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QUASINEUTRAL LIMIT FOR VLASOV-POISSON
WITH PENROSE STABLE DATA

 D HAN-KWAN  F ROUSSET

A. – We study the quasineutral limit of a Vlasov-Poisson system that describes the
dynamics of ions in a plasma. We handle data with Sobolev regularity under the sharp assumption
that the profiles in velocity of the initial data satisfy a Penrose stability condition.

As a byproduct of our analysis, we obtain a well-posedness theory for the limit equation (which is
a Vlasov equation with Dirac measure as interaction kernel), for such data.

R. – Nous étudions la limite quasineutre d’un système de Vlasov-Poisson qui décrit la dyna-
mique d’ions dans un plasma. Nous travaillons avec des données à régularité Sobolev sous l’hypothèse
optimale que les profils en vitesse des données initiales satisfont une condition de stabilité de Penrose.

Comme corollaire de notre analyse, nous obtenons une théorie d’existence et d’unicité pour l’équa-
tion limite (qui est une équation de Vlasov avec une mesure de Dirac pour noyau d’interaction), pour
de telles données.

1. Introduction and main results

We study the quasineutral limit, that is the limit ε→ 0, for the following Vlasov-Poisson
system describing the dynamics of ions in the presence of massless electrons:

(1.1)



∂tfε + v · ∇xfε + Eε · ∇vfε = 0,

Eε = −∇xVε,

Vε − ε2∆Vε =

∫
Rd
fε dv − 1,

fε|t=0
= f0

ε .

In these equations, the function fε(t, x, v) stands for the distribution functions of the ions in
the phase space Td×Rd, d ∈ N∗, with Td := Rd/(2πZ)d. We assumed that the density of the
electrons ne satisfies a linearized Maxwell-Boltzmann law, that is ne = eVε ∼ 1 + Vε, which
accounts for the source−(1+Vε) in the Poisson equation. Such a model was recently studied
for instance in [19, 20, 21, 12]. Though we have focused on this simplified law, the arguments
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1446 D. HAN-KWAN AND F. ROUSSET

in this paper could be easily adapted to the model where the potential is given by the Poisson
equation −ε2∆Vε =

∫
Rd fε dv − e

Vε .
The dimensionless parameter ε is defined by the ratio between the Debye length of the

plasma and the typical observation length. It turns out that in most practical situations, ε is
very small, so that the limit ε → 0, which bears the name of quasineutral limit, is relevant
from the physical point of view. Observe that in the regime of small ε, we formally have that
the density of ions is almost equal to that of electrons, hence the name quasineutral. This
regime is so fundamental that it is even sometimes included in the very definition of a plasma,
see e.g., [8].

The quasineutral limit for the Vlasov-Poisson system with the Poisson equation

(1.2) − ε2∆Vε =

∫
Rd
fε dv −

∫
Td×Rd

fε dv dx,

that describes the dynamics of electrons in a fixed neutralizing background of ions is also
very interesting. Nevertheless, we shall focus in this paper on the study of (1.1). The study of
(1.2) combines the difficulties already present in this paper linked to kinetic instabilities and
those related to high frequency waves due to the large electric field that, do not occur in the
case of (1.1). The study of the combination of these two phenomena is postponed to future
work.

It is straightforward to obtain the formal quasineutral limit of (1.1) as ε → 0: we expect
that ε2∆Vε tends to zero and hence if fε converges in a reasonable way to some f , then
f should solve

(1.3)


∂tf + v · ∇xf + E · ∇vf = 0,

E = −∇xρ, ρ =

∫
Rd
f dv,

f |t=0
= f0.

This system was named Vlasov-Dirac-Benney by Bardos [1] and studied in [3, 2]. It was also
referred to as the kinetic Shallow Water system in [20] by analogy with the classical Shallow
Water system of fluid mechanics. In particular, it was shown in [3] that the semigroup of the
linearized system around unstable equilibria is unbounded in Sobolev spaces (even with loss
of derivatives). This yields the ill-posedness of (1.3) in Sobolev spaces, see in particular the
recent work [24]. In [2], it was nevertheless shown in dimension one, i.e., for d = 1 that (1.3) is
well-posed in the class of functions f(x, v) such that for all x ∈ T, v 7→ f(x, v) is compactly
supported and is increasing for v ≤ m(t, x) and then decreasing for v ≥ m(t, x), that is to
say for functions that for all x have the shape of one bump. The method in [2] is to reduce the
problem to an infinite number of fluid type equations by using a water bag decomposition.

The mathematical study of the quasineutral limit started in the nineties with pioneering
works of Brenier and Grenier for Vlasov with the Poisson Equation (1.2), first with a limit
involving defect measures [7, 14], then with a full justification of the quasineutral limit for
initial data with uniform analytic regularity [15]. The work [15] also included a description
of the so-called plasma waves, which are time oscillations of the electric field of frequency and
amplitude O( 1

ε ). As already said, such oscillations actually do not occur in the quasineutral
limit of (1.1). More recently, in [23, 22], relying on Wasserstein stability estimates inspired
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QUASINEUTRAL LIMIT FOR VLASOV-POISSON WITH PENROSE STABLE DATA 1447

from [25, 28], it was proved that exponentially small but rough perturbations are allowed in
the main result of [15].

In analytic regularity, it turns out that instabilities for the Vlasov-Poisson system, such
as two-stream instabilities, do not have any effect, whereas in the class of Sobolev functions,
they definitely play a crucial role. It follows that the quasineutral approximation both for
(1.1) and (1.2) is not always valid. In particular, the convergence of (1.1) to (1.3) does not
hold in general: we refer to [16, 21].

Nevertheless, it can be expected that the formal limit can be justified in Sobolev spaces for
stable situations. We shall soon be more explicit about what we mean by stable data, but this
should at least be included in the class of data for which the expected limit system (1.3) is well-
posed. The first result in this direction is due to Brenier [6] (see also [30] and [20]), in which he
justifies the quasineutral limit for initial data converging to a monokinetic distribution, that
is a Dirac mass in velocity. This corresponds to a stable though singular case since the Dirac
mass can be seen as an extremal case of a Maxwellian, that is a function with one bump.
Brenier introduced the so-called modulated energy method to prove this result. Note that in
this case the limit system is a fluid system (the incompressible Euler equations in the case
of (1.2) or the shallow water equations in the case of (1.1)) and not a kinetic equation. This
result is coherent with the fact that the instabilities present at the kinetic level do not show
up at the one-fluid level, for example the quasineutral limit of the Euler-Poisson system can
be justified in Sobolev spaces as shown for example in [9, 27], among others.

For non singular stable data with Sobolev regularity, there are only few available results
which all concern the one-dimensional case d = 1.

– In [21], using the modulated energy method, the quasineutral limit is justified for very
special initial data namely initial data converging to one bump functions that are
furthermore symmetric and space homogeneous (thus that are stationary solutions to
(1.1) and (1.3)). It is also proved that this is the best we could hope for with this method.

– Grenier sketched in [16] a result of convergence for data such that for every x the
profile in v has only one bump. The proposed proof involves a functional taking
advantage of the monotonicity in the one bump structure. Such kind of functionals
have been recently used in other settings, for example in the study of the hydrostatic
Euler equation or the Prandtl equation, see for example [31, 32, 11].

The main goal of this work is to justify the quasineutral limit that is to prove the derivation
of (1.3) from (1.1) in the general stable case and in any dimension. As we shall see below a
byproduct of the main result is the well-posedness of the system (1.3) in any dimension for
smooth data with finite Sobolev regularity such that for every x, the profile v 7→ f0(x, v)

satisfies a Penrose stability condition. This condition is automatically satisfied in dimension
one by smooth functions that for every x have a “one bump” profile, as well as by small
perturbations of such functions.

To state our results, we shall first introduce the Penrose stability condition [36, 35] for
homogeneous equilibria f(v). Let us define for the profile f the Penrose function

P(γ, τ, η, f) = 1− (2π)d
∫ +∞

0

e−(γ+iτ)s iη

1 + |η|2
· ( F v∇vf)(ηs) ds,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1448 D. HAN-KWAN AND F. ROUSSET

for γ > 0, τ ∈ R, η ∈ Rd\{0}. The normalization factor (2π)d comes from our convention
for the Fourier transform below. We shall say that the profile f satisfies the Penrose stability
condition if

(1.4) inf
(γ,τ,η)∈(0,+∞)×R×Rd\{0}

|P(γ, τ, η, f)| > 0.

It will be also convenient to say that f satisfies the c0 Penrose stability condition for some
c0 > 0 if

(1.5) inf
(γ,τ,η)∈(0,+∞)×R×Rd\{0}

|P(γ, τ, η, f)| ≥ c0.

The non-vanishing of P only has to be checked on a compact subset if f is smooth and
localized enough (for example if f ∈ H 3

σ, σ > d/2 with the notation below) and thus if
f verifies the stability condition (1.4) then it also satisfies the stability condition (1.5) for some
c0 > 0. This condition is necessary for the large time stability of the profile f in the unscaled
Vlasov-Poisson equation (that is to say for (1.1) with ε = 1). Note that it was recently proven
in [35, 5] that Landau damping holds in small Gevrey neighborhood of such stable solutions,
which means that these profiles are nonlinearly stable and even asymptotically stable in a
suitable sense with respect to small perturbations in Gevrey spaces (see also [10] for Landau
damping in Sobolev spaces for the Vlasov-HMF equations).

R 1.1. – The assumption (1.5) is automatically satisfied in a small data regime. In
a one-dimensional setting, (1.5) is also satisfied for the one bump profiles described previously.
More generally, in any dimension, (1.5) is verified for any radial non-increasing function
(therefore, Maxwellians are included) and there exist more sophisticated criteria based on the
one bump structure of the averages of the function along hyperplanes. We refer to [35] for other
conditions ensuring (1.5). Note that any sufficiently small perturbation of a Penrose stable profile
is also Penrose stable.

Throughout this paper, we consider the following normalization for the Fourier transform
on Td and Rm (m will usually be d or d+ 1):

F (u)(k) := (2π)−d
∫
Td
u(x)e−ik·x dx, k ∈ Zd,

F (w)(ξ) := (2π)−m
∫
Rm

w(y)e−iξ·y dy, ξ ∈ Rm.

We will also often use the notation ·̂ for F (·). With this convention, the inverse Fourier
transform yields

u(x) =
∑
k∈Zd

F (u)(k)eik·x, x ∈ Td,

w(y) =

∫
Rm

F (w)(ξ)eiξ·y dξ, y ∈ Rm.

For k ∈ N, r ∈ R, we introduce the weighted Sobolev norms

(1.6) ‖f‖ H kr
:=

 ∑
|α|+|β|≤k

∫
Td

∫
Rd

(1 + |v|2)r|∂αx ∂βv f |2 dvdx

1/2

,

4 e SÉRIE – TOME 49 – 2016 – No 6



QUASINEUTRAL LIMIT FOR VLASOV-POISSON WITH PENROSE STABLE DATA 1449

where for α = (α1, . . . , αd), β = (β1, . . . , βd) ∈ Nd, we write

|α| =
d∑
i=1

αi, |β| =
d∑
i=1

βi,

∂αx := ∂α1
x1
· · · ∂αdxd , ∂βv := ∂β1

v1 · · · ∂
βd
vd
.

We will also use the standard Sobolev norms, for functions ρ(x) that depend only on x

(1.7) ‖ρ‖Hk = ‖ρ‖Hkx :=

∑
|α|≤k

∫
Td
|∂αx ρ|2 dx

1/2

.

Setting ρε(t, x) :=
∫
Rd fε(t, x, v) dv, we introduce the key quantity

(1.8) N 2m, 2r(t, fε) := ‖fε‖L∞((0,t), H 2m−1
2r ) + ‖ρε‖L2((0,t),H2m),

where m ∈ N∗ and r ∈ R+ are parameters that will be taken sufficiently large.

Let us finally fix our regularity indices. We define

(1.9) m0 = 3 +
d

2
+ p0, p0 = bd

2
c+ 1, r0 = max(d, 2 +

d

2
)

and we shall mainly work with 2m > m0 and 2r > r0.

The main result of this paper is a uniform in ε local existence result in Sobolev spaces
for (1.1) in the case of data for which the profile v 7→ f0(x, v) satisfy the Penrose stability
condition (1.4) for every x. More precisely, we shall prove the following theorem.

T 1.1. – Assume that for all ε ∈ (0, 1], f0
ε ∈ H 2m

2r with 2m > m0, 2r > r0 and
that there is M0 > 0 such that for all ε ∈ (0, 1], ‖f0

ε ‖ H 2m
2r
≤ M0. Assume moreover that there

is c0 > 0 such that for every x ∈ Td and for every ε ∈ (0, 1], the profile v 7→ f0
ε (x, v) satisfies

the c0 Penrose stability condition (1.5).
Then there existT > 0,R > 0 (independent of ε) and a unique solution fε ∈ C([0, T ], H 2m

2r )

of (1.1) such that
sup
ε∈(0,1]

N 2m,2r(T, fε) ≤ R

and fε(t, x, ·) satisfies the c0/2 Penrose stability condition (1.5) for every t ∈ [0, T ] and x ∈ Td.

As already mentioned, the Penrose stability condition that we assume is sharp in the sense
that it is necessary in order to justify the quasineutral limit for data with Sobolev regularity,
see [21]. By Remark 1.1, the assumption that for all x ∈ Td, v 7→ f0

ε (x, v) satisfies the c0
Penrose stability condition (1.5) is verified if f0

ε converges to a function f0 under the form

f0(x, v) = F (x, |v − u(x)|2) + g(x, v)

where F : Td × R+ → R+ is such that for every x, F (x, ·) is non-increasing, u is a smooth
function and g is a sufficiently small perturbation (in H s

σ for s > 2 and σ > d/2). This class
includes in particular small perturbations of smooth local Maxwellians:

M(x, v) =
ρ(x)

(2πT (x))d/2
exp

(
−|v − u(x)|2

T (x)

)
.
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1450 D. HAN-KWAN AND F. ROUSSET

Note also that the solution fε remains in H 2m
2r on [0, T ]. Nevertheless, the H 2m

2r norm is
not controlled uniformly in ε, only the quantity N 2m, 2r(T, fε) is.

From this uniform existence result, we are then able to justify the quasineutral limit for
(1.1).

T 1.2. – Let f0
ε ∈ H 2m

2r satisfying the assumptions of Theorem 1.1. Assume that
in addition there is f0 ∈ L2(Td × Rd) such that f0

ε → f0 in L2(Td × Rd). Then, on the
interval [0, T ] with T > 0 defined in Theorem 1.1, we have that

sup
[0,T ]

‖fε − f‖L2
x,v∩L∞x,v + sup

[0,T ]

‖ρε − ρ‖L2
x∩L∞x →ε→0 0

where f is a solution of (1.3) with initial data f0 such that f ∈ C([0, T ], H 2m−1
2r ),

ρ =
∫
Rd fdv ∈ L2([0, T ], H2m) and that satisfies the c0/2 Penrose stability condition

(1.5) for every t ∈ [0, T ] and x ∈ Td.

As a byproduct of our analysis, we obtain local well-posedness for the limit Equation (1.3),
in the class of Penrose stable initial data. Existence is a consequence of the statement of
Theorem 1.2, while uniqueness is more subtle and is rather a consequence of the analysis
that is used to prove Theorem 1.1.

T 1.3. – Let f0 ∈ H 2m
2r with 2m > m0, 2r > r0 be such that for all x ∈ Td,

v 7→ f0(x, v) satisfies the c0 Penrose stability condition (1.5). Then, there existsT > 0 for which
there is a unique solution to (1.3) with initial condition f0 and such that f ∈ C([0, T ], H 2m−1

2r ),
ρ ∈ L2([0, T ], H2m) and v 7→ f(t, x, v) satisfies the c0/2 Penrose condition for every t ∈ [0, T ]

and x ∈ Td.

R 1.2. – We have focused on periodic boundary conditions in x. Nevertheless, our
results could be extended to the case x ∈ Rd without major changes.

2. Strategy

Let us explain in this section the general strategy that we follow in this paper. The main
part of this work consists of Sections 3, 4, 5 and 6 where we provide the proof of Theorem 1.1.

Our proof is based on a bootstrap argument, which we initiate in Section 3. The main
difficulty is to derive a suitable uniform estimate for

N 2m, 2r(T, fε) = ‖fε‖L∞((0,T ), H 2m−1
2r ) + ‖ρε‖L2((0,T ),H2m),

for some T > 0. Note that if we consider data with a better localization in the velocity space,
we could rely on the fact that for all ε > 0, there is a unique global classical solution of (1.1)
(see [4]). However, such a result is not useful in view of the quasineutral limit, since it does
not provide estimates that are uniform in ε.

Assuming a control of ‖ρε‖L2((0,t),H2m) for some t > 0, the estimate for ‖fε‖L∞((0,t), H 2m−1
2r )

can be obtained from a standard energy estimate (see Lemma 3.4). Consequently, the diffi-
culty is to estimate ‖ρε‖L2((0,t),H2m). From now on, we will forget the subscript ε to reduce
the amount of notation.
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A natural idea would be to use the fact that up to commutators, given f(t, x, v) satis-
fying (1.1), ∂2m

x f evolves according to the linearized equation about f , that is

(2.1) ∂t∂
2m
x f + v · ∇x∂2m

x f + ∂2m
x E · ∇vf + E · ∇v∂2m

x f + · · · = 0,

where · · · should involve remainder terms only. One thus has first to understand this
linearized equation. When f ≡ f(v) does not depend on t and x, then the linearized
equation reduces to

(2.2) ∂tḟ + v · ∇xḟ + Ė · ∇vf = S, Ė = −∇x(I − ε2∆x)−1

∫
Rd
ḟ dv,

and one can deduce an integral equation for ρ̇ =
∫
Rd ḟdv by solving the free transport

equation and integrating in v. This was used for example in the study of Landau damping by
Mouhot and Villani [35]. Then by using Fourier analysis (in time and space) and assuming
that f(v) satisfies a Penrose stability condition, one can derive relevant estimates from this
integral equation and thus estimate ρ̇ in L2

t,x with respect to the source term (without loss of
derivatives).

