
aNNALES
SCIENnIFIQUES

      SUPÉRIEUkE

de
L ÉCOLE
hORMALE

ISSN 0012-9593

ASENAH

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

quatrième série - tome 49 fascicule 5 septembre-octobre 2016

Yaar SOLOMON & Barak WEISS

Dense forests and Danzer sets



Annales Scientifiques de l’École Normale Supérieure
Publiées avec le concours du Centre National de la Recherche Scientifique

Responsable du comité de rédaction / Editor-in-chief

Antoine C-L

Publication fondée en 1864 par Louis Pasteur

Continuée de 1872 à 1882 par H. S-C D

de 1883 à 1888 par H. D

de 1889 à 1900 par C. H

de 1901 à 1917 par G. D

de 1918 à 1941 par É. P

de 1942 à 1967 par P. M

Comité de rédaction au 1 er janvier 2016

N. A I. G

P. B B. K

E. B E. K

R. C M. M, 

A. C-L L. S-C

Rédaction / Editor

Annales Scientifiques de l’École Normale Supérieure,
45, rue d’Ulm, 75230 Paris Cedex 05, France.

Tél. : (33) 1 44 32 20 88. Fax : (33) 1 44 32 20 80.
annales@ens.fr

Édition / Publication Abonnements / Subscriptions

Société Mathématique de France Maison de la SMF
Institut Henri Poincaré Case 916 - Luminy

11, rue Pierre et Marie Curie 13288 Marseille Cedex 09
75231 Paris Cedex 05 Fax : (33) 04 91 41 17 51

Tél. : (33) 01 44 27 67 99 email : smf@smf.univ-mrs.fr
Fax : (33) 01 40 46 90 96

Tarifs

Europe : 519 e. Hors Europe : 548 e. Vente au numéro : 77 e.

© 2016 Société Mathématique de France, Paris

En application de la loi du 1er juillet 1992, il est interdit de reproduire, même partiellement, la présente publication sans l’autorisation
de l’éditeur ou du Centre français d’exploitation du droit de copie (20, rue des Grands-Augustins, 75006 Paris).
All rights reserved. No part of this publication may be translated, reproduced, stored in a retrieval system or transmitted in any form or
by any other means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the publisher.

ISSN 0012-9593 Directeur de la publication : Stéphane Seuret
Périodicité : 6 nos / an



Ann. Scient. Éc. Norm. Sup.

4 e série, t. 49, 2016, p. 1053 à 1074

DENSE FORESTS AND DANZER SETS

 Y SOLOMON  B WEISS

A. – A set Y ⊆ Rd that intersects every convex set of volume 1 is called a Danzer set.
It is not known whether there are Danzer sets in Rd with growth rate O(T d). We prove that natural
candidates, such as discrete sets that arise from substitutions and from cut-and-project constructions,
are not Danzer sets. For cut and project sets our proof relies on the dynamics of homogeneous flows. We
consider a weakening of the Danzer problem, the existence of a uniformly discrete dense forest, and we
use homogeneous dynamics (in particular Ratner’s theorems on unipotent flows) to construct such sets.
We also prove an equivalence between the above problem and a well-known combinatorial problem,
and deduce the existence of Danzer sets with growth rate O(T d log T ), improving the previous bound
of O(T d logd−1 T ).

R. – Un ensemble de Danzer est une partie Y de Rd qui rencontre tout ensemble convexe
de volume 1. On ne sait pas s’il existe des ensembles de Danzer dans Rd de croissance O(T d). Nous
démontrons que les candidats naturels, tels que les ensembles discrets produits à l’aide de substitu-
tions, de sections et de projections, ne sont pas des ensembles de Danzer. Dans le cas des sections et
projections, notre preuve repose sur la dynamique et la structure des réseaux dans les groupes algé-
briques. Nous considérons aussi une notion plus faible, l’existence d’une forêt dense uniformément
discrète, et nous utilisons la dynamique homogène (en particulier les théorèmes de Ratner sur les flots
unipotents) pour construire de tels ensembles. Nous démontrons aussi l’équivalence entre le problème
de Danzer et un problème combinatoire classique et en déduisons l’existence d’ensembles de Danzer
de croissance O(T d log T ), améliorant ainsi la borne précédente O(T d logd−1 T ).

1. Introduction

This paper stems from a famous unsolved problem formulated by Danzer in the 1960s (see,
e.g., [10, 13, 8, 12]). We will call a subset Y ⊆ Rd a Danzer set if it intersects every convex
subset of volume 1. We will say that Y has growth g(T ), where g(T ) is some function, if

(1.1) #(Y ∩B(0, T )) = O(g(T ))

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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1054 Y. SOLOMON AND B. WEISS

(as usual f(x) = O(g(x)) means lim supx→∞
f(x)
g(x) <∞ and B(0, T ) is the Euclidean ball of

radius T centered at the origin in Rd). Danzer asked whether for d ≥ 2 there is a Danzer set
with growth T d. In this paper we present several results related to this question.

The only prior results on Danzer’s question of which we are aware are due to Bambah and
Woods. Their paper [5] contains two results. The first is a construction of a Danzer set in Rd

with growth rate T d logd−1(T ), and the second is a proof that any finite union of grids (1) is
not a Danzer set. Our paper contains parallel results.

We prove the following theorems. For detailed definitions of the terms appearing in the
statements, we refer the reader to the section in which the result is proved.

T 1.1. – Let H be a primitive substitution system on the polygonal basic tiles
{T1, . . . , Tn} in Rd. Any Delone set, which is obtained from a tiling τ ∈ XH by picking a point
in the same location in each of the basic tiles, is not a Danzer set. Also the set of vertices of tiles
in such a tiling is not a Danzer set.

In particular the vertex set of a Penrose tiling is not a Danzer set. The vertex set of a
Penrose tiling has another description, namely as a cut-and-project set. We now consider
such sets.

T 1.2. – Let Λ be a finite union of cut-and-project sets. Then Λ is not a Danzer set.

As for positive results, one may try to construct sets which either satisfy a weakening of
the Danzer condition, or a weaker growth condition. The following results are in this vein. A

set Y ⊆ Rd is called a dense forest if there is a function ε(T )
T→∞−−−−→ 0 such that for any x ∈ Rd

and any direction v ∈ Sd−1 def
= {v ∈ Rd : ‖v‖ = 1}, the distance from Y to the line segment

of length T going from x in direction v is at most ε(T ). It is not hard to show that a Danzer
set is a dense forest.

T 1.3. – Let U ∼= Rd and suppose X is a compact metric space on which U acts
smoothly and completely uniquely ergodically. Then for any cross-section S and any x0 ∈ X,
the set of ‘visit times’

D def
= {u ∈ U : u.x0 ∈ S}

is a uniformly discrete set which is a dense forest. In particular, uniformly discrete dense forests
exist in Rd for any d.

By completely uniquely ergodically we mean that the restriction of the action to any one-
parameter subgroup of U is uniquely ergodic. Our construction of completely uniquely
ergodic actions relies on Ratner’s theorem and results on the structure of lattices in algebraic
groups.

In order to construct Danzer sets which grow slightly faster thanO(T d), we first establish
an equivalence between this question and a related finitary question, namely the ‘Danzer-
Rogers question’ (see Question 5.3). We say that a function g : A → B is doubling, where
A,B are either N or R, if there exists some C > 0 such that for all x ∈ R we have
g(2x) ≤ Cg(x).

(1) A grid is a translated lattice.
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DENSE AND DANZER 1055

T 1.4. – For a fixed d ≥ 2, and a doubling function g(x) that satisfies g(x)
xd is non-

decreasing, the following are equivalent:

(i) There exists a Danzer set Y ⊆ Rd of growth O(g(T )).
(ii) For every ε > 0 there exists Nε ⊆ [0, 1]d, such that #Nε = O(g(ε−1/d)), and such that

Nε intersects every box of volume ε in [0, 1]d.

C 1.5. – If D ⊆ Rd is a Danzer set of growth rate g(T ), where g(x) is as in
Theorem 1.4, then there exists a Danzer set contained in Qd of growth rate g(T ).

