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EQUIDISTRIBUTION SPEED FOR FEKETE POINTS
ASSOCIATED WITH AN AMPLE LINE BUNDLE

BY TIEN-CUONG DINH, X1A0ONAN MA AND VIET-ANH NGUYEN

ABSTRACT. — Let K be the closure of a bounded open set with smooth boundary in C”. A Fekete
configuration of order p for K is a finite subset of K maximizing the Vandermonde determinant
associated with polynomials of degree < p. A recent theorem by Berman, Boucksom and Witt Nystrom
implies that Fekete configurations for K are asymptotically equidistributed with respect to a canonical
equilibrium measure, as p — oo. We give here an explicit estimate for the speed of convergence. The
result also holds in a general setting of Fekete points associated with an ample line bundle over a
projective manifold. Our approach requires a new estimate on Bergman kernels for line bundles and
quantitative results in pluripotential theory which are of independent interest.

RESUME. — Soit K I’adhérence d’un ouvert borné a bord lisse dans C". Une configuration de
Fekete d’ordre p pour K est un sous-ensemble fini de K qui maximise le déterminant de Vandermonde
associé aux polynomes de degré < p. Un théoréme récent de Berman, Boucksom et Witt Nystrom
implique que les configurations de Fekete sont asymptotiquement équiréparties par rapport a une
mesure d’équilibre canonique quand p — oo. Nous donnons ici une estimation précise de la vitesse
de convergence. Le résultat est aussi valable dans un cadre général des points de Fekete associés a
un fibré en droites ample au-dessus d’une variété projective. Notre approche nécessite une estimation
nouvelle sur les noyaux de Bergman pour les fibrés en droites et des résultats quantitatifs de la théorie
du pluripotentiel qui sont d’intérét indépendant.

Notation. — Throughout the paper, L denotes an ample holomorphic line bundle over a
projective manifold X of dimension n. Fix also a smooth Hermitian metric 7y on L whose
first Chern form, denoted by wy, is a Kidhler form. For simplicity, we use the Kédhler metric
on X induced by wg. The induced distance is denoted by dist. Define 1° := ||| »§ the
probability measure associated with the volume form w; . The space of holomorphic sections
of L? := L®P the p-th power of L, is denoted by H°(X, L?). Its dimension is denoted
by N,. The metric /¢ induces, in a canonical way, metrics on the line bundle L? over X, the
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546 T.-C. DINH, X. MA AND V.-A. NGUYEN

vector bundle of the product L? x---x L? (N, times) over X Nr and the determinant of the
last one which is a line bundle over X V7 and denoted by (L?)®¥» . For simplicity, the norm,
induced by A, of a section of these vector bundles is denoted by | - |.

A general singular metric on L has the form &7 = e~V h,, where v is an integrable
function on X with values in R U {fo00}. Such a function  is called a weight. It also induces
singular metrics on the above vector bundles, and we denote by ||,y the corresponding norm
of a section of L? or the associated determinant line bundle over X 7. This is a function
on X or XVr respectively. If K is a subset of X, the supremum on K or K7 of this function
is denoted by || - [lLoo(k.py) OF || - oo (xVo pyy- 1ts L2 (w) or L2(u®Nr)-norm is denoted
by |- 22, pw) O I 1L2(u®Np  pyy» Where w is a probability measure on X. We sometimes
drop the power N, for simplicity. In the same way, we often add the index “y” or “pvy,” if
necessary, to inform the use of the weight ¥ for L and hence py for L?.

The notations p, (i, ¢), %Bp(u,¢) will be introduced in Subsection 2.3, $;°(K, ?),
c%;(u, ?), Lp(K.9), Lp(n,d), E(@), Eeq(K,¢) in Subsection 3.1, and VU, (¢1.¢2),
W(p1,¢2), €p, Dp(K,$) in Subsection 3.2. Let B(x, r) denote the ball of center x and
radius r in X or in an Euclidean space. Similarly, D(x, r) is the disk of center x and radius
rinC, D, := D(0,r) and D := (0, 1). The Lebesgue measure on an Euclidean space is
denoted by Leb. The operators d¢ and dd¢ are defined by

d¢ = E(é— 9) and dd€:= Eaﬁ.

27 b4
Form € Nand 0 < a < 1, ™ is the class of €™ functions/differential forms whose
partial derivatives of order m are Holder continuous with Holder exponent a. We have
E™* = €™ except for o = 1. We use the natural norms on these spaces and for simplicity,
define || - [l := 1 + || - |l¢m and || - |ma := 1 + || - |l gm.«. Denote by Lip the space of
Lipschitz functions which is also equal to €%! and by ﬁE the space of functions v such that
[v(x)—v(y)| < —dist(x, y) logdist(x, y) for x, y close enough. We endow the last space with
the norm

||v||]j1; = ||v]leo + inf{A >0: |v(x) —v(y)| < —Adist(x, y) logdist(x, y) if dist(x,y) < 1/2}.

A function ¢ : X — R U {—o0} is called quasi-plurisubharmonic (quasi-p.s.h. for short)
if it is locally the sum of a plurisubharmonic (p.s.h. for short) and a smooth function. A
quasi-p.s.h. function ¢ is called wo-p.s.h. if dd°¢ + wy > 0 in the sense of currents. Denote
by PSH(X, wg) the set of such functions. If ¢ is a bounded function in PSH(X, wg), define
the associated Monge-Ampére measure and normalized Monge-Ampére measure by

MA(¢) 1= (dd°¢ + wo)" and NMA(p) := [MA(¢)| "' MA(9).

So MA(¢) is a positive measure and NMA(¢) is a probability measure on X. A quasi-p.s.h.
function ¢ is called strictly wo-p.s.h. if dd°$ + wp is larger than a Kéihler form in the sense
of currents, see [11, 14] for the basic notions and results of pluripotential theory.

Some remarks. — The constants involved in our computations below may depend on X, L, hg
and hence on wg and p°. However, they do not depend on the other weights used for the
line bundle L but only on the upper bounds of suitable norms (%%, ij), ...) of these weights.
This property can be directly seen in our arguments. For simplicity, we will not repeat it in
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EQUIDISTRIBUTION SPEED FOR FEKETE POINTS 547

each step of the proofs. The notations = and < mean inequalities up to a positive multiple
constant.

1. Introduction

Let K be a non-pluripolar compact subset of C". The pluricomplex Green function of K,
denoted by Vg (z), is the upper-semicontinuous regularization of the Siciak-Zahariuta
extremal function

Vi (z) == sup {u(z) : u p.s.h. on C", ulg < 0,u(w) —log|lw|| = O(1) as w — oo}.
This function V¢ is locally bounded, p.s.h. and (dd € V)" defines a probability measure with
support in K. It is called the equilibrium measure of K and denoted by ueq(K), see [29, 32].

Let &2, be the set of holomorphic polynomials of degree < p on C”. This is a complex
vector space of dimension

+n 1 _
Npi= (77 = <o+ 0.
n n!

Let (e1,...,en,) beabasis of &,. Define for P = (x1,...,xp,) € (C"N> the Vandermonde
determinant W(P) by

er(x1) ... ei(xn,)
W(P) := det

en,(x1) ... en,(xn,)

A point P € K™Nr is called a Fekete configuration for K if the function |W(-)|, restricted
to KNr achieves its maximal value at P. It is not difficult to check that this definition does
not depend on the choice of the basis (ey, ..., en,), see [28].

Recently, Berman, Boucksom and Witt Nystrom have proved that Fekete points
X1....,Xn, are asymptotically equidistributed with respect to the equilibrium measure
Meq(K) as p tends to infinity [3]. This property had been conjectured for quite some time,
probably going back to the pioneering work of Leja in [19, 20], where the dimension 1 case
was obtained. See also [22, 28] for more recent references on this topic. More precisely, let

L
Up i= — Oy,
4 Np; Xj

denote the probability measure equidistributed on x1,. .., xn,. We call it a Fekete measure
of order p. The above equidistribution result says that in the weak-* topology

plggoup = Heq(K).

In fact, this theorem by Berman, Boucksom and Witt Nystom holds in a more general
context of Fekete points associated with a line bundle. We will discuss this case later together
with an interesting new approach by Ameur, Lev and Ortega-Cerda [1, 21].

Fekete points are well known to be useful in several problems in mathematics and math-
ematical physics. It is therefore important to study the speed of the above convergence. For
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548 T.-C. DINH, X. MA AND V.-A. NGUYEN

this purpose, it is necessary to make some hypothesis on the compact set K. For instance, we
have the following result, see also Corollary 1.6.

THEOREM 1.1. — Let K be the closure of a bounded non-empty open subset of C" with €2
boundary. Then for all0 <y <2ande > 0, there is a constant ¢ = c(K, y, &) > 0, independent

of p > 1, such that

{ip — teq(K). v)| < cllv]lgr p77/36F¢

Jor every Fekete measure i, of order p and every test function v of class €Y on C".

In fact, our result is still true in a more general setting that we will state below after
introducing necessary notation and terminology.

Let L be an ample holomorphic line bundle over a projective manifold X of dimension #.
Fix a smooth Hermitian metric 4o on L whose first Chern form wo := %= R} is a Kéhler

2
form, where Ré is the curvature of the Chern connection on (L, ).

DEerFINITION 1.2. — We call weighted compact subset of X a data (K, ¢), where K is a
non-pluripolar compact subset of X and ¢ is a real-valued continuous function on K. The
function ¢ is called a weight on K. The equilibrium weight associated with (K, ¢) is the upper
semi-continuous regularization ¢z of the function

¢ (2) :=sup{¥(2) : ¥ wo-p.sh., ¥ < ¢ onK}.

We call equilibrium measure of (K, ¢) the normalized Monge-Ampére measure
Meq (K,¢) = NMA(‘p[*{)

Note that the equilibrium measure peq (K, ¢) is a probability measure supported by K and
¢x = ¢k almost everywhere with respect to this measure, see e.g., [2].

DEerINITION 1.3. — Denote by Pk the projection onto PSH(X, wg) which associates ¢
with ¢¢. We say that (K, ¢) is regular if ¢k is upper semi-continuous, i.e., Pg¢ = ¢g. Let
(E, || |g) be a normed vector space of functions on K and (F, || || ) a normed vector space
of functions on X. We say that K is (E, F)-regular if (K, ¢) is regular for ¢ € E and if the
projection Pg sends bounded subsets of £ into bounded subsets of F'.

We will see in Theorem 2.7 below that when K is the closure of an open set with €2
boundary, then it is (%, €*)-regular for 0 < o < 1, i.e., (E, F)-regular with £ = ¥“(K)
and F = €%(X).