Nevertheless, there are two major difficulties to overcome in order to apply this strategy
in Sobolev spaces and in the general case where f depends also on t and x.

The first one is due to subprincipal terms in (2.1). This comes from the fact that we do not
expect that 2m derivatives of f can be controlled uniformly in ε (only 2m derivatives of ρ
and 2m − 1 derivatives of f are). In (2.1), there are actually subprincipal terms under the
form ∂xE · ∇v∂2m−1f that involves 2m derivatives of f and thus cannot be considered as a
remainder. The idea would be to replace the fields ∂xi , by more general vector fields in order
to kill these subprincipal terms. However, since these fields have to depend on x, they do not
commute with v · ∇x anymore and thus we would recreate other bad subprincipal terms. A
way to overcome this issue consists in applying to the equation powers of some well-chosen
second order differential operators designed to kill all bad subprincipal terms. This family
of operators is introduced and studied in Lemma 4.1 and in Lemma 4.2.

In dimension one, the relevant operator is of the form

L := ∂xx + ϕ∂x∂v + ψ∂vv,

with (ϕ,ψ) satisfying the system{
(∂t + v · ∇x + E · ∇v)ϕ = ∂xE + (zero order terms), ϕ|t=0

= 0,

(∂t + v · ∇x + E · ∇v)ψ = ϕ∂xE + (zero order terms), ψ|t=0
= 0,

this system being designed to kill the bad subprincipal term.

In dimension d, we obtain in a similar way some relevant operators (Li,j)1≤i,j≤d. By
applying these operators to f , we obtain for all I = (i1, . . . , im), J = (j1, . . . , jm) ∈
{1, . . . , d}m, the functions

fI,J := Li1,j1 · · ·Lim,jmf
that satisfy two key properties. First, they can be used to control ρ in the sense that∫

Rd
fI,J dv = ∂α(I,J)

x ρ+R,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1452 D. HAN-KWAN AND F. ROUSSET

where ∂α(I,J)
x is of order 2m and R is a remainder (that is small and well controlled in small

time), see Lemma 4.3. Furthermore, fI,J evolves according to the linearized equation about
f at leading order, that is

∂tfI,J + v · ∇xfI,J + E · ∇vfI,J + ∂α(I,J)
x E · ∇vf + · · · = 0,

where · · · is here a shorthand for lower order terms that we can indeed handle.

Since f depends on x, there is a nontrivial electric field E in the above equation and we
cannot derive an equation for the density just by inverting the free transport operator and
by using Fourier analysis. We shall thus first make the change of variable v 7→ Φ(t, x, v) in
order to straighten the vector field

∂t + v · ∇x + E · ∇v into ∂t + Φ(t, x, v) · ∇x,

where Φ(t, x, v) is the vector field satisfying the Burgers equation

∂tΦ + Φ · ∇xΦ = E, Φ|t=0
= v,

and is close to v in small time. By using the characteristics method, and another near identity
change of variable, we can then obtain an integral equation for the evolution of (∂

α(I,J)
x ρ)I,J

that has nice properties (see Lemma 5.2 and Lemma 5.3). For this stage, we need to study
integral operators under the form

KG(F )(t, x) =

∫ t

0

∫
(∇xF )(s, x− (t− s)v) ·G(t, s, x, v) dvds.

Note that KG seems to feature a loss of one derivative when acting on F , but we prove that
it is actually a bounded operator on L2

t,x, provided that G(t, s, x, v) is smooth enough and
localized in v, see Proposition 5.1. This is an effect in the same spirit as kinetic averaging
lemmas (see e.g., [13]). We essentially end up with the study of the integral equation (with
unknown h(t, x))

h = K∇vf0(I − ε2∆x)−1(h) +R,

where R is a remainder we can control.

The last step of the proof consists in introducing a parameter γ > 0 (to be chosen
large enough) and conjugating the integral equation by eγt, which leads to the study of the
operator (

I − e−γtK∇vf0(I − ε2∆x)−1eγt
)
.

We finally relate this operator to a semiclassical pseudodifferential operator whose symbol
is given by the Penrose function P(γ, τ, η, f0

ε (x, ·)) (see Lemma 5.4). We refer to Section 8 for
definitions and basic facts of pseudodifferential calculus.

We therefore observe that the Penrose stability condition (1.4) can be seen as a condition of
ellipticity of this symbol. We can finally use a semi-classical pseudodifferential calculus (with
parameter) in order to invert

(
I − e−γtK∇vf0(I − ε2∆x)−1eγt

)
up to a small remainder,

which yields an estimate for ∂2m
x ρ in L2

t,x, as achieved in Proposition 5.2. This is where
choosing γ large is useful. Note that this part of the proof is very much inspired by the
use of the Lopatinskii determinant in order to get estimates for initial boundary value
problems for hyperbolic systems (see e.g., [26, 33, 29]) and the use of the Evans function in
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order to get estimates in singular limit problems involving stable boundary layers (see e.g.,
[34, 17, 18, 37]).

Combining all these a priori estimates, we end up with the inequality stated in (6.1),
which gives a good control of N 2m,2r(T, f). It is then standard to conclude by a bootstrap
argument, see Section 6.

In Section 7, we provide the proofs of Theorems 1.2 and 1.3. Theorem 1.2 follows from
Theorem 1.1 and compactness arguments. Then, the existence part in Theorem 1.3 is a
straightforward consequence of Theorem 1.2. The uniqueness part needs a specific anal-
ysis, which is performed in the same spirit as the way we obtained a priori estimates, see
Proposition 7.1 and Corollary 7.1.

The last section of the paper is dedicated to some elements of pseudodifferential calculus
which are needed in the proof.

3. Proof of Theorem 1.1: setting up the bootstrap argument

For the proof of the estimates that will eventually lead to the proof of Theorem 1.1, we
shall systematically remove the subscripts ε for the solution fε of (1.1). The notation a . b

will stand as usual for a ≤ C bwhereC is a positive number that may change from line to line
but which is independent of ε and of a, b. Similarly, Λ will stand for a continuous function
which is independent of ε and which is non-decreasing with respect to each of its arguments.

3.1. Some useful Sobolev estimates

Before starting the actual proof, let us state some basic product and commutator estimates
that will be very useful in the paper. We denote by [A,B] = AB − BA the commutator
between two operators. We shall also use in the paper the notation ‖ · ‖Hkx,v for the standard
Sobolev norm on L2 for functions depending on (x, v). In a similar way we will use the
notations ‖ · ‖Wk,∞ and ‖ · ‖Wk,∞

x,v
for the standard Sobolev spaces on L∞ for functions

depending on x and (x, v) respectively.

L 3.1. – Let s ≥ 0. Consider a smooth nonnegative function χ = χ(v) that satisfies
|∂αχ| ≤ Cαχ for every α ∈ Nd such that |α| ≤ s.

– Consider two functions f = f(x, v), g = g(x, v), then we have for k ≥ s/2

(3.1) ‖χfg‖Hsx,v . ‖f‖Wk,∞
x,v
‖χg‖Hsx,v + ‖g‖Wk,∞

x,v
‖χf‖Hsx,v .

– Consider a function E = E(x) and a function F (x, v), then we have for any s0 > d that

(3.2) ‖χEF‖Hsx,v . ‖E‖Hs0x ‖χF‖Hsx,v + ‖E‖Hsx‖χF‖Hsx,v .

– Consider a vector field E = E(x) and a function f = f(x, v), then we have for any
s0 > 1 + d and for any α, β ∈ Nd such that |α|+ |β| = s ≥ 1 that

(3.3)
∥∥χ [∂αx ∂βv , E(x) · ∇v

]
f
∥∥
L2
x,v

. ‖E‖Hs0x ‖χf‖Hsx,v + ‖E‖Hsx‖χf‖Hsx,v .

Note that by taking as weight function χ(v) = (1 + |v|2)±
σ
2 , we can use this lemma to get

estimates in H s
±σ. Note that (3.2), (3.1) are not sharp in terms of regularity but they will be

sufficient for our purpose.
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Proof of Lemma 3.1. – The estimate (3.1) is straightforward, using the pointwise esti-
mates on χ and its derivatives. To prove (3.2), by using Leibnitz formula, we have to estimate

‖χ∂αxE∂βx∂γvF‖L2
x,v

with |α|+ |β|+ |γ| ≤ s. If |α| ≤ d/2, we write by Sobolev embedding in x that

‖χ∂αxE∂βx∂γvF‖L2
x,v

. ‖∂αxE‖L∞x ‖χF‖Hsx,v . ‖E‖Hs0x ‖χF‖Hsx,v .

If |α| > d/2, by using again Sobolev embedding in x, we write

‖χ∂αxE∂βx∂γvF‖L2
x,v

. ‖E‖Hs
(∫

sup
x
|χ∂βx∂γvF |2 dv

) 1
2

. ‖E‖Hs‖χF‖Hsx,v

since |β|+ |γ|+ d
2 ≤ s− |α|+

d
2 < s.

To prove (3.3), we proceed in a similar way. By expanding the commutator, we have to
estimate

Iγ =
∥∥χ∂γxE · ∇v∂α−γx ∂βv f

∥∥
L2
x,v

for 0 < γ ≤ α where |α|+ |β| = s. If 0 < |γ| ≤ 1 + d
2 , we write by using Sobolev embedding

in x

Iγ . ‖∂γxE‖L∞‖χ∇v∂α−γx ∂βv f‖L2
x,v

. ‖E‖Hs0 ‖χf‖Hsx,v .

If |γ| > 1 + d
2 , we write by using again the Sobolev embedding in x

Iγ . ‖∂γxE‖L2

(∫
sup
x
|χ∇v∂α−γx ∂βv f |2 dv

) 1
2

. ‖E‖Hs‖χf‖Hsx,v

since 1 + |α|+ |β| − |γ| = 1 + s− |γ| < s− d
2 .

We shall also use the following statement.

L 3.2. – For every s ≥ 0, α, β ∈ N2d with |α| + |β| ≤ s, and χ(v) satisfying the
assumptions of Lemma 3.1, we have for all functions f = f(x, v), g = g(x, v), the estimate

(3.4) ‖∂αx,vf ∂βx,vg‖L2 . ‖ 1

χ
f‖L∞x,v‖χg‖Hsx,v + ‖χg‖L∞x,v‖

1

χ
f‖Hsx,v .

Proof of Lemma 3.2. – It suffices to notice that since χ and 1/χ satisfy that |∂αφ| . φ for
every |α| ≤ s, it is equivalent to estimate∥∥∥∥∂α̃x,v ( 1

χ
f

)
∂β̃x,v(χg)

∥∥∥∥
L2

with α̃, β̃ that still satisfy |α̃|+|β̃| ≤ s and the result follows from the standard tame Sobolev-
Gagliardo-Nirenberg-Moser inequality.
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3.2. Set up of the bootstrap

From classical energy estimates (that we shall recall below, see Proposition 3.1 and its
proof), we easily get that the Vlasov-Poisson system is locally well-posed in H 2m

2r for any
m and r satisfying 2m > 1 + d and 2r > d/2. This means that if f0 ∈ H 2m

2r , there exists
T > 0 (that depends on ε) and a unique solution f ∈ C([0, T ], H 2m

2r ) of the Vlasov-Poisson
system (1.1). We can thus consider a maximal solution f ∈ C([0, T ∗), H 2m

2r ). Note that since
2r > d/2, we have for every T ∈ [0, T ∗),

(3.5) ‖ρ‖L2((0,T ),H2m) . T
1
2 sup

[0,T ]

‖f‖ H 2m
2r
.

and hence N 2m 2r(T, f) (recall (1.8)) is well defined for T < T ∗. From this local existence
result, we can thus define another maximal time T ε (that a priori depends on ε) as

(3.6) T ε = sup
{
T ∈ [0, T ∗), N 2m,2r(T, f) ≤ R

}
.

By taking R independent of ε but sufficiently large, we have by continuity that T ε > 0. Our
aim is to prove that R can be chosen large enough so that for all ε ∈ (0, 1], T ε is uniformly
bounded from below by some time T > 0. There are two possibilities for T ε:

1. either T ε = T ∗,
2. or T ε < T ∗ and N 2m,2r(T

ε, f) = R.

Let us first analyze the first case which is straightforward. If T ε = T ∗ = +∞, then the
estimate N 2m,2r(T, f) ≤ R holds for all times and there is nothing to do. We shall soon
show that the scenario T ε = T ∗ < +∞ is impossible by using an energy estimate.

We shall denote by T the transport operator

(3.7) T := ∂t + v · ∇x + E · ∇v,

where E is the electric field associated to f , that is E = −∇(I − ε2∆)−1(
∫
Rd f dv − 1).

We first write an identity (that follows from a direct computation) which we will use many
times in this paper.

L 3.3. – For α, β ∈ Nd, we have for any smooth function f the formula

(3.8) ∂αx ∂
β
v ( T f) = T (∂ax∂

β
v f) +

d∑
i=1

1βi 6=0∂xi∂
α
x ∂

β
i

v f +
[
∂αx ∂

β
v , E · ∇v

]
f,

where β
i

is equal to β except that β
i

i = βi − 1.

The H 2m
2r energy estimate reads as follows.

P 3.1. – For any solution f to (1.1), we have, for someC > 0 independent of ε,
the estimate

(3.9) sup
[0,T ε)

‖f(t)‖2H 2m
2r
≤ ‖f0‖2H 2m

2r
exp

[
C

(
T ε +

1

ε
(T ε)

1
2R

)]
,

where T ε and R are introduced in (3.6).
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Proof of Proposition 3.1. – For f satisfying (1.1) and thus T f = 0, we can use the
commutator Formula (3.8), take the scalar product with (1 + |v|2)2r∂αx ∂

β
v f , and sum for all

|α| + |β| ≤ 2m. By using (3.3) with s = 2m, χ(v) = (1 + |v|2)r and s0 = 2m (recall that
2m > 1 + d), we get ∥∥χ [∂αx ∂βv , E(x) · ∇v

]
f
∥∥
L2
x,v

. ‖E‖H2m ‖f‖ H 2m
2r
.

By Cauchy-Schwarz we thus have∣∣∣∣∫ χ
[
∂αx ∂

β
v , E(x) · ∇v

]
f χ∂αx ∂

β
v f

∣∣∣∣ . ‖E‖H2m ‖f‖2H 2m
2r
.

We end up with a classical energy estimate

d

dt
‖f‖2H 2m

2r
. ‖f‖2H 2m

2r
+ ‖E‖H2m ‖f‖2H 2m

2r
.

By using the elliptic regularity estimate for the Poisson equation which gives

‖E‖H2m = ‖∇xV ‖H2m .
1

ε
‖ρ‖H2m ,

we get that for t ∈ [0, T ε) and for some C > 0 independent of ε,

‖f(t)‖2H 2m
2r
≤ ‖f0‖2H 2m

2r
+ C

∫ t

0

(
1

ε
‖ρ‖H2m + 1

)
‖f(s)‖2H 2m

2r

for some C > 0. Consequently, from the Gronwall inequality, we obtain that

sup
[0,T ε)

‖f(t)‖2H 2m
2r
≤ ‖f0‖2H 2m

2r
exp

[
C

(
T ε +

1

ε
(T ε)

1
2 ‖ρ‖L2([0,T ε),H2m)

)]
≤ ‖f0‖2H 2m

2r
exp

[
C

(
T ε +

1

ε
(T ε)

1
2 N 2m, 2r(T

ε, f)

)]
,

from which, since N 2m, 2r(T
ε, f) ≤ R, we get the expected estimate.

In particular, if T ε = T ∗ < +∞, we have, according to Proposition 3.1,

sup
[0,T∗)

‖f(t)‖2H 2m
2r
≤ ‖f0‖2H 2m

2r
exp

[
C

(
T ε +

1

ε
(T ε)

1
2R

)]
< +∞.

This means that the solution could be continued beyond T ∗ and this contradicts the
definition of T ∗; as a consequence, this case is impossible.

Therefore, let us assume from now on that T ε < T ∗ and N 2m, 2r(T
ε, f) = R. We shall

estimate N 2m, 2r(T, f) and prove that for some well chosen parameterR (independent of ε),
there exists some time T# > 0, small but independent of ε, such that the equality

N 2m, 2r(T, f) = R

cannot hold for any T ∈ [0, T#]. We will then deduce that T ε > T#.
To this end, we need to estimate N 2m, 2r(T, f).
In order to estimate the part ‖fε‖L∞((0,T ), H 2m−1

2r ) of the quantity, we can also proceed
by using standard energy estimates. Then the main part of the work will be to control
‖ρε‖L2((0,T ),H2m) uniformly in ε by using the Penrose stability condition. Note that we
cannot use the estimate (3.5) to get a control that is independent of ε since estimating ‖f‖ H 2m

2r
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in terms of N 2m, 2r(T, f) requires the use of the elliptic regularity provided by the Poisson
equation, and thus costs negative powers of ε.

We end this section with the H 2m−1
2r energy estimate without loss in ε.

L 3.4. – For 2m > 2 + d and 2r > d/2, we have for any solution f to (1.1) the
estimate

sup
[0,T ]

‖f‖ H 2m−1
2r

≤ ‖f0‖ H 2m−1
2r

+ T
1
2 Λ(T,R),(3.10)

for every T ∈ [0, T ε) where T ε and R are introduced in (3.6).

Proof of Lemma 3.4. – Let α, β ∈ Nd with |α| + |β| = 2m − 1. We can use again the
commutation Formula (3.8) take the scalar product with (1 + |v|2)2r∂αx ∂

β
v f , sum for all

|α| + |β| ≤ 2m − 1 and use (3.3) with s = 2m − 1, χ(v) = (1 + |v|2)r and s0 = 2m − 1

(which is licit since 2m > 2 + d). We obtain that

(3.11)
d

dt
‖f‖2H 2m−1

2r
. ‖f‖2H 2m−1

2r
+ ‖E‖H2m−1‖f‖2H 2m−1

2r
.

Integrating in time we obtain that for every T ∈ [0, T ε], for some C > 0

sup
[0,T ]

‖f‖ H 2m−1
2r

≤ ‖f0‖ H 2m−1
2r

+ C sup
[0,T ]

‖f‖ H 2m−1
2r

(
T +

∫ T

0

‖E‖H2m−1 dt

)
.

