewood-Sobolev theorem. By taking k sufficiently large, we obtain our
contraction and thus our Bukhgeim solution u = uk,x as described above.

L 2.3. – Let 0 < s < 1. Then

‖SkV [F ](·, x)‖Ḣs 6 Ck
−min{2s,1−s}‖V ‖Ḣs‖F (·, x)‖Ḣs , x ∈ Ω, k > 1.

Proof. – By the Cauchy-Schwarz and Hardy-Littlewood-Sobolev inequalities,

‖V F‖Lq 6 ‖V ‖L2q‖F‖L2q 6 C‖V ‖Ḣs‖F‖Ḣs ,

where q = 1
1−s . Thus, as SkV [F ] = Sk1 [V F ], it will suffice to prove that

‖Sk1‖Lq→Ḣs 6 Ck
−min{2s,1−s}.

When 0 < s < 1/3, by Lemma 2.1, we have

‖Sk1‖Lq→Ḣs 6 ‖M
−k ◦ ∂−1

z ◦Mk‖Lq→Ḣs−1 6 Ck−2s‖∂−1
z ◦Mk‖Lq→Ḣ2s

6 Ck−2s‖Mk‖Lq→Ḣ2s−1

6 Ck−2s‖Mk‖Lq→Lq .

4 e SÉRIE – TOME 49 – 2016 – No 5



UNBOUNDED POTENTIAL RECOVERY IN THE PLANE 1033

When s > 1/3, we also use Hölder’s inequality at the end;

‖Sk1‖Lq→Ḣs 6 ‖M
−k ◦ ∂−1

z ◦Mk‖Lq→Ḣs−1 6 Ck1−s‖∂−1
z ◦Mk‖Lq→Ḣ1−s

6 Ck1−s‖Mk‖Lq→Ḣ−s
6 Ck1−s‖Mk‖Lq→Lq∗ ,

where q∗ = 2
s+1 , and so we are done.

R 2.4. – Note that van der Corput’s estimate is independent of the size of Q and
so, when s > 1/3, the potential need not be compactly supported for the results of this section
to hold (when s < 1/3 we used the compact support in a less obviously removable way).

3. Proof of Theorem 1.1

In this section we show that the boundary values of our Bukhgeim solution uk,x can be
determined from knowledge of ΛV . The argument is inspired by [40, Theorem 5] but we
replace the Faddeev green functionGk by its analogue in terms of the operator SkV and avoid
the use of single layer potentials.

Indeed, considering the kernel representation of Sk1 , we can write SkV [F ] in the form

SkV [F ](z) =

∫
Ω

gψ(z, η)V (η)F (η) dη,

where gψ, the kernel of Sk1 , is given by

gψ(z, η) = χQ(η)
ei
(
ψ(η)+ψ(η)

)
4π2

∫
Q

1

(ω − η)(z − ω)
e−i
(
ψ(ω)+ψ(ω)

)
dω.

In order to work directly with exponentially growing solutions we conjugate gψ with the
exponential factors, so that

(9)
∫

Ω

Gψ(z, η)V (η)F (η) dη = eiψ(z)SkV [e−iψF ](z),

whereGψ(z, η) = eiψ(z)gψ(z, η)e−iψ(η). Notice also that when z ∈ Q\Ω and η ∈ Ω, we have
that

∆ηGψ(z, η) = 0.

Thus, if we take (9) with F = PV (f), where PV (f) solves ∆u = V u with u|∂Ω = f , using
Alessandrini’s identity we obtain that, for each z ∈ Q \ Ω,

(10)
〈

(ΛV − Λ0)[f ], Gψ(z, ·)|∂Ω

〉
= eiψ(z)SkV [e−iψPV (f)](z).

In particular the right-hand side belongs toH1(Q\Ω) and hence we can define the operator
Γψ : H1/2 → H1/2 by

Γψ[f ] = Tr ◦
〈

(ΛV − Λ0)[f ], Gψ|∂Ω

〉
,

where Tr : H1(Q \ Ω) → H1/2(∂Ω) is the trace operator. Now, by the definitions of uk,x
and w, we also deduce from (9) and (3) that

(11)
∫

Ω

Gψ(·, η)V (η)uk,x(η) dη = eiψSkV [1 + w] = eiψw = uk,x − eiψ.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1034 K. ASTALA, D. FARACO AND K. M. ROGERS

Combining (9), (10), and (11) we obtain the integral identity

(I− Γψ)[uk,x|∂Ω] = eiψ|∂Ω.

Thus, we can determine uk,x on the boundary if we can invert (I− Γψ). By the Fredholm
alternative it will suffice to show that Γψ is compact and that (I − Γψ) has a trivial kernel
on H1/2(∂Ω).

T 3.1. – Let V ∈ Ḣs with 0 < s < 1 and suppose that k is sufficiently large. Then

(i) Γψ is compact
(ii) Γψ[f ] = f ⇒ f = 0.

Proof of (i). – We have that

Γψ[f ] = Tr
[
eiψSkV [e−iψPV (f)]

]
.

As the set of compact operators is a left and right ideal, we consider the boundedness
properties of each component of the composition. Firstly, PV : H1/2(∂Ω) → H1(Ω) is
bounded. Secondly,H1(Ω) ↪→ Lp(Ω) compactly for all 2 < p <∞. Now taking p sufficiently
large and 1

2 = 1
q + 1

p , by the boundedness of the Cauchy transform followed by the Hardy-
Littlewood-Sobolev inequality,

‖SkV [e−iψG]‖H1(Q\Ω) 6 C‖V G‖L2(Ω) 6 C‖V ‖Lq(Ω)‖G‖Lp(Ω)

6 C‖V ‖Ḣs‖G‖Lp(Ω).

Finally, Tr : H1(Q \ Ω)→ H1/2(∂Ω) is bounded. Since the embedding H1(Ω) ↪→ Lp(Ω) is
compact, it follows that Γψ is compact.