Consider now an integrable real-valued function ¥ on X and the singular Hermitian
metric & := e 2¥hg on the line bundle L. We will use the notations given at the beginning
of the paper. Consider also a basis S, = (s1,...,sn,) of the vector space H 0(X, LP), where
N, := dim H°(X, L?). This basis can be seen as a section of the rank N, vector bundle
over X V7 which is the product L? x -+ x L? (N,-times). The determinant line bundle asso-
ciated with this vector bundle is denoted by (L?)®N» . The determinant det(s; (Xj)1<i,j<N,
for P = (xy,...,x N,,) in X™r defines a section of the last line bundle over X V7 that we will
denote by det S, or det(s; (x;)). The metric i induces in a canonical way a metric (h§ YBINp
on (L?)®N»_ As mentioned above, we denote by |det(s; (xj))| the norm of det(s;(x;))
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with respect to (h§)®Nr. For P = (x1....,xn,) in X7, we will consider the weighted
Vandermonde determinant

| det(s; (X)) |py == | det(si (x;)) e~ PV D= =PYCNp),

The following notion does not depend on the choice of the basis S, = (s1,....,5n,).

DEFINITION 1.4. — The point P = (xy,...,xy,) in KN is called a Fekete configuration
of order p of (L, ho) in the weighted compact set (K, ¢) if the above weighted Vandermonde
determinant, restricted to KV, achieves its maximal value at P. The associated probability
measure

1
N B o By,

on K is called a Fekete measure of order p.

In order to study the speed of equidistribution of Fekete points, it is convenient to use
some distance notions on the space . (X) of (Borel) probability measures on X. For y > 0,
define the distance dist, between two measures y and p’ in .#(X) by

dist, (. ') ;= sup  |[(u— ' v)|,

vl <1
where v is a test smooth real-valued function. This distance induces the weak topology

on . (X). By interpolation between Banach spaces (see [14, 31]), for 0 < y < y’, there
exists ¢ > 0 such that

(1.1) dist,s < dist, < c[dist,/]"/”".

Note that dist; is equivalent to the classical Kantorovich-Wasserstein distance.
Here is our main result which is the version of Theorem 1.1 in the general setting. It is
already interesting for K = X.

THEOREM 1.5. — Let X, L, hy be as above and K a non-pluripolar compact subset of X .
LetO<a<2,0<da <land0 <y <2 be constants. Assume that K is (¢*, %“/)-regulan
Let ¢ be a6 real-valued function on K and peq(K, ¢) the equilibrium measure associated with
the weighted set (K, ¢). Then, there is c > 0 such that for every p > 1 and every Fekete measure
Wp of order p associated with (K, ¢), we have

dist, (ip, fteq (K. 9)) < cpP7(log p)#Y  with B :=o'/(24 + 12a).

We will see later in Theorem 2.7 that the hypothesis on K is satisfied for @ = o’ < 1 when
K is the closure of an open set with 4’2 boundary (we think that the techniques we use can
be applied to study other classes of compact sets but we don’t develop this direction here).
So the result below is a consequence of Theorem 1.5 fora = o’ < 1.

COROLLARY 1.6. — Let X, L, ho be as above and K the closure of a non-empty open subset
of X with €* boundary. Let ¢ be a €* real-valued function on K, 0 < o < 1, and jieq(K, ¢)
the equilibrium measure associated with (K, ¢). Then, for every 0 < y < 2, there is ¢ > 0 such
that for every p > 1 and every Fekete measure [, of order p associated with (K, ¢), we have

disty (tp, preq (K, $)) < cp™7 (log p)**7  with f:= /(24 + 120).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



550 T.-C. DINH, X. MA AND V.-A. NGUYEN

When X is the projective space P” and L is the tautological line bundle O(1) on P", we
can consider X as the natural compactification of C" and the sections in H%(X, L?) =
HO°(P", O(p)) can be identified to polynomials of degree < p on C". We then see that
Theorem 1.1 is a particular case of the last corollary.

Our theorem applies to the case where K = X and ¢ is a smooth function on X. If
the metric & := e 2?hg of L has strictly positive curvature form, our approach gives an
estimate better than the one in the last theorem. Namely, we have the following result, see
also Remark 3.15.

THEOREM 1.7. — Let X, L and hg be as above. Let ¢ be a € real-valued function on X such
that the first Chern form of the metric h := e™2®hg is strictly positive. Let jeq(X, ¢) denote
the equilibrium measure associated with the weighted set (X, ¢). Then for any 0 < y < 3, there
is ¢ > 0 such that

disty (14p. fteq(X. ) < cp™?/1*(log p)”/*
Sorall p > 1 and all Fekete measures v, of order p associated with (X, ¢).

This result is close to the one recently obtained by Lev and Ortega-Cerda in [21]. These
authors proved that when ¢ is smooth wy-strictly p.s.h., there is a constant ¢ > 0 such that

(1.2) ¢ pTM2 < disty (1p. peq(X. $)) < cp”M?

for all p and Fekete measures pu, of order p associated with (X, ¢). Using (1.1), we can
deduce similar estimates for dist, with 0 < y < 1. So the result of Lev and Ortega-Cerda
is optimal for 0 < y < 1 in their assumption. Although for 0 < y < 1 estimate in
Theorem 1.7. is weaker than (1.2) and its interpolated version, our assumption of smoothness
for ¢ is only € and can be easily reduced to ¢’® with similar estimates depending on o, see
Remark 3.15. Of course, in the case where the curvature of the metric induced by ¢ is only
semi-positive or even not semi-positive, one can apply Corollary 1.6 to K = X.

In their approach, Lev and Ortega-Cerda relate the equidistribution of Fekete points to
the problem of sampling and interpolation on line bundles as in a previous work by Ameur
and Ortega-Cerda [1]. The main ingredients of their method consist in using Toeplitz oper-
ators as well as known asymptotic expansions for the Bergman kernels on/off the diagonal
of X x X due to [8, 24, 30, 33], cf. also [25, 26]. The key points here are (1) the Fekete config-
urations are also sampling and interpolation, and (2) the points of such a configuration are
geometrically equidistributed. These crucial properties are obtained using the assumption
that the metric weight ¢ is smooth wy-strictly p.s.h.

Our approach is different because our metric weight ¢ is, in general, only Holder contin-
uous and it may originally be defined on a proper compact set K C X. In this context, Px ¢ is
only weakly wo-p.s.h., and moreover, not smooth in general. So the result by Lev and Ortega-
Cerda is not applicable in the general context.

We will follow the original method of Berman, Boucksom and Witt Nystrom [2, 3].
We will need, among other things, a controlled regularization for quasi-p.s.h. functions,
quantitative properties of quasi-p.s.h. envelopes of functions and an estimate of Bergman
kernels associated with holomorphic line bundles. These results are of independent interest
and will be presented in the next section while the proofs of the main results will be given in
the last section.
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2. Quasi-p.s.h. functions, equilibrium weight and Bergman functions

Let X be a compact Kéhler manifold of dimension n and let wg be a fixed Kahler form
on X. We will use later the equilibrium weight Px¢ associated with a regular weighted
compact set (K, ¢) of X. This is a quasi-p.s.h. function which is not smooth in general. So
we will need to approximate it by smooth quasi-p.s.h. functions and control the cost of this
regularization procedure.

In this section, we will give a version of the theorem of regularization for Holder contin-
uous quasi-p.s.h. functions and study the Holder continuity of equilibrium weights. The
behavior of Bergman functions associated with the powers of a line bundle with small posi-
tive curvature is crucial in our approach. This question will also be considered here in the
last subsection.

2.1. Regularization of quasi-p.s.h. functions

The purpose of this subsection is to establish the following regularization theorem for
Holder continuous quasi-p.s.h. functions with a control of positivity and controlled 6™
normes.

THEOREM 2.1. — For each 0 < a < 1, there exist ¢ > 0 which only depends on X, wy, «,
and ¢y, > 0 which only depends on X, wo, @ and m € N* satisfying the following property. Let
¢ be an wo-p.s.h. function on X of class €%%. Then, for each 0 < & < 1, there exists a smooth
function ¢ such that

a) ¢ is wo-p.s.h.;

b) ||[¢e — Plloo < ce¥||Pllo. (See the beginning of the paper for notation);

) |lgellemx) < cme ™ | pllo,q for m € N*.

We are inspired by Demailly’s regularization theorem [11, 10] and a technique of Blocki-
Kolodziej [7]. First, we construct suitable regularized maximum functions. Fix a function
¥ e €*°(R,R*) with support in [—1, 1] such that [, 9(h)dh = 1 and [; ko (h)dh = 0.
For each 0 < ¢ < 1 and each integer [ > 1, consider the regularized maximum function
max, : R/ — R defined by

I
maxg(f1,...,4) = / max(ty + hy.....t +h)e” [ 9hi/e)dhy ...dhy.
Rl

i=1
Here are some properties of max, which will be used later. The notation (¢q, ... 7 1)
below means that the component ¢; is omitted in the expression.

LEmMMA 2.2. —  a) maxg(t1,...,1) is non-decreasing in all variables, smooth and convex
on Rl;
b) max(ty,...,t4) < maxs(t,...,1) < e+ max(ty,...,1);
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552 T.-C. DINH, X. MA AND V.-A. NGUYEN

¢) maxg(ty,....t7) = maxg(ty,....b,....t;) if ti +2& <max(ty,....l,....1);

d) ifuy,...,u; are p.s.h. functions defined on some domain D in C", then so is
maxg(uy,...,u;).

e) Ifuy,...,u; arereal-valued functions in €™ (D), where m € N* and D is a domain in C",

then there is a constant c; ,, > 0 depending only on |, m and ¥ such that

Imaxe(ur,...oup)llgm < &+ sup Nuilloo + crm 3627 [T il

1<i<l
rij i,j

the sum being taken over all rij > Owith1 <i <l and j > 1 such that ) jr;j < m.

Proof. — Assertions a)-d) are contained in Lemma 1.5.18 of [11], where the above prop-
erties of ¥ are used. We turn to assertion ¢). Note that assertion b) allows us to bound the

sup-norm of max,(uq,...,u;), and hence explains the presence of & + sup ||u; |0 In asser-
tion e).
Observe that the function max is Lipschitz. Therefore, any partial derivative of order 1
of max.(uy,...,u;), seen as a function in D, is a finite sum of integrals of type
1
(2.1) v // Oy + hy...oup + h)e™ [ [ 9(hife)dhy .. dhy.
R

i=1
where @ is a partial derivative of order 1 of max and v is a partial derivative of order 1 of a
function u;. Note that ® is bounded.

