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SHARP STRICHARTZ ESTIMATES FOR THE WAVE
EQUATION ON A ROUGH BACKGROUND

 J SZEFTEL

A. – In this paper, we obtain sharp Strichartz estimates for solutions of the wave equation
�gφ = 0 where g is a rough Lorentzian metric on a 4 dimensional space-time M. This is the last step of
the proof of the boundedL2 curvature conjecture proposed in [3], and solved by S. Klainerman, I. Rod-
nianski and the author in [7], which also relies on the sequence of papers [15] [16] [17] [18]. Obtaining
such estimates is at the core of the low regularity well-posedness theory for quasilinear wave equations.
The difficulty is intimately connected to the regularity of the eikonal equation gαβ∂αu∂βu = 0 for a
rough metric g. In order to be consistent with the final goal of proving the bounded L2 curvature con-
jecture, we prove Strichartz estimates for all admissible Strichartz pairs under minimal regularity as-
sumptions on the solutions of the eikonal equation.

R. – Dans cet article, nous obtenons des estimations de Strichartz optimales pour les
solutions de l’équation des ondes �gφ = 0 où g est une métrique lorentzienne peu régulière sur
un espace-temps M de dimension 4. Il s’agit de la dernière étape de la preuve de la conjecture de
courbure L2 proposée dans [3], et résolue par S. Klainerman, I. Rodnianski et l’auteur dans [7],
qui repose également sur la série d’articles [15] [16] [17] [18]. De telles estimations sont au cœur
de la théorie de l’existence locale pour les équations d’ondes non linéaires en faible régularité. La
difficulté est intimement liée à la régularité de l’équation eikonale gαβ∂αu∂βu = 0 pour une métrique
peu régulière g. Avec pour but final la preuve de la conjecture de courbure L2, nous prouvons des
estimations de Strichartz pour toutes les paires admissibles sous des hypothèses minimales de régularité
pour l’équation eikonale.

1. Introduction

In this paper, we obtain sharp Strichartz estimates for solutions of the wave equation
�gφ = 0 where g is a rough Lorentzian metric on a 4 dimensional space-time M. This is
the last step of the proof of the bounded L2 curvature conjecture proposed in [3], and solved
by S. Klainerman, I. Rodnianski and the author in [7], which also relies on the sequence of
papers [15] [16] [17] [18]. Obtaining such estimates is at the core of the low regularity well-
posedness theory for quasilinear wave equations. The difficulty is intimately connected to
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1280 J. SZEFTEL

the regularity of the eikonal equation gαβ∂αu∂βu = 0 for a rough metric g. In order to
be consistent with the final goal of proving the bounded L2 curvature conjecture, we prove
Strichartz estimates for all admissible Strichartz pairs under minimal regularity assumptions
on the solutions of the eikonal equation.

Since we are ultimately interested in local well-posedness, it is enough to prove local in
time Strichartz estimates. Also, it is natural to prove Strichartz estimates which are localized
in frequency (1). Finally, an L∞t L

2
x type bound in the context of the bounded L2 curvature

conjecture follows from the analysis in [16] [18], so we will assume that such a bound holds
in this paper (2). Thus, we focus in this paper on the issue of proving local in time Strichartz
estimates which are localized in frequency assuming an a priori L∞t L

2
x bound. In particular,

this turns out to be sufficient for the proof of the bounded L2 curvature conjecture.

We start by recalling the sharp Strichartz estimates for the standard wave equation
on (R1+3,m) where m is the Minkowski metric. We consider φ solution of

(1.1)

{
�φ = 0, (t, x) ∈ R+ × R3

φ(0, .) = φ0, ∂tφ(0, .) = φ1,

where

� = �m = −∂2
t + ∆x.

Let (p, q) such that p, q ≥ 2, q < +∞, and

1

p
+

1

q
≤ 1

2
.

Let r defined by

r =
3

2
− 1

p
− 3

q
.

We call (p, q, r) an admissible pair. Then, the solution φ of (1.1) satisfies the following
estimates, called Strichartz estimates [13] [14]

(1.2) ‖φ‖Lp(R+,Lq(R3)) . ‖φ0‖Ḣr(R3) + ‖φ1‖Ḣr−1(R3).

Strichartz estimates allow to obtain well-posedness results for nonlinear wave equations
with less regularity for the Cauchy data (φ0, φ1) than what is typically possible by relying
only on energy methods (see for example [8] in the context of semilinear wave equations).
Therefore, as far as low regularity well-posedness theory for quasilinear wave equations is
concerned, a considerable effort was put in trying to derive Strichartz estimates for the wave
equation

(1.3) �gφ = 0

(1) The standard proof of Strichartz estimates in the flat case proceeds in two steps (see for example [11]). First,
one localizes in frequency using Littlewood-Paley theory. Then, one proves the corresponding Strichartz estimates
localized in frequency.
(2) The standard proof of Strichartz estimates in the flat case relies in particular on an interpolation argument
between the L∞t L

2
x bound and a dispersive bound. The L∞t L

2
x bound is usually obtained by other methods - for

the wave equation in Minkowski, it follows from the conservation of energy - so we will focus in this paper on the
derivation of the dispersive estimate.
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SHARP STRICHARTZ ESTIMATES FOR THE WAVE EQUATION 1281

on a space-time ( M,g) where g has limited regularity, see [9], [2], [1], [19], [20], [4], [5], [10]. All
these methods have in common a crucial and delicate analysis of the regularity of solutions
u to the eikonal equation

gαβ∂αu∂βu = 0.

To illustrate the role played by the eikonal equation, let us first recall the plane wave
representation of the standard wave equation. The solution φ of (1.1) is given by:

(1.4)
∫
S2

∫ +∞

0

ei(−t+x·ω)λ 1

2

(
F φ0(λω) + i

F φ1(λω)

λ

)
λ2dλdω

+

∫
S2

∫ +∞

0

ei(t+x·ω)λ 1

2

(
F φ0(λω)− i F φ1(λω)

λ

)
λ2dλdω,

where F denotes the Fourier transform onR3. The plane wave representation (1.4) is the sum
of two half waves, and Strichartz estimates are derived for each half-wave separately with an
identical proof so we may focus on the first half-wave which we rewrite under the form

(1.5)
∫
S2

∫ +∞

0

ei(−t+x·ω)λf(λω)λ2dλdω

where the function f on R3 is explicitly given in term of the Fourier transform of the initial
data. Note that −t+ x · ω is a family of solutions to the eikonal equation in the Minkowski
space-time depending on the extra parameter ω ∈ S2. The natural generalization of (1.5) to
the curved case is the following representation formula - also called parametrix

(1.6)
∫
S2

∫ +∞

0

eiλu(t,x,ω)f(λω)λ2dλdω

where u is a family of solutions to the eikonal equation in the curved space-time ( M,g)

depending on the extra parameter ω ∈ S2. Thus, our parametrix is a Fourier integral
operator with a phase u satisfying the eikonal equation (3).

Assume now that the space-time M is foliated by space-like hypersurfaces Σt defined as
level hypersurfaces of a time function t. The estimate for the parametrix (1.6) corresponding
to the Strichartz estimates of the flat case (1.2) is

(1.7)

∥∥∥∥∫
S2

∫ +∞

0

eiλu(t,x,ω)f(λω)λ2dλdω

∥∥∥∥
Lp(R+,Lq(Σt))

. ‖λrf‖L2(R3).

Since we are ultimately interested in local well-posedness, it is enough to restrict the time
interval to [0, 1], which corresponds to local in time Strichartz estimates. Also, it is natural
to prove Strichartz estimates which are localized in frequency (see footnote 1). Finally, an
L∞t L

2
x type bound in the context of the bounded L2 curvature conjecture follows from the

analysis in [16] [18], so we will assume that such a bound holds in this paper. Thus we focus on
proving Strichartz estimates on the time interval [0, 1] for a parametrix localized in a dyadic
shell for which an a priori L∞t L

2
x bound is assumed. Let j ≥ 0, and let ψ a smooth function

on R supported in
1

2
≤ λ ≤ 2.

(3) We refer to [16] [18] for a precise construction of a parametrix of the form (1.6) which generates any initial data
of (1.3) and for its control in the context of the bounded L2 curvature theorem of [7]

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1282 J. SZEFTEL

Let ϕj the scalar function on M defined by the following oscillatory integral:

(1.8) ϕj(t, x) =

∫
S2

∫ ∞
0

eiλu(t,x,ω)ψ(2−jλ)f(λω)λ2dλdω.

We will prove the following version of (1.7), both localized in time and frequency

(1.9) ‖ϕj‖Lp
[0,1]

Lq(Σt) . 2jr‖ψ(2−jλ)f‖L2(R3)

assuming that we already know that (1.9) holds in the case (p, q, r) = (+∞, 2, 0).

