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ECALLE’S ARBORIFICATION-COARBORIFICATION
TRANSFORMS AND CONNES-KREIMER

HOPF ALGEBRA

 F FAUVET  F MENOUS

A. – We give a natural and complete description of Ecalle’s mould-comould formalism
within a Hopf-algebraic framework. The arborification transform thus appears as a factorization of
characters, involving the shuffle or quasishuffle Hopf algebras, thanks to a universal property satisfied
by Connes-Kreimer Hopf algebra. We give a straightforward characterization of the fundamental pro-
cess of homogeneous coarborification, using the explicit duality between decorated Connes-Kreimer
and Grossman-Larson Hopf algebras. Finally, we introduce a new Hopf algebra that systematically
underlies the calculations for the normalization of local dynamical systems.

R. – Nous donnons une description complète et naturelle du formalisme d’arborifica-
tion/coarborification d’Ecalle en termes d’algèbres de Hopf. L’arborification apparaît alors comme
une factorisation de caractères, impliquant les algèbres shuffle ou quasishuffle, en vertu d’une propriété
universelle satisfaite par l’algèbre de Connes-Kreimer. Dans ce cadre, nous obtenons de façon directe
le procédé fondamental de coarborification homogène, en utilisant la dualité explicite entre les algèbres
de Hopf décorées de Connes-Kreimer et Grossman-Larson. Enfin, nous introduisons une nouvelle
algèbre de Hopf qui est sous-jacente aux calculs de normalisation des systèmes dynamiques locaux.

1. Introduction

The local study of dynamical systems, through normalizing transformations, involves
calculations in groups, or pseudogroups, of diffeomorphisms (e. g. formal, or analytic) that
are tangent to identity. Other situations where these explicit calculations are required are
also numerous in key questions of classification of singular geometric structures. Another
source of examples is given by the so called mechanism of Birkhoff decomposition ([26]).
The group G of formal tangent to Identity diffeomorphisms is the one in which most of the
calculations are to be performed.

To tackle problems of this kind, Jean Ecalle has developed a powerful combinatorial
environment, named mould calculus, that leads to formulas that are surprisingly explicit.
This calculus has lately been the object of attention within the algebraic combinatorics
community ([6], [7]). However, despite its striking achievements, this formalism has been
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40 F. FAUVET AND F. MENOUS

little used in local dynamics, in pending problems that anyway seem out of reach of other
approaches. One reason might be that it uses a sophisticated system of notations, in which
a number of infinite sums are manipulated, in a way that calls for a number of proofs and
explanations, that are to a certain extent still missing in the few existing papers using mould
calculus. Beside this, some constructions introduced by Ecalle, though obviously appearing
as extraordinarily efficient, might remain a bit mysterious; an example of this is the so called
homogeneous coarborification ([11]), for which we are now able to give in the present paper
a very natural algebraic presentation.

In fact, Ecalle’s mould-comould formalism can be very naturally recast in a Hopf-
algebraic setting, with the help of a number of Hopf algebras (shuffle, quasi-shuffle, their
graded duals, etc) which are now widely used within algebraic combinatorics. In the present
text, we show how this can be done, which makes it possible to give simple and quick proofs
of important properties regarding mould calculus.

As is now well known ([12], [4]), the Hopf-algebraic formulation of computations on
formal diffeomorphisms involves the so called Faà di Bruno Hopf algebra, which encodes the
eponymous formula for higher order chain rule. In fact, Hopf algebraic tools and concepts
have very recently become pervasive in dynamical systems, see e.g., [22] and the references
therein. Now, an essential point is the following: the reformulation of a classification problem
through the use of Faà di Bruno Hopf algebra (or, more simply, calculations on compositions
of diffeomorphisms involving the Faà di Bruno formula), although satisfactory at the formal
level will usually be inefficient, in the hard cases, for the question of analyticity of the series.
Indeed, in difficult situations involving resonances and/or small denominators, the formulas
obtained through Faà di Bruno are most of the time not explicit enough to obtain satisfactory
growth estimates on the coefficients.

On the other hand, Ecalle’s mould-comould expansions often lead to explicit coefficients
but, when trying to control the size of these in a straightforward way, we often encounter
systematic divergence, which claims for the introduction of something subtler.

So the need was for some sort of intermediate Hopf algebra, in which the algebraic calcu-
lations would still be tractable, and leading to explicit formulas from which key estimates can
be obtained, to eventually get e.g., the analyticity properties we could expect. This is exactly
what arborification/coarborification does. Once the original definitions of Ecalle are trans-
lated into a Hopf-algebraic setting, with the use of Connes-Kreimer Hopf algebra CK and
its graded dual, it is possible to recognize that the arborification transform is nothing else
that a property of factorization of characters between Hopf algebras (we perform this at the
same time for the shuffle and quasishuffle cases), using the fact that CK is an initial object
for Hochschild cohomology for a particular category of cogebras ([8], [13], [14]).

Thus, the universality of the arborification mechanism is directly and naturally connected
with a universal property satisfied by Connes-Kreimer Hopf algebra, whose importance is by
now widely acknowledged (see e. g. [12]).

The paper is organized as follows. In the next section, we recall a few basic facts
concerning normalization in local dynamics, focusing on two basic situations for which
it is possible to introduce all the relevant objects in a simple, yet non trivial, context. The
following section is devoted to an algebraic study of the group of tangent to identity formal
diffeomorphisms, introducing at this stage the Faà di Bruno Hopf algebra H FdB. This
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ALGEBRAIC ASPECTS OF ECALLE’S ARBORIFICATION 41

section doesn’t contain new results, yet we have chosen a presentation stressing the role
of substitution automorphisms, and adopting a systematic way of looking at normalizing
equations as equations on characters of Hopf algebras which are by now classical objects
(basic terminology and facts on graded Hopf algebras are included).

Then we are ready to interpret moulds, at least the ones with symmetry properties that
are met in practice, as characters or infinitesimal characters on some classical Hopf algebras,
namely symmetral (resp. symmetrel) moulds as characters of the shuffle (resp. quasishuffle)
Hopf algebra. This is the object of Section 4, where the basic notions regarding moulds,
comoulds and their “contractions” are given.

In Section 5 the key dual mechanisms of arborification and coarborifications are intro-
duced, and described through the introduction of CK and its graded dual, known to be
isomorphic to the Grossman-Larson Hopf algebra

In fact, we show that the natural isomorphism between these two Hopf algebras leads
directly, in the contexts of comoulds, to the process of homogeneous coarborification, which
was put forward by Ecalle with very little explanation. A cautious handling of the symmetry
factors of the trees is crucial, here.

In Section 6 we describe the Hopf algebra CKC which is ultimately used in practical
calculations of normalizing transformations, for questions of classification of dynamical
systems, involving resonances and small denominators. This solves at the same time an alge-
braic problem and a essential analytic one, regarding the growth estimates of the coefficients
of the diffeomorphisms. The point of view which is enhanced in the present paper can be
summed up in the following considerations:

� The systematic use of substitution automorphisms, which constitute an alternative –
a very profitable one, because it is more flexible — to changes of variables, naturally
entail a Hopf-algebraic presentation
� Calculations in the Faà di Bruno Hopf algebra are a direct mirror of the traditional

approach through normalizing transformations, yet they don’t yield results which are
explicit enough to tackle difficult cases
� There is a hierarchy Sh/Qsh, CK, CKC of Hopf algebras, the first ones adapted to

the simple formal classification results, the second one necessary for controlling the
regularity of the formal constructions, under a strong non resonance condition, and
the last one to take care of objects satisfying a weak nonresonance condition

The main results of the text are thus the ones which concern the Hopf algebra CKC, which
is the fundamental one to be used by the practitioner, in difficult problems involving small
denominators.

The authors are grateful to the referees for their valuable remarks and suggestions that led
to improvements of the text.

The research leading these results was partially supported by the French National
Research Agency under the reference ANR-12-BS01-0017.
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42 F. FAUVET AND F. MENOUS

2. Normal forms

To study a dynamical system, a standard procedure, since Poincaré, is to try to conjugate
the object to another one which is as simple as possible and for which the dynamics is
well understood, and which is then called a normal form. The classes of objects that are
considered in the present text are vector fields and diffeomorphisms in C� and we study
them near a singularity, namely a vanishing point for the field or a fixed point for the
diffeomorphism.

Conjugation is thus obtained through the action of a change of coordinates, performed
by a diffeomorphism leaving the singular point invariant. When we consider, say, an analytic
germ of vector field X at the origin, the simplest field to which we can hope to conjugate it
through an analytic change of coordinates is the linear part X lin of X . When trying to do
this, one immediately encounters the possibility of obstructions; indeed, if the eigenvalues
of X lin (supposed semi-simple) are �1; : : : ; �� (with possible multiplicities), then even the
formal conjugation of X to X lin is not possible when some combinations of the following
type do exist:

(1) m1�1 C � � � Cm��� � �i D 0:

In this relation, i 2 f1; : : : ; �gI themj arenonnegativeintegers;with
P
mj > 2.

Such a relation can also be written as hn; �i D 0 where � D .�1; : : : ; ��/ is the spectrum,
n is a �-uple of integers that belongs to the following set:

H D

(
.n1; : : : ; n�/Ini > �1; atmostonebeing D �1; and

�X
1

ni > 1

)
;

and hn; �i D
P�
iD1 ni�i .

A relation such as (1) is called a resonance, and we focus now on the nonresonant case,
for which by definition no resonance exists. A standard way to obtain the linearization is
then to conjugate with polynomial changes of coordinates our given field to its linear part,
up to terms of a given valuation and then composing these transforms in order to obtain
in the end only the linear part. The absence of resonance ensures that each step is possible,
and the formal convergence of the infinite product is easy. In the next section, an alternative
method is described, which directly lead to moulds. In this way we obtain a unique linearizing
transformation, if we impose that it is tangent to identity.

Technically, it might happen that under the non resonance condition given above, some of
the partial sums might vanish. If we want to avoid this, we have to consider a stronger non
resonance condition, namely that the �i are independent over Z. We shall below work out
the algebraic formulation using the strong condition, and eventually in Section 6 we will be
able to cope with the weaker one, once the appropriate Hopf algebra has been defined.

However, the formal transform will not always be convergent: in the process of computa-
tion of the linearization transform, whatever the chosen method, we encounter divisions by
expressions m1�1 C � � � C m��� � �i , which, although non zero, might be very small. This
problem of occurrence of small denominators calls for an extra hypothesis on the spectrum,
in order to control the size of the coefficients of the series we are interested in. The original
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ALGEBRAIC ASPECTS OF ECALLE’S ARBORIFICATION 43

breakthrough was made by Siegel, and the best (it is known to be optimal in dimension 2)
diophantine condition so far, is Brjuno’s condition:X 1

2k
Log.

1

�.2kC1/
/ <1;

where �.h/ D min fjhn; �ij;
P
ni 6 hg.

Under this condition it can be shown (Brjuno, [2]) that the normalization transform is
indeed analytic.

The classification problem for germs of diffeomorphisms goes along the same lines: we
consider a diffeomorphism ' at the origin of 0 in C� and we wish to conjugate it to its linear
part 'lin, with 'lin.x/ D .l1x1; : : : ; l�x�/. In that case, a resonance can be written as

l
m1
1 � � � l

m�
� � 1 D 0;

with the exponents .mi / as above: m D .m1; : : : ; m�/isinH . In the absence of resonance,
such a diffeomorphism is formally conjugate to its linear part, and this can be proved by the
same method as for fields.

Here also, we shall have to consider a strong non resonance condition, namely that no
relation of the above type vanishes, for any family of coefficients mi in Z.

Under the following diophantine hypothesis, it is known ([30]) that the linearizing trans-
form is analytic. X 1

2k
Log.

1

!.2kC1/
/ <1;

where !.h/ D min
˚
jl
m1
1 � � � l

m�
� � 1j;

P
mi 6 h

	
.

In dimension one, there is a unique tangent to identity formal diffeomorphism h that
conjugates a given diffeomorphism g W x �! �xC†gnx

n to its linear part gl , provided gl is
not a periodic rotation (the non resonant case), and its coefficients are given by an explicit
but already somewhat complicated recursive expression:

hn D
1

�n � �

24gn C n�1X
pD2

gp
X

j1C���CjpDn

hj1 � � � hjp

35 :
These formulas are of little help in directly proving the most delicate analytic linearization

results, already in the lowest dimension, let alone in dimension greater than 1.