Performing the change of variables u; + h; = s;, the expression in (2.1) is equal to

v/ D(sq,...,8)e"
ls;—uil<e

which is a function in D. We see that any derivative up to order m — 1 of this function is
bounded by a constant times
Zsl Yrij H [l ||;;fj,

rij

l

..dsy,
i=1

where the sum is taken over all r;; > Owith1 <i </ and j > 1 suchthat ) jr;; < m. This,
together with the control of the sup-norm using b), implies assertion ¢). O

Recall the following standard regularization by convolution. Let p(z) := p(|z]) €
%5°(C") be a radial function such that p > 0, p(t) = 0forz > 1, [, pd Leb = 1, where
Leb is the Lebesgue measure on C". For § > 0 we set ps(z) := § 2" p(z/§). For every function
u on an open set U C C" and every subset U’ € U, define

(2.2) ug(z) := (u * ps)(z) = /C” u(z — Sw)p(w)d Leb(w) with z € U’,

for 0 < § < dist(U’, bU). If u is in €%%(U) then ug is in €°°(U’) and we have

m—+a

23) s —lloowr S lullgoad® and |usllgmwn S lullgows™ for meN*.

If u is p.s.h. then ug is also p.s.h. and ug is decreasing to u as § \, 0. We need the following
elementary lemma, whose proof is left to the reader, see also [7].
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LEMMA 2.3. — Let F : W — W' be a biholomorphic map between two open subsets W
and W’ of C*. Letu € PSH(W) N €% (W) with0 < a < 1. Then, for every set U € W we
can find a constant §y > 0 such that for 0 < § < 8y, the function ug ;= wo F HsgoFis
well-defined on a neighborhood of U. Moreover, there are cy > 0 and cy, > 0 for m € N*
such that when 0 < § < 8y,

g —uloov < cullullgoas® and |ug lemw) < cumllulgoas ™+

End of the proof of Theorem 2.1. — Denote for simplicity M := ||¢||o,o.- The constants we will
use below do not depend on M. Observe that we only need to construct a
(1 + ¢’ M e*)wp-p.s.h. function ¢, such that

(2.4) lpe — Plloo < cMe® and |¢gllem < cuMe™™® form > 1,

where ¢, ¢’ and ¢,, are constants. Indeed, we can just multiply it by (1 +¢’M*)~! in order to
obtain a function as in Theorem 2.1. We can also add to this function a constant times M &%
if we want to get a function larger or smaller than ¢.

First fix a finite cover of X by small enough local charts (U;);es. We also choose a finite
cover of X by local charts (V});es indexing by the same index set J such that V; € U;. For
each j € J fix a smooth function f; defined on a neighborhood of U such that

(2.5) dd®f; = wo on aneighborhood of Uj;.

Then the function

(2.6) uj =¢+ f;

satisfies dd“uj = dd°¢p + dd° f; = dd°P + wo > 0. So u; is p.s.h. on U;.

Let j and k be in J such that U; N Uy # 0. There are two natural ways to regularize the
restriction u;|y; ny, using Formula (2.2). The first one is to use the local chart of Uj, i.e.,
U; will play the role of U in (2.2), and we get a function u; .. Similarly, the second way is to
use the local chart of Ug. Let F be the change of coordinates on U; N Uy from U; to Ug.

Denote by qu s the function given by Lemma 2.3 which corresponds to the regularization
of u; using the local chart of Uy. Write

F
Uje — Uke = Uje —Uj o+ (Uj —ug)e on Ui N Uy,

where the term (u; — ug), is the regularization of u; — uy by Formula (2.2) using the local
chart of Ug. Recall from (2.6) that u; — ux = f; — fx which is a smooth function. This
together with the previous equality and Lemma 2.3, imply

2.7 1) —uie) = (fi = fidlloo S Me® on U; N Ug.
Fix a constant ¢ > 0 large enough. For each j € J let n; be a smooth function defined
in U; such that n; = 0 on V; and that ; = —c away from a compact subset of U;. We have

that dd°n; > —c'wo for some constant ¢/ > 0. For each ¢ > 0 and j € J, consider the
function

(2.8) vj =uje— fj + Me*n; on Uj.
We identify J with {1,...,/} and set
(2.9 Pe := Me* "max, (M~ 'e' vy, M7 T%y)).
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Note that to define ¢¢(x), x € X, we remove M ~'¢!~%v; from the last formula if x & U;.

We first show that the function ¢, is smooth on X. For this purpose, we only need to
prove the property in a neighborhood of an arbitrary fixed point of X . Since each v; is well-
defined and smooth on Uj, using (2.9) and assertion a) in Lemma 2.2, it is enough to prove
the following claim.

Claim 1. — For all x € U; close enough to bU;, we have

max, (M e "vy,..., M e ;) (x)
= max, (M e vy, M~ lelmy; o M T Ty (x).

Let k € J such that x € V.. We infer from (2.8) and the equality n;(x) = 0 that
Uk (X) = uge(x) — fir(x).
The same argument using the equality 7; (x) = —c gives
07 () = e (x) = fj (x) — M2
Putting the two last equalities together with (2.7), and using that ¢ > 0 is large enough, we
infer
Ve (x) = v (x) + 2M e*.

This, combined with assertion ¢) in Lemma 2.2, implies Claim 1.
Claim 2. — The function ¢, belongs to PSH(X, (1 + ¢’Ms*)wy).

It is enough to work in a small open set W in X. By Claim 1, we can remove from the
Definition (2.9) of ¢ all functions M~1e!~%v; if W ¢ U;. So we have W C U, for the
indexes j considered below. Since u; is p.s.h., so is u; ;. Therefore, we deduce from (2.5) and
(2.8) that

ddv; =dduje —wo + Me*dd°n; > —(1 + ¢’ M&*)wy.

Choose a function f on W such that dd€f = M~'e!=%(1 + ¢’ M&%*)wy. We deduce from
(2.9) and the construction of max, that

¢ = M 'max, (M e vy + .. M7 Ty + f) - M S

Since M~1e!~*v; + f is p.s.h. on W, applying assertion d) in Lemma 2.2, we obtain that ¢
belongs to PSH(X, (1 4+ ¢’ M&%)wy), thus proving Claim 2.

We continue the proof of the theorem. By (2.6) and (2.8), we get on V;

I = vjlloo = 1(uj = £j) = (uje = fi + Me*nj)lloo < lluj —tjelloo + Me¥[njlloc S Me.

This and assertion b) in Lemma 2.2 prove the first estimate in (2.4). For the second estimate,
we infer from assertion ¢) of Lemma 2.2 that

Ipellgm = Mt |max.(M~ e " vy,..., M~ ' "%v)) | om
Q10 S M sp e+ M D [T )
1<i<l i i
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the sum being taken over all 7;; > O with 1 <i </ and j > 1 such that ) jr;; < m.On the
other hand, by (2.3) and (2.8), we have

lillgs = luie = fi + Menills < Me™7*.
Inserting these estimates into (2.10), we obtain that ¢, satisfies the second inequality in (2.4).

The theorem follows. Note that we can get similar estimates for every m € Ry. O

REMARK 2.4. — We can prove in the same way the existence of constants ¢ > 0 depending
only on X, wp, and ¢, > 0 depending only on X,wo,m € N*, satisfying the following
property. Let ¢ be an wy-p.s.h. function in ]jf)(X ). Then, for each 0 < & < 1/2, there exists
a smooth function ¢, such that

a) ¢, 1s wo-p.s.h.;
b) e — Pl < —c(1 + [llp)e loge;
©) lIgellemx) < —em(1 + [@llp)e™" " loge for m € N*.

2.2. Regularity of equilibrium weight

In this subsection, we study the equilibrium weight associated with a weighted compact
subset (K, ¢) of X. We start with the following tautological maximum principle, and we refer
the reader to the beginning of the paper and the Introduction for the notation used below.

PROPOSITION 2.5. — Let (K, ¢) be a regular weighted subset of X and let Px¢ be the
associated equilibrium weight. Then for every wo-p.s.h. function ¥ on X, we have

sup(y — @) = sup(y¥ — Px¢) = sup(y — Pk ).
K K X
In particular, for every section s € H°(X, L?) we have
Isllzoek,pg) = I5llLook,pPrg) = ISIlLoo (X, pPi )
Proof. — By Definition 1.2, we have Px¢ < ¢ on K. Hence,

sup(y — ¢) < sup(y — Pgp) < sup(y — Px¢).
K K X

To prove the converse inequality, observe that ¥ — supg (¥ — ¢) < ¢ on K. This, combined
with Definition 1.2 and the fact that v is wp-p.s.h., implies that ¢ — supg (¥ — ¢) < Pg¢
on X. We deduce  — Px¢ < supg (¥ — ¢) and then the first assertion in the proposition.

Next, observe that

1 1
dd®—logls| = —[s = 0] —wp = —wo,
p P

where [s = 0] is the current of integration on the hypersurface {s = 0}. So % log |s] is wp-p.s.h.
Applying the first assertion of the proposition to this function instead of i gives the second
assertion. O

The following basic result has been stated in [2, Lemma 2.14].
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LEmMMA 2.6. — Let K be a non-pluripolar compact subset of X. Then the projection Pk is
non-decreasing, concave, and continuous along decreasing sequences of continuous weights ¢
on K. It is also 1-Lipschitz continuous, that is,

sup |Px¢1 — Px 2| < sup |¢p1 — ¢2|
X K
for all continuous weights ¢1 and ¢, on K.

Proof. — We only give the proof of the inequality in the lemma and leave the verification
of the other statements to the reader. Since ¢; < ¢ + supg |¢1 — ¢2| on K, it follows from
Definitions 1.2 and 1.3 that

PK¢1 §PK¢2+sup|¢1—¢2| on X.
K

This and the similar estimate which is obtained by interchanging ¢; and ¢,, imply the desired
inequality. O

The following theorem is the main result of this subsection. It gives us a class of compact
sets K satisfying regularity properties mentioned in the Introduction.

THEOREM 2.7. — Let K be the closure of a non-empty open subset of X with €% boundary.
Then K is (€%, €*)-regular for every 0 < o < 1.

It is known that such a compact set is regular. To prove this property, it is enough to show
that Pg¢ is continuous when ¢ is Holder continuous and then obtain the same property
for continuous ¢ by approximation. Thus, the regularity of K can be also obtained with the
arguments given below.

Proof of Theorem 2.7 in the case K = X. — Let ¢ be a ¥* function on X with bounded
%“-norm. We have to show that v := Px¢ has bounded ¥*-norm. We will need to
regularize ¥ using the method introduced by Demailly in [10]. Recall that for simplicity we
use here the metric on X induced by the Kéhler form wy.