The Strichartz estimates (1.9) are a consequence of the oscillations of the phase u of
the Fourier integral operator ϕj . Thus, one should expect to have to perform integrations
by parts to obtain (1.9). In turn, this requires u to have enough regularity to be able to
perform these integrations by parts. But of course, the rougher the space-time ( M,g) is, the
less regularity one can extract from the solution u to the eikonal equation. Our goal is to
prove (1.9) in the context of the bounded L2 curvature theorem obtained in [7]. This forces
us to make assumptions on u which are compatible with the one derived in the companion
papers [15] [17]. In particular, we may assume the following regularity for u

(1.10) ∂t,xu ∈ L∞, ∂t,x∂ωu ∈ L∞.

Now, the standard procedure for proving (1.9)—which we shall follow here—is to use the
TT ∗ argument to reduce (1.9) to an L1-L∞ estimate by interpolation (4), and finally to a
L∞ estimate for an oscillatory integral with a phase involving u. One then typically uses the
stationary phase to conclude the proof. This would require at the least (5)

(1.11) ∂t,xu ∈ L∞, ∂t,x∂2
ωu ∈ L∞.

(1.11) involves unfortunately one more derivative than our assumptions (1.10) and we thus
are forced to follow an alternative approach (6) to the stationary phase method inspired by
[9] and [10] in order to prove (1.9) under the regularity assumption (1.10) for u.

Acknowledgments. – The author wishes to express his deepest gratitude to Sergiu Klainer-
man and Igor Rodnianski for stimulating discussions and encouragements. He also would
like to stress that the way this paper fits into the whole proof of the bounded L2 curvature
conjecture has been done in collaboration with them.

2. Assumptions on the phase u(t, x, ω) and main results

2.1. Time foliation on M

We foliate the space-time M by space-like hypersurfaces Σt defined as level hypersurfaces
of a time function t. We consider local in time Strichartz estimates. Thus we may assume

(4) Assuming that the L∞t L
2
x bound, i.e., the case (p, q, r) = (+∞, 2, 0) in (1.9), is already known to hold.

(5) The regularity (1.11) is necessary to make sense of the change of variables involved in the stationary phase method
(see Remark 4.1).
(6) We refer to the approach based on the overlap estimates for wave packets derived in [9] and [10] in the context
of Strichartz estimates respectively for C1,1 and H2+ε metrics. Note however that our approach does not require
a wave packet decomposition.
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0 ≤ t ≤ 1 so that

(2.1) M =
⋃

0≤t≤1

Σt.

We denote by T the unit, future oriented, normal to Σt. We also define the lapse n as

(2.2) n−1 = T (t).

Note that we have the following identity between the volume element of M and the volume
element corresponding to the induced metric on Σt

(2.3) dM = ndΣt dt.

We will assume the following assumption on n

(2.4)
1

2
≤ n ≤ 2

which together with (2.3) yields

(2.5) dM ' dΣt dt.

R 2.1. – The assumption (2.4) is very mild. Indeed, even for the very rough space-
time ( M,g) constructed in [7], (2.4) is satisfied, and one has the additional regularity∇n ∈ L∞,
where ∇ denotes the induced covariant derivative on Σt.

R 2.2. – In the flat case, we have M = (R1+3,m), where m is the Minkowski
metric, and we can take for example Σt = {t} × R3. This choice yields n = 1 so that
n satisfies (2.4) in this case.

2.2. Geometry of the foliation generated by u on M

Remember that u is a solution to the eikonal equation gαβ∂αu∂βu = 0 on M depending
on a extra parameter ω ∈ S2. The level hypersurfaces u(t, x, ω) = u of the optical function
u are denoted by H u. Let L′ denote the space-time gradient of u, i.e.,:

(2.6) L′ = gαβ∂βu∂α.

Using the fact that u satisfies the eikonal equation, we obtain:

(2.7) DL′L
′ = 0,

which implies that L′ is the geodesic null generator of H u.

We have:
T (u) = ±|∇u|

where |∇u|2 =
∑3
i=1 |ei(u)|2 relative to an orthonormal frame ei on Σt. Since the sign

of T (u) is irrelevant, we choose by convention:

(2.8) T (u) = −|∇u|

so that u corresponds to −t+ x · ω in the flat case.

Let

(2.9) L = bL′ = T +N,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1284 J. SZEFTEL

whereL′ is the space-time gradient of u (2.6), b is the lapse of the null foliation (or shortly null
lapse)

(2.10) b−1 = − < L′, T >= −T (u),

and N is a unit vector field given by

(2.11) N =
∇u
|∇u|

.

Note that we have the following identities:

L 2.3. – We have

(2.12) L(u) = 0, L(∂ωu) = 0

and

(2.13) g(N, ∂ωN) = 0.

Proof. – Using the Definition (2.6) ofL′ and the fact that u satisfies the eikonal equation,
we have

L′(u) = gαβ∂αu∂βu = 0.

In view of the Definition (2.9) of L, we deduce

(2.14) L(u) = 0.

Also, differentiating the eikonal equation with respect to ω yields

gαβ∂αu∂β∂ωu = 0

which yields

L′(∂ωu) = 0

and thus

L(∂ωu) = 0.

Together with (2.14), this implies (2.12).

Also, we have in view of the Definition (2.11) of N

g(N,N) = 1.

Differentiating in ω, we obtain

g(N, ∂ωN) = 0,

which is (2.13). This concludes the proof of the lemma.

4 e SÉRIE – TOME 49 – 2016 – No 6
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2.3. Regularity assumptions for u(t, x, ω)

We now state our assumptions for the phase u(t, x, ω). These assumptions are compatible
with the regularity obtained for the function u(t, x, ω) constructed in [17]. Let 0 < ε < 1 a
small enough universal constant (7). b and N satisfy

‖b− 1‖L∞ + ‖∂ωb‖L∞ . ε.(2.15)

‖g(∂ωN, ∂ωN)− I2‖L∞ . ε.(2.16)

|N(., ω)−N(., ω′)| = |ω − ω′|(1 +O(ε)).(2.17)

R 2.4. – In the flat case, we have M = (R1+3,m), where m is the Minkowski
metric, u(t, x, ω) = −t + x · ω, b = 1, N = ω and L = ∂t + ω · ∂x. Thus, the assumptions
(2.15) (2.16) (2.17) are clearly satisfied with ε = 0.

R 2.5. – Note that there is a slight abuse of notations in the assumption (2.16).
Indeed, considering the standard spherical coordinates system (θ, ϕ) on S2, we have in the flat
case N = ω, and hence, denoting ∂ωN = (∂θN, ∂ϕN), we obtain

g(∂ωN, ∂ωN) =

(
1 0

0 (sin θ)2

)
so that g(∂ωN, ∂ωN) = I2 only at θ = π/2. However, note that up to suitably choosing the axis
of the spherical coordinates, one can always ensure that g(∂ωN, ∂ωN) = I2 in the flat case at
a given point of S2. Thus, the L∞ norm in (2.16) is taken in (t, x) and holds for an arbitrarily
chosen ω ∈ S2. (2.16) will be used in (5.4) and (5.13), and in both cases, the L∞ norm in (2.16)
is indeed taken in (t, x) at a fixed ω.

R 2.6. – In terms of the regularity of u(t, x, ω), the assumptions (2.15) (2.16)
correspond to

∇u ∈ L∞ and ∇∂ωu ∈ L∞

which is very weak. In particular, the classical proof for obtaining Strichartz estimates for the
wave equation relies on the stationary phase for an oscillatory integral involving u as a phase,
and typically requires at the least one more derivative for u (see Remark 4.1).

2.4. A global coordinate system on Σt

For all 0 ≤ t ≤ 1, and for allω ∈ S2, (u(t, x, ω), ∂ωu(t, x, ω)) is a global coordinate system
on Σt. Furthermore, the volume element is under control in the sense that in this coordinate
system, we have

(2.18)
1

2
≤
√

det g ≤ 2

where g is the induced metric on Σt, and where det g denotes the determinant of the matrix
of the coefficients of g.

(7) The fact that we may take ε small enough is consistent with the construction in [17] and results from a standard
reduction to small data for proving well-posedness results for nonlinear wave equations (see [7] for details on this
procedure in the context of the bounded L2 curvature theorem)
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R 2.7. – In the flat case, we have u(t, x, ω) = −t + x · ω and we can take
Σt = {t}×R3 so that (u(t, x, ω), ∂ωu(t, x, ω)) is clearly a global coordinate system on Σt and
det g = 1 in this case. These assumptions are also satisfied by the function u(t, x, ω) constructed
in [17].

