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THE HOROBOUNDARY OF OUTER SPACE, AND
GROWTH UNDER RANDOM AUTOMORPHISMS

 C HORBEZ

A. – We show that the horoboundary of outer space for the Lipschitz metric is a quotient
of Culler and Morgan’s classical boundary, two trees being identified whenever their translation length
functions are homothetic in restriction to the set of primitive elements of FN . We identify the set
of Busemann points with the set of trees with dense orbits. We also investigate a few properties of
the horoboundary of outer space for the backward Lipschitz metric, and show in particular that it is
infinite-dimensional when N ≥ 3. We then use our description of the horoboundary of outer space to
derive an analogue of a theorem of Furstenberg and Kifer [20] and Hennion [32] for random products
of outer automorphisms of FN , that estimates possible growth rates of conjugacy classes of elements
of FN under such products.

R. – Nous montrons que l’horofrontière de l’outre-espace pour la distance de Lipschitz
est un quotient de la frontière classique de Culler et Morgan, dans laquelle deux arbres sont identifiés
lorsque leurs fonctions-longueurs de translation sont homothétiques en restriction aux éléments pri-
mitifs de FN . Nous identifions l’ensemble des points de Busemann à l’ensemble des arbres à orbites
denses. Nous étudions également quelques propriétés de l’horofrontière de l’outre-espace pour la dis-
tance de Lipschitz inversée, et montrons en particulier que celle-ci est de dimension topologique infinie
dès que N ≥ 3. Nous utilisons ensuite notre description de l’horofrontière de l’outre-espace pour mon-
trer un analogue d’un théorème de Furstenberg et Kifer [20] et Hennion [32] pour les produits aléatoires
d’automorphismes extérieurs de FN , estimant les taux de croissance possibles des classes de conjugai-
son d’éléments de FN sous l’action de tels produits.

Introduction

Over the past decades, the study of the group Out(FN ) of outer automorphisms of a
free group of rank N has benefited a lot from the study of its action on some geometric
complexes, among which stands Culler and Vogtmann’s outer space [12]. A main source of
inspiration in this study comes from analogies with arithmetic groups acting on symmetric
spaces, and mapping class groups of surfaces acting on Teichmüller spaces. Outer spaceCVN
(or its unprojectivized version cvN ) is the space of equivariant homothety (isometry) classes
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1076 C. HORBEZ

of simplicial free, minimal, isometric actions of FN on simplicial metric trees. It is naturally
equipped with an asymmetric metric d (i.e., d satisfies the separation axiom and the triangle
inequality, but we can have d(x, y) 6= d(y, x)). This metric is defined in analogy with
Thurston’s asymmetric metric on Teich(S). The distance between two trees T, T ′ ∈ CVN is
the logarithm of the infimal Lipschitz constant of anFN -equivariant map from the covolume
one representative of T to the covolume one representative of T ′ [15]. We aim at giving a
description of the horoboundary of outer space, which we then use to derive a statement
about the growth of elements of FN under random products of automorphisms, analogous
to a theorem of Furstenberg and Kifer [20] and Hennion [32] about random products of
matrices.

The horoboundary of a metric space was introduced by Gromov in [22]. Let (X, d) be a
metric space, and b be a basepoint in X. Associated to any z ∈ X is a continuous map

ψz : X → R
x 7→ d(x, z)− d(b, z).

Let C(X) be the space of real-valued continuous functions onX, equipped with the topology
of uniform convergence on compact sets. Under some geometric assumptions onX, the map

ψ : X → C(X)

z 7→ ψz

is an embedding, and taking the closure of its image yields a compactification of X, called
the horofunction compactification. The space ψ(X)rψ(X) is called the horoboundary of X.
In [62], Walsh extended this notion to the case of asymmetric metric spaces.

Walsh identified the horofunction compactification of the Teichmüller space of a closed
surface, with respect to Thurston’s asymmetric metric, with Thurston’s compactification,
defined as follows (see [14]). Let C(S) denote the set of free homotopy classes of simple
closed curves on S. The space Teich(S) embeds into PR C(S) by sending any element to the
collection of all lengths of geodesic representatives of homotopy classes of simple closed
curves, and the image of this embedding has compact closure. Thurston identified the
boundary with the space of projectivized measured laminations on S.

In the context of group actions on trees, lengths of curves are replaced by translation
lengths of elements of the group. The translation length of an element g of a group G

acting by isometries on an R-tree T is defined as ||g||T := infx∈T dT (x, gx). Looking at
the translation lengths of all elements of FN yields an embedding of cvN into RFN , whose
image has projectively compact closure, as was proved by Culler and Morgan [11]. This
compactification CVN of outer space was described by Cohen and Lustig [10] and Bestvina
and Feighn [6] as the space of homothety classes of minimal, very small, isometric actions
of FN on R-trees, see also [37].

We prove that Culler and Morgan’s compactification of outer space is not isomorphic to
the horofunction compactification. To get the horocompactification of outer space, one has
to restrict translation length functions to the set PN of primitive elements of FN , i.e., those
elements that belong to some free basis of FN . This yields an embedding ofCVN into PR PN ,
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THE HOROBOUNDARY OF OUTER SPACE, AND GROWTH 1077

whose image has compact closure CVN
prim

, called the primitive compactification [36]. Alter-
natively, the space CVN

prim
is the quotient of CVN obtained by identifying two trees when-

ever their translation length functions are equal in restriction to PN . An explicit descrip-
tion of this equivalence relation in terms of trees was given in [36, Theorem 0.2]. The equiva-
lence class of a tree with dense FN -orbits consists of a single point. The typical example of a
nontrivial equivalence class is obtained by equivariantly folding an edge e of the Bass-Serre
tree of a splitting of the form FN = FN−1∗ along some translate ge, where g ∈ FN−1 is not
contained in any proper free factor of FN−1.

T 2.2. – There exists a unique Out(FN )-equivariant homeomorphism
from CVN

prim
to the horocompactification of CVN which restricts to the identity on CVN . For

all z ∈ CVN
prim

, the horofunction associated to z is given by

ψz(x) = log sup
g∈ PN

||g||z
||g||x

− log sup
g∈ PN

||g||z
||g||b

for all x ∈ CVN (identified with its covolume 1 representative).

Both suprema in the above formula can be taken over a finite set of elements that only
depends on x and b. We could also choose any representative of z in cvN , and take the
supremum over all elements of FN . Denoting by Lip(x, z) the infimal Lipschitz constant of
an FN -equivariant map from x to a fixed representative of z in cvN , we also have

ψz(x) = log Lip(x, z)− log Lip(b, z).

A special class of horofunctions in the horoboundary of a metric space X comes from
points arising as limits of infinite almost-geodesic rays in X, called Busemann points [57].
Walsh proved that all points in the horoboundary of the Teichmüller space of a closed
surface are Busemann. This is no longer true in outer space, one obstruction coming from
the noncompleteness of outer space, see [2]: some points in the boundary are reached in finite
time along geodesic intervals. We show that Busemann points in the horoboundary of outer
space coincide with trees having dense orbits under the FN -action.

As the Lipschitz metric on outer space is not symmetric, one can also consider the
horoboundary of outer space for the backward metric. We investigate some of its proper-
ties, but we only give a complete description when N = 2. There seems to be some kind of
duality between the two boundaries we get, the horofunctions for the backward metric being
expressed in terms of dual currents. Topologically though, both boundaries are of rather
different nature. For example, we show that the backward horocompactification has infinite
topological dimension when N ≥ 3, while the forward horocompactification of outer space
has dimension 3N − 4.

Our motivation for understanding the horoboundary of outer space comes from the
question of describing the behavior of random walks on Out(FN ). Karlsson and Ledrappier
proved that a typical trajectory of the random walk on a locally compact group G acting by
isometries on a proper metric space X follows a (random) direction, given by a point in the
horofunction compactification of X, see [47, 48].

Given a probability measure µ on a group G, the left random walk on (G,µ) is the
Markov chain on G whose initial distribution is given by the Dirac measure at the identity
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1078 C. HORBEZ

element of G, with transition probabilities given by p(x, y) := µ(yx−1). In other words, the
position Φn of the random walk at time n is given from its position e at time 0 by multiplying
successively n independent increments φi of law µ on the left, i.e., Φn = φn · · ·φ1.

Random walks on linear groups were first considered by Furstenberg and Kesten [19],
who studied the asymptotic behavior of the norm ||Xn · · ·X1|| of a product of indepen-
dent matrix-valued random variables. Furstenberg then studied the growth of the vector
norms ||Xn · · ·X1v||, where v ∈ RN , along typical sample paths of the random walk
on (SL(N,R), µ), where µ is a probability measure. He showed [17, Theorems 8.5 and 8.6]
that if µ satisfies some moment condition, and if the support of µ generates a noncom-
pact irreducible subgroup of SL(N,R), then there exists λ > 0 such that for all vectors
v ∈ RN r {0}, along almost every sample path of the random walk on (SL(N,R), µ), the
vector v grows exponentially fast with exponential growth rate equal to λ. Here, a subgroup
is irreducible if it does not virtually preserve any proper linear subspace of RN . An analogue
of Furstenberg’s result for random products in the mapping class group of a closed surface S,
was provided by Karlsson [46, Corollary 4]. More precisely, Karlsson showed (again under
some moment and irreducibility condition) that the lengths of all isotopy classes of essential
simple closed curves on S have the same exponential growth rate. Karlsson derived this
statement from Karlsson and Ledrappier’s ergodic theorem, by using Walsh’s description
of the horoboundary of the Teichmüller space of S, equipped with Thurston’s asymmetric
metric.

We use our description of the horoboundary of outer space to study the growth of conju-
gacy classes of elements of FN under random products of outer automorphisms, and prove
an analogue of Furstenberg’s and Karlsson’s results in this context. Let µ be a probability
measure on Out(FN ). In the (generic) case where the support of µ generates a nonelemen-
tary subgroup of Out(FN ), we show that all elements of FN have the same positive expo-
nential growth rate along typical sample paths of the random walk on (Out(FN ), µ). Here,
by nonelementary, we mean a subgroup of Out(FN ) which does not virtually fix the conju-
gacy class of any finitely generated subgroup of FN of infinite index (this is the analogue
of Furstenberg’s irreducibility condition). The length ||g|| of an element g ∈ FN (or more
precisely of its conjugacy class) is defined as the word length of a cyclically reduced represen-
tative of the conjugacy class of g in the standard basis of FN . The group Out(FN ) acts on the
set of conjugacy classes of elements of FN . In the following statement, we denote by d sym

CVN

the symmetrized version of the Lipschitz metric on CVN , defined by setting d sym
CVN

(T, T ′) :=

dCVN (T, T ′) + dCVN (T ′, T ).

T 5.7. – Let µ be a probability measure on Out(FN ), whose support is finite and
generates a non virtually cyclic, nonelementary subgroup of Out(FN ). Then there exists a
(deterministic) constant λ > 0 such that for all g ∈ FN , and almost every sample path (Φn)n∈N
of the random walk on (Out(FN ), µ), we have

lim
n→+∞

1

n
log ||Φn(g)|| = λ.

The growth rate λ is equal to the drift of the random walk on CVN for the asymmetric
Lipschitz metric. Its positivity is established in Corollary 5.14.
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THE HOROBOUNDARY OF OUTER SPACE, AND GROWTH 1079

Even if we no longer assume the subgroup generated by the support of µ to be nonele-
mentary, we can still provide information about possible growth rates of elements of FN
under random automorphisms. This time, several growth rates can arise, and we give a
bound on their number. Our main result is an analogue of a version of Oseledets’ multi-
plicative theorem, that is due to Furstenberg and Kifer [20, Theorem 3.9] and Hennion [32,
théorème 1] in the case of random products of matrices. Given a probability measure µ on
the linear groupGL(N,R), Furstenberg-Kifer and Hennion’s theorem states that there exists
a (deterministic) filtration of RN by linear subspaces {0} = L0 ⊆ L1 ⊆ · · · ⊆ Lr = RN ,
and (deterministic) Lyapunov exponents 0 ≤ λ1 < · · · < λr, so that for all i ∈ {1, . . . , r},
all v ∈ Li r Li−1, and almost every sample path (An)n∈N of the left random walk
on (GL(N,R), µ), we have

lim
n→+∞

1

n
log ||Anv|| = λi.

In the case of free groups, the filtration of RN is replaced by the following notion. A filtration
of FN is a finite rooted tree, whose nodes are labelled by subgroups of FN , in which the label
of the root is FN , and the children of a node labelled by H are labelled by subgroups of H.

C 5.25. – Let µ be a probability measure on Out(FN ), with finite first moment
with respect to d sym

CVN
. Then there exists a (deterministic) filtration ofFN , and a (deterministic)

Lyapunov exponent λH ≥ 0 associated to each subgroup H of the filtration, with λH′ ≤ λH
as soon as H ′ is a child of H, such that the following holds.

For all g ∈ FN conjugate into a subgroup H of the filtration, but not conjugate into any of
the children ofH, and almost every sample path (Φn)n∈N of the random walk on (Out(FN ), µ),
we have

lim
n→+∞

1

n
log ||Φn(g)|| = λH .

In addition, there are at most 3N−2
4 positive Lyapunov exponents.

We can actually be a bit more precise about the filtration that arises in Corollary 5.25,
namely: at each level of the filtration, the children ofH coincide with a set of representatives
of the conjugacy classes of point stabilizers of some very small H-tree with dense orbits. In
addition, the conjugacy class of a subgroup of FN arising in the filtration has finite orbit
under the subgroup of Out(FN ) generated by the support of µ.

To prove Corollary 5.25, we start by associating to almost every sample path of the
random walk on (Out(FN ), µ) a (random) filtration, before showing that this filtration can
actually be chosen to be deterministic (i.e., independent from the sample path). By Karlsson
and Ledrappier’s theorem, almost every sample path of the random walk is directed by a
(random) horofunction. It follows from our description of the horoboundary of outer space
that this horofunction is associated to a (random) tree T . We show that we may choose T
to have dense FN -orbits as soon as the drift of the random walk is positive (if not, then all
elements of FN have subexponential growth). The children of the root will be representatives
of the conjugacy classes of the point stabilizers of T . We then argue by induction on the
rank to construct the whole filtration. One ingredient of the proof is the study of stationary
measures on the horoboundary of outer space.
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1080 C. HORBEZ

A consequence of Corollary 5.25 is that given an element g ∈ FN , either g grows subex-
ponentially along almost every sample path of the random walk, or g grows exponentially at
speedλH (independent of the sample path). The number of possible growth rates is uniformly
bounded in the rank N of the free group.

The bound on the number of Lyapunov exponents was inspired by a result of Levitt about
possible growth rates of elements of FN under iteration of a single automorphism [50]. In
the case where µ is a Dirac measure supported on some element of Out(FN ), Corollary 5.25
specifies to Levitt’s statement. In a sense, the bound on the number of Lyapunov exponents
is optimal: in [50], Levitt gave an example of a single automorphism ofFN with exactly 3N−2

4

exponential growth rates, see Example 5.26 of the present paper. We saw however that in
the opposite (and generic) case where the support of µ generates a sufficiently big subgroup
of Out(FN ), all conjugacy classes in FN have the same positive growth rate.

By using Walsh’s description of the horoboundary of the Teichmüller space for Thurston’s
metric, and building on Karlsson’s ideas in [46], our methods also yield the analogous result
about growth of curves under random products of elements of the mapping class group
of a compact surface. In this case, the appropriate analogue of the filtration is given by a
decomposition of the surface into subsurfaces.

We also provide a version of Corollary 5.25 in the case where increments are no longer
assumed to be independent, in analogy to Karlsson’s in [46, Theorem 2], see Section 5.2. It
would be interesting to know whether our methods can be generalized to give a full version
of an Oseledets-like theorem for ergodic cocycles of automorphisms of free groups.

The paper is organized as follows. In Section 1, we recall basic facts about outer space,
and present two ways of compactifying it (namely, Culler and Morgan’s compactification,
and the primitive compactification), as well as the Lipschitz (asymmetric) metric on outer
space. Section 2 is devoted to the identification of the horofunction compactification of outer
space with the primitive compactification. In Section 3, we investigate the geometry of the
horoboundary of outer space. In particular, we discuss the link between the horoboundary
and the metric completion of outer space, which was identified by Algom-Kfir in [2] with the
space of trees in CVN having a nontrivial simplicial part, and with trivial arc stabilizers; we
also identify the set of Busemann points with the set of trees with denseFN -orbits inCVN . In
Section 4, we discuss some properties of the horoboundary of outer space for the backward
metric, and give a description when N = 2. The last section of the paper is devoted to the
study of the growth of elements of FN under random products of elements of Out(FN ). We
start with the case of ergodic cocycles of automorphisms (Section 5.2), before turning to the
case of random walks on Out(FN ). The case of a random walk on a nonelementary subgroup
is treated in Section 5.3. Finally, Section 5.4 is devoted to the proof of our Out(FN )-version
of Furstenberg-Kifer and Hennion’s theorem.