Using Theorem 1.4 and known results for the Danzer-Rogers question, we obtain:

T 1.6. – There exists a Danzer set in Rd of growth rate T d log T .

Note that for all d ≥ 3, this improves the result of [5] mentioned above and represents the
slowest known growth rate for a Danzer set.

1.1. Structure of the paper

We have attempted to keep the different sections of this paper self-contained. The material
on substitution tilings and the cut-and-project sets, in particular the proofs of Theorems 1.1
and 1.2, are contained in § 2 and § 3 respectively. More results from homogeneous flows
are used in order to prove Theorem 1.3 in § 4. In § 5 we introduce some terminology from
computational geometry and prove Theorem 1.4 and Corollary 1.5. More background from
computational geometry and the proof of Theorem 1.6 are in § 6. In § 7 we list some open
questions related to the Danzer problem.

1.2. Acknowledgements

The proof of Theorem 1.2 given here relies on a suggestion of Andreas Strömbergsson.
Our initial strategy required a detailed analysis of lattices in algebraic groups satisfying some
conditions, and an appeal to Ratner’s theorem on orbit-closures for homogeneous flows.
We reduced the problem to a question on algebraic groups which we were unable to solve
ourselves and after consulting with several experts, we received a complete answer from Dave
Morris, and his argument appeared in an appendix of the original version of this paper.
Later Strömbergsson gave us a simple argument which made it possible to avoid the results
of Morris and to avoid Ratner’s theorem. The proof which appears here is Strömbergsson’s
and we are grateful to him for agreeing to include it, and to Dave Morris for his earlier proof.
We are grateful to Manfred Einsiedler, Jens Marklof, Tom Meyerovitch, Andrei Rapinchuk,
Saurabh Ray, Uri Shapira and Shakhar Smorodinsky for useful discussions. We are also
grateful to the referee for a careful reading of our paper. Finally, we are grateful to Michael
Boshernitzan for telling us about Danzer’s question. We acknowledge the support of ERC
starter grant DLGAPS 279893.

2. Nets that Arise from Substitution Tilings

In this section we prove Theorem 1.1, i.e., that primitive substitution tilings do not give rise
to Danzer sets. We begin by quickly recalling the basics of the theory of substitution tilings.
For further reading we refer to [14, 21, 23, 25].

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1056 Y. SOLOMON AND B. WEISS

2.1. Background on substitutions

A tiling ofRd is a countable collection of tiles {Si} inRd, each of which is the closure of its
interior, such that tiles intersect only in their boundaries, and with

⋃
i Si = Rd. We say that

the tiling is polygonal if the tiles are d-dimensional polytopes, i.e., convex bounded sets that
can be obtained as an intersection of finitely many half-spaces. All tilings considered below
are polygonal.

Given a finite collection of tiles F = {T1, . . . , Tn} in Rd, a substitution is a map H that
assigns to every Ti a tiling of the set Ti by isometric copies of ζT1, . . . , ζTn, where ζ ∈ (0, 1) is
fixed and does not depend on i. The definition of H extends in an obvious way to replace a
finite union of isometric copies of the Ti’s by isometric copies of the ζTj ’s. By applying H
repeatedly, and rescaling the small tiles back to their original sizes, we tile larger and larger
regions of the space. Substitution tilings are tilings of Rd that are obtained as limits of those
finite tilings. More precisely, set ξ = ζ−1 > 1 and define

P = {(ξH)m(Ti) : m ∈ N, i ∈ {1, . . . , n}}.

The substitution tiling space XH is the set of tilings τ of Rd having the property that
for every compact set K ⊆ Rd, there exists some P ∈ P, such that the patch defined
by {tiles T of τ : T ⊆ K} is a sub-patch of P . The tilings τ ∈ XH are substitution tilings
that correspond to H, and the constant ξ is referred to as the inflation constant of H. For
every i the isometric copies of Ti are called tiles of type i.

A substitution H on F = {T1, . . . , Tn} defines the substitution matrix, which is a non-
negative integer matrix AH = (aij), where aij is the number of appearances of isometric
copies of ζTi in H(Tj). H is called primitive if AH is a primitive matrix. Namely, AmH has
strictly positive entries, for some m ∈ N. Observe that primitivity is a natural assumption in
this context, since otherwise we could get a smaller substitution system by restricting H to a
subset of {T1, . . . , Tn} (and possibly replacing H by some fixed power of H). For example,
the matrix AH = ( 2 1

1 1 ) corresponds to the substitution of the Penrose triangles that are
presented below in Figure 1.

T1 T2

T1

T1

T1T2

T2

F 1. Penrose substitution rule.
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DENSE AND DANZER 1057

Primitive substitution tiling satisfy a useful ‘inflation’ property (see [23]). For m ∈ N it is
convenient to consider the set of inflated tiles F (m) = {ξmT1, . . . , ξ

mTn}with the dissection
rule H(m) that is induced by H, and the substitution tiling space XH(m) .

P 2.1. – If H is a primitive substitution then XH 6= ∅ and for every τ ∈ XH

and m ∈ N there exists a tiling τm ∈ XH(m) that satisfies Hm(τm) = τ .

We use the following terminology throughout the proof of Theorem 1.1. Let H be a
primitive substitution defined on a finite set of polygonal tiles F = {T1, . . . , Tn} in Rd, with
an inflation constant ξ > 1. A choice function is a function which assigns to each tile Ti a
point h(Ti) ∈ Ti. For a tiling τ0 ∈ XH , and a choice function h, denote by Yτ0,h the Delone
set (2) that is obtained by placing one point in each tile of τ0, with respect to the choices of h.
More precisely, each tile of τ0 is equal to g(Ti), for some i and some isometry g of Rd. The
function h can naturally be extended to all the tiles of τ0, then to collections of tiles of τ0,
and in turn to tilings τ ∈ XH . We define Yτ0,h = h(τ0). Theorem 1.1 says that Yτ0,h is not a
Danzer set, for any primitive substitution polygonal tiling in XH and any choice function h.

In this section we will use the letter D to denote the Euclidean distance. For a closed
set A and a point x ∈ Rd, we will write D(x,A) = infa∈AD(x, a), and for a set A and
δ > 0 we denote by Uδ(A) the δ-neighborhood of A. Also let Vd denote the volume of the
d-dimensional unit ball.

Proof of Theorem 1.1. – Let h be a choice function and let Y = Yτ0.h. We first consider
the case where h(Ti) ∈ int(Ti) for every i. Denote by

(2.1) δ = min
i
{D(h(Ti), ∂Ti)},

and note that we are assuming for the moment that δ > 0. Denote by ∂τ the union of all
the boundaries of tiles of a tiling τ . Then our definition of δ ensures that any element x ∈ Y
satisfies D(x, ∂τ0) ≥ δ.

If a d − 1-dimensional face of a tile in τ0 contains a segment of length t, then the same
face of the same type of tile in τm contains a segment of length t ·ξm. The tiles are polygonal,
so let m be large enough such that some face F of some tile in τm contains a segment L of
length ` where `δd−1Vd−1 > 1. Since ∂τm ⊆ ∂τ0, L is also contained in ∂τ0. By (2.1), Uδ(L)

misses Y . Clearly Uδ(L) is convex, and the choice of m and ` guarantees that the volume
of Uδ(L) is at least 1.

Now suppose δ = 0, i.e., for some i, h(Ti) ∈ ∂Ti. Choose δ1 small enough so that the
following hold: if h(Ti) /∈ ∂Ti then 2δ1 < D(h(Ti), ∂Ti); if h(Ti) ∈ ∂Ti then h(Ti) is
contained in some of the boundary faces of Ti, and we require that 2δ1 is smaller than the
distance from h(Ti) to the boundary faces of Ti which do not contain h(Ti). With this choice
of δ1, let L ⊆ ∂τm be a line as in the preceding case, where m is chosen large enough so that
the length ` ofL satisfies `δd−1

1 Vd−1 > 1. Let v be a vector of length δ1 which is perpendicular
to the boundary face containing L and let L′ = L + v. Then U ′ = Uδ1(L′) is contained
in U2δ1(L) and thus contains none of the points of Y which are not in ∂τ0. Moreover L′ is
of distance δ1 from the boundary faces containing L, so U ′ is disjoint from these boundary

(2) A Delone set or separated net is defined as a set Y ⊆ Rd satisfying conditions infx,y∈Y,x6=y ‖x− y‖>0,

supx∈Rd infy∈Y ‖x− y‖<∞.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1058 Y. SOLOMON AND B. WEISS

faces, but every point of U ′ is within distance 2δ1 from these boundary faces. Our definition
of δ1 ensures that U ′ does not contain points belonging to Y ∩ ∂τ0. Thus U ′ misses Y , and
is a convex set of volume at least 1, as required.