2.5. Main results

We next state our main result concerning general Strichartz inequalities in mixed space-
time norms of the form Lp[0,1]L

q(Σt) defined as follows,

‖F‖Lp
[0,1]

Lq(Σt) =

(∫ 1

0

‖F (t, ·)‖pLp(Σt)
dt

) 1
p

.

T 2.8. – Let (p, q) such that p, q ≥ 2, q < +∞, and
1

p
+

1

q
≤ 1

2
.

Let r defined by

r =
3

2
− 1

p
− 3

q
.

Assume that the parametrix localized at frequency j defined in (1.8) satisfies the following
L∞t L

2
x bound

(2.19) ‖ϕj‖L∞
[0,1]

L2(Σt) . ‖ψ(2−jλ)f‖L2(R3).

Then, ϕj satisfies under the assumptions (2.4), (2.15), (2.16), (2.17) and the assumptions in
Section 2.4 the following Strichartz inequality

(2.20) ‖ϕj‖Lp
[0,1]

Lq(Σt) . 2jr‖ψ(2−jλ)f‖L2(R3).

We also obtain the following corollary which is needed in the proof of the bounded
L2 curvature conjecture [7].

C 2.9. – The parametrix localized at frequency j defined in (1.8) satisfies under
the assumptions (2.4), (2.15), (2.16), (2.17), the assumptions in Section 2.4, and (2.19), the
following L4( M) Strichartz inequalities

(2.21) ‖ϕj‖L4( M) . 2
j
2 ‖ψ(2−jλ)f‖L2(R3),

and

(2.22) ‖∇ϕj‖L4( M) . 2
3j
2 ‖ψ(2−jλ)f‖L2(R3).

Furthermore, assume that u satisfies the following additional assumption

(2.23) sup
ω∈S2,u0∈R

‖∇2u‖L4( (ω) H u0
) . 1,

where for ω ∈ S2 and u0 ∈ R, (ω) H u0
denotes the level hypersurface of u(., ω)

(ω) H u0 = {(t, x) / u(t, x, ω) = u0}.

Then (1.8) satisfies the following L4( M) Strichartz inequality

(2.24) ‖∇2ϕj‖L4( M) . 2
5j
2 ‖ψ(2−jλ)f‖L2(R3).

4 e SÉRIE – TOME 49 – 2016 – No 6
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R 2.10. – Recall that the L∞t L
2
x bound (2.19) in the context of the bounded

L2 curvature conjecture follows from the analysis in [16] [18].

R 2.11. – The additional regularity assumption (2.23) is compatible with the regu-
larity obtained for the function u(t, x, ω) constructed in [17]. Note that it also holds in the flat
case since we have u = −t+ x · ω and hence ∇2u = 0.

The rest of the paper is organized as follows. In Section 3, we use the standard TT ∗ argu-
ment to reduce the proof of Theorem 2.8 and Corollary 2.9 to an upper bound on the kernel
K of a certain operator. This kernel is an oscillatory integral with a phase φ. In Section 4,
we prove the upper bound on the kernel K provided we have a suitable lower bound on φ.
Finally, in Section 5, we prove the lower bound for φ used in Section 4.

3. Proof of Theorem 2.8 and Corollary 2.9

3.1. Proof of Theorem 2.8

Let a(t, x, ω) a scalar function on M × S2. Let Tj be the operator, applied to functions
f ∈ L2(R3),

Tjf(t, x) =

∫
S2

∫ ∞
0

eiλu(t,x,ω)a(t, x, ω)ψ(2−jλ)f(λω)λ2dλdω.(3.1)

Tj satisfies the following estimate.

P 3.1. – Let (p, q) such that p, q ≥ 2, q < +∞, and

1

p
+

1

q
≤ 1

2
.

Let r defined by

r =
3

2
− 1

p
− 3

q
.

Assume that the scalar function a satisfies

(3.2) ‖a‖L∞ . 1

and

(3.3) ‖Tjf‖L∞
[0,1]

L2(Σt) . ‖ψ(2−jλ)f‖L2(R3).

Then, the operator Tj defined in (3.1) satisfies the following Strichartz inequality

(3.4) ‖Tjf‖Lp
[0,1]

Lq(Σt) . 2jr‖ψ(2−jλ)f‖L2(R3).

The proof of Proposition 3.1 is postponed to Section 3.3. Let us now conclude the proof
of Theorem 2.8. Note that Tj satisfies

Tjf = ϕj if a(t, x, ω) = 1 for all (t, x, ω) ∈ M × S2

whereϕj is the parametrix localized at frequency 2j defined in (1.8). Thus, the estimate (2.20)
follows immediately from (3.4). This concludes the proof of Theorem 2.8.
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1288 J. SZEFTEL

3.2. Proof of Corollary 2.9

Note first that (2.21) follows immediately from Theorem 2.8 by choosing p = q = 4

in (2.20), and noticing in view of (2.1) and (2.5) that

(3.5) L4
[0,1]L

4(Σt) = L4( M).

Next, we turn to the proof of the estimates (2.22) and (2.24) starting with the first one. In
view of the Definition (1.8) of ϕj , we have

(3.6) ∇ϕj(t, x) = i2j
∫
S2

∫ ∞
0

eiλu(t,x,ω)∇u(t, x, ω)(2−jλ)ψ(2−jλ)f(λω)λ2dλdω.

Note that
∇ϕj = i2jTjf,

with ψ(λ) replaced by λψ(λ), and with the choice

a(t, x, ω) = ∇u(t, x, ω).

Since we have∇u = b−1N in view of (2.8), (2.10) and (2.11), we deduce from the assumption
(2.15) that

‖a‖L∞ . ‖∇u‖L∞ . ‖b−1‖L∞ . 1

so that a satisfies the assumption (3.2). Thus, (3.4) with the choice p = q = 4 yields in view
of (3.5)∥∥∥∥∫

S2

∫ ∞
0

eiλu(t,x,ω)∇u(t, x, ω)(2−jλ)ψ(2−jλ)f(λω)λ2dλdω

∥∥∥∥
L4( M)

. 2
j
2 ‖ψ(2−jλ)f‖L2(R3).

Together with (3.6), we obtain

‖∇ϕj‖L4( M) . 2
3j
2 ‖ψ(2−jλ)f‖L2(R3)

which is the desired estimate (2.22).

Finally, we turn to the proof of the estimate (2.24). Differentiating (3.6), we obtain

∇l∇mϕj(t, x) =

− 22j

∫
S2

∫ ∞
0

eiλu(t,x,ω)∇lu(t, x, ω)∇mu(t, x, ω)(2−jλ)2ψ(2−jλ)f(λω)λ2dλdω

+ i2j
∫
S2

∫ ∞
0

eiλu(t,x,ω)∇l∇mu(t, x, ω)(2−jλ)ψ(2−jλ)f(λω)λ2dλdω.

(3.7)

Next, we estimate the two terms in the right-hand side of (3.7) starting with the first one.
Note that∫

S2

∫ ∞
0

eiλu(t,x,ω)∇lu(t, x, ω)∇mu(t, x, ω)(2−jλ)2ψ(2−jλ)f(λω)λ2dλdω = Tjf,

with ψ(λ) replaced by λ2ψ(λ), and with the choice

a(t, x, ω) = ∇lu(t, x, ω)∇mu(t, x, ω).

Since we have∇u = b−1N , we deduce from the assumption (2.15) that

‖a‖L∞ . ‖∇u‖2L∞ . ‖b−2‖L∞ . 1
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so that a satisfies the assumption (3.2). Thus, (3.4) with the choice p = q = 4 yields in view
of (3.5)∥∥∥∥∫

S2

∫ ∞
0

eiλu(t,x,ω)∇lu(t, x, ω)∇mu(t, x, ω)(2−jλ)2ψ(2−jλ)f(λω)λ2dλdω

∥∥∥∥
L4( M)

. 2
j
2 ‖ψ(2−jλ)f‖L2(R3).(3.8)

Next, we estimate the second term in the right-hand side of (3.7). We have∥∥∥∥∫
S2

∫ ∞
0

eiλu(t,x,ω)∇l∇mu(t, x, ω)(2−jλ)ψ(2−jλ)f(λω)λ2dλdω

∥∥∥∥
L4( M)

(3.9)

.
∫
S2

∥∥∥∥(∫ ∞
0

eiλu(t,x,ω)(2−jλ)ψ(2−jλ)f(λω)λ2dλ

)
∇l∇mu(t, x, ω)

∥∥∥∥
L4( M)

dω

.
∫
S2

∥∥∥∥∫ ∞
0

eiλu(2−jλ)ψ(2−jλ)f(λω)λ2dλ

∥∥∥∥
L4
u

‖∇2u(., ω)‖L4( H u)dω

.
∫
S2

∥∥∥∥∫ ∞
0

eiλu(2−jλ)ψ(2−jλ)f(λω)λ2dλ

∥∥∥∥
L4
u

dω,

where we used in the last inequality the assumption (2.23) on∇2u. Now, we have∥∥∥∥∫ ∞
0

eiλu(2−jλ)ψ(2−jλ)f(λω)λ2dλ

∥∥∥∥
L4
u

.