As a remark, let us mention that the required calculations involving compositions of
diffeomorphisms are essentially of the same type when one is interested in classifications
of geometric structures with singularities. Consequently, the algebraic formalism developed
below can also be used for these problems, in cases where the complexity of the problem tends
to make other techniques inoperative (e.g., singular Poisson structures displaying resonances,
in a context of small denominators).

Although we consider as examples the cases of non-resonant germs of vector fields or
germs of diffeomorphisms, in any dimension at the origin of C, all the algebraic structures,
as well as Ecalle’s constructions that come into play by following these basic situations as
leading thread, are of a universal nature, as notably the Hopf algebra of Section 6.
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44 F. FAUVET AND F. MENOUS

3. Algebraic structures on the group G of tangent to identity diffeomorphisms

3.1. The Lie algebra g of formal vector fields

We consider now the group G of formal diffeomorphisms that are tangent to Identity at
the origin of C� :

G D f' D .'1; : : : ; '�/ W x D .x1; : : : ; x�/ 7�! x C h.o.t.g:

It is well-known that the groupG is the Lie group of the Lie algebra g of formal vector fields:

g D

(
X D

�X
iD1

Xi .x/@xi ; Xi .x/ 2 C>2ŒŒx��

)
;

where C>2ŒŒx�� denotes formal power series in the variables x D .x1; : : : ; x�/ of total valua-
tion greater than 1. Even if we deal with formal power series, the “geometric” interpretation
goes as follows: for a given vector field X , consider the differential system:8̂̂<̂

:̂
y01.t/ D X1.y1.t/; : : : ; y�.t//

:::

y0�.t/ D X�.y1.t/; : : : ; y�.t//;

with the initial conditions y.0/ D .y1.0/; : : : ; y�.0// D .x1; : : : ; x�/ D x. Even formally, the
solution at time t is given by y.t/ D 't .x/ where 't 2 G and 't ı 's D 'tCs . Namely, 't is
the flow of the vector field X , whose exponential is simply exp.X/ D '1.

This correspondence is bijective (X D log.'/) as we shall see in the following section. Note
that the computations are not so easy to handle but become clear, once diffeomorphisms are
interpreted through their action on formal power series.

3.2. The action of G and substitution automorphisms

From the definition of g it is easy to derive its action on a formal power series f , by the
chain-rule formula: .f .x.t///0 D .X:f /.x.t//. If X D

P�
iD1Xi .x/@xi ,

X:f D

�X
iD1

Xi .x/@xif;

as a vector field is a differential operator. Moreover, it is a derivation on CŒŒx�� since

X:.fg/ D .X:f /g C f .X:g/:

Similarly the natural action of a diffeomorphism ' on a series f is given by

.f C '/.x/ D .‚' :f /.x/ D f ı '.x/:

This defines a right action of the group G on the algebra CŒŒx�� and ‚' is the substitution
automorphism associated to ':

‚' :‚ :f D .f C  / C ' D ‚ ı' :f;

‚' :.fg/ D .fg/ C ' D .f C '/.g C '/ D .‚' :f /.‚' :g/:

Let us focus on such substitution automorphisms, since they are one of the key ingredients
to perform mould calculus.
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ALGEBRAIC ASPECTS OF ECALLE’S ARBORIFICATION 45

P 1. – Let QG be the subset of linear endomorphisms ‚, which are continuous
wrt the Krull topology of CŒŒx�� such that

1. ‚.x/ D ‚:x D '.x/ 2 G .
2. For any series f , g, ‚.fg/ D ‚:.fg/ D .‚:f /.‚:g/.

then QG is a group (the group of substitution automorphisms) and the (“evaluation”) map ev
defined by

ev.‚/ D ‚:x 2 G

is an anti-isomorphism of groups.

Proof. – The proof is straightforward: consider a monomial xn D x
n1
1 � � � x

n�
� . Because

of the second property,

‚:.xn/ D '
n1
1 � � �'

n�
� .‚:x D '.x/ D .'1.x/; : : : ; '�.x//:

By linearity and continuity,
‚:f D f ı ev.‚/

and the proposition follows, noticing that ev.‚1‚2/ D '2ı'1 (whence the anti-isomorphism
property).

In the sequel we shall identify G with QG when needed, taking advantage of the fact that
such substitution automorphisms, as vector fields in g, can be seen as differential operators:

P 2. – Let ' D x C u.x/ 2 G , then

ev�1.'/ D ‚' D IdCŒŒx�� C
X

n1C���Cn�>1
ni>0

1

n1Š � � �n�Š
u
n1
1 .x/ � � �u

n�
� .x/@

n1
x1
� � � @n�x� :

This is simply the Taylor formula:

‚' :f .x/ D f .x C u.x//

D f .x/C
X

n1C���Cn�>1
ni>0

1

n1Š � � �n�Š
u
n1
1 .x/ � � �u

n�
� .x/@

n1
x1
� � � @n�x�f .x/:

There is still some work to do to perform mould calculus, but one can already use this to
define explicitly the exponential of a vector field. If X 2 g, then, for any real number t , the
differential operator

‚t D exp.tX/ D IdC
X
s>1

t s

sŠ
X s

is a well-defined substitution automorphism and, if 't D ev.‚t /, it is the flow of the vector
field X . Conversely, for a given diffeomorphism ', if ‚ D ev�1.'/ is its substitution
automorphism, then ' is the flow at time t D 1 of the vector field

X D log.‚/ D log.IdC .‚ � Id// D
X
s>1

.�1/s�1

s
.‚ � Id/s :

We leave the proof to the reader (see also [20]).
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46 F. FAUVET AND F. MENOUS

3.3. Degrees and homogeneous components

Vector fields and diffeomorphisms are made of power series, namely series of monomials
xn D x

n1
1 � � � x

n�
� of degree n D .n1; : : : ; n�/, but what is relevant for such objects in the

context of normalization is not the degree, but the notion of homogeneous components related
to their action on monomials.

More precisely, a formal power series is given by

f .x/ D
X
n2N�

fnx
n;

where n D .n1; : : : ; n�/ 2 N� is the degree of xn D xn11 � � � x
n�
� and jnj D n1 C � � � C n� is its

total degree. Such monomial are very well adapted to the product of power series: if f .x/ DP
n2N� fnx

n and g.x/ D
P
n2N� gnx

n, then their product h.x/ D f .x/g.x/ D
P
n2N� hnx

n

is such that

hn D
X
kClDn

fkgl ;

but, for example, if one considers an elementary vector field Xi;n D xn@xi then

Xi;n:x
m
D mix

nCm�ei ;

where ei is the element of N� whose i th entry (resp. j th entry with j ¤ i ) is 1 (resp. 0).
Regarding its action on monomials such a vector field is “homogeneous” of degree � D n�ei
and this will be the right notion of degree for vector fields and diffeomorphisms. This suggests
the following notation: for 1 6 i 6 �, let

Hi D f� D n � ei ; n 2 N� ; jnj > 2g:

For any 1 6 i 6 � and � 2 Hi , j�j > 1 and any vector field X in g can be written

X D

�X
iD1

X
�2Hi

bi�x
�xi@xi D

X
�2H

X
i I�2Hi

bi�x
�xi@xi ;

where H D H1 [ � � � [H� . We will note

B� D
X
i I�2Hi

bi�x
�xi@xi D

X
i

bi�x
�xi@xi ;

assuming that the sum is restricted to the indices i such that � 2 Hi . With this notation,X is
decomposed in “homogeneous” components:

X D
X
�2H

B�;

where, for any n 2 N� and � 2 H , B�:xn is a monomial of degree nC� (resp. 0) if nC� 2 N�

(resp. nC � is not in N�).

On the same way, a diffeomorphism ' D .'1; : : : ; '�/ is given by � series

'i .x/ D xi

0@1C X
�2Hi

'i�x
�

1A
4 e SÉRIE – TOME 50 – 2017 – No 1



ALGEBRAIC ASPECTS OF ECALLE’S ARBORIFICATION 47

and if NH is the additive semigroup generated byH , then its associated substitution automor-
phism can be decomposed in homogeneous components

‚ D IdC
X
�2 NH

D�;

where

D� D
X
s>1

X
16i1;:::;is6�
�D�1C���C�s
�k2Hik

1

sŠ
'i1�1 � � �'

is
�s
x�Cei1C���Ceis @xi1

� � � @xis

with finite sums (for any given �), thanks to the fact that j�kj > 1 (thus s 6 j�j). This can be
seen using the Taylor expansion of f ı '.x/ and it gives a first flavor of mould calculus:

� If F D exp.X/ with X D
P
�2H B�, then

‚ D IdC
X
s>1

X
�1;:::;�s2H

1

sŠ
B�s � � �B�1 :

� If X D log.'/ with ‚' D IdC
P
�2 NH D�, then

X D
X
s>1

X
�1;:::;�s2 NH

.�1/s�1

s
D�s � � �D�1 :

These are in fact two examples of mould-comould expansions. We postpone now the defini-
tion and study of mould expansions that will be very useful to deal with linearization equa-
tions, namely when we conjugate a given dynamical system to its linear part. But such decom-
positions can also be used to get the Faà di Bruno formulas.

P 3. – Let ' and  in G and � D ' ı  , then for 1 6 i 6 �,

�i .x/ D xi

0@1C X
�2Hi

�i�x
�

1A ;
with, for � 2 Hi ,

�i� D '
i
� C  

i
� C

X
s>2

X
i1Di

16i2;:::;is6�
�D�1C���C�s
�k2Hik

1

.s � 1/Š
P
�1Cei
i2;:::;is

'i�1 
i2
�2
� � � is�s ;

where P �1Ceii2;:::;is
are integers, independant of ' and  .

Proof. – Let ' and  in G and � D ' ı  . We can write

‚' D IdC
P
�2 NH D�;

‚ D IdC
P
�2 NH E�;

where
D� D

P
s>1

P
16i1;:::;is6�
�D�1C���C�s
�k2Hik

1
sŠ
'
i1
�1 � � �'

is
�sx

�Cei1C���Ceis @xi1
� � � @xis ;

E� D
P
s>1

P
16i1;:::;is6�
�D�1C���C�s
�k2Hik

1
sŠ
 
i1
�1 � � � 

is
�sx

�Cei1C���Ceis @xi1
� � � @xis ;
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and �i .x/ D ‚� :xi D ‚'ı :xi D ‚ :‚' :xi . We get

‚ :‚' D IdC
X
�2 NH

D� C
X
�2 NH

E� C
X
�;�2 NH

E�D�:

Now, Id:xi D xi , D�:xi D 'i�x
�xi (resp. 0) if � 2 Hi (resp. � 62 Hi ) and E�:xi D  i�x

�xi
(resp. 0) if � 2 Hi (resp. � 62 Hi ) so it remains to compute E�D� :xi . This is zero as soon as
� 62 Hi and otherwise:

E�D� :xi D E�:.'i�x�Cei /
D 'i�E�:x�Cei

D 'i�

0B@Ps>1

P
16i1;:::;is6�
�D�1C���C�s
�k2Hik

1
sŠ
 
i1
�1 � � � 

is
�sP

�Cei
i1;:::;is

1CA x�C�Cei ;
where

P
�Cei
i1;:::;is

D x���eiCei1C���Ceis @xi1
� � � @xis x

�Cei 2 N:
This gives the announced formula.

We already have in this section the key ingredients to do mould calculus: with the help of
these results, we will see that computing a conjugating map will amount to the computation
of a character in a quite simple Hopf algebra (shuffle, quasishuffle or, after arborification-
coarborification, in the Connes-Kreimer Hopf algebra). But this Hopf algebraic structure is
already present when dealing directly with the coefficients of a diffeomorphism and gives rise
to the Faà di Bruno Hopf algebra.

