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KOTTWITZ-RAPOPORT CONJECTURE ON UNIONS
OF AFFINE DELIGNE-LUSZTIG VARIETIES

 X HE

A. – In this paper, we prove a conjecture of Kottwitz and Rapoport on a union of (gener-
alized) affine Deligne-Lusztig varieties X(µ, b)J for a p-adic group G and its parahoric subgroup PJ .
We show that X(µ, b)J 6= ∅ if and only if the group-theoretic version of Mazur’s inequality is sat-
isfied. In the process, we obtain a generalization of Grothendieck’s conjecture on the closure relation
of σ-conjugacy classes of a twisted loop group.

R. – Dans cet article nous prouvons une conjecture de Kottwitz et Rapoport sur l’union de
variétés de Deligne-Lusztig affines (généralisées)X(µ, b)J pourG un groupe p-adique et PJ son sous-
groupe parahorique. Nous montrons queX(µ, b)J est non vide si et seulement si la version de l’inégalité
de Mazur pour les groupes est satisfaite. Au cours de la preuve, nous obtenons une généralisation de la
conjecture de Grothendieck sur les inclusions des adhérences de classes de σ-conjugaison d’un groupe
de lacets tordu.

Introduction

0.1. – The motivation of this paper comes from the reduction of Shimura varieties with a
parahoric level structure. On the special fiber, there are two important stratifications:

– Newton stratification, indexed by specific σ-conjugacy classes in the associated p-adic
group G.

– Kottwitz-Rapoport stratification, indexed by specific double cosets in WJ\W̃/WJ ,
where W̃ is the Iwahori-Weyl group of G and WJ is the Weyl group of the parahoric
subgroup PJ .

A fundamental question is to determine which Kottwitz-Rapoport strata and which
Newton strata are nonempty, in other words, to determine the double cosets of WJ\W̃/WJ

and the subset of σ-conjugacy classes that appear in the reduction of Shimura varieties.
It consists of two parts: local theory and global theory. In this paper, we focus on local

theory.
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1126 X. HE

0.2. – In [29] and [23], Pappas and Zhu give a group-theoretic definition of “local models”
of Shimura varieties and show that the subset of WJ\W̃/WJ for the local model is the
admissible set AdmJ(µ) (defined in § 1.5).

The next question is to describe the σ-conjugacy classes arising in the reduction of
Shimura varieties. Based on some foundational relations between Newton strata, Kottwitz-
Rapoport strata and affine Deligne-Lusztig varieties, we study the set X(µ, b)J , a union of
generalized affine Deligne-Lusztig varieties indexed by AdmJ(µ). It is defined as follows.
Let L be the completion of the maximal unramified extension of a p-adic field and b ∈ G(L),
set

X(µ, b)J = {gPJ ∈ G(L)/PJ ; g−1bσ(g) ∈
⋃

w∈AdmJ (µ)

PJwPJ}.

Kottwitz and Rapoport introduced a set B(G,µ) of acceptable σ-conjugacy classes,
defined by the group-theoretic version of Mazur’s theorem. The main purpose of this paper
is to prove the following result, conjectured by Kottwitz and Rapoport in [18] and [24].

T A. – Suppose that G splits over a tamely ramified extension of F . Then
X(µ, b)J 6= ∅ if and only if [b] ∈ B(G,µ).

0.3. – The direction
X(µ, b)J 6= ∅⇒ [b] ∈ B(G,µ)

is the group-theoretic version of Mazur’s inequality between the Hodge polygon of an
F-crystal and the Newton polygon of its underlying F-isocrystal. The case where G is an
unramified group and PJ is a hyperspecial maximal subgroup, is proved by Rapoport and
Richartz in [25, Theorem 4.2]. Another proof is given by Kottwitz in [17]. The case where
G is an unramified group and PJ is an Iwahori subgroup, is proved in [24, Notes added June
2003, (7)].

The other direction
X(µ, b)J 6= ∅⇐ [b] ∈ B(G,µ)

is the “converse to Mazur’s inequality” and was proved by Wintenberger in [28] in case G is
quasi-split.

0.4. – Another related question is to determine the non-emptiness pattern for a single affine
Deligne-Lusztig variety.

IfG is quasi-split andPJ is a special maximal parahoric subgroup, then the non-emptiness
pattern of a single affine Deligne-Lusztig variety is still governed by Mazur’s inequality. It
is conjectured and proved for G = GLn or GSp2n by Kottwitz and Rapoport in [18]. It is
then proved by Lucarelli [19] for classical split groups and then by Gashi [1] for unramified
cases. The general case is proved in [12, Theorem 7.1]. Notice that if PJ is a special maximal
parahoric subgroup and µ is minuscule with respect to W̃ , X(µ, b)J is in fact a single affine
Deligne-Lusztig variety.

IfPJ is an Iwahori subgroup and b is basic, a conjecture on the non-emptiness pattern (for
split groups) is given by Görtz, Haines, Kottwitz, and Reuman in [2] in terms of P -alcoves
in [2] and the generalization of this conjecture to any tamely ramified groups is proved in [4].
The non-emptiness pattern for basic b and other parahoric subgroups can then be deduced
from Iwahori case easily.
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KOTTWITZ-RAPOPORT CONJECTURE 1127

However, such information is not useful for the study ofX(µ, b)J . The reason is that for b
basic, it is very easy to determine whether X(µ, b)J is empty (by checking the image under
Kottwitz map) and for other b, and non-special parahoric subgroup J , very little is known
about the non-emptiness pattern for a single affine Deligne-Lusztig variety.

