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VERSIONS OF INJECTIVITY
AND EXTENSION THEOREMS

BY YoSHINORI GONGYO AND SHIN-IcHI MATSUMURA

ABSTRACT. — We give an analytic version of the injectivity theorem by using multiplier ideal
sheaves of singular hermitian metrics, and prove extension theorems for the log canonical bundle of dlt
pairs. Moreover we obtain partial results related to the abundance conjecture in birational geometry
and the semi-ampleness conjecture for hyperKahler manifolds.

RESUME. — Nous donnons une version analytique du théoréme d’injectivité en utilisant les idéaux
multiplicateurs, et démontrons des théorémes d’extension pour le faisceau adjoint d’une paire dlt. De
plus nous obtenons des résultats de semi-amplitude liés a la conjecture d’abondance en géométrie
birationnelle et la conjecture de semi-amplitude pour les variétés hyperkéhlériennes.

1. Introduction

The following conjecture, the so-called abundance conjecture, is one of the most impor-
tant problems in the classification theory of algebraic varieties. In this paper, we give an
analytic version of the injectivity theorem, and study the extension problem for (holo-
morphic) sections of the pluri-log canonical bundle and its applications to the abundance
conjecture.

CoNJECTURE 1.1 (Generalized abundance conjecture). — Let X be a normal projective
variety and A be an effective Q-divisor on X such that (X, A) is a kit pair. Thenk (X, Kx +A) =
ke (X, Kx + A). In particular, if Kx + A is nef, then it is semi-ample. (See [38] for the definition
of k(-) and ks (+).)

Throughout this paper, we work over C, the complex number field, and freely use the
standard notation in [4], [7], [27], and [32]. Further we interchangeably use the words “Cartier
divisors,” “line bundles,” and “invertible sheaves”.

Toward the abundance conjecture, we need to solve the non-vanishing conjecture and the
extension conjecture (for example, see [8], [12, Introduction], and [20, Section 5]). One of
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480 Y. GONGYO AND S. MATSUMURA

the purposes of this paper is to study the following extension conjecture formulated in [8,
Conjecture 1.3]:

ConNJECTURE 1.2 (Extension conjecture for dlt pairs). — Let X be a normal projective
variety and S + B be an effective Q-divisor with the following assumptions :

- (X, S + B) is adlt pair.

- S+ B]=S.

- Kx + S + B is nef.

— Kx + S + B is Q-linearly equivalent to an effective divisor D such that

S € Supp D C Supp (S + B).
Then the restriction map
H°(X, Ox(m(Kx + S + B))) — H°(S, Os(m(Kx + S + B)))
is surjective for all sufficiently divisible integers m > 2.

When S is a normal irreducible variety (that is, (X, S 4+ B) is a plt pair), Demailly-Hacon-
Paun have already proved the above conjecture in [8] by using techniques based on a version
of the Ohsawa-Takegoshi L? extension theorem. However, the extension theorem for plt
pairs is not enough for an inductive proof of the abundance conjecture.

In this paper, we study the extension conjecture for dlt pairs by giving an analytic version
of the injectivity theorem instead of the Ohsawa-Takegoshi extension theorem. Thanks to
our injectivity theorem, we can obtain extension theorems for not only plt pairs but also dit
pairs. This is one of the advantages of our approach. The following result is our injectivity
theorem.

THEOREM 1.3 (Analytic version of the injectivity theorem: Theorem 3.1)

Let (F,hp) and (L,hy) be (possibly) singular hermitian line bundles with semi-positive
curvature on a compact Kihler manifold X. Assume that there exists an effective R-divisor A
with

hp = h$ -ha,

where a is a positive real number and h p is the singular (hermitian) metric defined by the effective
divisor A.

Then, for a non-zero (holomorphic) section s of L satisfying supy |s|p, < oo, the multipli-
cation map induced by s

HY(X,Kx ® F® J(hr)) > HI(X.Kx ® F® L ® J(hrhy))

is (well-defined and) injective for every q. Here J(h) denotes the multiplier ideal sheaf associ-
ated to a singular (hermitian) metric h.

In the last decades, the injectivity theorem has been studied by several authors, for
example, Tankeev [40], Kollar [29], Enoki [10], Ohsawa [39], Esnault-Viehweg [11], Fujino
[18],[14],[16],[17], and Ambro[1],[2]. See [19] and [35] for recent developments. Theorem 1.3
can be seen as a generalization of [10], [16], [29], [34], [37], and [40]. In [37], the second author
established an injectivity theorem with multiplier ideal sheaves of singular (hermitian)
metrics with arbitrary singularities, which corresponds to the case A = 0 of Theorem 1.3.
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VERSIONS OF INJECTIVITY AND EXTENSION THEOREMS 481

By applying the above injectivity theorem to the extension problem, we obtain the
following extension theorem. Even if Ky + A is semi-positive (namely, it admits a smooth
hermitian metric with semi-positive curvature), it seems to be rather difficult to obtain the
extension theorem for dlt pairs by the Ohsawa-Takegoshi extension theorem, at least in
its present forms. This is because there exists a counterexample to the Ohsawa-Takegoshi
extension theorem for dlt pairs (see [39, page 576]). For this reason, we need our injectivity
theorem.

THEOREM 1.4 (Extension theorem: Theorem 4.1). — Let X be a compact Kihler manifold
and S + B be an effective Q-divisor with the following assumptions

— S + B is a simple normal crossing divisor with0 < S + B <1land |S + B] = S.
— Kx + S + B is Q-linearly equivalent to an effective divisor D with S C Supp D.
- Kx + S + B admits a singular (hermitian) metric h with semi-positive curvature.

Then, for an integer m > 2 with m(Kx + S + B) Cartier and a section
ue H(S, Os(m(Kx + S + B)))

that comes from H°(S, Os(m(Kx + S + B)) ® J(h™ Yhp)), the section u can be extended
to a section in H°(X, Ox (m(Kx + S + B))).

By this theorem, we can solve the extension problem for dlt pairs if there exists a singular
(hermitian) metric with mild singularities on S (see Corollary 4.2 and Corollary 4.4). When
we consider the extension problem, we first construct a (possibly singular) hermitian metric
with “good” properties by taking the limit of a family of suitable metrics. In the second step,
we extend sections by using the metric constructed in the first step. Currently we do not
know the first step to construct a suitable metric. However we can solve the second step by
Theorem 1.4 and its corollaries.

Moreover, assuming the non-vanishing conjecture, we can prove the abundance conjec-
ture if Kx + A admits a singular (hermitian) metric 2 whose curvature is semi-positive and
Lelong number is identically zero. This assumption is stronger than the assumption that
Kx + A is nef, but weaker than the assumption that Ky + A is semi-positive. To investigate
the Lelong number is much easier than to check the regularity (smoothness) of the metric
constructed by taking the limit. Therefore it is worth formulating our extension theorem for
a singular (hermitian) metric # whose Lelong number is identically zero (see Corollary 4.2
and Corollary 4.4).