3.4. From G to the Faà di Bruno Hopf algebra

3.4.1. A short reminder on Hopf algebras. – In the sequel we will deal with graded connected
Hopf algebras H . This means first that H is a graded vector space over C

H D
M
n>0

Hn;

where H0 � C. In order to get a graded Hopf algebra, H has to be a graded algebra with

1. a unit � W C! H0,
2. a product � W H ˝ H ! H ,

with the usual commutative diagrams that respectively expresses the unit and associativity
properties (see [23]) and such that �.Hn ˝ Hm/ � HnCm. It also has to be a coalgebra
with

1. a counit " W H ! C,
2. a coproduct � W H ! H ˝ H ,

with the corresponding commutative diagrams for the counit and coassociativity properties
respectively ([23]) and such that �.Hn/ �

L
06k6n Hk ˝ Hn�k .

With the compatibility relations between the algebra structure and the coalgebra struc-
ture, H becomes a bialgebra and the graded structure (with H0 � C) ensures that this is a
Hopf algebra: there exists an antipode, namely a linear map S W H ! H such that:

� ı .id˝ S/ ı� D � ı .S ˝ id/ ı� D � ı ":
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Once such a Hopf algebra is given, it induces an algebra structure on L .H ;C/. If u and v
are two linear forms, their convolution product is given by

u � v D �C ı .u˝ v/ ı�;

where �C is the usual product on C. Let us remember that among such morphisms, one can
distinguish

1. The characters (algebra morphisms) that form a group C .H / for the convolution, with
unit " and the inverse of a character � is given by � ı S .

2. The infinitesimal characters, that are the linear morphisms u vanishing on H0 and such
that

u ı � D �C ı .u˝ "C "˝ u/:

They form a Lie algebra c.H / for the Lie bracket Œu; v� D u � v � v � u.

As for vector fields and diffeomorphisms C .H / behaves as the Lie group of the Lie
algebra c.H / with the log and exp maps

exp�.u/ D "C
P
s>1

1
sŠ
u�

s
;

log�.�/ D
P
s>1

.�1/s�1

s
.� � "/�

s
:

It is in fact a proalgebraic group, namely an inverse limit of linear algebraic groups,
and the exp and log are computed as graded operators at the level of the homogeneous
components([9]).

We shall soon see that vector fields and diffeomorphisms can be identified to infinitesimal
characters and characters on a Hopf algebra, namely the Faà di Bruno Hopf algebra. But let
us first give a concrete example of graded connected Hopf algebra related to power series.

The coalgebra of coordinates of power series can be defined as follows, for n 2 N� , let us
consider the functional:

˛n W CŒŒx�� ! C
f .x/ D

P
n2N fnx

n 7! ˛n.f / D fn:

The graded vector space C D
L
k>0 Ck , where Ck D VectCf˛n; jnj D kg is a graded

cocommutative coalgebra for the coproduct induced by the product of series:

�˛n D
X
kClDn

˛k ˝ ˛l .˛n.f:g/ D �C ı .�˛n/.f ˝ g//

and the counit is given by ".˛0/ D 1 and ".˛n/ D 0 if jnj > 1. Thanks to this coalgebra
structure, the space L .C;C/ is a convolution algebra which is trivially isomorphic to CŒŒx��.
In order to define a Hopf algebra, let us consider the free commutative algebra generated
by f˛n; jnj > 1g. By adding a unit 1 (which identifies to ˛0 in the previous coproduct) and
extending the gradation and the previous coproduct to the product of functionals, one gets a
Hopf algebra H whose group of characters can be clearly identified to the group of invertible
series:

Ginv
D

8<:1C X
jnj>1

fnx
n; fn 2 C

9=; :
The same idea will govern the contruction of the Faà di Bruno Hopf algebra of coordinates
on the group G .
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3.4.2. The Faà di Bruno Hopf algebra. – The group G is associated to a graded connected
algebra. Let us first remind that

G D f'.x/ D x C u.x/; u 2 .C>2ŒŒx��/
�
g;

where x D .x1; : : : ; x�/ and u.x/ D .u1.x/; : : : ; u�.x// and we can note

'.x/ D .'i .x//16i6� D

0@xi
0@1C X

�2Hi

'i�x
�

1A1A
16i6�

:

A diffeomorphism in G is then given by its coefficients 'i�, where i 2 f1; : : : ; �g and � 2 Hi ,
and for any such couple .i; �/, one can define functionals on G :

C i� W G ! C
' 7! 'i�:

Following the same ideas as for Ginv, the Faà di Bruno algebra is the free commutative
algebra generated by the functionals C i� :

H FdB D CŒ.C i�/i2f1;:::;�g;�2Hi �:

Identifying C � H FdB to C:1, where 1 is the functional defined on G by 1.'/=1, it is clear
that H FdB acts on G , if P.: : : ; C i� ; : : :/ is a polynomial in H FdB, then

P.: : : ; C i� ; : : :/.'/ D P.: : : ; '
i
�; : : :/:

If we define a gradation by gr.1/ D 0 and

gr.C i1�1 � � �C
is
�s
/ D j�1j C � � � C j�sj;

then H FdB is a graded connected commutative algebra. Now, using the Faà di Bruno
Formulas 3, it is not difficult to define a coproduct on this algebra by the relation:

C i�.' ı  / D �C ı .�C
i
�/.' ˝  /

extended to CŒ.C i�/i2f1;:::;�g; �2Hi �. With this coproduct, H FdB is a graded connected Hopf
algebra.

Now, any diffeomorphism ' can be identified to the character (also noted ') on H FdB

defined by '.C i�/ D C i�.'/ so that G is clearly isomorphic to C .H FdB/ and, on the same
way, the Lie algebra g is isomorphic to c.H FdB/ (taking into account the due order reversal
in the formulas) . Note that the log - exp correspondence between G and g is exactly the
log� - exp� correspondence between C .H FdB/ and c.H FdB/ and the action of g and G
on CŒŒx�� corresponds to the coaction ˆ W C ! C ˝ H FdB defined by

˛n.f ı '/ D �C ıˆ.˛n/.f ˝ '/;

which is such that C is a H FdB-comodule coalgebra (cf [12]).

This algebraic work on diffeomorphisms and vector fields may not seem to help at the
present moment, but it will be useful in the sequel and one can already notice that lineariza-
tion equations correspond to equations for characters on H FdB.
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3.5. Characters and conjugacy equations

3.5.1. Vector fields. – Consider a vector field:

X.x/ D

�X
iD1

Xi .x/@xi

such that
Xi .x/ D �ixi C xi

X
�2H

ai�x
�
D �ixi C Pi .x/ .�i 2 C/:

This vector field can be seen as a perturbation of it linear part X lin D
P
�ixi@xi :

X D X lin
C P

and one would like to know if, through some formal or analytic change of coordinates
y D '.x/ (x D  .y/), the vector field can be conjugated to its linear part:

'�.X/ D X lin or  �.X lin/ D X D X lin
C P:

If this is the case, the latter equation reads, for 1 6 i 6 �,

X lin: i D Xi ı  D �i i C Pi ı  .x/;

so
X lin: i � �i i D Pi ı  .x/:

On one hand, if  i .x/ D xi
�
1C

P
�2H b

i
�x
�
�

, then

X lin: i � �i i D xi
X
�2H

h�; �ibi�x
�;

where, for � D .n1; : : : ; n�/ 2 H , h�; �i D �1n1 C � � � C ��n� . From the Hopf algebra point
of view, let r the derivation on H FdB defined by rC i� D h�; �iC

i
� (r1 D 0), then, if � is the

character associated to  , we have

X lin: i � �i i D
X
�2H

� ı r.C i�/x
�:

On the other hand, If u is the infinitesimal character on H FdB defined by u.C i�/ D ai�
(u.1/ D 0), then the conjugacy equation reads

8i; �; � ı r.C i�/ D .u � �/.C
i
�/

and, thanks to the fact that r is a derivation and u infinitesimal, the conjugacy equation
reads, on H FdB,

� ı r D u � �:

Of course, ' is given by the inverse � ı S of � in C .H FdB;C/.
In other words, one can associate to a vector field X D X lin C P an infinitesimal

character u, and this vector field is formally conjugated to X lin if and only if there exists
a character � such that the above equation holds. Moreover we have the very classical ([1])
result:

P 4. – If, for all � 2 H , h�; �i ¤ 0, X is formally conjugated to X lin.
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Proof. – The proof is recursive on the gradation of H FdB: let � D
P
n>0 �n, where �n

is the restriction to the nth component of H FdB. Note that, necessarily, �0 D ". Let us
suppose that, for a given n > 0, �0; : : : ; �n are well-defined and such that, for any monomial
C
i1
�1 � � �C

is
�s with gr.C i1�1 � � �C

is
�s / D j�1j C � � � C j�sj D k 6 n,

�.C i1�1 � � �C
is
�s
/ D �k.C

i1
�1
� � �C is�s / D �.C

i1
�1
/ � � ��.C is�s / D �j�1j.C

i1
�1
/ � � ��j�s j.C

is
�s
/:

Thanks to the definition of u, if C i� is in H FdB;nC1 (j�j D nC 1), then the equation reads

h�; �i�.C i�/ D � ı .u˝ �/.�.C
i
�//

D u.C i�/ C
X
s>2

X
i1Di

16i2;:::;is6�
�D�1C���C�s
�k2Hik

1

s � 1Š
P
�1Cei
i2;:::;is

u.C i�1/�.C
i2
�2
/ � � ��.C is�s /:

Since the right-hand side of this equation is recursively well-defined and h�; �i is nonzero,
�.C i�/ is uniquely determined. Now, if C i1�1 � � �C

is
�s is in H FdB;nC1 with s > 2, then, in order

to get a character, one must have

�.C i1�1 � � �C
is
�s
/ D �.C i1�1/ � � ��.C

is
�s
/:

But, for 1 6 i 6 s, j�i j 6 n and one can check that

u � �.C
i1
�1 � � �C

is
�s / D

Ps
tD1

�Q
r 6Dt �.C

ir
�r /
�
.u � �/.C

it
�t /

D
Ps
tD1

�Q
r 6Dt �.C

ir
�r /
�
h�; �t i�.C

it
�t /

D h�; �1 C � � � C �t i�.C
i1
�1 � � �C

is
�s /:

Thus, the equation determines a unique character on H FdB. Note, however, that we don’t
obtain in this algebra anything near a closed-form solution.

This is the non-resonant case. Note that in the above character equation, one only needs to
be able to compute the values �.C i�/ and assume that this is a character. Moreover, in H FdB,
if we have geometric estimates on the coefficients �.C i�/ then it is immediate to conclude on
the analyticity of the associated diffeomorphism. But, in this setting the difficulty lies in the
explicit computation of these coefficients, since the equation �ır D u�� involves the rather
complex coproduct of H FdB. As we are going to see next, the same work can be done for
diffeomorphisms, with the same difficulty in the computation.

3.5.2. Diffeomorphisms. – Let l D .l1; : : : ; l�/ 2 .C�/� and f lin defined by

f lin.x1; : : : ; x�/ D .l1x1; : : : ; l�x�/:

For a given analytic diffeomorphism f in G , the diffeomorphism f lin ı f can be seen as a
perturbation of f lin and one could ask if, at least formally, this map is conjugate to f lin. In
other words, does there exist a diffeomorphism ' 2 G such that

f lin
ı f ı ' D ' ı f lin

or

f ı ' D f lin�1
ı ' ı f lin:
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Now if � (resp. �) is the character associated to f (resp. ') then the equation reads

� � � D � ı �;

where �.1/ D 1 and �.C i1�1 � � �C
is
�s / D l�1C���C�s . Once again, it is well-known that if the

diffeomorphism f lin ı f is non-resonant, i.e.,

8� 2 H; l� � 1 ¤ 0;

then there exist a unique solution � (or '). Of course, the proof follows the same lines as for
vector fields.

In both cases, modulo a condition on the linear part, the conjugacy equation is solvable
and can be seen as an equation on characters of H FdB. Here again, it is in principle easy
to obtain the analyticity of a diffeomorphism, with the help of the values of the character,
provided that one can easily compute this character. But, because of the complexity of the
convolution (coproduct in H FdB), this computation is rather difficult.