0.5. – Now we discuss the strategy of the proof of Theorem A. The key ingredients are

– the partial order on B(G);
– some nice properties on the admissible set AdmJ(µ);
– the fact that the maximal element in B(G,µ) is represented by an element in the

admissible set.

We discuss the first ingredient in this subsection and the second and third ingredients in
the next subsection.

The starting point is the natural map

Ψ : B(W̃ , σ)→ B(G)

from the set of σ-conjugacy classes of W̃ to the set of σ-conjugacy classes ofG(L). This map
is surjective, but not injective in general. However, there exists a natural section of Ψ given
by the straight σ-conjugacy classes of W̃ (see § 2.2).

On the set of straight σ-conjugacy classes of W̃ , there is a natural partial order�σ (defined
in § 3.2). On B(G), there are two partial orders, given by the closure relation between the
σ-conjugacy classes and given by the dominance order of the corresponding Newton poly-
gons. A generalization of Grothendieck conjecture says that the two partial orders on B(G)

coincide. We prove in Theorem 3.1 that

T B. – For any twisted loop group, the partial order �σ on the set of straight
σ-conjugacy classes coincides with both partial orders on B(G) via the map Ψ : B(W̃ , σ)→ B(G).
In particular, the two partial orders on B(G) coincide.

The proof is based on the reductive method in [12] à la Deligne and Lusztig, some remark-
able combinatorial properties on W̃ established in [13] and the Grothendieck conjecture for
split groups proved by Viehmann in [27].

0.6. – By definition,

X(µ, b)J 6= ∅⇔ [b] ∩
⋃

w∈AdmJ (µ)

PJwPJ 6= ∅.

Using a similar argument as in the proof of Theorem B, the latter condition is equivalent
to [b] ∈ Ψ(AdmJ(µ)).

Notice that Mazur’s inequality is defined using the dominance order on the Newton
polygons. For quasi-split groups, it is easy to see that µ is the unique maximal element
in B(G,µ) with respect to the dominance order. Thus the converse to Mazur’s inequality
follows from the coincides between the partial order �σ on the set of straight σ-conjugacy
classes and the dominance order on the Newton polygons. For non quasi-split groups, the
maximal element in B(G,µ) is harder to understand and we use [14] on the properties of
this element.

The proof of Mazur’s inequality is based on two properties of the admissible sets:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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– The additivity of the admissible sets (Theorem 5.1), proved by Zhu’s global Schubert
varieties [29].

– The compatibility of admissible sets (Theorem 6.1), proved by the “partial conjugation
method” in [10].

[Note added on September 09, 2015. — The “tamely ramified” assumption is used only in the
proof of Theorem 5.1, in which the global Schubert varieties of X. Zhu [29] are used. Haines
and I [5] recently gave a proof of Theorem 5.1 for any group G over L. Hence the “tamely
ramified” assumption is not necessary for the results of this paper.]

1. Preliminaries

1.1. – Let Fq be the finite field with q elements. Let k be an algebraic closure of Fq. Let F be
a finite field extension of Qp with residue class field Fq and uniformizer ε or F = Fq((ε))
be the field of Laurent series over Fq. Let L be the completion of the maximal unramified
extension of F .

Let G be a connected reductive group over F . Let σ be the Frobenius automorphism
of L/F . We also denote the induced automorphism on G(L) by σ.

Let S be a maximal L-split torus that is defined over F and let T be its centralizer.
By Steinberg’s theorem, G is quasi-split over L. Thus T is a maximal torus. Let N be its
normalizer. The finite Weyl group associated to S is

W0 = N(L)/T (L).

The Iwahori-Weyl group associated to S is

W̃ = N(L)/T (L)1,

where T (L)1 denotes the unique Iwahori subgroup of T (L). The Frobenius morphism σ

induces an action on W̃ , which we still denote by σ.

For any w ∈ W̃ , we choose a representative in N(L) and also write it as w.

1.2. – Let A be the apartment of GL corresponding to S. Since σ induces a permutation of
finite order on the set of alcoves in A, there exists a σ-invariant alcove a in A. Let I be the
corresponding Iwahori subgroup. Let S̃ be the set of simple reflections of W̃ . The set S̃ is
equipped with an action of σ. For any J ⊂ S̃, let WJ ⊂ W̃ be the subgroup generated by
the simple reflections in J and by JW̃ (resp. W̃ J ) the set of minimal length elements for the
cosets WJ\W̃ (resp. W̃/WJ ). We simply write JW̃ J′

for JW̃ ∩ W̃ J′
.

We follow [6]. Let ΓF = Gal(L̄/F ) be the absolute Galois group of F and Γ = Gal(L̄/L)

the inertia group. The Iwahori-Weyl group W̃ contains the affine Weyl groupWa as a normal
subgroup and we have a short exact sequence

0→Wa → W̃ → π1(G)Γ → 0,

where π1(G) denotes algebraic fundamental group of G and π1(G)Γ its coinvariants under
the action of σ. The choice of the alcove a splits this extension, and

W̃ = Wa o Ω,

4 e SÉRIE – TOME 49 – 2016 – No 5
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where Ω is the normalizer of a, and is isomorphic to π1(G)Γ. The length function and Bruhat
order on Wa extend in a natural way to W̃ .

We have another exact sequence

0→ X∗(T )Γ → W̃ →W0 → 0.