Proof of (ii). Letting ρ = SkV [e−iψPV (f)], we have that

∂z[e
iψρ] = 1

4e
−iψχQ∂

−1
z [eiψV PV (f)],

so that
4∂z∂z[e

iψρ] = V PV (f) on Ω.

This can be rewritten as ∆[eiψρ − PV (f)] = 0 on Ω. Now by hypothesis Γψ[f ] = f , so that
by (10) we have eiψρ = f on ∂Ω. Combining the two, we see that

eiψρ = PV (f) on Ω.

From the definition of ρ we see that ρ = SkV [ρ], and as soon as SkV is strictly contractive, that
ρ = 0. This of course follows from Lemma 2.3 for large enough k. Thus, f = eiψρ|∂Ω = 0,
so that I− Γψ is injective as desired.

R 3.2. – We need not suppose that the potential is compactly supported here as
long as we suppose that χΩV ∈ Hε and then the Bukhgeim solutions which we identify are
associated to this potential instead. For 0 < ε < 1/2 and Ω Lipschitz, we have χΩV ∈ Hε

as long as V ∈ Hs with s > 1/2 + ε. To see this, note that by the fractional Leibniz rule (see,
for example, [33]),

‖χΩV ‖Hε 6 ‖χΩ‖4‖V ‖W ε,4 + ‖χΩ‖W ε,p‖V ‖Lq

with p < 4
1+2ε and 1

p + 1
q = 1

2 . Then the remark follows by the Hardy-Littlewood-Sobolev
inequality, combined with the fact that χΩ ∈ Hs for all s < 1/2 (see for example [23]).
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4. Potential recovery

In order to recover the potential at x ∈ Ω, it remains to show that the right-hand side of
Alessandrini’s identity (2) converges to V (x). That is to say Tk1+wV (x) converges to V (x) as
k tends to infinity, where

Tk1+w[F ](x) =
k

4π

∫
R2

ei(ψ(z)+ψ(z)) F (z)
(
1 + w(z)

)
dz.

First we show that TkwV can be considered to be a remainder term.

T 4.1. – Let V ∈ Ḣs with 0 < s < 1. Then

lim
k→∞

Tkw[V ](x) = 0, x ∈ Ω.

Moreover, if k > (1 + c‖V ‖Ḣs)
max{ 1

2s ,
1

1−s}, then

sup
x∈Ω
|Tkw[V ](x)| 6 Ck−s‖V ‖2

Ḣs
.

Proof. – By Lemma 2.1,

|Tkw[V ](x)| 6 Ck‖Mk[V ]‖Ḣ−s‖w‖Ḣs
6 Ck1−s‖V ‖Ḣs‖(I− SkV )−1SkV [1]‖Ḣs .

By Lemma 2.3, we can treat (I − SkV )−1 by Neumann series to deduce that it is a bounded
operator on Ḣs when k > 1 and Ck−min{2s,1−s}‖V ‖Ḣs 6

1
2 . Then

|Tkw[V ](x)| 6 Ck1−s‖V ‖Ḣs‖S
k
1 [V ]‖Ḣs

6 Ck−s‖V ‖2
Ḣs
,

by an application of Lemma 2.2, which is the desired estimate.

Noting that ei(ψ(z)+ψ(z)) = exp
(
ik (z1−x1)2−(z2−x2)2

4

)
, it remains to prove

(12) lim
k→∞

Tk1 [V ](x) = V (x),

where Tk1 is defined by

Tk1 [F ](x) =
k

4π

∫
exp

(
ik (z1−x1)2−(z2−x2)2

4

)
F (z) dz.

Now when F is a Schwartz function, this is equal to ei
1
k�F (x), where

ei
1
k�[F ](x) =

1

(2π)2

∫
R2

eix·ξ e−i
1
k (ξ21−ξ

2
2) F̂ (ξ) dξ.

This follows easily, making use of the distributional formula

k

4π

∫
eik

z21−z
2
2

4 φ(z) dz =

∫
e−i

1
k (ξ21−ξ

2
2)φ̂(ξ) dξ,

which holds for Schwartz functionsφ. We see that when V is a Schwartz function, Tk1V solves
the time-dependent nonelliptic Schrödinger equation,

i∂tu+�u = 0,

where � = ∂x1x1 − ∂x2x2 , with initial data V at time 1/k. When V ∈ Hs with s > 1,
both V and its Fourier transform are integrable, and so both Tk1V and ei

1
k�V are continuous
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functions which are again equal pointwise. Thus, in the following lemma we obtain the
convergence (12) and therefore complete the reconstruction for potentials in Hs with s > 1.

L 4.2. – Let V ∈ Hs with 1 < s < 3. Then

|ei 1k�V (x)− V (x)| 6 Ck
1−s
2 ‖V ‖Hs , x ∈ Ω.

Proof. – By the Fourier inversion formula and the Cauchy-Schwarz inequality,

|eit�V (x)− V (x)| = 1

(2π)2

∣∣∣ ∫ V̂ (ξ) eiξ·x
(
e−i

1
k (ξ21−ξ

2
2) − 1

)
dξ
∣∣∣

6 ‖V ‖Hs
(∫ |e−i 1k (ξ21−ξ

2
2) − 1|2

|ξ|2s
dξ
)1/2

= ‖V ‖Hs
(∫ 2− 2 cos

(
1
k (ξ2

1 − ξ2
2)
)

|ξ|2s
dξ
)1/2

= 2k
1−s
2 ‖V ‖Hs

(∫ sin2
(

1
2 (ξ2

1 − ξ2
2)
)

|ξ|2s
dξ
)1/2

6 2k
1−s
2 ‖V ‖Hs

(∫
D

1

|ξ|2(s−2)
dξ +

∫
R2\D

1

|ξ|2s
)1/2

,

where we have used the trigonometric identity 2 sin2 θ = 1 − cos 2θ and the fact that
sin θ 6 |θ|.