As compared with Conjecture 1.2, one of our advantages is to remove the condition
SuppD < Supp(S + B) in Conjecture 1.2, which is needed in [8]. (Such an extension
conjecture was given in [20, Conjecture 5.8]). Thanks to removing this condition, we can
apply the extension theorem more directly than [8, Section 8] and [20, Theorem 5.9], and
construct a (non-klt) dlt birational model whose log canonical divisor is a pullback of the
original canonical divisor up to positive multiples. Therefore we finally obtain the following
theorem related to the abundance conjecture :

THEOREM 1.5 (Partial result of the abundance conjecture, cf. Theorem 5.1)
Assume that Conjecture 1.1 holds in dimension (n — 1). Let X be an n-dimensional normal
projective variety and A be an effective Q-divisor with the following assumptions :

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



482 Y. GONGYO AND S. MATSUMURA

- (X, A) is a klt pair.

— There exists a projective birational morphism ¢ : Y — X such that Y is smooth and
©*(m(Kx + A)) admits a singular (hermitian) metric whose curvature is semi-positive and
Lelong number is identically zero. Here m is a positive integer with m(Kx + A) Cartier.

Ifk(Kx + A) > 0, then Kx + A is semi-ample.

In [41], Verbitsky proved the non-vanishing conjecture on hyperKahler manifolds (holo-
morphic symplectic manifolds) under the same assumption. By combining Verbitsky’s non-
vanishing theorem with our results, we obtain a result for semi-ampleness on 4-dimensional
projective hyperKahler manifolds, which is closely related to the Strominger-Yau-Zaslow
conjecture for hyperKéahler manifolds (see [41], and see also [3] for recent related topics and
[5] for non-algebraic cases).

THEOREM 1.6 (Semi-ampleness theorem for hyperKahler manifolds : Corollary 5.5)

Let X be a 4-dimensional projective hyperKdhler manifold and L be a (holomorphic) line
bundle admitting a singular (hermitian) metric whose curvature is semi-positive and Lelong
number is identically zero. Then L is semi-ample.

Recently, Lazi¢-Peternell proved several results for the non-vanishing conjecture, and
obtained stronger results for the abundance conjecture by combining with our results (see
[33, Theorem B] for more details).

We summarize the contents of this paper. In Section 2, we collect the basic notions and
facts needed later. In Section 3, we prove our injectivity theorem (Theorem 1.3). In Section 4,
we give applications of the injectivity theorem to the extension problem (Theorem 1.4 and its
corollaries). In Section 5, we prove some results for semi-ampleness related to the abundance
conjecture (Theorem 1.5 and Theorem 1.6).

ACKNOWLEDGMENTS. — The authors wish to express their deep gratitude to Professor
Osamu Fujino for discussions and pointing out several mistakes in the draft, and to Professor
Mihai Paun for the discussion on Theorem 1.4. Moreover the authors thank Professor Yuji
Odaka for comments on the Strominger-Yau-Zaslow conjecture. The first author thanks
Professors Paolo Cascini, Christopher Hacon, Keiji Oguiso for discussions and comments.
The first author is partially supported by Grant-in-Aid for Young Scientists (A) #26707002
from JSPS and the Research expense from the JRF fund. The second author is partially
supported by the Grant-in-Aid for Young Scientists (B) #25800051 from JSPS. The authors
would also like to thank the referces for carefully reading the paper and giving many
corrections and valuable suggestions.

2. Preliminaries

2.1. Singular hermitian metrics and multiplier ideal sheaves

In this subsection, let X be a compact complex manifold and F be a (holomorphic) line
bundle on X. For simplicity, we fix a smooth (hermitian) metric g on F.
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VERSIONS OF INJECTIVITY AND EXTENSION THEOREMS 483

DEFINITION 2.1 (Singular hermitian metrics and Curvatures). — (1) For an L'-function
@ on X, the hermitian metric /& defined by

h = ge ¢

is called a singular hermitian metric on F. Further ¢ is called the weight of h with respect to
the fixed smooth metric g.
(2) The curvature ~/—10y(F) associated to & is defined by

V=10,(F) = V=104 (F) + 2v/~1309,
where +/—10, (F) is the Chern curvature of g.

In this paper, we often abbreviate the singular hermitian metric to the singular metric or
the metric. Here +/—10d¢ is taken in the sense of distributions, and thus the curvature is a
(1, 1)-current but not always a smooth (1, 1)-form. The curvature v—10(F) is said to be
semi-positive if /—10,(F) > 0 in the sense of currents (that is, the local potential function
of v/—10;,(F) is a psh function).

DEFINITION 2.2 (Multiplier ideal sheaves). — For a singular metric 2 on F, the ideal
sheaf .7 (h) defined to be
J()(B) := J(9)(B) :={f € Ox(B) | |fle™® € L{,.(B)}

for every open set B C X, is called the multiplier ideal sheaf associated to h.

A theorem of Nadel states that the multiplier ideal sheaf .7(h) is coherent if v —10,(F) >y
holds for some smooth (1, 1)-form y on X. The following example is a typical example of
singular metrics that often appears in algebraic geometry.

ExaMPLE 2.3. — For given sections {s;};_, of the m-th tensor power F™ of F, the
metric ge2¢ is defined by

1 N
g = %log(;mgm).

Then the metric ge™2¢ is independent of the choice of g, and its curvature is semi-positive.
Further the multiplier ideal sheaf can be algebraically computed (see [7]). For example, for
the metric ip defined by the natural section of an effective R-divisor D, we can easily check
J(hp) = Ox(—| D)) if D is a simple normal crossing divisor.

We recall the definition of the Lelong number of singular metrics and Skoda’s lemma
which gives a relation between the multiplier ideal sheaf and the Lelong number.

DEerINITION 2.4 (Lelong numbers). — Let ¢ be a (quasi-)psh function on an open set B
in C". The Lelong number v(p, x) of ¢ at x € B is defined by

b(@.x) = liminf —2&)
z—x log|z — x|

For a singular metric 4 such that +/—1®,(F) > y holds for some smooth (1, 1)-form y, we
define the Lelong number v(h, x) of h at x € X by v(h, x) := v(p, x), where ¢ is a weight
of h.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



484 Y. GONGYO AND S. MATSUMURA

THEOREM 2.5 (Skoda’s lemma). — Let ¢ be a (quasi)-psh function on an open set B in C".

— If v(p,x) < 1, then we have J(¢)x = Op x.

— Ifv(p,x) = n + s for some integer s > 0, then we have J(¢)x C E))T?'xl where Mp x is
the maximal ideal of Op .

From the above example, it is easy to see that a semi-ample line bundle is always semi-
positive (namely, it admits a smooth hermitian metric with semi-positive curvature). From
the regularization theorem for singular metrics in [6], it follows that F is nef if F admits a
singular metric A such that v—10,(F) > 0 and v(h, x) = 0 on X.

2.2. Singularities of pairs

In this subsection, we recall the definition of singularities of pairs.

DEerINITION 2.6 (KIt, Ic, dlt, plt pairs). — Let X be a normal variety and A be an effec-
tive Q-divisor on X such that Kx + A is Q-Cartier. For a log resolution ¢ : ¥ — X of (X, A),
we have

Ky = ¢*(Kx + A) + ) _a;E;,
where a; € Q and E; is a prime divisor on Y for every i.

The pair (X, A) is called

— kawamata log terminal (klt, for short) if a; > —1 for all i,

— log canonical (lc, for short) if a; > —1 for all i.