We choose a special vertex of a and represent W̃ as a semidirect product

W̃ = X∗(T )Γ oW0 = {tλw;λ ∈ X∗(T )Γ, w ∈W0}.

1.3. – For b, b′ ∈ G(L), we say that b and b′ are σ-conjugate if there exists g ∈ G(L) such
that b′ = g−1bσ(g). Let B(G) be the set of σ-conjugacy classes. The classification of the
σ-conjugacy classes is obtained by Kottwitz in [15] and [16]. The description is as follows.

Let κG : B(G) → π1(G)ΓF be the Kottwitz map [16, § 7]. This gives one invariant.
Another invariant is obtained by the Newton map. An element b ∈ G(L) determines a
homomorphism D → GL, where D is the pro-algebraic torus whose character group is Q.
This homomorphism determines an element νb in the closed dominant chamber X∗(T )+

Q .
The element νb is called the Newton point of b and the map b 7→ νb is called the Newton map.
Note that for any b, σ(νb) = νb. By [16, § 4.13], the map

f : B(G)→ X∗(T )+
Q × π1(G)ΓF , b 7→ (νb, κG(b))

is injective.

1.4. – Write σ as σ = τ ◦σ0, where σ0 is a diagram automorphism ofG(L) such that σ0 fixes
S̃− S and the induced action of τ on the adjoint group Gad is inner.

For ν, ν′ ∈ X∗(T )+
Q , we write ν 6 ν′ if ν′ − ν is a non-negative Q-linear combination of

positive relative coroots. This is called the dominance order on X∗(T )+
Q .

Let µ ∈ X∗(T )+, we set

µ� =
1

N

N−1∑
i=0

σi0(µ) ∈ X∗(T )+
Q ,

where N is the order of σ0. A σ-conjugacy class [b] is called (neutral) acceptable for µ
if νb 6 µ� and κG(b) = µ], where µ] is the image of µ in π1(G)ΓF . Let B(G,µ) be the set
of (neutral) acceptable elements for µ.

1.5. – The µ-admissible set is defined as

Adm(µ) = {w ∈ W̃ ;w 6 tx(µ) for some x ∈W0},

where µ is the image of µ in X∗(T )Γ.

More generally, let J ⊂ S̃ such that σ(J) = J and WJ is finite. The µ-admissible set
associated to J is

AdmJ(µ) = WJ Adm(µ)WJ ⊂ W̃ .

It is the inverse image under the natural map W̃ →WJ\W̃/WJ of AdmJ(µ) in [18, (3.6)].

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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1.6. – Let J ⊂ S̃ such that σ(J) = J and WJ is finite. Let PJ ⊃ I be the standard parahoric
subgroup corresponding to J . For anyw ∈WJ\W̃/WJ and b ∈ G(L), the generalized affine
Deligne-Lusztig variety

XJ,w(b) = {g ∈ G(L)/PJ ; g−1bσ(g) ∈ PJwPJ}.

In this paper, we are mainly interested in the following finite union of affine Deligne-Lusztig
varieties:

X(µ, b)J = {g ∈ G(L)/PJ ; g−1bσ(g) ∈ YJ,µ}

=
⋃

w∈AdmJ (µ)

XJ,w(b),

where YJ,µ =
⋃
w∈Adm(µ) PJwPJ =

⋃
w∈AdmJ (µ) IwI.

Let J ′ ⊂ S̃ such that σ(J ′) = J ′ and WJ′ is finite and J ⊂ J ′. Then YJ′,µ = PJ′YJ,µPJ′

and hence the projection map G(L)/PJ → G(L)/PJ′ induces

πJ,J ′ : X(µ, b)J → X(µ, b)J′ .

The main result of this paper is

T 1.1. – Suppose thatG splits over a tamely ramified extension ofF . Let b ∈ G(L),
µ ∈ X∗(T )+ and J ⊂ J ′ be σ-stable subsets of S̃ with WJ′ finite. Then

(1) X(µ, b)J 6= ∅ if and only if [b] ∈ B(G,µ).
(2) The map πJ,J ′ is surjective.

2. The map Ψ : B(W̃ , σ)→ B(G)

2.1. – We first recall the definition of straight elements of W̃ .
Let w ∈ W̃ . Then there exists a positive integer n such that (wσ)n = tλ ∈ W̃ o 〈σ〉 for

some λ ∈ X∗(T )Γ. Let νw,σ = λ/n and ν̄w,σ be the unique dominant element in theW0-orbit
of νw,σ. It is known that ν̄w,σ is independent of the choice of n and is Γ-invariant.

We say that an element w is σ-straight `(w) = 〈ν̄w,σ, 2ρ〉, where ρ is the half sum
of all positive roots in the root system of the affine Weyl group Wa. This is equivalent
to `((wσ)n) = n`(w), where we regard wσ as an element in W̃ o 〈σ〉. A σ-conjugacy class
of W̃ is called straight if it contains a σ-straight element.

2.2. – Let B(W̃ , σ) be the set of σ-conjugacy classes of W̃ and B(W̃ , σ)str be the set of
straight σ-conjugacy classes of W̃ . Following [12], there exists a commutative diagram

(a) B(W̃ , σ)
Ψ //

f ((

B(G)

fww
X∗(T )+

Q × π1(G)ΓF ,

where Ψ : B(W̃ , σ)→ B(G) is induced from the natural inclusion N(L)→ G(L).
By [12, § 3], the restriction of Ψ toB(W̃ , σ)str is a bijection. For any straight σ-conjugacy

class O of W̃ , we denote by [ O] the corresponding σ-conjugacy class in G(L). We also set
ν O = ν̄w,σ for any w ∈ O.

