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HIGHER DIMENSIONAL FORMAL LOOP SPACES

BY BeENnjaAMIN HENNION

ABSTRACT. — If M is a symplectic manifold then the space of smooth loops C*®°(S!, M) inherits
of a quasi-symplectic form. We will focus in this article on an algebraic analog of that result. In their
article [14], Kapranov and Vasserot introduced and studied the formal loop space of a scheme X.

We generalize their construction to higher dimensional loops. To any scheme X—not necessarily
smooth—we associate 79 (X), the space of loops of dimension d. We prove it has a structure of
(derived) Tate scheme—i.e., its tangent is a Tate module: it is infinite dimensional but behaves nicely
enough regarding duality. We also define the bubble space w4 (X), a variation of the loop space. We
prove that B4 (X) is endowed with a natural symplectic form as soon as X has one (in the sense of [22]).

Throughout this paper, we will use the tools of (co, 1)-categories and symplectic derived algebraic
geometry.

REsUME. — Lespace des lacets lisses C*°(S!, M) associé a une variété symplectique M se voit
doté d’une structure (quasi-)symplectique induite par celle de M. Nous traiterons dans cet article d’un
analogue algébrique de cet énoncé. Dans leur article [14], Kapranov et Vasserot ont introduit ’espace
des lacets formels associé a un schéma.

Nous généralisons leur construction a des lacets de dimension supérieure. Nous associons a tout
schéma X — pas forcément lisse — 1’espace 74 (X) de ses lacets formels de dimension d. Nous
démontrerons que ce dernier admet une structure de schéma (dérivé) de Tate : son espace tangent est de
Tate : de dimension infinie mais suffisamment structuré pour se soumettre a la dualité. Nous définirons
également I’espace B4 (X) des bulles de X, une variante de I’espace des lacets, et nous montrerons que
le cas échéant, il hérite de la structure symplectique de X .

Introduction

Considering a differential manifold M, one can build the space of smooth loops L(M)
in M. It is a central object of string theory. Moreover, if M is symplectic then so is L(M)—
more precisely quasi-symplectic since it is not of finite dimension—see for instance [20]. We
will be interested here in an algebraic analog of that result.

0012-9593/03/© 2017 Société Mathématique de France. Tous droits réservés doi:10.24033/asens.2329
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610 B. HENNION

The first question is then the following: what is an algebraic analog of the space of smooth
loops? An answer appeared in 1994 in Carlos Contou-Carrére’s work (see [6]). He studies
there G,,(C((t))), some sort of holomorphic functions in the multiplicative group scheme,
and defines the famous Contou-Carrére symbol. This is the first occurrence of a formal loop
space known to the author. This idea was then generalized to algebraic groups as the affine
Grassmannian &vg = G(C(2)/G(C[]) showed up and got inyolved in the geometric
Langlands program. In their paper [14], Mikhail Kapranov and Eric Vasserot introduced
and studied the formal loop space of a smooth scheme X. It is an ind-scheme Z(X) which
we can think of as the space of maps Spec C((t)) — X. This construction strongly inspired
the one presented in this article.

There are at least two ways to build higher dimensional formal loops. The most studied
one consists in using higher dimensional local fields k((z1))...(tz) and is linked to
Beilinson’s adeéles. There is also a generalization of Contou-Carrére symbol in higher
dimensions using those higher dimensional local fields—see [21] and [5]. If we had adopted
this angle, we would have considered maps from some torus (U Spec(k((f1)) ... (#4)) to X.

The approach we will follow in this work is different. We generalize here the definition of
Kapranov and Vasserot to higher dimensional loops in the following way. For X a scheme
of finite presentation, not necessarily smooth, we define 74 (X), the space of formal loops
of dimension d in X. We define Z?I, (X) the space of maps from the formal neighborhood
of 0in A? to X. This is a higher dimensional version of the space of germs of arcs as studied
by Jan Denef and Frangois Loeser in [7]. Let also 275;1, (X) denote the space of maps from
a punctured formal neighborhood of 0 in A to X. The formal loop space 74 (X) is the
formal completion of %?, (X) in %?, (X). Understanding those three items is the main goal
of this work. The problem is mainly to give a meaningful definition of the punctured formal
neighborhood of dimension d. We can describe what its cohomology should be:

k[X1,....X4] ifn =0
H'(A? ~{0h) = ¢ (X ... X)) k(XY XS] ifn=d—1
0 otherwise

but defining this punctured formal neighborhood with all its structure is actually not an easy
task. Nevertheless, we can describe what maps out of it are, hence the definition of 25?] (X)
and the formal loop space. This geometric object is of infinite dimension, and part of this
study is aimed at identifying some structure. Here comes the first result in that direction.

