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R. C A. W

G. C G. W

E. K

Rédaction / Editor

Annales Scientifiques de l’École Normale Supérieure,
45, rue d’Ulm, 75230 Paris Cedex 05, France.

Tél. : (33) 1 44 32 20 88. Fax : (33) 1 44 32 20 80.
annales@ens.fr

Édition / Publication Abonnements / Subscriptions

Société Mathématique de France Maison de la SMF
Institut Henri Poincaré Case 916 - Luminy

11, rue Pierre et Marie Curie 13288 Marseille Cedex 09
75231 Paris Cedex 05 Fax : (33) 04 91 41 17 51

Tél. : (33) 01 44 27 67 99 email : smf@smf.univ-mrs.fr
Fax : (33) 01 40 46 90 96

Tarifs

Europe : 519 e. Hors Europe : 548 e. Vente au numéro : 77 e.

© 2017 Société Mathématique de France, Paris

En application de la loi du 1er juillet 1992, il est interdit de reproduire, même partiellement, la présente publication sans l’autorisation
de l’éditeur ou du Centre français d’exploitation du droit de copie (20, rue des Grands-Augustins, 75006 Paris).
All rights reserved. No part of this publication may be translated, reproduced, stored in a retrieval system or transmitted in any form or
by any other means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the publisher.

ISSN 0012-9593 Directeur de la publication : Stéphane Seuret
Périodicité : 6 nos / an



Ann. Scient. Éc. Norm. Sup.

4 e série, t. 50, 2017, p. 345 à 355

THE CANONICAL MEASURE ON A REDUCTIVE
p-ADIC GROUP IS MOTIVIC

 J GORDON  D ROE

A. – Let G be a connected reductive group over a non-Archimedean local field. We
prove that its parahoric subgroups are definable in the Denef-Pas language, which is a first-order
language of logic used in the theory of motivic integration developed by Cluckers and Loeser. The
main technical result is the definability of the connected component of the Néron model of a tamely
ramified algebraic torus. As a corollary, we prove that the canonical Haar measure onG, which assigns
volume 1 to the particular canonical maximal parahoric defined by Gross in [9], is motivic. This result
resolves a technical difficulty that arose in [4] and [12, Appendix B] and permits a simplification of some
of the proofs in those articles. It also allows us to show that formal degree of a compactly induced
representation is a motivic function of the parameters defining the representation.

R. – Soit G un groupe algébrique réductif connexe sur un corps local non-archimédien.
Dans ce papier, nous démontrons que ses sous-groupes parahoriques sont définissables dans le langage
de Denef-Pas, qui est le langage utilisé dans la théorie d’intégration motivique de Cluckers et Loeser.
Notre résultat principal établit que la composante connexe du modèle de Néron d’un tore modérément
ramifié est définissable. Ce résultat implique que la mesure canonique sur G (qui donne le volume 1
à un sous-groupe parahorique spécifique, défini par Gross [9]), est une mesure motivique. Ce résultat
permet une simplification de quelques preuves dans [4] et [12, Appendix B]. Finalement, nous montrons
que le degré formel des représentations supercuspidales dans une famille paramétrique est une fonction
motivique des paramètres.

1. Introduction

The goal of this paper is to complete a technical step in the definable formulation of the
representation theory of p-adic groups, a project started by T.C. Hales in 1999. Here, the
word “definable” is as in the theory of motivic integration developed by R. Cluckers and
F. Loeser [7].

Specifically, we will prove that the parahoric subgroups of a connected reductive p-adic
group are definable using the Denef-Pas language, which is the language used in the Cluckers-
Loeser theory of motivic integration and its applications to representation theory of p-adic
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346 J. GORDON AND D. ROE

groups. As a consequence, we prove that the canonical Haar measure on a connected reduc-
tive group (which assigns the volume 1 to the canonical parahoric subgroup constructed by
B. Gross [9]) is motivic.

For unramified groups, this statement has been known for a while [6]. For ramified groups,
the definition of the canonical smooth model of G relies on the Néron model of a maximal
torus in G, which does not behave well with respect to Galois descent. The main technical
result of this paper is that the connected component of the Néron model of a tamely ramified
torus is definable in the language of Denef-Pas. The difficulty in proving this result is caused
by the fact that “taking the connected component” is not an operation that can be easily
described by first-order logic.