4 e SÉRIE – TOME 49 – 2016 – No 5
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2.3. – By definition, for w ∈ W̃ , X∅,w(b) 6= ∅ if and only if [b] ∈ IwI 6= ∅. If Ψ(w) = [b],
then automatically [b] ∩ IwI 6= ∅, i.e., X∅,w(b) 6= ∅. The converse, is far from being true.
In [12, Theorem 6.1], we give a criterion about the non-emptiness pattern of affine Deligne-
Lusztig varieties in affine flag varieties in terms of class polynomials of affine Hecke algebras.
The computation of class polynomials, however, is very hard in general.

The main result of this section is the following simple criterion of the non-emptiness
criterion for “closed” affine Deligne-Lusztig varieties in affine flag varieties.

T 2.1. – Let b ∈ G(L) and w ∈ W̃ . Then
⋃
w′6wX∅,w′(b) 6= ∅ if and only

if [b] ∈
⋃
w′6w Ψ(w′).

To prove this theorem, we combine the method for the finite case [10, Proposition 5.8]
and [11, Proposition 2.5], with the reduction method [12, Section 3]. The proof will be given
in § 2.7.

2.4. – For w,w′ ∈ W̃ and s ∈ S̃, we write w s−→σ w
′ if w′ = swσ(s) and `(w′) 6 `(w). We

write w →σ w
′ if there is a sequence w = w0, w1, . . . , wn = w′ of elements in W̃ such that

for any k, wk−1
s−→σ wk for some s ∈ S̃. We write w ≈σ w′ if w →σ w

′ and w′ →σ w and
write w≈̃σw′ if w ≈σ τw′σ(τ)−1 for some τ ∈ Ω. It is easy to see that w ≈σ w′ if w →σ w

′

and `(w) = `(w′).

For any σ-conjugacy class O in W̃ , we denote by Omin the set of minimal length elements
in O. Now we recall some properties on the minimal length elements, obtained in [13, § 2].

T 2.2. – Let O be a σ-conjugacy class of W̃ and w ∈ O. Then there exists
w′ ∈ Omin such that

(1) w →σ w
′.

(2) There exists J ⊂ S̃ with WJ finite, an σ-straight element x ∈ W̃ with x ∈ JW̃σ(J) and
xσ(J) = J , and u ∈WJ , such that w′ = ux.

T 2.3. – Let O be a straight σ-conjugacy class of W̃ and w,w′ ∈ Omin. Then
w≈̃σw′.

2.5. – For g, g′ ∈ G(L), we write g ·σ g′ = gg′σ(g)−1. The subset G(L) ·σ IwI is studied
in [12, § 3]. Now we recollect some results that will be used here.

(1) If w≈̃σw′, then G(L) ·σ IwI = G(L) ·σ Iw′I.
(2) If w ∈W and s ∈ S̃ such that swσ(s) < w,

then G(L) ·σ IwI = G(L) ·σ IswI ∪G(L) ·σ Iswσ(s)I.
(3) If w ∈ W is a minimal length element in its σ-conjugacy class, then G(L) ·σ IwI is a

single σ-conjugacy class in G(L).
(4) Let J ⊂ S̃ with WJ finite, and x ∈ W̃ with x ∈ JW̃σ(J) and xσ(J) = J . Then for any

u ∈WJ , G(L) ·σ IuxI = G(L) ·σ IxI.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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2.6. – Let w ∈ W̃ and O be a straight σ-conjugacy class in W̃ . We write O �σ w if there
exists a minimal length element w′ ∈ O such that w′ 6 w in the usual Bruhat order.

Now we discuss some properties on �σ.

P 2.4. – Let w,w′ ∈ W̃ with w →σ w
′. Let O be a straight σ-conjugacy class

of W̃ . If O �σ w′, then O �σ w.

R 2.5. – The proof is similar to the finite case [10, Lemma 4.4]. We include the
proof here for completeness.

Proof. – It suffices to prove the case where w′ = swσ(s) for some s ∈ S̃. Let x ∈ Omin

with x 6 w′.
If w > w′, then x < w and hence O �σ w. Now we assume that `(w) = `(w′). Without

loss of generalization, we may assume that sw < w and wσ(s) > w.
If sx < x, then `(sxσ(s)) 6 `(x). Since x ∈ Omin, sxσ(s) ∈ Omin. By [20, Corollary 2.5],

sx 6 sw and sxσ(s) 6 swσ(s). Hence O �σ w.
If sx > x, then [20, Corollary 2.5], x 6 sw and hence x < swσ(s). We also have that

O �σ w.

C 2.6. – Let O be a straight σ-conjugacy class of W̃ and w ∈ O. Then v is of
minimal length in O if and only if v is a minimal element in O with respect to the Bruhat order.

C 2.7. – Let O be a straight σ-conjugacy class of W̃ and w ∈ W̃ . Then O �σ w
if and only if there exists x ∈ O with x 6 w.

2.7. – Now we prove Theorem 2.1.
By definition,

⋃
O�σw[ O] ⊂

⋃
w′6w Ψ(w′) ⊂

⋃
w′6wG(L) · Iw′I.

Now we show that
⋃
w′6wG(L) ·Iw′I ⊂

⋃
O�σw[ O]. By induction, it suffices to show that

G(L) · IwI ⊂
⋃

O�σw

[ O].