Consider the exponential map associated with the Chern connection on the tangent
bundle TX of X. The formal holomorphic part of its Taylor expansion is denoted by

exph: TX — X with T,X > ¢+ exph,({).

It is approximatively the part of the exponential map which is holomorphic in ¢, see [10] for
details. Let y : R — [0, 00) be a smooth function with support in (—oo, 1] defined by

nst 1
(fo_:)zexp for t <1, y(@)=0 for ¢t>1,

where the constant const is adjusted so that f| tl<1 x(1¢|?)d Leb(¢) = 1 with respect to the
Lebesgue measure d Leb(¢) on C" ~ T, X. Fix a constant 6o > 0 small enough. Define

Q.11)  W(z,1) ;=/€ TXw(exphZ(z;))X(|g|2)d Leb(¢) for  (z,1) € X x [0, 8].

x(0) =

By [10], there is a constant » > 0 such that the function ¢t — W(z, t) + bt is increasing for ¢
in [0, 8p]. Observe also that W(z,0) = ¥ (z). By definition, ¥ = Px¢ is bounded by min ¢
and max ¢. The values of W(z, t) are averages of values of ¥. So W(z, ¢) is also bounded by
the same constants min ¢ and max ¢.
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Consider for ¢ > 0 and § € (0, &o] the Kiselman-Legendre transform

t
2.12 c = inf (Y(z, bt —b§ —clog - ).
(2.12) Ve,s(2) te%,s]( (z,0) + ¢ ogg)

Since t < § < Jo, we see that . 5 is bounded below by min ¢ — béy and taking ¢ = § we also
see that V. s is bounded above by max ¢.

Using a result by Kiselman, it is not difficult to show (see [10], see also [4, Lemma 1.12])
that v s is quasi-p.s.h. and

wo +dd Y. s > —(ac + b8)wo,

where a > 0 is a constant, see also [17, 18]. Therefore, we have
WC §
ddf —=2°2
14+ ac+ bé
From now on, we take ¢ = §%. We have seen that v, 5 is bounded uniformly in ¢, § for ¢ and
8 as above. Hence,

+wo >0 forall ¢ > 0.

Wc,&
14+ac+bé
For ¢t := § we obtain from (2.12) that

Ves(2) = W(z,9).

On the other hand, we deduce from (2.11) that the value of ¥(z,§) is an average of the
values ¥ in the ball B(z, A5) in X for some constant A depending only on X and wq. Since
¥ < ¢ and the ¥%-norm of ¢ is bounded, we have

W(z.8) < (2) + O(8%).

(2.13) —Yes| S 8%

This, coupled with (2.13), gives

l»”c8
—_— < 0(8%).
1+ac+b5_¢+ (%)

Since the left hand side is an wg-p.s.h. function, the identity ¢ = Pg¢ implies

Ve,
el < 0(8%).

1+ ac+bé =V + 06
Then, using that ¢ = §%, we get

Ves =¥ + 0@8%).
This and (2.12) imply the existence of ¢, € (0, §] such that
Iz

(2.14) W(z,t;) + bt; < ¥(z) + clog 5 + 0(8%).

Recall that the function t — W(z,t) + bt is increasing and observe that its value at ¢ = 0 is
equal to ¥ (z). So the last identity implies

t
clog EZ + 0(8% > 0.

Therefore, since ¢ = §%, we have 06 <, < §, where 0 < 6 < 11is a constant. By (2.14) and
using again that t +— W(z, ) + bt is increasing, we obtain

2.15) W(z,08) — ¥ (z) < O(8%).
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Fix a point z € X and local coordinates in a neighborhood of z so that the metric
on X coincides at z with the standard metric given by the coordinates. The function ¥ is the
difference between a p.s.h. function ¥’ and a smooth function. In particular, Ay — Ay’ is
smooth. Denote by u the positive measure defined by Ay’. Consider the following quantity
involving the mass of p on the ball B(z, r)

n—1)!
v(r) = %
Note that if instead of u we use the measure defined by Ay, then the last quantity is changed
by a term O(r2). So in the following computation, the use of Ay’ is equivalent to the
one of Ayr. The advantage of Ay’ is that by Lelong’s theorem, the above function v(r) is
increasing.

lllger for 0<r < 1.

According to [10, (4.5)] and using that y is strictly positive on [0, 1), we have the following
Lelong-Jensen type inequality
t

d
‘I"(ZJ)—W(Z)Z/O E‘lf(z,r)dt

=/ | [, , vrlebreRia Lebie) - 0|

T

td
= [ [/ V(e x(EP)d Leb(@) | - 0?)
t 1/2<|¢|<3/4

/2 T
t

> [/ 2 Ul d T — O(2)
t/2

2 27 ullwza e — O(3).
Combining this and (2.15), we obtain
lllee,n S 272 for 1 < 1.
The estimate is uniform in z € X. Applying Lemma 2.8 below gives the result. |

To complete the proof of Theorem 2.7 for K = X, it remains to prove the following
elementary result, see also [13]. For the reader’s convenience, we give here a proof.

LEmMA 2.8. — Let ¢ be a subharmonic function in a neighborhood U of B(0,1) C R™ and
0 < a < 1. Suppose there are constants A > 0 and ty > 0 such that ||¢|cc < A, and for every
x € B(0,1) and 0 < t < tg, we have

(2.16) 1A lIBxy < AL 72F.

Then ¢ is of class €% and its ‘€“-norm on B(0, 1) is bounded by a constant depending only
on U, A, ty and a. The result still holds for o = 1 if we replace €* by Lip.

Proof. — For simplicity, we only consider 0 < a < 1 and m > 3. In this case,
the Newton kernel E(x) for x € R™ is equal to a negative constant times |x|>~™ and
A(E % u) = u for all measure u with compact support, see [16, Theorem 3.1.2]. We can
assume that U = B(0, 1 4 4r¢) for some constant ry < to/4 and that A¢ has finite massin U.
So (2.16) holds for ¢ < 4ry. Define u := A¢ on U and f := E * . The function f — ¢ is
harmonic on U. Therefore, we only need to show that f has bounded €*-norm on B(0, 1).
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Fix two points x, y € B(0, 1) and define r := %|x —y|. Since ||¢]lco < A, we only need to
show that | f(x) — f(¥)| < r¥ for r < rp. Define

D1 = ]B(x, r), D2 = B(y, r), D3 = B(X, r()) \ (D1 @] Dz), D4 = B(O, 14+ 47‘0) \B(x, r())
and

eim [ k= 2P =y = 2P duto).
Dy

Observe that | f(x) — f(y)| S I1 + I + I3 + I4. So it is enough to bound 14, 15, I3, I4.
Consider the integral 7. The case of I, can be treated in the same way. Since |z — x| <
|y — z| for z € Dy, we have

(2.17) I < 2] lx —z|>™du(z).
B(x,r)

Recall that 4 = Ag¢ and it satisfies (2.16). Observe that |x — z|>~™ can be bounded by a
constant times the following combination of the characteristic functions of balls

o0
I =z <Y T T g k.
k=0

The integral in (2.17) is bounded by a constant times

e’} oo 2—k+1,
S @ Al i S Y [2
k=0

k=0
We then deduce from (2.16) that I; < r¢.

~

2r
T A sy d T = /0 27 A ey d .

—kp

Consider now the integral /3. Observe that |[x — z| & |y — z| when z & D; U D,. Hence

(2.18) ‘|x—z|2_m—|y—z|2_m|§r|x—z|1_m

L<r / % — 2] du ().
B(x,ro)\B(x,r)

We need to bound the last integral by O(r*~') and we can assume that x = 0. Observe that
we have on the domain r < |z| < 7,

and

1 —logr r
—kn1—
s 2 @) M e,
k=—1logs ro

Hence, we obtain the following inequalities which imply the desired estimate for /3

—logr r —logyr
dp(z) —ky1—m —kya—1
== D M R TP DR
r=izl=ro k=—1log, ro k=—1logy ro

Finally, for the integral I, with z € D4, observe that (2.18) implies
|lx =22 =y —zP"| S
The estimate 14 < r follows immediately. This completes the proof of the lemma. O
We continue the proof of Theorem 2.7. We need the following lemma. For r > 0 and

w € C, denote by D(w, r) the disk of center w and radius r in C.
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LEMMA 2.9. — Let o« > 0 be a constant. Let u be a quasi-subharmonic function on a
neighborhood of D(—1, 3) such that Au > —1, u < 1 on D(—1,3) and u(z) < |z|* for all
z € D(1, 1). Then there is a constant ¢ > 0 depending only on « such that for all t € [—1/2,0]
we have u(t) < c|t|™m0®) jf o £ 1 and u(r) < —c|t|log|t] if . = 1.

Proof. — Replacing o by min(2, «) allows us to assume that « < 2. Observe that the
function |z|? is smooth and its Laplacian is equal to 2. So replacing u(z) by % [u(z) + |z|*]
allows us to assume, from now on, that u is subharmonic. Let Q denote the domain
D(—1,3)\D(1,1). Let ® : Q@ — D(0, 1) be a bi-holomorphic map which sends —4, 0 and
[—4,0] to —1, 1 and [—1, 1], respectively. Since b2 \ {2} is smooth analytic real, by Schwarz
reflexion, ® can be extended to a holomorphic map in a neighborhood of this curve and
@’ does not vanish there.

Define z/ = ®(z) and v(z’) := u o ®!(z') = u(z). We deduce from u(z) < |z|* that
v(z’) < |2/ — 1]% for z/ € bD(0, 1). Let ¢ be as in the statement of the lemma and define
t':=®()and s :=1—1". Wehave s € [0,2] and s < |7] < 5. We only have to show that
v(t') < smin(h®) if ¢ £ 1 and v(t') < —slogs if @ = 1. Since v is subharmonic, it satisfies
the following inequality involving the Poisson integral on the unit circle

v(t') < /n 1_—Wv(ei9)d9
~ o |ei9 _[/|2 :
Observe that 1 — |¢/|?> < s and |e’? — ¢/|? > s + #2. The last inequality is clear for 6 < 4s
because |e?? —¢/| > s as ' cannot be too close to —1, and it is also clear when 6§ > 4s. We
then deduce from the estimate of v on the unit circle that

b4 s|9|¢x /s |9/|a /oo |9/|a
t") < do = s“ do’ < s* do’.
U( )N/_”S2+92 § /—TE/S1+9/2 =S _Ool+012

When o < 1, the last integral is finite and the lemma follows. Using the integral before the
last one, we also see that if @ = 1 then v(¢t') < —slogs which also implies the lemma in this
case. Consider now the case @ > 1. We deduce from the above inequality that

v(z) < s/ 16]172d6 < s.