Finally consider the set of vertices Y of the tiling τ0. Let δ1 be small enough so that for any
boundary face of any Ti, the distance from the face to any of the vertices not on the face is
greater than 2δ1. Using the samem and the same lineL ⊆ ∂τ0 as in the preceding paragraph,
define L′, U ′ = Uδ1(L′) as above. Then the fact that L ⊆ ∂τ0 and the definition of δ1 ensures
that U ′ ∩ Y = ∅, so Y is not a Danzer set.

3. Cut-and-project sets

Let d, k, n be integers with d > 1, k ≥ 1 and n = d + k, and write Rn as the direct sum
of Rd and Rk. We refer to the numbers d, k, n as the physical dimension, internal dimension,
and full dimension, the spaces Rd and Rk are the physical and internal spaces, and denote
by πphys : Rn → Rd and πint : Rn → Rk the projections associated with this direct sum
decomposition; i.e., for ~x = (x1, . . . , xn),

πphys(~x) = (x1, . . . , xd), πint(~x) = (xd+1, . . . , xn).

Let L ⊆ Rn be a grid (recall that a grid is a translate of a lattice) and let W ⊆ Rk be a
bounded subset. The set

Λ(L,W )
def
= πphys

(
L ∩ π−1

int (W )
)

is called a cut-and-project set or model set. Such sets have been extensively studied (see [19,
3, 24] and the references therein). In particular the vertex set of a Penrose tiling provides an
example of a cut-and-project set. In this section, following [17], we will apply homogeneous
dynamics in order to analyze the geometry of cut-and-project sets, and to prove Theorem 1.2.

We begin with a dynamical characterization of Danzer sets. It will be more convenient to
work with the class of dilates of Danzer sets. We say that Y ⊆ Rd is a Dilate of a Danzer
set (or DDanzer for short), if there is c > 0 such that the dilate cY = {cy : y ∈ Y } is
Danzer. Let ASLd(R) ∼= SLd(R) n Rd denote the group of affine orientation-preserving,
measure-preserving transformations of Rd. Since ASLd(R) maps convex sets to convex sets
and preserves their volumes, the property of being DDanzer set is invariant under the action
of ASLd(R) on subsets of Rd. Moreover it can be characterized in terms of this action.

P 3.1. – Let Y ⊆ Rd. Then Y is DDanzer if and only if there is T > 0 such
that for every g ∈ ASLd(R), gY ∩B(0, T ) 6= ∅.

Proof. – This is a straightforward corollary of John’s theorem (see [4, Lecture 3]) that
asserts that any convex subset K of Rd contains an ellipsoid E with E ⊆ K ⊆ dE (where
dE denotes the dilation of E by a factor of d). Since all ellipsoids of volume vol(B(0, T ))

map to the ball B(0, T ) under an affine transformation, the result follows.

We begin with a few reductions of the problem. It will simplify notation to take R2 and in
fact this entails no loss of generality:

4 e SÉRIE – TOME 49 – 2016 – No 5
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P 3.2. – Suppose d ≥ 3. If Λ ⊆ Rd is a finite union of cut-and-project sets
(respectively, a DDanzer set), Rd = R2 ⊕Rd−2 is a direct sum decomposition with associated
projections π1 : Rd → R2, π2 : Rd → Rd−2, and W ⊆ Rd−2 is bounded with non-empty
interior, then Λ′

def
= {π1(x) : x ∈ Λ ∩ π−1

2 (W )} is also a finite union of cut-and-project sets
(respectively, a DDanzer set).

Proof. – Left to the reader.

From this point on we consider Rn with its standard Q-structure Qn. We will make a
convenient reduction. We say that a lattice L ⊆ Rn is Q-irreducible with respect to the
physical space if there is no proper rational subspace R ⊆ Rn such that R ∩ L is a lattice
inR andR contains kerπint (the second condition may be stated equivalently by saying that
R contains the physical space Rd). We say that a grid L is Q-irreducible with respect to the
physical space if the underlying lattice L−L is, and we will say that a cut-and-project set Λ is
irreducible if it can be presented as Λ(L,W ) for some grid L and some window W , so that
L is Q-irreducible with respect to the physical space.

P 3.3. – Suppose Λ is a finite union of cut-and-project sets. Then there is a finite
union of cut-and-project sets Λ′ = Λ′1 ∪ · · · ∪Λ′s containing Λ, such that each Λ′j is irreducible.

Proof. – By induction on the number of cut-and-project sets defining Λ, we can assume
that this number is one, i.e., Λ is a cut-and-project set. If Λ is irreducible there is nothing
to prove. If not, we will show below that Λ is contained in a finite union of cut-and-project
sets of smaller internal dimensions. This will imply the result via another induction on the
internal dimension (note that when the internal dimension is 0, Λ is irreducible).

Our notation is as follows:L is the grid,L0 = L−L is the underlying lattice, πphys, πint are
the projections, Vphys = kerπint is the physical space, Vint = kerπphys is the internal space,
and W ⊆ Vint is the window, in the construction of Λ. Let R be a proper rational subspace

of Rn such that L′ def
= L0 ∩ R is a lattice in R, and R contains Vphys. Let R′ = R ∩ Vint.

We will find some positive integer s and for j = 1, . . . , s find bounded sets W ′j ⊆ R′, and
vectors yj ∈ R, satisfying the following: for any ` ∈ L such that πint(`) ∈ W there is

j ∈ {1, . . . , s} and ˜̀∈ L′j def
= L′ + yj such that πphys(˜̀) = πphys(`) and πint(˜̀) ∈ W ′j . This

will complete the proof, since it implies that Λ = πphys(L ∩ π−1
int (W )) is contained in

⋃
Λ′j ,

where Λ′j
def
= πphys(L

′
j ∩ π

−1
int (W ′j)).

Let V0 ⊆ Vint be a subspace such that R ⊕ V0 = Rn, and let π, π0 be the projections
associated with this direct sum decomposition. Since V0 ⊆ Vint we have π0 = πint◦π0 and the
assumption that Vphys ⊆ R implies π0 = π0 ◦ πint. Since L′ is a lattice in R, π0(L) is discrete
in V0. SinceW is bounded, so is π0(W ), and hence π0(L)∩π0(W ) is finite. Let `1, . . . , `s ∈ L
such that

π0(L) ∩ π0(W ) = {π0(`j) : j = 1, . . . , s}.

For j = 1, . . . , s write `j = xj + yj where xj = π0(`j) and yj = π(`j), and let W ′j =

R ∩ (W − xj). Clearly W ′j ⊆ R, and since W is bounded, so is W ′j .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1060 Y. SOLOMON AND B. WEISS

Suppose ` ∈ L with πint(`) ∈ W . We can write ` = π0(`) + ˜̀with ˜̀ ∈ R. Then
πphys(˜̀) = πphys(`) since ` − ˜̀∈ V0 ⊆ Vint. Since π0 = π0 ◦ πint, we have π0(`) ∈ π0(W ),
and there is j so that π0(`) = π0(`j) = xj , and˜̀− yj = `− π0(`)− (`j − xj) = `− `j ∈ L0 ∩R.

This shows ˜̀∈ L′j . Finally to see that πint(˜̀) ∈W ′j , note that

πint(˜̀) = πint(`)− πint ◦ π0(`) = πint(`)− π0(`) = πint(`)− xj ∈W − xj ,

and πint(˜̀) ∈ R since π0 ◦ πint(˜̀) = π0(˜̀) = 0.