We argue by induction on `(w).
Ifw is of minimal length in its σ-conjugacy class, then by Theorem 2.2 (2), then there exists

J ⊂ S̃ with WJ finite, x ∈ W̃ be an σ-straight element with x ∈ JW̃σ(J) and xσ(J) = J ,
and u ∈ WJ such that w ≈σ ux. Let Ox be the σ-conjugacy class of x. Then Ox �σ ux. By
Proposition 2.4, Ox �σ w. By § 2.5 (1), (3) & (4),

G(L) ·σ IwI = G(L) ·σ IuxI = G(L) ·σ IxI = [ Ox] ⊂
⋃

O�σw

[ O].

Ifw is not of minimal length in its σ-conjugacy class, then by Theorem 2.2 (1), there exists
w′ ∈ W̃ with w ≈σ w′ and s ∈ S̃ with sw′σ(s) < w′. By § 2.5 (1) & (2),

G(L) ·σ IwI = G(L) ·σ Iw′I = G(L) ·σ Isw′I ∪G(L) ·σ Isw′σ(s)I.

By induction hypothesis on sw′ and sw′σ(s),

G(L) ·σ IwI ⊂
⋃

O�σsw′ or O�σsw′σ(s)

[ O] ⊂
⋃

O�σw′

[ O].
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By Proposition 2.4, O �σ w′ if and only if O �σ w. Hence G(L) ·σ IwI ⊂
⋃

O�σw[ O].
The statement is proved.

C 2.8. – Let w ∈ W̃ . Then
⋃
w′6w Ψ(w′) =

⋃
O�σw[ O].

The following special case of Theorem 2.1 is useful in this paper.

C 2.9. – Let b ∈ G(L), µ ∈ X∗(T )+ and J ⊂ S̃ such that σ(J) = J and WJ is
finite. Then X(µ, b)J 6= ∅ if and only if [b] ∈ Ψ(AdmJ(µ)).

Proof. – By definition, X(µ, b)J 6= ∅ if and only if

[b] ⊂
⋃

w∈AdmJ (µ)

G(L) ·σ IwI.

Notice that AdmJ(µ) is of the form
⋃
i{w ∈ W̃ ;w 6 xi} for finitely many xi’s. The

statement follows from Theorem 2.1.

3. Three partial orders

3.1. – In this section, we assume that F = Fq((ε)). Recall the commutative diagram in § 2.2
(a):

B(W̃ , σ)str
Ψ //

f ((

B(G)

fww
X∗(T )+

Q × π1(G)ΓF .

We will introduce partial orders on these sets and show that these partial orders are
compatible.

3.2. – Let O, O′ ∈ B(W̃ , σ)str. We write O′ �σ O if for some w ∈ Omin, O′ �σ w. By
Theorem 2.3 and Proposition 2.4, if O′ �σ O, then O′ �σ x for any x ∈ Omin. Hence �σ is
a partial order on B(W̃ , σ)str.

For (v1, κ1), (v2, κ2) ∈ X∗(T )+
Q × π1(G)ΓF , we write (v1, k1) 6 (v2, k2) if v1 6 v2 (the

dominance order) and k1 = k2.

Following Grothendieck, we introduce admissible subscheme ofG(L) and show that each
σ-conjugacy class of G(L) is a locally closed admissible subscheme of G(L) (see Appendix).
The closure relation between the σ-conjugacy classes ofG(L) gives a partial order onB(G).

The main result of this section is

T 3.1. – Let O, O′ ∈ B(W̃ , σ)str. The following conditions are equivalent:

(1) O �σ O′.
(2) [ O] ⊂ [ O′].
(3) f( O) 6 f( O′), i.e., κ( O) = κ( O′) and ν O 6 ν O′ .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1134 X. HE

Proof. – We first prove (1)⇔ (2).

Let w′ be a σ-straight element of O′. Then

[ O′] = G(L) ·σ Iw′I =
⋃
w6w′

G(L) ·σ IwI

=
⋃

O1�σw′

[ O1] =
⋃

O1� O′

[ O1].

Here the first equality follows from § 2.5 (3), the second equality follows from Theorem A.3,
the third equality follows from Theorem 2.1 and Corollary 2.8 and the last equality follows
from § 3.2.

Next we prove (1)⇒ (3).

If O �σ O′, then there exists w ∈ Omin and w′ ∈ O′min such that w 6 w′. In particular,
wWa = w′Wa. Hence κ( O) = κ( O′). Moreover, w and w′ are σ-straight elements. So for
any n, `((wσ)n) = n`(w) and `((w′σ)n) = n`(w′). Thus (wσ)n 6 (w′σ)n. In particular,
tmνw,σ 6 tmνw′,σ for sufficiently divisible integer m. In particular, mν̄w,σ 6 mν̄w′,σ. So
ν̄w,σ 6 ν̄w′,σ.

Now we prove (3)⇒ (1).

Suppose that κ( O) = κ( O′) and ν O 6 ν O′ . Let W̃ad be the Iwahori-Weyl group of the
adjoint group Gad. The natural projection π : W̃ → W̃ad send O to Oad and O′ to O′ad.
As π preserves length, Oad and O′ad are straight σ-conjugacy classes of W̃ad. Moreover,
κ( Oad) = κ( O′ad) and ν Oad

6 ν O′
ad

.