Let (X, A) be an Ic pair. If there is a log resolution ¢ : ¥ — X of (X, A) such that

— Exc(yp) is a divisor and
— a; > —1 for every g-exceptional divisor E; in the above formula,

then the pair (X, A) is called divisorial log terminal (dlt, for short). Moreover if (X, A) is a
dlt pair and | A | is a prime divisor, then the pair (X, A) is called purely log terminal (plt, for
short).

DEFINITION 2.7 (Slc and dslt pairs, [12, Def. 1.1]). — Let X be a reduced S,-scheme of
pure dimension #n and normal crossing in codimension 1, and let A be an effective Q-Weil
divisor on X such that Kx + A is Q-Cartier.

Let X = |J X; be the decomposition into irreducible components and

veXVe=]]x > x =X

be the normalization. Here the normalization v : X¥ = [[ X’ — X = (JX; means that
V| xp t X J — X; is the usual normalization for every i. The scheme X is called a normal
scheme if v is an isomorphism.

Define the Q-divisor ® on X" by Kxv + ® = v*(Kx + A) and ©; by ®; := @|xv. The
pair (X, A) is called semi-log canonical (slc, for short) if (X}, ®;) is an lc pair for eizery i.
Moreover the pair (X, A) is called a divisorial semi-log terminal (dsit, for short) if X; is normal
(that is, X" is isomorphic to X;) and (X", ®) is a dlt pair.

For the reader’s convenience, we give simple examples of singularities of pairs :
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VERSIONS OF INJECTIVITY AND EXTENSION THEOREMS 485

ExXAMPLE 2.8. — For two different lines /; and /5 in the affine plane A2, we consider the
pair (A2, 1, +al,) for a positive number a. Ifa < 1, (A2, [; 4+al,) is a plt pair and (I1, al; Nl5)
is klt. On the other hand, in the case of @ = 1, (A2, [} + ) is a dlt pair and (/1,[; N I5) is dlt.
For no boundary examples, any singularities of normal quotient surfaces by finite groups are
kit (see [32, Corollary 5.21]), and the cone singularities by abelian varieties are always Ic but
not klt (see [18, Proposition 4.38]).

In Section 5, we use the dIt blow-up. The following theorem was originally proved by
Hacon (for example, see [14, Theorem 10.4], [31, Theorem 3.1], and see [15, Section 4] for
a simpler proof).

THEOREM 2.9 (DIt blow-up). — Let X be a normal quasi-projective variety and A be an
effective R-divisor on X such that Kx + A is R-Cartier and (X, A) is an Ic pair. Then there
exists a projective birational morphism ¢ : Y — X from a normal quasi-projective variety Y
with the following properties

— Y is Q-factorial.

— a(E, X, A) = —1 for every g-exceptional divisor E on'Y .

— For T defined by

F:=<p;1A+ Z E,

E:p-exceptional

the pair (Y, T') isdlt and Ky + T = ¢*(Kx + A).

3. An analytic version of the injectivity theorem
The purpose of this section is to prove an analytic version of the injectivity theorem.

THEOREM 3.1 (Theorem 1.3). — Let (F,hF)and (L, hy) be singular hermitian line bundles
with semi-positive curvature on a compact Kihler manifold X. Assume that there exists an
effective R-divisor A with

hp = he - ha,

where a is a positive real number and h A is the singular metric defined by the effective divisor A.
Then, for a non-zero section s of L satisfying supy |s|n, < oo, the multiplication map

HY(X,Kx ® F® J(hr)) —> HI(X.Kx ® F® L ® J(hrhy))

is injective for every q.

REMARK 3.2. — (1) The multiplication map is well-defined thanks to the assumption
supy |slp, < oo. When hy is a metric with minimal singularities on L, this assumption
is always satisfied for any section s of L (see [7] for the definition of metrics with minimal
singularities).

(2) The case A = 0 of Theorem 3.1 corresponds to [37, Theorem 1.3]. To prove our extension
theorems, we need to consider the case A # 0.

(3) If hy, and hr are smooth on a Zariski open set, the same conclusion holds under the
weaker assumption =10y . (F) > av/—10y, (L) (see [16] and [34]).
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486 Y. GONGYO AND S. MATSUMURA

Proof. — The proof is a slight generalization of the proof of [37, Theorem 1.3]. The case
g = 0 is obvious, and thus we assume ¢ > 0. In [10], Enoki proved the special case
that all metrics are smooth and A = 0 by using the theory of harmonic integrals. In our
situation, we can not (at least directly) apply the theory of harmonic integrals since we have to
consider singular metrics with transcendental (non-algebraic) singularities. It is quite difficult
to directly handle transcendental singularities, and thus we approximate a given singular
metric i in Step 1.

STEP 1 (Equisingular approximation of ). — Throughout the proof, we fix a Kéhler
form @ on X. For the proof, we want to apply the theory of harmonic integrals, but the
metric -ir may not be smooth. For this reason, We first approximate zr by a family of
metrics {/¢}.~0 that are smooth on a Zariski open set. By [9, Theorem 2.3], we obtain
singular metrics {/;}1¢>0 on F with the following properties :

(a) heissmooth on X \ Z,, where Z, is a proper subvariety on X.

(b) he, < he, < hp holdsforany 0 < &1 < &;.

(©) Jhr) = J(he).

(d) V=10, (F) > —cw.
Since the point-wise norm |s|,, is bounded on X and hr = h{ha, the set {x € X |
v(hg,x) > 0} is contained in the subvariety Z defined by Z := s~1(0) U Supp A. Therefore

we may assume a stronger property than property (a) (for example, see [37, Theorem 2.3]),
namely

(e) hgissmoothonY := X \ Z, where Z = s~1(0) U Supp A.

Next we construct a “complete” Kéhler form on Y with suitable potential function. Take
a quasi-psh function ¥ on X such that ¢ has a logarithmic pole along Z and  is smooth
on Y. Since quasi-psh functions are upper semi-continuous, we may assume ¥ < —e. We
define the (1, 1)-form @ on Y by

@ :=kw + v/—1000,

where k is a positive real number and ¥ := 1/log(—y). Then we can show that the
(1, 1)-form @ satisfies the following properties for a sufficiently large k > 0:

(A) @ is a complete Kéhler form on Y.
(B) Wis bounded on X.
O @ > w.

Indeed, properties (B), (C) follow from the definition of ¥, @ and property (A) follows from
straightforward computations (see [16, Lemma 3.1]).

Let L?z’;] (Y, F)p, & be the space of L2-integrable F-valued (n, q)-forms o with respect to
the inner product | - ||, 5 defined by

2 . 2
ol 5= /Y a2 5 dVa.

where dVz := @"/n!and n := dim X. Note that the d-operator determines the densely
defined closed operator d between the L2-spaces L?z’; (Y, F)p, - Since Imad is closed
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in L'(12’§(Y, F)p, & (for example, see [16, Claim 1] and [37, Proposition 5.8]), we obtain

the orthogonal decomposition :
a —*
LY. FYp, 5 = Imd & &y (F) @ Imd,,.