By using Cauchy-Schwarz in time and the crude estimate

(3.12) ‖E‖H2m−1 = ‖∇xV ‖H2m−1 . ‖ρ‖H2m

which is uniform in ε since it does not use any elliptic regularity, we obtain that

sup
[0,T ]

‖f‖ H 2m−1
2r

≤ ‖f0‖ H 2m−1
2r

+ CR(T + T
1
2R),

since N 2m, 2r(T
ε, f) ≤ R. This proves the estimate (3.10).

4. Proof of Theorem 1.1: preliminaries for the estimates on ρ

4.1. Definition of appropriate second order differential operators

In order to estimate the H2m norm of ρ, we need to introduce appropriate differential
operators of order 2m which are well adapted to the Vlasov equation in the quasineutral
scaling. The usual basic approach is to use the vector fields ∂x, ∂v and thus to apply ∂α with
|α| ≤ 2m to the Vlasov equation. The hope is that up to harmless commutators, ∂αf will
evolve according to the linearized equation about f and thus that we will just have to under-
stand the dynamics of this linearized equation. Nevertheless, there are unbounded terms
arising because of commutators. The main problem is the subprincipal term ∂E ·∇v∂2m−1f

that involves 2m derivatives of f and thus cannot be controlled by N 2m,2r(t, f) uniformly
in ε. As already said before, we could try to use more complicated variable coefficients
vector fields designed to kill this commutator term. But since these vector fields have to
depend on x they would not commute anymore with the free transport operator v · ∇x and
thus we would recreate others bad subprincipal commutators. This heuristics motivates the
analysis of this section. It turns out that the following second order operators (and their
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composition) are relevant since they have good commutation properties with the transport
operator T (recall (3.7)).

L 4.1. – Let (ϕi,jk,l, ψ
i,j
k,l)i,j,k,l∈{1,...,d} be smooth solutions of the system:

(4.1)


T ϕi,jk,l = ψi,jk,l + ψi,jl,k −

∑
1≤k′,l′≤d

ϕi,jk′,l′ϕ
k′,l′

k,l + δk,j∂xiEl + δk,i∂xjEl,

T ψi,jk,l = −
∑

1≤k′,l′≤d

ϕi,jk′,l′ψ
k′,l′

k,l + ϕi,jk,l∂xkEk,

where δ denotes the Kronecker function. We assume that for all k, l, the matrices (ϕi,jk,l)1≤i,j≤d

and (ψi,jk,l)1≤i,j≤d are symmetric. Introduce the second order operators

(4.2) Li,j := ∂xixj +
∑

1≤k,l≤d

(
ϕi,jk,l∂xk∂vl + ψi,jk,l∂vkvl

)
, i, j ∈ {1, . . . , d}.

Then for all smooth functions f , we have the formula

(4.3) Li,j T (f) = T Li,j(f) + ∂xixjE · ∇vf +
∑
k,l

ϕi,jk,lLk,lf.

Proof of Lemma 4.1. – We have by direct computations

∂xixj ( T f) = T (∂xixjf) + ∂xixjE · ∇vf + ∂xiE · ∇v∂xjf + ∂xjE · ∇v∂xif,

ϕi,jk,l∂xk∂vl( T f) = T (ϕi,jk,l∂xk∂vlf) + ϕi,jk,l (∂xkxlf + ∂xkE · ∇v∂vlf)− T (ϕi,jk,l)∂xk∂vlf,

ψi,jk,l∂vkvl( T f) = T (ψi,jk,l∂vkvlf) + ψi,jk,l(∂vk∂xlf + ∂vl∂xkf)− T (ψi,jk,l)∂vkvlf.

We can rewrite

ϕi,jk,l∂xkxlf = ϕi,jk,l

Lk,lf −∑
k′,l′

(
ϕk,lk′,l′∂xk′∂vl′ + ψk,lk′,l′∂vk′vl′

)
f

 ,

which entails that

Li,j T (f) = T Li,j(f) + ∂xixjE · ∇vf +
∑
k,l

ϕi,jk,lLk,lf

+
∑
k,l

∂xk∂vlf

− T ϕi,jk,l + ψi,jk,l + ψi,jl,k −
∑
k′,l′

ϕi,jk′,l′ϕ
k′,l′

k,l + δk,j∂xiEl + δk,i∂xjEl


+
∑
k,l

∂vkvlf

− T ψi,jk,l −
∑
k′,l′

ϕi,jk′,l′ψ
k′,l′

k,l + ϕi,jk,l∂xkEk

 .
We therefore deduce (4.3), because of (4.1).

We shall now study the Sobolev regularity of the solution of the constraint equations (4.1).

L 4.2. – Assume 2m > 2 +d and 2r > d. There exists T0 = T0(R) > 0 independent
of ε such that for everyT < min(T0, T

ε), there exists a unique solution (ϕi,jk,l, ψ
i,j
k,l)i,j,k,l on [0, T ]

of (4.1) satisfying
ϕi,jk,l|t=0

= ψi,jk,l|t=0
= 0.

4 e SÉRIE – TOME 49 – 2016 – No 6



QUASINEUTRAL LIMIT FOR VLASOV-POISSON WITH PENROSE STABLE DATA 1459

Moreover, we have the estimates

sup
[0,T ]

sup
i,j,k,l

‖(ϕi,jk,l, ψ
i,j
k,l)‖Wp,∞

x,v
≤ T 1

2 Λ(T,R), p < 2m− d/2− 2,(4.4)

sup
[0,T ]

sup
i,j,k,l

‖(ϕi,jk,l, ψ
i,j
k,l)‖ H 2m−2

−r
≤ T 1

2 Λ(T,R).(4.5)

Finally, for all k, l, the matrices (ϕi,jk,l)1≤i,j≤d and (ψi,jk,l)1≤i,j≤d are symmetric.

Proof of Lemma 4.2. – System (4.1) is a system of semi-linear transport equations that
is coupled only via a zero order term. The existence and uniqueness of a smooth solution
can be obtained by a standard fixed point argument and thus we shall only focus on a priori
estimates. Note that the symmetry of the matrices (ϕi,jk,l)1≤i,j≤d and (ψi,jk,l)1≤i,j≤d for all k, l
is a consequence of the uniqueness of the solution.

Let us set

Mp(T ) = sup
[0,T ]

sup
i,j,k,l

‖(ϕi,jk,l(t), ψ
i,j
k,l(t))‖Wp,∞

x,v
.

We first apply ∂αx ∂
β
v for |α|+ |β| ≤ p to (4.1) and use again the commutation Formula (3.8).

By using the maximum principle for the transport operator T , we get that

Mp(T ) . T (1 +Mp(T ))Mp(T ) + (1 +Mp(T ))

∫ T

0

‖∇E‖Wp,∞ dt.

By Sobolev embedding and (3.12), we obtain∫ T

0

‖∇E‖Wp,∞ dt .
∫ T

0

‖E‖H2m−1 dt . T
1
2R

since 1 + p+ d
2 < 2m− 1 and hence we find

Mp(T ) . T
1
2R+ (T + T

1
2R)Mp(T ) +Mp(T )2.

Consequently, there exists γ0 > 0 independent of ε but sufficiently small such that for every

T ≤ T0 satisfying (T0 + T
1
2
0 R) ≤ γ0, we get the estimate

Mp(T ) ≤ T 1
2R.

For the estimate (4.5), we apply ∂αx ∂
β
v with |α|+|β| ≤ 2m−2 to the system (4.1), we use the

commutation Formula (3.8) with the transport operator, multiply by the weight (1 + |v|2)−r

and take the scalar product by ∂αx ∂
β
v (ϕi,jk,l, ψ

i,j
k,l) as usual. Let us set

Q2m−2(t) =

∑
i,j,k,l

‖(ϕi,jk,l, ψ
i,j
k,l)(t)‖

2
H 2m−2
−r

 1
2

.

By using

– the product estimate (3.1) with s = 2m− 2, k = s/2 = m− 1, to handle the quadratic
terms in the right hand side,

– the commutator estimate (3.3) with s = 2m− 2, s0 = 2m− 1 (> 1 + d), to handle the
commutators with E,
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we obtain for t ∈ [0, T ], T < min(T0, T
ε) that

d

dt
‖(ϕi,jk,l, ψ

i,j
k,l)‖

2
H 2m−2
−r

. (1 +Mm−1(T ) + sup
[0,T ]

‖E‖H2m−1)Q2m−2(t)2

+

∥∥∥∥ 1

(1 + |v|2)
r
2
E

∥∥∥∥
H2m−1
x,v

‖(ϕi,jk,l, ψ
i,j
k,l)‖ H 2m−2

−r
.

Note that since 2r > d, we have that∥∥∥∥ 1

(1 + |v|2)
r
2
E

∥∥∥∥
H2m−1
x,v

. ‖E‖H2m−1
x

.

Consequently, we can sum over i, j, k, l, and use (3.12) and the estimate (4.4) (since
m− 1 < 2m− d

2 − 2 is equivalent to 2m > 2 + d), to obtain that

d

dt
Q2m−2(t) . (1 + T

1
2 Λ(T,R))Q2m−2(t) + ‖ρ‖H2m .

The estimate (4.5) thus follows from the Gronwall inequality and Cauchy-Schwarz.

We now study the effect of composing Li,j operators. In the rest of this paper, we shall use
upper case letters (like I, J) for multi-indices in {1, . . . , d}m, as opposed to lower case letters
(like i, j) for indices in {1, . . . , d}.

L 4.3. – Assume 2m > 3 + d and 2r > d. For I = (i1, . . . , im), J = (j1, . . . , jm) ∈
{1, . . . , d}m, define

(4.6) fI,J = L(I,J)f := Li1,j1 · · ·Lim,jmf.

For every T < min(T0, T
ε), we first have that for I, J ∈ {1, . . . , d}m

(4.7)
∫
Rd
fI,J dv =

∫
Rd
∂α(I,J)
x f dv + R = ∂α(I,J)

x ρ+ R,

with α(I, J) = (αk(I, J))1≤k≤d, αk(I, J) being equal to the number of occurrences of k in the
set {i1, . . . , im, j1, . . . , jm} and R is a remainder satisfying

(4.8) ‖R‖L∞((0,T ),L2
x)

. Λ(T,R).

Moreover, for f satisfying (1.1), we have that fI,J solves

(4.9) T (fI,J) + ∂α(I,J)
x E · ∇vf + MI,J F = FI,J ,

where

(4.10) F := (fI,J)I,J∈{1,...,d}m , MI,J F :=

m∑
k=1

∑
1≤k′,l′≤d

ϕik,jkk′,l′ fIk→k′ ,Jk→l′ ,

where Is→t denotes the element of {1, . . . , d}m which is equal to I except for its s-th element
which is equal to t and F = (FI,J) is a remainder satisfying

(4.11) ‖F‖L2((0,T ), H 0
r)
≤ Λ(T,R), ∀T < min(T0, T

ε).
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Proof of Lemma 4.3. – At first, we can expand fI,J = Li1,j1 · · ·Lim,jmf in a more
tractable form. Let us set U = (ϕ

iα,jβ
k,l , ψ

iα,jβ
k,l )1≤k,l≤d, 1≤α,β≤m. Then, we can write

fI,J = ∂α(I,J)
x f +

2m−2∑
s=0

∑
e, α, k0··· ,ks

P k0s,e,α(U)P k1s,e,α(∂U) · · ·P kss,e,α(∂sU)∂ev∂
αf(4.12)

=: ∂α(I,J)
x f +

2m−2∑
s=0

∑
e, α, k0···ks

Rk0,···kss,e,α ,

where the sum is taken on indices such that

(4.13) |e| = 1, |α| = 2m− 1− s, k0 + k1 + · · · ks ≤ m, k0 ≥ 1, k1 + 2k2 + · · · sks = s,

and for all 0 ≤ p ≤ s, P kps,e,α(X) is a polynomial of degree smaller than kp (we denote
by ∂kU the vector made of all the partial derivatives of length k of all components of U ).
The existence of an expansion under this form can be easily proven by induction. We can set

R =

∫
Rd

2m−2∑
s=0

∑
e, α, k0,...,ks

Rk0,...,kss,e,α dv,

so that we have to estimate
∫
Rd Rk0,...,kss,e,α dv. All the following estimates are uniform in time

for t ∈ [0, T ] with T ≤ min(T0, T
ε) but we do not mention the time parameter for notational

convenience.

Let us start with the case where Rk0,···kse,s,α contains the maximal number of derivatives
applied to f that is to say when |α| = 2m−1 so that 2m derivatives of f are involved. In this
case, we have s = 0 and hence∫

Rd
Rk0e,0,α dv =

∫
Rd
P k0s,e,α(U)∂v∂

αf dv,

where k0 is less than m. We can thus integrate by parts in v to obtain that∥∥∥∥∫
Rd

Rk0e,0,α dv
∥∥∥∥
L2
x

. Λ(‖U‖W 1,∞
x,v

)

∥∥∥∥∫
Rd
|∂αf | dv

∥∥∥∥
L2
x

. Λ(‖U‖W 1,∞
x,v

)‖f‖ H 2m−1
r

.

Consequently, by using (4.4) (since by assumption onm, we have 1 < 2m−2− d
2 ) and (3.10)

(since 2r > d), we obtain that on [0, T ],∥∥∥∥∫
Rd

Rk0e,0,α dv
∥∥∥∥
L2
x

≤ Λ(T,R).

It remains to estimate the terms for which s ≥ 1. Note that for all these terms the total
number of derivatives applied to f is at most 2m− 1.

When s < 2m− d
2 − 2, we can use (4.4) to obtain that

‖P k0s,e,α(U)P k1s,e,α(∂U) · · ·P kss,e,α(∂sU)‖L∞x,v ≤ Λ(T,R)

and hence we obtain as above that∥∥∥∥∫ Rk0,...,kse,s,α dv

∥∥∥∥
L2
x

≤ Λ(T,R)‖f‖ H 2m−1
r

≤ Λ(T,R).
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Let us now consider s ≥ 2m − 2 − d
2 . Let us start with the case where in the sequence

(k1, . . . , ks), the bigger index l such that kl 6= 0 and kp = 0 for every p > l is such that
l > s/2. In this case, since lkl ≤ s, we necessarily have kl = 1. Moreover, for the indices
p < l such that kp 6= 0, we must have p ≤ pkp < s/2. Thus, we can use (4.4) to estimate
‖∂pU‖L∞x,v provided s/2 ≤ 2m − d

2 − 2. Since s ≤ 2m − 2, this is verified thanks to the
assumption that 2m > 2 + d. We thus obtain that∥∥∥∥∫ Rk0,···kse,s,α dv

∥∥∥∥
L2
x

≤ Λ(T,R)

∥∥∥∥∫ ∂lU∂ev∂
αf dv

∥∥∥∥
L2
x

.

Next, we can use that∥∥∥∥∫ ∂lU∂ev∂
αf

∥∥∥∥
L2
x

.

∥∥∥∥‖ 1

(1 + |v|2)
r
2
∂lU‖L2

v
‖(1 + |v|2)

r
2 ∂ev∂

αf‖L2
v

∥∥∥∥
L2
x

. ‖U‖ H 2m−2
−r

sup
x
‖(1 + |v|2)

r
2 ∂ev∂

αf‖L2
v
.

By Sobolev embedding in x, we have

sup
x
‖(1 + |v|2)

r
2 ∂ev∂

αf‖L2
v
. ‖f‖ H 2m−1

r

as soon as 2m − 1 > 1 + |α| + d
2 = 1 + 2m − 1 − s + d

2 which is equivalent to s > 1 + d
2 .

Since we are in the case where s ≥ 2m− 2− d
2 , the condition is matched since 2m > 3 + d.

Consequently, by using (3.10) and (4.5), we obtain again that∥∥∥∥∫ Rk0,···kse,s,α dv

∥∥∥∥
L2
x

. Λ(T,R).

Finally, it remains to handle the case where kl = 0 for every l > s/2. Due to the assumption
that 2m > 3+d, we have by the same argument as above that since s ≤ 2m−2, we necessarily
have s

2 < 2m− d
2 − 2 and hence by using again (4.4) we find

‖∂lU‖L∞x,v ≤ Λ(T,R), l ≤ s/2.

We deduce ∥∥∥∥∫ Rk0,···kse,s,α dv

∥∥∥∥
L2
x

≤ Λ(T,R)‖f‖ H 2m−1
r

≤ Λ(T,R).

This ends the proof of (4.8).

To prove (4.9), (4.11), we applyL(I,J) to (1.1) and use the identity (4.3). We get form ≥ 2,
the expression for the source term FI,J

(4.14) FI,J = − (F1 + F2 + F3 + F4)
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where

F1 =

m−1∑
k=2

Li1,j1 · · ·Lim−k,jm−k((∂2
xim−k+1

,xjm−k+1
E) · ∇vLim−k+2,jm−k+2

· · ·Lim,jmf),

(4.15)

F2 = Li1,j1 · · ·Lim−1,jm−1

(
∂2
xim ,xjm

E · ∇vf
)
− ∂α(I,J)

x E · ∇vf,
(4.16)

F3 =

m−1∑
k=2

Li1,j1 · · ·Lim−k,jm−k

∑
k′,l′

ϕ
im−k+1,jm−k+1

k′,l′ Lk′,l′Lim−k+2,jm−k+2
· · ·Lim,jmf


(4.17)

−
m−1∑
k=2

∑
k′,l′

ϕ
im−k+1,jm−k+1

k′,l′ L(Im−k+1→k′ ,Jm−k+1→l′ )f,

F4 = Li1,j1 · · ·Lim−1,jm−1

∑
k,l

ϕim,jmk,l Lk,lf

−∑
k,l

ϕim,jmk,l L(Im→k,Jm→l).

(4.18)

Estimate of F1. – We shall first study the estimate for F1. We have to estimate terms under
the form

(4.19) F1,k = Lm−kGk, Gk = ∂2E · ∇vLk−1

where we use the notationLn for the composition of n Li,j operators (the exact combination
of the operators involved in the composition does not matter). Note that as in (4.12), we can
develop Ln under the form

(4.20) Ln = ∂αnx +

2n−2∑
s=0

∑
e, α, k0···ks

P k0s,e,α(U)P k1s,e,α(∂U) · · ·P kss,e,α(∂sU)∂ev∂
α,

where for all 0 ≤ p ≤ s, P kps,e,α(X) is a polynomial of degree smaller than kp, the multi-
index αn has length 2n and the sum is taken on indices such that

(4.21) |e| = 1, |α| = 2n− 1− s, k0 + k1 + · · · ks ≤ n, k0 ≥ 1, k1 + 2k2 + · · · sks = s.