∥∥∥∥∫ ∞
0

eiλu(2−jλ)ψ(2−jλ)f(λω)λ2dλ

∥∥∥∥ 1
2

L∞u

×
∥∥∥∥∫ ∞

0

eiλu(2−jλ)ψ(2−jλ)f(λω)λ2dλ

∥∥∥∥ 1
2

L2
u

.
(

2
j
2 ‖ψ(2−jλ)λ2f‖L2

λ

) 1
2 ‖ψ(2−jλ)λ2f‖

1
2

L2
λ

. 2
j
4 ‖ψ(2−jλ)λ2f‖L2

λ

where we used Cauchy-Schwartz in λ to evaluate the L∞u norm and Plancherel to evaluate
the L2

u norm. In view of (3.9), this yields (8)∥∥∥∥∫
S2

∫ ∞
0

eiλu(t,x,ω)∇l∇mu(t, x, ω)(2−jλ)ψ(2−jλ)f(λω)λ2dλdω

∥∥∥∥
L4( M)

. 2
j
4

∫
S2

‖ψ(2−jλ)λ2f‖L2
λ
dω

. 2
5j
4 ‖ψ(2−jλ)f‖L2(R3)(3.10)

where we used Cauchy-Schwarz in ω in the last inequality. Together with (3.7) and (3.8), we
finally obtain

‖∇2ϕj‖L4( M) . 2
5j
2 ‖ψ(2−jλ)f‖L2(R3)

(8) In the proof of (2.24), note that (3.10) leads to a 2
j
4 room while (3.8) is sharp. One should compare with the

corresponding estimates in the flat case where (3.8) is sharp while the analog of (3.10) would display a 2j room.

Some of this room - i.e., 2
3j
4 of the 2j room - is exploited to obtain (3.10).
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which is the desired estimate (2.24). This concludes the proof of Corollary 2.9.

3.3. Proof of Proposition 3.1 (the TT ∗ argument)

We start with the following remark.

R 3.2. – Fixing a global system of coordinates x = (x1, x2, x3) in Σt, such as
the one described in Section 2.4, we note in view of (2.18) that (3.4) is equivalent with the
same inequality where the norm Lq(Σt) on the left-hand side is replaced by the corresponding
euclidean norm in the given coordinates. More precisely we can assume from now on that

‖F‖Lp
[0,1]

Lq(Σt) =

(∫ 1

0

(∫
R3

|F (t, x)|qdx
) p
q

dt

) 1
q

which we will denote by a slight abuse of notation by

‖F‖Lp
[0,1]

Lq(R3).

Note also that in the (t, x) coordinates M = [0, 1]× R3.

To prove Proposition 3.1, we rely on the standard TT ∗ argument for the Fourier integral
operator (3.1). Note that the operator T ∗j takes real valued functions h on M to complex
valued functions on R3

T ∗j h(λω) = ψ(2−jλ)

∫
M
a(s, y, ω)e−iλu(s,y,ω)h(s, y)dsdy.

Therefore, the operator Uj := TjT
∗
j is given by the formula,

Ujh(t, x) =

∫
S2

∫ ∞
0

∫
M
eiλu(t,x,ω)−iλu(s,y,ω)a(t, x, ω)a(s, y, ω)ψ(2−jλ)2h(s, y)λ2dλdωdsdy.

Note, in view of Remark 3.2, that (3.4) is equivalent to the following estimate

(3.11) ‖Ujh‖Lp
[0,1]

Lq(R3) . 22jr‖h‖
Lp
′

[0,1]
Lq′ (R3)

,

where p′ (resp. q′) is the conjugate exponent to p (resp. q). Observe that,

Ujh

(
t

2j
,
x

2j

)
= 2−j

∫
S2

∫ ∞
0

∫
2j M

eiλ2ju( t

2j
, x
2j
,ω)−iλ2ju( s

2j
, y
2j
,ω)a

(
t

2j
,
x

2j
, ω

)
a
( s

2j
,
y

2j
, ω
)

× ψ(λ)2h
( s

2j
,
y

2j

)
λ2dλdωdsdy

with 2j M = [0, 2j ]× R3 relative to the rescaled variables (s, y). Thus, setting,

Ah(t, x) :=

∫
S2

∫ ∞
0

∫
2j M

eiλ2ju( t

2j
, x
2j
,ω)−iλ2ju( s

2j
, y
2j
,ω)a

(
t

2j
,
x

2j
, ω

)
a
( s

2j
,
y

2j
, ω
)

×ψ(λ)2h(s, y)λ2dλdωdsdy

we have

Ujh

(
t

2j
,
x

2j

)
= 2−jAhj(t, x), hj(s, y) = h

( s
2j
,
y

2j

)
.

We easily infer that (3.11) is equivalent to the estimate,

(3.12) ‖Ah‖Lp
[0,2j ]

Lq(R3) . ‖h‖Lp′
[0,2j ]

Lq′ (R3)
.
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R 3.3. – Note in view of the assumption (3.3) that (3.12) holds in the particular case
(p, q) = (+∞, 2)

(3.13) ‖Ah‖L∞
[0,2j ]

L2(R3) . ‖h‖L1
[0,2j ]

L2(R3).

We introduce the kernel K of A

K(t, x, s, y) =

∫
S2

∫ ∞
0

eiλ2ju( t

2j
, x
2j
,ω)−iλ2ju( s

2j
, y
2j
,ω)a

(
t

2j
,
x

2j
, ω

)
a
( s

2j
,
y

2j
, ω
)

(3.14)

× ψ(λ)2λ2dλdω.

R 3.4. – In the flat case, we have u(t, x, ω) = −t+ x · ω so that

2ju

(
t

2j
,
x

2j
, ω

)
= u(t, x, ω).

In particular, in the case a = 1, K is independent of j

K(t, x, s, y) =

∫
S2

∫ ∞
0

eiλu(t,x,ω)−iλu(s,y,ω)ψ(λ)2λ2dλdω.

We have the following proposition.

P 3.5. – The kernel K of the operator A satisfies the dispersive estimates,

(3.15) |K(t, x, s, y)| . 1

|t− s|
, ∀(t, x) ∈ 2j M, ∀(s, y) ∈ 2j M.

The proof of Proposition 3.5 is postponed to Section 4. We now conclude the proof of
Proposition 3.1. (3.12) follows from (3.15) and (3.13) using interpolation and the Hardy-
Littlewood inequality according to the standard procedure, see for example [11] and [12].
Finally, in view of the discussion above, (3.12) yields (3.11) which in turn implies (3.4). This
concludes the proof of Proposition 3.1.

4. Proof of Proposition 3.5 (bound on the kernel K)

Let φ the scalar function on M × M × S2 defined as

(4.1) φ(t, x, s, y, ω) = u(t, x, ω)− u(s, y, ω).

In view of (3.14), we may rewrite K as

K(t, x, s, y) =

∫
S2

∫ ∞
0

eiλ2jφ( t

2j
, x
2j
, s
2j
, y
2j
,ω)a

(
t

2j
,
x

2j
, ω

)
a
( s

2j
,
y

2j
, ω
)
ψ(λ)2λ2dλdω.

After integrating by parts twice in λ, and using the assumption (3.2) on a and the size of the
support of ψ, this yields

(4.2) |K(t, x, s, y)| .
∫
S2

1

1 + 22jφ
(
t

2j ,
x
2j ,

s
2j ,

y
2j , ω

)2 dω.
The next section is dedicated to the obtention of a lower bound on |φ| which will allow us to
deduce (3.15) from (4.2).
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R 4.1. – It is at this stage that we depart from the standard strategy for proving
Strichartz estimates. Indeed, the usual method consists in using the stationary phase method
to derive (3.15). To this end, one considers the neighborhood in S2 of stationary points ω0, i.e.,
such that ∂ωφ|ω=ω0

= 0. One then needs an identity of the type

(4.3) φ = (s− t)A(ω − ω0) · (ω − ω0) + o
(
(s− t)(ω − ω0)2

)
for ω in the neighborhood of ω0 and for some 3 × 3 invertible matrix A. (4.3) then allows to
perform a change of variables in ω which ultimately leads to (3.15). In particular, the standard
method requires at the least (9) ∂t,x∂

2
ωu ∈ L∞ just to derive (4.3).