We may write σ as σ = Ad(τ) ◦ σ0, where τ is a length-zero element in W̃ad and σ0 is a
diagram automorphism of W̃ad such that σ0 fixes S̃ − S. Then Oadτ and O′adτ are straight
σ0-conjugacy classes of W̃ad. Moreover, ν Oadτ 6 ν O′

adτ
.

We associate a quasi-split unramified group H to the pair (W̃ad, σ0). We regard [ Oadτ ]

and [ O′adτ ] as σ0-conjugacy classes of H(L). By [27, Theorem 2] and [8, Theorem 1.1] (1),

[ Oadτ ] ⊂ [ O′adτ ]. By the equivalence (1)⇔ (2) for Gad, Oadτ �σ0
O′adτ . This is equivalence

to Oad �σ O′ad.

By definition, there exists wad ∈ ( Oad)min and w′ad ∈ ( O′ad)min such that wad 6 w′ad.
Let w ∈ O and w′ ∈ O′ such that π(w) = wad, π(w′) = w′ad and wWa = w′Wa. Then
w 6 w′. Hence O �σ O′.

4. Converse to Mazur’s inequality

P 4.1. – Let µ ∈ X∗(T )+ and O be a straight σ-conjugacy class of W̃ . If
κ( O) = µ] and ν O 6 µ�, then O ∩Adm(µ) 6= ∅.

(1) The statement in [8] is for PEL type Shimura varieties. The argument still holds for any unramified loop groups
over function fields. It is based on Viehmann’s strategy in [27, Proof of Theorem 20] (see also [8, Proposition 5.13],
using the dimension formula of affine Deligne-Lusztig varieties [7] and the purity Theorem [27, Corollary 18] and [8,
Proposition 5.4].
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Proof. – By [14], the set {ν O;κ( O) = µ], ν O 6 µ�} contains a unique maximal element ν
and there exists x ∈ Adm(µ) with ν̄x = ν.

Let O be a straight σ-conjugacy class O of W̃ with κ( O) = µ] and ν O 6 µ�. Then ν O 6 ν.
By Theorem 3.1 and Corollary 2.6, ν O 6 µ�, O �σ x. In other words, there exists w ∈ Omin

such that w 6 x. Since Adm(µ) is closed under the Bruhat order, w ∈ Adm(µ).

Now we prove the converse to Mazur’s inequality.

T 4.2. – Let b ∈ G(L), µ ∈ X∗(T )+ and J ⊂ S̃ such that σ(J) = J and WJ is
finite. If b ∈ B(G,µ), then X(µ, b)J 6= ∅.

Proof. – Let b ∈ B(G,µ). Then [b] is represented by a straight σ-conjugacy class O
of W̃ . By Proposition 4.1, O ∩ Adm(µ) 6= ∅. Note that Adm(µ) ⊂ AdmJ(µ). Hence
O ∩AdmJ(µ) 6= ∅. By Corollary 2.9, X(µ, b)J 6= ∅.

5. Mazur’s inequality: Iwahori case

To prove Mazur’s inequality in the Iwahori case, we need the following additivity property
of admissible sets due to Xinwen Zhu [30].

T 5.1. – Suppose that G splits over a tamely ramified extension of F . Let
µ, µ′ ∈ X∗(T )+. Then

Adm(µ) Adm(µ′) = Adm(µ+ µ′).

Proof. – We first show that Adm(µ+ µ′) ⊂ Adm(µ) Adm(µ′).
Let z ∈ Adm(µ+µ′). By definition, z 6 tx(µ+µ′) for some x ∈W0. Notice that tx(µ+µ′) =

tx(µ)tx(µ′) and `(tx(µ+µ′)) = `(tx(µ))`(tx(µ′)). In other words, there exists a reduced expres-
sion of tx(µ+µ′) consisting of two parts, the first part is a reduced expression of tx(µ) and the
second part is a reduced expression of tx(µ′). Hence there exists z1 6 tx(µ) ∈ Adm(µ) and
z2 6 tx(µ′) ∈ Adm(µ′) such that z = z1z2.

The proof of the other direction Adm(µ) Adm(µ′) ⊂ Adm(µ+µ′) is based on the theory
of global Schubert varieties of Zhu [29]. We first recall the definition.

LetL = F̄q((ε)) andG be a connected reductive group overL, split over a tamely ramified
extension, and with Iwahori-Weyl group W̃ . Let G be the Iwahori group scheme over OL.
The element µ ∈ X∗(T ) defines a section sµ of the global affine GrassmannianGr G as in [29,
Proposition 3.4]. The global Schubert variety Gr G,µ is the scheme-theoretic closure of the
L+ G · sµ in Gr G , where L+ G is the positive loop group. It is a scheme over OF . One of the
main result of [29] is that the special fiber of Gr G,µ is isomorphic to

⊔
w∈Adm(µ) IwI/I.

Now we take the convolution product of Gr G,µ with Gr G,µ as in [29, § 6]. By definition,
the special fiber of the convolution product is isomorphic to⋃

w∈Adm(µ),w′∈Adm(µ′)

IwIw′I/I ⊃
⋃

z∈Adm(µ) Adm(µ′)

IzI/I.

On the other hand, it is proved in [29, § 6] that the special fiber is isomorphic to
⊔
z∈Adm(µ+µ′) IzI.

Hence Adm(µ) Adm(µ′) ⊂ Adm(µ+ µ′).

Now we prove Mazur’s inequality in the Iwahori case.
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T 5.2. – Let b ∈ G(L) and µ ∈ X∗(T )+. If X(µ, b)∅ 6= ∅, then b ∈ B(G,µ).