The idea of mould calculus amounts to working in much simpler Hopf algebras, whose
coproduct is a deconcatenation coproduct. Then the price to pay is that:

1. One has to make some supplementary condition on the linear part, in order that all the
coefficients are well defined, namely,

8� 2 NH; h�; �i ¤ 0 or l� � 1 ¤ 0:

2. Analyticity becomes hidden.

We shall see below how arborification cures both plagues.

4. Mould calculus: a solution to the algebraic complexity of calculations

Moulds are just, in J. Ecalle’s own words, functions of a “variable number of variables”
(see Definition 2, below); they are endowed with a number of operations and symmetries
which yield a very rich and structured algebraic environment and we refer Ecalles’ founda-
tional papers, notably to the seminal paper [11] for a general perspective. In the present text,
however, it is in a pedestrian way that we introduce them and some of their basic construc-
tions; in this section we shall see how the objects called moulds are ushered in a natural
way for the explicit calculations involving normalizing transformations and we right away
connect their symmetry properties to some classical combinatorial (Hopf) algebras, moulds
being matched in this context with dual objects named comoulds. As we shall see, comould
manipulations will amount to calculations with ordinary differential operators in Cn and the
moulds involved will appear as linear forms on some well known algebras; no use of any
heavy formalism nor complicated terminology will be necessary along the way.

One of the most fundamental ideas of mould calculus is to consider diffeomorphisms ofG
as series of “homogeneous” differential operators. Focusing on linearization problems, one
starts either with

1. a vector field X D X lin C P where P , that belong to g, can be decomposed in
homogeneous components:

P D
X
�2H

B�;
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2. a diffeomorphism f lin ı f with f in G , whose substitution automorphism can be
written:

‚f D IdC
X
�2 NH

D�;

and one has to find a linearization diffeomorphism ' whose substitution automorphism can
also decomposed in homogeneous components

‚' D IdC
X
�2 NH

F�:

It is then natural to try a priori to express the components F� as (non commutative) polyno-
mials in the original components delivered by the data of the problem. For example, in the
case of vector fields:

‚� D
X
s>1

X
�1C���C�sD�

�i2H

M �1;:::;�sB�s � � �B�1 :

In such an expression, convenient properties of symmetry for the coefficients M will ensure
that ‚' is a substitution automorphism. Doing so, we have already roughly defined what
mould calculus is. Let us focus now on the Hopf algebras underlying this calculus.

4.1. Moulds and the concatenation algebra

In both types of conjugacy equations, one has to compute an element of G , or, equiva-
lently, a substitution automorphism that can be decomposed in homogeneous components.
But in both case the initial object already delivers homogeneous components. It seems then
reasonable to use them and their composition to compute the conjugating substitution auto-
morphism. This suggests to look at the following concatenation algebra: consider H or NH
as a graded alphabet. Let ; be the empty word. A word will be noted

� D .�1; : : : ; �s/:

The gradation can be extended to such words (with j;j D 0) and one can also define the
length of a word

l.�/ D l..�1; : : : ; �s// D s .l.;/ D 0/

and its weight
k�k D �1 C � � � C �s 2 NH .k;k D 0/:

D 1. – Let H be the set of such words (starting with H or NH), then the linear
span ofH , noted ConcH , is a graded unital algebra for the concatenation product:

8�1;�2 2 H ; �.�1 ˝ �2/ D �1�2;

where � D �1�2 is the usual concatenation of the words �1 and �2.

Thanks to the gradation, the graded dual of ConcH is a graded coalgebra ConcıH whose
coproduct is given, on the dual basis (identified toH ) by

�.�/ D
X

�1�2D�

�1 ˝ �2
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and the vector space L .ConcıH ;C/ is an algebra for the convolution product:

8u; v 2 L .ConcıH ;C/; u � v D �C ı .u˝ v/ ı�:

In fact, we just defined here the algebra of moulds:

D 2. – A mould on H (or NH) with values in C is a collection M � D fM �; � 2 H g

of complex numbers.

It is clear that moulds are in one-to-one correspondence with elements of L .ConcıH ;C/:
since H is a basis of ConcıH , a mould represents the values of an element of L .ConcıH ;C/
on the basisH : M � D �.�/ D fM � D �.�/; � 2 H g.

The set of moulds inherits the structure of algebra and for the product, ifM � and N � are
two moulds, their product P � DM � �N � is given by

P � D
X

�1�2D�

M �1N �
2

;

that corresponds to the convolution of the associated morphisms of L .ConcıH ;C/

4.2. The underlying Hopf algebras

4.2.1. Vector fields and associated shuffle Hopf algebra. – As we have seen before, a vector
field

X.x/ D

�X
iD1

Xi .x/@xi

such that
Xi .x/ D �ixi C xi

X
�2H

ai�x
�
D �ixi C Pi .x/ .�i 2 C/;

can be decomposed in homogeneous components

X D X lin
C

X
�2H

B�

with

B� D
�X
iD1

ai�x
�xi@xi :

Following Ecalle’s convention for the composition of operators, with the help of these
components, one can associate to any word in H a differential operator in CŒx; @x � acting
on CŒŒx�� by B; D IdCŒŒx�� and

8� D .�1; : : : ; �s/ 2 H =f;g; B� D B�s � � �B�1 :

The family B� D fB�; � 2 H g is called a comould and, from a more algebraic point of view,
we have the following:

P 5. – The map

� W ConcH ! CŒx; @x �
� 7! B�

defines an antialgebra morphism (considering the usual composition of differential operators).
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Note also that the action of CŒx; @x � on a product in CŒŒx�� defines a coproduct � W

CŒx; @x �! CŒx; @x �˝ CŒx; @x � defined by

8u; v 2 CŒŒx��; 8D 2 CŒx; @x �; D:.uv/ D �CŒŒx�� ı�.D/:.u˝ v/

and, as we deal here with vector fields,

8� 2 H; �.B�/ D IdCŒŒx�� ˝ B� C B� ˝ IdCŒŒx��:

This can be extended to the comould and, using

1. the morphism �,
2. the operators L�C onH , defined by

L
�
C..�1; : : : ; �s// D .�; �1; : : : ; �s/ .L

�
C.;/ D .�//

and extended by linearity to ConcH,

we get

T 1. – With the coproduct defined on the basisH of ConcH by�.;/ D ;˝; and

8� 2 H; 8� 2 H ; �.L�C.�// D .Id˝ L�C C L
�
C ˝ Id/ ı�.�/;

the algebra ConcH becomes a graded, cocommutative bialgebra, and thus a Hopf algebra whose
antipode is given by

8� 2 H ; S.�/ D .�1/l.�/rev.�/;

where rev.;/ D ; and rev..�1; : : : ; �s// D .�s; : : : ; �1/ otherwise. Moreover the morphism �

turns to be a coalgebra morphism and, in this case, the comould B� is said to be cosymmetral.

The proof is straightforward.

Going back to the given vector field X and the conjugating equation '�.X/ D X lin

becomes, in terms of substitution automorphism,

X:‚' D ‚' :X
lin:

And, since the vector field delivers a family (comould) of differential operators, it seems
reasonable to look for a substitution automorphism ‚' that can be written as a mould
expansion

‚' D
X
�2H

M �B�;

where M � D fM �; � 2 H g is precisely a mould, with the relevant conditions (symme-
trality) that ensure that ‚' is a substitution automorphism. More precisely, since ConcH

is a graded cocommutative Hopf algebra, its graded dual is a graded commutative Hopf
algebra, noted ShH (for shuffle Hopf algebra onH ) whose product (resp. coproduct) is given
by the usual shuffle product (resp. deconcatenation coproduct). But if we consider the group
of characters C .ShH;C/ then
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T 2. – The map

S� W C .ShH;C/! G

� 7! ev
�P

�2H �.�/�.�/
�

defines a morphism of groups and ‚� D
P
�2H �.�/�.�/ is the substitution automorphism

associated to S�.�/.

Note that moulds corresponding to such characters are called symmetral moulds.

Proof. – Thanks to gradation and homogeneity, it is clear that this defines a diffeomor-
phism of G . If � is a character, then for two power series u and v,

‚�:.uv/ D
X
�2H

�.�/�.�/:.uv/

D

X
�2H

�.�/�CŒŒx� ı .�.�.�//:.u˝ v/

D �CŒŒx� ı

0@.�˝ �/0@X
�2H

�.�/�.�/

1A1A :.u˝ v/
D

X
�;�1;�22H

�.�/h�.�/;�1 ˝ �2i.�.�1/:u/.�.�2//:v/

D

X
�;�1;�22H

�.�/h�; �ShH.�
1
˝ �2/i.�.�1/:u/.�.�2/:v/

D

X
�1;�22H

�.�ShH.�
1
˝ �2//.�.�1/:u/.�.�2/:v/

D

X
�1;�22H

.�.�1/.�.�1/:u/�.�2/.�.�2/:v/

D .‚�:u/.‚�v/;

thus ‚� is a substitution automorphism. Moreover, if �1 and �2 are two characters, then

‚�
1��2
D ‚�

2

:‚�
1

D ‚S�.�2/:‚S�.�1/ D ‚S�.�1/ıS�.�2/;

thus
S�.�

1
� �2/ D S�.�

1/ ı S�.�
2/:

Note that S�. C .ShH;C// maybe only be a subgroup of G but, in linearization equa-
tions, it is reasonable to look for the change of coordinate in this subgroup. Suppose that
'�.X/ D X lin (X:‚' D ‚' :X lin) where ' D S�.�/. If u is the infinitesimal character on ShH

defined by

u.�/ D

(
1 if l.�/ D 1

0 if l.�/ 6D 1;

then
X D X lin

C

X
�2H

u.�/�.�/
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and

X:‚' D X
lin:‚' C

X
�2H

� � u.�/�.�/ D ‚' :X
lin:

Since

ŒX lin;B�� D h�; �iB�;

we have

X lin:‚' �‚' :X
lin
D

X
�2H

.r�/.�/�.�/;

where

.r�/.�/ D h�; k�ki�.�/;

so that the conjugacy equation can be turned into a character equation

r�C � � u D 0:

For the inverse character �, corresponding to the inverse of the diffeomorphism, we get,

r� D u � �:

P 6. – Under the assumption that for any � in NH , h�; �i 6D 0, the above
equation determines a unique symmetral mould (character) whose values are

�.�1; : : : ; �s/ D
1

h�; �1 C � � � C �sih�; �2 C � � � C �si � � � h�; �si

and its inverse is given by

�.�1; : : : ; �s/ D
.�1/s

h�; �1ih�; �1 C �2i � � � h�; �1 C � � � C �si
:

The proof is straightforward. For example, �.;/ D 1 and, for � 2 H and � 2 H , the
equation reads

h�; �C k�ki�.L
�
C.�// D .u � �/.L

�
C.�/// D u.�/�.�/ D �.�/:

One can check that this is a character (symmetral mould) and � can be either computed
directly or as the inverse of the character �. In the latter case, since � is a character,

� D ��
�1

D � ı S;

where the antipode S in ShH is given by

S.�1; : : : ; �s/ D .�1/
s.�s; : : : ; �1/:

Now the same can be done for the linearization of diffeomorphisms.
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4.2.2. Diffeomorphisms and the associated quasishuffle Hopf algebra. – Once again, let
l D .l1; : : : ; l�/ 2 .C�/� and f lin defined by f lin.x1; : : : ; x�/ D .l1x1; : : : ; l�x�/. For a given
analytic diffeomorphism f in G , the diffeomorphism f lin ı f can be seen as a perturbation
of f lin and one could ask if, at least formally, this map is conjugated to f lin. In other words,
does there exist a diffeomorphism ' 2 G or ' 2 G ana such that

f lin
ı f ı ' D ' ı f lin:

If we define on CŒŒx�� the operator F lin by F lin:u D u ı f lin, then the equation becomes

F' :Ff :F
lin
D F lin:F' :

As for vector fields, the substitution automorphimsFf is a series of homogeneous differential
operators:

Ff D IdCŒŒx�� C
X
�2 NH

D�

and, as in the previous section, the map

� W Conc NH ! CŒx; @x �
� D .�1; : : : ; �s/ 7! D� D D�s � � �D�1

defines an algebra antimorphism (with �.;/ D D; D IdCŒŒx��). Now the main difference with
vector fields is that the definition of � is based on homogeneous components of a substitution
automorphism, for which we have:

8� 2 NH; �.D�/ D IdCŒŒx�� ˝ D� C
X

�1C�2D�

D�1 ˝ D�2 C D� ˝ IdCŒŒx��:

But if we define �.;/ D ;˝ ; and, for � 2 NH ,

�..�// D ;˝ .�/C
X

�1C�2D�

.�1/˝ .�2/C .�/˝ ;;

then, extending this coproduct to Conc NH , we get

T 3. – With this coproduct, the algebra Conc NH is a graded, cocommutative bial-
gebra, and thus a Hopf algebra. Moreover the morphism � is a coalgebra morphism.