Here the operator 5;g denotes the closed extension of the formal adjoint of 0. We remark that
it agrees with the Hilbert space adjoint of 9 since @ is complete. Further %Z;‘%(F ) denotes
the space of harmonic forms with respect to 4, and @, namely

"4 _(F):= {a | aisan F-valued (1, ¢)-form on Y with do = 0 and 5;501 =0.}.

he, @
Harmonic forms in (%Z’ga(F ) are smooth by elliptic regularity. These results are known to
specialists. The precise proof can be found in [16] and [37, Section 5].

Take an arbitrary cohomology class {u} € H?(X, Kx ® F ® J(hF)) represented by an
F-valued (n, q)-form u with ||u||s, » < co. We assume that the cohomology class of su is
zeroin H1(X, Kx ® FRL® J(hghy)). Our goal is to show that the cohomology class of u
is actually zero under this assumption.

We have |B|% dVz < |B|2 d Ve, for every (n,g)-form f since the inequality @ >  holds
by property (C). From this inequality and property (b) of /., we obtain

(1 lullpea =< Iullno < lullhpeo < oo

By the above inequality, we have |u|;, 5 < oo for any ¢ > 0. Therefore, by the above
orthogonal decomposition, there exist u, € (%Z;‘fa(F ) and w, € Domd C L'(’Z’;I_l Y, F)n.s
such that
U = Ug + 0ws.

We remark that the component of Imgzg is zero since u is d-closed.

At the end of this step, we explain the strategy of the proof. In Step 2, by generalizing

. —%

Enoki’s proof, we show that the L2-norm 10,5, SUsllhehy o converges to zero as & goes to
zero. Here hy, ¢ is the singular metric on L defined by

hie = hien1e.

In Step 3, we construct solutions v, of the 5-equation 9v, = su, such that the norm vellnehy o
is uniformly bounded in ¢. By Step 2 and Step 3, we can easily see that

= —%
Isuellsp, .o < €stts, 00N nn, o5 < 10p.ny  SUelnehy o allVellhen, o — O ase — 0.
In Step 4, from this convergence, we prove that u, converges to zero in a suitable sense.
REMARK 3.3. — The weight of hy, . may not be a quasi-psh function. By the definition
of hy e, we have
1
V=10, (L) = — (V=104 (F) —[A]),

where [A] is the current of integration over A. Hence the weight of hy, . can be written as the
difference of the weights of he and h a which are quasi-psh functions. In [8] we already dealt with
such an singular metric.

STEP 2 (A generalization of Enoki’s argument for the injectivity theorem)
The purpose of this step is to prove the following proposition, whose proof can be seen as
a generalization of Enoki’s proof (see [37] and [36]).
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—%
PROPOSITION 3.4. — When ¢ goes to zero, thenorm ||, ,, _Sue|n.n, .. converges to zero.

Proof. — The following inequality plays an important role in the proof.

2 luellnea < lullnea =< lullhpeo < oo

The first inequality follows from the definition of u, and the second inequality follows
from inequality (1). We remark that the right hand side does not depend on ¢. By applying
the Bochner-Kodaira-Nakano identity and the density lemma to u,. (for example, see [37,
Proposition 2.4]), we obtain

3) 0 = (V=104 (F)Ague, uc)y, 5 + |1 D) vells, 5

Here Ag is the adjoint operator of the wedge product @ A e, and D;* is the closed extension
of the formal adjoint of the (1, 0)-part D;lg of the Chern connection Dj, = DLS + 9. Let
A, be the first term and B, be the second term of the right hand side of equality (3). We first
show that the first term A, and the second term B, converge to zero. For simplicity let g, be
the integrand of 4., namely

ge 1= (V=104 (F)Agte. ), -
Then there exists a positive constant C > 0 (independent of ¢) such that
4) ge = —eClugl; 5.
It is easy to check this inequality. Indeed, let A < A5 < --- < A? be the eigenvalues

of v/—10@j, (F) with respect to @. Then, for every point y € Y, there exists a local coordinate
(z1,22,...,2zy) centered at y such that

V-1 & V-1 &
J-l@hg(F)=Tijdzj/\dz—j and azTZdz,-Adz—, at y.
ji=1 ji=1

When we locally write u, as u, = Z\K\:q Jedzy N~ ANdzy, AdZg, we have

g =2 (Do M)/

|Kl=q JjekK
by straightforward computations. On the other hand, from property (C) of @ and property
(d) of he, we have «/—_IG);Z8 (F) > —ew > —ew. This implies /\j > —eg, and thus we obtain
inequality (4).
From equality (3) and inequality (4), we obtain

0> A4, = / g dVy > —SC/ |u5|i8’5 dVyz > _EC”””ip,w'
Y Y

The last inequality follows from inequality (2). Therefore A, converges to zero, and we can
conclude that B, also converges to zero by equality (3).

To apply the Bochner-Kodaira-Nakano identity to su, again, we first check whether
Sug € L?Z’;I(Y, F ® L)p.n; & By the assumption, the point-wise norm |[s[;, with respect
to Ay, is bounded, and further we have |s|5, , < [s|5, from property (b) of h.. Therefore we
obtain

Isuellnehy oo < sup Islhy o Nuellnea < sup [5ln Ntllhp 0 < 00
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Observe that the right hand side does not depend on ¢. By applying the Bochner-Kodaira-
Nakano identity to su,, we obtain

)

* 2 2
195.n, Stellin, .5 = (v =1Onn, (F & LYAgsue, sushpn, .&+ 1 Dhen, Sttelinn, .o

Here we used dsu; = sdu, = 0. We see that the second term of the right hand side converges
to zero. Since s is a holomorphic (0, 0)-form, we can easily see that Df;hmsus = sD}’;';ua.
Therefore we have

2 2 2 2
”D;:hL,ES”E”hghL,g,a? < s;p Isl, . /Y |D}uely & dVa < s;p |51, Be-

: 2 e
Since |s|hL is bounded and B, converges to zero, the second term || DhghL‘ssus lhehy o.a also
converges to zero.

It remains to show that the first term of the right hand side of equality (5) converges
to zero. It follows that /=10, ,(F ® L) = (1 +1/a)~—10;_(F) holds on Y from
~/—10;, = 0onY and the definition of &y, . (see Remark 3.3). Therefore we obtain

«v4®MMgF®MAmemmmwﬁ=(HAM{me@&d%.

Now we investigate A, in detail. By the definition of 4., we have

Aé‘:/ gst$+/ g dV.
{ge>0} {g:<0}

It is easy to see that the second term converges to zero. Indeed, by simple computations and
inequality (4), we obtain

OZ/ gedVg > —eC |us|i€5dV5
{g:<0} {g:<0} ’

= —C [ el 5 Vs
Y

2
> —sC||u||hF’w.

The first term also converges to zero. On the other hand, we have

cos[ i sdvesswlbl,, [ sdvs
{g=0} ’ X “ J{ge>0}

wm%L/ g dVs,
X {ge>0}

IA

v

supllf,, [ g dvs
X © J{ge<0}

supllf, [ gedve.
X {8e=<0}

Therefore the right hand side of equality (5) converges to zero. O

RN RNe
{ge<0} ’

v

STEP 3 (A construction of solutions of the d-equation via the Cech complex)

The purpose of this step is to prove the following proposition.
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ProPOSITION 3.5. — There exist F-valued (n,q — 1)-forms w, on Y with the following
properties :

(1) dws =u—u,. (2) The norm |welln, . is uniformly bounded in €.