Acknowledgments. – I would like to thank my advisor Vincent Guirardel for suggesting
many stimulating questions, and for the many discussions we had that led to improvements
in the exposition of the material in the paper. I also thank the anonymous referee for valuable
suggestions.
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THE HOROBOUNDARY OF OUTER SPACE, AND GROWTH 1081

1. Background on outer space

1.1. Outer space

Let N ≥ 2. Denote by RN the graph having one vertex and N edges, whose petals
are identified with some free basis of FN . A marked metric graph is a pair (X, ρ), where
X is a compact graph, all of whose vertices have valence at least 3, equipped with a path
metric (each edge being assigned a positive length that makes it isometric to a segment),
and ρ : RN → X is a homotopy equivalence. Outer space CVN was defined by Culler
and Vogtmann in [12] to be the space of equivalence classes of marked metric graphs, two
graphs (X, ρ) and (X ′, ρ′) being equivalent if there exists a homothety h : X → X ′ such
that ρ′ is homotopic to h ◦ ρ. Passing to the universal cover, one can alternatively define
outer space as the space of simplicial free, minimal, isometric actions of FN on simplicial
metric trees, up to equivariant homothety (an action of FN on a tree is said to be minimal if
there is no proper invariant subtree). It is possible to normalize all the graphs inCVN to have
volume 1. We denote by cvN the unprojectivized outer space, in which graphs (or equivalently
trees) are considered up to isometry, instead of homothety. The group Out(FN ) acts onCVN
on the right by precomposing the markings (we may also want to consider a left action by
setting Φ.X := X.Φ−1 for Φ ∈ Out(FN ) and X ∈ CVN ). This action is proper but not
cocompact, however outer space has a spine KN , which is a deformation retract of CVN on
which Out(FN ) acts cocompactly. For ε > 0, we also define the ε-thick part CV εN of outer
space to be the subspace of CVN consisting of graphs whose volume one representative has
no loop of length smaller than ε, on which Out(FN ) acts cocompactly. The reader is referred
to [61] for an excellent survey and reference article about outer space.

1.2. Culler and Morgan’s compactification of outer space

An R-tree is a metric space (T, dT ) in which any two points x and y are joined by a unique
embedded topological arc, which is isometric to a segment of length dT (x, y). Let T be an
FN -tree, i.e., an R-tree equipped with an isometric action of FN . For g ∈ FN , the translation
length of g in T is defined to be

||g||T := inf
x∈T

dT (x, gx).

Culler and Morgan have shown in [11, Theorem 3.7] that the map

i : cvN → RFN

T 7→ (||g||T )g∈FN

is injective (and actually a homeomorphism onto its image for the weak topology on
outer space introduced in [12]), whose image has projectively compact closure CVN [11,
Theorem 4.5]. Bestvina and Feighn [6], extending results by Cohen and Lustig [10], have
characterized the points of this compactification, see also [37]. They showed that CVN is the
space of homothety classes of minimal, very small FN -trees, i.e., trees with trivial or maxi-
mally cyclic arc stabilizers and trivial tripod stabilizers. We also denote by cvN the preimage
of CVN in RFN . We call the topology induced by this embedding on each of the spaces
CVN , CVN , cvN and cvN the axes topology, it is equivalent to the weak topology on CVN .
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1082 C. HORBEZ

Bestvina and Feighn showed that CVN has topological dimension 3N − 4, their result was
improved by Gaboriau and Levitt who computed the dimension of the boundary ∂CVN .

T 1.1 (Bestvina-Feighn [6, Corollary 7.12], Gaboriau-Levitt [21, Theorem V.2])

The closure CVN of outer space has dimension 3N − 4. The boundary ∂CVN has dimen-
sion 3N − 5.

1.3. Primitive compactification of outer space

Let PN denote the set of primitive elements of FN , i.e., elements that belong to some free
basis of FN . In [36, Section 2.4], we defined another compactification of outer space, called
the primitive compactification, by only looking at translation lengths of primitive elements
of FN . We get a continuous injective map

iprim : CVN → PR PN

which is a homeomorphism onto its image, and whose image has compact closure CVN
prim

[36, Theorem 2.9]. This compactification is isomorphic to CVN/∼, where ∼ denotes the
primitive-equivalence relation, that identifies two trees whose translation length functions
are projectively equal in restriction to PN . The ∼-relation was explicitly described in [36].
In particular, we showed that the ∼-class of every tree with dense FN -orbits is reduced to
a point. We also proved that every ∼-class contains a standard representative T , which is
characterized by the fact that for all trees T ′ ∼ T , there is an FN -equivariant morphism
from T to T ′ (in particular, all elliptic elements in T are also elliptic in T ′).

The computation of the topological dimension of the closure and the boundary of outer
space in [21, Theorem V.2] adapts to compute the topological dimension ofCVN

prim
and the

boundary ∂CV prim
N := CVN

prim r CVN .

P 1.2. – The space CVN
prim

has dimension 3N − 4. The boundary ∂CV prim
N

has dimension 3N − 5.

Proof. – For all T ∈ CVN
prim

, letL(T ) be the subgroup ofR generated by the translation
lengths in T of all primitive elements of FN . The Q-rank rQ(T ) is the dimension of the

Q-vector space L(T ) ⊗Z Q. Then [21, Theorem IV.4] shows that for all T ∈ CVN
prim

, we
have rQ(T ) ≤ 3N − 3, and that equality may hold only if T ∈ CVN . In addition, we get as
in [21, Proposition V.1] that the space PR PN

≤k of all projectivized length functions withQ-rank
smaller than or equal to k has topological dimension smaller than or equal to k−1. Since we
can find a (3N −4)-simplex in CVN , and a (3N −5)-simplex consisting of simplicial actions
in ∂CV prim

N , the claim follows.
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THE HOROBOUNDARY OF OUTER SPACE, AND GROWTH 1083

1.4. Metric properties of outer space

There is a natural asymmetric metric on outer space, whose systematic study was initi-
ated by Francaviglia and Martino in [15]: given marked metric graphs (X, ρ) and (X ′, ρ′)

in CVN (identified with their volume one representatives), the distance d(X,X ′) is defined
to be the logarithm of the infimal (in fact minimal by an easy Arzelà-Ascoli argument, see [15,
Lemma 3.4]) Lipschitz constant of a map f : X → X ′ such that ρ′ is homotopic to f ◦ρ. This
may also be defined as the logarithm of the infimal Lipschitz constant of an FN -equivariant
map between the corresponding trees (see the discussion in [2, Sections 2.3 and 2.4]). This
defines a topology on outer space, which is equivalent to the classical one (see [15, Theo-
rems 4.11 and 4.18]). The metric on outer space is not symmetric. One can define a symmetric
metric by setting d sym(X,X ′) := d(X,X ′) + d(X ′, X). Elements of Out(FN ) act by isome-
tries on CVN with respect to d or d sym. Given an FN -tree T ∈ CVN , an element g ∈ FN is a
candidate in T if it is represented in the quotient graphX := T/FN by a loop which is either

– an embedded circle in X, or
– a bouquet of two circles in X, i.e., γ = γ1γ2, where γ1 and γ2 are embedded circles

in X which meet in a single point, or
– a barbell graph, i.e., γ = γ1eγ2e, where γ1 and γ2 are embedded circles in X that do

not meet, and e is an embedded path in X that meets γ1 and γ2 only at their origin
(and e denotes the path e crossed in the opposite direction).

The following result, due to White, gives an alternative description of the metric on outer
space. A proof can be found in [15, Proposition 3.15], it was simplified by Algom-Kfir in [1,
Proposition 2.3].

T 1.3 (White, see [15, Proposition 3.15] or [1, Proposition 2.3])

For all T, T ′ ∈ CVN , we have

d(T, T ′) = log sup
g∈FNr{e}

||g||T ′
||g||T

,

where T and T ′ are identified with their covolume one representatives. The supremum is achieved
for an element g ∈ FN which is a candidate in T .

Notice in particular that candidates in T are primitive elements of FN (see [36, Lemma 1.12],
for instance). White’s theorem has been extended by Algom-Kfir in [2, Proposition 4.5] to
the case where T ∈ cvN is a simplicial tree, and T ′ ∈ cvN is arbitrary (Algom-Kfir actually
states her result for trees in the metric completion of outer space). The extension to all trees
in cvN was made in [36, Theorem 0.3]. Given T, T ′ ∈ cvN , we denote by Lip(T, T ′) the
infimal Lipschitz constant of an FN -equivariant map from T to the metric completion T ′ if
such a map exists, and +∞ otherwise. In the following statement, we take the conventions
1
0 = +∞ and 0

0 = 0.

T 1.4 (Horbez [36, Theorem 0.3]). – For all T, T ′ ∈ cvN , we have

Lip(T, T ′) = sup
g∈FN

||g||T ′
||g||T

.
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2. The horocompactification of outer space

In this section, we define the horocompactification of outer space and show that it
is isomorphic to the primitive compactification (in particular, it has finite topological
dimension). Our approach is motivated by Walsh’s analogous statements in the case of the
Teichmüller space of a surface, equipped with Thurston’s asymmetric metric [62].

We start by recalling the construction of a compactification of an (asymmetric) metric
space by horofunctions, under some geometric assumptions. This notion was first introduced
in the symmetric case by Gromov in [22], we refer the reader to [62, Section 2] for the case of
an asymmetric metric.

Let (X, d) be a (possibly asymmetric) metric space, and let b ∈ X be some fixed basepoint.
For all z ∈ X, we define a continuous map

ψz : X → R
x 7→ d(x, z)− d(b, z).

Let C(X) be the space of continuous real-valued functions onX, equipped with the topology
of uniform convergence on compact sets of (X, d sym) (where we recall that d sym(x, y) :=

d(x, y) + d(y, x)). We get a map

ψ : X → C(X)

z 7→ ψz

which is continuous and injective, see [4, Chapter II.1] or [62, Lemma 2.1]. We say that an
asymmetric metric space is quasi-proper if

– the space (X, d) is geodesic, and
– the space (X, d sym) is proper (i.e., closed balls are compact), and
– for all x ∈ X and all sequences (xn)n∈N of elements of X, the distance d(xn, x)

converges to 0 if and only if d(x, xn) does.

P 2.1 (Ballmann [4, Chapter II.1], Walsh [62, Proposition 2.2])

Let (X, d) be a (possibly asymmetric) quasi-proper metric space. Then ψ defines a homeo-
morphism from X to its image in C(X), and the closure ψ(X) in C(X) is compact.

We call ψ(X) the horocompactification of X, the elements in X(∞) := ψ(X) r ψ(X)

being horofunctions. As noted in [62, Section 2], all the functions in ψ(X) are 1-Lipschitz
with respect to d sym, so uniform convergence on compact sets of (X, d sym) is equivalent to
pointwise convergence. By the work of Francaviglia and Martino [15, Theorems 5.5, 4.12 and
4.18], outer space is quasi-proper, so we can define its horocompactification.

T 2.2. – There exists a unique Out(FN )-equivariant homeomorphism from
CVN

prim
to the horocompactification of CVN which restricts to the identity on CVN . For

all z ∈ CVN
prim

, the horofunction associated to z is given by

ψz(x) = log sup
g∈ PN

||g||z
||g||x

− log sup
g∈ PN

||g||z
||g||b

for all x ∈ CVN (identified with its covolume 1 representative).
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Proof. – Uniqueness follows from the density of CVN in CVN
prim

. Let x ∈ CVN , which
we identify with its covolume 1 representative. For all z ∈ CVN

prim
, we let

ψ′z(x) := log sup
g∈ PN

||g||z
||g||x

− log sup
g∈ PN

||g||z
||g||b

.

This is well-defined, because ψ′z only depends on the projective class of ||.||z. By definition
of the metric on CVN , we have ψ′z = ψz for all z ∈ CVN . In addition, the suprema arising in
the expression of ψ′z(x) are achieved on finite sets F (x) (resp. F (b)) consisting of candidates
in x (resp. in b) by Theorem 1.3.

We claim that for all z ∈ CVN
prim

, the map ψ′z is continuous. Indeed, let z ∈ CVN
prim

,
and let (zn)n∈N ∈ CVNN be a sequence that converges to z. For all n ∈ N, we have

ψ′zn(x) = log sup
F (x)

||g||zn
||g||x

− log sup
F (b)

||g||zn
||g||b

.

By definition of the topology on PR PN , there exists a sequence (λn)n∈N of real numbers such
that for all g ∈ PN , the sequence (λn||g||zn)n∈N converges to ||g||z. So ψ′zn(x) converges
to ψ′z(x). Therefore, the map ψ′z is the pointwise limit of the 1-Lipschitz maps ψ′zn , so ψ′z is
continuous.

We can thus extend the map ψ to a map from CVN
prim

to C(CVN ), which we still denote

by ψ. We claim that this extension is continuous. Indeed, if a sequence (zn)n∈N ∈ (CVN
prim

)N

converges to z ∈ CVN
prim

, then the maps ψzn converge pointwise to ψz, and hence they
converge uniformly on compact sets of (X, d sym) because all maps ψzn are 1-Lipschitz.

We now prove that the map ψ : CVN
prim → C(CVN ) is injective. Let z,z′ ∈ CVN

prim

be such that ψz = ψz′ . Let g ∈ PN . Let x ∈ CVN be a rose, one of whose petals is
labelled by g. Denote by xε the rose in CVN with same underlying graph as x, in which the
petal labelled by g has length ε > 0, while the other petals all have the same length. As
ε tends to 0, the length ||g||xε tends to 0, while ||g′||xε is bounded below for all ε > 0 and
all g′ 6= g±1 ∈ F (xε), and F (xε) does not depend on ε. Hence for ε > 0 sufficiently small,
we have the following dichotomy (we fix representatives of z and z′ in their projective classes).

– If ||g||z 6= 0, then ψz(xε) = log ||g||zεC(z) (where C(z) := sup F (b)
||g||z
||g||b ) tends to +∞ as

ε goes to 0.
– If ||g||z = 0, then ψz(xε) is bounded above independently of ε > 0.

Asψz = ψz′ , an element g ∈ PN is elliptic in z if and only if it is elliptic in z′, and in addition,
we have ||g||z′||g||z = C(z)

C(z′) for all g ∈ PN which are not elliptic in z. Hence z = z′.

We have shown that ψ : CVN
prim → C(CVN ) is a continuous injection. As CVN

prim
is

compact, the map ψ is a homeomorphism from CVN
prim

to its image in C(CVN ). In partic-

ular, the imageψ(CVN
prim

) is compact, and hence closed in C(CVN ). By continuity ofψ, we

also have ψ(CVN ) ⊆ ψ(CVN
prim

) ⊆ ψ(CVN ), so ψ(CVN
prim

) = ψ(CVN ), i.e., CVN
prim

is
isomorphic to the horocompactification of CVN . That ψ is Out(FN )-equivariant follows
from its construction.
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R 2.3. – In order to prove the injectivity of the mapψ : CVN
prim → C(CVN ), we

“select” the primitive element g in the rose x by making the length of the corresponding petal
tend to 0. There is another way of “selecting” the primitive element g which does not require
leaving the thick part of outer space, and will therefore enable us to prove the corresponding
statement for the spine or the thick part of outer space. The idea is to replace the rose xwhose
petals all have the same length, and are labelled by a basis (g, g2, . . . , gN ) of FN , by a rose xk
whose petals are labelled by (g, g2, . . . , gN−1, gNg

k), for k sufficiently large. Unless ||g||z = 0,
the translation length in z of a word represented by a candidate in xk containing the petal
labelled by gNgk becomes arbitrarily large as k tends to +∞, and the translation lengths of
such a word in two (unprojectivized) trees z and z′ may be equal for arbitrarily large k only
if ||g||z = ||g||z′ .

The spineKN (considered as a subspace ofCVN ) and the ε-thick partCV εN , equipped with
the restriction of the Lipschitz metric, are not geodesic metric spaces. However, we show that
we can still define their horocompactification. We recall that for all metric spacesX, we have
defined an embedding ψ : X → C(X). We define KN

prim
and CV εN

prim
in the same way as

we defined CVN
prim

.

P 2.4. – The map ψ defines a homeomorphism from KN to its image
in C(KN ), and the closure ψ(KN ) in C(KN ) is compact, and isomorphic to KN

prim
. For

all ε > 0, the map ψ defines a homeomorphism from CV εN to its image in C(CV εN ), and the
closure ψ(CV εN ) in C(CV εN ) is compact, and isomorphic to CV εN

prim
.