Let Xn denote the space of unimodular lattices in Rn. Recall that this space is iden-
tified with the quotient SLn(R)/ SLn(Z) via the map which sends the coset g SLn(Z) to
the lattice gZn, and that this identification intertwines the action of SLn(R) on Xn by
linear transformations of Rn, with the homogeneous left-action g1τ(g2) = τ(g1g2), where
τ : SLn(R)→ Xn is the natural projection. A crucial ingredient in our argument will be the
following fact:

P 3.4 (Andreas Strömbergsson). – LetH0
∼= SL2(R) be embedded in SLn(R)

in the upper left-hand corner; i.e., with respect to the decomposition Rn = R2 ⊕ Rn−2,H0 acts
via its standard action on the first summand and trivially on the second summand. Then for
any x ∈ Xn, the orbit H0x is unbounded (i.e., its closure is not compact).

Proof. – Suppose by contradiction that H0x is bounded, and let g0 ∈ SLn(R) such that
x = τ(g0). By Mahler’s compactness criterion (see e.g., [13, Chap. 3]), there is ε > 0 such
that

(3.1) for any v ∈ g0Zn r {0} and any h ∈ H0, ‖hv‖ ≥ ε,

where ‖ · ‖ denotes the sup norm on Rn. Let P,Q denote respectively the projections
Rn → R2, Rn → Rn−2 corresponding to the direct sum decomposition Rn ∼= R2 ⊕ Rn−2.

Then H0 acts transitively on all nonzero vectors in the image of P , and acts trivially on the
image of Q; that is for any v ∈ Rn and any h ∈ H0, P (hv) = hP (v), Q(hv) = Q(v). Also
since we have chosen the sup norm we can write ‖v‖ = max(‖P (v)‖, ‖Q(v)‖) for any v ∈ Rn.
Since g0Zn is an abelian group of rank n, either g0Zn ∩ ker Q 6= {0}, or Q(g0Zn) is not
discrete inRn−2. In either case there is v0 ∈ g0Znr{0} such that ‖Q(v0)‖ < ε. SinceH0 acts
transitively on R2 r {0}, there is h ∈ H0 such that ‖hP (v0)‖ < ε. This implies that

‖hv0‖ = max(‖P (hv0)‖, ‖Q(hv0)‖) = max(‖hP (v0)‖, ‖Q(v0)‖) < ε,

a contradiction to (3.1).

The following statement was proved in response to our question by Dave Morris. The
proof of Morris relied on structure theory for algebraic groups and appears in the appendix
to a preliminary version of our paper. Here we give a simpler proof using Proposition 3.4.

C 3.5 (Dave Morris). – LetH0
∼= SL2(R) be as above. Then for any semisimple

group G ⊆ SLn(R) containing H0, there is no conjugate G′ of G in SLn(R) whose intersection
with SLn(Z) is a cocompact lattice in G′.
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Proof. – If such a conjugate G′ = g−1
0 Gg0 existed, then G′Zn would be compact, and

hence so would the orbit-closure H0τ(g0) ⊂ Gτ(g0) ∼= g0G
′Zn, contradicting Proposi-

tion 3.4.

Let Yn
def
= ASLn(R)/ASLn(Z) be the space of n-dimensional unimodular grids, and

letH def
= ASL2(R) be embedded in ASLn(R) in the upper left-hand corner. Equivalently, the

action of H on Rn preserves the physical space and acts on it as the group of affine volume
preserving transformations. Proposition 3.4 restricts the orbit-closures of H acting on

C 3.6. – Let H be embedded as above. Then for any y ∈ Yn, the orbit-closure
Hy is noncompact.

Proof. – Let P : ASLn(R) → SLn(R) be the natural projection sending an affine map
to its linear part. Then P is defined over Q, and induces an equivariant map P̄ : Yn → Xn,

which has a compact fiber. In particular P̄ is a proper map. We denote H0
def
= P (H) ∼= SL2(R),

x = P̄ (y). By Proposition 3.4, P̄
(
Hy
)

= H0x is not compact, and henceHy is not compact.

C 3.7. – Keeping the notations and assumptions of Corollary 3.6, assume that
the linear part of the grid y is Q-irreducible with respect to the physical space. Then the orbit-
closure Hy is invariant under all translations in Rn.

Proof. – We keep the notations of the previous proof. Let T ∼= Rn be the unipotent
radical of ASLn(R), i.e., the normal subgroup of affine maps which are actually translations.

We need to show that Ω
def
= Hy is T -invariant for any y ∈ Yn. Let S ⊆ T, S ∼= R2 be the

group of translations in the direction of the physical space which act trivially on the internal
space. The assumption that y is Q-irreducible with respect to the physical space implies that
there is no intermediate linear subspace S ⊆ S′  T such that S′y is closed, and this implies
that Sy = Ty. Since T is normal in ASLn(R), for any h ∈ H, Ω ⊇ hSy = hTy = Thy, i.e.,
there is a dense set of z ∈ Ω for which Tz ⊆ Ω. This implies that Ω is T -invariant.

We will need similar statements for products of spaces Yni
. If z` is a sequence in a

topological space, we will write z`
`→∞−−−→∞ if the sequence has no convergent subsequence.

P 3.8. – Suppose Z1, . . . , Zr are locally compact spaces, H is a topological
group acting continuously on each Z i, such that for every i and every z ∈ Z i there is a sequence
(hj) ⊆ H for which hjz

j→∞−−−→ ∞. Then for every (z1, . . . , zr) ∈ Z1 × · · · × Zr there is a

sequence (hj) ⊆ H such that for each i, hjzi
j→∞−−−→∞.

Proof. – By induction on r. If r = 1 this is immediate from assumption, and we suppose
r ≥ 2 and (z1, . . . , zr) ∈ Z1 × · · · × Zr. By the induction hypothesis there is a sequence

(gj) ⊆ H such that gjzi
j→∞−−−→∞ in Z i for i = 1, . . . , r−1. If gjzr

j→∞−−−→∞ in Zr then there
is nothing to prove. Otherwise we may replace gj by a subsequence to assume that gjzr → z.

By assumption there is a sequence (h′j) ⊆ H such that h′jz
j→∞−−−→ ∞ in Zr. Our required

subsequence will be obtained by replacing (gj) with a subsequence and selecting hj = h′jgj .
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To this end, by induction on i0 = 1, . . . , r, we will choose a subsequence of (gj) (which
we continue to denote by (gj)) with the following property:

(3.2) h′j g̃jzi
j→∞−−−→∞, for every subsequence (g̃j) ⊆ (gj) and i < i0.

The base of the induction corresponds to the case i0 = 1 in which case (3.2) is vacuously
satisfied. Let {K` : ` ∈ N} be an exhaustion of Z i0 by compact sets. Suppose first that i0 < r.
Then for any j there is ` so that if z /∈ K` then h′jz /∈ Kj . This implies that there is j0 = j0(j)

such that for all j′ ≥ j0, h′jgj′ /∈ Kj . Therefore if we replace (gj) by the subsequence (gj0(j))

then (3.2) will hold. Finally if i0 = r then since gjzr → z and h′jz
j→∞−−−→ ∞, for each j we

can find j0 = j0(j) such that for j′ ≥ j0, h′jgj′zr /∈ Kj and so, if we replace (gj) by (gj0(j))

then (3.2) will hold.

We will need a similar but stronger statement for the case of translations on vector spaces.

P 3.9. – Suppose V1, . . . , Vr are vector spaces, Pi : V1 × · · · × Vr → Vi is the
natural projection, Qi ⊆ Vi is a hyperplane for each i, and P̄i is the composition of Pi with the
quotient map Vi → Vi/Qi. If U ⊆ V1 × · · · × Vr is a linear subspace such that Pi(U) = Vi for

each i, then there is a sequence (uj) ⊆ U such that for each i, P̄i(uj)
j→∞−−−→∞ in Vi/Qi.

Proof. – In view of the surjectivity of Pi|U , the preimage Ui
def
= U ∩ P−1

i (Qi) is a hyper-
plane ofU . Let d be a translation-invariant metric onU . We may take any sequence (uj) ⊆ U
such that d(uj ,

⋃
i Ui)

j→∞−−−→∞.