This paper is split into two sections, the first leading up to Proposition 3, which shows that
the connected component of the Néron model of a torus is definable, and the second giving
applications to canonical measures and formal degrees.

We begin Section 2 by setting up notation and briefly reviewing the Denef-Pas language.
In order to give formulas defining T.F / and T

ı
. OF / (where T

ı denotes the connected
component of the Néron model of the torus T) in this language, we need to parameterize the
possible tori T. In Section 2.1, we describe the choices that can be made without reference
to variables in F , such as fixing an abstract Galois group � and a lattice with action of �
which will play the role of the cocharacter lattice of T. Section 2.2 then parameterizes field
extensions with Galois group �, resulting in a parameterization of tori over F . Finally, in
Section 2.3 we show that T

ı
. OF / is a definable subgroup of T.F /. In Section 3 we prove

two easy corollaries mentioned above, namely, that the canonical measure is motivic, and in a
definable family of compactly-induced irreducible representations, formal degree is motivic.

Acknowledgment. – We thank Loren Spice for the discussion of formal degree, and the
referee for multiple helpful suggestions and corrections.

2. Tori

We will use the notions of definable sets and definable functions, which will always refer
to the Denef-Pas language. Formulas in the Denef-Pas language can have variables of three
sorts: valued field (which will be denoted by VF), residue field (denoted by RF) and the value
group. Even though we will often be working with ramified extensions, we always start with a
local field F with normalized valuation, so the value group is Z (the VF-variables will range
over F , and so their valuations will be in Z). Formulas in the Denef-Pas language can be
interpreted given a choice of a valued field together with a uniformizer. We refer the reader to
[5] and references therein for the definitions of the Denef-Pas language, definable sets, etc.

For us, F will always be a non-Archimedean local field: either Fq..t// or a finite extension
of Qp. As a consequence of the definition of a definable set, all statements in this paper will
hold for any F of sufficiently large residue characteristic p, though we will give no effective
bound on p. Given an integer M > 0, we will denote by LocM the collection of non-
Archimedean local fields with residue characteristic greater than M .

For a local field F , we will denote its ring of integers by OF , its residue field by kF ,
and let qF D #kF . The symbol $ or $F will stand for the uniformizer of the valuation
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CANONICAL MEASURE IS MOTIVIC 347

on F . A formula in the Denef-Pas language with n free VF-variables, m free RF-variables,
and r free Z-variables defines a subset of F n � kmF � Zr . We will denote the definable set
F n � kmF �Z

r itself by VFn �RFm �Zr . In earlier works on motivic integration this set was
denoted by hŒn;m; r�. We will talk about definable subsets of VFn �RFm �Zr , meaning the
subsets defined by Denef-Pas formulas with the right number of free variables of each sort,
as above. For a definable subset X � VFn � RFm � Zr , and given a local field F , we will
denote by X.F / the specialization of X in F , i.e., the subset of F n � kmF � Zr obtained by
interpreting in F all the formulas defining the set X . (1)

We start by setting up the framework for working with tori in the Denef-Pas language,
following [6], [4] and [8].

2.1. Fixed choices

As in [8, §2.1], we begin by outlining our fixed choices, which are made before writing
any formulas in the Denef-Pas language. For each fixed choice (which will be completely
field-independent), we will further describe a definable set of parameters (which will then be
allowed to range over a valued field F , its residue field kF or Z), in such a way that each tuple
of parameters gives rise to an algebraic torus defined over F , and all isomorphism classes of
algebraic F -tori arise via this construction.

We fix a finite group � and a normal subgroup I E �, as well as enumerations of their
elements � D f�1; : : : ; �mg and I D f�1; : : : ; �eg. We make the convention that �1 D 1

and �m generates (2) �=I . When we eventually construct a torus T from the fixed choices
and corresponding parameters, these groups will play the roles of Gal.E=F / and its inertia
subgroup, where E is the splitting field of T.

In order to define a torus T, we will use the equivalence of categories between F -tori and
free Z-modules with a Galois action. To this end, we fix a positive integer n and an injective
homomorphism

(1) � W � ,! GLn.Z/;

which gives Zn an action of �. The �-module X defined by � will play the role of X�.T/.