4

This completes the proof of the lemma. O

Proof of Theorem 2.7 in the case K # X. — Consider a weight ¢ of bounded ¢*-norm on K
with 0 < o < 1. Adding to ¢ a constant allows us to assume that ¢ > 0. Dividing ¢ and
wg by a constant allows us to assume that ||¢ g« < 1/100. We have to show that Px¢ is of
class €*.

Fix a large constant A4 > ||¢|x« and define
$(x) :=min[p(y) + Adist(x,y)*] for xeX.
yeK

Since ¢ is €“ and A is large, ais an extension of ¢ to X, i.e., $ = ¢ on K. Moreover, if the
above minimum is achieved at a point yo € K, by definition of ¢, we have for x’ € X

P(x') — P(x) < (p(yo) + Adist(yo, x)¥) — ($(vo) + Adist(yo, x)*) < Adist(x,x)*.

Therefore, the function ais c“.
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The idea is to reduce the problem to the case K = X which was already treated above. We
only need to show that Px¢ < abecause this inequality implies that Px¢ = Py 5 Moreover,
since Pk ¢ is bounded and A is large enough, we only need to check that Px¢(x) < a(x) for x
outside K and close enough to K.

Fix a finite atlas with local holomorphic coordinates (that we always denote by z =
(z1,...,zn)) on open subsets U; of X satisfying the following properties

1. Each open set U; corresponds to a ball B(a;, 10) of radius 10 centered at some point
a; in C";

2. If V; C U; denotes the open set corresponding to B(a;, 1), then these V; cover X;

3. ¢ restricted to K NU; is identified to a function on a subset of B(a;, 10); we still denote
this function by ¢; it satisfies ||@ ||z« < 1/100; for simplicity, K N U; will be also written
as K N B(a;, 10);

4. Pg¢ restricted to U; is identified to a quasi-p.s.h. function on B(a;, 10) that we still
denote by Pk¢; it satisfies Px¢p < ¢ on K N B(a;, 10) and dd°Px¢p > —wy >
—2dd°|z||* on B(a;, 10);

5. For any point y in bK NB(a;,2), K contains a ball B of radius 2 such that y € bB and
bB is tangent to bK at y. This can be done because K has %2 boundary.

This choice of atlas does not depend on A. So we can increase the value of A when necessary.

Now, x belongs to some V;. In what follows, we drop the index i for simplicity, e.g., we
will write a instead of a;. Recall that the point x is assumed to be outside and near the
set K. Let yo be as above and denote by x¢ the projection of x to the boundary of K, i.e.,
|x — xo| = infyeg |x — y|. Here, we use the standard metric on C". This point x¢ is unique
because K has €2 boundary and x is close to K. Define r := |x—x¢| which is a small number.

Claim. — We have |xo — yo| < r and hence y¢ € B(a,2) and a(x) > ¢ (xg) + A'r%, where
A’ > 0is a big constant (if we take A — oo then A" — ©0).

Indeed, if the first inequality were wrong, we would have |x — xo| < |x — yo| & |x0 — Yo|
and by definition of ¢ (x) and yg

d(x) = P (yo) + Adist(x, y0)® < ¢(xo) + A dist(x, x0)*.

Note that the distance on U C X is comparable with the Euclidean distance with respect to
the coordinates z. This comparison is independent of A. So the inequality implies

¢ (x0) — ¢(yo) > [xo0 — yol*
which is a contradiction because ¢ is €*.

We also obtain the second inequality in the claim using the definition of ¢, y, xo, r and
the first inequality

B (x) — (x0) = P (yo) — P(x0) + Adist(x, yo)* > r,

since A is large, ¢ is €%, and |x — yo| = |x — xo| = r.

By the claim, it is enough to show that Px¢(x) < ¢(xo) + A'r®. Using a unitary change
of coordinates, we can assume that xo and x are the points of coordinates (0,0, ...,0) and
(—r,0,...,0), respectively. This change of coordinates does not change the metric on C",
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so it does not change the norms of functions. We use the coordinate z; in the complex line
A :={zp =--- =z, = 0} and denote by ID(w, r) the disk of center w and radius r in A.
We will apply Lemma 2.9 to a suitable function u. Recall that ||¢|g« < 1/100, K has
%? boundary, xg is the projection of x to K and r is small enough. By the choice of the
coordinates (z,...,z,), the intersection K N A contains D(1, 1), see property (5) above.
Denote by u the restriction to A of the function Px¢ — ¢ (x¢). We deduce from the definition
of Pg¢ and the above properties of the coordinates z that u satisfies the hypotheses of
Lemma 2.9. Therefore, u(x) < r® and hence Px¢(x) — ¢(xo) < r%. This completes the
proof of the theorem. ]

Note that the idea of the proof still works if instead of the ball B in the above point (5)
we only have a solid right circular cone of vertex y and of a given size such that its axis is
orthogonal at y to the boundary of K. This allows us to consider the situation where K is the
closure of an open set whose boundary is not 2. We then need a version of Lemma 2.9 for an
angle at 0 instead of D(1, 1). This angle is equal to the aperture of the above circular cone. If
67 denotes this angle, then K is (€%, €9%)-regular for 0 < « < 1. In the case of €'-boundary
for example, we can choose 6 as any constant strictly smaller than 1. As mentioned in the
Introduction, we don’t try to develop the paper in this direction. We thank Ahmed Zeriahi
for notifying us the reference [27] where Pawlucki and Plesniak considered a class of compact
sets which may be (¢, ¢*)-regular.

2.3. Asymptotic behavior of Bergman functions

Recall that (L, &) is a holomorphic Hermitian line bundle on a projective manifold X
whose first Chern form is wg. The probability measure u° is associated with the volume
form wf as in the beginning of the paper. We will work later with Hermitian metrics which
are not necessarily smooth nor positively curved. It is crucial to understand the asymptotic
behavior of the Bergman kernel associated with L? and the new metrics when p tends to
infinity.

As mentioned above, our strategy is to approximate the considered metrics by smooth
positively curved ones. So we need to control the dependence of the Bergman kernels in terms
of the positivity of the curvature. The solution to this problem will be presented below. We
refer to [25] for basic properties of Bergman kernel.

Consider a metric h = e 2%h on L, where ¢ is a continuous weight on a compact
subset K of X. Recall that H(X, L?) denotes the space of holomorphic sections of L?. Since
L is ample, by Kodaira-Serre vanishing and Riemann-Roch-Hirzebruch theorems (see [25,
Thm 1.5.6 and 1.4.6]) we have

(2.19) N, := dim H(X, L?) = %nwgn +0(p" ).

Let 1 be a probability measure with support in K. Consider the natural L> and L? semi-
norms on H°(X, L?) induced by the metric 2 on L and the measure p, which are defined
fors € H°(X, LP) by

(@20)  Ishimipp = suplshy  and sl ) = /X sBgdpe.
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We will only use measures p such that the above semi-norms are norms, i.e., there is no
section s € H%(X,L?) \ {0} which vanishes on K or on the support of u. The first semi-
norm is a norm when K is not contained in a hypersurface of X. The second one is a norm
when p is the normalized Monge-Ampére measure with continuous potential because such
a measure has no mass on hypersurfaces of X. This is also the case for any Fekete measure
of order p as can be easily deduced from Definition 1.4.

From now on, assume that the above semi-norms are norms and for the rest of this section,
consider K = X. Let {s1,...,sn,} be an orthonormal basis of HO(X, L?) with respect to
the above L2-norm.

DEerINITION 2.10. — We call Bergman function of L?, associated with (i, ¢), the func-
tion pp (1, ¢) on X given by

Np
Pp (i, §)(x) := sup {Is(x)|§¢ D s € HYX,LP), sl 124 pg) = 1} = lsj ()2
j=1

and we define the Bergman measure associated with (i, ¢) by

By (11, 9) == Ny ' pp (1. ).

Note that it is not difficult to obtain the identity in the definition of p, (i, ¢) and check that
Py (1, @) is a probability measure. For the above definition, we only need that ¢ is defined
on the support of u or a compact set containing this support.

In the rest of this subsection, we assume that the weight ¢ is a function of class ¢ on X
and the first Chern form w := dd°¢ + wy satisfies
(2.21) w > lwy for some constant ¢ > 0.
Note that this inequality implies that { < 1 because w and wqy are cohomologous. Here is

the main result in this section which gives us an estimate of the Bergman function in terms
of ¢, w, p and {. We refer to the beginning of the paper for the notation.

THEOREM 2.11. — There exists a constant ¢ > 0, depending only on X, L and the €>-norm
of the Hermitian metric hg of L, with the following property. For every p > 1 and every weight ¢
of class € such that (2.21) holds for some ¢ with ¢ > ||¢||§/3(10g p)p~ '3, we have

H Pp (1%, §)(x) oW
Np wo (x)"

< cllgllst* 2 (log p)3/2 p~1/2

L1(u09)

with 10 = [l |~

/X |55 (10, $)(x) — peq(X. ) (x)| < ¢ pll3¢7> 2 (log p)*/2p~ /2.

wy the normalized Lebesgue measure on X, and

Proof. — By hypotheses, ¢ is wo-p.s.h. Hence, we have ¢ = Px¢ and peq(X,¢) =
NMA(¢) = [lof|~'w(x)". Therefore, the second assertion is a direct consequence of the
first one and Definition 2.10.

Consider now the first assertion. We use some ideas from Berndtsson [5, Sect. 2] and the
recent joint work of Coman, Marinescu and the second author [9], see also [12]. Consider
a point x € X. Choose a local system of coordinates z = (zy,...,z,) centered at x and a
constant ¢ > 0 such that
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1. Some neighborhood of x can be identified to the unit polydisk D" in C”;
2. ||lwo(z) — @ dio1dzj AdE; | < clz| for z € D";
3. |¢(2) —q(z) = X7 (A — DIz;?| < cliglls|z]? for z € D", where A; are real numbers

and ¢(z) is a harmonic polynomial in z, Z of degree < 2.

Observe that after choosing z satisfying (1)-(2), we can take ¢(z) as the harmonic part in
the Taylor expansion of order 2 of ¢ at x = 0; then, using a unitary change of coordinates
allows us to assume that the non-harmonic part in this Taylor expansion is given by a
diagonal matrix. So we have (1)-(3) and furthermore, the constant ¢ is controlled by the
%3-norm of the metric o on L. The numbers A; and the coefficients of ¢(z) can be controlled
by the ¢’>-norm of ¢. Note that if the metric /o of L is €**, thanks to a standard property in
Kihler geometry, we can replace c|z| in (2) by c|z|?.