Proof. – In the proof of Proposition 2.1, the assumption that (X, d) is geodesic is only
used to show that if (zn)n∈N is a sequence in X escaping to infinity (i.e., eventually leaving
and never returning to every compact set), then no subsequence of (ψzn)n∈N converges to a
function ψy with y ∈ X.

Assume that there exists a sequence (zn)n∈N of elements of KN escaping to infinity such
that some subsequence of (ψzn)n∈N converges to ψy, with y ∈ KN . Up to passing to a

subsequence again, we may assume that (zn)n∈N converges to an element z in CVN
prim

(and
actually z ∈ ∂CV prim

N ), so by Theorem 2.2 we have ψz = ψy. However, in this case, the
argument in Remark 2.3 shows that z = y, a contradiction. So ψ defines a homeomorphism
fromKN to its image in C(KN ), and the closureψ(KN ) in C(KN ) is compact. The argument
then goes as in the proof of Theorem 2.2, by using Remark 2.3, to show that ψ(KN ) is

isomorphic toKN
prim

. The same argument also yields the result for the ε-thick part of outer
space.

3. Completion and Busemann points

3.1. The metric completion of outer space

We follow Algom-Kfir’s exposition in [2, Section 1] of the construction of a completion
of an asymmetric metric space. A sequence (xn)n∈N of elements in a (possibly asymmetric)
metric space X is forward admissible if for all ε > 0, there exists N(ε) ∈ N such that for
all n ≥ N(ε), there exists K(n, ε) ∈ N such that d(xn, xk) ≤ ε for all k ≥ K(n, ε).
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Two forward admissible sequences are equivalent if their interlace (i.e., the sequence (zn)n∈N
defined by z2n = xn and z2n+1 = yn for all n ∈ N) is forward admissible. The forward
metric completion X̂ ofX is defined to be the set of equivalence classes of forward admissible
sequences. The reader is referred to [2, Section 1] for a detailed account of this construction.

L 3.1 (Algom-Kfir [2, Lemma 1.8]). – Let X be a (possibly asymmetric) metric
space, and let (xn)n∈N and (yn)n∈N be two forward admissible sequences of elements in X,
then either

– for all r ≥ 0, there existsN(r) ∈ N such that for all n ≥ N(r), there existsK(n, r) ∈ N
such that for all k ≥ K(n, r), we have d(xn, yk) ≥ r, or

– there exists c ≥ 0 such that for all ε > 0, there existsN(ε) ∈ N such that for alln ≥ N(ε),
there exists K(n, ε) ∈ N such that for all k ≥ K(n, ε), we have |d(xn, yk)− c| ≤ ε.

Given two forward admissible sequences (xn)n∈N and (yn)n∈N of elements in X, we
denote by c((xn), (yn)) the number provided by Lemma 3.1 (in the first case, we set
c((xn), (yn)) := +∞). In the particular case where (xn)n∈N is constant, Algom-Kfir’s
proof of Lemma 3.1 actually shows that the second case occurs.

L 3.2. – For all b ∈ X, and all forward admissible sequences (zn)n∈N ∈ XN, we have
c(b, (zn)) < +∞. If (zn)n∈N ∈ XN and (z′n)n∈N ∈ XN are two equivalent forward admissible
sequences, then c(b, (zn)) = c(b, (z′n)).

Proof. – As (zn)n∈N is forward admissible, the sequence (d(b, zn))n∈N is almost mono-
tonically decreasing in the sense of [2, Definition 1.9]. Hence by [2, Proposition 1.10], it
converges to a limit c(b, (zn)). If (zn)n∈N ∈ XN and (z′n)n∈N ∈ XN are two equivalent
forward admissible sequences, then c(b, (zn)) = c(b, (z′n)) = c(b, (z′′n)), where (z′′n)n∈N is the
interlace of (zn)n∈N and (z′n)n∈N.

Algom-Kfir shows that two forward admissible sequences (xn)n∈N and (yn)n∈N of
elements inX are equivalent if and only if c((xn), (yn)) = c((yn), (xn)) = 0 [2, Lemma 1.12].
The metric on X extends to an asymmetric metric d̂ on X̂ (which might not satisfy the
separation axiom, and might be ∞-valued) by setting d̂((xn), (yn)) := c((xn), (yn)) [2,
Proposition 1.16]. The collection of balls B(x, r) := {y ∈ X̂|d̂(y, x) < r} for x ∈ X̂

and r ∈ R∗+ is a basis for a topology on X̂. One can also consider the symmetrized metric
d̂ sym on X̂, which defines another topology on X̂.

Algom-Kfir has determined the metric completion of outer space in [2].

T 3.3 (Algom-Kfir [2, Theorem B]). – Let T ∈ CVN . Then T ∈ ĈVN if and only
if T does not have dense orbits, andT has trivial arc stabilizers. In addition, for all T, T ′ ∈ ĈVN ,
we have d̂(T, T ′) = log Lip(T̃ , T̃ ′), where T̃ (resp. T̃ ′) denotes the covolume one representative
of T (resp. T ′) in cvN .
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3.2. The metric completion as a subspace of the horocompactification

Throughout the section, we assume that X is a quasi-proper metric space, so that the
horocompactification of X is well-defined. We recall that associated to any z ∈ X is a
function ψz ∈ C(X).

P 3.4. – For all forward admissible sequences (zn)n∈N ∈ XN, the
sequence (ψzn)n∈N has a limit in C(X). If (zn)n∈N and (z′n)n∈N are two equivalent forward
admissible sequences, then the sequences (ψzn)n∈N and (ψz′n)n∈N converge to the same limit
in C(X).

Proof. – Let (zn)n∈N and (z′n)n∈N be two equivalent forward admissible sequences.
Let (zσ(n))n∈N (resp. (z′σ′(n))n∈N) be a subsequence of (zn)n∈N (resp. (z′n)n∈N) that converges
to some function ψ (resp. ψ′) in C(X). Let ε > 0. By definition of c, there exists an integer
N(ε) ∈ N such that for all n ≥ N(ε), there exists K(n, ε) ∈ N such that for all k ≥ K(n, ε),
we have d(zσ(n), z

′
σ′(k)) ≤ ε. In addition, Lemma 3.2 shows the existence of N ′(ε) ∈ N

and c ∈ R such that for all n ≥ N ′(ε), we have |d(b, zσ(n))− c| ≤ ε and |d(b, z′σ′(n))− c| ≤ ε.
For all n ≥ max{N(ε), N ′(ε)}, all k ≥ max{K(n, ε), N ′(ε)} and all x ∈ X, we have

ψz′
σ′(k)

(x)− ψzσ(n)
(x) = d(x, z′σ′(k))− d(x, zσ(n)) + d(b, zσ(n))− d(b, z′σ′(k))

≤ d(zσ(n), z
′
σ′(k)) + d(b, zσ(n))− d(b, z′σ′(k))

≤ 3ε.

By making ε > 0 arbitrarily small, and letting n and k tend to infinity, we get that
ψ′(x) ≤ ψ(x) for all x ∈ X. Symmetrizing the argument, we also get that ψ(x) ≤ ψ′(x) for
all x ∈ X, whence ψ = ψ′. In particular, the sequence (ψzn)n∈N associated to any forward
admissible sequence (zn)n∈N has at most one limit point, and hence it converges in the
horocompactification of X. Two equivalent sequences give rise to the same limit.

Proposition 3.4 yields a map i from the metric completion X̂ of X to the horocompacti-
fication of X, which is the identity map in restriction to X, by setting

i : X̂ → X ∪X(∞)

(zn)n∈N 7→ lim
n→+∞

ψzn .

P 3.5. – The map i : X̂ → X ∪X(∞) is injective.

Proof. – Let (zn)n∈N, (z
′
n)n∈N ∈ XN be two forward admissible sequences. Assume that

i((zn)n∈N) = i((z′n)n∈N) = ψ ∈ C(X). Let ε > 0. For all p ∈ N, there exists K0(p, ε) such
that for all n, q ≥ K0(p, ε), we have |ψzn(zp) − ψz′q (zp)| ≤ ε and |ψzn(z′p) − ψz′q (z

′
p)| ≤ ε.

As (zn)n∈N is forward admissible, there exists N1(ε) ∈ N such that for all n ≥ N1(ε),
there exists K1(n, ε) ∈ N such that for all k ≥ K1(n, ε), we have d(zn, zk) ≤ ε. As
(z′n)n∈N is forward admissible, there exists N2(ε) ∈ N such that for all n ≥ N2(ε), there
exists K2(n, ε) ∈ N such that for all k ≥ K2(n, ε), we have d(z′n, z

′
k) ≤ ε. By Lemma 3.2,

there also existN3(ε) ∈ N and c, c′ ∈ R such that for all n ≥ N3(ε), we have |d(b, zn)−c| ≤ ε
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and |d(b, z′n) − c′| ≤ ε. For all p ≥ N1(ε), all n ≥ max{K0(p, ε),K1(p, ε), N3(ε)} and
all q ≥ max{K0(p, ε), N3(ε)}, as

ψzn(zp)− ψz′q (zp) = d(zp, zn)− d(zp, z
′
q) + d(b, z′q)− d(b, zn),

we have d(zp, z
′
q) + c − c′ ≤ 4ε. In particular, for all ε > 0, we have c − c′ ≤ 4ε,

whence c ≤ c′. Similarly, for all p ≥ N2(ε), all n ≥ max{K0(p, ε), N3(ε)} and all
q ≥ max{K0(p, ε),K2(p, ε), N3(ε)}, as

ψzn(z′p)− ψz′q (z
′
p) = d(z′p, zn)− d(z′p, z

′
q) + d(b, z′q)− d(b, zn),

we have d(z′p, zn) + c′ − c ≤ 4ε, and in particular this implies that c′ ≤ c. So c = c′, and
the inequalities we have established thus imply that c((zn), (z′n)) = c((z′n), (zn)) = 0. It then
follows from [2, Lemma 1.12] that the sequences (zn)n∈N and (z′n)n∈N are equivalent, thus
showing that i is injective.

In particular, the space X̂ inherits a (metrizable) topology induced by the topology on C(X).

3.3. Comparing the topologies on X̂

Let X be a quasi-proper (possibly asymmetric) metric space. We now compare the three
topologies on X̂ we have introduced in the previous two sections, namely the topology
defined by d̂ sym, the topology defined by d̂, and the topology coming from C(X). The
topology defined by d̂ sym dominates the topology defined by d̂. The following proposi-
tion shows that the topology defined by d̂ sym also dominates the topology induced by the
topology coming from C(X) (all these topologies are second-countable, which justifies the
use of sequential arguments).

P 3.6. – Let z = (zn)n∈N ∈ X̂, and let (zk)k∈N = ((zkn)n∈N)k∈N be a
sequence of elements of X̂. If d̂ sym(zk, z) converges to 0, then ψzk converges to ψz in C(X).

Proof. – Assume that d̂ sym(zk, z) converges to 0, i.e., c(zk, z) and c(z, zk) both converge
to 0. Let ε > 0. There exists K0 ∈ N such that for all k ≥ K0, we have c(zk, z) ≤ ε

and c(z, zk) ≤ ε. We fix k ≥ K0. As c(zk, z) ≤ ε, there exists an integer N1(ε) ∈ N such
that for all n ≥ N1(ε), there exists K1(n, ε) ∈ N such that for all m ≥ K1(n, ε), we have
d(zkn, zm) ≤ 2ε. Similarly, as c(z, zk) ≤ ε, there exists N2(ε) ∈ N such that for all n ≥ N2(ε),
there exists K2(n, ε) ∈ N such that for all m ≥ K2(n, ε), we have d(zn, z

k
m) ≤ 2ε. By

Lemma 3.2, there also exists N ′(ε) ∈ N, and ck, c ∈ R such that for all n ≥ N ′(ε),
we have |d(b, zkn) − ck| ≤ ε and |d(b, zn) − c| ≤ ε. Choosing n ≥ max{N1(ε), N ′(ε)}
and m ≥ max{K1(n, ε), N ′(ε)}, we get that

c− ck ≤ d(b, zm)− d(b, zkn) + 2ε

≤ d(zkn, zm) + 2ε

≤ 4ε.

So for all n ≥ max{N2(ε), N ′(ε)}, all m ≥ max{K2(n, ε), N ′(ε)} and all x ∈ X, we have

ψzkm(x)− ψzn(x) = d(x, zkm)− d(x, zn) + d(b, zn)− d(b, zkm)

≤ d(zn, z
k
m) + c− ck + 2ε

≤ 8ε.
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Letting m go to infinity, we get that ψzk(x)− ψzn(x) ≤ 8ε, and letting n go to
infinity, we get ψzk(x) − ψz(x) ≤ 8ε. Similarly, choosing n ≥ max{N2(ε), N ′(ε)} and
m ≥ max{K2(n, ε), N ′(ε)}, we get that

ck − c ≤ d(b, zkm)− d(b, zn) + 2ε

≤ d(zn, z
k
m) + 2ε

≤ 4ε.

So for all n ≥ max{N1(ε), N ′(ε)}, all m ≥ max{K1(n, ε), N ′(ε)} and all x ∈ X, we have

ψzm(x)− ψzkn(x) = d(x, zm)− d(x, zkn) + d(b, zkn)− d(b, zm)

≤ d(zkn, zm) + ck − c+ 2ε

≤ 8ε.

Again letting m and then n tend to infinity, we get that ψz(x) − ψzk(x) ≤ 8ε for all x ∈ X.
So |ψzk(x)−ψz(x)| ≤ 8ε for all x ∈ X and all k ≥ K0. Hence (ψzk)k∈N converges uniformly
(and in particular uniformly on compact sets) to ψz.

However, the examples below show that no two of the three topologies we have defined
on X̂ are equivalent when X = CVN . In this case, the topology induced by the topology
on C(X) is the primitive axes topology, given by the embedding of X̂ into PR PN . In the case
of outer space, there is a fourth natural topology on ĈVN , called the axes topology, given by
the embedding into PRFN . The axes topology dominates the primitive axes topology. The
examples below show that no two of the four topologies on ĈVN are equivalent.

E 3.7. – The topology defined by d̂ sym is not dominated by any of the other three
topologies.

Let T ∈ ĈVN be a nonsimplicial tree. Let T simpl ∈ ĈVN be the tree obtained by collapsing
the nonsimplicial part of T . For n ∈ N, let Tn be the tree obtained from T by applying
a homothety with factor 1

n to all vertex trees of T . Then the sequence (Tn)n∈N converges

to T simpl ∈ ĈVN in the axes topology (and hence also in the primitive axes topology). For
all n ∈ N, there is an obvious FN -equivariant 1-Lipschitz map from Tn to T simpl given
by collapsing all components of the complement of the simplicial part of T to points, so
d̂(Tn, T

simpl) = 0, while d̂(T simpl, Tn) = +∞. So the sequence (Tn)n∈N also converges
to T simpl in the topology defined by d̂, but not in the topology defined by d̂ sym.

E 3.8. – The topology defined by d̂ does not dominate the primitive axes topology.

Let T ∈ ĈVN be a nonsimplicial tree. As in the previous example, we have d̂(T, T simpl) = 0.
Hence the space (ĈVN , d̂) is not separated, while C(CVN ) is.

E 3.9. – The axes topology does not dominate the topology defined by d̂.
Let T ′ ∈ cvN be a tree with dense orbits, and let p ∈ T ′. Let (T ′n, pn)n∈N be a sequence of

pointed trees with dense orbits in cvN that converges (non projectively) to (T ′, p), and such
that for all n ∈ N, the trees T ′ and T ′n do not belong to a common closed simplex of length
measures in cvN (in the sense of [24, Section 5]). Let T ∈ ĈVN+1 (resp. Tn ∈ ĈVN+1) be the
tree associated to the graph of actions having
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– two vertices v1 and v2, where the vertex tree Tv1 is equal to T (resp. T ′n), with attaching
point p (resp. pn) and vertex group generated by x1, . . . , xN , and Tv2 is reduced to a
point, and Gv2 is the cyclic subgroup of FN+1 generated by xN+1, and

– a single edge of length 1 joining v1 and v2, with trivial stabilizer.

The sequence (Tn)n∈N converges in the axes topology to T by Guirardel’s Reduction
Lemma [23, Section 4]. However, for all n ∈ N, we have d̂(Tn, T ) = +∞ by [36, Proposi-
tion 5.7].

R 3.10. – However, Algom-Kfir has shown that the axes topology is strictly finer
than the topology defined by d̂ in restriction to the simplicial part of ĈVN [2, Theorem 5.12].

E 3.11. – The primitive axes topology does not dominate the axes topology.
Let T ∈ ĈVN be the Bass-Serre tree of an HNN-extension of the form FN = FN−1∗.