Proof. — The proof is the same as in the proof in [37]. We need only the case ¢ = 1 for
the proof of Theorem 1.4 and Theorem 1.5. For the reader’s convenience, we sketch the proof
for ¢ = 1, in which case the computations are more easy to check but the essential arguments
are still clearly visible. For the general case, see [37, Proposition 3.3, Theorem 5.9].

The main idea is to convert the d-equation dw, = u — u, to the equation 8y, = S
of the coboundary operator § in the space of cochains C*(Ky ® F ® J(h.)), by using
the Cech complex and pursuing the De Rham-Weil isomorphism. Here §, is the 1-cochain
constructed from u —u,. In this construction, we locally solve the d-equation by the standard
technique of the L2-method for the d-equation (for example, see [37, Lemma 5.4]). The
L?-space L?z’; (Y, F)p, & depends on ¢, but the space of cochains C*(Kx ® F ® J(he)) is
independent of & thanks to property (c). This is one of the important points. In Claim 3.6,
we show that B, converges to some 1-coboundary By in C!'(Ky ® F ® J(hr)) with respect
to the topology defined by the local L2-norms (see [37, Section 5] for this topology). Further
we see that the coboundary operator § is an open map by Claim 3.7. By these observations,
we construct solutions y, of the equation §y, = B, with suitable norm. Finally, by using a
partition of unity, we conversely construct w, satisfying the properties in Proposition 3.5.

Let 9/ be a finite open cover % := {B; };c; of X by (sufficiently small) Stein open sets B;.
For simplicity we put U, := u — u,. By [37, Lemma 5.4], we obtain (local) solutions S ;
on B;\ Z of the d-equation 5,38,i = U, satisfying || B¢.i || B, 1.5 < C||Usl|n, & for some positive
constant C (independent of ¢). In the proof C denotes a (possibly different) positive constant
independent of €. Inequality (2) implies

1Uellpea < Nullpea + luellna < 20ullnp o
In particular, the norm || B ; || 3, 1., on B; can be estimated by a constant independent of .
We consider the F-valued (n,0)-form (8,,; — Bs,i) on B;j \ Z, where B;; := B; N B;. In the
proof, we often regard d-closed F-valued (1, 0)-forms as holomorphic functions. In general,
we have | f|3 dVz = |f|2 dV, for an (n,0)-form f. Therefore (Bs; — Be.i) can be seen
as a holomorphic function with bounded L?-norm. By the Riemann extension theorem, it
can be extended to the d-closed F-valued (1, 0)-form on B; 7 (which is denoted by the same
notation). Further it belongs to H°(B;;, Kx ® F ® J(hF)) by property (c).
We define the 1-cocycle B, by

Be :=38(1Bei}) = {(Be,j — Be,i)}s

where § is the coboundary operator defined on the space of cochains C*(%U, Kx ® F ® J(hF))
calculated by . The topology of CP(U,Kx ® F ® J(hF)) is induced by the semi-
norms {px (-)} defined to be

P2 fio}) = [ fioin s 0 dVio
K

for every { fiy..i,} € CP(U,Kx ® F ® J(hr)) and K € B..;,. The above integral is
independent of w since f;,..;, is an F-valued (n,0)-form. Then C?(U, Kx ® F ® J(hF))

4¢ SERIE - TOME 50 — 2017 — N° 2



VERSIONS OF INJECTIVITY AND EXTENSION THEOREMS 491

becomes a Fréchet space with respect to these semi-norms (see [37, Theorem 5.3]). Then we
prove the following claim.

CrAM 3.6. — There exists a subsequence of the sequence { B¢ }e~o that converges to some B
inCY (U, Kx ® F & J(hr)).

Proof of Claim 3.6. — We regard B,;; 1= Bs,j — Bs,i as a holomorphic function on B;;.
By the construction of f;, the norm |8l 5, n. 18 uniformly bounded. This implies
that the sup-norm supg |B;;| is also uniformly bounded for every K & B;;. (Recall
that the local sup-norm of holomorphic functions can be estimated by the L2Z-norm). By
Montel’s theorem, there exists a subsequence of {f¢ ;; }s>0 such that it uniformly converges
to some By ;; on every relatively compact set in B;;. By [37, Lemma 5.2], this subsequence
converges to fo;; with respect to the above semi-norms pg (-). From this argument, we can
find a subsequence satisfying the conclusion of the claim. O

For simplicity, we continue to use the same notation for the subsequence in Claim 3.6. To
apply the open mapping theorem to §, we consider the topology of the image of §.

CrAM 3.7. — The space of cocycles ZP (U, Kx @ F ® J(hp)) := Ker§ and the space
of coboundaries B (U, Kx ® F ® J(hFp)) := Im§ are closed subspaces. In particular, the
limit By is also a 1-coboundary.

Proof of Claim 3.7. — It is easy to see that the coboundary operator § is contin-
uous, and thus Z?(U, Kx ® F ® J(hr)) = Ker§ is a closed subspace. The Cech coho-
mology group H?(U.Kx @ F ® J (hF)) is a finite dimensional vector space, and thus
BP?(U,Kx ® F ® J(hF)) is closed (see [37, Proposition 2.8, Lemma 5.7]). On the other
hand B, is a 1-coboundary since U, = u — u, belongs to Im 3 in L5y (Y, F)p, - Therefore
the limit By is also 1-coboundary. O

We construct solutions y, of the §-equation 8y, = B, with suitable local L?-norm. The
coboundary operator

§:CP Y UKy ®FQ J(hr)) = BP (U Kx @ F® J(hFr))

is continuous and surjective between Fréchet spaces, and thus it is an open map by the
open mapping theorem. From the latter conclusion of Claim 3.7, there exists
Yo € CYU(U,Kx ® F ® J(hr)) such that §yy = Bo. For an arbitrary family K := {K;}ies
of relative compact sets K; € B;, the image §(Ax) of Ak is an open neighborhood of Sy,
where Ak is the open neighborhood of yy defined by

Ag :={y € CY(UKx ® F® J(hr)) | px;(y —yo) <1 foranyi € I.}.

Since the image §(Ag) is an open neighborhood of 8y and B, converges to By, there exists
Ve := {Ve,i} € Ak such that

(6) {Va,j — Vei) = 8ye = Be = {ﬂe,j - ﬂs,i}»

) P00 = [ Weilt, Vo < Ck

for some positive constant Cx (which depends on the choice of K, yq, but is independent
of e).
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From now on, we construct solutions w, with the properties in Proposition 3.5. For a
partition of unity {p; };es of %/, we obtain

0 ok (Ve = Ved)} =10 pr(Bes — Be)}
kel kel

from equality (6). Note that the above cochain determines the global F-valued (n, 1)-form
on X.Bydy,; =0and df,; = Ug on B; \ Z, it is easy to see that

0> (Ve — ved)} = =0 Y _ pr¥eu-

kel kel
{0 ok (Beii = Ber)} =Ue =3 Y _ prBek-
kel kel

Therefore we 1= Y g c; PkBek — D kes Pk Ve satisfies dwe = U. It remains to estimate the
L?-norm of w,. By simple computations, we have

[ I besls g @Vo <3 [ |Bealh g Ve < I,
Y Bi\Z

kel kel
for some C > 0. On the other hand, by putting K; := Supp p;, we may assume that the
inequality

Px; (ve) = / Vel 0dVo < Ck
Supp p;

holds by inequality (7). Hence we obtain

/X 1> oevely, o dVe < Z/B Ve, o dVeo < Cx I

kel kel Y BkNSupp pi

These inequalities complete the proof. O

STEP 4 (Limit of the harmonic forms). — In this step, we investigate the limit of u, and
complete the proof of Theorem 3.1. First we prove the following proposition.