Let us first establish a general useful estimate. We set for any function G(x, v),

(4.22) Jp(G)(x, v) =
∑

s, β,K∈E

Jp,s,β,K(G)

where K = (k0, . . . , ks) and

Jp,s,β,K(G)(x, v) = P k0s,β(U)P k1s,β(∂U) · · ·P kss,β(∂sU)∂βG

where for all 0 ≤ p ≤ s, P kps,β(X) is a polynomial of degree smaller than kp and the sum is
taken over indices belonging to the set E defined by

(4.23) |β| = p− s, k0 + k1 + · · · ks ≤ p/2, k1 + 2k2 + · · · sks = s, 0 ≤ s ≤ p− 2.
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L 4.4. – For 2m− 1 ≥ p ≥ 1, 2m > d+ 3, 2r > d and s, p, K satisfying (4.23), we
have the estimate

(4.24) ‖Jp(G)‖ H 0
r
≤ Λ(T,R)

(
‖G‖ H pr +

∑
l≥2m− d2−2,
l+|α|≤p, |α|≥2

‖∂lU∂αG‖ H 0
r

)
.

Proof of Lemma 4.4. – For the terms in the sum such that s < 2m − d
2 − 2, we can use

(4.4) to obtain that

‖Jp,s,β,K(G)‖ H 0
r
≤ Λ(T,R)‖G‖ H pr .

When s ≥ 2m− d
2 − 2, we first consider the terms for which in the sequence (k1, . . . , ks) the

biggest index l for which kl 6= 0 is such that l < 2m− d
2 − 2. Then again thanks to (4.4), we

obtain that

‖Jp,s,β,K(G)‖ H 0
r
≤ Λ(T,R)‖G‖ H pr .

When l ≥ 2m − d
2 − 2, we first observe that we necessarily have kl = 1. Indeed if kl ≥ 2,

because of (4.23), we must have l ≤ s
2 . This is possible only if 2m− d

2−2 ≤ p−2
2 ≤

2m−3
2 that

is to say m ≤ d
2 + 1 and hence this is impossible. Consequently kl = 1. Moreover we note

that for the other indices l̃ for which kl̃ 6= 0, because of (4.23), we must have l̃kl̃ ≤ s − lkl,
so that

l̃ ≤ s− l ≤ s− 2m+
d

2
+ 2 ≤ d

2
− 1

and we observe that d2 − 1 < 2m− d
2 − 2. Consequently, by another use of (4.4), we obtain

that

‖Jp,s,β,K(G)‖ H 0
r
≤ Λ(T,R)

∑
l≥2m− d2−2,
l+|α|≤p, |α|≥2

‖∂lU∂αG‖ H 0
r
.

The fact that |α| ≥ 2 comes from (4.23). This ends the proof of Lemma 4.4.

We shall now estimate F1,k. Let us start with the case where k ≥ m/2. Looking at
the expansion of Lm−k given by (4.20), we have to estimate terms under the form J2p(Gk)

for 2p ≤ 2(m−k) ≤ m. We can thus use Lemma 4.4. Moreover, we observe that in the right
hand side of (4.24), we have that l ≤ 2(m − k) − 2 ≤ m − 2, consequently, by assumption
onm, we have l < 2m− d

2−2 and hence we can estimate ‖∂lU‖L∞ by using (4.4). This yields

‖F1,k‖ ≤ Λ(T,R)‖Gk‖ H 2(m−k)
r

, k ≥ m/2.

Next, we use (3.2) with s = 2(m − k) and s0 = 2m − 3 (> d), and the definition of Gk in
(4.19) to estimate the above right hand side. Since d+ 2 < 2m− 1 by assumption on m and
2(m− k) + 2 ≤ 2m− 1 (since k ≥ 2), we obtain

‖F1,k‖ H 0
r
≤ Λ(T,R)

(
‖E‖H2m−1‖∇vLk−1f‖ H 2(m−k)

r
+ ‖E‖H2(m−k)+2‖∇vLk−1f‖ H 2(m−k)

r

)(4.25)

≤ Λ(T,R)‖E‖H2m−1‖∇vLk−1f‖ H 2(m−k)
r

.

By using again (3.12), this yields

‖F1,k‖L2([0,T ], H 0
r)
≤ Λ(T,R)‖∇vLk−1f‖

L∞([0,T ], H 2(m−k)
r )

.
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To estimate the above right hand side, we need to estimate ∂γx,vL
k−1f with |γ| ≤ 2m−2k+1.

By taking derivatives using the expression (4.20), we see that we have to estimate terms under
the form Jp(f) with p ≤ 2m− 1. Using Lemma 4.4, we thus obtain that

‖F1,k‖L2([0,T ], H 0
r)

≤ Λ(T,R)
(
‖f‖L∞([0,T ], H 2m−1

r ) +
∑

l≥2m− d2−2,
l+|α|≤2m−1, |α|≥2

‖∂lU∂αf‖L∞([0,T ], H 0
r)

)
.

To estimate the right hand side, since |α| ≥ 2 and |α| − 2 + l ≤ 2m− 3, we can use (3.4), to
obtain that

‖∂lU(1 + |v|2)
r
2 ∂αf‖L2

x,v
. ‖U‖ H 2m−3

−r
‖(1 + |v|2)r∂2f‖L∞ + ‖U‖L∞‖f‖ H 2m−1

2r
.

By using again (4.5), (4.4) and the Sobolev embedding, we finally obtain that

(4.26) ‖F1,k‖L2([0,T ], H 0
r)
≤ Λ(T,R)‖f‖L∞([0,T ], H 2m−1

2r ) ≤ Λ(T,R), k ≥ m/2.

It remains to handle the case k ≤ m/2. Again, by using (4.19) and the expansion (4.20),
we first have to estimate terms under the form J2(m−k)(Gk). By using again Lemma 4.4, we
first obtain

‖F1,k‖L2([0,T ], H 0
r)

≤ Λ(T,R)
(
‖Gk‖L2([0,T ], H 2(m−k)

r )
+

∑
l≥2m− d2−2,

l+|α|≤2(m−k), |α|≥2

‖∂lU∂αGk‖L2([0,T ], H 0
r)

)
.

By using the expression in (4.19) for Gk, we have to estimate terms under the form

‖∂lU∂β∂2E ∂γ∇vLk−1f‖ H 0
r

with l ≥ 2m − d
2 − 2 and l + |β| + |γ| ≤ 2(m − k). Note that this implies that

|β| ≤ 2(m − k) − l ≤ d
2 + 2 − 2k ≤ d

2 − 2 since we have k ≥ 2 (see (4.15)). In particular
this yields |β|+ 2 + d

2 < 2m− 2 and thus by using again the Sobolev embedding (in x) and
(3.12) we obtain that

‖∂lU∂β∂2E∂γ∇vLk−1f‖ H 0
r
. ‖ρ‖H2m−1‖∂lU∂γ∇vLk−1f‖ H 0

r

. ‖f‖ H 2m−1
r
‖∂lU∂γ∇vLk−1f‖ H 0

r

≤ Λ(T,R)‖∂lU∂γ∇vLk−1f‖ H 0
r
.

Thus it remains to estimate ‖∂lU∂γ∇vLk−1f‖ H 0
r

for l ≥ 2m− d2−2 and l+|γ| ≤ 2(m−k).By
using again (4.20), we can expand ∂γ∇vLk−1f as an expression under the form J2k+|γ|−1(f).
Since we have that 2k+ |γ| − 1 ≤ 1 + d

2 < 2m− d
2 − 2, we can use (4.4) again to estimate all

the terms involving U and its derivatives in in L∞, this yields

‖∂lU∂γ∇vLk−1f‖ H 0
r
≤ Λ(T,R)

∑
γ̃

‖∂lU∂γ̃f‖ H 0
r

with |γ̃| ≤ |γ|+ 2k − 1 and thus l + |γ̃| ≤ 2m− 1 and |γ̃| ≥ 2 (since k ≥ 2). Consequently,
by using again (3.4), we obtain that

‖∂lU∂γ∇vLk−1f‖ H 0
r
≤ Λ(T,R)

(
‖U‖L∞‖f‖ H 2m−1

2r
+ ‖(1 + |v|2)r∂2f‖L∞x,v‖U‖ H 2m−3

−r

)
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and we conclude finally by using (4.4), (4.5) and the Sobolev embedding that

(4.27) ‖F1,k‖L2([0,T ], H 0
r)
≤ Λ(T,R), k ≤ m/2

(actually for this case we even have a slightly better L∞ in time estimate). Looking at (4.26),
(4.27), we have thus proven that

(4.28) ‖F1‖L2([0,T ], H 0
r)
≤ Λ(T,R).

Estimate of F2. – We shall now turn to the study ofF2. By using (4.20) again, we can expand
F2 under the form

F2 = C +
∑
|e|=1

J2m−3(∂ev(∂2E · ∇vf)),

where J2m−3 was defined in (4.22) and with

C = ∂α(Ĩ,J̃)
x

(
∂2
xim ,xjm

E · ∇vf
)
− ∂α(I,J)

x E · ∇vf = [∂α(Ĩ,J̃)
x ,∇vf ] · ∂2

xim ,xjm
E

where Ĩ = (i1, . . . , im−1), J̃ = (j1, . . . , jm−1) and thus α(Ĩ , J̃) has length 2m− 2. Note that
this time, we have really used that in the expansion (4.20), the terms in the sum always involve
at least one v derivative. By using Lemma 4.4, we get that

‖J2m−3(∂ev(∂2E · ∇vf))‖ H 0
r
≤ Λ(T,R)

(
‖∂ev(∂2E · ∇vf)‖ H 2m−3

r

+
∑

l≥2m− d2−2,
l+|α|≤2m−3, |α|≥2

‖∂lU∂α∂ev(∂2E · ∇vf)‖ H 0
r

)
.

To estimate the first term, we can use (3.2) and (3.12) to obtain that

‖∂v(∂2E · ∇vf)‖ H 2m−3
r

≤ ‖∂2E · ∂2
vf‖ H 2m−3

r
. ‖E‖H2m−1‖f‖ H 2m−1

r

and hence we can take the L2 norm in time and use (3.12) to obtain that

(4.29) ‖∂v(∂2E · ∇vf)‖L2([0,T ], H 2m−3
r ) ≤ Λ(T,R).

To estimate the terms in the sum, we use again (3.4), (4.4) and the Sobolev embedding to
write

‖∂lU∂α∂v(∂2E · ∇vf)‖ H 0
r

. ‖U‖L∞‖∂v(∂2E · ∇vf)‖ H 2m−3
2r

+ ‖(1 + |v|2)r∂2E∂2
vf‖L∞x,v‖U‖ H 2m−3

−r

≤ Λ(T,R)‖∂v(∂2E · ∇vf)‖ H 2m−3
2r

+ Λ(T,R)‖∂2E‖L∞ .

Therefore, we get from (3.12) and the Sobolev embedding in x a bound by

(1 + ‖∂v(∂2E · ∇vf)‖L2([0,T ], H 2m−3
2r ))Λ(T,R).

By using (4.29) (which is still true with r changed into 2r), we finally obtain that

(4.30) ‖J2m−3(∂v(∂
2E · ∇vf))‖L2([0,T ], H 0

r)
≤ Λ(T,R).

It remains to estimate C . By expanding the commutator, we have to estimate terms of the
form ‖(1+|v|2)

r
2 ∂βx∇vf ·∂γx∂2E‖L2

x,v
with |β|+|γ| ≤ 2m−2, β 6= 0. If |γ|+2+ d

2 < 2m−1,
by using Sobolev embedding in x and (3.12), we obtain

‖(1 + |v|2)
r
2 ∂βx∇vf · ∂γx∂2E‖L2([0,T ],L2

x,v)
≤ Λ(T,R)‖f‖L∞([0,T ], H 2m−1

r ) ≤ Λ(T,R).
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Otherwise, since |β|+ 1 + d
2 ≤ 2 + d < 2m− 1 and |γ|+ 2 ≤ 2m− 1, we get that

‖(1 + |v|2)
r
2 ∂βx∇vf · ∂γx∂2E‖L2([0,T ],L2

x,v)

≤ sup
[0,T ]

sup
x

(∫
Rd
|(1 + |v|2)

r
2 ∂βx∇vf |2 dv

) 1
2 ‖E‖L2([0,T ],H2m−1

x )

≤ Λ(T,R).

We have thus obtained that
‖ C‖L2([0,T ], H 0

r)
≤ Λ(T,R).

By collecting the last estimate and (4.30), we actually get that

(4.31) ‖F2‖L2([0,T ], H 0
r)
≤ Λ(T,R).

This ends the proof of (4.11).

Estimate of F3 and F4. – By using similar arguments, we also obtain that

(4.32) ‖F3‖L2([0,T ], H 0
r)

+ ‖F4‖L2([0,T ], H 0
r)
≤ Λ(T,R).

4.2. Straightening the transport vector field

We shall now study the Equation (4.9) and try to get an estimate of
∫
Rd fI,J dv which,

in view of (4.7), can be used to estimate ∂2m
x ρ. The next step consists in using a change of

variables in order to straighten the transport vector field and more precisely to come down
from the full transport operator T to a twisted free transport operator of the form

∂t + Φ(t, x, v) · ∇x.

This is the purpose of the following lemma.

L 4.5. – Let fI,J be a function satisfying the Equation (4.9). Consider Φ(t, x, v) a
smooth solution to the Burgers equation

(4.33) ∂tΦ + Φ · ∇xΦ = E,

such that the Jacobian matrix (∇vΦ) is invertible. Then defining

(4.34) gI,J(t, x, v) := fI,J(t, x,Φ),

we obtain that gI,J satisfies the equation

(4.35) ∂tgI,J + Φ · ∇xgI,J + ∂α(I,J)
x E · (∇vf)(t, x,Φ) + MI,J(t, x,Φ) G = FI,J(t, x,Φ),

where G = ( GI,J)I,J , α(I, J) are defined in the statement of Lemma 4.3 and MI,J , FI,J are
defined in (4.9).

Proof of Lemma 4.5. – This follows from a direct computation. Using the Equa-
tions (4.9) and (4.33), we can check that

∂tgI,J + Φ · ∇xgI,J + ∂α(I,J)
x E · (∇vf)(t, x,Φ) + MI,J(t, x,Φ) G

= FI,J(t, x,Φ) + t(∇vΦ)−1∇vgI,J · (∂tΦ + Φ · ∇xΦ− E) .

This yields (4.35), because of (4.33).
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We shall now establish Sobolev estimates for the solutions of the Burgers Equation (4.33).
Choosing the initial condition Φ|t=0 = v, we will obtain a control on the deviation from v in
Sobolev norms and in particular, observe that Φ(t, x, v) remains close to v for small enough
times.

L 4.6. – Assuming that 2m > 3 + d, there exists T̃0 = T̃0(R) > 0 independent of ε
such that for every T < min(T0, T̃0, T

ε), there is a unique smooth solution on [0, T ] of (4.33)
together with the initial condition Φ|t=0 = v.

Moreover, we have the following uniform estimates for every T < min(T0, T̃0, T
ε)

(4.36)

sup
[0,T ]

‖Φ− v‖Wk,∞
x,v

+ sup
[0,T ]

∥∥∥∥ 1

(1 + |v|2)
1
2

∂tΦ

∥∥∥∥
Wk−1,∞
x,v

≤ T 1
2 Λ(T,R), k < 2m− d/2− 1.

Furthermore, we also have that for every |α| ≤ 2m− 1 and |β| ≤ 2m− 2,

(4.37) sup
[0,T ]

sup
v
‖∂αx,v(Φ− v)‖L2

x
+ sup

[0,T ]

sup
v

∥∥∥∥ 1

(1 + |v|2)
1
2

∂βx,v∂tΦ

∥∥∥∥
L2
x

≤ T 1
2 Λ(T,R).

Proof of Lemma 4.6. – Let us set φ = Φ− v. We observe that φ solves

∂tφ+ (v + φ) · ∇xφ = E

with zero initial data. For any α ∈ N2d, applying ∂α to the equation, we get that ∂αφ = ∂αx,vφ

satisfies

∂t∂
αφ+ v · ∇x∂αφ+ φ · ∇x∂αφ = ∂αE −

[ ∑
β+γ≤α
γ 6=α

cβ,γ∂
βφ · ∇x∂γφ

]
− [∂α, v] · ∇xφ.

(4.38)

Let us setMk(T ) = sup[0,T ] ‖φ‖Wk,∞
x,v

. Using L∞ estimates for the transport operator, we
obtain from (4.38) that

Mk(T ) . T (1 +Mk(T ))Mk(T ) +

∫ T

0

‖E‖Wk,∞ dt.

Since k + d
2 < 2m− 1, we get by Sobolev embedding in the x variable and (3.12) that

Mk(T ) . T (1 +Mk(T ))Mk(T ) + T
1
2R.

Consequently, for T̃0 sufficiently small depending only on R, we obtain that

Mk(T ) ≤ T 1
2 Λ(T,R).

This proves the first part of (4.36). For the estimate on the time derivative, it suffices to use
the Equation (4.33) and the estimate we have just obtained.

It remains to prove (4.37). We proceed by energy estimates. Using (4.38) for |α| ≤ 2m−1,
multiplying by ∂αφ and integrating in x, we obtain from a standard energy estimate (v being
only a parameter for the moment)

d

dt
‖∂αφ‖L2

x
. (1 + ‖∂xφ‖L∞x )

∑
|α|≤2m−1

‖∂αφ‖L2
x

+ ‖E‖H2m−1 + ‖ C‖L2
x
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where C is the commutator term

C =
[ ∑
β+γ≤α
γ 6=α

cβ,γ∂
βφ · ∇x∂γφ

]
.

Let us set

Q2m−1(T, φ) = sup
[0,T ]

sup
v

( ∑
|α|≤2m−1

‖∂αφ‖L2
x

)
.