The proof is quite trivial since this Hopf algebra is the graded dual of a classical
quasishuffle Hopf algebra noted QSh NH (for quasishuffle Hopf algebra on NH , see [19]) whose
product (resp. coproduct) is given by the usual quasishuffle product (resp. deconcatenation
coproduct). And, once again,

T 4. – The map

S� W C .QSh NH ;C/! G

� 7! ev
�P

�2H �.�/�.�/
�

defines a morphism of groups and F � D
P
�2H �.�/�.�/ is the substitution automorphism

associated to S�.�/.

The proof is the same as above. Once again a mouldM � D fM �; � 2 H g defines a linear
map from QSh NH to C and this mould is
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� symmetrel if the associated morphism is in C .QSh NH ;C/,
� alternel if the associated morphism is in c.QSh NH ;C/.

Going back to the linearization equation

‚' :‚f :‚
lin
D ‚lin:‚'

with

‚f D IdCŒŒx�� C
X
�2 NH

D�:

1. f D S�.�/ where � is the character defined by �.;/ D 1 and, for s > 1,

�..�1; : : : ; �s// D

(
1 if s D 1

0 if s > 2:

2. If there exists a character � such that

(2) � ı � D � � � .�.�/ D lk�k�/;

then ' D S�.�/ is a solution to the linearization equation. Finally, we have the following:

P 7. – Under the assumption that for any � in NH , l� 6D 1, the above equation
determines a unique symmetral mould (character) whose values are

�.�1; : : : ; �s/ D
1

.l�1C���C�s � 1/.l�2C���C�s � 1/ � � � .l�s � 1/

and its inverse is given by

��
�1

.�1; : : : ; �s/ D
.�1/s

.l�1 � 1/ � � � .l�1C���C�s�1 � 1/.l�1C���C�s � 1/
:

These have been known for a long time, using mould calculus (see [11]). As for vector
fields, we have �.;/ D 1 and, for � 2 H and � 2 H , the equation for the linearization
character reads:

l�Ck�k�.L
�
C.�// D .� � �/.L

�
C.�/// D �.�/�.�/C �.L

�
C.�// D �.�/C �.L

�
C.�//:

One can check that this is a character (symmetrel mould) and ��
�1

can be either computed
directly or as the inverse of the character �. In the latter case, since � is a character,

��
�1

D � ı S

and the antipode in QSh NH is also given by

S.�1; : : : ; �s/ D .�1/
s

X
�D.�1����t /

.k�tk; : : : ; k�1k/

(the sum involves all the decompositions of the sequence � by concatenation of non-empty
subsequences �i ).
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4.3. Analyticity and the need for some intermediate Hopf algebras

To sum up the previous sections, under some algebraic condition on � or l , one can
perform the linearization with the help of a formal diffeomorphism, whose substitution
automorphism is given by a character � :

‚' D
X
�2H

�.�/�.�/:

Under some classical diophantine condition, we shall prove below that such characters have
a geometric growth, meaning that an estimate of the following type is satisfied (C being a
constant):

j�.�/j 6 C gr.�/;

so that one could hope that the associated diffeomorphism will be analytic. However, this
kind of estimates are not sufficient. The reason is the following: if

'i .x/ D xi

0@1CX
�2H

ai�x
�

1A ;
then

xia
i
�x
�
D

X
k�kD�

�.�/�.�/:xi

and the coefficient in �.�/:xi tends to grow factorially with the length of �, an inevitable
feature if we try to bound by brute force the size of the composition of r ordinary differential
operators: some r ! factors appear. For example, in dimension 1,

.t2@t /
r :t D .r � 1/Št rC1:

But, on the other hand, this does not mean that the diffeomorphism is divergent: many terms
contribute to a same power of x and some compensations may arise. Indeed this is the case
and, surprisingly, this compensation phenomenon can be taken into account, using the so-
called arborification-coarborification process which, algebraically, relies on the use of the
Connes-Kreimer Hopf algebra, as we shall see next.

In fact, the situation can profitably be described as such:
– Direct calculations at the level of diffeomorphisms immediately translate into recursive

relations in the Faà di Bruno Hopf algebra, which are difficult to solve because the coproduct
in H FdB is a complicated one, a complexity that mirrors the Faà di Bruno formula for the
computation of the nth coefficient of the composition of 2 formal series.

– Mould-comould expansions, on the contrary, lead to simple equations for moulds (be
that in the symmetral or the symmetrel case); this simplicity is itself an image of the simplicity
of the coproducts of the shuffle or quasishuffle Hopf algebras. These equations yield in fact
closed-form expressions for the sought moulds, which are surprisingly explicit.Yet, when one
wants to go beyond the formal level, to eventually get analytic transformations, these expres-
sions are too coarse: although its is usually relatively easy to prove geometric growth esti-
mates based on the explicit mould formulas, the inevitable factorial growth that composing
differential operators brings along, is an obstacle to convergence.

There is thus a need for some intermediate Hopf algebra for which the calculations are still
tractable, yet efficient enough to yield analytic functions when needed. This is exactly what
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arborification-coarborification does and, in terms of Hopf algebras, the decorated Connes-
Kreimer algebra will then rather naturally enter the stage.

5. Arborification-Coarborification

5.1. Hopf algebras of trees

We use here the results and notations developed in [8], [13] and [14]. A (non-planar) rooted
treeT is a connected and simply connected set of oriented edges and vertices such that there is
precisely one distinguished vertex (the root) with no incoming edge. An alternative definition
can be given in terms of posets containing a smallest element, and for which each element has
at most one predecessor. A forest F is a monomial in rooted trees. Let l.F / be the number
of vertices in F . Using the setH we can decorate a forest, that is to say that, to each vertex v
of F , we associate an element h.v/ ofH . We note T H (resp. F H ) the set of decorated trees
(resp. forests) that contains the empty tree noted ;. In fact there is a natural equivalence
relation for trees, two trees being equivalent iff there is an automorphism of decorated posets
that sends one to the other. It is rather the set of equivalent classes of trees that is denoted
by T H , using a traditional abuse of language. As for sequences, if a forest F is decorated
by �1; : : : ; �s (l.F / D s), we note

kF k D �1 C � � � C �s 2 NH; gr.F / D gr.�1/C � � � C gr.�s/:

For example, if

T D
�1

�2 �3

�4

then l.T / D 4 and kT k D �1 C �2 C �3 C �4.

Let us also recall that, for � inH , the operatorBC� associates to a forest of decorated trees
the tree with root decorated by � connected to the roots of the forest: BC� .;/ is the tree with
one vertex decorated by � and for example:

(3) BC�

�
�1

�2 �3

�4

�5

�6 �
D

�

�1

�2 �3

�4

�5

�6

:

The linear span CKH of F H is a graded commutative algebra for the product

�.F1 ˝ F2/ D F1F2

and the unit ;. Moreover, with the coproduct � given by induction by �.;/ D ; ˝ ;,
�.T1 � � �Tk/ D �.T1/ � � ��.Tk/ and

�.BC� .F // D B
C
� .F /˝ ;C .Id˝ BC� / ı�.F /;

CKH is the Connes-Kreimer Hopf algebra of trees decorated by H .
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There exists a combinatorial description of this coproduct (see [13]). For a given tree
T 2 T H , an admissible cut c is a subset of its vertices such that, on the path from the root
to an element of c, no other vertex of c is encountered. For such an admissible cut, P c.T / is
the product of the subtrees of T whose roots are in c and Rc.T / is the remaining tree, once
these subtrees have been removed. With these definitions, for any tree T , we have

�.T / D
X

adm cut

P c.T /˝Rc.T /:

For example,

�
�

�1

�2 �3 �
D

�1

�2 �3

˝ ; C �3 ˝
�1

�2

C �2 ˝
�1

�3

C �2 �3 ˝ �1 C ; ˝
�1

�2 �3

:

R 1. – One admissible cut will not yield all the possible subtrees, in the sense of
connected subgraphs, of a given tree T . The subtrees t we get are such that

– either t has the same root as T (t will be called a rooted subtree),
– or t is a complete subtree, that is containing a vertex of T and all its descendants in T .

For instance, the tree
�1

�2 �3

is a subtree of the tree on the right of formula (3) which

cannot be obtained after one admissible cut.

Once again we can consider the convolution algebra L .CKH ;C/ and any morphism u of
this algebra is given by its values on the basis F H . The definitions of arborescent moulds
can then be rephrased:

D 3. – An arborescent mould M �
<

on H with values in C is a collection of
complex numbers fMF 2 C; F 2 F H g.

Such arborescent moulds are in one to one correspondence with the elements of L .CKH ;C/
and the product of such moulds corresponds to the convolution of the associated linear
morphism.

Note that

1. a character on CKH defines a separative mould M �
<

, i.e.,

M T1���Ts DM T1 � � �M Ts .andM ; D 1/;

2. an infinitesimal character on CKH defines a antiseparative mouldM �
<

, i.e., for s > 2,

M T1���Ts D 0 .andM ; D 0/:

Since the coproduct is not as trivial as before, the convolution and inversion of characters are
not so easy to handle. Nonetheless, we get partial but useful formulas for “root” characters,
namely characters vanishing on forests T1 � � �Ts such that at least one of the trees Ti as more
than one vertex. For such a character �, we have

8u 2 L .CKH ;C/; 8T D BC� .F / 2 T H ; .u � �/.T / D u.T /C u.F /�.��/;
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and one can deduce that for any tree T decorated by �1; : : : ; �s (l.T / D s)

��
�1

.T / D .�1/l.T /�.��1/ � � ��.��s /:

The graded dual of CKH will play a crucial role in the sequel and is strongly related to the
Grossman-Larson Hopf algebra GLH (see [17], [18], [28], [19] and [33]). The algebra GLH is
the linear span of rooted trees whose vertices (except the root) are decorated byH (see [14]):
using 0 to note the absence of decoration, any such tree can be written BC0 .F / where F is
in F H .

Let F D T1 � � �Tk 2 F H and T0 2 BC0 .F H /, the product of BC0 .F / and T0 in GLH
is defined as follows: for any sequence s D .s1; : : : sk/ of vertices of T0 (with possible
repetitions), let .T1; : : : ; Tk/ ıs T0 be the tree of BC0 .F / obtained by identifying the root
of BC0 .Ti / with the vertex si in T0. The product � in GLH is then defined by

BC0 .T1 � � �Tk/:T0 D
X
s

.T1; : : : ; Tk/ ıs T0

and the unit is BC0 .;/. The coproduct is given by

�.BC0 .T1 � � �Tk// D
X

I�f1;:::;kg

BC0 .TI /˝ B
C
0 .Tf1;:::kg�I /;

where I is any subset of f1; : : : ; kg and TI D
Q
i2I Ti .

For a forest F in F H we remind that the symmetry factor of F is defined by:

1. s..�// D 1;
2. s.BC� .F // D s.F /;
3. s.T a11 � � �T

ak
k
/ D s.T1/

a1 � � � s.Tk/
aka1Š � � � ak ! if T1,. . . ,Tk are distinct rooted trees.

This factor s.F / is the cardinal of the group of automorphisms of the decorated poset F .
We have the following result, which is by now a classical one, and for which various proofs

are available ([14], [21], [28], [19], [33]).

L 1. – The map � from GLH to CKıH defined by �.BC0 .F // D sF F defines an
isomorphism of graded Hopf algebras between GLH and CKıH .