Altogether we see that |Tk1+wV (x) − V (x)| 6 Ck
1−s
2 for all x ∈ Ω and V ∈ Hs with

1 < s < 3, which improves upon the decay rate of [45] where they recovered C2 potentials.
Note that there can be no decay rates, at least for the main term, for the potentials ofHs with
s 6 1 as they would then be uniform limits of continuous functions and thus continuous.

For discontinuous potentials we are no longer able to recover at each point. Instead we
bound the fractal dimension of the sets where the recovery fails. This point of view has its
origins in the work of Beurling who bounded the capacity of the divergence sets of Fourier
series [7] (see also [4]). Now Sobolev spaces are only defined modulo sets of zero Lebesgue
measure, and so we consider first the potential spaces

Ls,2 = { Is ∗ g : g ∈ L2(R2) },

where Is is the Riesz potential |·|s−2. As Îs(ξ) = Cs|ξ|−s, we have that Is∗g is also a member
of (an equivalence class of) Hs.

To bound the dimension of the sets where the recovery fails, we will prove maximal esti-
mates with respect to fractal measures. We say that a positive Borel measure µ is α-dimen-
sional if

(13) cα(µ) := sup
x∈R2, r>0

µ
(
B(x, r)

)
rα

<∞, 0 6 α 6 2,

and denote by Mα(Ω) the α-dimensional probability measures which are supported in Ω.
For 0 < s < 1, we will require the elementary inequality (1)

(14) ‖Is ∗ g‖L1(dµ) .
√
cα(µ) ‖g‖L2(R2), α > 2− 2s,

(1) In this section, we write A . B if A 6 CB for some constant C > 0 whose precise value may change from line
to line.
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which holds whenever µ ∈ Mα(Ω) and g ∈ L2(R2). To see this, we note that by Fubini’s
theorem and the Cauchy-Schwarz inequality,

‖Is ∗ g‖L1(dµ) 6 ‖Is ∗ µ‖L2‖g‖L2 ,

so that (14) follows by proving

‖Is ∗ µ‖2L2 . cα(µ), α > 2− 2s.

Now by Plancherel’s theorem,

‖Is ∗ µ‖2L2 = (2π)−2‖Îsµ̂‖2L2 .
∫
µ̂(ξ) µ̂(ξ) Î2s(ξ) dξ

.
∫
µ ∗ I2s(y) dµ(y) =

∫∫
dµ(x)dµ(y)

|x− y|2−2s
,

which is nothing more than the (2 − 2s)-energy. Then, by an appropriate dyadic decompo-
sition, ∫∫

dµ(x)dµ(y)

|x− y|2−2s
.
∫ ∞∑

j=0

cα(µ)2−jα2j(2−2s)dµ(y) . cα(µ)

whenever α > 2− 2s and µ ∈ Mα(Ω).

The Fourier transform of less regular potentials V is not necessarily integrable, and so in
that case ei

1
k�V is not even well-defined. Instead we make do with the pointwise limit

(15) Tk1 [V ](x) = lim
N→∞

GN ∗ Tk1 [V ](x) = lim
N→∞

ei
1
k�[GN ∗ V ](x), x ∈ Ω,

where GN = N2G(N ·) and G is the Gaussian e−|·|
2

. This formula holds as V is compactly
supported and integrable; conditions which the initial data in the time-dependent theory does
not normally satisfy. We will also require the following lemma due, in this form, to Sjölin [49].

L 4.3. – [49] Let x, t ∈ R, γ ∈ [1/2, 1) and N > 1. Then∣∣∣∣∣
∫
R

η(N−1ξ) ei(xξ−tξ
2)

|ξ|γ
dξ

∣∣∣∣∣ . 1

|x|1−γ
,

where the constant implied by the symbol . depends only on γ and the Schwartz function η.

In the following theorem, we employ the Kolmogorov-Seliverstov-Plessner method,
as used by Carleson [15] for the one-dimensional Schrödinger equation. Dahlberg and
Kenig [19] proved that the result of Carleson is sharp and noted that his argument could be
applied to the higher dimensional problem (for which the argument is no longer sharp for
the elliptic equation, see [10]). We refine their argument, which extends to the nonelliptic
case, by proving estimates which hold uniformly with respect to fractal measures.

T 4.4. – Let 1/2 6 s < 1. Then∥∥ sup
k>1

sup
N>1
|ei 1k�[GN ∗ Is ∗ g]|

∥∥
L1(dµ)

.
√
cα(µ)‖g‖L2(R2), α > 2− s,

whenever µ ∈ Mα(Ω) and g ∈ L2.
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Proof. – By linearising, it will suffice to prove

(16)

∣∣∣∣∫
Ω

eit(x)�[GN(x) ∗ Is ∗ g]w(x) dµ(x)

∣∣∣∣2 . cα(µ) ‖g‖2L2 , α > 2− s,

uniformly in measurable functions t : Ω → R, N : Ω → N and w : Ω → D. By Fubini’s
theorem and the Cauchy-Schwarz inequality, the left-hand side of (16) is bounded by∫

|ĝ(ξ)|2dξ
∫ ∣∣∣∣∫ G

( ξ

N(x)

)
eit(x)(ξ21−ξ

2
2)eix·ξw(x) dµ(x)

∣∣∣∣2 dξ

|ξ|2s
.