We can then integrate in time and take the sup in time and v to obtain that

Q2m−1(T, φ)

. Q2m−1(T, φ)

(
T +

∫ T

0

‖∂xφ‖L∞x,vdt

)
+

∫ T

0

‖ C‖L∞v L2
x
dt+ T

1
2 ‖ρ‖L2([0,T ],H2m)

where the last term comes from another use of (3.12). From (4.36), we already have that

‖∂xφ‖L∞x,v ≤ T
1
2 Λ(T,R),

thus it only remains to estimate the commutator term C . For the terms in the sum such that
|β| < 2m− d

2 − 1, we can use (4.36) and the fact that |γ| < |α| to obtain that

‖∂βφ · ∇∂γφ‖L∞v L2
x
. T

1
2 Λ(T,R)Q2m−1(T, φ).

In a similar way, when |β| ≥ 2m − d
2 − 1, we observe that 1 + |γ| ≤ d

2 < 2m − d
2 − 1

consequently, by using again (4.36), we also obtain that

‖∂βφ · ∇∂γφ‖L∞v L2
x
. T

1
2 Λ(T,R)Q2m−1(T, φ).

This yields

‖ C‖L∞v L2
x
. T

1
2 Λ(T,R)Q2m−1(T, φ)

and hence that

Q2m−1(T, φ) . (T + T
3
2 Λ(T,R))Q2m−1(T, φ) + T

1
2R.

By taking T̃0 small enough (depending on R only), we finally obtain that

Q2m−1(T, φ) . T
1
2 Λ(T,R)

and hence the first part of (4.37) is proven. Again the estimate on the time derivative follows
by using the Equation (4.33) and the previous estimates.

By a change of variable, we can then easily relate the average in v of fI,J to a weighted
average of gI,J and therefore we obtain, using (4.7):

L 4.7. – We have

(4.39)
∫
Rd
gI,JJ dv = ∂α(I,J)

x ρ+ R,

where J(t, x, v) := |det∇vΦ(t, x, v)| and R still satisfies the estimate (4.8).
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5. Proof of Theorem 1.1: estimate of ‖ρ‖L2([0,t],H2m)

by using the Penrose stability condition

Following the reduction of the previous section (from which we keep the same notations),
we shall now study the system of equations

(5.1) ∂tgI,J + Φ · ∇xgI,J + ∂α(I,J)
x E · (∇vf)(t, x,Φ) + MI,J(t, x,Φ) G = SI,J ,

with G = (gI,J) and SI,J(t, x, v) = FI,J(t, x,Φ(t, x, v)). Note that the equations of this
system are coupled only through the zero order terms MI,J(t, x,Φ) G.

Let us introduce the characteristic flow X(t, s, x, v), 0 ≤ s, t ≤ T

(5.2) ∂tX(t, s, x, v) = Φ(t,X(t, s, x, v), v), X(s, s, x, v) = x.

Note that the velocity variable is only a parameter in this ODE.

We start with estimating the deviation from free transport (that corresponds to the case
Φ = v).

L 5.1. – For every t, s, 0 ≤ s ≤ t ≤ T and T, m, r as in Lemma 4.6, we can write

(5.3) X(t, s, x, v) = x+ (t− s)
(
v + X̃(t, s, x, v)

)
with X̃ that satisfies the estimate
(5.4)

sup
t,s∈[0,T ]

(
‖∂αx,vX̃(t, s, x, v)‖L∞x,v +

∥∥∥∥ 1

(1 + |v|2)
1
2

∂βx,v∂tX̃(t, s, x, v)

∥∥∥∥
L∞x,v

)
≤ T 1

2 Λ(T,R),

for every |α| < 2m− d/2− 1, |β| < 2m− d/2− 2.

Moreover, there exists T̂0(R) > 0 sufficiently small such that for every T ≤ min(T0, T̃0, T̂0, T
ε),

we have that x 7→ x+ (t− s)X̃(t, s, x, v) is a diffeomorphism and that

(5.5)
sup

t,s∈[0,T ]

sup
v

(
‖∂αx,vX̃(t, s, x, v)‖L2

x
+

∥∥∥∥ 1

(1 + |v|2)
1
2

∂βx,v∂tX̃(t, s, x, v)

∥∥∥∥
L2
x

)
≤ T 1

2 Λ(T,R),

for every |α| ≤ 2m − 1, |β| ≤ 2m − 2. In addition, there exists Ψ(t, s, x, v) such that
for t, s ∈ [0, T ] and T ≤ min(T0, T̃0, T̂0, T

ε), we have

X(t, s, x,Ψ(t, s, x, v)) = x+ (t− s)v

and the following estimates

(5.6)

sup
t,s∈[0,T ]

(
‖∂αx,v(Ψ(t, s, x, v)− v)‖L∞x,v +

∥∥∥∥ 1

(1 + |v|2)
1
2

∂βx,v∂tΨ(t, s, x, v)

∥∥∥∥
L∞x,v

)
≤ T 1

2 Λ(T,R), |α| < 2m− d/2− 1, |β| < 2m− d

2
− 2

sup
t,s∈[0,T ]

sup
v

(
‖∂αx,v(Ψ(t, s, x, v)− v)‖L2

x
+

∥∥∥∥ 1

(1 + |v|2)
1
2

∂βx,v∂tΨ(t, s, x, v)

∥∥∥∥
L2
x

)
≤ T 1

2 Λ(T,R), |α| ≤ 2m− 1, |β| ≤ 2m− 2.
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Proof of Lemma 5.1. – Let us set φ = Φ − v as in the proof of Lemma 4.6 and
Y (t, s, x, v) = X(t, s, x, v)− x− (t− s)v. We shall first estimate Y . Since we have

(5.7) Y (t, s, x, v) =

∫ t

s

φ (τ, x+ (τ − s)v + Y (τ, s, x, v), v) dτ,

we deduce from the estimates of Lemma 4.6 that for |α| < 2m− d
2 − 1, we have for

0 ≤ s, t ≤ T ,

sup
|α|<2m− d2−1

‖∂αx,vY (t, s)‖L∞x,v ≤

∣∣∣∣∣
∫ t

s

T
1
2 Λ(T,R)

(
1 + sup

|α|<2m− d2−1

‖∂αx,vY (τ, s)‖L∞x,v
)
dτ

∣∣∣∣∣ .
From the Gronwall inequality, this yields

(5.8) sup
|α|<2m− d2−1

‖∂αx,vY (t, s)‖L∞x,v ≤ |t− s|T
1
2 Λ(T,R).

Consequently, we can set X̃(t, s, x, v) = Y (t, s, x, v)/(t − s) and deduce from the above
estimate that X̃ verifies the first part of (5.4). To estimate the time derivative, we go back to
(5.7). We use a Taylor expansion to write

φ
(
τ, x+ (τ − s)(v + X̃(τ, s, x, v)), v)

)
= φ(s, x, v) + (τ − s)

(
φ1(τ, s, x, v) + φ2(τ, s, x, v) · (v + X̃(τ, s, x, v))

)
where

(5.9)
φ1(τ, s, x, v) =

∫ 1

0

∂tφ((1− σ)s+ στ, x, v))dσ,

φ2(τ, s, x, v) =

∫ 1

0

Dxφ(τ, x+ σ(τ − s)(v + X̃(τ, s, x, v)), v) dσ.

By using (5.7), we thus obtain that

X̃(t, s, x, v) = φ(s, x, v) +
1

t− s

∫ t

s

(τ − s)Y1(τ, s, x, v) dτ

with

(5.10) Y1(τ, s, x, v) =
(
φ1(τ, s, x, v) + φ2(τ, s, x, v) · (v + X̃(τ, s, x, v))

)
dτ

and thus that

(5.11) ∂tX̃(t, s, x, v) = − 1

(t− s)2

∫ t

s

(τ − s)Y1(τ, s, x, v) dτ + Y1(t, s, x, v).

By using (5.8), (4.36) with the same arguments as above, we get that for |β| < 2m − d
2 − 2,

the following estimate holds:∥∥∥∥ 1

(1 + |v|2)
1
2

∂βx,vY1(τ, s, x, v)

∥∥∥∥
L∞x,v

≤ T 1
2 Λ(T,R).

This yields (5.4).

We now turn to the proof of the estimate (5.5). Note that from the estimate (5.8) on Y ,
we can also ensure that for T̂0 (that depends only on R) sufficiently small, the map
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x 7→ y = x + Y (t, s, x, v) is a diffeomorphism with Jacobian |det ∇xy| such that
1
2 ≤ |det ∇xy| ≤ 2.

We shall next prove the estimate (5.5). Let us set

M2m−1(t, s) = sup
v

sup
|α|≤2m−1

‖∂αx,vY (t, s)‖L2
x
.

It will be also convenient to introduce the function g(t, s, x, v) = (x+(t−s)v+Y (t, s, x, v), v)

so that φ(t, x+ (t− s)v + Y (t, s, x, v), v) = φ(t) ◦ g(t, s). From (5.7), we thus obtain that

‖∂αx,vY (t, s)‖L∞v L2
x

.
∫ t

s

∑
k,β1,...,βk

∥∥(Dk
x,vφ(τ)) ◦ g(τ, s) ·

(
∂β1
x,vg(τ, s), . . . , ∂βkx,vg(τ, s)

)∥∥
L∞v L

2
x

dτ

where the sum is taken on indices such that k ≤ |α| ≤ 2m− 1, β1 + · · ·+ βk = |α| with for
every j, |βj | ≥ 1 and |β1| ≤ |β2| ≤ · · · ≤ |βk|.

To estimate the right hand side, we first observe that in the sum, if k ≥ 2, we necessarily
have |βk−1| < 2m− d

2 − 1. Indeed, otherwise, there holds |β1|+ · · ·+ |βk| ≥ 4m− d− 2 and
thus 2m − 1 ≥ 4m − d − 2 which yields 2m ≤ d + 1 and thus is impossible by assumption
on m. Next,

– if k < 2m− d
2 −1 and k ≥ 2 we can write thanks to the above observation, Lemma 4.6

and (5.8) that∥∥(Dk
x,vφ(τ)) ◦ g(τ, s) ·

(
∂β1
x,vg(τ, s), . . . , ∂βkx,vg(τ, s)

)∥∥
L∞v L

2
x

≤ ‖Dkφ‖L∞x,v ‖∂
β1
x,vg(τ, s)‖L∞x,v · · · ‖∂

βk−1
x,v g(τ, s)‖L∞x,v‖∂

βkg(τ, s)‖L∞v L2
x

≤ T 1
2 Λ(T,R)(1 +M2m−1(τ, s)).

If k = 1, the above estimate is obviously still valid;
– if k > 2m− d

2 −1, we observe that for every j, |βj | ≤ |βk| ≤ 2m−1− (k−1) < 1+ d
2 .

Thus |βj | < 2m− d
2 − 1 by the assumption on m and we get by using (5.8) that

‖∂βjx,vg(τ, s)‖L∞x,v . 1 + T + ‖∂βjx,vY (τ, s)‖L∞x,v . Λ(T,R).

This yields∥∥∥(Dk
x,vφ(τ)) ◦ g(τ, s) ·

(
∂β1
x,vg(τ, s), . . . , ∂βkx,vg(τ, s)

) ∥∥∥
L∞v L

2
x

.
∥∥(Dk

x,vφ(τ)) ◦ g(τ, s)
∥∥
L∞v L

2
x

Λ(T,R)

. T
1
2 Λ(T,R).

To get the last estimate, we have used that thanks to the choice of T̂0, we can
use the change of variable y = x+ Y (t, s, x, v) when computing the L2

x norm of
(Dk

x,vφ(τ)) ◦ g(τ, s) and the estimates of Lemma 4.6.

By combining the above estimates, we obtain that

M2m−1(t, s) ≤ (t− s)T 1
2 Λ(T,R) +

∫ t

s

T
1
2 Λ(T,R)M2m−1(τ, s) dτ.

By using again the Gronwall inequality, we thus obtain that

M2m−1(t, s) ≤ (t− s)T 1
2 Λ(T,R)
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and thus by using that X̃(t, s, x, v) = Y (t, s, x, v)/(t−s), we finally obtain (5.5). To estimate
the time derivative, it suffices to combine the above arguments with the expression (5.11)
for ∂tX̃.

To construct Ψ, it suffices to notice that the map v 7→ v+ X̃(t, s, x, v) is for T sufficiently
small a Lipschitz small perturbation of the identity and hence an homeomorphism on Rd.
We can define Ψ as its inverse. The claimed regularity follows easily by using the same
composition estimates as above and the regularity of X̃.

Define now the tensor M by the formula ( MH)I,J = MI,JH for all I, J ∈ {1, . . . , d}m
(with MI,J defined in (4.10)) and for 0 ≤ s, t ≤ T , x ∈ Td, v ∈ Rd, introduce the operator
M(t, s, x, v) as the solution of

(5.12) ∂tM(t, s, x, v) = −M(t, x,Φ(t, x, v))M(t, s, x, v), M(s, s, x, v) = I.

Note that by a straightforward Gronwall type argument and (4.4)-(4.36), we have
(5.13)

sup
0≤s,t≤T

(
‖M‖Wk,∞

x,v
+ ‖∂tM‖Wk,∞

x,v
+ ‖∂sM‖Wk,∞

x,v

)
≤ Λ(T,R), k < 2m− d/2− 2.

We shall now show that the study of (5.1) can be reduced to that of a system of integral
equations with a well controlled remainder.

L 5.2. – For a smooth vector fieldG(t, s, x, v), define the following integral operators
KG acting on functions F (t, x):

KG(F )(t, x) =

∫ t

0

∫
(∇xF )(s, x− (t− s)v) ·G(t, s, x, v) dvds.

For f solving (1.1) and ρ =
∫
f dv, the function ∂α(I,J)

x ρ satisfies an equation under the form

(5.14) ∂α(I,J)
x ρ =

∑
K,L∈{1,...,d}m

KH(K,L), (I,J)
((I − ε2∆)−1∂α(K,L)

x ρ) + RI,J ,

with

H(K,L), (I,J) :=M(K,L), (I,J)(t, s, x− (t− s)v,Ψ(s, t, x, v))

× (∇vf)(s, x− (t− s)v,Φ(s, x− (t− s)v,Ψ(s, t, x, v))

× | det∇vΦ(t, x,Ψ(s, t, x, v))||det∇vΨ(s, t, x, v)|,

and the remainder RI,J satisfies for T < min(T0, T̃0, T̂0, T
ε) the estimate

(5.15) ‖RI,J‖L2([0,T ],L2
x)

. T
1
2 Λ(T,R).

Proof of Lemma 5.2. – Let us introduce for notational brevity

η(t, x, v) :=
(
∂α(I,J)
x E(t, x) · ∇vf(t, x,Φ(t, x, v))

)
I,J

.
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Using the classical characteristics method, we get that G satisfying (5.1) solves the integral
equation

G(t, x, v) =M(t, 0, x, v) G0(X(0, t, x, v), v)−
∫ t

0

M(t, s, x, v) S(s,X(s, t, x, v), v) ds

−
∫ t

0

M(t, s, x, v)η(s,X(s, t, x, v), v)ds

with G0 = (g0
I,J) and S = ( SI,J). Hence, after multiplying by J(t, x, v) = |det∇vΦ(t, x, v)|

and integrating in v, we get that
(5.16)∫

Rd
G(t, x, v)J(t, x, v)dv = I 0 + I F −

∫ t

0

M(t, s, x, v)η(s,X(s, t, x, v), v)J(t, x, v) dvds

with

I 0 :=

∫
Rd
M(t, 0, x, v) G0(X(0, t, x, v), v)J(t, x, v) dv,

I F := −
∫ t

0

∫
Rd
M(t, s, x, v) S(s,X(s, t, x, v), v)J(t, x, v) dvds.

We shall estimate I 0 and I F . First by using the estimates (5.13) and (4.36), it follows that
for all x ∈ Td,∣∣∣∣∫ M(t, 0, x, v) G0(X(0, t, x, v), v)J(t, x, v) dv

∣∣∣∣ ≤ Λ(T,R)
∑
I,J

∫
|g0
I,J(X(0, t, x, v), v)| dv.

Therefore, we obtain that

‖ I 0‖L2([0,T ],L2
x)
≤ Λ(T,R)

∑
I,J

∥∥∥∥∫
v

‖g0
I,J(X(0, t, ·, v), v)‖L2

x
dv

∥∥∥∥
L2(0,T )

.

By using the change of variable inx, y = X(0, t, x, v)+tv = x−tX̃(0, t, x, v) and Lemma 5.1,
we obtain that

‖g0
I,J(X(0, t, ·, v), v)‖L2

x
≤ Λ(T,R)‖g0

I,J(· − tv, v)‖L2 ≤ Λ(T,R)‖g0
I,J(·, v)‖L2

x

and hence, we get from Cauchy-Schwarz that

‖ I 0‖L2([0,T ],L2
x)
≤ T 1

2 Λ(T,R)

(∫
Rd

dv

(1 + |v|2)r

) 1
2 ∑
I,J

‖g0
I,J‖ H 0

r
.

By using again Lemma 4.6 and the fact that at t = 0 we have that L(I,J) = ∂
α(I,J)
x we get

that ‖g0
I,J‖ H 0

r
≤ Λ(T,R)‖f0

I,J‖ H 0
r
≤ Λ(T,R)‖f0‖ H 2m

r
and hence we finally obtain that

‖ I 0‖L2([0,T ],L2
x)
≤ T 1

2 Λ(T,R).
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By using similar arguments, we can estimate I F . Indeed, we can use successively (5.13),
the change of variable x 7→ X(s, t, x, v) with Lemma 5.1 and Cauchy-Schwarz to obtain that

‖ I F ‖L2([0,T ],L2
x)
≤ Λ(T,R)

∑
I,J

∥∥∥∥∫ t

0

∫
Rd
‖ SI,J(s,X(s, t, ·, v), v)‖L2

x
dvds

∥∥∥∥
L2(0,T )

≤ Λ(T,R)
∑
I,J

∥∥∥∥∫ t

0

∫
Rd
‖ SI,J(s, ·, v)‖L2

x
dvds

∥∥∥∥
L2(0,T )

≤ Λ(T,R)

∥∥∥∥∫ t

0

‖ S(s)‖ H 0
r
ds

∥∥∥∥
L2(0,T )

≤ Λ(T,R)T ‖ S‖L2([0,T ], H 0
r)
.