Finally, we fix a resolution ofX by an induced �-module Y , i.e., a surjective map Y ! X

where Y has a basis permuted by � (cf. [3, Satz 0.4.4]). To specify Y , we just give the matrix
for the map Y ! X of free abelian groups, together with the matrices giving  W Y ! Y

for  2 �. This resolution will allow us to definably cut out the connected component of the
Néron model inside T.F /.

2.2. Parameterizing field extensions and tori

We encode field extensions in the same way as in [4]. Namely, we parameterize Galois
extensions E=F with Gal.E=F / Š � and realize all tori over F that split over E with
cocharacter lattice X . This parameterizes such tori as members of a family of definable sets,
for all F of sufficiently large residue characteristic.

(1) This is the notation used in [8]; note that traditionally in the motivic integration literature, the specialization of
a definable setX was denoted byXF , but this notation generates too many subscripts for us.
(2) Note that we do not assume that �m is the Frobenius element, since p is not fixed.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



348 J. GORDON AND D. ROE

We will write L for the maximal unramified subextension of E=F . In order to encode the
data of the extension towerE=L=F , we let f D m=e and introduce parameters b0; : : : ; bf �1,
ranging over OF . We set b.x/ D xfCbf �1xf �1C� � �Cb0. Similarly, we introduce parameters
c0; : : : ; ce�1, ranging over L (i.e., each is given by an f -tuple of elements of F ) and set
c.y/ D ye C ce�1y

e�1 C � � � C c0.

We impose the following conditions on these parameters, all of which are definable by
formulas in the Denef-Pas language.

1. The reduction of b.x/modulo$F is irreducible over kF . This ensures thatF Œx�=.b.x//
is a degree f unramified field extension of F . We denote this extension byL, and once
and for all fix an identification with F f as an F -vector space.

2. The polynomial c.x/ is Eisenstein: ordL.c0/ D 1 and ordL.ci / � 1 for all i . We
further assume that the resulting extension E D LŒx�=.c.x// is Galois over F . We fix
an identification ofE withLe asL-vector spaces, and thus withFm asF -vector spaces.

3. The field automorphisms of E over F , as specified by m � m matrices over F , form
a group isomorphic to �. We will write �i for the matrix as well as the corresponding
element of �.

4. The automorphisms �1; : : : ; �e fix L, and the restriction of �m to L has order f .

We denote by E � the space of parameters .b0; : : : ; bf �1; c0; : : : ; ce�1; �1; : : : ; �m/ with these
properties, thought of as a definable subset of some large affine space over F . For each local
field F , every element of E � gives rise to a tower of field extensions E=L=F with Gal.E=F /
isomorphic to � and satisfying all the above conditions. The homomorphism � of (1) then
defines a torus T over F with cocharacter lattice X that splits over E. More precisely, the
set E� ˝ X can be encoded as an open and definable subset of an affine space over F
depending only on the fixed choices X and m. The group � acts on E� by means of the
matrices �i and on X via the fixed choice � , and thus it acts on E� ˝X as well. This action
is definable, in the sense that every element of � acts by a definable map, and therefore the
set T.F / D T.E/� is definable as well.

Note that different parameters in E � may yield isomorphic extensions, but that every
isomorphism class of E=F with Galois group � arises from some element of E � . Moreover,
as � ranges over all homomorphisms � ,! GLn.Z/, (3) all possible cocharacter lattices of
tori of dimension n appear. Therefore every F -torus arises via this construction, since it is
determined by its splitting field and cocharacter lattice viewed as a �-module.

E 1. – Suppose � D I D Z=2Z and n D 1; note that � is uniquely determined
in this case. For p > 2, the two ramified quadratic extensions of F appear as members
of the same family, one for the polynomial c.x/ D x2 � $ , another for the polynomial
c.x/ D x2� �$ , where � 2 O�F is a non-square. Recall that the interpretation of formulas in
the Denef-Pas language depends not just on the field, but also on the choice of uniformizer.
In this case, a different choice of the uniformizer would swap these two extensions, but both
would still appear. The torus T is the the one-dimensional unitary group that splits over E.

(3) There are infinitely many choices of � but we never quantify over them; instead, we work with each such fixed
choice separately.

4 e SÉRIE – TOME 50 – 2017 – No 2



CANONICAL MEASURE IS MOTIVIC 349

R 2. – While we have not constrained � in such a way that E=F is automatically
tame, if � is not the semidirect product of two cyclic groups then E � will be empty for large
enough residue characteristic. In this case, from the point of view of motivic integration, E �
is indistinguishable from the empty set.