Claim. — There is a holomorphic frame e of L over D" such that if ¢9 := —log|e| (see the
beginning of the paper for the notation), then

n

[902) = 122 = eI,

j=1
where ¢ > 0 is a constant depending only on X, L and the ©>-norm of .

We first prove the claim. Consider a frame ¢ of L over D”. It can be chosen in a fixed
finite family of local frames of L over a finite covering of X. Define ao = —logle]. We
have by definition of curvature that wy = dd c$0~ As above, thanks to (3), we can write
Po(2) = Go(2) + > i=112j1*+ O(|z|?), where Go(2) is a harmonic polynomial of degree < 2.
So we can write go(z) = Re Qo (z), where Qg (2) is a holomorphic polynomial of degree < 2
whose coefficients are controlled by the ¥2-norm of /. Define e = ¢29¢. We have

|e(z)|2 — [é’(z)|282270(2) — 3230(2)—250(2)_
The claim follows.
Now, by (2) and (3), we have
V-1

w(x) = ddc¢(x) + U)O(X) = T ijde A dfj.

j=1
Hence, we get
(2.22) ®"(x) = A1+ dyop (x).
Moreover, the inequality (2.21) at the point x becomes
Aj>¢ for 1<j<n.

Define

(2.23) 0(z) =) A1z and ¥ (2) = ¢(2) —q(2) — 9(2) + do(2).

j=1
Consider a normalized section s € H°(X,L?) with ||s]|z2¢0 ,4) = 1. We are going
to bound |s(x)|ps from above. Writing s = fe®?, where f is a holomorphic function

on D" and e is the frame given by the above claim. We apply the submean inequality for the
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p.s.h. function | £(z)|2e=274®) on the polydisk D* := D, x --- x D, (n times) with radius
r = (log p)'/2 p=1/2¢=1/2 Thanks to the special form of ¢, we obtain
Jip | £ 12e72097200 Leb

Jope2r9dLeb

Note that the hypothesis on ¢ and the fact that ¢ < 1 insure that r < p||¢|3r> < 1. We will
use this property in the computation below.
For the first integral in (2.24), observe that by (2), the Lebesgue measure in D" is equal

to 5(Z)"wf + O(|z|). This, together with (3), (2.23) and the above claim, gives

(2.24) |s(x)|;¢ _ |f(0)|2e—2pq(0) <

T

1 n
2 ,—2pq—2p¢ i el 2 —2pq—2pe,.n
/M|f|e dLeb <[ () +0(r)]/w|f|e g

1 n
< [—(£> + O(r)] exp (2p max y) / | f|2em2Platetv)n
nt\2 D} D

AN 0ldl3r?) 2
= [i(3) +om]eowietr /Xlslmwﬁ

1 T\ B B
- E(E) lwgll + O(llgllsg /> (log p)*/2 p~113),
because [1s]12(u0,pgy = 1 and eI = 1 - 0 (p[g]13r?).

Define

E(r) = / e 2P g Leb(s) = Z(1—e2%) < Z.
geDy 2 2

A direct computation shows that the second integral in (2.24) is equal to

" E(rypij) a\n (1 —1/p?)"
,ZP)LA‘Z._R L N — p J ot p
/z,—em,e il Lebe) = [1==22= (3) S

n

e 2P9d Leb =
I, Il

j=1 Jj=1

since r2pA; > r?p¢ = log p.
Combining the above estimates with (2.24), we obtain

- _ 1
[5O3y < [1+ O(Igllag~>og p)*2p™ %) | p"hr .. Aullp .

By Definition 2.10, we get

0 1
PO Ty 4 0 (gl og p)¥2p™72) | L Al

P n!
Then, using (2.19) and (2.22), we obtain
0 n
(2.25) ACLICoN (1 + clllls¢2(log p)3/2p—1/2)ﬂ with ¢ > 0.
Np a)o(x)"

Now, define for simplicity

pp (10, ) (x) Ny

Np ’ C wo(x)"
So ¥, and ¥, are two positive functions of integral 1 with respect to the probability
measure 11°. Inequality (2.25) says that ©¥; < (1 + &)%,. We need to check that || — ]| ,1 w) S e
By triangle inequality, it is enough to check that ||} — (1 + &)¥2]|1(,0) S €. But since the
function ¢ — (1 4 €)¥, is negative, it suffices to check that the integral of this function with

P (x) = and & := c||¢lls¢*?(log p)*2p~ V2.
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respect to u? is larger than or equal to —e. A direct computation shows that this integral is
in fact equal to —e. The proof of the theorem is now complete. O

3. Equidistribution of Fekete points

In this section, we will give the proofs of the main results stated in the Introduction. The
estimates obtained in the previous section allow us to use the strategy by Berman, Boucksom
and Witt Nystrom. We refer to the beginning of the article for the notation.

3.1. Energy, volumes and Bernstein-Markov property

Recall from [2] that the Monge-Ampére energy functional £, defined on bounded weights
in PSH(X, wy), is characterized by

77 li=o0 E((1=t)p1 +tga) = /X(¢2 — ¢1)NMA(¢)).

So & is only defined up to an additive constant, but the differences such as E(¢p1) — E(¢2)
are well-defined, see also (3.9).

Consider a non-pluripolar compact set K C X and a continuous weight ¢ on K. Define
the energy at the equilibrium weight of (K, ¢) as

8eq(K’ ¢) = 8(PK¢)

This functional is also well-defined up to an additive constant. We will need the following
property which was established in [2, Th. B].

THEOREM 3.1. — The map ¢ +— Ecq(K. ), defined on the affine space of continuous
weights on K, is concave and Gdteaux differentiable, with directional derivatives given by
integration against the equilibrium measure:

d
a1 =0
In particular, for all continuous weights ¢, and ¢, on K, we have

[Eeq(K. 1) — Eeq(K.$2)| < ll1 — P2l o

Note that the second assertion is obtained by taking the integral on s € [0, 1] of the first
identity applied to ¢ := ¢1 + sv and v := ¢> — ¢1. We use here the fact that peq(K, ¢) is a
probability measure.

Let 1 be a probability measure on X and ¢ a continuous function on the support of u.
The semi-norm || - [|12(,, pg) 00 H 0(X, LP) is defined as in (2.20) and recall that we only

Ceq(K.p +tv) = (v, Meq(K, ¢)) for every continuous function v on K.

consider measures u for which this semi-norm is a norm. Let 02312) (i, ¢) denote the unit ball
in H%(X, L?) with respect to this norm and N, := dim H°(X, L?). Recall from [2] the
following Z,-functional
1
3.1 Ty, @) :=
(3.1) o) i= 5o
Here, vol denotes the Lebesgue measure on the vector space H (X, L?) which is only defined
up to a multiplicative constant. Note that the differences such as Z, (w1, 1) — Zp (U2, ¢2) is
well-defined and do not depend on the choice of vol for any probability measures pq and o,

log vol (B, (1, ¢).
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see also (3.9). The functional Z, satisfies the following concavity property, see [3, Proposi-
tion 2.4].

LeEMMA 3.2. — The functional ¢ +— ZLp(w.$) is concave on the space of all continuous
weights on the support of .

Recall from Definition 2.10 that the Bergman measure %,(u,¢) is a probability
measure. Note that when u is the average of N, generic Dirac masses (more precisely,
for points x1, ..., xy, such that the vector det(s; (x;)) in the Introduction does not vanish),
one can easily deduce from Definition 2.10 that %,(u.¢) = u, by considering sections
vanishing on supp(u) except at a point. Such sections exist because N, = dim H°(X, L?).
This property holds in particular for Fekete measures of order p.

The following relation between the functional Z,(u, ) and %, (i, -) has been established
in [2, Lemma 5.1], see also [6, Lemma 5.1] and [15, Lemma 2].

LemMA 3.3. — The directional derivatives of Zp(1,-) at a continuous weight ¢ on the
support of | are given by the integration against the Bergman measure %,(i, ¢), that is,

d
Ef@,(u, ¢+ tv)|t=0 = (v, %Bp(,P)), withv,¢ continuous on the support of (L.

In particular, for all continuous functions ¢y and ¢, on the support of 1, we have
| Zp (1, 91) — Lp(p, $2)| < 191 — P2l oo

Note that as in Theorem 3.1, the second assertion of the last lemma is a direct consequence
of the first one.
Consider the norm || + || ook, pp) On H(X, L) defined in (2.20). Let jB;o(K, ¢) denote
the unit ball in H°(X, L?) with respect to this norm. Define
1
logvol B (K, ¢).
2N, o8 B, (K, $)

We have the following elementary lemma.

(32) Zp(K.¢) :=

LEMMA 3.4. — If  is a probability measure with supp(i) C K, then
Zp(K,9) < Lp(p, ).
Proof. — Since u is a probability measure, we see that
(3.3) Isllz2¢e.ppy < lIsllzook,pgy. 5 € HO(X,LP).
The lemma follows. O

We have the following property that we will only use in the case of wy-p.s.h. weights.

LeEmMA 3.5. — Let j be a probability measure and K C X a compact set withsupp(u) C K.
Assume the following strong Bernstein-Markov inequality: there exists a constant B > 0 such
that

sup pp (1. ¢) < Bp® for p>1.
Then there exists ¢ > 0 depending only on B such that for p > 1, we have
0= Zp(p,¢) — Zp(K,¢) < cp~" log p.
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Proof. — Forall p > 1 and section s € H°(X, L?), by (3.3) and Definition 2.10, we have

(3:4) 5204, pg) = ISllLook,p8) < €2V NS L2010, pg)s
where

1
(3.5 cp = 2—logsuppp(,u,¢).

p K

Since the volume form vol is homogeneous of degree 2N, = dimg H°(X, L?), it follows
from (3.4) that
vol B2 ,
vol B, (K. ¢)
Hence, by definition of the Z-functionals in (3.1) and (3.2), we have
1 vol ng (//L, ¢)
log 5 < c¢p.
pNP VOI ngp (K’ ¢)

This, (3.5) and the assumed strong Bernstein-Markov inequality imply the lemma. O

2pNpycp.

0=<Zp(u.¢)— ZLp(K.p) = >

The following result gives us a class of compact sets K satisfying the strong Bernstein-
Markov inequality stated in Lemma 3.5 for (X, Px¢) instead of (K,¢), see also [3,
Section 1.2]. We refer to the beginning of the article for the definition of u°.