ProprosSITION 3.8. — There exist F @ L-valued (n,q — 1)-forms v, on Y with the following
properties :

(1) 9ve = sus. (2) The norm lvellnen, .. is uniformly bounded in e.

Proof. — There exists an F ® L-valued (n,q — 1)-form v such that dv = su and
lollnrh; 0 < o0, since we are assuming that the cohomology class of su is zero in
HiI(X,Kxy  F ® L ® J(hrhr)). For w, with the properties in Proposition 3.5, we
put v, := —sw, + v. Then it is easy to check 9vs = su,. Furthermore, an easy computation
yields

Vellneny o < ISWellneny oo + 10hehy o < SI;P IS|hy TWellne.a + 1010 g o

Since [|[V|hph, 8 < Vhph, 0 < 0o and the norm ||we||5, & is uniformly bounded, the right
hand side can be estimated by a constant independent of ¢. O

Next we consider the limit of the norm ||su¢||p,1, ,.&-

PROPOSITION 3.9. — The norm ||sug||nn, ,.& converges to zero when ¢ tends to zero.
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Proof. — For v, € LE‘Z’;’_l (Y,F ® L)p,n, ,.& satisfying the properties in Proposition 3.8,
we obtain
5 _
Isuelin, .o = (Sue. Vel non, .o

—x
= <(8hshL,asu8’ l}‘a»hezhL,b‘sa

—%

< 10n,n, Suellnens oallvellnen, .-

The norm ||ve|lp.n; & is uniformly bounded by Proposition 3.8. On the other hand,
the norm ||5ZEhL Suelln.n, . converges to zero by Proposition 3.4. Therefore the

norm [|suellp,n, & also converges to zero. O

Fix a sufficiently small number g9 > 0. Then, for every positive number ¢ with 0 < & < g,
by property (b) of i, we obtain

luellnega < lluelln.a < ullnre-

In particular, the norm of u, with respect to /,, is uniformly bounded. Therefore there exists
a subsequence of {u.}.~¢ that converges to « € Lg;’ (Y, F )hSO & with respect to the weak
L?-topology in L’é’;’ (Y, F)p,, & For simplicity, we use the same notation {u;}e~o for this

subsequence. Then we prove the following proposition.
PRrROPOSITION 3.10. — The weak limit a of {u¢}e=o in L?Z’;I(Y, F)ht?o’HN’ is zero.

Proof. — For every positive number § > 0, we define the open subset A5 of ¥ by
Ag:={y et | |s|iL > § at y.}. By an easy computation, we have
.£0

2 2
Isuelly n, 5= lsuelly , &
el es eofL.eqg>

2 2 .
> /A 15l el 3 4V

> 8/ uel?, V=0
As

for every § > 0. Since the left hand side converges to zero, the norm ||u,| 4 5sheq@ ON Ag also
converges to zero. Notice that u, |4, converges to a|4, with respect to the weak L?-topology
in L'(qz’;l (A5, F)n,, .- Here uglay (resp. ala;) denotes the restriction of u, (resp. @) to As.
Indeed, for every y € L{3](As, F)n,, &> the inner product (uela;, yha, = (e 7Ny
converges to (o, V)y = {o|as,¥)as, where ¥ denotes the zero extension of y to Y. Since
Uglas converges to a|q;, we obtain

bty 45 ey = B0 ftelas g g 3 = 0.

The first inequality follows since the norm is lower semi-continuous with respect to the weak
convergence. Therefore we have a|4; = 0 for any § > 0. By the definition of A3, the union
of {As}s>o agrees with Y = X \ Z, which asserts that the weak limit ¢ is zeroon Y. O

By using Proposition 3.10, we complete the proof of Theorem 3.1. By the definition of u,,
we have

U= U, +5v8.
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By Proposition 3.10, the form dv, converges to u with respect to the weak L2-topology. Then
it is easy to see that u is a d-exact form (that is, ¥ € Imad C LZ’Z’;] Y, Fn.,.)- This is
ngq
)
In summary, we proved that u is a d-exact form in L'gg (Y, F)h,,.@- This implies that the
cohomology class {u} of u is zeroin H4(X, Kx ® F ® J(he,)). By property (c), we obtain

the conclusion of Theorem 3.1. O

because the subspace Ima is closed in L7 (Y, F) heg @ with respect to the weak L2-topology.

4. Theorems related to the extension conjecture

The purpose of this section is to obtain some extension theorems as applications of
Theorem 3.1. For this purpose, by making use of our injectivity theorem, we first prove the
following extension theorem, which can be seen as a special case of the extension conjecture
for dlt pairs.

THEOREM 4.1 (Theorem 1.4). — Let X be a compact Kihler manifold and A := S + B be

an effective Q-divisor with the following assumptions :
(1) A is a simple normal crossing divisor with0 < A <l and |A| = S.
(2) Kx + A is Q-linearly equivalent to an effective divisor D with S C Supp D.
(3) Kx + A admits a singular metric h with semi-positive curvature.

Then, for an integer m > 2 with m(Ky + A) Cartier and a sectionu € H°(S, Os(m(Kx + A)))
that belongs to the image of H°(S, Os(m(Kx + A) ® J(h™ 'hg)) — H(S, Os(m(Kx + A))),
the section u can be extended to a section in H°(X, Ox (m(Kx + A))).

Moreover if h < Chp holds for some C > 0 and the singular metric hp induced by D, then
every cohomology classu € H1(S, Os(m(Kx + A)) ® J(h™ Yhp)) can be extended to a class
in H1(X, Ox (m(Kx + A)) ® J (W™ 'hg)) for any g > 0.

Proof. — We may add the assumption of & < hp, where hp is the singular metric
on Kx + A defined by the effective divisor D. Indeed, for a smooth metric g on Ky + A
and an L!-function ¢ (resp. ¢p) with h = ge 2% (resp. hp = g e 2%P), the metric defined
by g e~2max(¢:¢D) satisfies assumption (3) again, and the multiplier ideal only gets larger.

For the Cartier divisor G := m(Kx + A), we consider the following exact sequence :

0— Cx(G—S)®I(h" 'hg) — Ox(G) ® J(h" 'hp) > O0s(G) ® J(W" 'hp) — 0.
We prove that the natural homomorphism
+S: HY(X, Ox (G — S) Q@ I(" Yhg)) - HY(X, Ox(G) ® I(h"™ 'hp))

is injective. Then the conclusion follows from the induced long exact sequence.
By the assumption on the support of D, we can take an integer ¢ > 0 such thataD is a
Cartier divisor and S < aD. Then we have the following commutative diagram:

HY(X, Ox(G) @ I(h™ Yhg)) 2 Im (+S)
s l+<aD—s>

HY(X, Ox(G —S) ® I(h™ 1hp)) o HY(X,0x(G — S +aD) ® I(h*T™ Lhp)).
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Our purpose is to show that the map to the upper right is injective. For this purpose, we show
that the horizontal map is injective as an application of Theorem 3.1.
By the definition of G, we have

G-S=mKy+A)—S =Ky + (m—1)(Ky +A) + B.