Writing the squared integral as a double integral, and applying Fubini’s theorem again, it
will suffice to show that

(17)
∫∫∫

G
( ξ

N(x)

)
G
( ξ

N(y)

)
ei(t(x)−t(y))(ξ21−ξ

2
2)ei(x−y)·ξ dξ

|ξ|2s

× w(x)w(y) dµ(x)dµ(y) . cα(µ)

uniformly in the functions t, N and w. Now, as |ξ|2s > |ξ1|s|ξ2|s, the left-hand side of (17)
is bounded by

2∏
j=1

∣∣∣ ∫ G
( ξj
N(x)

)
G
( ξj
N(y)

)
ei(−1)j+1(t(x)−t(y))ξ2j ei(xj−yj)ξj

dξj
|ξj |s

∣∣∣× w(x)w(y) dµ(x)dµ(y),

and by Lemma 4.3, we have∣∣∣∣∣∣
∫ G

(
ξj
N(x)

)
G
(

ξj
N(y)

)
ei(−1)j+1(t(x)−t(y))ξ2j ei(xj−yj)ξj

|ξj |s
dξj

∣∣∣∣∣∣ . 1

|xj − yj |1−s
.

Substituting in, we see that the left-hand side of (17) is bounded by

(18) C

∫∫
|w(x)w(y)|dµ(x)dµ(y)

|x1 − y1|1−s|x2 − y2|1−s
6 C

∫∫
dµ(x)dµ(y)

|x1 − y1|1−s|x2 − y2|1−s
.

To complete the proof, we are required to bound (18) by cα(µ). This will require a dyadic
decomposition which lends itself to the singularities along the axis-parallel lines Ay defined
by

Ay = {x ∈ Ω : x1 = y1 or x2 = y2

}
, y ∈ Ω.

Covering Ay by balls {Bj}j>1 of radius rj and using the Definition (13) of cα(µ), we have

µ(Ay) 6
∑
j>1

µ(Bj) 6 cα(µ)
∑
j>1

rαj .

Taking the infimum over all such coverings and using the fact that the α-Hausdorff measure
of Ay is zero when α > 1, we see that µ(Ay) = 0 for all µ ∈ Mα(Ω). Thus we can ignore the
sets Ay when decomposing the inner integral of (18).

For each j, ` ∈ Z we break up Q ⊃ Ω into dyadic rectangles of dimensions 2−j × 2−`

and consider the unique rectangle Rj,` which contains y. We call the unique rectangles
Rj−1,`−1, Rj−1,`, and Rj,`−1 that contain Rj,`, the mother, the father, and the stepfather
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respectively. We writeRnj,` ∼ Rj,` if their mothers touch, but their fathers and stepfathers do
not. As µ(Ay) = 0, we can write∫

F (x, y) dµ(x) =
∑
j,`>0

∑
n:Rnj,`∼Rj,`

∫
Rnj,`

F (x, y) dµ(x),

· y

Rnj,`

The rectangles of dimensions 2−j × 2−`, with 1 6 j, ` 6 3,
associated with a single point y.

which yields

(18) 6 C

∫ ∑
j,`>0

∑
n:Rnj,`∼Rj,`

2j(1−s)2`(1−s)µ(Rnj,`) dµ(y).

Without loss of generality, we can suppose that∑
`>j>0

∑
n:Rnj,`∼Rj,`

2j(1−s)2`(1−s)µ(Rnj,`) 6
∑
j>`>0

∑
n:Rnj,`∼Rj,`

2j(1−s)2`(1−s)µ(Rnj,`)

(otherwise the reverse inequality holds and the roles of j and ` are interchanged in the
forthcoming argument), so that

(18) 6 C

∫ ∑
j>`>0

∑
n:Rnj,`∼Rj,`

2j(1−s)2`(1−s)µ(Rnj,`) dµ(y).

Now by covering each rectangle by discs of radius 2−j , and using the Definition (13) of cα(µ),
we see that

µ(Rnj,`) . 2j−`cα(µ)2−jα,

and for each rectangle Rj,` there are exactly nine rectangles Rnj,` which satisfy Rnj,` ∼ Rj,`.
Thus

(18) . cα(µ)
∑
j>`>0

2j(2−s−α)2−`s . cα(µ),

when α > 2− s, and so we are done.
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Proof of Theorem 1.2. By Alessandrini’s identity (2) and Frostman’s lemma (see for
example [37]), it will suffice to prove that

(19) µ
{
x : lim sup

k→∞
|Tk1+w[V ](x)− V (x)| 6= 0

}
= 0

whenever µ ∈ Mα(Ω) and V ∈ Ls,2(Ω) with α > 2−s. By Theorem 4.1 and (15), this would
follow from

µ
{
x : lim sup

k→∞
lim sup
N→∞

|ei 1k�[GN ∗ V ](x)− V (x)| 6= 0
}

= 0.

Writing V = Is ∗ g, where g ∈ L2, we take a Schwartz function h so that ‖g − h‖L2 < ε.
Then

µ
{
x : lim sup

k→∞
lim sup
N→∞

|ei 1k�[GN ∗ V ](x)− V (x)| > λ
}

6 µ
{
x : sup

k>1
sup
N>1
|ei 1k�[GN ∗ Is ∗ (g − h)](x)| > λ/3

}
+ µ

{
x : lim sup

k→∞
lim sup
N→∞

|ei 1k�[GN ∗ Is ∗ h](x)− Is ∗ h(x)| > λ/3
}

+ µ
{
x : |Is ∗ (h− g)(x)| > λ/3

}
.