THEOREM 3.6. — Let A > Oanda, o > 0 be constants. Let K C X bea (€%, € )-regular
compact set. Let ¢ be a function on K such that ||p|e« < A. Then there is a constant B > 0
depending only on X, L, hy, K, A, « and o' such that

sup pp(u°, Px¢p) < Bp®  for p > 1.
X

In particular, the statement holds when K is the closure of an open set in X with €% boundary,
O<o' <l,a>a" and A > 0.

Proof. — The second assertion is a consequence of the first one and Theorem 2.7. We
prove now the first assertion.

It is enough to consider the case where 0 < o' < 1. Since K is (€%, €% )-regular, the
function ¥ := Px¢ has bounded 4 -norm on X . Consequently, we only need to prove that

(3.6) sup pp (. 9) < p** for p>1.
X

For this purpose, fix a point x € X and a section s € H°(X, L?) such that | 2240, pyy = 1.
By Definition 2.10, it is enough to prove the estimate

(3.7) s(0)2, < p2

uniformly in x and s.

Choose local coordinates z near x such that z(x) = 0 and for simplicity we still write
¥ (z) for the restriction of ¥ to a neighborhood of x. Fix also a local holomorphic frame e
of L over a neighborhood of x such that |e(0)|y = e VO We can write s(z) = f(2)e®?(z2),
where f(z) is a holomorphic function such that | £(0)|e ?¥©® = |s(0) |pw- So we need to
check that | £(0)|?e=2P¥©@ < p27/@" Write y,(z) := —log|e(z)|y. This function differs
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from v (z) by a pluriharmonic function. Therefore, it is also of class € and by definition
we have ¥,(0) = v (0). It follows that |.(z) — ¥ (0)| < |z|*", and hence

68 P = P gy 207 [ 7RO L)
z|<p—l/
2o [ @R O Labe)
lz|<p= 1/’

for some constant ¢ > 0.

1/a’

Using the submean property for | f(z)|> and the new variable u := p'/% z, we can bound

the last expression from below by

P20l [

|z|<p—1/e’

=PI § Leb(z) = | £(0)[2e 2PV © / e~ d Leb(u).

lul<1

Therefore, we deduce from (3.8) that | £(0)|2e=22¥ (0 < p27/¢" The estimates (3.7), (3.6) and
then the theorem follow. O

In the case where K = X and i = u°, we have the following lemma.

LemMaA 3.7. — Let A > Oand o > 0 be constants. Let ¢ be an wg-p.s.h. function on X whose
€*-norm is bounded by A. Then there exists a constant c4,4 > 0 depending only on X, L, hy, A
and o such that for every p > 1, we have

0< Zp(u. ¢) — Lp(X.$) < A 108

Proof. — Tt is enough to apply Lemma 3.5 and Theorem 3.6 for K = X. Note that since
¢ 1s wo-p.s.h., we have Py¢ = ¢. O
3.2. Main estimates for the volumes and energy

We gather in this subsection the main estimates needed for the proofs of our main theo-
rems.

Normalization. — From now on, in order to simplify the notation, we use the following
normalization

(3.9) Eeq(X,00 =0 and Z,(u%0)=0 for peN.
Here, the function identically 0 is used as a smooth strictly wg-p.s.h. weight.

For continuous weights ¢, ¢> on X, the following quantities will play an important role
in the sequel:

(3.10) Dp(p1.¢2) = [(Lp(1®. ¢1) — Lp (. $2)) — (Eeq(X, $1) — Eeq(X, $2))|

and
(3.11) Wy (1. $2) 1= |[(Lp(X.91) — Lp(X.$2)) — (Eeq(X. P1) — Eeq(X. 2))].

Here are three crucial propositions. The first two results deal with strictly wg-p.s.h.
weights, whereas the last one considers the case with weakly wg-p.s.h. weights.
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PROPOSITION 3.8. — Let ¢1 and ¢» be two weights of class €3> on X such that
max(||¢1 |3, |P213) < A for some given constant A > 0. Suppose dd ¢, + wy > Cwy
and dd ¢y + wo > {wo for some { > 0. Then, there is a constant c4; > 0 depending only
on X, L,wy, A and ¢ such that for all p > 1

Up(d1.$2) < car(logp)®?p™2  and  Wy(¢1.¢2) < ca¢(log p)*?p~1/2.

Proof. — By Lemma 3.7, the second estimate of the proposition follows from the first one.
So we only need to prove the first estimate. In what follows, all involved constants may depend
on X, L,wp, A and {. Recall that { < 1 because dd“¢; + wo > {wo and dd°¢p; + wp is

cohomologous to wy. It is enough to consider p large enough.
Fort € [0, 1], define ¢; := t¢1 + (1 —t)¢>. By Lemma 3.3, we get

1
Ly (1. 1) — Lp(10. $2) = / di / (61— 62 By (1. 40).
=0 X

Since dd€¢; + wo > Cwy, by Theorem 2.11 applied to ¢;, the right hand side of the last
identity is equal to

1
/ dt / ($1 — P2)tteq (X, dr) + O((log p)>/?p~1/3).
=0 Jx

By applying Theorem 3.1, the double integral in the last line is equal to

1
d
[ i hmoBalXe) = EcaX.1) = EcalX. )
Therefore, we get

Lp(1®. 1) — Lp(°. $2) = Eeq(X.$1) — Eeq(X. $2) + O((log p)*/2p~"/),

which proves the proposition. O

PROPOSITION 3.9. — Let 0 < «a < 1 and A > 0 be constants. Let ¢y and ¢, be two weights
of class €% on X such that max(||¢; || go0.e, [|p2]lg0.e) < A. Suppose dd ¢; + wo > Lwo
and dd°dr + wo > Lwyg for some > 0. Then, there is a constant cqq¢ > 0 depending only
on X, L,wy, A, and ¢ such that for all p > 1

Up(p1,¢2) < cane(ogp)®?p~  and  Wy(¢1.¢2) < can¢(log p)*/?p~@/C.

Proof. — As in the last proposition, we can assume that ¢ is fixed with { < 1 and p is
large enough. Moreover, we only need to prove the first estimate. The constants involved in
the calculus below may depend on X, L, wg, 4, @ and ¢. Fix a constant ¢ > 0 large enough
and define

& := c((log ;7)3/210_1/2)1/3 <1

for p large enough. By Theorem 2.1 applied to (1 — ¢)~1¢; and (1 — )~ ¢,, there exist two
smooth weights ¢; ¢ := (1 —{)[(1 —¢)7'¢;], for j = 1,2 such that

a) dd ¢je + wo > Lwo;
b) e —dilloo S €%
) llgjellys S e* 3.
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We deduce from (3.10), Theorem 3.1 and Lemma 3.3 that
| Up($1.92) — Up($1,6. P2.6)| < %

We can apply Theorem 2.11 to ¢; . and their linear combinations as in the proof of Proposi-
tion 3.8. The choice of ¢ and the above properties a)-c) allow us to check the hypotheses of
that theorem for large p. Therefore, taking into account the estimate c), we obtain

Lp(®,91.6) = Lp(u.h2e) = Eeq(X p1,6) = Eeq(X, h.6) + O((log p)>/?p~ /%6 7),
or equivalently
Up(@1.6.92.0) < (log p)*2p~1/2e5 72,
Thus,
Vp(@1.¢2) S (log p)*2p~ 126773 4 7,
This estimate and the choice of ¢ imply the first inequality in the proposition. O
PrOPOSITION 3.10. — Let 0 < o < 1 and A > 0 be constants. Let ¢1 and ¢» be two

wo-p.s.h. weights of class €%% on X such that max(||¢1]|4o.«, |$2]l40.e) < A. Then, there is a
constant c4,q > 0 depending only on X, L, wo, A and o such that for all p > 1

Up(@1.92) < caallogp)Pp™Pe and  Wp(¢1.¢2) < caullog p)*P p~Pe,
where By := a/(6 + 3a).
Proof. — As above, we only need to prove the first inequality and to consider p large
enough. Choose
6= (logp)l/(2+a)p—l/(6+3a) and = e

Define ¢’]/' = (1 — {)¢j. We proceed as in Proposition 3.9 but should take into account
the fact that ¢ is no more fixed. The constants involved in the computation below should
be independent of ¢.

As in that proposition, we obtain

|Vp(@1.62) — Up(d1.92)| S ¢
and since dd“$; + wo > fwo
Vp(@].¢3) < ¢ (og p)*2p71 2607 + e,
We then deduce that
Vp(@1.92) S+ 2 (log p)*2p~ 12673 4 2.

The above choice of € and ¢ implies the result. O

In the rest of this subsection, we give some results which relate Fekete points with the
functionals considered above. Fix an orthonormal basis S, = (s1,...,sn,) of H 0(Xx,LP)

with respect to the scalar product on H(X, L?) induced by iy and u°. Consider a weighted
compact set (K, ¢) with ¢ continuous on K. Recall that

|| det SPHLOO(K,pq)) = sup | det(Si (xj))|e_P¢(xl)_'"_P¢(pr)
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and

M%M@Ww=f | det(s; (x)))Pe2PPOD= 200N Ay (xy) . dpa(an,).

(x1 ,...,pr)GKNl’
if ¢ is a weight on K and u is a probability measure supported by K.

We assume further that (K, ¢) is regular, i.e., px = Pg¢, that Pg¢ is continuous, and
also that the following strong Bernstein-Markov inequality holds

(3.12) sup pp(u°, Px¢p) < Bp®  for some constant B > 0.
X

LemMA 3.11. — Let Sy, K and ¢ be as above with condition (3.12). Then there is a constant
¢ > 0 depending only on B such that for p > 1

| log || det Sp |l Lok, pg) — log || det Spllz2 (0. ppegy| < ¢ Nplog p.