C 3.10. – Let n1, . . . , nr be integers greater than 2, and suppose that for
each i we are given an embedding of H ∼= ASL2(R) as in Corollary 3.6. Then for any
y = (y1, . . . , yr) ∈

∏r
1 Yni

, there is a sequence (h`) ⊆ H such that h`yi →`→∞ ∞ simulta-
neously for all i.

Furthermore, suppose the linear parts of the yi areQ-irreducible with respect to the physical
subspace. Denote by ∆(H) the diagonal embedding of H in

∏
ASLni

(R). Then ∆(H)y is
invariant under a subgroup S in the full group of translations

∏
Rni , which projects onto each

of the factors Rni .

Proof. – The first assertion is immediate from Corollary 3.6 and Proposition 3.8. For
the second assertion, let T (i) be the unipotent radical (i.e., translational part) of ASLni

(R)

and let T = T (1) × · · · × T (r) be the unipotent radical of
∏

ASLni
, let S ⊂ ∆(H) be the

diagonal embedding of the unipotent radical (translational part) of H, and let Ω = ∆(H)y.
We know that Ω is invariant under S and our goal is to show that it is invariant under a
group S′ which projects onto each T (i). As in the proof of Corollary 3.7, it suffices to show
that Ω0 = Sy is equal to S′y, where S′ ⊂ T is a linear subspace which projects onto
each T (i), and S′ is normalized byH. Since Ty is a torus of dimension

∑
ni, there is a linear

subspace S′ such that Sy = S′y, S′ is defined overQ and its projection to each T (i) is defined
overQ and contains the physical subspace. As in the proof of Corollary 3.7, this implies that
the projection is onto T (i). Moreover S′ is the smallestQ-subgroup of T containing S. Thus
for any h ∈ H, hS′h−1 is the smallestQ-subgroup of hTh−1 containing hSh−1. Since T and
S are both invariant under conjugation by elements of H, so is S′.
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Proof of Theorem 1.2. – To make the idea more transparent we will first prove that one
cut and project set is not a DDanzer set, under the assumptions that it is in R2 and is
irreducible. We will then proceed to the general case.

So let Λ be a cut-and-project set with Λ ⊆ R2 and Λ = Λ(L,W ), whereL ⊆ Rn is a lattice,
Rn = R2 ⊕ Rn−2 is the decomposition of Rn into the physical and internal spaces, and L is
Q-irreducible with respect to the physical space. We want to show that Λ is not DDanzer.

Let H = ASL2(R). Applying Proposition 3.1 we need to show that for any T > 0 there is
h ∈ H such that

(3.3) hΛ ∩B(0, T ) = ∅.

Inspired by [17], we will use the observation that the projection πphys is equivariant with
respect to the H-action on Yn. More precisely, let L = g0Zn. By rescaling there is no loss of
generality in assuming that det(g0) = 1, so we can regard L as an element of Yn. Consider
the embedding ofH in ASLn(R) as in Corollary 3.6. ThenH acts simultaneously on subsets
of R2 via its affine action, and on Yn by left translations, and since the H-action is trivial
on Rn−2, we have

hΛ(L,W ) = Λ(hL,W ) ∀h ∈ H, L ∈ Yn.

According to Corollaries 3.6 and 3.7, the orbit-closure HL is non-compact and invariant
under translations inRn. According to Minkowski’s theory of successive minima (see e.g., [7,
Chap. 1]), this implies that in HL we can find grids whose corresponding lattices have
arbitrarily large n-th successive minimum. That is, for any T ′ we can find h ∈ H such that
the points of hL are contained in parallel affine hyperplanes with distance at least T ′ apart.

Given T > 0, let C be an open bounded subset of Rn which contains the closure
of π−1

phys(B(0, T ))∩π−1
int (W ), and let T ′ be the diameter ofC. SinceHL is not bounded, there

is h′ ∈ H so that h′L misses a translate of C, and since HL is invariant under translations,
there is h ∈ H so that hL misses C. This implies (3.3).

We now prove the general case of the theorem, i.e., when Λ = Λ1∪· · ·∪Λr, Λi = Λ(Li,Wi).
By Propositions 3.2 and 3.3 there is no loss of generality in assuming that d = 2 and each Λi is
irreducible. For each T > 0 we will find h ∈ H such that

(3.4) hΛi ∩B(0, T ) = ∅, i = 1, . . . , r.

We denote the dimension of the total space (sum of physical space and internal space) of Λi
by ni, denote the corresponding projections by π(i)

phys, π
(i)
int, write n = n1 + · · · + nr, and

consider the orbit of
L

def
= L1 ⊕ · · · ⊕ Lr

under the diagonal action of ∆(H) on the space of products of grids Y(1) × · · · × Y(r)

(where we are simplifying the notation by writing Y(i) for Yni
and X (i) for Xni

). Denote

by L̄, L̄i the corresponding lattices in Xn, X
(i). By Corollary 3.10, there is (h′j) ⊆ H such

that h′jL̄i
j→∞−−−→∞ for all i. This implies that there are hyperplanes Q(i, j) in Rni such that

the points in h′jL̄i are contained in a union of translates of Q(i, j) and the distance between
the translates tends to infinity with j. Since the space of hyperplanes is compact we may
pass to subsequences to assume that Q(i, j) → Qi for each i. Applying Proposition 3.9 we
may replace h′j with hj so that hjLi and h′jLi differ by a translation whose component in
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the direction perpendicular to Qi goes to infinity with j. In particular, the grids hjLi do not

contain points in balls B(0, Tj) ⊆ Rn with Tj
j→∞−−−→∞.

In particular, given T > 0, let Ci be a cube in Rni which contains
(
π

(i)
phys

)−1

(B(0, T )) ∩(
π

(i)
int

)−1

(Wi). The above discussion ensures that there is h ∈ H such that hLi is disjoint

fromCi for all i = 1, . . . , r. In light of Proposition 3.1, this shows that Λ is not DDanzer.

4. Construction of a dense forest

Another question related to the Danzer problem is the following. A man stands at an
arbitrary point x in a forest with trunks of radii ε > 0, how far can he see?

D 4.1. – We say that Y ⊆ Rd is a dense forest if there is a function ε = ε(T )

with ε(T )
T→∞−−−−→ 0, such that for any x ∈ Rd and any v ∈ S1 there is t ∈ [0, T ] and y ∈ Y

such that ‖x+ tv − y‖ < ε.

One can easily show the following implications. Every DDanzer set is a dense forest with
ε(T ) = Ω(T−1/(d−1)) (where f(n) = Ω(g(n)) means that lim infn→∞

f(n)
g(n) > 0). This quan-

tity corresponds to the fact that every cylinder of radii ε(T ) that is centered on a line segment
of length T contains a point. On the other hand a dense forest with ε(T ) = O(T−(d−1)) is a
DDanzer set. For this one should consider boxes with edges of lengths T, . . . , T, ε(T ). The
proofs of these statements are left to the reader.

A dense forest in R2 satisfying ε(T ) = O(T−1/4) was constructed in a paper of Chris
Bishop, see [6, Lemma 2.4], following a suggestion of Yuval Peres. However the set appearing
in [6] was not uniformly discrete (it was the union of two uniformly discrete sets). In this
section we use homogeneous dynamics and Ratner’s theorem on unipotent flows to construct
uniformly discrete dense forests in Rd, for arbitrary d.

Suppose G is a Lie group acting smoothly and with discrete stabilizers on a compact
manifold X. Then S ⊆ X is called a cross-section if:

– S is the image under a smooth and injective map of a bounded domain in Rk, where
k = dimX−dimG. By smooth and injective we mean that the map extends smoothly
and injectively to an open set containing the closure of its domain.

– There is a neighborhood B of e in G such that the map

(4.1) B × S → X, (b, s) 7→ b.s

is injective and has an open image.
– For any x ∈ X there is g ∈ G such that gx ∈ S.

It follows easily from the implicit function theorem that cross-sections always exist.