2.3. The identity component of the Néron model

Now that we have parameterized E=L=F and T and shown that T.F / definable, we may
prove the main technical result of the paper. Write T for the Néron model of T (cf. [2, Ch.
10]); this is a model for T over OF with the property that T . OF / D T.F /. Let T

ı be its
identity component.

P 3. – The subset T
ı
. OF / � T.F / is definable.

Proof. – We first reduce to the case that L D F : if T
ı
. OL/ is definable then so is

T
ı
. OF / D T

ı
. OL/

� , where the equality holds since Néron models commute with unram-
ified base change. So for the remainder of the proof we will assume that E=F is totally
ramified.

Now, the identity component T
ı
. OF / is the kernel of the map wT W T.F / ! XI from

T . OF / to its component group defined in [11, §7] (see also [1, 3.1]).
Our fixed choice of resolution Y ! X yields an induced torus R over F with cocharacter

lattice Y , together with a diagram

R.F / T.F / 1

YI XI 0

˛

wR
ˇ

wT

as in [11, (7.2.6)]. The map R.F / D .E� ˝ Y /I ! .E� ˝ X/I D T.F / is definable
since it is induced by the fixed map Y ! X . Since R is induced, YI is torsion free and
wR W R.F / ! YI D Hom.X�.R/;Z/ is given by r 7! .� 7! ordF .�.r/// [11, (7.2.3)].
Therefore wR is definable, and so is the composition ˇ W R.F / ! XI with the fixed map
YI ! XI .

We can now show that T
ı
. OF / is a definable subset of T.F /: we have t 2 T

ı
. OF / if and

only if 9r 2 R.F / such that ˛.r/ D t and ˇ.r/ D 0.

3. General reductive groups

Let G be a connected reductive algebraic group defined over a local field F , let f be a facet
in the building of G over F , and let x be in the interior of f. We denote by Gf the maximal
parahoric subgroup G.F /x;0 associated with this data by Moy and Prasad. In this section
we construct a family of definable sets that specialize to the parahoric subgroup Gf for all
fields F of sufficiently large residue characteristic. By this we mean that first one constructs
a family of definable sets that specialize to the groups G.F / as G runs over a family of
reductive groups with a given absolute root datum; and in this family one constructs a family
of definable subsets that specialize to the maximal parahorics in the corresponding groups
G.F /. It was previously shown in [4] that for all positive r and all optimal points x in the
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350 J. GORDON AND D. ROE

building, the Moy-Prasad filtration subgroups G.F /x;r are definable in this sense; here we
fill in the missing case where r D 0. (4)

3.1. Reductive groups as a family of definable sets

We treat reductive groups in the definable setting as in [8]. In fact, our construction of
algebraic tori above in §2.2 is a special case of this construction. In particular, we have the
fixed choices that include the absolute root datum„ of G, the Galois action on the absolute
root datum (which we suppress from the notation), and a finite set F that encodes the set of
facets of an alcove in the building of G, as in [8, §2.1].

More specifically, we start with a fixed choice of a finite group � as above, and an abso-
lute root datum „ (which includes the action of �). This fixed choice determines a split
connected reductive group G�� defined over Q, with T�� � B�� a split maximal torus and
a Borel subgroup, and an action of � on the root datum of G�� with respect to .B��;T��/.
This determines a definable setZ�„ that specializes, for each local field F of sufficiently large
residue characteristic (with the bound depending only on„) to the set of pairs z� D .E; ��/,
where E is a field extension of F with Galois group isomorphic to � (via an enumerated
isomorphism), and �� is an enumerated cocycle with values in the group of outer automor-
phisms of G��.F / defining a quasi-split F -form Gz� of G��. Further, there is a definable set
Z„ ! Z�„ encoding the inner F -forms of Gz� that become isomorphic to Gz� over E, (see
[8, §2.2.2] for details).