As the terms involving h are continuous in all parameters, the second set of the three is empty,
so by the elementary inequality (14) and Theorem 4.4, we see that

µ
{
x : lim sup

k→∞
|Tk1+wV (x)− V (x)| > λ

}
. λ−1

√
cα(µ) ‖g − h‖L2

. λ−1
√
cα(µ) ε,

for all ε > 0, which yields (19), and so we are done. �

Proof of Theorem 1.5. This follows by applying Corollary 1.3 to the potential q = V −κ2χΩ.
For V ∈ H1/2, the potentials q = V − κ2χΩ are contained in Ḣs for 0 < s < 1/2

(see for example [23]) and so we find Bukhgeim solutions Uk,x, associated to q, and recover
their value on the boundary as before. However, Corollary 1.3 requires the potential q to be
contained in H1/2 which is not satisfied for any domain. We overcome this by noting that
the proof of Theorem 4.4 works just as well if we replace Is with the potential whose Fourier
transform is |ξ1|−s/2|ξ2|−s/2 and so we can relax the regularity condition further to∥∥(i ∂

∂x1

)1/4(
i ∂
∂x2

)1/4
q
∥∥
L2(R2)

<∞.

This is satisfied when Ω is a axis-parallel square, but not when it is a disc. �

R 4.5. – As in the previous sections we can consider potentials which are not
compactly supported. Here we can recover the potentials on Ω if V ∈ Hs with s > 3/4.
Indeed, the arguments of this section require that∥∥(i ∂

∂x1

)1/4(
i ∂
∂x2

)1/4
(χΩV )

∥∥
L2(R2)

<∞,

for which it is again convenient to take Ω to be an axis-parallel square. Then arguing as in
Remark 3.2, by the fractional Leibniz rule,∥∥(i ∂

∂x2

)1/4
(χΩV )(x1, ·)

∥∥
L2(R)

6 ‖χΩ(x1, ·)‖4‖
(
i ∂
∂x2

)1/4
V (x1, ·)‖4
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By factorizing the integral using Fubini’s theorem and applying the argument of
Remark 3.2 in the x2-variable, this holds if∥∥(i ∂

∂x1

)1/4(
i ∂
∂x2

)s0
V
∥∥
L2(R2)

<∞,

with s0 > 1/2. Thus if a noncompactly supported potential is in Hs with s > 3/4, we can
recover it on any compact domain.

Finally we note that the uniqueness result of Blåsten [8] can be observed using the
connection with the time-dependent Schrödinger equation. Indeed if the scattering data or
boundary measurements are the same for two potentials V1 and V2, then by Alessandrini’s
identity (2),

‖V2 − V1‖L2 = ‖V2 − Tk1+wV2 + Tk1+wV1 − V1‖L2 ,

so that by the triangle inequality and Lemma 4.1, it suffices to prove

‖V − Tk1V ‖L2 → 0 as k →∞,

which is a well-known property of the Schrödinger flow.

5. Proof of Theorem 1.4

First we construct a real potential V , supported in Ω, and contained in Hs with s < 1/2,
for which ∣∣∣{x ∈ Ω : lim

k→∞
ei

1
k�[V ](x) 6→ V (x)

}∣∣∣ 6= 0.

Throughout this section we work with a different set of coordinates from the previous
sections. Indeed, for Schwartz functions F , we abuse notation and write

eit�[F ](x) =
1

(2π)2

∫
eix·ξe−i2tξ1ξ2 F̂ (ξ) dξ.

Let φo be a positive, even Schwartz function, compactly supported in [−1/4, 1/4], and
consider φ = φo ∗ φo, which is supported in [−1/2, 1/2]. Note that φ̂ = (φ̂o)2 > 0. We
consider the potential V defined by

V (x) =
∑
j>2

Vj(x) =
∑
j>2

2(1−β)j+1 cos(2jx2)φ(2jx1)φ(x2)

=
∑
j>2

2(1−β)jei2
jx2φ(2jx1)φ(x2) +

∑
j>2

2(1−β)je−i2
jx2φ(2jx1)φ(x2)

=
∑
j>2

V +
j (x) +

∑
j>2

V −j (x),

which is supported in [− 1
8 ,

1
8 ]× [− 1

2 ,
1
2 ]. If β ∈ (1/2 + s, 1), by changes of variables,

‖V ‖2Hs 6 C
∑
j>2

2(1−2β+2s)j

∫
|φ̂(ξ1)φ̂(ξ2)|2 (1 + |ξ|2)sdξ <∞.

Thus V is finite almost everywhere, and we will show that ei
1
k�V diverges on [ 1

16 ,
1
4 ]× [− 1

16 ,
1
16 ].

This potential is an adaptation of an initial datum for the time-dependent nonelliptic
Schrödinger equation considered in [47]. The initial datum there was not real, the diverging
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sequence of time was allowed to depend on the point x, and more crucially, the initial datum
was not compactly supported. Thus our arguments will have a different flavor, working on
the frequency and spatial side simultaneously.

By changes of variables and the Fourier inversion formula,

eit�[V +
j ](x) =

2(1−β)jei2
jx2

(2π)2

∫
φ̂(ξ1)φ̂(ξ2) e−i2

j+1tξ1ξ2ei(2
jξ1(x1−2j+1t)+ξ2x2)dξ

=
2(1−β)jei2

jx2

2π

∫
φ
(
2j(x1 − 2j+1t− 2tξ2)

)
φ̂(ξ2) eiξ2x2dξ2.