5.2. Homogeneous coarborification

In each case (Vector Fields or Diffeomorphisms), the initial object defines a morphism �

from ShıH or QshıH to CŒx; @x � which is a coalgebra morphism and an algebra antimorphism
that allows to compute some diffeomorphisms as characters on ShH or QshH . We will
essentially follow the same lines but with a morphism �< from CKıH to CŒx; @x �. Starting
with this map �, one can define, using Ecalle’s homogeneous coarborification the following
linear morphism:

D 4. – The linear morphism �< from CKıH to CŒx; @x � is defined on its linear
basis by the following rules

1. �<.;/ D Id.
2. If T D BC� .F / is a non empty tree, then

�<.T / D

�X
iD1

.�<.F /:.�.�/:xi //@xi :
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3. If F D T1 � � �Ts with s > 2, then

�<.F / D
1

d1Š � � � dkŠ

X
16i1;:::;is6�

.�<.T1/:xi1/ � � � .�
<.Ts/:xis /@xi1

� � � @xs ;

where F D T1 � � �Ts is the product of k distinct decorated trees, with multiplicities
d1; : : : ; dk (d1 C � � � C dk D s).

From this recursive definition, one already sees that the differential operator �<.F / is of
order r.F / (number of roots) and of homogeneity kF k. Thanks to the order of �<.F /, this
morphism is a coalgebra morphism and we have in fact the following:

T 5. – �< is a Hopf morphism.

Proof. – The proof is based on the following result of Grossman and Larson (see [33],
[31]): Let � the map from GLH to CŒx; @x � defined by

1. �.BC0 .;// D Id.
2. If T D BC0 .t/ where t D BC� .t1 � � � ts/ is a tree of F H , then

�.T / D

�X
iD1

.�.BC0 .t1 � � � ts//:.�.�/:xi //@xi :

3. If T D BC0 .t1 � � � ts/ (s � 2), then

�.BC0 .t1 � � � ts// D
X

16i1;:::;is6�

.�.BC0 .t1//:xi1/ � � � .�.B
C
0 .ts//:xis /@xi1

� � � @xis :

Then � is a Hopf morphism (the differential operators thus recursively defined are also
known as elementary differentials in the literature on B-series, etc). One can convince oneself
with the following example where:

T1 D
0

�1

T2 D
0

�2 �3

; �.T1 ˝ T2/ D
0

�1�2�3

C
0

�3 �2

�1

C
0

�2 �3

�1

:

We have:

�.T1/ D

�X
i1D1

.�.�1/:xi1/@xi1
; �.T2/ D

�X
i2;i3D1

.�.�2/:xi2/.�.�3/:xi3/@xi2
@xi3

and, using Leibniz rule,

�.T1/:�.T2/ D
�P�

i1D1
.�.�1/:xi1/@xi1

� �P�
i2;i3D1

.�.�2/:xi2/.�.�3/:xi3/@xi2
@xi3

�
D

�P�
i1;i2;i3D1

.�.�1/:xi1/.�.�2/:xi2/.�.�3/:xi3/@xi1
@xi2

@xi3

C
P�
i1;i2;i3D1

�
.�.�1/:xi1/.@xi1

.�.�2/:xi2//
�
.�.�3/:xi3/@xi2

@xi3

C
P�
i1;i2;i3D1

.�.�2/:xi2/
�
.�.�1/:xi1/.@xi1

.�.�3/:xi3//
�
@xi2

@xi3

�

D �
�

0

�1�2�3 �
C �

�
0

�3 �2

�1

�
C �

�
0

�2 �3

�1

�
:
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But, thanks to the recursive definition of �<, � and �, we have �< D � ı ��1 and, since both
� and ��1 (see [13, 14]) are Hopf morphisms, so is �<.

Note that the construction of � was given by Grossman and Larson only for the case of
a family of derivations, which would exactly correspond here to the homogeneous compo-
nents B� of a vector field. In the case of the homogeneous components D� of a diffeomor-
phism, this corresponds to the construction of Grossman and Larson for the vector fields:

E� D
�X
iD1

.D�:xi /@xi :

This means that the construction of the morphism �< only depends on the operators

�<.��/ D

�X
iD1

.�.�/:xi/@xi .here, the bullet designates a one vertex tree/

but the origin of � (Vector field or diffeomorphism) reappears in the relations between �
and �<:

� In the shuffle case (Vector fields), we have, for �1 2 H ,

�..�1// D B�1 D �
<.��1/:

� In the Quasishuffle case (Diffeomorphisms), if f 2 G is given by

fi .x/ D xi

0@1CX
�2H

ai�x
�

1A
then

‚f D IdCŒŒx�� C
X
s�1

X
.�1;:::;�s/2H

s

16i1;:::;is6�

1

sŠ
ai1�1 � � � a

is
�s
x�1C���C�sxi1 � � � xix@xi1

� � � @xis

and

�..�// D
X

.�1;:::;�s/2H
s

�1C���C�sD�

X
16i1;:::;is6�

1

sŠ
ai1�1 � � � a

is
�s
x�1C���C�sxi1 � � � xix@xi1

� � � @xis ;

but, for � 2 NH , one easily sees that

�..�// D
X

FD��1 �����s
kF kD�
�i2H

�<.��1 � � � ��s /:

As in Section 3, we have

T 6. – The map

S�< W C .CKH ;C/! G

� 7! ev
�P

F �.F /�
<.F /

�
defines an antimorphism of groups and‚� D

P
F �.F /�

<.F / is the substitution automorphism
associated to S�.�/.
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This is a presentation of Ecalle’s arborification/coarborification apparatus, within a
framework of Hopf algebras.

As we will see below, these series have many advantages in linearization problems:

� Modulo a restriction to a subalgebra of CKH (and of its graded dual), strong assump-
tions on the spectrum will become unnecessary.

� There is a very simple criterion on characters � in C .CKH ;C/ that ensures the analyt-
icity of S�<.�/.

Moreover, the previous computations of characters on ShH or QshH were not useless: in
many cases their computation is easier, thanks to the simplicity of the convolution product,
and for example, once such a character � on ShH or QshH is given in closed-form expression,
one can easily derive a closed-form form expression for the character �< on CKH such that

S�<.�
</ D S�.�/:

5.3. Arborification

For the deconcatenation coproduct on ShH or QshH , if L�C.�/ D ��, then

� ı L
�
C D 1˝ L

�
C C .L

�
C ˝ Id/ ı�:

We thus have the cocycle property, and the morphism ˛ such that

˛ ı BC� D L
�
C ı ˛

is a coalgebra antimorphism from CKH to ShH or QshH ([13]).

It is the fact that CKH is an initial object in a category of coalgebras, for a certain
cohomology (dual to Hochschild cohomology of algebras) that ensures the existence of the
morphism ˛, which is a morphism of Hopf algebras. We shall not expand on this (as shown
by Foissy, the cohomology groups vanish in degree > 2), yet it is satisfactory to have such a
simple algebraic characterization of arborification through a universal property of Connes-
Kreimer’s algebra, which is an important object in its own right.

We shall now see how to recover the same diffeomorphism using ˛: going back to our
conjugacy equations, the change of coordinates, in both cases, is given by a substitution
automorphism

‚ D
X
�

�.�/�.�/;

and to any such character�we have associated an arborified character�< D �ı˛. We should
try to use this new character on CKH to rearrange the above series and finally get some
analyticity properties. To do so, let us use the new Hopf algebra morphism �< from CKıH
to CŒx; @x �:

‚ D
X
�

�.�/�.�/ D
X
F

�<.F /�<.F /:
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But then X
F

�<.F /�<.F / D
X
F

�.˛.F //�<.F /

D

X
F

�

 X
�

h�; ˛.F /i�

!
�<.F /

D

X
�;F

�.�/h�; ˛.F /i�<.F /

D

X
�

�.�/
X
F

h�; ˛.F /i�<.F /

D

X
�

�.�/
X
F

h˛ı.�/; F i�<.F /

D

X
�

�.�/�<.˛ı.�//

so that it appears indeed highly desirable to have such morphisms as �< that fulfills the
relation

�< ı ˛ı D �:

The choice of �< is not unique but the map defined in Section 5.2 works and it is that
particular choice which has been called [11] the natural (or homogeneous) coarborification
and which is adapted to the analytic study of F .

T 7. – We have
�< ı ˛ı D �:

Proof. – � and ˛ı are coalgebra morphisms and algebra antimorphisms and �< is a Hopf
morphism, so �< ı ˛ı and � are coalgebra morphisms and algebra antimorphisms.

In the shuffle case (Vector fields), since ShıH is freely generated by the words of length 1,
it is sufficient to check that both morphisms coincides on these words. But ˛ı..�1// D ��1

thus
�..�1// D B�1 D �

<.��1/ D �< ı ˛ı..�1//:

The same proof holds in the quasishuffle case: if f 2 G is given by

fi .x/ D xi

0@1CX
�2H

ai�x
�

1A ;
then

‚f D IdCŒŒx�� C
X
s�1

X
.�1;:::;�s/2Hs
16i1;:::;is6�

1

sŠ
ai1�1 � � � a

is
�s
x�1C���C�sxi1 � � � xix@xi1

� � � @xis

and

�..�// D
X

.�1;:::;�s/2Hs
�1C���C�sD�

X
16i1;:::;is6�

1

sŠ
ai1�1 � � � a

is
�s
x�1C���C�sxi1 � � � xix@xi1

� � � @xis :
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But for � 2 NH , one easily sees that

�..�// D
X

FD��1 �����s
kF kD�
�i2H

�<.��1 � � � ��s /

D �<.˛ı..�//

and this terminates the proof.

R 2. – The mechanism of arborification of moulds has in effect been indepen-
dently rediscovered by Ander Murua in [27], involving Connes-Kreimer Hopf algebra, for
efficient calculations involving Lie series in problems of control theory; in that paper, the
author is then also lead to coarborification by considering the graded duals, and going thus
to the Grossman-Larson algebra.

In the reverse direction, Wenhua Zhao (see [33], [31], [32]) has for his part rediscovered the
constructions of coarborification and then obtained in effect the mechanisms of arborifica-
tion by dualizing and going to CK. Notably, Zhao’s results concern in fact both plain and
contracting arborification.

More recently, the universal property of CK has also been used (in the non decorated case)
in the same way as in our presentation, for a factorization of characters of the quasishuffle
algebra in [3].

It must be stressed, however, that the crucial properties for the analyst come after these
general constructions: namely the existence of closed-form expressions for the arborified
moulds, which make it possible to obtain the necessary estimates, as we shall see below.

A very striking instance, though, where an independent approach has exactly lead to
arborification, once translated in terms of characters of the relevant Hopf algebras, and
includes for the applications a crucial closed-form is [15]. Finally, in several very recent
works in the algebraic theory of non-linear control (see [22] and the references therein) some
particular characters of the same class of Hopf algebras we are involved with in the present
work show up, which translate into moulds of constant use in Ecalle’s papers.

5.4. Some examples

5.4.1. The shuffle case. – For the tree

t D
�1

�2 �3

�4

we get
˛.t/ D .�1�2�3�4/C .�1�3�2�4/C .�1�3�4�2/:

Under the strong assumption on the spectrum (the �i are independant over the integers), for
the character � given by

�.�1; : : : ; �s/ D
1

h�; �1 C � � � C �sih�; �2 C � � � C �si � � � h�; �si
;
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a simple computation yields:

�<.t/ D �.˛.t// D
1

h�; �1 C �2 C �3 C �4ih�; �2ih�; �3 C �4ih�; �4i
:

For this character, even if the evaluation of �< on a tree involves evaluation of � on many
sequences, there exists finally a surprisingly simple formula for �<:

P 8. – Let f be a tree with s vertices decorated by �1; : : : ; �s . For 1 6 i 6 s

if ti is the (complete) subtree of f whose root is labelled by �i , then

�<.f / D

sY
iD1

1

h�; ktiki
:

The reader can check this formula on the previous example where

t1 D
�1

�2 �3

; t2 D �2; t3 D
�3

�4

; t4 D �4:

Proof. – This result can be proved recursively on the number s of vertices (i.e., the size of
the forest). For forests of size 1, this formula is obvious.

If f is a forest of size s > 2 with at least two trees: f D t1 � � � tn (n > 2), then

�<.f / D �<.t1/ � � � �
<.tn/;

but the size of each tree is less than s and we get by recursion the right formula.