Proof. – Recall that σ = τ ◦ σ0, where σ0 is a diagram automorphism of G(L) such
that σ0 fixes S̃ − S and the induced action of τ on the adjoint group Gad is inner. For any
µ ∈ X∗(T )+, σ0(Adm(µ)) = Adm(σ0(µ)). Note that τ(µ) = x(µ) for some x ∈ W0. Thus
τ(Adm(µ)) = Adm(µ). Therefore

σ(Adm(µ)) = Adm(σ0(µ)).

By Theorem 2.1, X(µ, b)∅ 6= ∅ implies that w ∈ [b] for some w ∈ Adm(µ). Let n0 be
the order of σ in Aut(W̃ ) and n = n0](W0). We regard wσ as an element in W̃ o 〈σ〉. Then
(wσ)n0 ∈ W̃ and (wσ)n = tλ for some λ ∈ X∗(T ). By definition, λ lies in the W0-orbit
of nν O. On the other hand,

(wσ)n = wσ(w)σ2(w) · · ·σn−1(w)

∈ Adm(µ) Adm(σ0(µ)) Adm(σ2
0(µ)) · · ·Adm(σn−1

0 (µ))

= Adm(µ+ σ0(µ) + · · ·+ σn−1
0 (µ))

= Adm(nµ�)

Hence tλ ∈ Adm(nµ�) and λ̄ 6 nµ�. Thus ν O 6 µ�.

6. Mazur’s inequality: General case

6.1. – To pass from Iwahori case to the general case, we need part (2) of Theorem 1.1. There
are two key ingredients in the proof.

(a) A suitable stratification of YJ,µ with respect to the σ-conjugation action of PJ .
(b) A compatibility property of admissible sets.

6.2. – We discuss § 6.1(a) first. The stratification is established in [11, §2] and [3, §3], general-
izing Lusztig’s G-stable piece decomposition for the finite case.

Let J = σ(J) ⊂ S̃ with WJ finite. For any w ∈ JW̃ , we consider the subset PJ ·σ IwI
of G(L). Then

1. G(L) =
⊔
w∈JW̃ PJ ·σ IwI.

2. YJ,µ =
⊔
w∈JW̃∩AdmJ (µ) PJ ·σ IwI.

3. If F = Fq((ε)), then for w ∈ JW̃ ,

PJ ·σ IwI =
⊔
w′

PJ ·σ Iw′I,

wherew′ runs over elements in JW̃ such that there exists x ∈WJ with xwσ(x)−1 6 w′.

Then we discuss the following compatibility result on the sets JW̃ ∩AdmJ(µ).

T 6.1. – Let µ ∈ X∗(T )+ and J ⊂ S̃ with WJ finite. Then JW̃ ∩ AdmJ(µ) =
JW̃ ∩Adm(µ).
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Proof. – Let Φ be the relative root system and Φa be the affine root system, which is a set
of affine functions on V = X∗(S)⊗ R of the form β + r for β ∈ Φ and r ∈ R.

Let w ∈ JW̃ ∩AdmJ(µ). Then w 6 max(WJ t
γWJ) for some γ ∈W0 · µ.

We first show that
(a) w 6 max(tλWJ) for some λ ∈W0 · µ with tλ ∈ JW̃ .

For y ∈ JW̃ , we set I(J, y) = max{K ⊂ J ; y(K) = K}. By [10, Corollary 2.6], tγ is
conjugate by an element in WJ to an element z = xw1, where w1 ∈ JW̃ and x ∈ WI(J,w1).
Since z is conjugate to tγ , it is of the form tλ for some λ ∈W0 · µ.

Let Φ1 be the root system associated to I(J,w1). By definition, for any α ∈ Φ1, tλ(α) ∈ Φ1.
Therefore tλ(α) − α = 〈λ, α〉 is in the root lattice of Φ1. However, any nonzero r ∈ Φa is
not spanned by K for any K ⊂ S̃ with WK finite. Hence 〈λ, α〉 = 0 and tλ(α) = α for all
α ∈ Φ1. In particular, tλ ∈ I(J,w1)W̃ . Since w1 ∈ I(J,w1)W̃ and tλ ∈ WI(J,w1)w1, we must
have x = 1.

(a) is proved.
We may write max(tλWJ) as ab, where a ∈WJ and b ∈ JW̃ . Since tλ ∈ JW̃ , b = tλy for

some y ∈ WJ with `(tλy) = `(tλ) + `(y). If y 6= 1, then siy < y for some i ∈ J . Let αi be
the simple root associated to si. Since tλ ∈ JW̃ , t−λ ∈ W̃ J . Hence t−λ(αi) = αi − 〈λ, α〉 is
a positive affine root. Hence 〈λ, αi〉 6 0.

If 〈λ, αi〉 < 0, then tλ(αi) is a negative affine root and tλsi < tλ, which contradicts the
fact that `(tλy) = `(tλ) + `(y). If 〈λ, αi〉 = 0, then tλy = sit

λ(siy), which contradicts the
fact that tλy ∈ JW̃ . Therefore y = 1 and w 6 tλ.

6.3. – We prove Theorem 1.1 (2).
Let J ⊂ S̃ such that σ(J) = J and WJ is finite. Recall that YJ,µ =

⋃
w∈Adm(µ) PJwPJ .