Taking t = 1/k with k the nearest natural number to 2j+1/x1,

ei
1
k�[V +

j ](x) =
2(1−β)jei2

jx2

2π

∫
φ
(
ζ(x1, j)− 2j+1

k ξ2
)
φ̂(ξ2) eiξ2x2dξ2,

where |ζ(x1, j)| 6 1
4 when x1 ∈ [ 1

16 ,
1
4 ], so that, using the compact support of φ, we see that

|ei 1k�[V +
j ](x)| =

∣∣∣2(1−β)j

2π

∫ 16

−16

φ
(
ζ(x1, j)− 2j+1

k ξ2
)
φ̂(ξ2) eiξ2x2dξ2

∣∣∣
>

2(1−β)j

2π

∣∣∣ ∫ 16

−16

φ
(
ζ(x1, j)− 2j+1

k ξ2
)
φ̂(ξ2) cos(ξ2x2) dξ2

∣∣∣.
Now when x2 ∈ [− 1

16 ,
1
16 ], we have |ξ2x2| 6 1, so that | cos(ξ2x2)| > cos(1). Using the fact

that φ and φ̂ are nonnegative, we obtain

|ei 1k�[V +
j ](x)| > 2(1−β)j cos(1)

2π

∫ 16

−16

φ
(
ζ(x1, j)− 2j+1

k ξ2
)
φ̂(ξ2) dξ2

> C12(1−β)j .

It remains to bound from above the solution associated to the other pieces of the potential.
Again, by the Fourier inversion formula,

|ei 1k�[V ±` ](x)| = 2(1−β)`

(2π)2

∣∣∣ ∫ φ̂(ξ1)φ̂(ξ2) e−i
2
k ξ1ξ2ei(2

`ξ1(x1∓ 2`+1

k )+ξ2x2)dξ
∣∣∣

=
2(1−β)`

2π

∣∣∣ ∫ φ
(
2`(x1 ∓ 2`+1

k −
2
k ξ2)

)
φ̂(ξ2) eiξ2x2dξ2

∣∣∣.
Using the fact that φ(y) 6 C|y|−1/2, we obtain

|ei 1k�[V ±` ](x)| 6 C2(1/2−β)`

∫
|φ̂(ξ2)|

|x1 ∓ 2`+1

k −
2
k ξ2|1/2

dξ2.

Taking 0 < ε < min{1/4, 1− β}, and using the rapid decay of φ̂, we see that

|ei 1k�[V ±` ](x)| 6 C2(1/2−β)`
(∫
|ξ2|<2εj

1

|x1 ∓ 2`+1

k −
2
k ξ2|1/2

dξ2 + C2−j
)
.

Now one can check that when ` 6= j or j = ` and ∓ is an addition,

| 2k ξ2| 6
3
4 |x1 ∓ 2`+1

k |
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when |ξ2| 6 2jε. Indeed, when j > `, the left-hand side is less than 1
4 |x1| which is less than

the right-hand side. On the other hand, when j < ` or j = ` and ∓ is an addition, the left-
hand side is less than 1

2 |x1| which is less than the right-hand side. Thus, the integrand of the
final integral is nonsingular so that the integral is bounded by C|x1|−1/22εj 6 C2εj .

By summing a geometric series in `, we obtain∣∣∣∑
` 6=j

ei
1
k�V ±` (x) + ei

1
k�V −j (x)

∣∣∣ 6 C22εj ,

and we can conclude that on [ 1
16 ,

1
4 ]× [− 1

16 ,
1
16 ],

|ei 1k�[V ]| > |ei 1k�[V +
j ]| −

∣∣∣∑
6̀=j

ei
1
k�[V ±` ] + ei

1
k�V −j (x)

∣∣∣ > C12j(1−β) − C22jε,

which diverges as j tends to infinity. Considering forty-five degree rotations of the Vj , which
are Schwartz functions, via the pointwise equality, this yields

|Tk1 [V ]| > |Tk1 [V +
j ]| −

∣∣∣∑
` 6=j

Tk1 [V ±` ] + Tk1 [V −j ]
∣∣∣ > C12j(1−β) − C22jε

on a forty-five degree rotation of [ 1
16 ,

1
4 ] × [− 1

16 ,
1
16 ], so that |Tk1 [V ]| diverges as k tends to

infinity. Thus, by Theorem 4.1, combined with Alessandrini’s identity (2),{
x : k

4π

〈
(ΛV − Λ0)[uk,x|∂Ω], eiψ|∂Ω

〉
6→ V (x) as k →∞

}
contains a forty-five degree rotation of [ 1

16 ,
1
4 ] × [− 1

16 ,
1
16 ], which has nonzero Lebesgue

measure. �

Note that this result is stable in the sense that k ∈ N can be replaced by any sequence {nk}k∈N
satisfying nk ∈ [k, k + 1).

R 5.1. – In [50], Sjölin asked for which values of s is it true that

lim
k→∞

ei
1
k∆f(x) = 0, a.e. x ∈ Rd\(suppf),

for all f ∈ Hs. In principle, this question could have stronger positive results and weaker
negative results than Carleson’s question: for which values of s is it true that

lim
k→∞

ei
1
k∆f(x) = f(x), a.e. x ∈ Rd,

for all f ∈ Hs? Indeed, before Bourgain’s recent breakthrough [10], Sjölin proved a stronger
positive result for his question than what was known for Carleson’s question in three dimen-
sions. Here we solve Sjölin’s question completely for the nonelliptic equation in two dimen-
sions. That is to say,

lim
k→∞

ei
1
k�f(x) = 0, a.e. x ∈ R2\(suppf),

for all f ∈ Hs if and only if s > 1/2.
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Appendix

The DN map from the scattering amplitude

It is well-known that in the absence of zero Dirichlet eigenvalues there is a unique weak
solution to the Dirichlet problem (1) that satisfies

(20) ‖u‖H1(Ω) 6 C‖f‖H1/2(∂Ω)

(see for example [20]—in two dimensions Ln/2(Rn) can be replaced by L2(R2)). Here
H1/2(∂Ω) := H1(Ω)/H1