Our assumptions correspond only to ∂t,x∂ωu ∈ L∞. Thus, in order to obtain (3.15), we
instead integrate by parts in λ to obtain (4.2), and then look for a suitable lower bound on |φ|.
In particular, we obtain lower bounds of the following type (see details in Lemma 4.9)

(4.4) |φ| & |s− t||ω − ω0|2

for ω in the neighborhood of some ω0 ∈ S2. The fundamental observation is that, as it turns
out, the inequality (4.4) requires less regularity than the equality (4.3).

4.1. The key lemma

Let (t, x) and (s, y) in M, and let ω ∈ S2. In this section, we obtain a lower bound
on φ(t, x, s, y, ω). We may assume

0 ≤ t < s ≤ 1.

D 4.2. – For any ω ∈ S2 and σ ∈ R, let γω(σ) denote the null geodesic
parametrized by proper time and with initial data

γω(0) = (t, x), γ′ω(0) = b−1(t, x, ω)L(t, x, ω).

Recall from (2.7) and (2.9) that b−1L is geodesic. Thus, for any ω ∈ S2 and any σ ∈ R, we
have

(4.5) u(γω(σ), ω) = u(t, x, ω), γ′ω(σ) = b−1(γω(σ), ω)L(γω(σ), ω).

D 4.3. – For any (t, x), let us define the subset St,x,s of Σs as

(4.6) St,x,s =
⋃
ω∈S2

{γω(s− t)}.

Note that St,x,s depends on (t, x) since all geodesics γω originate from (t, x). To ease the
notations, we drop the indices t, x, s in the rest of the paper and simply refer to this set as S.

We also define for all (s, z) ∈ Σs

(4.7) m(s, z) = max
ω∈S2

(u(s, z, ω)− u(t, x, ω)).

We have the following lemma characterizing the zeros of m.

L 4.4. – We have
S = {p ∈ Σs, /m(p) = 0}.

(9) One also needs to take care of the contribution to K of the angles ω ∈ S2 corresponding to the exterior of the
neighborhood of stationary points which may increase the needed regularity.
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The proof of Lemma 4.4 is postponed to Appendix A. Next, we define the following two
subsets of Σs

(4.8) Aint = {p ∈ Σs /m(p) < 0}, Aext = {p ∈ Σs /m(p) > 0}.

Note in view of Lemma 4.4 that

(4.9) Σs = S tAint tAext.

R 4.5. – In the flat case, the picture is the following:

1. The null geodesics (10) γω span the light cone from (t, x). In particular, the null geodesics γω
do not intersect except at (t, x).

2. S is the intersection (11) of the forward light cone from (t, x) with {s} × R3.
3. Aint and Aext correspond respectively to the interior and the exterior of S.

Note that we do not need to prove these statements in our case. This is fortunate since these
statements while probably true in our general setting would be delicate to establish (see for
instance [6] for a proof of (1) on a space-time ( M,g) with limited regularity).

Next, we introduce some further notations. First, we denote bym0 the value ofm at (s, y),
i.e.,

(4.10) m0 = max
ω∈S2

(u(s, y, ω)− u(t, x, ω)).

We also denote by ω0 an angle in S2 where the maximum in (4.10) is achieved, i.e.,

(4.11) m0 = u(s, y, ω0)− u(t, x, ω0).

R 4.6. – In the flat case, ω0 is unique and corresponds to the angle of the projection
of (s, y) on S. Again, while this may be also true in our general setting, we do not need to prove
this statement in our case.

Note that if (s, y) ∈ Aext, the function u(s, y, ω)− u(t, x, ω) may change sign as ω varies
on S2. We define

(4.12) D = {ω ∈ S2 / u(t, x, ω) = u(s, y, ω)}.

The following lemma gives a precise description of D.

L 4.7. – Let (s, y) ∈ Aext. LetD defined as in (4.12). Let (θ, ϕ) denote the spherical
coordinates with axis ω0. Then, there exists a C1 2π-periodic function

θ1 : [0, 2π)→ (0, π)

such that in the coordinate system (θ, ϕ), D is parametrized by

D = {θ = θ1(ϕ), 0 ≤ ϕ < 2π}.

The proof of Lemma 4.7 is postponed to Appendix B.

R 4.8. – In the flat case, recall that u(t, x, ω) = −t+ x · ω. In this case, one easily
checks that D is a circle of axis ω0 on the sphere S which is generated by the tangents to S
through y (see Figure 1).

(10) Which are straight lines in this case
(11) S is a sphere in this case
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•

D
(s,y)

S

γω0 (s−t)

F 1. Representation of D in the flat case

Let ω ∈ S2. According to Lemma 4.7, the great half circle on S2 originating at ω0 and
containing ω intersects D at a fixed point ω1. Let θ and θ1 respectively denote the positive
angles between ω0 and ω (resp. ω0 and ω1).

In order to obtain a lower bound for |φ|, we will argue differently according to whether
(s, y) belongs to the region S, Aint or Aext.

L 4.9 (Key lemma). – |φ| satisfies the following lower bounds

1. If (s, y) ∈ S, we have

(4.13) |φ(t, x, s, y, ω)| ≥ 1

4
|t− s||ω − ω0|2.

2. If (s, y) ∈ Aint, we have

(4.14) |φ(t, x, s, y, ω)| ≥ 1

8
|t− s||ω − ω0|2.

3. If (s, y) ∈ Aext and θ1 ≤ θ ≤ π, we have

(4.15) |φ(t, x, s, y, ω)| ≥ 1

4
|t− s||ω − ω1|2.

4. If (s, y) ∈ Aext and 0 ≤ θ ≤ θ1, we have

(4.16) |φ(t, x, s, y, ω)| &

√
1− cos(θ − θ1)

1− cos(θ1)
m0.

The proof of Lemma 4.9 is postponed to Section 5.

R 4.10. – The proof of Lemma 4.9 is inspired by the overlap estimates for wave
packets derived in [9] and [10] in the context of Strichartz estimates respectively for C1,1

and H2+ε metrics. Note however that the estimates in these papers rely heavily on a direct
comparison of various quantities with the corresponding ones in the flat case. Such direct
comparisons do not hold in our framework. Here, the closeness to the flat case manifests itself
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in the small constant ε in the right-hand side of (2.15), (2.16) and (2.17), and in the existence
of the global coordinates systems of Section 2.4.

4.2. Proof of Proposition 3.5

Recall that we need to show that the kernel K defined in (3.14) satisfies the upper
bound (3.15). To this end, we will use the estimate (4.2) for K together with the estimates
provided by Lemma 4.9. We argue differently according to whether (s, y) belongs to S, Aint

or Aext.

4.2.1. The case (s, y) ∈ S. – If (s, y) belongs to S, we have the lower bound (4.13) for |φ|

|φ(t, x, s, y, ω)| ≥ 1

4
|t− s||ω − ω0|2,

where ω0 ∈ S2 is an angle satisfying (4.11). Then, we deduce

2j
∣∣∣∣φ( t

2j
,
x

2j
,
s

2j
,
y

2j
, ω

)∣∣∣∣ ≥ 1

4
|t− s||ω − ω0|2 for all

( s
2j
,
y

2j

)
∈ S.

Together with (4.2), this yields

|K(t, x, s, y)| .
∫
S2

dω

1 + |t− s|2|ω − ω0|4
.

Using the spherical coordinates (θ, ϕ) with axis ω0, we obtain

|K(t, x, s, y)| .
∫ π

0

sin(θ)dθ

1 + |t− s|2(1− cos(θ))2
.

Performing the change of variables

z = |t− s|(1− cos(θ))

we obtain

|K(t, x, s, y)| . 1

|t− s|

∫ +∞

0

dz

1 + z2
.

This implies

(4.17) |K(t, x, s, y)| . 1

|t− s|
, ∀(t, x) ∈ 2j M, ∀

( s
2j
,
y

2j

)
∈ S

which is the desired estimate.

4.2.2. The case (s, y) ∈ Aint. – If (s, y) belongs to Aint, we have the lower bound (4.14)
for |φ|

|φ(t, x, s, y, ω)| ≥ 1

8
|t− s||ω − ω0|2,

where ω0 ∈ S2 is an angle satisfying (4.11). Arguing as in the previous case, we obtain

(4.18) |K(t, x, s, y)| . 1

|t− s|
, ∀(t, x) ∈ 2j M, ∀

( s
2j
,
y

2j

)
∈ Aint.
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4.2.3. The case (s, y) ∈ Aext. – If (s, y) belongs to Aext, recall that ω1 is in D such that ω,
ω1 and ω0 are on the same half great circle of S2, and that θ and θ1 denote respectively the
positive angles between ω0 and ω (resp. ω0 and ω1).