We also make a fixed choice of a set F , the so-called ‘parahoric indexing set’, defined
precisely as in [8, §2.1] (We shall not need the details of its definition here, apart from the fact
that it can be made a fixed choice). For each „, there are finitely many possible sets F that
could arise as the parahoric indexing set of a reductive group with absolute root datum „.
Our set of fixed choices is now the set of pairs .„; F /, with „ as in the previous paragraph.
The correspondence between the cohomological data defining a group G over F and the
indexing set for its parahoric subgroups is described in [10, §7]. From this explicit description,
one can see that there is a definable condition on an element z D .z�; �/ 2 Z„.F / that
ensures that the reductive group G over F determined by the cocycle z has the parahoric
indexing set F , i.e., that F can be identified with the set of barycentres of facets in an alcove
in the building of G overF . Let us denote the subset ofZ„ defined by this condition byZ„;F .

In summary, we have the following

T 4 ([8, §2.2.2]). – For every fixed choice .„; F / there exists M > 0, definable
sets Z�„, Z„;F � Z„, and a definable family G ! Z„ such that for every F 2 LocM the
following holds:

1. for z 2 Z„.F /, the set G z.F / is the set of F -points of a connected reductive group Gz

with absolute root datum determined by „, or empty;
2. For each z� 2 Z�„.F / there exists an element which we will denote by .z�; 1/ in Z„.F /,

such that G.z�;1/ is quasi-split over F ;
3. If z 2 Z„;F , then the facets in the alcove in the building for Gz over F are in bijection

with the set F .

(4) When r D 0, the group G.F /x;0 depends only on the facet containing x, so we no longer need to consider
optimal points x.

4 e SÉRIE – TOME 50 – 2017 – No 2



CANONICAL MEASURE IS MOTIVIC 351

Moreover, for F 2 LocM , every isomorphism class of F -groups with absolute root datum given
by „ that split over a tamely ramified extension with Galois group � arises as a fiber G z for
some z 2 Z„.F /.

3.2. Definability of maximal parahorics

Our main result is that the parahoric subgroups associated with facets in the building of G
via Bruhat-Tits theory are definable. More precisely, let G be a tamely ramified, connected
reductive group defined over a local field F . Let f be a facet in the building of G. The next
proposition shows that then the parahoric G.F /f � G.F / arises in a definable family of
definable sets. In particular, the canonical parahoric of G.F / defined in [9] is definable.

In order to prove the proposition, we need to start with more fixed choices: namely, we
have to include both the fixed choices needed to define the group and its parahoric indexing
set as above, and also the fixed choice of a resolution Y of the co-character lattice X of a
maximally split maximal torus in that group (which is part of „), as in §2.1.

P 5. – Let „ D .X;ˆ;X_; ˆ_; �/, F , Z„ ! Z�„ and G ! Z„ be,
respectively, an absolute root datum with Galois action, a parahoric indexing set, the space
encoding the forms of the split group with the given absolute root datum, and the definable family
of all groups with this absolute root datum, as in Theorem 4, and let Y ! X be a surjective
map of �-modules.

Then for each f 2 F , there existsM > 0 (depending only on the fixed choices („; F ) and
Y ! X) and a family of definable subsets G f ! Z„;F of G such that, for all F 2 LocM and
z 2 Z„;F .F /,

. G f/z.F / D Gz.F /f:

Proof. – Even though as above, one should start from the fixed choices, and then build a
family of definable sets that specialize to the parahorics G z.F /f for all fields F of sufficiently
large residue characteristic, we will just show how to construct the subgroups G z.F /f in a
definable way pretending that F and z are fixed, in order not to clutter the discussion. It will
be clear from the construction that this way we get a definable family of definable subsets as
usual.

First, consider the family of quasi-split groups Gz� parameterized by z� 2 Z�„. Let
T� be a maximal torus containing the maximal F -split torus in Gz� with co-character lattice
isomorphic toX (which is part of the fixed choices). Let x be the baricentre of f. By definition,
G.F /x;0 is generated by T�.F /x;0 and U , where the U are the filtration subgroups of
the unipotent one-parameter subgroups U˛. We have shown in Proposition 3 above that
T�.F /x;0 D T �

ı
.F / is definable. The rest of the proof in this case is identical to that of

Lemma 3.4 in [4]. This proves the statement for quasi-split groups.
Now suppose z 2 Z„. The element z in particular defines a tower of field exten-

sions E=L=F with L=F a maximal unramified sub-extension of E, as in §2.2, a quasi-split
group Gz� , and a cocycle � that defines an inner twisting  z (over F ) between the quasi-split
form Gz� and Gz , which is an L-isomorphism. Note that  z is a definable map (using z as a
parameter). Let F be such that z 2 Z„;F , i.e., assume that the fixed choice F provides the
parahoric indexing set for Gz . Let f be an element of F ; we think of it as the baricentre of
a facet in the building of Gz over F . Since L=F is unramified, the set of fixed points of the
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352 J. GORDON AND D. ROE

building of Gz over L under the Gal.L=F /-action is precisely the building of Gz over F ; in
particular, we can view f as a point in the building for Gz over L, which coincides with the
building of Gz� over L. As shown in the previous paragraph, .Gz�.L//f is a definable set.
Since L=F is unramified, Gz.F /f is the set of fixed points under the action of Gal.L=F /
twisted by  z of the set .Gz�.L//f, and thus it is definable.

3.3. Applications

As an immediate consequence of Proposition 5, we obtain that the canonical measure
is motivic, up to a motivic constant. This statement was previously known for unramified
reductive groups [6]. We recall that a motivic constant is an element of the ring of constructible
motivic functions on a point, i.e., ofA WD ZŒL;L�1; 1

1�L�i ; i > 0�where L is a formal symbol
which specializes to q.

For a connected quasi-split reductive group G over a local fieldF , we write d�can
G.F / for the

canonical Haar measure on G.F /, which assigns volume 1 to the canonical parahoric. Note
that this seems to be the standard definition of the canonical measure in all settings where it
is used to define global orbital integrals, but it differs from Gross’ canonical measure exactly
by the L-factor of the motive associated with G [9, Prop. 4.7]. For general G, using the same
method as Gross, we define d�can

G.F / as the pull-back of the canonical measure (in our sense)
from the quasi-split inner form G� of G.

T 6. – Let „, F , Z„, Z„;F , Z�„ and G ! Z„ be as in Theorem 4. Then there
existsM > 0 (depending only on the fixed choices), a family of motivic measures d�mot

z on G z ,
and a motivic function c on Z such that, for every F 2 LocM ,

cF .z/d�
can
Gz.F /

D d�mot
z;F :

Here d�can
Gz.F /

is the canonical measure on Gz.F / D G z.F /, and d�mot
z;F is the specialization

to F of the motivic measure d�mot
z on the definable set G z .

Proof. – We first define the motivic function c� on Z� that is responsible for scaling of
the measure on quasi-split groups, and then define the motivic function c on Z by pull-
back. There exists a motivic Haar measure on Gz� for every z� 2 Z�.F /, constructed
e.g., in [8, §2.3]. Let us denote this measure by �mot

z� . Since the group Gz� is quasi-split,
it has the canonical parahoric subgroup as in [9], associated with a special point x in the
building. The equivalence class of x has a representative f 2 F , and by Proposition 5,
the canonical parahoric Gz�.F /x;0 D Gz�.F /f is definable. Thus, we can define a motivic
function c�.z�/ WD vol�mot

z�
. G fz�/. By definition, we have

c�F .z
�/d�can

Gz� .F /
D d�mot

z�;F :

Now if z D .z�; �/ 2 Z.F /, the canonical measure on Gz.F / is by definition the pull-
back of the canonical measure on Gz�.F / under the inner twisting  � determined by �. The
inner twisting is a definable map (using � and z� as parameters; cf. [4, §3.5.2]). The pull-back
of a motivic measure under a definable map is motivic. Thus we have, by definition,

d�can
Gz.F /

D  ��

�
d�can

Gz� .F /

�
:
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The measure c�F .z
�/ �

�

�
d�can

Gz� .F /

�
is motivic, as a pull-back of a motivic measure under a

definable map. Thus, for z D .z�; �/ 2 Z, we can define c.z/ WD c�.z�/, i.e., the function c
is simply the pull-back of the function z� on Z� under the projection map Z ! Z�.

R 7. – The motivic measure d�mot
z;F on G.F / that we defined above differs (by

a motivic constant) from the motivic measure defined in [8, §2.3] and [4] in the case when
Gz is not quasi-split over F . This definition allows a number of improvements in [4] and
[12, Appendix B]. Namely, parts (1) and (2) of [4, Lemma 3.4] become unnecessary, and
the statement in Part (3) now includes r D 0; instead of using the measures discussed in
§3.5.2, one can use the canonical measure. More importantly, in [12, Appendix B, §B.5.2],
Definition 14.13 and Lemma 14.14 become unnecessary, and in all calculations one can take
iM D 1, which simplifies the rest of the proof.