If t is a tree of size s > 2, then t D BC� .f / and

�<.t/ D �.˛.BC� .f // D �.L
�
C.˛.f ///;

but, for any sequence �,

�.L
�
C.�// D

1

h�; �C k�ki
�.�/;

thus

�<.t/ D �.L
�
C.˛.f /// D

1

h�; ktki
�.˛.f // D

1

h�; ktki
�<.f /

and, once again, we get recursively the right formula.

5.4.2. The quasishuffle case. – For the tree

t D
�1

�2 �3

�4

we get

˛.t/ D .�1; �2; �3; �4/C.�1; �3; �2; �4/C.�1; �3; �4; �2/C.�1;�2C�3; �4/C.�1; �3; �2C�4/:

Under the strong assumption on the spectrum, for the character � given by

�.�1; : : : ; �s/ D
1

.l�1C���C�s � 1/.l�2C���C�s � 1/ � � � .l�s � 1/
;
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a simple computation yields:

�<.t/ D �.˛.t// D
1

.l�1C�2C�3C�4 � 1/.l�2 � 1/.l�3C�4 � 1/.l�4 � 1/
:

The same proof as before gives

P 9. – Let f be a tree with s vertices decorated by �1; : : : ; �s . For 1 6 i 6 s

if ti is the (complete) subtree of f whose root is labelled by �i , then

�<.f / D

sY
iD1

1

.lktik � 1/
:

Once again the formula is surprisingly simple and as we shall see in the following section,
if we have “geometric” estimates on such an arborified character we will prove the analyticity
of the associated diffeomorphism.

But we still have to work with strong assumptions on the spectrum. We will circumvent
this difficulty using the following remarks:

1. One can obtain the above formula without arborification by translating directly the
linearization equations as character equations on CKH .

2. We will then prove that, in order to define the corresponding diffeomorphism, it is
sufficient to compute a character on a sub-Hopf algebra of CKH were the sought
character is well-defined under the weak assumption on the spectrum.

6. Back to linearization

6.1. Equations for characters of CKH

As in Section 3, if
X D X lin

C

X
�2H

B� D X lin
C P;

with X lin D
P
16i6� �ixi@xi , the vector field P is given by the infinitesimal character u

on CKH :

u.f / D

(
1 if f D ��
0 otherwise:

That is to say:
X D X lin

C

X
�2H

B� D X lin
C

X
f 2FH

u.f /�<.f /:

The diffeomorphism ' that linearizes X (X lin:F' D F' :X ) can be obtained as ' D S�<.�/

where � is a character on CKH such that

r� D � � u;

where
.r�/.f / D h�; kf ki�.f /:

It is then easy to check directly on this equation that if h�; �i ¤ 0 for any � in NH , this
character is uniquely defined and is given by proposition 8.
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On the same way, for a diffeomorphism f lin ı f where

Ff D IdC
X
�2 NH

D�;

the character � on CKH given by

�.f / D

(
1 if f D ��1 � � � ��s
0 otherwise

is such that

Ff D
X

f 2FH

�.f /�<.f /;

and if � is a character such that

� ı � D � � � .�.f / D lkf kf /;

then ' D S�<.�/ is such that

f lin
ı f ı ' D ' ı f lin:

Once again, if, for any � 2 NH , l� ¤ 1, then � is well-defined and is given by proposition 9.

We still have the strong condition because, in order to compute such characters on a
forest f , one has to divide by h�; kf ki or lkf k � 1 and kf k runs over NH . But, as we shall
see, when considering a substitution automorphism

F D
X

f 2FH

�.f /�<.f /;

there are many forests f such that �<.f / D 0. Omitting these terms in the series defining F ,
one can consider that f runs over a subset F CH of F H which is the linear basis of a sub-Hopf
algebra CKCH of CKH . We will thus be able to consider the previous character equations
on CKCH and there will exist a unique solution as soon as h�; �i ¤ 0 or l� � 1 ¤ 0 for
all � in H .

6.2. The non-resonance condition and the subalgebras of CKH

The attempted sub-Hopf algebra CKCH , is indeed a polynomial algebra over trees in a
subset T

C

H � T H which is defined recursively on the number of vertices.

D 5. – Let T
C;1
H be the set of trees T with one vertex (l.T / D 1) such that

kT k 2 H . For l � 2, the sets T
C;l
H are defined recursively as follows. A tree T is in T

C;l
H if

and only if:

1. T has l vertices,
2. kT k 2 H ,
3. for any nontrivial any admissible cut .Rc.T /; P c.T //, that is Rc.T / D T0 6D ; and
P c.T // D T1 � � �Ts 6D ;, the trees T0; T1; : : : Ts are in

Sl�1
kD1 T

C;k
H .

We note T
C

H D
S
k�1 T

C;k
H and F CH the set of forests of such trees.
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It is readily checked that CKCH , as a polynomial algebra, is a subalgebra of CKH but,
thanks to point 3 in the recursive definition of T

C

H , for any tree in CKCH ,

�.T / D
X

adm cut

P c.T /˝Rc.T / 2 CKCH ˝ CKCH ;

thus CKCH is a sub-Hopf algebra of CKH . In order to reach the weak condition in lineariza-
tion problems, one can also notice that any (rooted or complete) subtree t of a tree T 2 T

C

H

is also in T
C

H (and consequently ktk 2 H ) since such a subtree is obtained through an admis-
sible cut of T . Moreover:

T 8. – If a forest F in F H does not belong to F CH , then

�<.F / D 0:

Proof. – Starting with a diffeomorphism or a vector field, it is clear that for � 2 H , the
image of the one node tree decorated by � is:

�<.�/ D

�X
iD1

ui�x
�Cei @xi ;

where ui� 2 C. For any forest F D T1 � � �Ts in F H , �<.F / is an endomorphism of CŒx� such
that

�<.T1 � � �Ts/ D
X

16i1;:::;is6�

P
i1;:::is
F .u/xkF kCei1C���Ceis @xi1

� � � @xis ;

where the coefficients P i1;:::isF .u/ are polynomials in the variables u D fui�g with coefficients

in QC (P i1;:::isF .u/ 2 QCŒu�). Thanks to Definition 4, if s � 2 andF D T1 � � �Ts is the product
of k distinct decorated trees, with multiplicities d1; : : : ; dk (d1 C � � � C dk D s), we get

(4) P
i1;:::is
F .u/ D

1

d1Š � � � dkŠ
P
i1
T1
.u/ : : : P

is
Ts
.u/:

With this remark, we are ready to prove the theorem recursively on the number of vertices
of F 2 F H n F CH . For l � 1, let

El D fF 2 F H n F CH I l.F / � lg:

Since E1 is empty, the theorem is true for any forest in E1. Let us suppose now that, for a
given l � 1, the theorem is true for any element ofEl and consider a forest with lC1 vertices
in F H n F CH . There are three cases to consider:

1. Either F D T1 : : : Ts 62 F CH with s � 2,
2. or F is a tree T and kT k 62 H ,
3. or F is a tree T , kT k 2 H but there exists a nontrivial admissible cut .Rc.T /; P c.T //

such that Rc.T / 62 F CH or P c.T / 62 F CH .

In the first case, at least one of the trees, say T1 (with l.T1/ � l) is not in F CH . This means
that T1 2 El thus

�<.T1/ D

�X
iD1

P iT1.u/x
kT kCei @xi D 0:

In other words, P iT1.u/ D 0 for any 1 6 i 6 � and, thanks to Equation 4, �<.F / D 0.
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In the second case, F is a tree T in T H such that kT k 62 H . This means that, for any
1 6 i 6 �, kT k C ei 62 N� . But

�<.T / D

�X
iD1

P iT .u/x
kT kCei @xi ;

with
P
i
T .u/x

kT kCei D �<.T /:xi 2 CŒx�

and, since xkT kCei is not in CŒx�, for 1 6 i 6 �, P iT .u/ D 0 and �<.T / D 0.

It remains to look at the third case. There exists a nontrivial admissible cut .Rc.T /; P c.T //
with Rc.T / or P c.T / in El : One can deduce that either �<.Rc.T // D 0 or �<.P c.T // D 0

thus,
�<.P c.T //:�<.Rc.T // D 0 D �< ı �.P c.T /˝Rc.T //;

where � is the product in CKıH , dual to the coproduct of CKH . But thanks to the definition
of this coproduct

�.P c.T /˝Rc.T // D cT CQ;

where c 2 N� and Q is a combination of forests with coefficients in N. For 1 6 i 6 �,

�<.P c.T //:�<.Rc.T //:xi D cP
i
T .u/x

kT kCei C �<.Q/:xi D 0

D .cP
i
T .u/CQ

i .u//xkT kCei D 0:

This means that the polynomial cP iT .u/CQ
i .u/ is zero but, since it is a linear combination

(with positive coefficients) of polynomials in QCŒŒu��,

P
i
T .u/ D Q

i .u/ D 0

and finally �<.T / D 0.

This ends the recursive proof since any forest F in ElC1 is such that �<.F / D 0.

This means that, if p is the projection of CKH on CKCH or of CKıH on CKCıH defined by

8F 2 F H ; p.F / D

(
0 if F 62 F CH

F if F 2 F CH ;

then �< ı p is still a Hopf algebra morphism. Moreover, for any character � on CKH or
CK NH , � ı p is a character on CKCH andX

F

�.F /�<.F / D
X
F

�.p.F //�<.p.F // D
X

F 2CKC
H

�.F /�<.F /:

In other words, in the linearization equation, one can look for a substitution morphism
given by a character on CKCH and this one is well-defined as soon as we have the weak non-
resonance condition.

It is easy to see that any subtree of a given tree T can be obtained from T through at
most two admissible cuts. The recursive definition of T

C

H then ensures that any subtree t
of a given tree T 2 T

C

H is also in T
C

H and thus has its weight ktk in H . We can state
the following proposition (suggested by one referee of this paper) that can be used as an
alternative definition of T

C

H :
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P 10. – The set T
C

H is the set of trees T such that, for any subtree T 0 of T ,
kT 0k 2 H .

As observed above, any subtree of a tree T 2 T
C

H has this property and the converse
is proved by induction on the number of vertices: for trees with one vertex, this property
coincides with Definition 5. Otherwise, consider a tree T such that, for any subtree T 0 of T ,
kT 0k 2 H . In particular, kT k 2 H and for any non trivial admissible cut c of T , with
P c.T / D T0 and Rc D T1; : : : ; Ts , as any subtree t of T0; : : : ; Ts is also a subtree of T ,
we have ktk 2 H . Using the induction hypothesis, T0; : : : ; Ts belong to T

C

H and thus T is
in T

C

H .
The Hopf algebra CKCH , which does not appear in the literature, is the relevant object one

has to use, in order to recover the usual results on formal linearization:

1. It works with the classical conditions on the spectrum; no extra assumption is needed.
2. The diffeomorphism is expressed by a character which is given without ambiguity.

It remains to prove that CKCH is also extremely well-suited to consider the analyticity of
such a diffeomorphism. In other words, the Hopf algebra CKCH is the right algebra to deal
with questions of convergence in linearization problems (and in fact also in more general
normalization problems, in situations involving resonances).

6.3. Majorant series and analyticity

Using majorant series, it is easy to see that

G ana D f' D .'1; : : : ; '�/ 2 G I 'i .x/ 2 Cfxgg

is a subgroup ofG and this still holds for many subsets of diffeomorphisms whose coefficients
satisfy some particular estimates (see [26]).

T 9. – Let B D fB� 2 RC; � 2 H g be a set of submultiplicative estimates: for all
�; �1; �2 in H such that � D �1 C �2, B�1B�2 6 B� D B�1C�2 . Let GB be the subset of G of
diffeomorphisms ' such that there exists A > 0 and

81 6 i 6 �;8� 2 Hi ; j'
i
�j 6 B�A

j�j:

Then GB is a subgroup of G .

The complete proof can be found in [26]. It relies on majoring series: let '.x/ D xCu.x/
in G , we say that  .x/ D x C v.x/ is a majorant series of ' (' �  ) if,

81 6 i 6 �;8� 2 Hi ; j'
i
�j 6  i�:

For a given set B and A > 0, let  B;A be the diffeomorphism such that C i�. B;A/ D B�A
j�j.