Let g ∈ FN−1 be an element that does not belong to any proper free factor of FN−1.
Let T ′ ∈ CVN be the tree obtained from T by equivariantly folding an edge e ⊆ T along ge.
We have shown in [36] that the trees T and T ′ have the same translation length functions
in restriction to PN . This implies that any sequence of trees (Tn)n∈N that converges to T ′

in CVN for the axes topology, does not converge in ĈVN for the axes topology. However,
such a sequence converges to T ∈ ĈVN for the primitive axes topology.

3.4. Folding paths and geodesics

Let T ∈ CVN , and T ′ ∈ CVN be a tree with dense orbits. A d̂-geodesic ray from T to T ′ is
a path γ : R+ → ĈVN such that for all s ≤ t ∈ R+, we have

d̂(γ(s), γ(t)) = t− s,

and the trees γ(t) converge to T ′ for the axes topology on CVN as t goes to +∞. Using the
classical construction of folding paths (see [15, 16, 27, 55]), one shows the following fact. We
sketch a proof for completeness.

P 3.12. – For all T ∈ CVN and all T ′ ∈ CVN having dense orbits, there exists
a d̂-geodesic ray in ĈVN from T to T ′.

Proof. – Let f : T → T ′ be an optimal map, and g ∈ FN be a legal element for f in T ,
whose axis in T is contained in the tension graph of f , i.e., the subgraph made of those edges
inT that are maximally stretched by f (the reader is referred to [36, Section 6.2] for definitions
and a proof of the existence of such an element g ∈ FN ). We fix representatives of T and T ′

in cvN , again denoted by T and T ′, slightly abusing notations.
We define a simplicial tree T ∈ cvN that belongs to the same closed simplex as T , in the

following way. We first collapse all edges in T which are mapped to a point by f . We then
shrink all edges outside of the tension graph of f , so that all edges in T are stretched by a
factor of M := Lip(T, T ′) under the map f : T → T ′ induced by f . Denote by K the
distance (for d̂) from the covolume 1 representative of T to the covolume 1 representative
of T in ĈVN . Let (γ1(t))t∈[0,K] be a straight segment of lengthK (staying in a closed simplex

of ĈVN ) joining T to T , parameterized by arc length.
There exists a morphism f : MT → T ′. Let (Tt)t∈R+ be the folding path guided by f

constructed in [27, Section 3]. Notice that for all t ∈ R+, the tree Tt has trivial arc stabilizers,
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because T has trivial arc stabilizers. If the tree Tt had dense orbits for some t ∈ R+, then we
would have Tt = T ′, since no folding can occur starting from a tree with dense orbits [36,
Corollary 3.10]. Denoting by t0 the smallest such t ∈ R+, the sequence (Tt0− 1

n
)n∈N would

then be a Cauchy sequence converging to T ′, contradicting Theorem 3.3. For all t ∈ R+, we
denote by γ2(t) the projection of Tt to ĈVN .

Let γ be the path in ĈVN defined as the concatenation of the paths γ1 and γ2. As the axis
of g is contained in the tension graph of T , it does not get shortened when passing from T

to T (and lengths do not increase when passing from T to T ). Legality of g implies that its
axis never gets folded along the path γ2. Therefore, for all s ≤ t ∈ R+, we have

d̂(γ(s), γ(t)) = log
||g||γ(t)

||g||γ(s)
.

This shows that for all s ≤ t ≤ u ∈ R+, we have d̂(γ(s), γ(u)) = d̂(γ(s), γ(t))+d̂(γ(t), γ(u)).
Therefore, up to reparameterization, the path γ is a d̂-geodesic ray that converges to T ′.

3.5. Busemann points

Let X be a (possibly asymmetric) quasi-proper metric space. A path γ : R+ → X is an
almost geodesic ray if for all ε > 0, there exists t0 ∈ R+ such that for all s, t ≥ t0, we have
|d(γ(0), γ(s))+d(γ(s), γ(t))−t| ≤ ε. Rieffel proved that every almost geodesic ray converges
to a point in X(∞) [57, Theorem 4.7]. A horofunction is called a Busemann point if there
exists an almost geodesic ray converging to it. We denote by XB(∞) the subspace of X(∞)

consisting of Busemann points.

Walsh showed that in the case of the Teichmüller space of a surface, equipped with
Thurston’s asymmetric metric, all horofunctions are Busemann points, since they are limits
of stretch lines, which are geodesics for Thurston’s metric, see [62, Theorem 4.1]. We prove the
following characterization of Busemann points in the horoboundary of outer space. Given
a tree T ∈ CVN

prim
, we denote by ψT the corresponding horofunction.

T 3.13. – For all T ∈ CVN
prim

, the following assertions are equivalent.

– The tree T has dense orbits.
– The horofunction ψT is a Busemann point.
– The horofunction ψT is the limit of a d̂-geodesic ray in ĈVN .
– The horofunction ψT is unbounded from below.

Proof. – It follows from [62, Lemma 5.2] that horofunctions corresponding to Busemann
points are unbounded from below.

Let b ∈ CVN , and let T ∈ CVN
prim

be a tree with dense orbits. Theorem 3.12 gives the
existence of a d̂-geodesic γ starting at b and converging to T in ĈVN . By slightly perturbing γ,
we will construct an almost geodesic ray staying in CVN and converging to T .

We define by induction a sequence (γ′(n))n∈N ∈ CV N
N satisfying d̂(γ′(n), γ(n)) ≤ 1

n for
all n ∈ N, and n− k − 2

k ≤ d(γ′(k), γ′(n)) ≤ n− k + 2
k for all k < n, in the following way.

We let γ′(0) := γ(0). Let now n ∈ N, and assume that γ′(k) has already been defined for
all k < n. Since d̂(γ′(k), γ(k)) ≤ 1

k for all k < n, and as γ is a d̂-geodesic ray in ĈVN , by the
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triangle inequality, we have d̂(γ′(k), γ(n)) ≤ n − k + 1
k . By definition of d̂, we can choose

γ′(n) ∈ CVN so that

– we have d̂(γ′(n), γ(n)) ≤ 1
n , and

– for all k < n, we have d(γ′(k), γ′(n)) ≤ n− k + 2
k , and

– we have n− 1
n ≤ d(γ′(0), γ′(n)) ≤ n+ 1

n .

The triangle inequality then ensures that for all k ≤ n, we have

d(γ′(k), γ′(n)) ≥ d(γ′(0), γ′(n))− d(γ′(0), γ′(k))

≥ n− k − 2

k
.

We then extend γ′ to a piecewise-geodesic ray γ′ : R+ → CVN by adding a geodesic
segment joining γ′(n) to γ′(n + 1) for all n ∈ N. Let t0 ∈ R be such that 7

bt0c ≤ ε. For
all t0 ≤ s ≤ t, letting n := bsc and m := btc, the sum d(γ′(0), γ′(s)) + d(γ′(s), γ′(t)) is
bounded above by

d(γ′(0), γ′(n)) + d(γ′(n), γ′(n+ 1)) + d(γ′(n+ 1), γ′(m)) + d(γ′(m), γ′(t)) ≤ t+ ε,

and on the other hand we have

d(γ′(0), γ′(s)) + d(γ′(s), γ′(t)) ≥ d(γ′(0), γ′(t))

≥ d(γ′(0), γ′(m+ 1))− d(γ′(t), γ′(m+ 1))

≥ t− ε.

Hence γ′ is an almost geodesic ray. In particular it converges to some ξ ∈ CVN
prim

,
and ξ = T by construction. Hence T is a Busemann point.

If T does not have dense orbits, then we can choose a representative T̃ ∈ cvN of quotient
volume 1. As T is minimal, for all x ∈ CVN (which we identify with its covolume 1

representative), anyFN -equivariant map from x to T̃ has Lipschitz constant at least 1. Hence
for all x ∈ CVN , we have

ψT (x) ≥ log
1

Lip(b, T̃ )
,

so ψT is bounded below.

Hence the horoboundary of outer space is naturally partitioned into three subsets, namely

– trees having dense orbits, which coincide with the set of Busemann points, i.e., those
points that are limits of almost geodesic rays (or of geodesic rays in the comple-
tion ĈVN ), and

– trees without dense orbits and with trivial arc stabilizers, which coincide with comple-
tion points, i.e., those points that are limits of Cauchy sequences, and

– trees having nontrivial arc stabilizers.
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4. Geodesic currents and the backward horoboundary of outer space

As d is not symmetric, we can also consider the horocompactification of outer space for
the metric dback defined by dback(X,Y ) = d(Y,X) for all X,Y ∈ CVN , which satisfies

the hypotheses of Proposition 2.1 as d does. We denote by CVN
back

this compactification
of outer space. In this section, we investigate some properties of CVN

back
, which show

that CVN
prim

and CVN
back

are rather different in nature. It seems that there is some kind
of duality between the two compactifications. Having a more explicit description of this
duality and of the backward horocompactification would be of interest. For example, is the
backward horocompactification isomorphic to Reiner Martin’s compactification of outer
space [54, Section 6.3]? The same question is also still open in the context of Teichmüller
spaces equipped with Thurston’s asymmetric metric. We start by recalling the notion of
geodesic currents on FN .

4.1. Geodesic currents

Let ∂2FN := ∂FN ×∂FN r∆, where ∆ is the diagonal, and denote by i : ∂2FN → ∂2FN
the involution that exchanges the factors. A current on FN is an FN -invariant i-invariant
Borel measure ν on ∂2FN that is finite on compact subsets of ∂2FN , see [41, 42]. We denote
by CurrN the space of currents on FN , equipped with the weak-∗ topology, and by PCurrN
the space of projective classes (i.e., homothety classes) of currents.

To every g ∈ FN which is not of the form hk for any h ∈ FN and k > 1 (we
say that g is not a proper power), one associates a rational current [g] by letting [g](S) be
the number of translates of (g−∞, g+∞) that belong to S (where g−∞ := limn→+∞ g−n

and g+∞ := limn→+∞ gn) for all clopen subsets S ⊆ ∂2FN , see [42, Definition 5.1]. For
the case of proper powers, one may set [hk] := k[h]. The group Out(FN ) acts on CurrN
on the left in the following way [42, Proposition 2.15]. Given a compact set K ⊆ ∂2FN ,
an element Φ ∈ Out(FN ), and a current ν ∈ CurrN , we set Φ(ν)(K) := ν(φ−1(K)),
where φ ∈ Aut(FN ) is any representative of Φ. The action of Out(FN ) on PCurrN is not
minimal, but there is a unique closed (hence compact), minimal, Out(FN )-invariant subset
PMN ⊆ PCurrN , which is the closure of rational currents associated to primitive conjugacy
classes of FN , see [45, Theorem B]. We denote by MN the lift of PMN to CurrN . In [42,
Section 5], Kapovich defined an intersection form between elements of cvN and currents,
which was then extended by Kapovich and Lustig to trees in cvN [45].

T 4.1 (Kapovich-Lustig [45, Theorem A]). – There exists a unique Out(FN )-in-
variant continuous function

〈., .〉 : cvN × CurrN → R+

which is R+-homogeneous in the first coordinate and R+-linear in the second, and such that for
all T ∈ cvN , and all g ∈ FN r {e}, we have 〈T, [g]〉 = ||g||T .

Two currents µ, µ′ ∈ CurrN are translation-equivalent if for all T ∈ cvN , we have
〈T, µ〉 = 〈T, µ′〉. This descends to an equivalence relation ∼ on PCurrN by setting [µ] ∼ [ν]

if there exist representatives µ and ν which are translation-equivalent.
Let A be a free basis of FN . Let w be a nontrivial cyclically reduced word written in the

basis A. The Whitehead graph of w in the basis A is the labelled undirected graph WhA(w)
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defined as follows. The vertex set of WhA(w) is A±1. For all x 6= y ∈ A±1, there is an edge
between x and y labelled by the number of occurrences of the word xy−1 in the cyclic wordw,
i.e., the number of those i ∈ {0, . . . , |w|−1} such that the infinite wordwww . . . begins with
wixy

−1, wherewi is the initial segment of w of length i. The Whitehead graph of a nontrivial
conjugacy class [g] of elements of FN in the basis A is WhA([g]) := WhA(w), where w is
any cyclically reduced word representing [g] inA. More generally, given a linear combination
η = λ1[g1] + · · · + λk[gk] of rational currents, the Whitehead graph WhA(η) is the labelled
undirected graph defined as follows. The vertex set of WhA(η) is A±1. For all x 6= y ∈ A±1,
there is an edge between x and y labelled by λ1α1 + · · ·+ λkαk, where αi is the label of the
edge between x and y in WhA([gi]). The following proposition was proven in [43] in the case
of conjugacy classes of FN (i.e., rational currents), however its proof still works in the case
of linear combinations of rational currents.

P 4.2 (Kapovich-Levitt-Schupp-Shpilrain [43, Theorem A])
Let η, η′ ∈ CurrN be two linear combinations of rational currents. Then η and η′ are

translation-equivalent if and only if for all free bases A of FN , we have WhA(η) = WhA(η′).

P 4.3. – Let x1, x2 ∈ FN be two elements that belong to a common free basis.
Let η, η′ ∈ Span{[x1x

i
2]}i∈N. If η and η′ are translation-equivalent, then η = η′.

Proof. – Let {x1, x2, . . . , xN} be a free basis of FN that contains x1 and x2. There
exists k ∈ N and real numbers λ1, . . . , λk, λ

′
1, . . . , λ

′
k such that η =

∑k
i=1 λi[x1x

i
2] and

η′ =
∑k
i=1 λ

′
i[x1x

i
2]. Assume that η 6= η′, and let i ∈ {1, . . . , k} be such that λi 6= λ′i.

The set B := {x1x
i
2, x2, . . . , xN} is a free basis of FN . The edge joining x1x

i
2 to (x1x

i
2)−1

has label λi in WhB(η) and λ′i in WhB(η′), so Proposition 4.2 implies η and η′ are not
translation-equivalent, a contradiction. Hence η = η′.

We notice the following property of the currents we considered in Proposition 4.3.

P 4.4. – Let N ≥ 3, and let x1, x2 ∈ FN be two elements that belong to a
common free basis of FN . Then Span{[x1x

i
2]}i∈N ⊆MN .

Proof. – LetF < FN be the free factor generated by x1 and x2. By [42, Proposition 12.1],
there is a linear topological embedding ι : Curr(F ) → CurrN such that for all g ∈ F ,
we have ι([g]) = [g]. In particular, the subspace SpanCurrN {[x1x

i
2]}i∈N identifies with

the image ι(SpanCurr(F ){[x1x
i
2]}i∈N). The proof of [44, Proposition 4.3] thus shows that

SpanCurrN {[x1x
i
2]}i∈N ⊆MN .

4.2. The backward horoboundary of outer space

We recall that b denotes some fixed basepoint in CVN . For all z ∈ CVN , we define the
function

ψback
z : CVN → R

x 7→ d(z, x)− d(z, b).

Given a finite set S ⊆MN , we define a function fS on CVN by setting

fS(T ) := log
supS〈T, µ〉
supS〈b, µ〉
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for all T ∈ CVN .

P 4.5. – For all ξ ∈ CVN
back

, there exists a finite set S ⊆ MN such that
ξ = fS .

Proof. – Let ξ ∈ CVN
back

, and let (Tn)n∈N ∈ CV N
N be a sequence of elements of CVN

that converges to ξ. For all n ∈ N, let F n denote the set of candidates in Tn. There is a
uniform bound on the cardinality of F n. Up to passing to a subsequence, we can thus assume
that there exists k ∈ N, currents η1, . . . , ηk ∈ MN , and sequences (gin)n∈N ∈

∏
n∈N F n

and (λin)n∈N ∈ RN for all i ∈ {1, . . . , k}, such that the sequence (λin[gin])n∈N converges (non-
projectively) to the current ηi, and for all n ∈ N, we have F n = {gin}1≤i≤k. For all n ∈ N
and all i, j ∈ {1, . . . , k}, we set

αi,jn :=
λin〈Tn, [gin]〉
λjn〈Tn, [gjn]〉

.

Up to passing to a subsequence again, we may assume that for all i, j ∈ {1, . . . , k},
the sequence (αi,jn )n∈N converges in R ∪ {+∞}. Denoting its limit by αi,j , we can find
i0 ∈ {1, . . . , k} such that for all j ∈ {1, . . . , k}, we have αi0,j < +∞. We set

S := {αi0,jηj |αi0,j 6= 0}.