If G is a Lie group, we say that its action on X is completely uniquely ergodic if
there is a measure µ of full support on X with the property that for any one-parameter
subgroup H ⊆ G, µ is the unique H-invariant Borel probability measure on X. We have
the following source of examples for completely uniquely ergodic actions. Here we rely on
Ratner’s theorem on unipotent flows on homogeneous spaces, see [22] or [20].
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P 4.2. – Suppose G is a simple Lie group and Γ is an arithmetic cocompact
lattice, arising from a Q-structure on G for which G has no proper Q-subgroups generated by
unipotent elements, and let U be a unipotent subgroup of G. Then the action of U on G/Γ is
completely uniquely ergodic.

Proof. – Any one-parameter subgroup U0 of U is unipotent, so by Ratner’s theorem,
any U0-invariant ergodic measure arises from Haar measure on an intermediate subgroup
U0 ⊆ L ⊆ Gwhich is generated by unipotents and intersects a conjugate of Γ in a lattice inL.
This implies that up to conjugation,L is defined overQ, so by hypothesisL = G and the only
U0-invariant measure is the globally supported measure on G/Γ.

For examples of groups G,Γ satisfying the hypotheses of Proposition 4.2, see [11]. In
particular the hypotheses are satisfied for Q-structures on G = SLn(R) for n prime ([11,
Prop. 4.1]). Since the restriction of a completely uniquely ergodic action of a groupH to any
proper subgroup remains completely uniquely ergodic, this furnishes examples of completely
uniquely ergodic actions of Rd for any d.

Proof of Theorem 1.3. – By Proposition 4.2 and the preceding remark, the last assertion
in the theorem follows from the first one. We will use additive notation for the group oper-
ations on U , and we will let ‖ · ‖ denote the Euclidean norm on U . We first prove uniform
discreteness, i.e.,

inf
u1,u2∈ D,u1 6=u2

‖u1 − u2‖ > 0.

Let B be as in (4.1), and choose r > 0 so that B(0, r) ⊆ B. If u1.x0, u2.x0 ∈ S then
u2 − u1 maps a point of S to S, hence, by the injectivity of the map (4.1) cannot be in B.
In particular ‖u2 − u1‖ ≥ r.

For v ∈ Sd−1 let Cv(ε, T ) be the cylindrical set which is the image of

[0, T ]× {z ∈ Rd−1 : ‖z‖ ≤ ε}

under an orthogonal linear transformation that maps the first standard basis vector e1
to v. If Y is not a dense forest then there is a sequence Tn →∞, ε > 0 and sequences

xn ∈ U, vn ∈ Sd−1 such that for all u ∈ Cn, xn + u /∈ D where Cn
def
= Cvn

(ε, Tn); that is,

for all u ∈ Cn − xn, u.x0 /∈ S. Now let C ′n
def
= Cvn(ε/2, Tn) (so that the C ′n are parallel

to the Cn but twice as small in the directions transverse to vn) and define Borel probability
measures νn on X by∫

ϕdνn
def
=

1

vol( C ′n)

∫
C ′n−xn

ϕ(u.x0)du, ϕ ∈ Cc(X),

where du is the Lebesgue measure element on U . We claim that νn → µ in the weak-*
topology.

It suffices to show that any accumulation point of (νn) is µ, and hence to show that
any subsequence of (νn) contains a subsequence converging to µ. By compactness of the
space of probability measures on a compact metric space, after passing to a subsequence
we have νn → ν, and we need to show that ν = µ. Recall that vn is the direction of the
long axis of C ′n. Passing to another subsequence, the vectors vn converge to a limit w. By
complete unique ergodicity, it suffices to show that ν is invariant under the one-parameter
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subgroupH def
= span(w); but this is a standard exercise, see e.g., [9, Proof of Theorem 2]. This

proves the claim.
In order to derive a contradiction, let B1 be the ball B(0, ε/2) in U , and let B′ denote

the image of B1 × S under the map (4.1). With no loss of generality we can assume that
B1 is contained in the neighborhood B appearing in the definition of a section, so that this
map is injective on B1× S. Now let ϕ be a non-negative function supported on B′ and with∫
ϕdµ > 0. That is, for any z ∈ suppϕ there is u ∈ U, ‖u‖ < ε/2 such that u.z ∈ S.

By definition of D we have that for any u ∈ Cn − xn, u.x0 /∈ S. This implies that for
all u ∈ C ′n − xn, u.x0 /∈ suppϕ. This violates νn → µ.

5. An Equivalent Combinatorial Question

5.1. Preliminaries

We recall some standard notions in combinatorial and computational geometry. For a
comprehensive introduction to the notions used in this section we refer to [2, § 14.4], [18, § 10],
and [26].

D 5.1. – A range space is a pair (X,R) where X is a set, and R ⊆ P(X) is a
collection of subsets of X. The elements of X are called points, and the elements of R are
called ranges.

In the literature this is also referred to as a ‘set system’ or a ‘hypergraph’, where in the
latter case X is the set of vertices, and R is the set of hyperedges.

Many of the commonly studied examples are geometric. For example, X is Rd or [0, 1]d,
and R is the set of all geometric figures of some type, such as half spaces, triangles, aligned
boxes, convex sets, etc. For a subset A ⊆ X we denote by R|A = {S ∩ A : S ∈ R}, the
projection of R on A. This notion allows to consider geometric ranges when X is a discrete
set, like a thin grid in [0, 1]d.

D 5.2. – Let (X,R) be a range space with #X = n. For a given ε > 0, a set
Nε ⊆ X is called an ε-net if for every range S ∈ R with #(S∩X) ≥ εnwe have S∩Nε 6= ∅.
A similar definition is made for an infinite set X, equipped with a probability measure µ
on X. In that settings Nε is an ε-net if S ∩Nε 6= ∅ for every range S with µ(S ∩X) ≥ ε.

Notice that the notion of an ε-net resembles the notion of a Danzer set, whenX = [0, 1]d

with the standard Lebesgue measure, and R is the set of convex subsets of X. Below is the
computational geometry version of the Danzer problem. It is sometimes referred to as the
‘Danzer-Rogers question’.

Q 5.3. – What is the minimal cardinality of an ε-netN ⊆ [0, 1]d, where R is the
collection of convex subsets of X = [0, 1]d? Do O(1/ε) points suffice?

In this question one may equivalently take R to be the collection of boxes in X or the
collection of ellipsoids in X. This is due to the following:

P 5.4. – For any convex set K ⊆ Rd there exists boxes R1 ⊆ K ⊆ R2 with
vol(R2)/vol(R1) ≤ αd, where αd = (3d)d.
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Proof. – The claim follows from John’s Theorem, see [4, Lecture 3].

5.2. Proof of Theorem 1.4

We divide the proof of Theorem 1.4 into several parts. We begin with the more difficult
implication (ii) =⇒ (i). Let ‖ · ‖2, ‖ · ‖∞ denote the Euclidean and sup-norm respectively,
let D be the Euclidean metric, and let D(x,A) = infa∈AD(x, a). Let

(5.1)
Qt = {x ∈ Rd : ‖x‖∞ ≤ t},

Bt = {x ∈ Rd : ‖x‖2 ≤ t},

and consider the following partition of Rd into cubical layers that grow exponentially:

(5.2) L1 = Q2, Li = Q2i rQ2i−1 , i ≥ 2.

· · ·
· · ·

...

...

L1

L2

L3

L4

L5

(2,2)
(4,4)

(8,8)

(16,16)

(32,32)

OO

//

Set

(5.3) Cd =
1

4d log2(10d)
.

P 5.5. – Let g : N → N be a doubling function, such that g(x)
xd is non-

decreasing. Suppose that for every i ∈ N we have a discrete set Ni ⊆ Li that intersects every
convex set of volume Cd that is contained in Li. Then

(i) Y def
=
⋃∞
i=0Ni is a Danzer set in Rd.

(ii) If for every i we have #Ni ≤ C1g(2i), for a universal constant C1, then Y has growth
rate O(g(T )).
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The proof relies on the following two lemmas.

L 5.6. – LetR ⊆ Rd be a box. Suppose that vol(Qt∩R) ≥ 1
2vol(R), thenR ⊆ Q5td.