THEOREM 1 (See 3.3.4). — The formal loop space of dimension d in a scheme X is repre-
sented by a derived ind-pro-scheme. Moreover, the functor X + 74 (X) satisfies the étale
descent condition.

We use here methods from derived algebraic geometry as developed by Bertrand Toén and
Gabriele Vezzosi in [25]. The author would like to emphasize here that the derived structure is
necessary since, when X is a scheme, the underlying schemes of 74 (X)), z@ (X) and .EZ'{, (X)
are isomorphic as soon as d > 2. Let us also note that derived algebraic geometry allowed

() The variable 1, . . ., t4 are actually ordered. The author likes to think of Spec(k(¢1)) - . . (¢4))) as a formal torus
equipped with a flag representing this order.
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HIGHER DIMENSIONAL FORMAL LOOP SPACES 611

us to define Z° (X) for more general X’s, namely any derived stack. In this case, the formal
loop space 74 (X) is no longer a derived ind-pro-scheme but an ind-pro-stack.

The case d = 1 and X is a smooth scheme gives a derived enhancement of Kapranov
and Vasserot’s definition. This derived enhancement is conjectured to be trivial when X is a
smooth affine scheme in [8, 9.2.10]. Gaitsgory and Rozenblyum also prove in /loc. cit. their
conjecture holds when X is an algebraic group.

The proof of Theorem 1 is based on an important lemma. We identify a full sub-category C
of the category of ind-pro-stacks such that the realization functor C — dSty, is fully faithful.
We then prove that whenever X is a derived affine scheme, the stack 74 (X) is in the essential
image of C and is thus endowed with an essentially unique ind-pro-structure satisfying some
properties. The generalization to any X is made using a descent argument. Note that for
general X’s, the ind-pro-structure is not known to satisfy nice properties one could want to
have, for instance on the transition maps of the diagrams.

We then focus on the following problem: can we build a symplectic form on z¢ (X) when
X is symplectic? Again, this question requires the tools of derived algebraic geometry and
shifted symplectic structures as in [22]. A key feature of derived algebraic geometry is the
cotangent complex Ly of any geometric object X. A (n-shifted) symplectic structure on X is
a closed 2-form Ox[—n] — Lx A Ly which is non degenerate—i.e., induces an equivalence

Ty — Lx[n].

Because 7 (X) is not finite, linking its cotangent to its dual—through an alleged symplectic
form—requires to identify once more some structure. We already know that it is an ind-pro-
scheme but the proper context seems to be what we call Tate stacks.

Before saying what a Tate stack is, let us talk about Tate modules. They define a convenient
context for infinite dimensional vector spaces. They where studied by Lefschetz, Beilinson
and Drinfeld, among others, and more recently by Braunling, Grochenig and Wolfson [4]. We
will use here the notion of Tate objects in the context of stable (oo, 1)-categories as developed
in[11]. If Cis a stable (oo, 1)-category—playing the role of the category of finite dimensional
vector spaces, the category Tate(() is the full subcategory of the (oo, 1)-category of pro-ind-
objects ProInd(() in C containing both Ind(C) and Pro(() and stable by extensions and
retracts.

We will define the derived category of Tate modules on a scheme—and more generally on
a derived ind-pro-stack. An Artin ind-pro-stack X—meaning an ind-pro-object in derived
Artin stacks—is then gifted with a cotangent complex Ly . This cotangent complex inherits
a natural structure of pro-ind-module on X . This allows us to define a Tate stack as an Artin
ind-pro-stack whose cotangent complex is a Tate module. The formal loop space 74 (X)is
then a Tate stack as soon as X is a finitely presented derived affine scheme. For a more
general X, what precedes makes 74 (X) some kind of locally Tate stack. This structure
suffices to define a determinantal anomaly

[Det%d(x)] € H2<£d(X), ngzd(x))

for any quasi-compact quasi-separated (derived) scheme X —this construction also works
for slightly more general X’s, namely Deligne-Mumford stacks with algebraizable diagonal,

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



612 B. HENNION

see Definition 2.1.3. Kapranov and Vasserot proved in [16] that in dimension 1, the determi-
nantal anomaly governs the existence of sheaves of chiral differential operators on X. One
could expect to have a similar result in higher dimensions, with higher dimensional analogs
of chiral operators and vertex algebras. The author plans on studying this in a future work.