It is clear that  B;A is in GB and ' belongs to GB if and only if there exists A > 0 such that

' �  B;A:

Now the proof of the theorem relies on classic estimates that gives:

1. If '1 �  B;A1 and '2 �  B;A2 then there exists A3 > 0 such that '1 ı '2 �  B;A3 . In
other words, GB is stable under the composition of diffeomorphisms.

2. If'1 �  B;A1 then there exists A2 > 0 such that 'ı
�1

1 �  B;A2 and this finally proves
that GB is a subgroup.
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Note that the analytic subgroup corresponds to GB with,

8� 2 H; B� D 1:

Now, using the same ideas as in [26], one easily gets that

T 10. – Suppose that, the map �<, restricted to CKCıH is such that:

�<.��/ D
X
16i6�

ui�x
�xi@xi ;

with jui�j 6 B�A
j�j for some A > 0. If � is a character on CKCH such that, for all forests

F 2 CKCH ,

j�.F /j 6 C gr.F /;

then the diffeomorphism ' such that

‚' D
X

F 2CKC
H

�.F /�<.F /

is in GB .

Proof. – If we consider

u.x/ D .u1.x/; : : : ; u�.x//;

where

ui .x/ D xi C
X
�2H

�<.��/:xi D xi C
X
�2Hi

ui�x
�xi ;

then u �  B;A D v. We note �u D �< and �v the similar morphism such that

�v.��/ D
X
16i6�

vi�x
�xi@xi :

For any forest F D T1 � � �Ts in F CH , we have once again

�u.T1 � � �Ts/ D
X

16i1;:::;is6�

P
i1;:::is
F .u/xkF kCei1C���Ceis @xi1

� � � @xis ;

where the coefficients P i1;:::isF .u/ are polynomials in the variables u D fui�g with coefficients

in QC (P i1;:::isF .u/ 2 QCŒu�). Since the coefficients of such polynomials are non-negative, it
is clear that

jP
i1;:::is
F .u/j 6 P

i1;:::is
F .v/;

and, if

'.x/ D ‚' :x D
X

F 2CKC
H

�.F /�u.F /:x;

we have

'.x/ �
X

F 2CKC
H

j�.F /j�v.F /:x �
X

F 2CKC
H

C gr.F /�v.F /:x D �.x/ 2 G :
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The map � defined on CKCH by �.F / D C gr.F / is a character and it is easy to check that its
inverse is defined by

��
�1

.F / D

8̂̂<̂
:̂
1 if F D ;

.�1/sC gr.F / if F D ��1 � � � ��s
0 otherwise:

This means that

�ı
�1

.x/ D
X

F 2CKC
H

��
�1

.F /�u.F /:x

D x C
X
�2H

��
�1

.��/�v.��/:x

D x �
X
�2H

C gr.�/�v.��/:x

D 2x �

0@x CX
�2H

C gr.�/�v.��/:x

1A
D 2x �

1

C
v.Cx/:

As v is in GB , so is �ı
�1

and, since GB is a group, we have

'.x/ � �.x/ 2 GB

and ' is in GB .

The previous argument is a systematization of a process that was introduced by one of us
(FM), and implemented in 2 previous papers ([25], [26]), regarding respectively non-linear
q-difference equations and “Birkhoff decomposition” in spaces of Gevrey series.

6.4. Growth estimates for the arborified moulds

In order to give a nontrivial application, we show how Brjuno’s classical result on
linearization for non resonant fields can be obtained, once we match the previous estimate
on the comould side with another one, regarding the geometric growth of the arborified
mould.

We start with the vector field case and we denote by M �
<

the arborescent mould corre-
sponding to the character �, for which a closed-form expression was obtained above.

In order to avoid technicalities in diophantine approximation, in the present work which
is focussed on algebraic constructions, we shall consider vector fields which satisfy the
following strong version of Brjuno’s diophantine condition:X 1

2k
Log.

1

�.2kC1/
/ <1;

where �.h/ D �.h/ D min fjhn; �ij; ni 2 Z; jhn; �ij > 0and
P
ni 6 hg.

Note that, since � is decreasing, the above condition is equivalent to the condition:

S D
X 1

2k

ˇ̌̌̌
Log.

1

�.2kC1/
/

ˇ̌̌̌
<1
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P 11. – The arborified mould M �
<

has a geometric growth: there exists a
constant K such that for any decorated forest F , we have jMF j 6 Kgr.F /.

All proofs of normalization results under Brjuno’s arithmetical condition rely at some
point on an key estimate, usually known as a “Brjuno’s counting lemma” (see e.g., the
classical paper by J. Poeschel [29] for a particularly clear exposition of this, in the case of
diffeomorphisms). The proof of the previous proposition will unsurprisingly also crucially
depend as well on a version of a counting lemma which we give below. In the form that we
use here, the estimate is proved in the paper [5], for the version of the lemma that is relevant
in the case of diffeomorphisms). The paper [16], for example, explains the way trees appear
naturally in this context; it is then straightforward to translate the version of the counting
lemma for fields which is contained in Brjuno’s seminal paper in the language of trees.

Note however that our presentation is different and totally independent of the one used
in [16] and [5] but it is the very same counting argument that is crucial, as in any other proofs
of results involving Brjuno’s condition. The proof of the proposition itself will simply consist
in regrouping subtrees in “slices” that are determined by a total weight comprised between
two successive values of �.2l /.

L 2. – (Tree version of “Brjuno’s counting lemma”)
Let F a decorated forest with r vertices and let s D gr.F / (we consider here only forests

such that h�; kF ki ¤ 0). If, for any nonnegative integer k, Nk.F / is the number of complete
subtrees t of F that satisfy the following inequality:

1

2
�.2kC1/ 6 h�; ktki <

1

2
�.2k/;

then

Nk.F / 6

(
0ifs < 2k

2� s

2k
� 1if2k 6 s:

Let us now consider a forest F with r vertices decorated by �1; : : : ; �r . Let s D gr.F / and
let l be the integer such that 2l 6 s < 2lC1. The closed-form expression of the mould (see
Proposition 8) is given by:

MF
D

rY
iD1

1

h�; ktiki
;

where, for 1 6 i 6 r if ti is the complete subtree of F whose root is labelled by �i .
We immediately obtain:

jMF
j 6

lY
kD0

�
2

�.2kC1/

�Nk.F /
D 2r

lY
kD0

�
1

�.2kC1/

�Nk.F /
:

Thanks to the previous lemma, for indices k 6 l , Nk.F / 6 2� s

2k
thus

jMF j 6 2r exp
�Pl

kD0Nk.F /Log. 1

�.2kC1/
/
�

6 2r exp
�Pl

kD0 2�
s

2k

ˇ̌̌
Log. 1

�.2kC1/
/
ˇ̌̌�

6 2r exp.2�sS/ 6 C gr.F /

with C D 2 exp.2�S/.
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The case of diffeomorphisms is settled in exactly the same way. We denote by N �
<

the
linearizing mould that corresponds to the character �, and we have the following:

P 12. – The arborified mould N �
<

has a geometric growth: there exists a
constant D such that jNF j 6 Dgr.F /.

The proof goes along the same lines as for vector fields, using instead the following closed
form:

NF
D

rY
iD1

1

e2�ih�;ktiki � 1
;

where, for 1 6 i 6 r , ti is the complete subtree ofF whose root is labelled by �i , and applying
the relevant counting lemma as in [5].

6.5. The analytic normalization scheme with CKCH

Let us recollect now the scheme for linearizing a non resonant dynamical system, using
the Hopf algebra CKCH :

1. We express the equation regarding the normalizing substitution automorphism as an
equation on characters of CKCH .

2. We solve this equation, obtaining this way a well-defined character, even for forests
displaying “fake resonances” for some of their subtrees.

3. We prove some geometrical growth estimate for this character, by using the Diophan-
tine hypothesis on the spectrum.

4. We match this with the geometric growth for the comould part in the expansion.
5. We obtain a convergent series of operators, which makes it possible to conclude to the

analyticity of the transformation thus constructed.

So in fact, strictly speaking, we don’t need to arborify moulds, we can work from the outset
at the arborescent level, and directly at the level of the algebra CKC, which is the one that
underlies all the computations, and for which no fake obstruction remains. However, plain
(i.e., non arborescent) moulds are nevertheless very useful because it is usually easier to guess
a closed-form expression for them, before proving that their arborescent counterparts also
have a closed-form of the same kind (and this is a very general phenomenon for the use of
arborification, cf [25] and [26]).

To dispell any idea that the scheme we have described in the present text is too special
and only limited to giving a new proof of already well known results achieved by common
methods, let us indicate 2 directions:

– A natural question is the linearization of nonresonant dynamical systems for data of
various classes of regularity. In [5], the author proved new results of linearization for diffeo-
morphisms or vector fields which are formal series with Gevrey growth estimates, under a
Brjuno condition. It is straightforward to get the same results with the mould apparatus,
using the approach detailed in the present text. The algebraic constructions are exactly the
same, all the results on the mould side can be used unchanged, the only supplementary
thing is to show the geometric growth for the comould part, adapted to spaces of Gevrey
series, instead of analytic ones, which is easy. Now, the point is that in order to go beyond
such results performed on formal spaces of series with some growth conditions, to tackle the
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same question for functional spaces, e. g. data which are summable in one variable, or multi-
summable, or resurgent, the same scheme remains valid in the mould/comould formalism,
whereas under other approaches would require ad hoc estimates that would be quite difficult
to prove.

– Next we can consider the question of normalization of resonant local dynamical
systems; there, linearization is generically not possible using formal series, but there are
simple normal forms and the normalizing series are generically divergent ([24], [11]). The
substitution automorphisms for the normalizing transformations can be expressed by
mould/comould expansions, where the moulds take their values in some algebra R of
resurgent functions [11]. In the presence of diophantine small denominators, the arborifi-
cation/coarborification machinery is used in the same way as in the present paper; in this
Hopf-algebraic presentation, arborification is a factorization of characters from CK to
the (commutative) algebra R and the comould constructions are exactly the same (and
CKC plays an important role, there, too). All the constructions and theorems are already
in Ecalle’s foundational papers, but with arguments that are very concise; the presentation
we give yield easy proofs of algebraic properties of the arborification formalism and makes
it possible to connect it to some very recent work in algebraic combinatorics. Applications
of arborescent moulds go much further than its original domain of application, namely
irregular singularities of local dynamical systems: Stochastic Processes, in particular the
theory of rough paths is one striking example (see in particular Section 4.2 of [15], where
the concept of extension is exactly the factorization of characters as we have formulated it;
see also [10]); the fast expanding algebraic theory of non-linear control theory, with Hopf
algebraic formulations of (Lie–)Butcher series is another one ([22]).

7. Conclusion

Ecalle’s mould-comould formalism has been in the present text given a presentation
in terms of some Hopf algebras (Faà di Bruno, shuffle, quasishuffle, Connes-Kreimer,
Grossman-Larson...) which are by now standard objects in algebraic combinatorics. In
this way, symmetral moulds appear as characters of a decorated shuffle Hopf algebra, and
symmetrel ones as characters of a quasishuffle one. Next we have shown that arborification
(resp. contracting arborification) of moulds is the outcome of a factorization of characters,
by using a universal property satisfied by Connes-Kreimer Hopf algebra.

Then, going to the graded duals, we have been able to characterize the fundamental
process of homogeneous coarborification in a simple way, and consequently easily obtaining
justifications of its properties, by building on known facts regarding Grossman-Larson Hopf
algebra.

We have introduced a subalgebra of the decorated Connes-Kreimer algebra which underlies
the calculations of normalization of analytic dynamical systems at singularities. Namely,
computing a normalizing transformation will amount to finding a character of this algebra,
which satisfies a particular equation that directly comes from the normalization relation
itself. In the present paper, we have illustrated the method by the well-known problem of
linearization of non-resonant dynamical systems in any dimension, in the presence of small
denominators. In problems involving resonances together with small denominators, the same
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Hopf-algebraic apparatus governs the calculations and the only thing that changes is that
the characters are not scalar any more but take their values in relevant algebras of resurgent
functions.
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