Then the line bundle F := Oy ((m—1)(Kx +A)+ B) equipped with the metrich g := i hp
and the line bundle L := Ox (a D) equipped with the metric iy, := h? satisfy the assumptions
in Theorem 3.1. Indeed, we have hp = h(Lm_l)/ “hp by the construction, and further the
point-wise norm |szplp, is bounded on X by the inequality # < hp, where s,p is the
natural section of aD. Therefore we can conclude that the horizontal map is injective by
Theorem 3.1. O

To obtain some results related to the abundance conjecture (Theorem 5.1 and Corol-
lary 5.3), we need the following corollary, which is a slight generalization of Theorem 4.1.

COROLLARY 4.2. — Under the same situation as in Theorem 4.1, instead of assumption (3),
we assume the following assumption :
(3") There exist effective Q-divisors E and F and a singular metric h on Ox (F) with semi-
positive curvature such that
o Kx +A~g E+F,
o FE + B is simple normal crossing,
e E has no common component with S,
e v(h,x) = 0at every point x € S.
Let m(> 2) be an integer such that mE, mF, m(Kx + A) are Cartier, and let’s be the natural
section of mE. Then, for a sectionu € H°(S, Os(mF)), the sectionu -5 € H°(S, Os(m(Kx + A)))
can be extended to a section in H°(X, Ox (m(Kx + A))).

Proof. — Let hg be the singular metric on E induced by the sections € H%(X, Ox (mE)).
By the definition, the metric hz satisfies v—10, z(E) = 0 and supy [s] W < 00. The
product 4 - h g determines the singular metric on Ky + A with semi-positive curvature. It is
sufficient to show that u -5 belongs to H°(S, Os (m(Kx +A))® &), where &/ is the multiplier
ideal defined by &/ := J(h™ 'h"%~1hp).

In the first step, we see that

Ix = Jhg "hp)x
for every x € S, where of, denotes the stalk of a sheaf ¥ at x. Let f be a holomorphic
function on an open neighborhood Uy of x € S with /' € J(h" 'hp)y,, and let ¢
(resp. ¢, ¢p) be a local weight of & (resp. hg, hp). By taking a real number p > 1 with
J(h’g(m_l)hg) = J(h 'hg), we may assume that | f|e"P"~D¢E=r¢s jg [ 2-integrable
on Uy. Then, for the positive number ¢ with 1/p + 1/q = 1, we obtain

/ | f[2e=2m=Do=20n—1)0E~205 (/ |f|2pe—2p(m—1)w5—2p<ps)l/”,(/ e—Zq(m—l)w)l/q
U, U

by Holder’s inequality. The function e=2¢"=1D¢ s locally L2-integrable for any ¢ > 0 by
Skoda’s lemma and the assumption on the Lelong number. On the other hand, as mentioned
above, the function | f|Pe~Pm—1D9E=r?5 is also locally L2-integrable. Therefore we have
Tx = J( 'hg)y forevery x € S.
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In the second step, we prove
u-5e H(S, Os(m(Kx + A) ® Jls),
where ¢/|gs is the restriction of &/ defined by
Ils= - Os=J/N(I N Ts).

Let u be a local extension of u on an open neighborhood Uy, of x € S. By the kit condition
of B, we can take a real number p > 1 with .J (hg) = (Ox. Then, for the holomorphic
function g := % -5, by taking the positive number g with 1/p + 1/q = 1, we obtain

/ |g|2e2m=Der—205 < (/ |g|2pe—2p(m—1)(gE_2pr)1/17‘(/ 1)l/qr
U Ux Ux

1/p 1/q
< sup |g|217e—2p(m—1)<0E<f e—2p<p3) . (/ 1)
U. Ux Ux

by Holder’s inequality again. The point-wise norm |g|??e~2P(m~D¢E is bounded by the
choice of i1 g. It implies that u -5 belongs to J(h2 'hp)|s = ls.
Finally we show

u-5e€ HS, Os(m(Kx + A) ® &).

By simple computations we have Os ® &/ = Ox ® ¢//(&/ - Js), and thus, by the second
step, it is sufficient to see

INJIs=-Js-
Here Jg denotes the ideal sheaf defined by S. By the first step and the assumption on the
support of E + B. we have

Ix = JUG " hg)x = Ox (=L(m = E + B]),

for every x € S. Therefore we can easily see ¢/ N Js = ¢/ - Js since S and E + B
have no common component by the assumption. The section u - 5 actually belongs
to H(S, Os(m(Kx + A)) ® &). The conclusion follows from Theorem 4.1. O

REMARK 4.3. — When we apply the injectivity theorem in order to extend sections, we
need to handle Os ® J(¢) (not J(@)|s). On the other hand, when we apply the Ohsawa-
Takegoshi extension theorem, we usually use the restriction of multiplier ideal sheaves .J(¢)|s.
It is relatively difficult to handle Os ® J(¢). However the support condition (the second
assumption of the above corollary) fortunately appears in the proof of the applications related
to the abundance conjecture, which asserts Os ® J(p) = J(9)|s.

The following corollary is the the special case that E = Oy ands = 1 € H°(X, COx) of
the above corollary.

COROLLARY 4.4. — Under the same situation as in Theorem 4.1, instead of assumption (3),
we assume the following assumption :

(3") Kx + A admits a singular metric h such that ~/—10y > 0 and v(h, x) = 0 at every point
xes.

Then, for an integer m > 2 withm(Kx + A) Cartier, a sectionu € H°(S, Os(m(Kx + A)))
can be extended to a section in H°(X, Ox (m(Kx + A))).
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For further applications of the above results, we prepare the following lemma.

LeEmMA 4.5. — Let ¢ be a (quasi)-psh function on a complex manifold X andw : Y — X
be a modification. The Lelong number v(p, xg) is zero at xo € X if and only if the Lelong
number v(* @, y) is zero at every point y € w1 (xo).

Proof. — The “if” part follows from the inequality

V(. x0) < v(7¥9. y).

Now we show the “only if” part. For a contradiction, we assume that v(z*p, yo) > 0 for
some point yo € 7~ !(xp). By Skoda’s lemma (Theorem 2.5), we can take a sufficiently
large number m > 0 such that 7*d Vxye2™7"¢ is not integrable on a neighborhood of yq,
where d Vx is a standard volume form on a neighborhood B of x¢. By the change of variable
formula, we have

/ i dVx = / e2mnte a*dVy.
B n—1(B)

By the assumption of v(¢, xg) = 0, the left hand side is finite for a sufficiently small B.
It is a contradiction to the choice of m. Therefore we have v(7*¢, y) = 0 at every point
y € 771 (xo). O

5. Theorems related to the abundance conjecture

In this section, we prove some applications related to the abundance conjecture. The proof
of the following theorem is based on [8, Section 8] and [20, Theorem 5.9]. In our case, we use
the dlt blow-up (Theorem 2.9).