For all T ∈ CVN and all n ∈ N, we have

ψback
Tn (T ) = log

(
sup
j

〈T, [gjn]〉
〈Tn, [gjn]〉

)
− log

(
sup
j

〈b, [gjn]〉
〈Tn, [gjn]〉

)

= log

(
sup
j

λi0n 〈Tn, [gi0n ]〉
λjn〈Tn, [gjn]〉

λjn〈T, [gjn]〉
λi0n 〈Tn, [gi0n ]〉

)
− log

(
sup
j

λi0n 〈Tn, [gi0n ]〉
λjn〈Tn, [gjn]〉

λjn〈b, [gjn]〉
λi0n 〈Tn, [gi0n ]〉

)
= log(sup

j
αi0,jn λjn〈T, [gjn]〉)− log(sup

j
αi0,jn λjn〈b, [gjn]〉),

which tends to fS(T ) as n goes to +∞. Hence ξ = fS .

R 4.6. – It follows from the proof of Proposition 4.5 that if (Tn)n∈N ∈ CV N
N

converges to a horofunction fS in the backward horoboundary of CVN , then all currents
in S are dual to all limit points of (Tn)n∈N in CVN .

P 4.7. – There exists a topological embedding from PMN/∼ to CVN
back

.

Proof. – Let η ∈ MN , and let (gn)n∈N ∈ PN
N be a sequence of primitive elements so

that the rational currents [gn] projectively converge to η. For all n ∈ N, let Tn ∈ CVN be
a rose, one of whose petals is labelled by gn. By making the length of this petal arbitrarily
small, we can ensure, with the notations from the proof of Proposition 4.5 (where we assume
that g1

n := gn), that α1,j = 0 for all j > 1. This implies that the functions ψback
Tn

converge
pointwise (and hence uniformly on compact sets of d sym) to f{η}. Therefore, we get an

injective map from the compact space PMN/ ∼ to the Hausdorff space CVN
back

, which is
continuous by continuity of the intersection form (Theorem 4.1).

C 4.8. – For all N ≥ 3, the space CVN
back

has infinite topological dimension.
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〈a〉

〈a〉 〈a, bab−1〉

〈a〉
b b b b

〈a〉 〈b〉

〈a〉〈a〉

〈a〉

F 1. The simplicial trees in ∂CV2.

Proof. – Let {x1, . . . , xN} be a free basis of FN . Propositions 4.3, 4.4 and 4.7 show that

CVN
back

contains an embedded copy of the infinite-dimensional projective space spanned
by all currents of the form [x1x

i
2] for i ∈ N. The claim follows.

4.3. The backward horocompactification of CV2

We finish this section by giving a description of the backward horocompactification
of CV2. Culler and Vogtmann gave in [13] an explicit description of CV2, and an explicit
description of the primitive compactification CV2

prim
was given in [36, Section 2.2]. We will

show that the backward horocompactification of CV2 is 2-dimensional, homeomorphic to a
disk with fins attached, see Figure 3. The reduced part of this compactification, obtained by
collapsing the fins, is isomorphic to the reduced part of the forward horocompactification.
However, when we include the fins, there are examples of sequences of trees that converge
to a point in the forward horoboundary, but not in the backward horoboundary, and vice
versa.

Every outer automorphism of F2 can be realized by a mapping class of a torus with one
boundary component. The set of rational geodesic currents associated to essential simple
closed curves on the surface that are not isotopic to the boundary curve is Out(F2)-invariant,
and its closure consists of currents associated to measured laminations on the surface. Every
such lamination is either minimal and filling, or a simple closed curve on the surface. The
minimal set of currents M2 consists of currents of this form. Currents η associated to filling
laminations are dual to a unique tree T , and by unique ergodicity the current η is then the
unique current in M2 dual to T , up to homothety. This implies in particular that currents
in M2 that are dual to simplicial trees are rational currents corresponding to primitive
elements of F2.

Let (Tn)n∈N ∈ CV N
2 be a sequence that converges to a horofunction fS in CV2

back
. Up

to passing to a subsequence, we can assume that (Tn)n∈N also converges to a tree T ∈ CV2.
By [13], the tree T is either simplicial, or dual to an arational measured foliation on a torus
with one boundary component. The list of simplicial trees in ∂CV2 is displayed on Figure 1.

First assume that T is a simplicial metric tree, whose quotient graph T/F2 has one of the
first four shapes displayed on Figure 1. It then follows from the above description of M2

that there is a unique projectivized current η ∈ M2 that is dual to T (which is a rational
current, associated to a). This is clear except in the case where the quotient graph T/F2 has
the third shape displayed on Figure 1. In this case, since T is simplicial, all currents in M2

dual to T are rational. In addition, it follows from [36, Proposition 2.8] that the only primitive
elements of F2 contained in the subgroup 〈a, bab−1〉 are conjugate to a. Remark 4.6 implies
that S = {[a]}.
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Notice in particular that all sequences of trees that converge to a simplicial metric tree T of
the fourth type inCV2 converge to the same horofunction f{[a]} inCV2

back
, regardless of the

ratio between the lengths of the separating edge and the nonseparating edge in the quotient
graph T/F2. Let (Tn)n∈N be a sequence of Bass-Serre trees of barbell graphs whose petals are
labelled by a and b, where the length of the petal labelled by a (respectively by b) converges
to 0 (resp. to l ∈ (0, 1]) and whose separating edge has a length converging to 1 − l. Then

(Tn)n∈N converges to f{[a]} in CV2
back

, and it converges in CV2
prim

to the Bass-Serre tree of
a graph having the fourth shape displayed on Figure 1, whose separating edge has length 1−l,
and whose nonseparating edge has length l. By making l vary, we get examples of sequences
of trees that converge to the same point in CV2

back
, but to distinct trees in CV2

prim
.

Also notice that all sequences of trees that converge in CV2 to a simplicial tree T having
one of the first three shapes displayed, converge to the same horofunction f{[a]} in CV2

back
.

All these trees are also identified by the quotient map CV2 → CV2
prim

.

Now assume that T is dual to an arational measured foliation on a torus with a single
boundary component. As noticed above, there is a unique projectivized current η ∈ PM2

that is dual to T . Remark 4.6 implies that S = {η}.

In the remaining case whereT is the Bass-Serre tree of a splitting of the formF2 = 〈a〉∗〈b〉,
there are exactly 2 projectivized currents in PM2 that are dual to T : these are the currents
whose lifts to M2 are [a] and [b]. We claim that the set S may consist of any pair of the form
{λ1[a], λ2[b]}, where we may assume that λ1 + λ2 = 1 because multiplying all currents by a
same factor does not change the map fS . Indeed, first assume that λ1, λ2 > 0. For all n ∈ N,
we let Tn be the Bass-Serre tree of a barbell graph, whose central edge has length 1, and
whose loops are labelled by a and b and have respective lengths 1

λ1n
and 1

λ2n
. Then (Tn)n∈N

converges to f{λ1[a],λ2[b]} in CV2
back

. If λ1 = 0 and λ2 = 1, then we let Tn be a barbell
whose loops are labelled by a and b and have respective lengths 1 and 1

n to get the desired

convergence inCV2
back

. In all cases, the sequence (Tn)n∈N converges inCV2
prim

to the Bass-
Serre tree of the splitting F2 = 〈a〉 ∗ 〈b〉. This provides examples of sequences of trees that

converge to the same point in CV2
prim

, but to distinct points in CV2
back

. The closure of the
simplex of a barbell graph in CV2

back
is displayed on Figure 2.

We claim that the backward horoboundary CV2
back

is isomorphic to the forward
horoboundary, in which the closures of the simplices of barbell graphs have been replaced by
simplices having the shape displayed on Figure 2. Indeed, there is a bijection between PM2

and the set of simplicial trees in CV2
prim

that do not contain any separating edge. It thus
follows from the above that a sequence (Tn)n∈N ∈ CV N

2 converges to a horofunction f{η}
with η ∈M2 if and only if all its limit points inCV2

prim
are dual to η. From this observation,

one deduces that the reduced parts of CV2
back

and CV2
prim

(obtained by forgetting trees
in CV2 whose quotient graphs contain a separating edge) coincide. A sequence in CV2

back

can converge to a horofunction of the form f{λ1[a],λ2[b]} only if it eventually stays in the
corresponding simplex. We note that a sequence (Tn)n∈N ∈ CV N

2 of barbell graphs with
petals labelled by a and b converges to f{λ1[a],λ2[b]} if and only if the ratio ||b||Tn||a||Tn

converges

to λ1

λ2
. One also checks that all horofunctions described above are pairwise distinct.
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f{[a]} f{[b]}

f{λ1[a],λ2[b]}

a

a

b

b
a

a

b

b

F 2. The closure of the simplex of a barbell graph in CV2
back

.

F 3. The backward horocompactification of CV2.

5. Growth of elements of FN under random products of automorphisms

In this section, we will use our description of the horoboundary of outer space to derive
results about random products of outer automorphisms of a finitely generated free group,
through the study of the possible growth rates of elements of FN under such products. This
is inspired from Karlsson’s analogous work for random products of mapping classes of a
surface [46].
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5.1. Background on ergodic cocycles and Karlsson-Ledrappier’s theorem

We start by setting a few notations regarding ergodic cocycles on countable groups, and
recall Karlsson-Ledrappier’s theorem in this setting: the reader is referred to [47] for details.
Let G be a countable group acting by isometries on a quasi-proper metric space (X, d).
Let (Ω, A,P) be a standard probability Lebesgue space, and T : Ω→ Ω an ergodic measure-
preserving transformation. Let φ : Ω→ G be a measurable map. We call

Φn(ω) := φ(Tn−1ω) . . . φ(ω)

an ergodic cocycle. We say that it is integrable with respect to d if∫
Ω

d sym(φ(ω)b, b)dP(ω) < +∞,

where b is any basepoint in X. The drift of an integrable ergodic cocycle Φn is defined as

l := lim
n→+∞

1

n
d(b,Φn(ω)−1b),

which almost surely exists by the Kingman subadditive ergodic theorem [49], and is indepen-
dent of ω by ergodicity of T .

We will make extensive use of the following theorem of Karlsson and Ledrappier [47],
which was originally stated for symmetric metric spaces. The extension to the case of an
asymmetric metric is due to Karlsson [46].

T 5.1 (Karlsson-Ledrappier [47]). – Let T be a measure-preserving transforma-
tion of a Lebesgue probability space (Ω, A,P), letG be a locally compact group acting by isome-
tries on a (possibly asymmetric) quasi-proper metric space X, let b ∈ X, and let φ : Ω → G

be a measurable map satisfying∫
Ω

d sym(φ(ω)b, b)dP(ω) < +∞.

Let Φn be the associated integrable ergodic cocycle. Then, for P-almost every ω, there exists
ξω ∈ X ∪X(∞) such that

lim
n→+∞

− 1

n
ξω(Φn(ω)−1b) = l.

The particular case where Ω = (GN, µ⊗N) is a product probability space (here µ denotes
a probability measure onG), and T is the shift operator, corresponds to the left random walk
on (G,µ). This is the Markov chain on G whose initial distribution is the Dirac measure
at the identity, and with transition probabilities p(x, y) := µ(yx−1). In other words, the
position of the random walk at time n is given from its initial position Φ0 = id by successive
multiplications on the left of independent µ-distributed increments φi, i.e., Φn = φn · · ·φ1.
With the above notations, we have ω ∈ GN, the map φ : Ω→ G is the projection to the first
coordinate, and φi = φ(T iω) is the i-th coordinate of ω. In the context of random walks, we
will usually write Φn instead of Φn(ω), leaving this dependence implicit.

In the case of independent increments, Karlsson-Ledrappier’s theorem refines as follows,
as was noticed by Karlsson in [46, Section 2].

4 e SÉRIE – TOME 49 – 2016 – No 5



THE HOROBOUNDARY OF OUTER SPACE, AND GROWTH 1101

P 5.2 (Karlsson [46, Section 2]). – Let G be a locally compact group acting
by isometries on a (possibly asymmetric) quasi-proper metric space, and let µ be a probability
measure on G with finite first moment with respect to d sym. Let E ⊆ X(∞) be a measurable
subset such that for all µ-stationary measures ν on X ∪ X(∞), we have ν(E) = 1. Then
for µ-almost every ω, the horofunction ξω from Theorem 5.1 may be chosen to belong to E.

5.2. Growth of elements of FN under cocycles of automorphisms

Given an element g ∈ FN , we denote by ||g|| the length of the cyclically reduced word that
represents the conjugacy class of g in some fixed basis ofFN (word lengths with respect to two
different bases are bi-Lipschitz equivalent). We will show the following theorem. Integrability
of ergodic cocycles on Out(FN ) will always be meant with respect to the Lipschitz metric
on CVN .

T 5.3. – Let Φn(ω) be an integrable ergodic cocycle of elements of Out(FN ), and
let l be its drift. For P-a.e. ω, there exist a (random) constant C(ω) > 0 and a (random) tree
T (ω) ∈ CVN such that for all ε > 0, there exists n0(ω) ∈ N such that for all n ≥ n0 and
all g ∈ FN , we have

C(ω)||g||T (ω)(e
l − ε)n ≤ ||Φn(ω)(g)|| ≤ ||g||(el + ε)n.

Proof. – We may choose as a basepoint b ∈ CVN a Cayley tree of FN with respect to our
fixed free basis ofFN , so that for all g ∈ FN , we have ||g||b = ||g||. Let Φn(ω) be an integrable
ergodic cocycle of elements of Out(FN ). Theorem 5.1 ensures that for almost every ω, there
exists ξ = ξ(ω), associated to a tree T = T (ω) ∈ CVN , such that

lim
n→+∞

− 1

n
ξ(Φn(ω)−1b) = l

(if l = 0 then we can choose T (ω) ∈ CVN , while if l > 0, then ξ is unbounded from
below, and hence T (ω) ∈ CVN (∞) is a tree with dense orbits by Theorem 3.13). Using the
expression of horofunctions given by Theorem 2.2, for all ε > 0, there exists n0 = n0(ω) ∈ N
such that for all n > n0 one has

log sup
g∈FNr{e}

||g||T (ω)

||g||Φn(ω)−1b
− log sup

g∈FNr{e}

||g||T (ω)

||g||b
≤ −(l − ε)n.

Letting

C(ω)−1 := sup
g∈FNr{e}

||g||T (ω)

||g||b
,

we obtain

sup
g∈FN

||g||T (ω)

||g||Φn(ω)−1b
≤ C(ω)−1e−(l−ε)n,

so for all g ∈ FN we have

||Φn(ω)(g)||b = ||g||Φn(ω)−1b ≥ C(ω)||g||T (ω)e
(l−ε)n.

As
lim

n→+∞

1

n
dCVN (b,Φn(ω)−1b) = l,

for all sufficiently large n ∈ N and all g ∈ FN , we also have

||Φn(ω)(g)||b ≤ ||g||be(l+ε)n.
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This shows Theorem 5.3.

As a consequence of Theorem 5.3, we obtain the following result.

C 5.4. – Let Φn(ω) be an integrable ergodic cocycle of elements of Out(FN ),
and let l be its drift. For P-a.e. ω, there exists a (random) tree T (ω) ∈ CVN such that

– for all g ∈ FN which are hyperbolic in T (ω), we have

lim
n→+∞

1

n
log ||Φn(ω)(g)|| = l;

– for all g ∈ FN which are elliptic in T (ω), we have

lim sup
n→+∞

1

n
log ||Φn(ω)(g)|| ≤ l.

5.3. The case of a random walk on a nonelementary subgroup of Out(FN )

The goal of the present section is to specify Corollary 5.4 in the case of independent
increments (i.e., Ω is a product probability space, and T is the shift operator). This will be the
content of Theorem 5.7 below, which is analogous to a theorem of Furstenberg for random
products of matrices [17], and to Karlsson’s theorem for random products of elements of the
mapping class group of a surface [46, Corollary 4]. Its proof will first require understanding
stationary measures on the horoboundary of CVN .

Given a probability measure µ on a countable groupG acting on a compact spaceX, there
always exists a µ-stationary Borel probability measure onX, obtained as a weak limit of the
Cesàro averages of the convolution of µ∗n and any Borel probability measure on X (see [18]
or [40, Lemma 2.2.1]). Therefore, given any probability measure µ on Out(FN ), there exists
a µ-stationary measure on CVN (∞). We will use the following classical lemma, whose proof
relies on a maximum principle argument, for analyzing µ-stationary probability measures
on CVN (∞). We denote by gr(µ) the subgroup of Out(FN ) generated by the support of µ.

L 5.5 (Ballmann [3], Woess [63, Lemma 3.4], Kaimanovich-Masur [40,
Lemma 2.2.2], Horbez [34, Lemma 3.3])

Letµ be a probability measure on a countable groupG, and let ν be aµ-stationary probability
measure on a G-space X. Let D be a countable G-set, and let Θ : X → D be a measurable
G-equivariant map. If E ⊆ X is a G-invariant measurable subset of X satisfying ν(E) > 0,
then Θ(E) contains a finite gr(µ)-orbit.