0 (Ω), where H1
0 (Ω) denotes the closure of C∞0 (Ω) in H1(Ω). The

DN map ΛV is then defined via duality;〈
ΛV [f ], ψ

〉
:=

∫
Ω

V uΨ +∇u · ∇Ψ,

for all Ψ ∈ H1(Ω) with ψ = Ψ + H1
0 (Ω). When the solution and boundary are sufficiently

regular, this definition coincides with that of the introduction by Green’s formula. To see that
ΛV is well-defined, mapping intoH−1/2(∂Ω), the dual ofH1/2(∂Ω), we note that by Hölder’s
inequality and the Hardy-Littlewood-Sobolev inequality,∣∣∣〈ΛV [f ], ψ

〉∣∣∣ 6 ‖u‖H1(Ω)‖Ψ‖H1(Ω) + ‖V ‖2‖u‖L4(Ω)‖Ψ‖L4(Ω)

6 (1 + C‖V ‖2)‖u‖H1(Ω)‖Ψ‖H1(Ω)

whenever Ψ ∈ H1(Ω), so that by (20), we obtain∣∣∣〈ΛV [f ], ψ
〉∣∣∣ 6 C(1 + ‖V ‖2)‖f‖H1/2(∂Ω)‖ψ‖H1/2(∂Ω).

There are a number of different approaches to showing that the scattering amplitude at
a fixed energy κ2 > 0 uniquely determines the DN map ΛV−κ2 and vice versa (see for
example [5, 38, 57, 53, 55]). Here we follow a constructive argument due to Nachman [39,
Section 3]. We must additionally assume that κ2 is not a Dirichlet eigenvalue of −∆ + V .
This can be arranged by taking Ω sufficiently large as the eigenvalues decrease strictly as
the domain grows [41] (the result of [36] can be extended to L2-potentials using the unique
continuation of [32]). We also additionally suppose that V is real. The assumption that V is
compactly supported is indispensable here due to the existence of transparent potentials [25].

Let GV and G0 be the outgoing Green’s functions that satisfy

(−∆ + V − κ2)GV (x, y) = δ(x− y), (−∆− κ2)G0(x, y) = δ(x− y),

and let SV and S0 be the corresponding near-field operators defined via single layer poten-
tials;

SV [f ](x) =

∫
∂Ω

GV (x, y)f(y) dy, S0[f ](x) =

∫
∂Ω

G0(x, y)f(y) dy.

These are bounded and invertible, mapping H−1/2(∂Ω) to H1/2(∂Ω) (the two-dimensional
proof can be found in [31, Proposition A.1]). Then Nachman’s formula [38],

ΛV−κ2 = Λ−κ2 + S−1
V − S

−1
0 ,

allows us to recover the DN map on Lipschitz domains.
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Thus it remains to recover the single layer potential SV from the scattering amplitudeAV
at energy κ2. For ω ∈ S1, the outgoing scattering solution v(·, ω, κ) is the unique solution to
the Lippmann-Schwinger equation

(21) v(y, ω, κ) = eiκy·ω −
∫
R2

G0(y, z)V (z)v(z, ω, κ) dz.

For (σ, ω) ∈ S1 × S1, the scattering amplitude then satisfies

(22) AV (σ, ω, κ) =

∫
R2

e−iκσ·zV (z)v(z, ω, κ) dz.

When Ω is a disc, Nachman recovers SV via formulae given by expansions in spherical
harmonics as below. Otherwise he uses a density argument (we remark that Sylvester [55] also
invokes density in order to recover). Since we have been obliged to work with Ω a square, at
this point we deviate and instead follow an argument of Stefanov [51], obtaining an explicit
formula for the Green’s function GV in terms of AV . Alternatively it seems likely that we
could pass to the DN map on the square from that on the disc via the argument in [40,
Section 6] for the conductivity problem, but we prefer this more direct approach.

Stefanov worked in three dimensions, with bounded potentials, and a number of details
change in two dimensions, so we present the argument. We recoverGV outside of a disc which
contains the potential, but which is contained in the domain, so that SV can be obtained by
integrating along the sides of our square Ω. For an extended version of this appendix, see [2].

First we require the following asymptotics.

L A.1. – We have

GV (x, y)−G0(x, y) =
−i

8πκ

eiκ|x|

|x| 12
eiκ|y|

|y| 12
AV

(
− x

|x|
,
y

|y|
, κ
)

+ o
( 1

|x| 12 |y| 12

)
.

Proof. – It is well-known (see for example (3.66) in [42]) that GV satisfies

(23) GV (x, z) =
ei
π
4

(8π)
1
2

eiκ|x|

κ
1
2 |x| 12

v
(
z,− x

|x|
, κ
)

+ o
( 1

|x| 12

)
,

and, in particular,

(24) G0(y, z) =
ei
π
4

(8π)
1
2

eiκ|y|

κ
1
2 |y| 12

e−iκ
y
|y| ·z + o

( 1

|y| 12

)
.

On the other hand, it is easy to verify that

(25) GV (x, y)−G0(x, y) = −
∫
R2

GV (x, z)V (z)G0(y, z) dz.

Substituting in (23) and (24), see that GV (x, y)−G0(x, y) is equal to

−i
8πκ

eiκ|x|

|x| 12
eiκ|y|

|y| 12

∫
e−iκ

y
|y| ·zV (z)v

(
z,− x

|x|
, κ
)
dz + o

( 1

|x| 12 |y| 12

)
,

so that by (22) we obtain the result.

In the following, Jn and H(1)
n denote the Bessel and Hankel functions of the first kind

of nth order, respectively (see for example [35]). We also write x in polar coordinates as
(|x|, φx).
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T A.2. – Let V ∈ Hs with s > 0 be supported in the disc of radius ρ, centred at
the origin, and consider the Fourier series

AV (σ, ω, κ) =
∑
n∈Z

∑
m∈Z

an,me
inφσeimφω .