THEOREM 5.1 (cf. Theorem 1.5). — Assume that Conjecture 1.1 holds in dimension (n—1).
Let X be an n-dimensional normal projective variety and A be an effective Q-divisor with the
following assumptions :

- (X, A) is a klt pair.

— There exists an effective Q-divisor D such that Kx + A ~g D.

— There exists a projective birational morphism ¢ : Y — X such that Y is smooth
and ¢*(m(Kx + A)) admits a singular metric h whose curvature is semi-positive and
Lelong number is identically zero on Supp ¢*D. Here m is a positive integer with
m(Kx + A) Cartier.

Then Kx + A is semi-ample.

Proof. — By replacing & with g e 2™ W-¥e*mp) we may assume that the Lelong number
of h is identically zero on Y. Here g is a smooth metric on ¢*(m(Kx + A)) and v (resp.
Yo mp) 1s the weight of & (resp. hy*, p). In particular, we can see that D is nef. Conjecture 1.1
in dimension (rn — 1) implies the existence of good minimal models for (n —1)-dimensional klt
pairs (see [22, Theorem 4.3] or [8, Remark 2.6]). By Kawamata’s Theorem [25, Theorem 7.3]
(see also [28, Lemma 5.6]), it is enough to show that k(Kx + A) = 0 implies D = 0. So
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assume k(Kx +A) = 0and D # 0. Put/ := Ict(D; X, A) and take a dlt blow-up¢’ : Y — X
of (X, A + [D) by Theorem 2.9. We write

Ky + 8 + B' = ¢™(Kx + A +1D) ~q (1 + )¢"* D,

where | S’ 4+ B’| = S’ and (Y’, S’ + B’) is dlt. We remark that S can not be assumed to
be a prime divisor and may be non-normal in general. We only know that S’ is a union of
prime divisors each mapped to Ic centers of (X, A + /D). By taking a log resolution which
is isomorphic over the generic point of every Ic center of (Y,”S” + B’), we may assume that
¢ : Y — X factors through a log resolution f : Y — Y’ of (Y’, S’ + B’) (see Lemma4.5).
We have
Ky +S+B=f*(Ky+S" +B)+E,

where S(# 0) is the strict transform of S’, E is ¢-exceptional, and no two of S, B and E have
a common component. Then we have S € Supp ¢* D since every Ic center of (X, A +[D) is
contained in Supp D. Since Ky’ + B’ + S" ~q (1 + )¢"* D, we see that Ky + B’ + S’ is
nef. In particular, the restriction Kg- + Bg, = (Ky’ + B’ + §')|s is also nef.

CLAIM 5.2. — For a sufficiently divisible integer m’ > 2, the restriction map
H(Y',m'(Ky' + S’ + B')) — H°(S",m'(Ks' + BY/))
is surjective.

Proof of Claim 5.2. — Let u be a non-zero sectionin H°(S", m'(Ks: + Bg))). Let upy g be

. D m (+1) .
the natural section of m’ E. By the assumption, it is easy to see that s~ =  determines the
singular metric on

m'(1+0e*D =m'A+1)f*¢*D ~ogm' f*(Ky + S"+ B)

such that the curvature is semi-positive and the Lelong number is identically zero on Y. Since
S and E have no common component, Corollary 4.2 applied to F := (1 + 1) f*¢'* D and
S := U, yieldsaasection U € H(Y,m'(Ky + S + B)) such that Uy = f|;u ® (Um'E)|g
(cf. Lemma4.5).

On the other hand, the mapping

HO(Y'.m'(Ky: + 8"+ B')) - H°(Y,m'(Ky + S + B)) given by s = f*s @ up'g
for a section s € H°(Y',m'(Ky: + S’ + B’)) is an isomorphism. Moreover the mapping
HO(S",m'(Ks' + Bg))) = H(S,m'(Ks + Bjg)) given by 1 > f*1 & (umE)|s
for a sectiont € H°(S’,m'(Ky' + S’ + B')) is injective from f,Cs = Os/ and Kollar-
Shokurov’s connectedness theorem (see [30, Theorem 17.4]). Hence we can conclude that
H°(Y'.m'(Ky + S'+ B")) — H°(S',m'(Ks' + Bg/))

is surjective. O

On the other hand, this restriction map is zero map since k (Kx + A) = k(Kys + B'+ S') =0
and S" € Supp ¢"*D. Since (Y', S’ + B’) is a dlt pair, the pair (S’, Bj,) is divisorial semi-log
terminal (see [12, Remark 1.2 (3)]). In particular (S’, BY,) is semi-log canonical (see [13,

Proposition 3.9.2]). We can apply [20, Theorem 1.5] or [24] to (S’, BY,) since the abundance
conjecture for Ic pairs in dimension (n — 1) holds by [20, Theorem 5.5, Corollary 5.6], [21,
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Theorem 1.5], and [23, Theorem 1.1, Theorem 1.5]. Since furthermore K/ + By, is nef, this
implies that Ks- + B, is semi-ample. Here we need the assumption of projectivity. This is a
contradiction to Claim 5.2, and thus D = 0. This finishes the proof. O

By using the abundance theorem in dimension 3 ([26, Theorem 1.1], [28, 1.1 Theorem],
[12, Theorem 0.1]), we obtain the following results:

COROLLARY 5.3. — Let (X, A) be a 4-dimensional projective kit pair. Assume that there
exists a projective birational morphism ¢ : Y — X such that Y is smooth and ¢* (m(Kx + A))
admits a singular metric whose curvature is semi-positive and Lelong number is identically zero.
Here m is an integer with m(Kx + A) Cartier. If k(Kx + A) > 0, then Kx + A is semi-ample.

REMARK 5.4. — The assumption of Corollary 5.3 for h is satisfied when h is smooth. In this
case, we can show Corollary 5.3 by replacing Theorem 1.3 with generalized Enoki’s injectivity
theorem after Fujino ([16, Theorem 1.2, Corollaryl.3]).

Finally we give a result for semi-ampleness by combining with Verbitsky’s non-vanishing
theorem ([41, Theorem 4.1]).

COROLLARY 5.5 (Theorem 1.6). — Let X be a 4-dimensional projective hyper Kihler mani-
fold and L be a line bundle admitting a singular metric whose curvature is semi-positive and
Lelong number is identically zero (Which holds, in particular, if h is smooth). Then L is semi-
ample.

Proof. — It is enough to show «(L) > 0 by Corollary 5.3 since if there exists an effective
Q-divisor such that D ~q L, the pair (X, eD) iskltand Kx +&D ~q ¢L for sufficiently small
e > 0.Ifg(L, L) > 0, then L is big, where ¢(-, -) is the Bogomolov-Beauville-Fujiki form. On
the other hand, if (L, L) = LY™X = 0, then we have k(L) > 0 from [41, Theorem 4.1]. [

By the above results, Conjecture 1.1 is reduced to the non-vanishing conjecture and the
following problem :

QUESTION 5.6. — How can we construct a singular metric on a nef (log) canonical bundle
such that the curvature is semi-positive and the Lelong number is zero everywhere?
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