A subgroup of Out(FN ) is nonelementary if it does not virtually fix the conjugacy class of
any finitely generated subgroup ofFN of infinite index. The following statement is essentially
proved in [35, Proposition 2.4], we sketch a proof for completeness. We recall that we have
associated a standard representative to every class of primitive-equivalence in Section 1.3.

P 5.6 (Horbez [35, Proposition 2.4]). – Let µ be a probability measure
on Out(FN ), and let ν be a µ-stationary probability measure on CVN (∞). Then ν is concen-
trated on the set of trees T ∈ CVN (∞) such that all conjugacy classes of point stabilizers in
the canonical lift of T to CVN have finite gr(µ)-orbits. In particular, if gr(µ) is nonelementary,
then every µ-stationary probability measure on CVN (∞) is concentrated on the set of free
FN -actions.
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Proof of Proposition 5.6. – Let D be the countable set of all finite collections of conju-
gacy classes of finitely generated subgroups of FN . For all T ∈ CVN (∞), we let Θ(T ) be
the collection of conjugacy classes of point stabilizers in the standard representative of T
in CVN . This set is finite [38] and belongs to D by [21, Corollary III.4]. We have Θ(T ) 6= ∅
as soon as some representative of T in CVN is not free. We now prove that Θ is measur-
able, which will be enough to conclude by applying Lemma 5.5 to Θ. We denote by ∂CVN
the boundary of Culler and Morgan’s compactification of CVN . The projection map
π : ∂CVN → CVN (∞) is closed, so [8, Theorem V.3] and [9, Corollary III.3] imply
that there exist countably many measurable maps fn : CVN (∞) → ∂CVN , so that for
all T ∈ CVN (∞), we have π−1(T ) = {fn(T )|n ∈ N}. Given a conjugacy class H ∈ D, we
have H ∈ Θ(T ) if and only if

– for all g ∈ FN which is conjugate into H, and all n ∈ N, we have ||g||fn(T ) = 0, and
– for all g ∈ FN which is not conjugate intoH, there existsn ∈ N such that ||g||fn(T ) 6= 0.

Measurability of Θ follows.

T 5.7. – Let µ be a probability measure on Out(FN ), whose support generates a
nonelementary subgroup of Out(FN ). For all g ∈ FN , and almost every sample path (Φn)n∈N
of the random walk on (Out(FN ), µ), we have

lim
n→+∞

1

n
log ||Φn(g)|| = l,

where l is the drift of the random walk.

Proof. – In view of Theorem 5.3, it is enough to show that the tree T (ω) associated to the
horofunction provided by Karlsson and Ledrappier’s theorem, can almost surely be chosen
to be free. This is a consequence of Propositions 5.2 and 5.6.

R 5.8. – When the random walk on (Out(FN ), µ) has positive drift with respect
to the Lipschitz distance on Out(FN ), we therefore get that all elements of FN almost
surely have exponential growth along the sample path of the random walk, with the same
exponential growth rate. Positivity of the drift is discussed in the next section.

5.3.1. Drift of a random walk on a nonelementary subgroup of Out(FN ). – The goal of the
present section is to establish positivity of the drift of the random walk on (Out(FN ), µ) with
respect to the Lipschitz metric on CVN , under some assumptions on µ: this is the content of
Corollary 5.14 below. Our proof requires relating the geometry of several Out(FN )-spaces.

Outer space and the free factor complex. – The free factor complex FFN , introduced by
Hatcher and Vogtmann in [31], is defined when N ≥ 3 as the simplicial complex whose
vertices are the conjugacy classes of nontrivial proper free factors of FN , and higher dimen-
sional simplices correspond to chains of inclusions of free factors. (When N = 2, one has
to modify this definition by adding an edge between any two complementary free factors
to ensure that FF 2 remains connected, and FF 2 is isomorphic to the Farey graph). We
equip FFN with the simplicial metric dFFN , and we fix a basepoint ∗FFN ∈ FFN . We aim
at proving the following result relating the metrics on CVN and on FFN .
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P 5.9. – There exist K,L ∈ R such that for all Φ,Ψ ∈ Out(FN ), we have

dFFN (Φ∗FFN ,Ψ∗FFN ) ≤ KdCVN (Φb,Ψb) + L.

Proposition 5.9 will follow from several distance estimates between various
Out(FN )-complexes, provided by Lemmas 5.10 and 5.11 and Proposition 5.12. We will
first introduce yet another Out(FN )-complex. Let MN := #NS1 × S2 be the connected
sum of N copies of S1 × S2, whose fundamental group is free of rank N . A sphere system
is a collection of disjoint, embedded 2-spheres in MN , none of which bounds a ball, and
no two of which are isotopic. The sphere complex SN , introduced by Hatcher in [30], is the
simplicial complex whose k-simplices are the isotopy classes of systems of k + 1 spheres
in MN (a (k − 1)-dimensional face of a k-simplex ∆ is obtained by removing one sphere
from the sphere system corresponding to ∆). We denote by S′N the one-skeleton of the
first barycentric subdivision of SN , which we equip with the simplicial metric d S′N . There
is a coarsely well-defined, coarsely equivariant map τ : S′N → FFN , that maps a sphere
system S to the conjugacy class of the fundamental group of a complementary component
in MN of a sphere in S. We let ∗ S′N := τ(∗FFN ). The map τ is Lipschitz, so we get the
following estimate.

L 5.10. – There exists C > 0 such that for all Φ,Ψ ∈ Out(FN ), we have

dFFN (Φ∗FFN ,Ψ∗FFN ) ≤ Cd S′N (Φ∗ S′N ,Ψ∗ S′N ).

Given two sphere systems S and S′ inMN , the intersection number i(S, S′) is the minimal
number of intersection circles between representatives of the isotopy classes of S and S′.
Assume that S and S′ have been isotoped so as to minimize their number of intersection
circles. There is a classical surgery procedure [30] that creates from a sphere s inS two spheres
s1 and s2 that are both disjoint from s, and have fewer intersection circles with S′. Pick an
innermost disk on a sphere s′ ∈ S′, bounded by a circleC of intersection with s. The circleC
splits s into two disks D1 and D2. For all i ∈ {1, 2}, the sphere si consists of a parallel copy
of Di attached to a parallel copy of D, see Figure 4. Notice that all other intersection circles
between s and S′ are distributed over s1 and s2. In particular, there exists j ∈ {1, 2} such
that i(sj , S′) ≤ i(s,S′)

2 (isotoping sj to minimize the number of intersection circles with S′

can only decrease this number). An iterated application of this argument yields the following
distance estimate in S′N in terms of intersection numbers. (In the following statement, we take
the convention log 0 = 0.)

L 5.11. – There existK,L ∈ R such that for all sphere systems S, S′ ∈ S′N , we have

d S′N (S, S′) ≤ K log i(S, S′) + L.

Proof. – Let s ∈ S be a sphere. Iterating the above argument yields a sequence of spheres
s = s0, s1, . . . , sn, with i(sj , sj+1) = 0 for all j ∈ {1, . . . , n − 1} and i(sj , S′) ≤ i(s,S′)

2j . In
particular, for n := dlog2 i(S, S

′)e, we have i(sn, S′) = 0.
Hence the sequence S, s, s ∪ s1, s1, s1 ∪ s2, . . . , sn, sn ∪ S′, S′ is a path of length

2dlog2 i(S, S
′)e+ 4 joining S to S′ in S′N . The lemma follows.

One can finally relate the Lipschitz distance on CVN to intersection numbers.
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D1 D2

s

s′

s1 s2C

F 4. The surgery procedure.

P 5.12 (Horbez [33, Proposition 2.8]). – There exist K,L ∈ R such that for
all Φ,Ψ ∈ Out(FN ), we have

1

K
log i(Φ∗ S′N ,Ψ∗ S′N )− L ≤ dCVN (Φb,Ψb) ≤ K log i(Φ∗ S′N ,Ψ∗ S′N ) + L.

Positivity of the drift. – We now discuss positivity of the drift of the random walk
on (Out(FN ), µ) with respect to dCVN . The following theorem, due to Calegari and Maher [7,
Section 5.10], establishes positivity of the drift with respect to dFFN under some assumptions
on µ. Its proof relies on work of Maher [52] and on the convergence of almost every sample
path of the random walk on (Out(FN ), µ) to the Gromov boundary ∂FFN (which is also
established in [35, Theorem 4.2] by other methods).

T 5.13 (Calegari-Maher [7, Theorem 5.34]). – Let µ be a probability measure
on Out(FN ), whose support is finite and generates a nonelementary subgroup of Out(FN ) which
is not virtually cyclic. Then the random walk on (Out(FN ), µ) has positive drift with respect
to dFFN .

C 5.14. – Let µ be a probability measure on Out(FN ), whose support is finite
and generates a nonelementary subgroup of Out(FN ) which is not virtually cyclic. Then the
random walk on (Out(FN ), µ) has positive drift with respect to dCVN .

Proof. – Corollary 5.14 follows from Theorem 5.13 and Proposition 5.9.

R 5.15. – After the first version of the present paper was written, Theorem 5.13
was established by Maher-Tiozzo in [53, Theorem 1.2] under the weaker assumption that
µ has finite first moment with respect to dFFN . Therefore, in Corollary 5.14, one can weaken
the assumption that µ has finite support to a finite first moment assumption with respect
to dCVN .
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5.4. An Oseledets-like theorem for random products of outer automorphisms of FN

When gr(µ) is elementary, we can no longer expect all elements of FN to grow exponen-
tially fast along a typical sample path of the random walk, with the same exponential growth
rate. A typical situation is the case where the support of µ only contains automorphisms that
act as the identity on some proper subgroup of FN : in this case, elements of FN belonging
to this subgroup will not grow along any sample path of the random walk.

However, in the case where gr(µ) is elementary, we can still provide information about
the possible growth rates of elements of FN under random products of automorphisms
of FN . In this case, we give an analogue of a theorem due to Furstenberg and Kifer [20] and
Hennion [32] in the case of random products of matrices (which may be seen as a version of
Oseledets’ theorem). Several growth rates may arise, and we give a bound on their number.

5.4.1. Filtrations of FN . – A filtration of FN is a finite rooted tree τ such that

– associated to every node of τ is a (possibly trivial) subgroup H ⊆ FN , and
– the subgroup associated to the root of τ is FN , and
– we have H ′ ⊆ H whenever H ′ is a child of H.

A system of Lyapunov exponents for the filtration τ is a set of real numbers λH ≥ 0

associated to the nodes of τ , such that λH′ ≤ λH whenever H ′ is a descendant of H,
and λH = 0 if and only if H is a leaf of τ . A particular case of filtrations of FN is given by
the following construction. We say that a group action on a tree is trivial if the tree is reduced
to a point. An FN -chain of actions is a finite rooted tree τ such that

– associated to every node of τ is a pair (H,TH), where H is a subgroup of FN (the
subgroup associated to the root of τ is FN ), and TH is a minimal, very small H-tree
with dense orbits (the groupH might be equal to {e}, and the tree TH might be reduced
to a point), and

– all nodes whose associated action is trivial are leaves of τ , and
– for all nodes whose associated action (H,TH) is nontrivial, the collection of subgroups
H ′ ⊆ FN associated to the children of (H,TH) is a set of representatives of the
conjugacy classes of point stabilizers in TH (in particular, the group {e} is one of the
children of H as soon as the action on TH is nontrivial).

In particular, leaves of τ are in one-to-one correspondence with trivial actions. We might
have preferred not to add the trivial group to the collection of descendants of a nontrivial
action, which would have led to some leaves of τ corresponding to free actions. However, it
will turn out that including the trivial group in this collection is more natural for our purpose,
because e always has zero growth along any sample path of a random walk. Associated
to any FN -chain of actions is a filtration of FN , obtained by forgetting the actions. The
following theorem, whose proof we postpone to Section 5.4.4, gives a bound on the size of
any FN -chain of actions.

T 5.16. – Any FN -chain of actions has at most N − 1 non-leaf nodes.
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5.4.2. Oseledets filtrations of probability measures on Out(FN )

D 5.17. – Let µ be a probability measure on Out(FN ). Let F be a finitely
generated subgroup of FN . A filtration τ of F is an Oseledets filtration for µ if there exists
a system of Lyapunov exponents {λµH}H∈V (τ) for τ , such that for P-almost every sample path
of the random walk on (Out(FN ), µ), all nodes H of τ , and all elements g ∈ H that are not
conjugate into any child of H, we have

lim
n→+∞

1

n
log ||Φn(g)|| = λµH .

For all g ∈ F , the growth rate

lim
n→+∞

1

n
log ||Φn(g)||

is called the Lyapunov exponent of g for the measure µ, and denoted by λµ(g).

T 5.18. – Let µ be a probability measure on Out(FN ), having finite first moment
with respect to d sym

CVN
. Then there exists an Oseledets filtration for µ, associated to an FN -chain

of actions. Moreover, for all nodes H of the filtration, the conjugacy class of H has finite
gr(µ)-orbit.

As a consequence of Theorems 5.16 and 5.18, we deduce that for all probability
measures µ on Out(FN ) having finite first moment with respect to d sym

CVN
, there exists a

finite collection of (deterministic) exponents λ1, . . . , λp > 0 such that for P-almost every
sample path of the random walk on (Out(FN ), µ), and all g ∈ FN r {e}, the limit

lim
n→+∞

1

n
log ||Φn(g)||

exists and belongs to {0} ∪ {λ1, . . . , λp}. Theorem 5.16 implies that p ≤ N − 1, we will
improve this bound in Section 5.4.4, see Corollary 5.25.

5.4.3. Existence of Oseledets filtrations

First return measures. – Let µ be a probability measure on Out(FN ), and let A be a finite
index subgroup of gr(µ). The subgroup A is positively recurrent for the random walk
on (Out(FN ), µ). The first return measure on A, denoted by µA, is the probability measure
defined as the distribution of the point where the random walk issued from the identity
of Out(FN ) returns for the first time to A. Given a sample path (Φn(ω))n∈N of the random
walk on (Out(FN ), µ), and m ∈ N, we let τAm(ω) be the (m + 1)st time n ∈ N at which we
have Φn(ω) ∈ A. Notice in particular that τA0 (ω) = 0, and τA1 (ω) is the first (positive) time
at which the sample path returns to the recurrent subgroup A. We let

CA := lim
n→+∞

τAn (ω)

n
,

which almost surely exists, is independent of ω, and CA > 0 by positive recurrence of
the random walk on the finite set gr(µ)/A. The following proposition is a variation in our
context of a classical fact about first return measures, see for example [39, Lemma 2.3] or [5,
Lemma 6.10] where it appears in other contexts.
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P 5.19. – Let µ be a probability measure on Out(FN ) which has finite first
moment with respect tod sym

CVN
. LetA be a finite index subgroup of gr(µ) which fixes the conjugacy

class of a finitely generated malnormal subgroup H ⊆ FN of rank k. Then µA has finite first
moment with respect to d sym

CVk
.

Proof. – Since H is malnormal, all elements of A induce a well-defined element
of Out(H). We choose a basepoint ∗CVN in CVN , and let its H-minimal subtree be a
basepoint ∗CVk for CVk. Then there exists C > 0 such that for all Φ ∈ A, we have

d sym
CVk

(Φ∗CVk , ∗CVk) ≤ Cd sym
CVN

(Φ∗CVN , ∗CVN ).

Indeed, as Φ fixes the conjugacy class ofH, theH-minimal subtrees of ∗CVN and Φ∗CVN have
the same quotient volumes, and the translation length of any g ∈ H is stretched by the
same amount from Φ∗CVN to ∗CVN and from Φ∗CVk to ∗CVk . Denoting by L the (finite) first
moment of µ with respect to d sym

CVN
, we have∫

A

d sym
CVk

(Φ∗CVk , ∗CVk)dµA(Φ) ≤ C
∫
A

d sym
CVN

(Φ∗CVN , ∗CVN )dµA(Φ)

= C

∫
Ω

d sym
CVN

(ΦτA1 (ω)(ω)∗CVN , ∗CVN )dµ⊗N(ω)

≤ C
∫

Ω

τA1 (ω)∑
i=1

d sym
CVN

(φi(ω)∗CVN , ∗CVN )dµ⊗N(ω)

= C

+∞∑
i=1

∫
{τA1 (ω)≥i}

d sym
CVN

(φi(ω)∗CVN , ∗CVN )dµ⊗N(ω)

= CL

+∞∑
i=1

µ⊗N(τA1 (ω) ≥ i),

where the last equality follows from independence of {τA1 ≥ i} and the increments φj ’s
for j ≥ i. We thus get∫

A

d sym
CVk

(Φ∗CVk , ∗CVk)dµA(Φ) ≤ CL
+∞∑
i=1

iµ⊗N(τA1 (ω) = i),

which is finite by positive recurrence of the random walk on the finite set gr(µ)/A.