Proof. – Let x0 be a vertex ofR, and let r1, . . . , rd be the d edges ofRwith one end-point
at x0. Denote by |r| the length of a segment r, then we have vol(R) =

∏d
i=1 |ri|.

Set K = Qt ∩R and for every i ∈ {1, . . . , d} fix

ki = a segment of maximal length in K, which is parallel to ri.

Clearly, for every i ∈ {1, . . . , d} we have vol(K) ≤ |ki| ·
∏
j 6=i |rj |. Hence the assumption

1
2vol(R) ≤ vol(K) implies that

(5.4)
1

2
|ri| ≤ |ki|

for all i ∈ {1, . . . , d}.
Let ` = diam(R), and let k ∈ K. Since D(0, k) ≤ t

√
d, we have

R ⊆ B(k, `) ⊆ Bt√d+` ⊆ Qt√d+`.

On the other hand

` = diam(R) =

√
|r1|2 + . . .+ |rd|2 ≤

√
dmax

i
{|ri|}

(5.4)
≤ 2
√
dmax

i
{|ki|} ≤ 4td.

So R ⊆ Q5td.

L 5.7. – For any boxR of volume 1 inRd there is a layerLi such thatLi∩R contains
a convex set K with vol(K) ≥ Cd, where Cd is as in (5.3).

Proof. – Let m ∈ N be the minimal integer such that R ⊆
⋃m
i=0 Li = Q2m . Let j ∈ N be

the minimal integer satisfying 5d ≤ 2j . So we may also write

Q2m = Q2m−j−1 ∪ Lm−j ∪ Lm−j+1 ∪ · · · ∪ Lm.

Since vol(R) = 1 we either have vol(Q2m−j−1∩R) ≥ 1
2 or vol((Lm−j∪· · ·∪Lm)∩R) ≥ 1

2 .
If vol(Q2m−j−1 ∩R) ≥ 1

2 , then by Lemma 5.6 we have

R ⊆ Q2m−j−1·5d ⊆ Q2m−1 =

m−1⋃
i=0

Li,

contradicting the minimality of m. So vol((Lm−j ∪ . . . ∪ Lm) ∩ R) ≥ 1
2 , and therefore

vol(Li ∩R) ≥ 1
2(j+1) ≥

1
2 log2(10d)

for some i ∈ {m− j,m− j + 1, . . . ,m}.
It remains to find a convex setK ⊆ Li∩R with vol(K) ≥ Cd = 1/[4d log2(10d)]. Denote

by F1, . . . , F2d the external d−1-dimensional faces of Li (namely, the faces of the cubeQ2i ).
Each Fi defines a convex set

Ki = {x ∈ Li : ∀j 6= i,D(x, Fi) ≤ D(x, Fj)}.

The setsKi∩R are convex and one of them contains at least (2d)−1 of the volume of Li∩R,
which gives the desired K.
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Proof of Proposition 5.5. – Assertion (i) follows directly from Lemma 5.7. As for (ii), by
adding points to some of the Ni’s we may assume that #Ni = C1g(2i) for every i.

For a measurable set A we denote by D(A) = #(Y ∩A)
vol(A) , the density of the set Y in A,

where Y =
⋃
iNi. Note that for every i > 0 the layer Li is the union of 4d−2d cubes of edge

length 2i−1, that intersect only at their boundaries. So for every i > 0 we have

D(Li) =
C1g(2i)

(4d − 2d)(2i−1)d
=

C1

2d − 1
· g(2i)

2di
.

Since g(x)
xd is non-decreasing, D(Li) ≥ D(Li−1), and therefore D(Li) ≥ D(Q2i−1). Also

note that for every i > 0 we have vol(Li) = (2d − 1) · vol(Q2i−1), then

#Ni = D(Li)vol(Li) ≥ D(Q2i−1)(2d − 1)vol(Q2i−1) = (2d − 1)#(Y ∩Q2i−1).

In particular, for every i we have #(Y ∩Q2i) ≤ 2#(Ni) = 2C1g(2i). Then for a given n,
let i ∈ N be such that n ≤ 2i < 2n. Then

#(Y ∩Qn) ≤ #(Y ∩Q2i) ≤ 2C1g(2i) ≤ 2C1g(2n).

Since g is doubling the proof is complete.

Proof of Theorem 1.4. – For (ii) =⇒ (i), let εi = α−1
d Cd · 2−di, where Cd is as in (5.3),

and αd = (3d)d is as in Proposition 5.4. Let N ′′i be an εi-net for (X = [−1, 1]d, {boxes})
with #N ′′i ≤ Cg

(
ε
−1/d
i

)
. Rescale by a factor of 2i in each axis. So X becomes Q2i , and

N ′′i becomes N ′i ⊆ Q2i , a set that intersects every box of volume εi · 2di = α−1
d Cd in Q2i ,

with #N ′i ≤ Cg(ε
−1/d
i ) = Cg((α−1

d Cd)
−1/d · 2i). Note that since g(x) is doubling we have

#N ′i = O(g(2i)) (with a uniform constant for all i), and it follows from Proposition 5.4 that
N ′i intersects every convex set of volume Cd inQ2i . LetNi = N ′i ∩Li, where Li is as in (5.2).
Then #Ni = O(g(2i)) and Ni intersects every convex set of volume Cd that is contained
in Li. By Proposition 5.5 the set Y =

⋃
iNi ⊆ Rd is a Danzer set with growth rate O(g(T )).

It remains to prove the easier direction (i) =⇒ (ii). Suppose that Y ⊆ Rd intersects
every box of volume 1 in Rd. For a given ε > 0 consider the square Qε of edge length ε−1/d,

centered at the origin. Then Nε
def
= Y ∩Qε intersects every box of volume 1 that is contained

inQε. ContractQε by a factor of ε1/d in every one of the axes. Then ε1/dQε = [− 1
2 ,

1
2 ]d, and

ε1/dNε intersects every box of volume ε in it. In addition, if Y = O(g(T )), then there exists
a constant C such that for every ε > 0 we have #ε1/dNε = #Nε ≤ Cg(ε−1/d).

Proof of Corollary 1.5. – Given D ⊆ Rd with growth rate O(g(T )), that intersects every
convex set K ⊆ Rd of volume 1, setting D′ = βd · D for a suitable constant βd, that
depends only on d, we obtain a set with the same growth rate that intersects every convex
set of volume Cd. Let Ai = D′ ∩ Li, then #Ai = O(g(2i)), and it intersects every convex
set K ⊆ Li of volume Cd . Notice that a convex in Li with volume Cd must contain a box
with some fixed thickness. So taking a thin enough rational grid Γi inLi, and replacing every
x ∈ Ai by the 2d vertices of the minimal cube with vertices in Γi that contains x, we obtain a

setNi ⊆ Li∩Γi ⊆ Qd with the same properties asAi. So by Proposition 5.5,DQ
def
=
⋃
iNi is

as required.
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6. An improvement of a construction of Bambah and Woods

As we saw in Theorem 1.4, the existence of Danzer sets with various growth rates is equiv-
alent to the existence of ε-nets for the range space of boxes. Finding bounds on the cardinal-
ities of ε-nets in range spaces is an active topic of research in combinatorics and computa-
tional geometry. We now derive Theorem 1.6 from results in computational geometry. Many
of the results in this direction utilize the low complexity of the range space, which is measured
using the following notion.

D 6.1. – Let (X,R) be a range space. A finite set F ⊆ X is called shattered if

#{F ∩ S : S ∈ R} = 2#F .

The Vapnic Chervonenkis dimension, or VC-dimension, of a range space (X,R) is

VCdim(X,R) = sup{#F : F ⊆ X is shattered}.

E 6.2. – To explain this notion we compute the VC-dimension for the following
two simple examples, where X = [0, 1]d:

– R is the set of closed half-spaces, whereH is a half-space, i.e., H = {x ∈ Rd : f(x) ≤ t},
for some linear functional f and t ∈ R. We show that VCdim(X,R) = d + 1. First
note that if Λ ⊆ X, #Λ = d+ 1, and Λ is in general position, then Λ is shattered. On
the other hand, by Radon’s Theorem, every Λ ⊆ X of size d+2 can be divided into two
sets A,B such that their convex hulls intersect. In particular, there is no half-space H
such that A = Λ ∩H.