Finally, since SI,J(t, x, v) = FI,J(t, x,Φ(t, x, v)), we can use Lemma 4.6 and (4.11) to obtain
that

‖ S‖L2([0,T ], H 0
r)
≤ Λ(T,R)‖F‖L2([0,T ], H 0

r)
≤ Λ(T,R).

We have thus proven that
‖ I F ‖L2([0,T ],L2

x)
≤ TΛ(T,R).

By using Lemma 4.7, we eventually obtain from (5.16) and the above estimates that

∂α(I,J)
x ρ = RI,J −

∫ t

0

∫ ∑
K,L

M(K,L), (I,J)(t, s, x, v)(∂α(K,L)
x E)(s,X(s, t, x, v))

· (∇vf) ((s,X(s, t, x, v),Φ(s,X(s, t, x, v), v)) J(t, x, v) dvds

with

(5.17) ‖RI,J‖L2([0,T ],L2
x)

. T
1
2 Λ(T,R).

Thanks to Lemma 5.1, we can use the change of variable v = Ψ(s, t, x, w) (and relabel w
by v) to end up with the integral equation

(5.18) ∂α(I,J)
x ρ = −

∫ t

0

∫ ∑
K,L

(∂α(K,L)
x E)(s, x−(t−s)v)·H(K,L), (I,J)(t, s, x, v) dvds+ R0

with

(5.19) H(K,L), (I,J) =

M(K,L), (I,J)(t, s, x,Ψ(s, t, x, v))(∇vf)(s, x− (t− s)v,Φ(s, x− (t− s)v,Ψ(s, t, x, v)))

J(t, x,Ψ(s, t, x, v))J̃(s, t, x, v),

and J̃(s, t, x, v) = |det∇vΨ(s, t, x, v)|, which, recalling the definition of the electric field
E = −∇(I − ε2∆)−1(ρ− 1), corresponds to the claimed Formula (5.14).

We shall now study the boundedness of the operators KG for functions in L2([0, T ], L2
x).

AlthoughKG seems to feature a loss of one derivative in x, we shall see that if the functionG
is sufficiently smooth, thenKG is actually a bounded operator on L2([0, T ], L2

x). This means
that we can recover the apparent loss of derivative by using the averaging in v, which is
reminiscent of averaging lemmas (note that we nevertheless require regularity on G).
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P 5.1. – There exists C > 0 such that for every T > 0 and every G with
(5.20)

‖G‖T,s1,s2 := sup
0≤t≤T

(∑
k

sup
0≤s≤T

sup
ξ

(
(1 + |k|)s2(1 + |ξ|)s1 |( F x,vG)(t, s, k, ξ)|

)2
) 1

2

< +∞,

for s1 > 1, s2 > d/2, we have the estimate

‖KG(F )‖L2([0,T ],L2
x)
≤ C‖G‖T,s1,s2‖F‖L2([0,T ],L2

x)
, ∀F ∈ L2([0, T ], L2

x).

R 5.1. – For practical use, it is convenient to relate ‖G‖T,s1,s2 to a more tractable
norm. A first way to do it is to observe that if p > 1 +d, σ > d/2, we can find s2 > d/2, s1 > 1

such that (
(1 + |k|)s2(1 + |ξ|)s1 |( F x,vG)(t, s, k, ξ)|

)2

≤ 1

(1 + |k|)2s2
‖G(t, s)‖2H pσ

and thus we obtain that

‖G‖T,s1,s2 . sup
0≤s, t≤T

‖G(t, s)‖ H pσ .

Note that this requires roughly 1 + d derivatives of the function G. In the following, we shall
need only the above proposition in the following two cases for which we can reduce the number
of derivatives needed on the function G.

– IfG(t, s, x, v) = G(t, x, v) is independent of s, then we have thanks to the Bessel-Parseval
identity that

(5.21) ‖G‖T,s1,s2 ≤ sup
0≤t≤T

‖G(t)‖ H pσ

for any integer p such that p > 1 + d
2 and any σ, σ > d

2 .

– If G(t, t, x, v) = 0, since

((1 + |k|)s2)(1 + |ξ|)s1 | F x,v(G)(t, s, k, ξ)|)2

≤ T
∣∣∣∣∫ t

s

((1 + |k|)s2(1 + |ξ|)s1 | F x,v(∂sG)(t, τ, k, ξ)|)2 dτ
∣∣∣∣

≤ T
∣∣∣∣∫ t

0

((1 + |k|)s2(1 + |ξ|)s1 | F x,v(∂sG)(t, τ, k, ξ)|)2 dτ
∣∣∣∣ ,

we obtain, by using again the Bessel-Parseval identity that

‖G‖T,s1,s2 ≤ T
1
2 sup

0≤t≤T

(∫ t

0

‖∂sG(t, s)‖2H pσ ds
) 1

2

and hence that

(5.22) ‖G‖T,s1,s2 ≤ T sup
0≤t≤T

sup
0≤s≤t

‖∂sG(t, s)‖ H pσ

with p > 1 + d
2 and σ > d

2 .
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Proof of Proposition 5.1. – By using Fourier series in x, we can write that

F (t, x) =
∑
k∈Z

F̂k(t)eik·x.

This yields

KGF (t, x) =

∫ t

0

∑
k

F̂k(s)eik·xik ·
∫
e−ik·v(t−s)G(t, s, x, v) dv ds(5.23)

= (2π)d
∫ t

0

∑
k

F̂k(s)eik·xik · ( F vG)(t, s, x, k(t− s)) ds(5.24)

where F vG stands for the Fourier transform of G(t, s, x, v) with respect to the last variable.
Next, expanding also G in Fourier series in the x variable, we get that

KGF (t, x) = (2π)d
∑
k

eik·x
∑
l

eil·x
∫ t

0

F̂k(s)ik · ( F x,vG)(t, s, l, k(t− s)) ds.

Changing l into l + k in the second sum, we can also write this expression as

KGF (t, x) = (2π)d
∑
l

eil·x
(∑

k

∫ t

0

F̂k(s)ik · ( F x,vG)(t, s, l − k, k(t− s)) ds
)
.

From the Bessel-Parseval identity, this yields

‖KG‖2L2
x

= (2π)d
∑
l

∣∣∣∑
k

∫ t

0

F̂k(s)ik · ( F x,vG)(t, s, l − k, k(t− s)) ds
∣∣∣2.

By using Cauchy-Schwarz in time and k, we next obtain that

‖KG‖2L2
x
.
∑
l

(∑
k

∫ t

0

|F̂k(s)|2 |k · ( F x,vG)(t, s, l − k, k(t− s))| ds

·
∑
k

∫ t

0

|k · ( F x,vG)(t, s, l − k, k(t− s))| ds
)
.

By integrating in time, this yields

(5.25) ‖KG‖2L2([0,T ],L2
x)

.
∑
l

∫ T

0

∫ t

0

∑
k

|F̂k(s)|2 |k · ( F x,vG)(t, s, l − k, k(t− s))| ds dt

· sup
l

sup
t∈[0,T ]

∫ t

0

∑
k

|k · ( F x,vG)(t, s, l − k, k(t− s))| ds. ≤ I · II.

For the second term in the above product that is II, we observe that

sup
l

sup
t∈[0,T ]

∫ t

0

∑
k

|k · ( F x,vG)(t, s, l − k, k(t− s))| ds ≤

sup
l

sup
t∈[0,T ]

∑
k

(
sup

0≤s≤t
sup
ξ

(1 + |ξ|)s1 |( F x,vG)(t, s, l − k, ξ)|
∫ t

0

|k|
(1 + |k|(t− s))s1

ds
)
,

and by choosing s1 > 1, since∫ t

0

|k|
(1 + |k|(t− s)|)s1

ds ≤
∫ +∞

0

1

(1 + τs1)
dτ < +∞
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is independent of k, we obtain

sup
l

sup
t∈[0,T ]

∫ t

0

∑
k

|k · ( F x,vG)(t, s, l − k, k(t− s))| ds

≤ sup
l

sup
t∈[0,T ]

∑
k

sup
0≤s≤t

sup
ξ

(1 + |ξ|)s1 |( F x,vG)(t, s, l − k, ξ)|.

Next, by choosing s2 > d/2 and by using Cauchy-Schwarz, this finally yields

(5.26) II ≤ sup
t∈[0,T ]

(∑
k

sup
0≤s≤t

sup
ξ

(
(1 + |k|)s2(1 + |ξ|)s1 |( F x,vG)(t, s, k, ξ)|

)2) 1
2

.

It remains to estimate I in the right-hand side of (5.25). By using Fubini, we have∑
l

∫ T

0

∫ t

0

∑
k

|F̂k(s)|2 |k · ( F x,vG)(t, s, l − k, k(t− s))| ds dt

=

∫ T

0

∑
k

|F̂k(s)|2
∫ T

s

∑
l

|k||( F x,vG)(t, s, l − k, k(t− s))| dt ds

≤ ‖F‖2L2([0,T ],L2
x)

sup
k

sup
0≤s≤t

∫ T

s

∑
l

|k||( F x,vG)(t, s, l − k, k(t− s))| dt.

Next, by choosing s1 > 1 and s2 > d/2 as above, we observe that

sup
k

sup
0≤s≤T

∫ T

s

∑
l

|k||( F x,vG)(t, s, l − k, k(t− s))| dt

≤ sup
k

sup
0≤s≤T

∫ T

s

|k|
(1 + |k|(t− s))s1

∑
l

sup
ξ

(1 + |ξ|)s1 |( F x,vG)(t, s, l − k, ξ)| dt

≤ sup
k

sup
0≤s≤T

∫ T

s

|k| dt
(1 + |k|(t− s))s1

× sup
0≤s≤T

sup
s≤t≤T

(∑
m

sup
ξ

(
(1 + |m|)s2(1 + |ξ|)s1 |( F x,vG)(t, s,m, ξ)|

)2
) 1

2

.

Since we have again

sup
k

sup
0≤s≤T

∫ T

s

|k| dt
(1 + |k|(t− s))s1

≤
∫ +∞

0

dτ

(1 + τ)s1
dτ < +∞,

we have proven that

(5.27)

I . ‖F‖2L2([0,T ],L2
x)

× sup
0≤s≤T

sup
s≤t≤T

(∑
m

sup
ξ

(
(1 + |m|)s2(1 + |ξ|)s1 |( F x,vG)(t, s,m, ξ)|

)2
) 1

2

. ‖F‖2L2([0,T ],L2
x)

× sup
0≤t≤T

(∑
m

sup
0≤s≤t

sup
ξ

(
(1 + |m|)s2(1 + |ξ|)s1 |( F x,vG)(t, s,m, ξ)|

)2
) 1

2

.

We finally get the result by combining (5.25), (5.27) and (5.26).
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We can then use Proposition 5.1 to simplify the system of Equations (5.14) for ρ in
Lemma 5.2.

L 5.3. – Assume 2m > m0 and 2r > r0. For f solving (1.1) and ρ =
∫
f dv, for

every I, J ∈ {1, . . . , d}m, the function ∂α(I,J)
x ρ satisfies an equation under the form

(5.28) ∂α(I,J)
x ρ = K∇vf0((I − ε2∆)−1∂α(I,J)

x ρ) +RI,J ,

where the remainder RI,J satisfies

(5.29) ‖RI,J‖L2([0,T ],L2
x)

. T
1
2 Λ(T,R)

for T < min(T0, T̃0, T̂0, T
ε).

Proof of Lemma 5.3. – We keep the same notations as in Lemma 5.2 and in particular we
use the expression (5.19). We can first write that

(5.30) H(I,J), (K,L)(t, s, x, v) = H(I,J), (K,L)(t, t, x, v) +H1
(I,J), (K,L)(t, s, x, v)

with
H1

(I,J), (K,L)(t, s, x, v) = H(I,J), (K,L)(t, s, x, v)−H(I,J), (K,L)(t, t, x, v).

Since H1
(I,J), (K,L)(t, t, x, v) = 0, we can use (5.22) in Remark 5.1 to get that

‖KH1
(I,J), (K,L)

(I − ε2∆)−1∂α(K,L)
x ρ‖L2([0,T ],L2

x)

. T sup
t,s
‖∂sH1

(I,J), (K,L)(t, s)‖Hpσ‖ρ‖L2([0,T ],H2m)

with p = 1 + p0 (p0 being defined in (1.9)) and σ such that σ > d
2 and 1 + σ < 2r. We thus

have to estimate supt,s ‖∂sH1
(I,J), (K,L)(t, s)‖ H pσ .

Note that, by assumption on m, we have that p+ 2 < 2m− d
2 . We use again the notation

J(t, x, v) = |det(∇vΦ(t, x, v))|, J̃(s, t, x, v) = |det(∇vΨ(s, t, x, v))|.

According to (5.13), (5.6), (4.36), we can always put the terms involving M, Ψ, J , J̃ and
their derivatives in L∞, except when all the derivatives hit J or J̃ . Note that due to the
expression (5.19), to compute ∂sH1, we need the derivative of Ψ andM with respect to their
first argument so that we actually need estimates of ∂tΨ in view of our previous notation.
This yields
(5.31)
‖∂sH1

(I,J), (K,L)(t, s)‖ H pσ

≤ Λ(T,R)
(
‖∂t∇vf‖ H pσ +

∥∥∥(1 + |v|2)
1
2∇vf

∥∥∥
H p+1
σ

+
∑
|α|=p

∥∥|∇vf(s, x− (t− s)v,Φ(s, x− (t− s)v,Ψ(s, t, x, v))| |(∂αx,v∇vJ)(t, ·,Ψ)|
∥∥

H 0
σ

+
∥∥∥|∇vf(s, x− (t− s)v,Φ(s, x− (t− s)v,Ψ(s, t, x, v)))| |∂αx,v∂sJ̃ |

∥∥∥
H 0
σ

)
.

Note that to obtain this estimate, we have used that integrals under the form

I =

∣∣∣∣∫
Td×Rd

|g(x− v(t− s),Φ(s, x− (t− s)v,Ψ(s, t, x, v)))|2(1 + |v|2)n dxdv

∣∣∣∣
with n = σ or σ + 1 can be bounded by Λ(T,R)‖g‖2H 0

n
.
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Indeed, by setting, v 7→ w = Ψ(s, t, x, v) and by using Lemma 5.1 (in particular the fact
that the Jacobian of the change of variable is bounded and the fact that |w− v| is bounded),
we get

I ≤ Λ(T,R)

∫
Td×Rd

|g(X(s, t, x, w),Φ(s,X(s, t, x, w), w))|2(1 + |w|2)n dxdw.

Next, we can use successively

– the change of variable x 7→ y = X(s, t, x, w) with the estimates of Lemma 5.1,
– the change of variable w 7→ u = Φ(s, y, w) with the estimates of Lemma 4.6,

to finally obtain
I ≤ Λ(T,R)‖g‖2H 0

n
.

Going back to (5.31), we observe that by using the Equation (1.1), we get that

‖∂t∇vf‖ H pσ +
∥∥∥(1 + |v|2)

1
2∇vf

∥∥∥
H p+1
σ

. ‖f‖ H 2m−1
2r

since 2m > m0 implies that 2m ≥ 4 + p0. Also, by using again L∞ estimates, we have
for |α| = p,∥∥∥|∇vf(s, x− (t− s)v,Φ(s, x− (t− s)v,Ψ(s, t, x, v)))| |(∂αx,v∇vJ)(t, ·,Ψ)|

∥∥∥
H 0
σ

+
∥∥∥|∇vf(s, x− (t− s)v,Φ(s, x− (t− s)v,Ψ(s, t, x, v)))| |∂αx,v∂sJ̃ |

∥∥∥
H 0
σ

≤ Λ(T,R)
(∥∥|∇vf(s, x− (t− s)v,Φ(s, x− (t− s)v,Ψ(s, t, x, v)))| |(∂αx,v∇2

vΦ)(t, ·,Ψ)|
∥∥

H 0
σ

+
∥∥|∇vf(s, x− (t− s)v,Φ(s, x− (t− s)v,Ψ(s, t, x, v)))| |∂αx,v∂s∇vΨ|

∥∥
H 0
σ

)
and we estimate the above right-hand side by

Λ(T,R)‖(1 + |v|2)
σ+1
2 ∇vf‖L∞x,v
×
(
‖(∂αx,v∇2

vΦ)(t, ·,Ψ)‖L∞v L2
x

+ ‖(1 + |v|2)−
1
2 ∂αx,v∂s∇vΨ‖L∞v L2

x

)
.

Since 2m ≥ 4 + p0, the above expression can be again finally bounded by Λ(T,R) by using
(5.6), (4.37) and the Sobolev embedding in x, v to estimate ‖(1+ |v|2)

σ+1
2 ∇vf‖L∞x,v .We have

thus proven that

‖KH1
(I,J), (K,L)

(I − ε2∆)−1∂α(K,L)
x ρ‖L2([0,T ],L2

x)
. TΛ(T,R)

and as a consequence, that this term can be included in the remainder.

In view of (5.30) and the above estimate, since

H(I,J), (K,L)(t, t, x, v) = δ(I,J), (K,L)∇vf(t, x, v)J(t, x, v),

where δ denotes the Kronecker function, it follows that the integral system (5.14) reduces to

∂α(I,J)
x ρ = K∇vf(t)J(t)((I − ε2∆)−1∂α(I,J)

x )ρ+ R1
(I,J)

with R1
(I,J) that satisfies ∥∥∥R1

(I,J)

∥∥∥
L2([0,T ],L2

x)
≤ T 1

2 Λ(T,R).
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We can further simplify this integral equation by writing

∇vf(t, x, v)J(t, x, v)

= ∇vf0(x, v) +
(
∇vf(t, x, v)−∇vf0(x, v)

)
J(t, x, v) +∇vf0(x, v)(J(t, x, v)− 1).

Let us set

G(t, x, v) =
(
∇vf(t, x, v)−∇vf0(x, v)

)
J(t, x, v) +∇vf0(x, v)(J(t, x, v)− 1).