P 5.20. – Let µ be a probability measure on Out(FN ), with finite first moment
with respect to d sym

CVN
. LetH be a finitely generated malnormal subgroup of FN of rank k, whose

conjugacy class [H] has finite gr(µ)-orbit. Let A := Stab([H]).
Assume that for all probability measuresµ′ onAwith finite first moment with respect to d sym

CVk
,

there exists an Oseledets filtration of H for µ′. Then any Oseledets filtration of H for the
measure µA is an Oseledets filtration of H for the measure µ, and for all g ∈ H, we have
λµ(g) = 1

CA
λµ

A

(g).

Proof. – Let {[H] = [H1], . . . , [Hp]} be the gr(µ)-orbit of the conjugacy class of H,
and for all i ∈ {1, . . . , p}, let Ai := Stab([Hi]). We start by showing the existence, for
all i ∈ {1, . . . , p}, of an Oseledets filtration ofHi for the measure µAi . Let i ∈ {1, . . . , p}. We
choose an automorphism αi ∈ gr(µ) such that αi([H]) = [Hi] (with α1 = id). Let µi be the
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measure onA defined asµi := (adαi)∗µ
Ai (where adαi denotes the conjugation byαi). Using

Proposition 5.19, we get thatµi has finite first moment with respect to d sym
CVk

, so by hypothesis,
there exists an Oseledets filtration of H for the measure µi. For almost every sample path
(Ψi

n)n∈N of the random walk on (H,µi), and all g ∈ H, we have

lim
n→+∞

1

n
log ||Ψi

n(g)|| = λµi(g),

so for all g′ ∈ Hi, we have

lim
n→+∞

1

n
log ||αiΨi

nα
−1
i (g′)|| = λµi(α−1

i (g′)).

By definition of the measure µi, this implies the existence of an Oseledets filtration of Hi for
the measure µAi , which is the αi-image of the Oseledets filtration ofH for µi. The Lyapunov
exponents λAi of the measure µAi satisfy λAi(g′) = λµi(α−1

i (g′)) for all g′ ∈ Hi.

Let now (Φn)n∈N be a sample path of the random walk on (Out(FN ), µ), and let g ∈ H.
For all n ∈ N, we set gn := Φn(g). For all i ∈ {1, . . . , p}, we let Ii ⊆ N be the set of all
integers n such that Φn([H]) = [Hi], and we let τi(n) be the nth integer in Ii. The limit

Ci := lim
n→+∞

τi(n)

n

almost surely exists, and Ci > 0, by positive recurrence of the finite Markov chain
on {[H1], . . . , [Hp]} induced by the random walk on (Out(FN ), µ). For all n ∈ N, we
have Φn(g) = Ψi

n(gτi(1)), where Ψi
n := φn . . . φτi(1)+1. The sequence (Ψi

n)n∈Ii is a sample
path of the random walk on (Ai, µ

Ai), and therefore we have

lim
n→+∞
n∈Ii

1

n
log ||Φn(g)|| = 1

Ci
λAi(gτi(1)).

We will now prove that the limit

lim
n→+∞

1

n
log ||Φn(g)||

almost surely exists, i.e., that 1
Ci
λAi(gτi(1)) does not depend on i. In particular, by choosing

i = 1, this will imply that

lim
n→+∞

1

n
log ||Φn(g)|| = 1

CA
λA(g),

and in particular any Oseledets filtration for µA is an Oseledets filtration for µ.

In order to prove the above claim, we first notice that for all ε > 0, there exists n0 ∈ N
such that for all i ∈ {1, . . . , p}, all n ∈ Ii ∩ [n0,+∞), and all g ∈ H, we have∣∣∣∣ 1n log ||Φn(g)|| − 1

Ci
λAi(g)

∣∣∣∣ ≤ ε.
Assume towards a contradiction that 1

Ci
λAi(g) 6= 1

Ci′
λAi′ (g) for some i, i′ ∈ {1, . . . , p}.

Then there exists an infinite set of integersX with positive density such that for all n ∈ X, the
integers n and n+ 1 belong to two different sets Ii, Ii′ of the partition, with 1

Ci
λAi(g) 6= 1

Ci′
λAi′ (g).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1110 C. HORBEZ

Consequently, there exists δ > 0 and an infinite set of integers X ′ with positive density
α > 0, such that for all n ∈ X ′, we have∣∣∣∣ 1

n+ 1
log ||Φn+1(g)|| − 1

n
log ||Φn(g)||

∣∣∣∣ ≥ δ,
and therefore

||Φn+1(g)||
||Φn(g)||

≥ enδ.

Let k ∈ N. There exists nk ∈ N such that enkδ ≥ k. For all n ∈ X ′ ∩ [nk,+∞), we have

dCVN (Φ−1
n b,Φ−1

n+1b) ≥ k,

or in other words dCVN (φn+1b, b) ≥ k. This implies that for all k ∈ N, we have

µ({φ ∈ Out(FN )|dCVN (φb, b) ≥ k}) ≥ α

(where we recall that α > 0 is the density of X ′), which is impossible. So for all i, i′ ∈ {1, . . . , p},
we have 1

Ci
λAi(g) = 1

Ci′
λAi′ (g), as claimed.

Proof of Theorem 5.18. – We argue by induction on the rank N of the free group. The
claim holds true for N = 1, so we assume that N ≥ 2. We will first show that for almost
every sample path Φ of the random walk on (Out(FN ), µ), there exists an (a priori random)
filtration τ(Φ) of FN , together with an (a priori random) system of Lyapunov exponents
{λΦ(H)}H∈V (τ(Φ)), such that for all nodes H of the filtration, and all g ∈ H that are not
conjugate into any child of H, we have

lim
n→+∞

1

n
log ||Φn(g)|| = λΦ(H).

The fact the Lyapunov exponents are deterministic, and that the filtration can be chosen not
to depend on the sample path, will be shown in the last paragraph of the proof. We keep the
notations introduced in the proof of Theorem 5.3 in Section 5.2. Recall that we have shown
that

lim
n→+∞

1

n
log ||Φn(g)|| = l

for all g ∈ FN which are hyperbolic in T , where l is the drift of the random walk for the
Lipschitz metric onCVN . We are left understanding possible growth rates of elements of FN
that are elliptic in T . If l = 0, then all elements g ∈ FN grow subexponentially along the
random walk, and we can choose T to be trivial. Otherwise, the horofunction ξ provided by
Theorem 5.1 is unbounded from below, so Theorem 3.13 implies that for almost every ω, the
tree T (ω) has dense orbits. Propositions 5.2 and 5.6 show that we may have chosen T so that
all conjugacy classes of point stabilizers in T have finite gr(µ)-orbit.

Let C be the collection of conjugacy classes of point stabilizers of T . All subgroups in C
are malnormal, and they have rank at mostN−1 by [21, Theorem III.2] (see Proposition 5.21
below). Therefore, our induction hypothesis implies that for all H ∈ C of rank k, and
all measures µ′ on Out(H) with finite first moment with respect to CVk, there exists an
Oseledets filtration of H for the measure µ′, which is associated to an H-chain of actions.
Proposition 5.20 then shows the existence of an Oseledets filtration of H for the measure µ,
which is equal to the Oseledets filtration for µA, where A := Stab([H]). The conjugacy
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class of every node H ′ ⊆ H of the filtration has finite gr(µA)-orbit, and hence it has finite
gr(µ)-orbit.

To get the desired filtration τ(Φ) of FN , notice that all elements of FN that do not belong
to any subgroup in C have a Lyapunov exponent, which is greater than or equal to the
Lyapunov exponent of any other element of FN (Theorem 5.4). We then let τ(Φ) be the
filtration of FN associated to the FN -chain of actions whose root is the action (FN , T (ω)),
to which we attach the H-chains of actions associated to the elliptic subgroups H of T (ω)

which were provided by the induction hypothesis.

We now show that the filtration τ(Φ) is actually a (deterministic) Oseledets filtration
for the measure µ (i.e., it is adapted to almost every sample path of the random walk
on (Out(FN ), µ)). It is enough to show that for all g ∈ FN , the growth rate λΦ(ω)(g)

of g along the sample paths of the random walk on (Out(FN ), µ) is P-essentially constant.
Let g ∈ FN . If λΦ(ω)(g) is not P-essentially constant, then in particular P(λΦ(ω)(g) < l) > 0

(where we recall that l is the drift of the random walk on (Out(FN ), µ)). Hence g belongs to
some subgroup H ⊆ FN , whose conjugacy class has finite gr(µ)-orbit. Let A := Stab([H]).
The induction hypothesis implies that the growth rate of g along the sample paths of the
random walk on (A,µA) is essentially constant, equal to λµ

A

(g). Proposition 5.20 therefore
implies that λΦ(g) is P-essentially constant, equal to 1

CA
λµ

A

(g). This proves the claim.

5.4.4. Bounding the size of FN -chains of actions. – We will now prove Theorem 5.16, which
bounds the size of any FN -chain of actions. For all T ∈ CVN , and all x ∈ T , we define the
index i(x) := 2rk(Stab(x)) + v1(x)− 2, where v1(x) denotes the number of Stab(x)-orbits
of directions with trivial stabilizer at x. This only depends on the FN -orbit of x in T . The
index i(T ) is then defined to be the sum of the indices of x over all FN -orbits of points x ∈ T .
We will appeal to the following result of Gaboriau and Levitt.

P 5.21 (Gaboriau-Levitt [21, Theorem III.2]). – For all trees T ∈ CVN , we
have i(T ) ≤ 2N − 2. In particular, if T has trivial arc stabilizers, then for all x ∈ T , we have
rk(Stab(x)) ≤ N − 1.

Proof of Theorem 5.16. – We argue by induction on N . Every Z-action on a tree with
dense orbits is trivial, so we can assume that N ≥ 2. Let τ be an FN -chain of actions, and
let T be the action corresponding to the root of τ . We denote by p(τ) the number of non-leaf
nodes in τ . Let V be the collection of nodes of depth 1 in τ , which correspond to a set of
representatives of the conjugacy classes of point stabilizers in T . For all v ∈ V , let Gv be the
associated subgroup of FN , and let τv be the corresponding Gv-chain of actions. As T has
dense orbits, it follows from Proposition 5.21 that for all v ∈ V , we have rk(Gv) < N . The
induction hypothesis implies that for all v ∈ V , we have p(τv) ≤ rk(Gv) − 1, which implies
that

p(τ) ≤ 1 +
∑
v∈V (rk(Gv)− 1)

< 1 + 1
2

∑
v∈V (2rk(Gv)− 1).

As arc stabilizers in T are trivial, Proposition 5.21 implies that p(τ) ≤ N − 1.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1112 C. HORBEZ

E 5.22. – We construct an example of an FN -chain of actions with N − 1

nontrivial nodes, thus showing the optimality of the bound provided by Theorem 5.16 in
general. Let T be a geometric FN -tree with dense orbits, whose skeleton (see [25, Defini-
tion 4.8] or [26, Section 1]) consists of

– one vertex corresponding to a minimal action with dense orbits of a subgroup of FN of
rank 2, dual to a measured lamination on a torus with a single boundary component,
and

– one vertex corresponding to a trivial action of a subgroup of FN of rank N − 1, and
– an edge of length 0 joining them, whose stabilizer is cyclic, represented by the boundary

curve of the torus.

This defines a nontrivial, minimal, very small FN -tree, in which a subgroup of FN
of rank N − 1 is elliptic. Repeating this construction, we get a sequence of subgroups
FN = HN ⊇ · · · ⊇ H1 = Z, in which the subgroup Hi has rank i, together with minimal,
very smallHi-trees with dense orbits, which are nontrivial as soon as i ≥ 2, and such that for
all i ∈ {2, . . . , N}, the subgroup Hi−1 is elliptic in Ti. This defines an FN -chain of actions
with N − 1 non-leaf nodes, in which each node (Hi, THi) with i ≥ 2 has two children,
namely the action (Hi−1, Ti−1), and the trivial action of the trivial group.

5.4.5. Good FN -chains of actions. – Example 5.22 shows that the bound on the size of an
FN -chain of actions provided by Theorem 5.16 is optimal in general. We will now define a
special class of good FN -chains of actions for which this bound can actually be improved. We
will show that all Oseledets filtrations constructed in the proof of Theorem 5.18 are good,
which will lead to a better bound on the number of possible growth rates of elements of FN
under random products of automorphisms.

We refer to [51] for a definition of geometric trees, see also [26, Section 1.7]. Any geometric
tree with dense orbits has a decomposition into a graph of actions where each nondegenerate
vertex action is indecomposable [26, Proposition 1.25] (the reader is referred to [26, Section 1]
for background material). We say that a tree in CVN is of surface type if it is geometric, and
all its indecomposable subtrees are dual to laminations on surfaces. Let τ be an FN -chain
of actions. An element g ∈ FN is a special curve for τ if there exists a node (H,TH) of τ
corresponding to an action of surface type, such that g is conjugate to an element that
represents a boundary curve of a surface dual to one of the indecomposable subtrees of TH .
An FN -chain of actions τ is good if all special curves of τ are elliptic in all nodes (H,TH)

such that c ∈ H (up to conjugacy). In other words, an FN -chain of actions τ is good if and
only if all special curves of τ are conjugate into some leaf of τ .

T 5.23. – Any good FN -chain of actions has at most 3N−2
4 non-leaf nodes.

T 5.24. – Let µ be a probability measure on Out(FN ), having finite first moment
with respect to d sym

CVN
. Then there exists an Oseledets filtration for µ, which is associated to a

good FN -chain of actions.

The proof of Theorem 5.23 is given in Section 5.4.7, and the proof of Theorem 5.24 is
given in Section 5.4.6. As a consequence of Theorems 5.23 and 5.24, we get the following
result.
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S1

S2

S3

S4

S5

S6

S7 S 3N−2
4

c1
c2

c3

c4

c5

c6

c7

(FN , T0)

(H1, T1)

(H2, T2)

(H3, T3)

(H4, T4)
c1 c2 c3

τ(FN )

{e}

{e}

{e}

{e}

F 5. The surface in Example 5.26.

C 5.25. – Letµ be a probability measure on Out(FN ), having finite first moment
with respect to d sym

CVN
. Then there exist (deterministic) λ1, . . . , λp > 0 such that for P-almost

every sample path of the random walk on (Out(FN ), µ), and all g ∈ FN r {e}, the limit

lim
n→+∞

1

n
log ||Φn(g)||

exists and belongs to {0} ∪ {λ1, . . . , λp}. In addition, we have p ≤ 3N−2
4 .

E 5.26. – We give an example, due to Levitt [50], of a good chain of actions with
3N−2

4 non-leaf nodes, thus showing that the bound in Theorem 5.23 is optimal. Let S be
the compact, oriented surface of rank N displayed on Figure 5, decomposed into 3N−2

4

subsurfacesSi that are either tori with one boundary component, or spheres with 4 boundary
components. Let H0 := FN , and for all i ∈ {1, . . . , 3N−2

4 }, let Hi be the fundamental group
of the subsurface Σi of S obtained by removing S1, . . . , Si from S (we letH 3N−2

4
be the cyclic

group generated by the rightmost boundary curve of the surface S displayed on Figure 5).
Let Ti be a nontrivial Hi-tree with dense orbits, dual to a measured lamination on Σi that is
supported on Si+1 (in particular T 3N−2

4
is trivial). Then theFN -chain of actions displayed on

Figure 5 is good, because the boundary curves of Σi are elliptic in all the descendants of Hi

that contain them. In addition, this FN -chain of actions contains 3N−2
4 nontrivial nodes.

The same example also shows that the bound in Corollary 5.25 is sharp, by letting µ be
a Dirac measure supported on a diffeomorphism of S that restricts to a pseudo-Anosov
diffeomorphism of each surface Si, with 3N−2

4 different growth rates.

5.4.6. Existence of good Oseledets filtrations. – The goal of this section is to prove
Theorem 5.24, by showing that the FN -chain of actions constructed in the proof of
Theorem 5.18 is good.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1114 C. HORBEZ

More on stationary measures on CVN (∞). – Let Y denote the collection of (finitely
generated) subgroups of FN that are maximally elliptic in some simplicial tree in CVN .
Given T ∈ CVN (∞), we denote by Dyn(T ) the collection of all conjugacy classes of
minimal subgroups in Y which act nontrivially with dense orbits on their minimal subtree
in T . This definition makes sense by the descending chain condition satisfied by groups
in Y [29, Proposition 4.1]. Subgroups whose conjugacy classes belong to Dyn(T ) are called

dynamical subgroups of T . It follows from our description of CVN
prim

in [36] that all
preimages in CVN of a tree in CVN (∞) have the same dynamical subgroups. We let

Θ(T ) :=

{
Dyn(T ) if Dyn(T ) is finite

∅ otherwise
.