The case θ1 ≤ θ ≤ π. If θ1 ≤ θ ≤ π, we have the lower bound (4.15) for |φ|

|φ(t, x, s, y, ω)| ≥ 1

2
|t− s||ω − ω1|2.

Then, we deduce

2j
∣∣∣∣φ( t

2j
,
x

2j
,
s

2j
,
y

2j
, ω

)∣∣∣∣ ≥ 1

2
|t− s||ω − ω1|2.

Together with (4.2), this yields

|K(t, x, s, y)| .
∫
S2

dω

1 + |t− s|2|ω − ω1|4
.

Using the spherical coordinates (θ, ϕ) with axisω0, we parametrize S2 by (θ−θ1(ϕ), ϕ) where
ϕ→ θ1(ϕ) is defined in Lemma 4.7. We obtain

|K(t, x, s, y)| .
∫ 2π

0

∫ π

θ1(ϕ)

sin(θ − θ1(ϕ))

1 + |t− s|2(1− cos(θ − θ1(ϕ)))2
dθdϕ

and thus

|K(t, x, s, y)| .
∫ π

0

sin(θ)

1 + |t− s|2(1− cos(θ))2
dθ.

Performing the change of variable

z = |t− s|(1− cos(θ))

we obtain

|K(t, x, s, y)| . 1

|t− s|

∫ +∞

0

dz

1 + z2
.

This implies

(4.19) |K(t, x, s, y)| . 1

|t− s|
, ∀(t, x) ∈ 2j M, ∀

( s
2j
,
y

2j

)
∈ Aext with θ1 ≤ θ ≤ π

which is the desired estimate.

The case 0 ≤ θ ≤ θ1. Finally, if 0 ≤ θ ≤ θ1, we have the lower bound (4.16) for |φ|

|φ(t, x, s, y, ω)| &

√
1− cos(θ − θ1)

1− cos(θ1)
m0.

We then deduce

2j
∣∣∣∣φ( t

2j
,
x

2j
,
s

2j
,
y

2j
, ω

)∣∣∣∣ & 2j

√
1− cos(θ − θ1)

1− cos(θ1)
mj

where mj is defined as

mj = max
ω∈S2

(
u
( s

2j
,
y

2j
, ω
)
− u

(
t

2j
,
x

2j
, ω

))
.
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Together with (4.2), this yields

|K(t, x, s, y)| .
∫ θ1

0

sin(θ)

1 + 22jm2
j

1−cos(θ−θ1)
1−cos(θ1)

dθ.

Performing the change of variable

z = 2jmj

√
1− cos(θ − θ1)

1− cos(θ1)
,

noticing that

sin(θ)dθ =
2 sin(θ1)

√
1− cos(θ1)

2jmj

sin(θ)

sin(θ1)

√
1− cos(θ − θ1)

sin(θ − θ1)
dz

and using (5.20) and the fact that√
1− cos(θ1 − θ)
sin(θ1 − θ)

. 1 and
sin(θ)

sin(θ1)
. 1 on 0 ≤ θ ≤ θ1 ≤

π

2
+O(ε),

we obtain

(4.20) |K(t, x, s, y)| .
sin(θ1)

√
1− cos(θ1)

2jmj

∫ +∞

0

dz

1 + z2
.

sin(θ1)
√

1− cos(θ1)

2jmj
.

Now, in view of (5.19), we have

sin(θ1)
√

1− cos(θ1) .
1

1 + |t−s|
2jmj

.

Together with (4.20), we obtain

|K(t, x, s, y)| . 1

2jmj + |t− s|

which implies

(4.21) |K(t, x, s, y)| . 1

|t− s|
, ∀(t, x) ∈ 2j M, ∀

( s
2j
,
y

2j

)
∈ Aext with 0 ≤ θ ≤ θ1.

Finally, (4.9), (4.17), (4.18), (4.19) and (4.21) yield (3.15) which concludes the proof of
Proposition 3.5.

5. Proof of Lemma 4.9 (Lower bound for |φ|)

5.1. A lower bound for |φ| when (s, y) ∈ S (proof of (4.13))

In view of the definition of S, there is ω0 ∈ S2 such that

(s, y) = γω0(s− t).
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In view of (4.5), this yields

u(s,y, ω)− u(t, x, ω)(5.1)

= u(γω0(s− t), ω)− u(t, x, ω)

=

∫ s−t

0

g(Du, γ′ω0
(σ))dσ

=

∫ s−t

0

b−1(γω0
(σ), ω)b−1(γω0

(σ), ω0)g(L(γω0
(σ), ω), L(γω0

(σ), ω0))dσ

= −1

2

∫ s−t

0

b−1(γω0
(σ), ω)b−1(γω0

(σ), ω0)|N(γω0
(σ), ω)−N(γω0

(σ), ω0)|2dσ

≤ −1

4
|t− s||ω − ω0|2,

where we used in the last inequality the estimates (2.15) and (2.17) with ε > 0 small enough.
(5.1) implies for all (s, y) ∈ S and all ω ∈ S2

(5.2) |φ(t, x, s, y, ω)| ≥ 1

4
|t− s||ω − ω0|2,

which is the desired estimate (4.13).

5.2. A lower bound for |φ| when (s, y) ∈ Aint (proof of (4.14))

Recall that m0 < 0 since (s, y) ∈ Aint. Let ω0 ∈ S2 an angle satisfying (4.11). Then, we
have in particular

∂ωu(s, y, ω0) = ∂ωu(t, x, ω0).

Together with (2.12), this yields

(5.3) ∂ωu(s, y, ω0) = ∂ωu(γω0
(s− t), ω0).

In view of the assumption (2.16), the 2× 2 matrix

g(∂ωN, ∂ωN)

is invertible. We define the map a0 from Σs to TS2 as

(5.4) a0 = g(∂ωN(ω0, .), ∂ωN(ω0, .))
−1∂ωb(ω0, .).

Note in view of (2.15) and (2.16) that a0 satisfies the estimate

(5.5) ‖a0‖L∞ . ε.

For σ ∈ R, let us consider the curve µ(σ) defined by

(5.6)

{
µ′(σ) = b(µ(σ), ω0)N(µ(σ), ω0) + a0(µ(σ)) · ∂ωN(µ(σ), ω0),

µ(0) = γω0
(s− t).

R 5.1. – In the flat case, the curve µ is simply the segment of straight line between
γω0(s− t) and (s, y) (see Figure 2).

L 5.2. – Let µ the curve defined in (5.6). Then, we have

(5.7) (s, y) = µ(m0).
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The proof of Lemma 5.2 is postponed to Appendix C. (5.7) yields

u(s, y, ω)− u(t, x, ω) = u(µ(m0), ω)− u(µ(0), ω) + u(γω0
(s− t), ω)− u(t, x, ω)

=

∫ m0

0

g(∇u(µ(σ), ω), µ′(σ))dσ +

∫ s

t

g(Du(γω0(σ), ω), γ′ωo(σ))dσ

=

∫ m0

0

b−1(µ(σ), ω)
(
b(µ(σ), ω0)g(N(µ(σ), ω), N(µ(σ), ω0))

+ a0(µ(σ)) · g(∂ωN(µ(σ), ω0), N(µ(σ), ω))
)

+

∫ s

t

b−1(γω0(σ), ω)b−1(γω0(σ), ω0)g(L(γω0(σ), ω), L(γω0(σ), ω0)).

We obtain

u(s, y, ω)− u(t, x, ω) = −
∫ |m0|

0

(
g(N(µ(σ), ω), N(µ(σ), ω0)) +O(ε)

)
dσ

−1

2

∫ s

t

|N(γω0(σ), ω)−N(γω0(σ), ω0)|2(1 +O(ε))dσ

where we used the estimates (2.15) and (5.5), the fact that s > t, and the fact that m0 < 0

since (s, y) ∈ Aint. Together with (2.17), this yields

(5.8) u(s, y, ω)− u(t, x, ω) = −1

2
|t− s||ω − ω0|2(1 +O(ε))− |m0|(ω · ω0 +O(ε)).

In particular we deduce for ε > 0 small enough

(5.9) u(s, y, ω)− u(t, x, ω) ≤ −1

4
|t− s||ω − ω0|2 for all ω such that ω · ω0 ≥

1

4
.

We now consider the case ω · ω0 ≤ 1/4. Since ω0 is an angle where the maximum in the
Definition (4.10) of m0 is attained, we have for all ω ∈ S2, in view of (4.11) and (5.8), and

•

γω0

S

(s,y)
µ

(t,x)

F 2. The case (s, y) ∈ Aint in the flat case
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the fact that m0 < 0

−|m0| ≥ −
1

2
|t− s||ω − ω0|2(1 +O(ε))− |m0|(ω · ω0 +O(ε)).