Then

GV (x, y)−G0(x, y) =
∑
n∈Z

∑
m∈Z

(−1)n

16
in+man,mH

(1)
n (κ|x|)H(1)

m (κ|y|)einφxeimφy ,

where the series is uniformly, absolutely convergent for |x| > |y| > R > 3
2ρ.

Proof. – We can expand G0(x, y) = i
4H

(1)
0 (κ|x− y|) as

G0(x, y) =
i

4

(
H

(1)
0 (κ|x|)J0(κ|y|) + 2

∑
n>1

H(1)
n (κ|x|)Jn(κ|y|) cos(φx − φy)

)
,

(see for example [17, Section 3.4] or [48, Theorem 3.4]). As H(1)
−n = (−1)nH

(1)
n and J−n = (−1)nJn,

in order to separate variables it will be convenient to write this as

G0(x, y) =
i

4

∑
n∈Z

H(1)
n (κ|x|)Jn(κ|y|)einφxe−inφy .

As before, it is easy to check that

GV (x, y)−G0(x, y) = −
∫
R2

G0(x, z)V (z)GV (z, y) dz,

and so substituting (25) into this we obtain GV −G0 = −I1 + I2, where

I1 =

∫
G0(x, z)V (z)G0(z, y) dz

I2 =

∫
G0(x, z1)V (z1)

∫
GV (z1, z2)V (z2)G0(y, z2) dz2dz1.

Now in both integrals we introduce the expansion of G0 (note that G0(x, y) = G0(y, x)),
extracting the terms independent of z, z1, z2. In this way we get

I1 = − 1

16

∑
n∈Z

∑
m∈Z

αn,mH
(1)
n (κ|x|)H(1)

m (κ|y|)einφxeimφy ,(26)

I2 = − 1

16

∑
n∈Z

∑
m∈Z

βn,mH
(1)
n (κ|x|)H(1)

m (κ|y|)einφxeimφy ,(27)

where

αn,m =

∫
R2

V (z)Jn(κ|z|)Jm(κ|z|)e−i(n+m)φz dz,

βn,m =

∫
R4

Jn(κ|z1|)V (z1)GV (z1, z2)V (z2)Jm(κ|z2|)e−inφz1 e−imφz2 dz1dz2.

It remains to show that the sums (26) and (27) converge uniformly and absolutely
for |x| > |y| > R > 3

2ρ. Once we know that this is the case, we can take limits and use
the asymptotics of the Hankel functions for large r;

H(1)
n (r) = e−i(n

π
2 +π

4 )
( 2

πr

) 1
2

eir + o
( 1

r
1
2

)
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(see for example [35, Section 5.16]), and then Lemma A.1 tells us that

− 1

16
(−i)n+m+1 2

π
(βn,m − αn,m) = −i (−1)n

8π
an,m.

To see that the sums converge note that, by Hölder’s inequality, we have

|αn,m| 6 Cρ‖V ‖L2‖Jn(κ| · |)‖L∞(Bρ)‖Jm(κ| · |)‖L∞(Bρ),

|βn,m| 6 ‖GV ‖L2(Bρ×Bρ)‖V ‖2L2‖Jn(κ| · |)‖L∞(Bρ)‖Jm(κ| · |)‖L∞(Bρ).

At this point we deviate from [51] as there seems to be less local knowledge regarding GV in
two dimensions. Instead we can rewrite (25) as

GV (·, y) = G0(·, y)− (−∆ + V − κ2 − i0)−1[V G0(·, y)],

and use that the resolvent is bounded from L2((1 + | · |2)δ) to L2((1 + | · |2)−δ) with δ > 1/2

(see [1, Theorem 4.2]). Thus, using that V is compactly supported, and taking 1
2 = 1

p + 1
q

with large p so that 1− 2
q = s,

‖GV (·, y)‖L2(Bρ) 6 ‖G0(·, y)‖L2(Bρ) + Cρ‖V G0(·, y)‖L2(Bρ)

6 ‖G0(·, y)‖L2(Bρ) + Cρ‖V ‖q‖G0(·, y)‖Lp(Bρ)

6 ‖G0(·, y)‖L2(Bρ) + Cρ‖V ‖Hs‖G0(·, y)‖Lp(Bρ),

by the Hardy-Littlewood-Sobolev inequality. Integrating again with respect to y, and re-
calling that the singularity of H(1)

0 at the origin is logarithmic, we see that ‖GV ‖L2(Bρ×Bρ) 6 C.
Then, using the Taylor series expansion for the Bessel function,

|Jn(r)| =
∣∣∣∑
j>0

(−1)j

j!(|n|+ j)!

(r
2

)2j+|n|∣∣∣ 6 Cρ 1

|n|!

(ρ
2

)|n|
, 0 6 r 6 ρ,

we see that

|αn,m| 6 Cρ‖V ‖L2

1

|n|!

(ρ
2

)|n| 1

|m|!

(ρ
2

)|m|
,

|βn,m| 6 Cρ(1 + ‖V ‖3Hs)
1

|n|!

(ρ
2

)|n| 1

|m|!

(ρ
2

)|m|
.

Finally, we require the Hankel function estimate,

|H(1)
n (r)| 6 CR|n|!

( 3

R

)|n|
, R 6 r,

which is proven in [2, Lemma 2.3]. The sums (26) and (27) are then bounded by a constant
multiple of ∑

n>0

∑
m>0

( 3ρ

2R

)n( 3ρ

2R

)m
which is convergent when |x| > |y| > R > 3

2ρ, and so we are done.
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