Measurability of Θ comes from upper semicontinuity of the quotient volume (see [2,
Section 3.3], where it is proved that the quotient volume of a tree T ∈ cvN is equal to 0 if
and only if T has dense orbits), and continuity of translation lengths. Applying Lemma 5.5
to the map Θ yields the following fact.

P 5.27. – Letµbe a probability measure on Out(FN ). Then everyµ-stationary
probability measure on CVN (∞) is concentrated on the set of trees which either have infinitely
many dynamical subgroups, or all of whose dynamical subgroups have finite gr(µ)-orbits.

We now determine Dyn(T ) in the case where T ∈ CVN (∞) is of surface type.

L 5.28. – Let T ∈ CVN (∞) be a tree of surface type with dense orbits. Then
Dyn(T ) is equal to the set of stabilizers of the indecomposable subtrees of T .

Proof. – The tree T admits a transverse covering Z by indecomposable subtrees (see [26,
Section 1] for definitions), whose skeleton has cyclic (or trivial) edge groups, and each tree
in Z is dual to a minimal lamination on a surface [26, Proposition 1.25]. Let H ⊆ FN be
the stabilizer of one of these indecomposable subtrees TH ∈ Z . Let F ∈ Dyn(T ). The
F -minimal subtree TF of T inherits a transverse covering, given by the intersections of TF
with the subtrees in Z . As F acts with dense orbits on TF by assumption, the intersection
TF ∩TH has dense F ∩H-orbits. As TH is indecomposable, this implies by [56, Theorem 4.4]
that either TF ∩ TH contains at most one point, or else that TF ∩ TH = TH , and F ∩ H
has finite index in H. By minimality of F , we have TF ∩ TH = TH for exactly one of the
subtrees TH in the family Z . As groups in Y do not have proper finite index extensions, this
implies that F ∩H = H, and F is the stabilizer of one of the indecomposable subtrees of T .
Therefore, the set Dyn(T ) consists of the conjugacy classes of these stabilizers.

As a consequence of Proposition 5.27 and Lemma 5.28, we get the following fact.

C 5.29. – Let µ be a probability measure on Out(FN ). Then every µ-stationary
probability measure on CVN (∞) is concentrated on the set of trees T ∈ CVN (∞) such that
either

– the tree T is not of surface type, or
– the tree T is of surface type, and all conjugacy classes of the stabilizers of its indecompos-

able components have finite gr(µ)-orbits.
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Proof of Theorem 5.24. – We prove that the FN -chain of actions τ constructed in the
proof of Theorem 5.18 is good. We keep the notations from this proof. Arguing by induction
again, we can assume that all filtrations τH are associated to good H-chains of actions.
Proposition 5.2, together with Corollary 5.29, shows that if T is of surface type, then we
might assume that the conjugacy classes of all stabilizers of the indecomposable components
of T (which are dual to minimal foliations on surfaces) have finite gr(µ)-orbit. Let c ∈ FN
represent a boundary curve of a surface dual to one of the indecomposable components
of T . Then c is the intersection of a point stabilizer of T with a dynamical subgroup of T ,
which implies that the gr(µ)-orbit of the conjugacy class of c is finite, and therefore c grows
subexponentially along the random walk. In particular, the element c belongs to one of the
leaves of τ , thus showing that τ is good.

5.4.7. Bounding the size of good FN -chains of actions. – The aim of this section is to prove
Theorem 5.23, which provides a bound on the size of good FN -chains of actions. Our
proof is inspired from Levitt’s similar statement in [50] for counting growth rates of a single
automorphism of FN .

An Euler characteristic formula for small graph of groups decompositions

L 5.30. – Let G be a graph of groups decomposition of FN , whose edge groups are
(at most) cyclic. Denote by V the number of vertices of G, byE0 the number of edges with trivial
stabilizer, and byR the sum of the ranks of the vertex stabilizers of G. ThenN = R+E0−V +1.

Our proof of Lemma 5.30 relies on the following classical result.

L 5.31 (Shenitzer [58], Swarup [60], Stallings [59], Bestvina-Feighn [6, Lemma 4.1])

Let G be a graph of groups decomposition of FN , whose edge groups are (at most) cyclic.
Then there exists an edge e in G with nontrivial stabilizer Ge, adjacent to a vertex v, and a free
splitting of Gv of the form Gv = Ge ∗ A, so that if e′ 6= e is another edge adjacent to v in G,
then Ge′ is conjugate into A.

Lemma 5.31 shows that we can “unfold” the edge e and get another graph of groups
decomposition of FN having fewer edges with nontrivial stabilizer, in which the vertex v is
replaced by a vertex with stabilizer equal to A, which has corank 1 in Gv.

Proof of Lemma 5.30. – Using Lemma 5.31, and arguing by downward induction on the
number of edges with nontrivial stabilizer, we reduce to the case where all edges in G have
trivial stabilizer (each unfolding operation decreases R by 1, and increases E0 by 1). By
iteratively collapsing all edges in a maximal subtree of G (such a collapse decreases both E0

and V by 1), we reduce to the case where the underlying graph of G is a rose, in which case
Lemma 5.30 clearly holds.

Proof of Theorem 5.23. – Let τ be a good FN -chain of actions. Let k(τ) be the rank of
the subgroup of the abelianization of FN generated by the leaf groups of τ . We will show by
induction on N that the number p(τ) of non-leaf nodes of τ satisfies

p(τ) ≤ 3N − k(τ)− 2

4
.
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We let T be the FN -tree associated to the root of τ . We denote by {Gv} the collection of
all subgroups associated to the children of the root in τ , whose conjugates are the point
stabilizers in T by definition.

Case 1. – The tree T is not of surface type.

We refer the reader to [28] for an introduction to (relative) JSJ decompositions (and
Grushko decompositions in particular). By [36, Theorem 3.11], there exists a two-edge free
splitting S of FN in which allGv’s are elliptic. This implies that any Grushko decomposition
of FN relative to the collection {Gv} has at least two edges with trivial stabilizer. We denote
by C the collection of all conjugacy classes of subgroups ofFN that are elliptic in all Grushko
decompositions of FN relative to the collection {Gv}. Notice that for all H ∈ C , the point
stabilizers of the action ofH on its minimal subtree TH are conjugates of theGv’s. We let τH
be the H-chain of actions whose root corresponds to either

– the action (H,TH), where TH denotes the H-minimal subtree in T , if this action is
nontrivial, or

– the action associated to Gv in τ if H = Gv for some v ∈ V ,

to which we attach the trees τv corresponding to the subgroups Gv conjugate into H. We
have

p(τ) ≤ 1 +
∑
H∈ C

p(τH).

As all subgroups H ∈ C have rank at most N − 1, our induction hypothesis shows that

p(τH) ≤ 3rk(H)− k(τH)− 2

4
.

LetG be a Grushko decomposition ofFN relative to C , and denote byV (resp.E) the number
of vertices (resp. of edges) in the graph of groupsG. By collapsing edges to points if necessary,
we can assume that no vertex of G has trivial stabilizer. Therefore, we have∑

H∈ C (3rk(H)− 2) = 3
∑
H∈ C rk(H)− 2V

= 3(N − E + V − 1)− 2V

= 3N − 3E + V − 3

≤ 3N − 2E − 2

≤ 3N − 6

because V ≤ E + 1 by connectedness of G, and E ≥ 2.

In addition, any relation between elements in the subgroup generated by the leaves of τH
still holds true when viewing these elements as elements of FN , so

k(τ) ≤
∑
H∈ C

k(τH).

Combining the above inequalities, we get that

1 +
∑
H∈ C

p(τH) ≤ 3N − k(τ)− 2

4
,

and we are done in this case.
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Case 2. – The tree T is geometric, and only contains minimal surface components.

Then T is dual to a graph of actions G having a vertex associated to each orbit of
indecomposable subtrees Y of T , a vertex associated to each conjugacy class of elliptic
subgroup H of T , and an edge joining Y to H whenever the fixed point of H belongs to Y .
All edges in G have cyclic (possibly trivial) stabilizer. Notice that G might not be minimal,
in the case where some point stabilizer in T is cyclic (and corresponds to a boundary curve
of one of the surfaces dual to an indecomposable subtree of T ) and extremal. We denote
by C the set of conjugacy classes of point stabilizers in T , and by C1 (resp. C≥2) the set of
conjugacy classes in C which have valence 1 (resp. valence at least 2) in G. It follows from
Proposition 5.21 that ∑

H∈ C1

(2rk(H)− 1) +
∑

H∈ C≥2

(2rk(H)) ≤ 2N − 2,

from which we deduce that∑
H∈ C1

(3rk(H)− 2) +
1

2
| C1|+

∑
H∈ C≥2

(3rk(H)− 2) + 2| C≥2| ≤ 3N − 3,

or in other words ∑
H∈ C

(3rk(H)− 2) ≤ 3N − 3− (
1

2
| C1|+ 2| C≥2|).

If ∑
H∈ C

(3rk(H)− 2) ≤ 3N − 6,

then we are done as in Case 1. Otherwise, we either have | C≥2| = 1 and | C1| = 0, or
| C≥2| = 0 and | C1| ≤ 4.

We now assume that | C≥2| = 1 and | C1| = 0. In this case, the graph of actions G consists
of a central vertex corresponding to an elliptic subgroup H ∈ C≥2, which is attached to
k indecomposable subtrees (dual to laminations on surfaces) by edges with trivial or cyclic
stabilizers. We denote by σ1, . . . , σk the ranks of the stabilizers of these minimal components,
and by E0 the number of edges with trivial stabilizer in G. For all i ∈ {1, . . . , k}, we have
σi ≥ 2, and Lemma 5.30 implies that

N =

k∑
i=1

(σi − 1) + rk(H) + E0.

Again, we get that 3rk(H)−2 ≤ 3N−6, except possibly if k = 1 and σ1 = 2 (andE0 = 0). In
this case, the corresponding surface is a torus having a single boundary component (there are
no minimal foliations on spheres having at most 3 boundary components, nor on projective
planes with at most 2 boundary components, nor on a Klein bottle with one boundary
component [13]). This contradicts the fact that H ∈ C≥2.

We now assume that | C≥2| = 0, and | C1| ≤ 4. In this case, the graph of actions G is a
tree that consists of a single vertex v0 corresponding to a connected surface S, attached to
vertices corresponding to subgroups in C by edges with trivial or cyclic stabilizer. Denoting
by m the number of boundary components of S (which is also equal to the number of edges
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with nontrivial stabilizer in G), and by s the rank of the fundamental group of S, we get from
Lemma 5.30 that

N =
∑
H∈ C

rk(H) + s−m.

This implies that ∑
H∈ C

(3rk(H)− 2) ≤ 3N +m− 3s,

which is bounded by 3N −6 as soon as 3s−m ≥ 6 (in which case we conclude as in Case 1).

If S is a nonorientable surface of genus g ≥ 1, then s = g + m − 1, and the condition
3s − m ≥ 6 is equivalent to 3g + 2m ≥ 9. This condition is satisfied, except in the cases
where either g = 1 andm ≤ 2, or g = 2 andm = 1. However, as we have already mentioned,
there is no minimal measured lamination on a projective plane having at most 2 boundary
components, nor on a Klein bottle with one boundary component.

IfS is an orientable surface of genus g, then s = 2g+m−1, and the condition 3s−m ≥ 6 is
equivalent to 6g+ 2m ≥ 9. This condition is satisfied, except in the cases where either g = 1

and m = 1, or g = 0 and m ≤ 4.

If g = m = 1, then S is a torus with a single boundary component, whose fundamental
group F2 is amalgamated in the corresponding splitting of FN to a group Gv along its
boundary curve c. The curve c is trivial in the abelianization of FN (it is a commutator),
while it is not in the abelianization of Gv (it represents a primitive element in Gv). As τ is
good, the element c belongs to a leaf of the subtree τv of τ , whose root subgroup isGv. Hence
k(τ) < k(τv), and as 3rk(τv)− 2 = 3N − 5, we deduce that

3rk(Gv)− k(τv)− 2 ≤ 3N − k(τ)− 6,

which is enough to conclude.

If g = 0 and m ≤ 4, then S is a sphere with 4 boundary components (there is no minimal
lamination on a sphere having at most 3 boundary components). Using goodness of τ , and
the fact that the product of the elements corresponding to its boundary curves is equal to 1,
we get that

k(τ) <
∑
H∈ C

k(τH)

(where τH denotes the subtree of τ whose root subgroup isH), and we conclude similarly.

5.4.8. Random products of mapping classes of surfaces. – In the case where gr(µ) is contained
in the mapping class group Mod(S) of a compact, orientable, hyperbolic surface S with
nonempty totally geodesic boundary, the length of the isotopy class of any simple closed
curve on S, measured in any hyperbolic metric on S, is bi-Lipschitz equivalent to the length
of the corresponding element of the (free) fundamental group of S. Given an oriented
compact surface S with genus g and s boundary components, the complexity of S is defined
as ξ(S) := 3g + s − 3. In the case where s ≥ 1, the rank N of the fundamental group of S
satisfies ξ(S) ≥ 3N−2

4 . Corollary 5.25 therefore yields the following statement, which refines
Karlsson’s results in [46].
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C 5.32. – Let S be a compact hyperbolic oriented surface with nonempty totally
geodesic boundary. Let µ be a probability measure on Mod(S), with finite first moment with
respect to Thurston’s asymmetric metric on the Teichmüller space of S. Then there exist
(deterministic) λ1, . . . , λp > 0 such that for almost every sample path (Φn)n∈N of the random
walk on (Mod(S), µ), all simple closed curves α on S, and all hyperbolic metrics ρ on S, either
lρ(Φn(α)) grows subexponentially, or there exists i ∈ {1, . . . , p} such that

lim
n→+∞

1

n
log lρ(Φn(α)) = λi.

In addition, we have p ≤ ξ(S).

By combining our arguments with Karlsson’s [46], Corollary 5.32 can also be proved in
the case of a closed orientable surface. Proper subsurfaces play the role of proper free factors
of FN , and the filtration of FN provided by Theorem 5.25 is replaced by a decomposition of
the surface into subsurfaces.

T 5.33. – Let S be a compact hyperbolic oriented surface with (possibly empty)
totally geodesic boundary. Let µ be a probability measure on Mod(S) having finite first
moment with respect to Thurston’s asymmetric metric on the Teichmüller space of S. Then
there exists a decomposition of S into subsurfaces {Si}1≤i≤k, and for all i ∈ {1, . . . , k}, a
Lyapunov exponent λi ≥ 0, so that for almost every sample path (Φn)n∈N of the random walk
on (Mod(S), µ), all simple closed curves α on S, and all hyperbolic metrics ρ on S, the limit

lim
n→+∞

1

n
log lρ(Φn(α))

exists, and is equal to the maximum of the Lyapunov exponents of a subsurface Si crossed by α
(in the case where α is one of the curves defining the decomposition of S, the limit is equal to 0).
The number of positive Lyapunov exponents is bounded by ξ(S).

We call such a decomposition an Oseledets decomposition of S for the measure µ.

Sketch of proof of Theorem 5.33. – The horoboundary of the Teichmüller space Teich(S)

of a closed surface S, equipped with Thurston’s asymmetric metric, has been identified by
Walsh with the space P M F of projectified measured foliations [62]. Applying Lemma 5.5 to
the map Θ that sends a measured foliation to its support (which is a disjoint union of subsur-
faces of S), we see that all µ-stationary measures on P M F are concentrated on the set of
measured foliations whose supports have finite gr(µ)-orbit. Following Karlsson’s argument
in [46], we get for almost every sample path (Φn)n∈N of the random walk on (Mod(S), µ) the
existence of η ∈ P M F such that for all simple closed curves α on S such that i(η, α) > 0,
and all hyperbolic metrics ρ on S, we have

lim
n→+∞

1

n
log lρ(Φn(α)) = l,

where l denotes the drift of the random walk on (Mod(S), µ). In addition, we can assume
that the support of η has finite gr(µ)-orbit. The condition i(η, α) = 0 is equivalent to α

lying in the complement S′ of the support of η in S (or α being one of the boundary curves
of this support). Arguing by induction on the complexity of the surface, we get the existence
of a decomposition of S′, which is an Oseledets decomposition for the first return measure
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on the stabilizer of S′. Arguing as in Proposition 5.20, we get that the decomposition of S
obtained by adding the boundary curves of S′ to this decomposition of S′ is an Oseledets
decomposition for µ.
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