Proof. — Observe that the restriction of (L?)®Nr to {x;} x .-+ x {xn,~1} X X can
be identified to the line bundle L? over X. Therefore, we can apply Proposition 2.5 to
x > det Sp(x1,...,xn,-1,x). Then, using inductively the same argument for the other
variables x;, we obtain

I det SpllLoo(x,pg) = Il det SpllLoox, P )-
Hence,

[ det SpllLeo(k,pg) = Il det Spllz2(.0, ppgg)-
Now, to complete the proof we only need to show that

(3.13) log || det SpyllLo(x,pPx¢) < log | det SpllL2(u0, pprg) + O(Nplog p).
By (3.12), we get

G 2po < (10 PRODIS12200 o gy < BPEISIZ 200 )

for every section s € H(X,L?), p > 1,and x € X. Now, if x1,...,xy, are points in X,
then for each j

X r—>detSp(xl,...,xj_l,x,xjH,...,pr)

is a holomorphic section in H%(X, L?). A successive application of the last inequality for
j=12,...,N, yields
I det Sp oo x,prgy = BY PP 1 et Spl 7200 ppygy

and (3.13) follows. O

Taking the normalization (3.9) into account, we set, for each p > 1,
(3.14) ep = |Lp(u’, Pkgp) — Eeq(K. )| = Vp(Pk¢.0),
and

1
Dp(K, @) := N, log || det Sp o< (k. pg)-
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PRrOPOSITION 3.12. — Let S,, K, ¢, ¢, and f/)p(K, @) be as above with condition (3.12).
Then there is a constant ¢ > 0 depending only on X, L and B such that for p > 1

| Dp (K, ) + Eeq(K, ¢)| < c(p™" log p + &p),

and for any Fekete measure [, associated with (K, ¢)

|Zp(ip, §) — Ecq(K, )| < c(p~'log p + &p).
Proof. — We prove the first assertion. By Lemma 3.11, we only need to check that
1 _
(3.15) mlog | det SpllL2(u0, ppg o) + Ceq(K.®)| S p Yogp + &p.

Using that S, is an orthonormal basis, a direct computation (see [2, Lemma 5.3] and [2,
p. 377)), gives

2 3 vol Bz (11°,0)
L2(u0,pP, - i'p: 0 ,
GEPEED ol B (u0, Pr)

| det S,
which implies
1 log N,!
—— log | det S = 00— op P,
N, og [ det Spll 2.0, ppigy = Lp(1°,0) = Lp(1”, Px ) + 20N,
By the normalization (3.9) and (3.14),
Zp(n®,0) =0 and Z,(u°, Pxp) = Eeq(K, @) £ &p.

On the other hand, since N, >~ p" by (2.19), we have

] n
log N,! <P log p < p~logp.
2pN, ~ 2pN, ™
Combining the last four estimates together, we obtain (3.15).

Consider now the second assertion in the proposition. Using the definition of Fekete
points, we obtain (see [3, (2.4)])

1mm£wm_
2PNy~ vol By (p. b)

By the normalization (3.9), the left-hand side is — Zp (ip, ¢). Using again that N, >~ p", we
deduce the result from the first assertion of the proposition. O

1
Dp(K, p) — E log Np.

3.3. Proofs of the main results and further remarks

In this subsection, we will give the proofs of the main theorems stated in the Introduction.
We need the following auxiliary lemmas.

LeEmMA 3.13. — There is a constant ¢ > 0 such that for every continuous weight ¢ on K
and every function v of class €' on X, we have

[{iea (K. ¢ + 1) = peq(K. §),v)| < cltllv]lLooxyddvllos for ¢ € R,
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Proof. — Define

n
W= (dd Pk + wo) "' A(dd® Px(p + 1v) + wp)" /.
j=1

Observe that dd€ Px¢ + wo and dd° Pg(¢ + tv) + wy are positive closed (1, 1)-currents
cohomologous to wg. So W is a sum of n positive closed (n — 1, n — 1)-currents of bounded
mass. Define also u := Pk (¢ + tv) — Px¢. Fort € R, we have

(Heq(K. ¢ + 10),0) — (pteq (K, $).v) = (NMA(Pk (¢ + 1v)) — NMA(Pg o). v)
= const{ddu A W,v) = const{ddv A ¥, u).
On the other hand, by Lemma 2.6,
[ullLooxy = | Pk ($ + tv) — Prd|Loo(xy = [t]l[v]Loe(k)-

Since v € ¥V1(X), dd°v can be written as the difference of two positive closed bounded
(1, 1)-forms. Consequently, dd°v A @ is a signed sum of 2n positive measures of bounded
mass. This and the above computation imply the lemma. O

LEMMA 3.14. — Let ¢ > 0 and M > 0 be constants. Let F and G be functions defined
on [—&/2 &) such that

a) F(t) > G(t) —eand |F(0) — G(0)| <¢;

b) F is concave on [—&'/2, €12 and differentiable at 0;

¢) G is differentiable in [—&'/?, £'/2], and its derivative G’ satisfies |G’ (t) — G’ (0)| < Me!/?
fort € [—e'/2,e'/2). The last inequality holds when |G’ (t) — G'(0)| < M t|.

Then we have
|F'(0) — G'(0)| < (2 + M)&'/2.

Proof. — This is a quantitative version of [2, Lemma 7.6]. Since F' is concave, we have
F(0) + F'(0)t = F(1)
for || < e'/2. Hence, for t := +¢'/2, we get
(3.16) tF'(0) > G(t) — G(0) — 2 = G(t) — G(0) — 21,
Now, take 7 := £1/2. There exists s € (0, ¢) such that

G(t) — G(0)
t
This, combined with (3.16) yields

=G'(s) andbyc) |G'(s)—G'(0)] < Mt.

F'(0) = G'(s) —2t = G'(0) — (2 + M)t.

Hence, F/(0) — G'(0) > —(2 + M)e'/2. The inequality F/(0) — G'(0) < (2 + M)e!/? is
obtained in the same way by using 1 1= —g!/2. O
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End of the proof of Theorem 1.7. — By (1.1), we only need to consider the case y = 3, i.e., to
prove

(3.17) [(1p — 1eq(X. 9). v)| < p~"/*(log p)*/*

for every test function v such that |v||43 < 1. We will apply Lemma 3.14 to the following
functions

F(@t):= Zp(up, ¢ + tv) and G(t) = Eeq(X, ¢ + tv).
By Lemma 3.4,
(3.18) Lp(tips  + 10) = Tp(X. $ + 10).

On the other hand, since dd v is bounded, we can find a constant zy > 0 such that ¢ + tv is
(1 = Q)wo-p.s.h. for |t| < 1o and ¢ > 0 a fixed constant. Recall that the function 0 satisfies
the normalization (3.9). Consequently, Proposition 3.8, applied to ¢ + tv and the function 0,
yields

|Zp(X. ¢ + 1v) — Eeq(X. ¢ + 1v)|  p~/*(log p)¥/2.

This, combined with (3.18), shows that
(3.19) F(1) = G(1) 2 —p~'"(log p)*"*.

Next, since ¢ is wp-p.s.h., we have Pg¢p = ¢. Moreover, we have the strong Bernstein-
Markov inequality thanks to Theorem 3.6 applied to K := X. Let ¢, be defined as in (3.14)

with K = X and Px¢ = ¢. By Proposition 3.8 again, we have &, = O(p~"/2(log p)3/?).
Consequently, applying Proposition 3.12 yields

(3.20) |F(0) — G(0)| < p~/?(log p)*/2.

Recall from Lemma 3.2 that F is concave. Moreover, by Lemma 3.3, we have

(3.21) F'(0) = (v. Bp(ip. 9)).
On the other hand, by Theorem 3.1, G is differentiable with
(3.22) G'(t) = (v, pleq(X, ¢ + 10)).

Finally, by Lemma 3.13, condition c) in Lemma 3.14 is satisfied for a suitable constant
M > 0. Combining this and the discussion between (3.19)-(3.22), we are in the position
to apply Lemma 3.14 to a constant ¢ of order p~1/2(log p)3/2. Using the above expression
for F’(0) and G’(0), we get

|(B5 (1. §). v) — (peq(X. $).v)| = O(p~"*(log p)*/*).
Recall from the discussion before Lemma 3.3 that %, (/Lp, ¢) = up. Hence, estimate (3.17)
follows immediately. O

REMARK 3.15. — If in Theorem 1.7, the function ¢ is only €%* for some 0 < o < 1, we
can apply Proposition 3.9 instead of 3.8 in order to get

disty (1. fteq(X. 9)) < (log p)*/Ep~™¥/2* for 0 <y <2.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



576 T.-C. DINH, X. MA AND V.-A. NGUYEN

End of the proof of Theorem 1.5. — By (1.1), we only need to consider the case y = 2, i.e., to
prove

(1t — 1eq (K. 9).0)| < p~* (log p)*P
for every test 42 function v such that ||v42 < 1. Recall that 8 := &’/(24 + 12a). Define

F(t) := Zp(pp. ¢ + tv) and G(t) := Ceq(K, ¢ +1tv) = Eeq(X, Px (¢ + tv))
for ¢ in a neighborhood of 0 € R. By Lemma 3.4 and Proposition 2.5,
Tp(Up.d +10) = Tp(K, ¢ + tv) = Tp(X, Px(¢p + 1v)).

As 0 < o < 2, we infer that ¢ + tv € €*(K). Since K is (%“,%“/)-regular, we deduce
that Pg(¢ + tv) is an wo-p.s.h. weight on X with bounded € -norm. This, coupled with
Proposition 3.10, applied to Px(¢ + tv) and the function 0, for &’ instead of &, and the
normalization (3.9), shows that

F(t)— G(t) 2 —p **(log p)'?*.

By Theorem 3.6, condition (3.12) is fulfilled. Let ¢, be defined as in (3.14). By Propo-
sition 3.10 for o instead of &, we have &, = O(p~*#(log p)'?#). Consequently, applying
Proposition 3.12 yields

|F(0)— G(0)| < p~*#(log p)'?*.

Finally, since ||v||42(x) < 1, we can check condition ¢) in Lemma 3.14 using Lemma 3.13.
Applying Lemma 3.14 to a constant & of order p~*# (log p)'2#, we easily obtain the result as
in the proof of Theorem 1.7. |

REMARK 3.16. — Optimal estimates for the speed of convergence in our results are still
unknown. This is an interesting problem which may require a better understanding of the
Bergman kernels. Results in this direction may have consequences in theory of sampling and
interpolation for line bundles with singular metric and not necessarily of positive curvature.
Demailly suggested us to study first the case in C” with data invariant under the action of
the real torus (S!)”.

REMARK 3.17. — Our proofs still hold in the case of almost Fekete configurations
P = (x1.....,xn,) € K™r in the sense that the quantity op below is not too big. Assume
that P is not necessarily a Fekete configuration and define

1 1
op := ——log|| det Sp||Loo(k.pp) — —= log || det S, (P)]pg-
pr p (K,po) pr D P9

Then our main estimates are still valid for this configuration if we add to their right hand sides
the term 0(0;/ 4) for the estimates in Theorems 1.1, 1.5 and Corollary 1.6, and 0(0’};/ 6) for
the estimate in Theorem 1.7. The main change in the proofs is that we need to add O(op)
to the right hand side of the second inequality in Proposition 3.12. This answers a question
that Norm Levenberg asked us, see also [23].
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