This yields

|m0| ≤
1

2
|t− s||ω − ω0|2

1 +O(ε)

1− ω · ω0 +O(ε)
.

Injecting back in (5.8), we obtain for ε > 0 small enough

u(s, y, ω)− u(t, x, ω) ≤ −1

8
|t− s||ω − ω0|2 for all ω such that ω · ω0 ≤

1

4
.

Together with (5.9), we finally obtain for all ω ∈ S2

(5.10) |φ(t, x, s, y, ω)| ≥ 1

8
|t− s||ω − ω0|2

which is the desired estimate (4.14).

5.3. A lower bound for |φ| when (s, y) ∈ Aext (proof of (4.15) (4.16))

Let m0 defined in (4.10). Let ω0 ∈ S2 an angle satisfying (4.11). Note that m0 > 0 since
(s, y) ∈ Aext. In particular, proceeding as in Section 5.2, we obtain the following analog of
(5.8)

(5.11) u(s, y, ω)− u(t, x, ω) = −1

2
|t− s||ω − ω0|2(1 +O(ε)) +m0(ω · ω0 +O(ε)).

Recall the Definition (4.12) of the set D

D = {ω ∈ S2 / u(t, x, ω) = u(s, y, ω)}.

In view of (5.11), if ω1 ∈ D, then

(5.12) 1− ω1 · ω0 =
1 +O(ε)

1 + |t−s|
m0

(1 +O(ε))
.

Next, we consider ω1 ∈ D. In view of the assumption (2.16), the 2× 2 matrix

g(∂ωN, ∂ωN)

is invertible. We define the map a1 from Σs to Tω1
S2 as

(5.13) a1 = g(∂ωN(ω1, .), ∂ωN(ω1, .))
−1 (∂ωu(s, y, ω1)− ∂ωu(γω1(s− t), ω1)) .

Let us consider the curve η(σ) defined by

(5.14)

{
η′(σ) = b(η(σ), ω1)a1(µ(σ)) · ∂ωN(η(σ), ω1),

η(0) = γω1
(s− t).

R 5.3. – In the flat case, the curve η is simply the segment of straight line between
γω1

(s− t) and (s, y) (see Figure 3).

L 5.4. – Let η the curve defined in (5.14). Then, we have

(5.15) (s, y) = η(1).
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The proof of Lemma 5.4 is postponed to Appendix D. (5.15) yields

u(s, y, ω)− u(t, x, ω) = u(η(1), ω)− u(η(0), ω) + u(γω1
(s− t), ω)− u(t, x, ω)

=

∫ 1

0

g(∇u(η(σ), ω), η′(σ))dσ +

∫ s

t

g(Du(γω1
(σ), ω), γ′ω1

(σ))dσ

=

∫ 1

0

b−1(η(σ), ω)b(η(σ), ω1)g(N(η(σ), ω), a1 · ∂ωN(η(σ), ω1))

+

∫ s

t

b−1(γω1(σ), ω)b−1(γω1(σ), ω1)g(L(γω1(σ), ω), L(γω1(σ), ω1)).

We obtain

u(s, y, ω)− u(t, x, ω) =

∫ 1

0

g(N(η(σ), ω)−N(η(σ), ω1), a1 · ∂ωN(η(σ), ω1))(1 +O(ε))

−1

2

∫ s

t

|N(γω1
(σ), ω)−N(γω1

(σ), ω1)|2(1 +O(ε))dσ

where we used the estimates (2.15) and the identity (2.13). Together with the assumptions
(2.16) and (2.17), this yields

u(s, y, ω)− u(t, x, ω) = −1

2
|t− s||ω − ω1|2(1 +O(ε))

(5.16)

+ (ω − ω1) · (∂ωu(s, y, ω1)− ∂ωu(γω1
(s− t), ω1))(1 +O(ε)).

We introduce the notation v1 for the following vector in R3.

(5.17) v1 = ∂ωu(s, y, ω1)− ∂ωu(γω1(s− t), ω1).

Recall that ω0 ∈ S2 is an angle satisfying (4.11). In view of (5.16), this yields

m0 = −1

2
|t− s||ω0 − ω1|2(1 +O(ε)) + (ω0 − ω1) · v1(1 +O(ε)).

•

η

S

γω0 (s−t)

γω1 (s−t)

(s,y)

F 3. The case (s, y) ∈ Aext in the flat case
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v1

S2

θ1

α1

ω0

ω1

ϕ1

ϕ1

F 4. Definition of the angles θ1 and α1

We deduce

(5.18) |v1| =
1

|ω0 − ω1| cos(α1)

(
m0 +

1

2
|t− s||ω0 − ω1|2(1 +O(ε))

)
(1 +O(ε)),

where α1 denotes the angle between v1 and ω1 − ω0. Let us denote by θ1 the angle between
ω0 and ω1. In view of (5.12), we have

(5.19) 1− cos(θ1) =
1 +O(ε)

1 + |t−s|
m0

(1 +O(ε))

and we deduce in particular

(5.20) 0 < θ1 ≤
π

2
+O(ε).

Note also in view of the Definition (5.17) that v1 belongs to Tω1
S2 so that

(5.21) v1 · ω1 = 0.

Simple considerations on angles imply (12) (see Figure 4)

α1 =
θ1

2
.

Together with (5.18), this yields

(5.22) |v1| =
1

|ω0 − ω1| cos
(
θ1
2

) (m0 +
1

2
|t− s||ω0 − ω1|2(1 +O(ε))

)
(1 +O(ε)).

Let ω ∈ S2. According to Lemma 4.7, the half great circle on S2 originating at ω0 and
containing ω intersects D at a unique point ω1. Let θ denote the positive angle between

(12) Let ϕ1 the angle defined on Figure 4. Then 2ϕ1 +θ1 = π, and ϕ1 +α1 = π
2

in view of (5.21). Hence θ1 = 2α1
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v1

S2

θ

α

ω0

ω1

ω

ϕ

ϕ

F 5. Definition of the angles θ and α

ω0 and ω and let α denote the angle between v1 and ω1 − ω. In view of (5.21), simple
considerations on angles imply (13) (see Figure 5)

α =
|θ1 − θ|

2
.

Together with (5.16), the definition of φ, and the Definition (5.17), we have either

(5.23) φ(t, x, s, y, ω) = −1

2
|t−s||ω−ω1|2(1+O(ε))+|ω−ω1||v1| cos

(
θ − θ1

2

)
(1+O(ε)),

if 0 ≤ θ ≤ θ1, or

(5.24) φ(t, x, s, y, ω) = −1

2
|t−s||ω−ω1|2(1+O(ε))−|ω−ω1||v1| cos

(
θ − θ1

2

)
(1+O(ε)),

if θ1 ≤ θ ≤ π, where we have used the fact that (see Figure 5)

(ω − ω1) · v1 ≥ 0 if 0 ≤ θ ≤ θ1 and (ω − ω1) · v1 < 0 if θ1 < θ ≤ π.

We consider the two cases in the next two sections.

5.3.1. The case θ1 ≤ θ ≤ π. – We are in the case (5.24), so that we have for ε > 0 small
enough

φ(t, x, s, y, ω) ≤ −1

4
|t− s||ω − ω1|2.

In particular, we obtain

(5.25) |φ(t, x, s, y, ω)| ≥ 1

4
|t− s||ω − ω1|2

which is the desired estimate (4.15).

(13) Let ϕ the angle defined on Figure 5. Then 2ϕ + |θ1 − θ| = π, and ϕ + α = π
2

in view of (5.21). Hence
|θ1 − θ| = 2α
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5.3.2. The case 0 ≤ θ ≤ θ1. – We are in the case (5.23), which together with (5.22) yields

φ(t, x, s, y, ω) =
|ω − ω1|
|ω0 − ω1|

cos
(
θ−θ1

2

)
cos
(
θ1
2

) m0(1 +O(ε))(5.26)

+
1

2
|t− s||ω − ω1|A(ω)(1 +O(ε)) + |t− s||ω − ω1|2O(ε)

where A is given by

(5.27) A(ω) = −|ω − ω1|+
cos
(
θ−θ1

2

)
cos
(
θ1
2

) |ω0 − ω1|.

Since θ is the angle between ω and ω0, and θ1 is the angle between ω1 and ω0, we have

(5.28) |ω − ω1| =
√

2
√

1− cos(θ − θ1), |ω1 − ω0| =
√

2
√

1− cos(θ1).

Together with (5.27), we obtain

A(ω) =
√

2
√

1 + cos(θ − θ1)

(√
1− cos(θ1)√
1 + cos(θ1)

−
√

1− cos(θ − θ1)√
1 + cos(θ − θ1)

)
which yields

A(ω) ≥ 0 for all 0 ≤ θ ≤ θ1.