By using Proposition 5.1 and (5.21) in Remark 5.1, we obtain that

‖KG((I − ε2∆)−1∂α(I,J)
x ρ)‖L2([0,T ],L2

x)
≤ (sup

[0,T ]

‖G(t)‖ H pσ )‖ρ‖L2([0,T ],H2m),

with p = 1 + p0 and σ > d
2 , 1 + σ ≤ 2r. From the definition of G, we find

‖G(t)‖ H pσ . ‖∇vf(t, ·)−∇vf0‖ H pσ‖J(t)‖Wp,∞ + ‖∇vf0‖ H pσ‖J(t)− 1‖Wp,∞ .

Using the Vlasov equation in (1.1), we write

(5.32) f(t)− f0 =

∫ t

0

∂tf(s) ds = −
∫ t

0

(v · ∇xf(s) + E · ∇vf(s)) ds.

Since we have 1 + p < 2m− d
2 − 1, 2 + p ≤ 2m− 1, 1 + σ ≤ 2r, we obtain by using (4.36)

and (5.32) that

sup
[0,T ]

‖G(t)‖ H pσ ≤ Λ(T,R)
(
T sup

[0,T ]

‖∂tf‖ H p+1
σ

+ T
1
2

)
≤ T 1

2 Λ(T,R).

Consequently, we obtain

‖KG(∂α(I,J)
x ρ)‖L2([0,T ],L2

x)
≤ T 1

2 Λ(T,R),

and this term can be put in the remainder. Gathering all pieces together, we obtain (5.28)
with (5.29). This ends the proof.

We therefore proceed with the study of the integral scalar equation

(5.33) h̃(t, x) = K∇vf0((I − ε2∆)−1h̃) + R̃(t, x), 0 ≤ t ≤ T,

where R̃ is a given source term. It will be useful to introduce a positive parameter γ (which
will be chosen large enough but independent of ε) and to set

(5.34) h̃(t, x) = eγth(t, x), R̃(t, x) = eγt R(t, x)

so that (5.33) becomes

(5.35) h(t, x) = e−γtK∇vf0(eγt(I − ε2∆)−1h) + R(t, x), 0 ≤ t ≤ T

Without loss of generality, we can assume that R is equal to zero for t < 0 and for t > T and
we shall also set h = 0 for all t < 0. Note that this does not affect the value of h on [0, T ]. This
allows us to study the equation for t ∈ R. Our aim is to prove that if the Penrose condition
is satisfied by f0 then we can estimate h in L2

t,x with respect to R in L2
t,x.

One first key step is to relate e−γtK∇vf0(eγt·) to a pseudodifferential operator.
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The definitions and needed facts of pseudodifferential calculus are gathered in Section 8.
In this paper, we only consider symbols a(x, γ, τ, k) on Td×]0,+∞[×R × Rd\{0} with the
quantization

(Opγa)u(t, x) =

∫
Zd×R

ei(τt+k·x)a(x, γ, τ, k)û(ξ) dξ

where dξ = dkdτ and the measure on Zd is the discrete measure.

L 5.4. – Let us set

(5.36) a(x, ζ) = (2π)d
∫ +∞

0

e−(γ+iτ)s ik · ( F v∇vf0)(x, ks) ds,

for ζ = (γ, τ, k) ∈ (0,+∞) × R × Rd\{0}, where again F v stands for the Fourier transform
in the v variable. Then, we have that

e−γtK∇vf0(eγth) = Opγa(h), ∀h ∈ S.

Note that as usual when dealing with pseudodifferential calculus on the torus, we manip-
ulate symbols defined in the whole space Rd in the k variable, though they are only used
for k ∈ Zd in the quantization formula.

Proof of Lemma 5.4. – Since h is 0 for negative times, we first note that

e−γtK∇vf0(eγth) =

∫ t

−∞
e−γ(t−s)

∫
∇xh(s, x− (t− s)v) · ∇vf0(x, v) dvds.

By using the Fourier transform in x and t, we can write that

h(x, s) =

∫
Zd×R

ei(k·x+τs)ĥ(k, τ) dkdτ

with the convention that Zd is equipped with the discrete measure dk. This yields

e−γtK∇vf0(eγth) =∫
Zd×R

ei(k·x+τt)
(∫ t

−∞
e−(γ+iτ)(t−s)

∫
e−ik·v(t−s)ik · ∇vf0(x, v) dv ds

)
ĥ(k, τ)dkdτ,

that is,

e−γtK∇vf0(eγth) =

(2π)d
∫
Zd×R

ei(k·x+τt)
(∫ t

−∞
e−(γ+iτ)(t−s)ik · ( F v∇vf0)(x, k(t− s)) ds

)
ĥ(k, τ) dkdτ.

Changing variable in the inside integral, we finally obtain

e−γtK∇vf0(eγth) =

∫
Zd×R

ei(k·x+τt)a(x, ζ)ĥ(k, τ) dkdτ

with

a(x, ζ) = (2π)d
∫ +∞

0

e−(γ+iτ)s ik · ( F v∇vf0)(x, ks) ds

as claimed.

Note that a does not actually depend on the time variable t. We shall now prove that a
defined above is a good zero order symbol. The symbol seminorms are defined in Section 8,
see (8.1), (8.2).
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L 5.5. – Consider a(x, ζ), the symbol defined in (5.36) with ζ = (γ, τ, k) = (γ, ξ),
γ > 0 and take σ > d/2. Then we have that there exists CM > 0 that depends only on M such
that

|a|M,0 ≤ CM‖f0‖ H 2m
σ
, M ≤ 2m− 3,

|a|M,1 ≤ CM‖f0‖ H 2m
σ+2

, M ≤ 2m− 4.

Moreover, a is homogeneous of degree zero:

a(x, ζ) = a

(
x,

ζ

〈ζ〉

)
, 〈ζ〉 = (γ2 + τ2 + |k|2)

1
2 .

Proof of Lemma 5.5. – Let us set G(x, η) = (2π)d( F v∇vf0)(x, η) so that

a(x, ζ) =

∫ +∞

0

e−(γ+iτ)s ik ·G(x, ks) ds

and

ζ̃ =
ζ

〈ζ〉
, 〈ζ〉 = (γ2 + τ2 + |k|2)

1
2 .

Note that we have for σ > d/2 and every α, β, q, the estimate
(5.37)

|( F x∂αx ∂
β
ηG)(l, η)| . 1

1 + |η|q

(∫
Rd

(1 + |v|2)σ+|β| |( F x∇v∂αx (I −∆v)
q
2 f0)(l, v)|2dv

) 1
2

.

By a change of variable s = s̃/〈ζ〉 in the integral defining a, we also easily observe that a is
homogeneous of degree zero

a(x, ζ) = a

(
x,

ζ

〈ζ〉

)
.

Consequently, by using the definition of the symbol norms in the appendix, it suffices to prove
that

‖ F x(∂αx a)(·, ζ̃)‖L2(Zd,L∞(S+)) . ‖f0‖ H 2m
σ
, |α| ≤ 2m− 3,(5.38)

‖( F x∂αx∇ξ̃a)(·, ζ̃)‖L2(Zd,L∞(S+)) . ‖f0‖ H 2m
σ+1

, |α| ≤ 2m− 4.(5.39)

where S+ = {ζ̃ = (γ̃, τ̃ , k̃), 〈ζ̃〉 = 1, γ̃ > 0, k̃ 6= 0}.
Since we have

( F x∂αx a)(l, ζ̃) =

∫ +∞

0

e−(γ̃+iτ̃)s ik̃ · ( F x∂αx )G(l, k̃s) ds,

by using (5.37) with q = 2, and β = 0, we obtain that

|( F x∂αx a)(l, ζ̃)|

.

(∫
Rd

(1 + |v|2)σ |( F x∇v∂αx (I −∆v)f
0)(l, v)|2dv

) 1
2
∫ +∞

0

|k̃|
1 + |k̃|2s2

ds

.

(∫
Rd

(1 + |v|2)σ |( F x∇v∂αx (I −∆v)f
0)(l, v)|2dv

) 1
2
∫ +∞

0

1

1 + s2
ds.

This yields by using the Bessel identity

‖ F x∂αx a‖L2(Zd,L∞(S+)) . ‖f0‖ H |α|+3
σ
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and hence (5.38) is proven. Let us turn to the proof of (5.39). To estimate ∂αx ∂ξ̃a, we have to
estimate the following two types of symbols

Iα1 (x, ζ̃) =

∫ +∞

0

e−(γ̃+iτ̃)s ej · ∂αxG(x, k̃s) ds,

Iα2 (x, ζ̃) =

∫ +∞

0

e−(γ̃+iτ̃)s k̃s · ∂αx ∂β1
η G(x, k̃s) ds

where ej is a unit vector and |β1| ≤ 1. For Iα1 , if |k̃| ≥ 1
2 , we can proceed in the same way

with (5.37) for q = 2, β = 0 and obtain

| F xIα1 (l, ζ̃)| .
(∫

Rd
(1 + |v|2)σ |( F x∇v∂αx (I −∆v)f

0)(l, v)|2dv
) 1

2
∫ +∞

0

1

1 + |k̃|2s2
ds

.

(∫
Rd

(1 + |v|2)σ |( F x∇v∂αx (I −∆v)f
0)(l, v)|2dv

) 1
2

.

Note that for this argument, we use in a crucial way that |k̃| is bounded from below. Otherwise
since ζ̃ ∈ S+, we have that |γ̃|2 + |τ̃ |2 ≥ 3

4 and consequently, we can integrate by parts in s
in the integral to obtain that

| F xIα1 (l, ζ)| . |( F x∂αxG)(l, 0)|+
∫ +∞

0

|k̃| |( F x∂αx∇η G)(l, k̃s)ds

and hence, by using again (5.37) with q = 2, and |β| = 1, we finally obtain that

‖ F xIα1 ‖L2(Zd,L∞(S+)) . ‖f0‖ H 2m
σ+1

, |α| ≤ 2m− 3.

To estimate Iα2 , we proceed as above: if |k̃| ≥ 1
2 , we rely on (5.37) with q = 3 and |β| ≤ 1,

otherwise we use the same integration by parts argument together with (5.37) with q = 2, 3

and |β| ≤ 2. We obtain

‖ F xIα2 ‖L2(Zd,L∞(S+)) . ‖f0‖ H 2m
σ+2

, |α| ≤ 2m− 4.

This ends the proof.

We can now use symbolic calculus to estimate the solution of the integral Equation (5.35).

P 5.2. – Considerh satisfying (5.35), assume that 2m > 4+ d
2 , that 2r > 2+ d

2

and that for every x ∈ Td, the profile f0(x, ·) satisfies the c0 Penrose stability criterion. Then
there exists Λ[‖f0‖ H 2m

2r
] such that for every γ ≥ Λ[‖f0‖ H 2m

2r
], we have the estimate

‖h‖L2(R×Td) . Λ[‖f0‖ H 2m
2r

]‖R‖L2(R×Td).

Proof of Proposition 5.2. – By using Lemma 5.4, we can write (5.35) under the form

h = Opγa((I − ε2∆)−1h) + R = Opγbε(h) + R

with the symbol bε(x, ζ) defined by

bε(x, ζ) = a(x, ζ)
1

1 + ε2|k|2
.
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Note that this is exact since we are composing a pseudodifferential operator with a Fourier
multiplier in the right order. Since a is homogeneous of degree zero in ζ, we have

bε(x, ζ) = b(x, εζ), b(x, ζ) = a(x, ζ)
1

1 + |k|2

and thus Opγbεh = Opε,γb is a semiclassical pseudodifferential operator as defined in the
Section 8. We thus have to study the equation

(5.40) Opε,γ1−b(h) = R.

Thanks to Lemma 5.5, we have that b ∈ S2m−3,0 ∩ S2m−4,1. Moreover, we observe that

1− b(x, γ, τ, k) = P(γ, τ, k, f0(x, ·))

and consequently, since f0 satisfies the c0 Penrose condition (1.5), we also get that c = 1
1−b ∈

S2m−3,0 ∩ S2m−4,1. As a result, assuming that 2m > 4 + d
2 , we can find M > d/2 such that

c ∈ SM,1 and 1− b ∈ SM+1,0 and moreover,

|c|M,1 + |1− b|M+1,0 . Λ[‖f0‖ H 2m
2r

].

Consequently, by applying Opε,γc to (5.40) and by using Proposition 8.3, we obtain that

‖h‖L2(R×Td) .
1

γ
Λ[‖f0‖ H 2m

2r
]‖h‖L2(R×Td) + Λ[‖f0‖ H 2m

2r
]‖R‖L2(R×Td).

The result follows by choosing γ sufficiently large.

As a corollary, we get an estimate for the solution of (5.33) on [0, T ].

C 5.1. – Consider h̃ the solution of (5.35), assume that 2m > 4 + d
2 , that

2r > 2 + d
2 and that the c0 Penrose criterion (1.5) is satisfied. Then there exists Λ(·, ·) such

that the solution of (5.33) verifies the estimate

‖h̃‖L2([0,T ],L2
x)
≤ Λ[T, ‖f0‖ H 2m

2r
]‖R̃‖L2([0,T ],L2

x)
.

Note that the assumption that 2m > 4 + d
2 is satisfied if 2m > m0.

Proof of Corollary 5.1. – By using (5.34) and Proposition 5.2, we get that(∫ T

0

e−2γt‖h̃(t, ·)‖2L2(Td)dt
) 1

2

. ‖h‖L2(R×Td) . Λ[‖f0‖ H 2m
2r

]‖R‖L2(R×Td).

Since we have taken R to be zero for t ≥ T and t < 0, we get by using again (5.34) that(∫ T

0

e−2γt‖h̃(t, ·)‖2L2(Td)dt
) 1

2

. Λ[‖f0‖ H 2m
2r

]
(∫ T

0

e−2γt‖R̃(t, ·)‖2L2(Td)dt
) 1

2

.

Since γ was chosen as γ = Λ[‖f0‖ H 2m
2r

], the result follows by taking

Λ[T, ‖f0‖ H 2m
2r

] := Λ[‖f0‖ H 2m
2r

] exp
(

Λ[‖f0‖ H 2m
2r

]T
)
.
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6. Proof of Theorem 1.1: conclusion

We are finally ready to close the bootstrap argument. For 2m > m0, 2r > r0, gathering
the results of Lemma 5.2, Lemma 5.3 and Corollary 5.1, we get that for all
T ∈ [0,min(T0, T̃0, T̂0, T

ε)), for all I, J ∈ {1, . . . , d}m,

‖∂α(I,J)
x ρ‖L2([0,T ],L2

x)
≤ Λ(T,M0)

(
M0 + T

1
2 Λ(T,R)

)
,

and thus that

‖ρ‖L2([0,T ],H2m) ≤ Λ(T,M0)
(
M0 + T

1
2 Λ(T,R)

)
.

Using Lemma 3.4, we deduce the crucial estimate which is that

(6.1) N 2m,2r(T, f) ≤M0 + T
1
2 Λ(T,R) + Λ(T,M0)

(
M0 + T

1
2 Λ(T,R)

)
.

We can then easily conclude. Let us choose R large enough so that

(6.2)
1

2
R > M0 + Λ[0,M0]M0.

Now, R being fixed, we can choose by continuity T# ∈ (0,min(T0, T̃0, T̂0, T
ε)] such that for

all T ∈ [0, T#],

(6.3) T
1
2 Λ(T,R) + Λ[T,M0]T

1
2 Λ(T,R) + (Λ[T,M0]− Λ[0,M0])M0 <

1

2
R.

This entails that for all T ∈ [0, T#], it is impossible to have N 2m,2r(T, f) = R. Therefore,
we deduce that T ε > T#. We have thus proven that

(6.4) N 2m, 2r(T, f) ≤ R,

for some T > 0 and someR > 0, both independent of ε. To finish the proof of Theorem 1.1,
it remains to check that the c0/2 Penrose stability condition can be ensured. From the
Equation (1.1) and (6.4), we get that

‖∂tf‖L∞([0,T ], H 2m−2
2r−1 ) ≤ Λ(T,R).

By using a Taylor expansion, we have that for all t ∈ [0, T ],∫ +∞

0

e−(γ+iτ)s iη

1 + |η|2
· ( F v∇vf)(t, ηs) ds

=

∫ +∞

0

e−(γ+iτ)s iη

1 + |η|2
· ( F v∇vf0)(ηs) ds+ I(γ, τ, η, t, x)

where I(γ, τ, η, x) satisfies the uniform estimate

|I(γ, τ, η, t, x)| ≤ CT sup
t∈[0,T ]

‖∂tf‖ H 2
σ

with σ > d/2. Since we have 2m ≥ 4 (by the assumption 2m > m0 ) and 2r > 1 + d
2 this

yields

|I(γ, τ, η, t, x)| ≤ TΛ(T,R).

Since f0 satisfies the c0 Penrose stability condition, it follows by taking a smaller time T > 0

if necessary, that for all t ∈ [0, T ] and all x ∈ Td, f(t, x, ·) satisfies the c0/2 Penrose condition.
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7. Proofs of Theorems 1.2 and 1.3

The proofs of Theorems 1.2 and 1.3 will be intertwined since in order to get the conver-
gence of Theorem 1.2 without extracting a subsequence, we shall need the uniqueness part
of Theorem 1.3. Consequently, we shall first prove the uniqueness part of Theorem 1.3. The
result will actually be a straightforward consequence of the following proposition.

P 7.1. – We consider the following linear equation:
(7.1)

∂tf + v · ∇xf −∇xρ · ∇vf + E(t, x) · ∇vf = F, f|t=0 = f0, ρ(t, x) =

∫
Rd
f(t, x, v) dv

where E(t, x) is a given vector field such that for some T0 > 0, E ∈ L2((0, T0), H2m) and
f is a given function f(t, x, v) ∈ L∞(0, T0], H 2m−1

2r ) ∩ Lip([0, T0], H 2m−2
2r−1 ) with 2m > m0,

2r > r0. Let us set

R := ‖f‖L∞([0,T0], H 2m−1
2r ) + ‖∂tf‖L∞([0,T0], H 2m−2

2r−1 ) + ‖E‖L2([0,T0],H2m−1)

and assume that for every x, the profile f(0, x, ·) satisfies the c0 Penrose stability condition for
some c0 > 0. Then, there exists T = T (c0, R) ∈ (0, T0] that depends only on c0 and R such
that for every F ∈ L2([0, T0], H 0

r) and f0 ∈ H 0
r, the solution f of (7.1) satisfies the estimate

(7.2) ‖ρ‖L2([0,T ]×Td) ≤ Λ(
1

c0
, R, T0)

(
‖f0‖ H 0

r
+ ‖F‖L2([0,T0], H 0

r)
)

where Λ( 1
c0
, R, T ) depends only on c0, R and T0.