By § 6.2 and Theorem 6.1,

YJ,µ =
⋃

x∈AdmJ (µ)∩JW̃

PJ ·σ IxI

=
⋃

x∈Adm(µ)∩W̃

PJ ·σ IxI

⊂ PJ ·σ Y∅,µ.

Therefore,

(a) YJ,µ = PJ ·σ Y∅,µ.

For any J ⊂ J ′ ⊂ S̃ with σ(J) = J , σ(J ′) = J ′ and WJ′ finite, we have

(b) YJ′,µ = PJ′ ·σ Y∅,µ = PJ′ ·σ (PJ ·σ Y∅,µ) = PJ′ ·σ YJ,µ.

Now

πJ,J ′(X(µ, b)J) = {gPJ′ ∈ G(L)/PJ′ ; g−1bσ(g) ∈ PJ′ ·σ YJ,µ} = X(µ, b)J′ .

In other words, πJ,J ′ is surjective.

6.4. – Now we prove Mazur’s inequality for J .
If X(µ, b)J 6= ∅, then by Theorem 1.1 (2), X(µ, b)∅ 6= ∅. By Theorem 5.2, b ∈ B(G,µ).
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Appendix

Admissibility

A.1. – In the appendix, we assume that F = Fq((ε)). We first recall the Moy-Prasad
filtration [21].

Let v be a generic point in the base alcove a. For any r > 0, let Ir be the subgroup of I
generated by a suitable subgroup of T (L)1 andUφ, where φ runs over all the affine roots with
φ(v) > r. By definition, if x ∈ W̃ with `(x) < r, then hIrh−1 ⊂ Ir−`(x) ⊂ I for any h ∈ IxI.

A.2. – A subset V of G(L) is called admissible if for any w ∈ W̃ , there exists r > 0 such that⋃
w′6w(V ∩ Iw′I) is stable under the right action of Ir. This is equivalent to say that for any

w ∈ W̃ , there exists r′ > 0 such that V ∩ IwI is stable under the right action of Ir′ .
An admissible subset V ofG(L) is a locally closed subscheme if for anyw ∈ W̃ and r > 0

such that
⋃
w′6w(V ∩ Iw′I) is stable under the right action of Ir,

⋃
w′6w(V ∩ Iw′I)/Ir is a

locally closed subscheme of IwI/Ir =
⋃
w′6w Iw

′I/Ir ⊂ G(L)/Ir.
We define the closure of a locally closed subscheme V in G as follows.
Let w ∈ W̃ . Let r > 0 such that

⋃
w′6w(V ∩ Iw′I) is stable under the right action

of Ir. Let Vw be the inverse image under the projection G(L) → G(L)/Ir of the closure
of

⋃
w′6w(V ∩Iw′I)/Ir inG(L)/Ir. Then it is easy to see that Vw is independent of the choice

of r. Moreover, if w′ 6 w, then Vw′ ⊂ Vw. Set

V = lim−→
w

Vw.

T A.1. – Let [b] be a σ-conjugacy class of G(L). Then [b] is admissible.

R A.2. – For split groups, this is first proved by Hartl and Viehmann in [9].

Proof. – Let w be a σ-straight element in [b]. By § 2.5 (3), [b] = G(L) ·σ IwI. Let y ∈ W̃
such that [b] ∩ IyI 6= ∅. By [26, Theorem 1.4], there exists n ∈ N such that for any
g ∈ [b] ∩ IyI, h−1gσ(h) ∈ IwI for some h ∈ IzI with `(z) < n. By § A.1, h−1gInσ(h) ⊂
h−1gσ(h)In−`(z) ⊂ IwI. Hence gIn ⊂ G(L) ·σ IwI = [b]. The theorem is proved.

Another admissibility result we need is the following:

T A.3. – Let w ∈ W̃ . Then G(L) ·σ IwI is admissible and

G(L) ·σ IwI =
⋃
w′6w

G(L) ·σ Iw′I.

Proof. – Set V = G(L) ·σ IwI and V ′ =
⋃
w′6wG(L) ·σ Iw′I. By Theorem 2.1, both

V and V ′ are finite unions of σ-conjugacy classes and V ′ =
⊔

O�σw[ O]. By Theorem A.1,
V and V ′ are admissible.

Let x ∈ W̃ . By [26, Theorem 1.4], there exists n ∈ N such that

V ∩ IxI = (
⋃

z∈W̃ ,`(z)<n

IzI) ·σ IwI ∩ IxI;

V ′ ∩ IxI = (
⋃

z∈W̃ ,`(z)<n

IzI) ·σ IwI ∩ IxI.
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Define the action of In on (
⋃
z∈W̃ ,`(z)<n IzI)×G(L)/In by h · (g, g′) = (gh−1, hg′). We

denote by (
⋃
z∈W̃ ,`(z)<n IzI)×In G(L)/In its quotient. Consider the map ⋃
z∈W̃ ,`(z)<n

IzI

×G(L)/In → G(L)/I, (g, g′) 7→ gg′σ(g)−1.

By § A.1, it is well-defined. It induces a map

π :

 ⋃
z∈W̃ ,`(z)<n

IzI

×In IwI/In → G(L)/I.

This is a proper map. Hence the image is closed in G(L)/I and is the closure of the image
of (

⋃
z∈W̃ ,`(z)<n IzI)×In IwI/In.

Therefore V ′∩IxI is closed and is the closure of V ∩IxI. In other words, Vx = V ′∩IxI.
Hence

V = lim−→
x

Vx = V ′.
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