Together with (5.26), we obtain

φ(t, x, s, y, ω) ≥ |ω − ω1|
|ω0 − ω1|

cos

(
θ − θ1

2

)
m0(1 +O(ε)) + |t− s||ω − ω1|2O(ε).

In view of the fact that from (5.20) we have

0 ≤ θ ≤ θ1 ≤
π

2
+O(ε),

we deduce

(5.29) φ(t, x, s, y, ω) ≥
√

2

2

|ω − ω1|
|ω0 − ω1|

m0(1 +O(ε)) + |t− s||ω − ω1|2O(ε).

Evaluating (5.11) at ω = ω1 and using the fact that ω1 ∈ D so that the left-hand side of (5.11)
vanishes, we obtain

|t− s||ω1 − ω0|2 . m0

which together with (5.29) and the fact that

|ω − ω1| ≤ |ω0 − ω1|

yields for ε > 0 small enough

φ(t, x, s, y, ω) &
|ω − ω1|
|ω0 − ω1|

m0.

In view of (5.28), we deduce

(5.30) φ(t, x, s, y, ω) &

√
1− cos(θ − θ1)

1− cos(θ1)
m0

which is the desired estimate (4.16).
Finally, in view of (5.2), (5.10), (5.25) and (5.30), we have obtained the desired estimates

(4.13), (4.14), (4.15) and (4.16). This concludes the proof of Lemma 4.9.
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Appendix A

Proof of Lemma 4.4

If p ∈ S, then, there is ω0 such that

p = γω0
(s− t).

In view of (4.5), this yields

u(p, ω)− u(t, x, ω) = u(γω0
(s− t), ω)− u(t, x, ω)(A.1)

=

∫ s−t

0

g(Du, γ′ω0
(σ))dσ

=

∫ s−t

0

b−1(γω0(σ), ω)b−1(γω0(σ), ω0)g(L(γω0(σ), ω), L(γω0(σ), ω0)dσ

≤ 0

where we used in the last inequality the fact that the scalar product of 2 null vectors is negative

g(L(γω0
(σ), ω), L(γω0

(σ), ω0) ≤ 0.

Also, (A.1) in the special case ω = ω0 yields

u(p, ω0)− u(t, x, ω0) =

∫ s−t

0

b−2(γω0
(σ), ω0)g(L(γω0

(σ), ω0), L(γω0
(σ), ω0))dσ

= 0(A.2)

since L(γω0
(σ), ω0) is null. In view of (A.1) and (A.2), we finally obtain

(A.3) S ⊂ {p ∈ Σs, /m(p) = 0}.

Conversely, let p such that m(p) = 0. Let ω0 ∈ S2 an angle where the max in the
Definition (4.7) of m is attained. Then, we have at ω = ω0:

(A.4) u(p, ω0) = u(t, x, ω0), ∂ωu(p, ω0) = ∂ωu(t, x, ω0).

Also, in view of (2.12), we have

u(γω0
(s− t), ω0) = u(t, x, ω0), ∂ωu(γω0

(s− t), ω0) = ∂ωu(t, x, ω0)

which together with (A.4) implies

u(p, ω0) = u(γω0
(s− t), ω0), ∂ωu(p, ω0) = ∂ωu(γω0

(s− t), ω0).

Since u(s, ., ω0), ∂ωu(s, ., ω0) forms a global coordinate system on Σs in view of the assump-
tion in Section 2.4, we deduce

p = γω0
(s− t) ∈ S

and thus

{p ∈ Σs, /m(p) = 0} ⊂ S.

Together with (A.3), this concludes the proof of Lemma 4.4.
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Appendix B

Proof of Lemma 4.7

Let (θ, ϕ) denote the spherical coordinates with axis ω0. Note from the Definition (4.12)
of D and the definition of φ that D is given by

(B.1) D = {ω ∈ S2, / φ(t, x, s, y, ω) = 0}.

Recall that

φ(t, x, s, y, ω0) = m0 > 0.

Also, we have from (5.11)

φ(t, x, s, y,−ω0) = −2|t− s|2(1 +O(ε)) +m0(−1 +O(ε)) < 0.

Thus, since φ is continuous, we deduce from the mean value theorem that

(B.2) ∀ϕ ∈ [0, 2π), there exists at least one θ1 ∈ (0, π) such that (θ1, ϕ) ∈ D.

Also, note in view of (5.25) and (5.30),

∀ϕ ∈ [0, 2π), there exists at most one θ1 ∈ (0, π) such that (θ1, ϕ) ∈ D.

Together with (B.2), we deduce the existence of a 2π-periodic function

θ1 : [0, 2π)→ (0, π)

such that in the coordinate system (θ, ϕ), D is parametrized by

D = {θ = θ1(ϕ), 0 ≤ ϕ < 2π}.

To conclude the proof of Lemma 4.7, it remains to prove that θ1 is C1. Let ω1 ∈ D.
Let (θ1, ϕ1) the coordinates of ω1. By a slight abuse of notations, let us identify ω1 with
(θ1, ϕ1). Then, since

ω → φ(t, x, s, y, ω)

is a C1 function from our assumptions on u, and since

φ(t, x, s, y, ω1) = 0

in view of the fact that ω1 belongs to D, we have

(B.3) ∂θφ(t, x, s, y, ω1) = lim
θ→θ1

φ(t, x, s, y, θ, ϕ1)

θ − θ1
.

Now, (5.23) and (5.24) imply

φ(t, x, s, y, θ, ϕ1) = |v1|(1 +O(ε))(θ − θ1)(1 + o(1)) as θ → θ1

which together with (B.3) yields

(B.4) ∂θφ(t, x, s, y, ω1) 6= 0.

Finally, in view of (B.4) and the fact that φ is C1, the implicit function theorem implies that
θ1 is a C1 function. This concludes the proof of Lemma 4.7.
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Appendix C

Proof of Lemma 5.2

Note that

u(µ(σ), ω0)′ = g(Du(µ(σ), ω0), µ′(σ))

= 1

by the definition of Du, µ′, the identity (2.13), and the fact that N is unitary. This implies

(C.1) u(µ(σ), ω0) = σ + u(γω0
(t− s), ω0).

Also, we have

∂ωu(µ(σ), ω0)′ = g(D∂ωu(µ(σ), ω0), µ′(σ))(C.2)

= g(−b−2∂ωbN(µ(σ), ω0) + b−1∂ωN(µ(σ), ω0), µ′(σ))

= 0,

where we used in the last inequality the Definition (5.6) of µ′ and the Definition (5.4) of a0.
Recall the Definition (4.10) of m0

(C.3) m0 = u(s, y, ω0)− u(t, x, ω0).

In view of (5.3) and (5.6)-(C.3), we have

u(µ(m0), ω0) = u(s, y, ω0), ∂ωu(µ(m0), ω0) = ∂ωu(s, y, ω0).

Since u(s, ., ω0), ∂ωu(s, ., ω0) forms a global coordinate system on Σs in view of the assump-
tion in Section 2.4, we deduce

(s, y) = µ(m0)

which is the desired estimate. This concludes the proof of Lemma 5.2.

Appendix D

Proof of Lemma 5.4

Note that

u(η(σ), ω1)′ = g(Du(η(σ), ω1), η′(σ))

= 0

by the definition of Du, η′ and the identity (2.13). This implies

u(η(σ), ω1) = u(γω1
(s− t), ω1) = u(t, x, ω1),

which together with the fact that ω1 ∈ D implies from the Definition (4.12) of D

(D.1) u(η(σ), ω1) = u(s, y, ω1) for all σ ∈ R.

Also, we have

∂ωu(η(σ), ω1)′ = g(D∂ωu(η(σ), ω1), η′(σ))

= g(−b−2∂ωbN(η(σ), ω1) + b−1∂ωN(η(σ), ω1), η′(σ))

= ∂ωu(s, y, ω1)− ∂ωu(γω1
(s− t), ω1),

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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where we used in the last inequality the Definition (5.14) of η′ω and the Definition (5.13) of a1.
This implies

(D.2) ∂ωu(η(σ), ω1) = ∂ωu(γω1
(s− t), ω1) + σ(∂ωu(s, y, ω1)− ∂ωu(γω1

(s− t), ω1)).

In view of (D.1) and (D.2), we have

u(η(1), ω1) = u(s, y, ω1), ∂ωu(η(1), ω1) = ∂ωu(s, y, ω1).

Since u(s, ., ω1), ∂ωu(s, ., ω1) forms a global coordinate system on Σs in view of the assump-
tion in Section 2.4, we deduce

(s, y) = η(1)

which is the desired estimate. This concludes the proof of Lemma 5.4.
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