Proof of Proposition 7.1. – The proof follows closely the analysis of Equation (4.9) in the
proof of Theorem 1.1 so that we shall only give the main steps. We first set g(t, x,Φ(t, x, v)) =

f(t, x, v) with Φ being the solution of the Burgers Equation (4.33) with initial data
Φ(0, x, v) = v, recall Lemma 4.6. Because of the regularity assumptions onE, Lemma 4.6 is
still valid: such a smooth Φ exists on [0, T (R)] for some T (R) > 0 and verifies the estimates
(4.36), (4.37). We observe that g solves

(7.3) ∂tg + Φ · ∇xg −∇xρ(t, x) · ∇vf(t, x,Φ) = F (t, x,Φ)

and that ∫
Rd
g(t, x, v)J(t, x, v) dv = ρ(t, x)

with J(t, x, v) = |det∇vΦ(t, x, v)|. To solve (7.3), we use the characteristics (5.2). Because
of the previous estimates on Φ, the estimates of Lemma 5.1 are still valid. Proceeding as in
the proof of Lemma 5.2, we can first obtain that

ρ(t, x) = KHρ+

∫ t

0

∫
Rd
F (s,X(s, t, x, v),Φ(s, x, v))J(t, x, v) dvds

+

∫
Rd
f0(X(0, t, x, v), v)J(t, x, v) dv

where

H(t, s, x, v) = (∇vf)(s, x− (t− s)v,Φ(t, s, x− (t− s)v,Ψ(t, s, x, v)))

× J(t, x,Ψ(s, t, x, v))J̃(t, s, x, v)
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and J̃(s, t, x, v) = |det∇vΨ(s, t, x, v)|. Again, by Taylor expanding H in time and by using
Proposition 5.1 and Remark 5.1 we obtain that

ρ(t, x) = K∇vf
0ρ+ R̃

with the notation f
0
(x, v) = f(0, x, v) and where R̃ is such that

(7.4) ‖ R̃‖L2([0,T ],L2) ≤ Λ(T,R)(‖f0‖ H 0
r

+ ‖F‖ H 0
r

+ T
1
2 ‖ρ‖L2([0,T ],L2)

for every T ∈ [0, T (R)]. In order to estimate the solution of the previous equation, we can
again set ρ = eγth, R̃ = eγt R, assume that h and R are zero for t < 0 and that R is continued
by zero for t > T . Then by using Lemma 5.4, we end up with the equation

h = Opγah+ R

where a is still defined by (5.36) with f0 replaced by f
0
. Because of the regularity assumptions

on f , the estimates of Lemma 5.5 are still verified. If a has the property that

(7.5) |1− a(x, ζ)| ≥ c0, ∀ζ = (γ, τ, k), γ > 0, τ ∈ R, k ∈ Rd\{0},

then we can apply the operator Opγ 1
1−a

and use Proposition 8.1 and Proposition 8.2 to get

that for γ sufficiently large, we have

‖h‖L2
t,x
≤ Λ(

1

c0
, R)‖R‖L2

t,x
.

In view of (7.4), this yields that for every T ∈ [0, T (R)] we have

‖ρ‖L2([0,T ],L2) ≤ Λ(
1

c0
, T,R)

(
‖f0‖ H 0

r
+ ‖F‖ H 0

r
+ T

1
2 ‖ρ‖L2([0,T ],L2)

)
.

Consequently, if T is sufficiently small we get the estimate (7.2).

In order to finish the proof, we thus only have to check that the estimate (7.5) is verified.
Let us recall that by definition of the Penrose stability condition, we have that for every
x ∈ Td, the function

P(γ, τ, η, f
0
(x, ·)) = 1−

∫ +∞

0

e−(γ+iτ)s iη

1 + |η|2
· ( F v∇vf

0
)(x, ηs) ds,

γ > 0, τ ∈ R, η ∈ Rd\{0},

verifies

inf
(γ,τ,η)∈[0,+∞)×R×Rd

|P(γ, τ, η, f
0
(x, ·))| ≥ c0.

Let us then define using polar coordinates the function P̃ by

P̃(γ̃,τ̃ , η̃, σ, f
0
(x, ·))

= P(σγ̃, στ̃ , ση̃, f
0
(x, ·)), (γ, τ, η) = σ(γ̃, τ̃ , η̃), r > 0, γ̃ > 0, (γ̃, τ̃ , η̃) ∈ S+

where S+ = {(γ̃, τ̃ , η̃), γ̃2 + τ̃2 + η̃2 = 1, γ̃ > 0, η̃ 6= 0}. Note that we have

P̃(γ̃, τ̃ , η̃, σ, f
0
) = 1−

∫ +∞

0

e−(γ̃+iτ̃)s iη̃

1 + σ2|η̃|2
· ( F v∇vf

0
)(x, η̃s) ds.
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If f
0 ∈ H 2

r, the function P̃(·, f0
) can be extended as a continuous function on S+× [0+∞[.

The Penrose stability condition thus implies P̃ ≥ c0 on S+×[0,+∞[. In particular for σ = 0,
we observe that

P̃(γ̃, τ̃ , η̃, 0, f
0
) = 1− a(γ̃, τ̃ , η̃).

We thus obtain that |1 − a| ≥ c0 on S+. Since a is homogeneous of degree zero, this yields
that (7.5) is verified. This ends the proof.

As an immediate corollary of the previous proposition, we get an uniqueness property for
the limit Equation (1.3).

C 7.1. – Let f1, f2 ∈ C([0, T ], H 2m−1
2r ) with 2m > m0, 2r > r0 be two

solutions of (1.3) with the same initial condition f0. Setting ρi :=
∫
fi dv, we assume that

ρ1, ρ2 ∈ L2([0, T ], H2m). Assume that furthermore, there is c0 > 0 such that f1 is such that
v 7→ f1(t, x, v) satisfies the c0 Penrose condition for every t ∈ [0, T ] and x ∈ Td. Then we have
that f1 = f2 on [0, T ]× Td × Rd.

Proof of Corollary 7.1. – Let

R = max
i=1,2

(
‖fi‖L∞([0,T ], H 2m−1

2r ) + ‖ρi‖L2([0,T ],H2m)

)
.

We set f = f1 − f2, and observe that f satisfies the equation

(7.6) ∂tf + v · ∇xf −∇xρ · ∇vf1 −∇xρ2 · ∇vf = 0, f |t=0 = 0,

where ρ :=
∫
f dv. We are thus in the framework of Proposition 7.1 withE = −∇xρ2, f = f1

and zero data (that it say F = 0 and zero initial data). Moreover, we observe that thanks to
the Equation (1.3), we also have that

‖∂tfi‖L∞([0,T ], H 2m−2
2r−1 ) ≤ Λ(T,R).

From (7.2), we deduce that there exists T (c0, R) such that ρ = 0 in [0, T (c0, R)]. This yields
that on [0, T (c0, R)], f satisfies the homogeneous transport equation

∂tf + v · ∇xf −∇xρ2 · ∇vf = 0

with zero initial data and thus f = 0 on [0, T (c0, R)]. We can then apply again Proposition 7.1
starting fromT (c0, R) (which is valid since f1(T (c0, R), ·) still satisfies the c0 Penrose stability
condition). Since the estimate (7.2) is valid on an interval of time that depends only onR and
c0, we then obtain that f = 0 on [0, 2T (c0, R)]. Repeating the argument, we finally obtain
after a finite number of steps that f = 0 on [0, T ]. This ends the proof.

7.1. Proof of Theorem 1.2

We start by applying Theorem 1.1 to get T,R > 0 independent of ε, such that
fε ∈ C([0, T ], H 2m

2r ) satisfies (1.1) with

sup
ε∈(0,ε0]

N 2m,2r(T, fε) ≤ R.

We can now use standard compactness arguments to justify the quasineutral limit:
fε is uniformly bounded in C([0, T ], H 2m−1

2r ) and from (1.1), we get that ∂tfε is uniformly
bounded in L∞([0, T ], H 2m−2

2r−1 ). Consequently, by Ascoli Theorem there exists
f ∈ C([0, T ], L2) and a sequence εn such that fεn converges to f in C([0, T ], L2

x,v). By
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interpolation, we also actually have convergence in C([0, T ], H 2m−1−δ
2r−δ ) for every δ > 0. By

Sobolev embedding this yields in particular that fεn converges to f in L∞([0, T ]×Td×Rd)
and that ρε converges to ρ =

∫
Rd f dv in L2([0, T ], L2)∩L∞([0, T ]×Td). From these strong

convergences, we easily obtain that f is solution of (1.3) and that f satisfies the c0/2 Penrose
stability condition on [0, T ]. Moreover, by standard weak-compactness arguments, we also
easily obtain that f ∈ L∞([0, T ], H 2m−1

2r ) ∩ Cw([0, T ], H 2m−1
2r ) (that is to say continuous

in time with H 2m−1
2r equipped with the weak topology) and that ρ ∈ L2([0, T ], H2m). With

this regularity of ρ, we can then deduce by standard arguments from the energy estimate for
(1.3) (which is just (3.11) with E = −∇xρ) that f ∈ C([0, T ], H 2m−1

2r ).

Thanks to the uniqueness for (1.3) proved in Corollary 7.1, we can get by standard argu-
ments that we actually have the full convergence of fε to f and not only the subsequence fεn .

7.2. Proof of Theorem 1.3

With the choice f0
ε = f0 for all ε ∈ (0, 1], Theorem 1.2 provides the existence part. The

uniqueness is a consequence of Corollary 7.1 and the fact that f satisfies the c0/2 Penrose
stability condition (1.5) for every t ∈ [0, T ] and x ∈ Td.

8. Pseudodifferential calculus with parameter

In this section we shall prove the basic results about pseudodifferential calculus that we
need in our proof. For more complete statements and results, we refer for example to [33, 34].
We consider symbols a(x, γ, τ, k) on Td×]0,+∞[×R× Rd\{0}, γ > 0 has to be thought to
as a parameter. We set ζ = (γ, τ, k) and ξ = (τ, k) ∈ R×Rd\{0}. Note that we do not need
to include a dependence on the time variable t in our symbols (so that we actually consider
Fourier multipliers in the time variable). We use the quantization

(Opγa)u(t, x) =

∫
Zd×R

ei(τt+k·x)a(x, ζ)û(ξ) dξ

where dξ = dkdτ and the measure on Zd is the discrete measure. The Fourier transform û is
defined as

û(ξ) = (2π)−(d+1)

∫
Td×R

e−i(τt+k·x)u(t, x)dtdx.

We introduce the following seminorms of symbols:

|a|M,0 = sup
|α|≤M

‖ F x(∂αx a)‖L2(Zd,L∞ζ ),(8.1)

|a|M,1 = sup
|α|≤M

‖〈ζ〉 F x(∂αx∇ξa)‖L2(Zd,L∞ζ ),(8.2)

where

〈ζ〉 = (γ2 + τ2 + |k|2)
1
2 .

We shall say that a ∈ SM,0 if |a|M,0 < +∞ and a ∈ SM,1 if |a|M,1 < +∞. The use of these
seminorms compared to some more classical ones will allow us to avoid to lose too many
derivatives while keeping very simple proofs.
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Note that we can easily relate |a|M,0 to more classical symbol seminorms up to losing more
derivatives. For example, we have for every M ≥ 0

sup
|α|≤M

sup
x, ζ
|∂αx a(x, ζ)| . |a|M+s,0

with s > d/2. The following results refine slightly in terms of the regularity of the symbols,
the classical results of L2 continuity for symbols in S0

0,0 that are compactly supported in x,
see for example [38].

P 8.1. – Assume that M > d/2 and that a ∈ SM,0. Then, there exists C > 0

such that for every γ > 0

‖Opγau‖L2(R×Td) ≤ C|a|M,0‖u‖L2(R×Td).

Proof of Proposition 8.1. – In the following . means ≤ C with C that does not depend
on γ. We can write

Opγau(t, x) = −
∫
Zd
eix·k

′
(∫

Zd×R
ei(τt+k·x) F xa(k′, ζ)û(ξ) dξ

)
dk′

=

∫
Zd×R

ei(τt+l·x)
(∫

Zd
F xa(k − l, γ, τ, k)û(τ, k)dk

)
dτdl

and hence we obtain from the Bessel identity that

‖Opγau‖L2(R×Td) .

∥∥∥∥∥
∥∥∥∥∫

Zd
F xa(k − ·, γ, τ, k)û(τ, k)dk

∥∥∥∥
L2(Zd)

∥∥∥∥∥
L2(Rτ )

.

By using Cauchy-Schwarz and Fubini, we get in a classical way that∥∥∥∥∫
Zd

F xa(k − ·, γ, τ, k)û(τ, k)dk

∥∥∥∥2

L2(Zd)

. ‖ sup
k
| F xa(·, γ, τ, k)| ‖L1(Zd)

∫
Zd×Zd

| F xa(k − l, γ, τ, k)| |û(τ, k)|2dkdl

. ‖ sup
k
| F xa(·, γ, τ, k)| ‖L1(Zd) sup

k
‖ F xa(·, γ, τ, k)‖L1(Zd)‖û(τ, ·)‖2L2(Zd)

. ‖ sup
k
| F xa(·, γ, τ, k)| ‖2L1(Zd)‖û(τ, ·)‖2L2(Zd).

By integrating in time, we thus obtain that

‖Opγau‖L2(R×Td) . ‖ F xa‖L1(Zd,L∞ζ )‖u‖L2(R×Td).

To conclude, it suffices to notice that

‖ F xa‖L1(Zd,L∞ζ ) . |a|M,0

for M > d/2.

We shall now state a result of symbolic calculus.

P 8.2. – Assume that a ∈ SM,1 and that b ∈ SM+1,0 with M > d/2. Then
there exists C > 0 such that for every γ > 0, we have

‖OpγaOpγb (u)−Opγab(u)‖L2(R×Td) ≤
C

γ
|a|M,1|b|M+1,0 ‖u‖L2(R×Td).
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Note that the above estimate is especially useful for large γ since the right hand side can
be made small by taking γ sufficiently large.

Proof of Proposition 8.2. – Note that for a ∈ SM,0, b ∈ SM,0 and M > d/2, we have by
elementary convolution estimates that

|ab|M,0 . |a|M,0‖ F xb‖L1(Zd,L∞ζ ) + |b|M,0‖ F xa‖L1(Zd,L∞ζ ) . |a|M,0|b|M,0

and thus that ab ∈ SM,0. This yields that Opγab is a well-defined continuous operator on L2

thanks to Proposition 8.1. Next, using the usual formulas for pseudodifferential operators,
we find that

OpγaOpγb = Opγc

with c given by

c(x, ζ) =

∫
Zd
eik
′·xa(x, γ, τ, k + k′) F xb(k′, ζ) dk′, ζ = (γ, τ, k).

We thus get that

c(x, ζ)− a(x, ζ)b(x, ζ) =

∫
Zd
eik
′·x
∫ 1

0

∇ka(x, γ, τ, k + sk′) ds · k′ F xb(k′, ζ) dk′(8.3)

=:
1

γ
d(x, ζ).(8.4)

By using Proposition 8.1, we can just prove that d ∈ SM,0 for M > d/2 and estimate its
norm. By taking the Fourier transform in x, we obtain that

( F x∂αx d)(l, γ, τ, k) = γ

∫ 1

0

∫
Zd

(il)α( F x∇ka)(l − k′, γ, τ, k + sk′) · k′ F xb(k′, ζ) dk′ds.

This yields

‖( F x∂αx d)(l, γ, ·)‖L∞ζ

.
∫
Zd
|l − k′||α| ‖ |(γ, ·)|( F x∇ka)(l − k′, γ, ·)‖L∞ζ |k

′| ‖ F xb(k′, γ, ·)‖L∞ζ dk′

+

∫
Zd
‖ |(γ, ·)|( F x∇ka)(l − k′, γ, ·)‖L∞ζ |k

′||α|+1 ‖ F xb(k′, γ, ·)‖L∞ζ dk′.

From standard convolution estimates, we obtain that

|d|M,0 .
(
|a|M,1 ‖|k| F x∇xb‖L1(Zd,L∞ζ ) + |b|M+1,0 ‖ |(γ, ·)| F x∇ka‖L1(Zd,L∞ζ )

)
and thus, for M > d/2, we finally get that

|d|M,0 . |a|M,1|b|M+1,0.

From Proposition 8.1, we get that

‖Opγdu‖L2(R×Td) . |a|M,1|b|M+1,0‖u‖L2(R×Td).

Since by definition of d, we have OpγaOpγb −Opγab = 1
γOpγd , the result follows.
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We shall finally define a semiclassical version of the above calculus. For any symbol a(x, ζ)

as above, we set for ε ∈ (0, 1], aε(x, ζ) = a(x, εζ) = a(x, εγ, ετ, εk) and we define for γ ≥ 1,

(8.5) (Opε,γa u)(t, x) = (Opγaεu)(t, x).

For this calculus, we have the following result:

P 8.3. – There exists C > 0 such that for every ε ∈ (0, 1] and for every γ ≥ 1

we have

– for every a ∈ SM,0 with M > d/2,

‖Opε,γa u‖L2(R×Td) ≤ C|a|M,0‖u‖L2(R×Td),

– for every a ∈ SM,1 and for every b ∈ SM+1,0, with M > d/2,

‖Opε,γa Opε,γb (u)−Opε,γab (u)‖L2(R×Td) ≤
C

γ
|a|M,1|b|M+1,0 ‖u‖L2(R×Td).

Proof of Proposition 8.5. – The proof is a direct consequence of Proposition 8.1 and
Proposition 8.2 since for any symbol a, we have by definition of aε that

|aε|M,0 = |a|M,0, |aε|M,1 = |a|M,1.
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