Finally, Theorem 6 implies that formal degree in definable families of supercuspidal repre-
sentations is a motivic function of the parameters indexing the family. Recall that formal
degree of a representation depends on the choice of Haar measure on G.F /=C , where C is
the center of G.F /. We use the canonical measure on Gad in order to keep the statement
simple and easy to use. More precisely, note that the difference between G and Gad lies in
the fixed choices; let „ be the fixed choices for G and „ad for Gad, respectively. Then there
is a map of the corresponding cocycle spaces Z ! Z„ad (identity on the part of the param-
eter z that determines the splitting field, and with the map on cocycles induced by the map
G�� ! .G��/ad). By abuse of notation, we will denote the image of z 2 Z„.F / in Z„ad.F /

also by z. By Theorem 6 applied to the adjoint group Gad
z , we have the function cad onZ„ad

such that the measure cad.z/�can
z on the adjoint group with the parameter z is motivic.

C 8. – Let „ and G ! Z„ be as in Theorem 4, and let M > 0 be the constant
from Theorem 6. Suppose that we are given a definable family of compact subgroups Jz;� � G z ,
parameterized by z 2 Z„ and � in some definable set. In addition, suppose we are given an
irreducible representation �z;�.F / of Jz;�.F / of fixed dimension d , for every F 2 LocM , such
that �z;�.F / WD c-IndGz.F /

Jz;�.F /
�z;�.F / is irreducible for all z 2 Z„.F / and F 2 LocM . Then

the formal degree (with respect to the canonical measure as above) of �z;� is of the form

d�z;� D
cad.z/d

m.z; �/
;

where cad.z/ is defined in the above paragraph, and m.z; �/ is a motivic function of z; �.

Proof. – It is well-known (see Lemma 9) that

(2) d�z;� D
deg.�z;�/

vol�can
Gad
z .F/

.Jz;�=C /
:

By Theorem 6 applied to the adjoint group G ! Z„ad , we have

vol�can
Gad
z .F/

.Jz;�=C / D
vol�mot

z
.Jz;�/

cad.z/
;

where �mot
z is the motivic measure, and the statement follows, with m.z; �/ D vol�mot

z
.Jz;�=C /.
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In the proof of Corollary 8, we used the following property of the formal degree. This
statement is well-known, but we could not find a reference, so we give a proof.

L 9. – IfG is a reductive p-adic group with centerC ,� is a measure onG=C , J � G
is open, J=C is compact, � is an irreducible representation of J and � D c-IndGJ � then the
formal degree of � with respect to � is given by

d�;� D
deg.�/

vol�.J=C /
:

Proof. – Let V be the representation space of � and .; / be a � -invariant inner product
on V , which exists since J is compact. Choose a unit-length vector v 2 V and let f be
the function supported on J defined there by f .j / D .�.j /v; v/. For the normalized Haar
measure dj on J=C , Z

J=C

jf .j /j2dj D
.v; v/

deg.�/
D
1

d
;

and thus
f .1/

d�
D

Z
G=C

jf .g/j2d�.g/ D
vol�.J=C /

d
:

3.3.1. Gross’ canonical volume form. – We conclude with a remark about the canonical
volume form and the motive of a reductive group. Here assume that G is quasi-split. In [9, §4],
Gross defined the canonical volume form !G on G D G.F / associated with the canonical
smooth modelG0 ofG whose set of OF -points is the canonical maximal parahoric subgroup.
One can ask if this volume form itself gives rise to a motivic measure. A priori, the smooth
group schemeG0 is defined over OF , and thus it is not clear why the associated volume form
can be defined uniformly in F using the Denef-Pas language. However, we observe that the
motive M associated with G can be determined directly from the fixed choices defining G,
since G is quasi-split. By [9, Proposition 4.7], the volume of the canonical parahoric with
respect to j!G j is L.M_.1//, which is a motivic constant. In fact, L.M_.1// agrees with our
motivic constant c.z/ when z defines a split group, since the motivic volume form we use to
define the motivic measure coincides with !G in this case. In the case that Gz is not split, the
question of whether c.z/ D L.M_.1// is left open.
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