– R is the set of convex sets. Here VCdim(X,R) = ∞: let C be a d − 1-dimensional
sphere in [0, 1]d. Then every finite C0 ⊆ C is shattered since C ∩ conv(C0) = C0 and
conv(C0) ∈ R.

Low VC-dimension in particular yields a bound on the cardinality of R. Lemma 6.3
below was proved originally by Sauer, and independently by Perles and Shelah; see [2,
Lemma 14.4.1].

L 6.3. – If (X,R) is a range space with VC-dimension d, and #X = n, then
#R ≤

∑d
i=0

(
n
i

)
.

As a corollary we have (see [2] Corollary 14.4.3):

C 6.4. – Let (X,R) be a range space of VC-dimension d, and let Rk be
{s1 ∩ · · · ∩ sk : si ∈ R}. Then VCdim(X,Rk) ≤ 2dk log(dk).

Since every d-dimensional box is the intersection of 2d half-spaces, combining Example 6.2
on half-spaces and Corollary 6.4 we deduce the following.

C 6.5. – Let Q be a d-dimensional cube, then

VCdim(Q, {boxes}) ≤ 4d(d+ 1) log(2d(d+ 1)).
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We proceed to the proof of Theorem 1.6. To simplify notations, we depart slightly
from (5.1), and denote by Qn ⊆ Rd the cube of edge length n centered at the origin in
this section. We begin with the following proposition, which is a special case of a result of
Haussler and Welzl [15]. For completeness we include the proof of this proposition, which
we learned from Saurabh Ray.

P 6.6. – For any d there is a constant C such that for any integer n > 0 there
exists a finite setN ⊆ Qn with #N = Cnd log n, which intersects any boxR ⊆ Qn of volume 1.

Proof. – Let Γn be the set of vertices of a regular decomposition ofQn into cubes of edge-
length 1/n. Then each edge of Qn is divided into n2 points, and therefore #Γn = n2d. Note
that any boxR ⊆ Qn of volume 1 that is contained inQn contains Ω(n2d/nd) = Ω(nd) points
of Γn (up to an error of O(nd−1)), and at least nd/2 points (when n is sufficiently large).

Let

p =
c log(n)

nd
∈ (0, 1),

where c depend only on d, and will be chosen later. Let N be a random subset of Γn that is
obtained by choosing points from Γn randomly and independently with probability p. Then
#N is a binomial random variable B(m, p), where m = n2d, with expectation

E(#N) = mp = n2d · p = c · nd log(n).

Since #N = B(m, p) the values of #N concentrate near E(#N). To be precise, using the
Chernoff bound for example (see [1]) one obtains

Prob[|#N − E(#N)| ≥ E(#N)/2] ≤ e−
E(#N)

16 .

So in particular with probability greater than (n− 1)/n we have

(6.1)
1

2
cnd log(n) ≤ #N ≤ 3

2
cnd log(n).

N misses a given box R if all the points in R are not chosen in the random set N . This
occurs with probability at most

(1− p)n
d/2 =

(
1− c log(n)

nd

) nd

c log(n)
· c log(n)

2

≤
(

1− c log(n)

nd

)( nd

c log(n)
+1
)

c log(n)
4

≤ e−c log(n)/4 =
1

nc/4
.

Let our collection of ranges R be the collection of boxes in Qn (where two boxes R1, R2

are considered to be equal if their intersections with Γn coincide). By Corollary 6.5 we have

VCdim(Qn,R) ≤ 4d(d+ 1) log(2d(d+ 1)) ≤ 4(d+ 1)3
def
= t. By Lemma 6.3 we have

#R ≤
t∑
i=0

(
#Γn
i

)
≤ (t+ 1)n2dt.

Pick c/4 = 2dt+1 = O(d4). A standard union bound gives that the probability to miss some
box R is at most

(6.2) (t+ 1)n2dt · 1

nc/4
= O

(
1

n

)
.
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By (6.1) and (6.2) we deduce that there exists a set N ⊆ Γn of size at most 3
2cn

d log(n)

that intersects every box of volume 1 in Qn.

Proof of Theorem 1.6. – Let ε > 0. Let n ∈ N be the minimal positive integer that
satisfies 1/nd ≤ ε. By Proposition 6.6 for every n ∈ N we have a set Nn ⊆ Qn, with
#Nn ≤ Cnd log(n) that intersects every box of volume 1 inQn. Rescaling by a factor of 1/n

in each axis, we obtain a set Yn ⊆ [−1/2, 1/2]d of size at mostCnd log(n) that intersects every
box of volume 1/nd in [−1/2, 1/2]d. In particular, for every εwe have constructed an ε-net of
cardinality Cnd log(n) for the range space ([0, 1]d, {boxes}). Notice that n−1 < ε−1/d ≤ n,
so we showed (ii) of Theorem 1.4, with g(x) = xd log(x), and therefore we have a Danzer set
of growth rate O(T d log(T )).

7. Some open questions

We conclude with a list of open questions which would constitute further progress toward
Danzer’s question.

7.1. Fractal substitution systems and model sets

In § 2 we showed that Delone sets obtained from polygonal substitution tilings are not
Danzer sets. There is also a theory of substitution tilings in which the basic tiles are fractal
sets (see [25] and the references therein), and our methods do not apply to these tilings. It
would be interesting to extend Theorem 1.1 to substitution tilings which are not polygonal.
Also it would be interesting to extend Theorem 1.1 to finite unions of sets obtained from
substitution tilings.

Similarly, in our definition of cut-and-project sets, the internal space was taken to be a
real vector space. More general constructions, often referred to as model sets, in which the
internal space is an arbitrary locally compact abelian group have also been considered, see,
e.g., [19, 3]. It is likely that Theorem 1.2 can be extended to model sets with a similar proof.

7.2. Quantifying the density of forests

We do not know whether the dense forest constructed in § 4 is a Danzer set. One can
also ask how close it is to being one, in the following sense. One can quantify the ‘density’
of a dense forest by obtaining upper bounds on the function ε(T ); as we remarked in § 4 if
Y ⊆ Rd is a dense forest with ε(T ) = O(T−(d−1)) then it is a DDanzer set. As also mentioned
in § 4, the example of Peres given in [6] is a dense forest inR2 with ε(T ) = O(T−1/4). It would
be interesting to construct dense forests in the plane with ε(T ) = Ω(T s) for s < −1/4.

In our example of a dense forest, an upper bound on the function ε(T ) would follow from
a bound on the rate of convergence of ergodic averages in Ratner’s equidistribution theorem,
for one parameter unipotent flows on homogeneous spaces such as those in Proposition 4.2.
Note that in these examples, when d > 1, one-parameter groups are not horospherical and
hence such bounds are very difficult to obtain. In a work in progress [16], Lindenstrauss,
Margulis and Mohammadi prove such bounds but they are much weaker than the bounds
required to prove the Danzer property.
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7.3. Relation to dynamics on pattern spaces

The collection C of closed subsets of Rd is compact with respect to a natural topology
sometimes referred to as the Chabauty topology. Roughly speaking, two A and B are close
to each other in C if their intersections with large balls are close in the Hausdorff metric.
The group ASLd(R) of volume preserving affine maps acts on C via its action on Rd, and
recalling Proposition 3.1, we can interpret the Danzer property as a statement about this
action. Namely Y ∈ C is not DDanzer (in the sense of § 3) if its orbit-closure contains the
empty set. This leads to the following question:

Q 7.1. – Is it true that the only minimal sets for the action of ASLd(R) on C are
the fixed points Y = ∅, Y = Rd?

In [12], Gowers proposed a weakening of the Danzer question. He asked whether there
are Danzer sets Y which have the additional property that

sup{#(Y ∩ C) : C convex, vol(C) = 1} <∞.

It is not hard to show that an affirmative answer to Question 7.1 would imply a negative
answer to Gowers’ question.
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