Another feature of Tate modules is duality. It makes perfect sense and behaves properly.
Using the theory of symplectic derived stacks developed by Pantev, Toén, Vaquié and Vezzosi
in [22], we are then able to build a notion of symplectic Tate stack: a Tate stack Z equipped
with a (n-shifted) closed 2-form which induces an equivalence

Tz > Lz[n]

of Tate modules over Z between the tangent and (shifted) cotangent complexes of Z.

To make a step toward proving that 74 (X) is a symplectic Tate stack, we actually study
the bubble space B¢ (X )—see Definition 4.2.3. When X is affine, we get an equivalence

d d
B4 (X) = Ly (X) x Ty (X).
2y (X)
Note that the fibre product above is a derived intersection. We then prove the following result

THEOREM 2 (See Theorem 4.4.1). — If X is an n-shifted symplectic stack then the bubble
space B¢ (X) is endowed with a structure of (n — d)-shifted symplectic Tate stack.

The proof of this result is based on a classical method. The bubble space is in fact, as an
ind-pro-stack, the mapping stack from what we call the formal sphere S¢ of dimension d
to X. There are therefore two maps

B9 (X) —— B9 (X) x §4 —= X,

The symplectic form on B¢ (X) is then Jsa ev* wx, where wy is the symplectic form on X.
The key argument is the construction of this integration on the formal sphere, i.c., on an
oriented pro-ind-stack of dimension d. The orientation is given by a residue map. On the
level of cohomology, it is the morphism

HY (S ~ (X1... Xo) k(XL X7 =k
mapping (X1...Xz) ' to 1.

This integration method would not work on 74 (X), since the punctured formal neighbor-
hood does not have as much structure as the formal sphere: it is not known to be a pro-ind-
scheme. Nevertheless, Theorem 2 is a first step toward proving that 7¢ (X) is symplectic. We
can consider the nerve Z, of the map %‘é (X)) —> %‘Z, (X). It is a groupoid object in ind-pro-
stacks whose space of maps is 84 (X). The author expects that this groupoid is compatible
in some sense with the symplectic structure so that SE?] (X) would inherit a symplectic form
from realizing this groupoid. One the other hand, if %?, (X) was proven to be symplectic,
then the fibre product defining 84 (X) should bea Lagrangian intersection. The bubble space
would then inherit a symplectic structure from that on 7¢ (X).
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HIGHER DIMENSIONAL FORMAL LOOP SPACES 613

Techniques and conventions. — Throughout this work, we will use the techniques of
(00, 1)-category theory. We will once in a while use explicitly the model of quasi-categories
developed by Joyal and Lurie (see [17]). That being said, the results should be true with
any equivalent model. Let us fix now two universes U € V to deal with size issues. Every
algebra, module or so will implicitly be U-small. The first part will consist of reminders
about (oo, 1)-categories. We will fix there some notations. Note that we will often refer
to [10] for some (oo, 1)-categorical results needed in this article.

We will also use derived algebraic geometry, as introduced in [25]. We refer to [24] for a
recent survey of this theory. We will denote by k a base field and by dSt; the (oo, 1)-category
of (U-small) derived stacks over k. In the first section, we will dedicate a few page to introduce
derived algebraic geometry.

Outline. — This article begins with a few paragraphs, recalling some notions we will use.
Among them are (oo, 1)-categories and derived algebraic geometry. In section 1, we set up
a theory of geometric ind-pro-stacks. We then define in section 2 symplectic Tate stacks
and give a few properties, including the construction of the determinantal anomaly (see
Definition 2.1.3). Comes section 3 where we finally define higher dimensional loop spaces
and prove Theorem 1 (see 3.3.4). We finally introduce the bubble space and prove Theorem 2
(see Theorem 4.4.1) in section 4.

Aknowledgements. — 1 would like to thank Bertrand Toén, Damien Calaque and Marco
Robalo for the many discussions we had about the content of this work. I am grateful to
Mikhail Kapranov, James Wallbridge and Giovanni Faonte for inviting me at the IPMU.
My stay there was very fruitful and the discussions we had were very interesting. I learned
after writing down this article that Kapranov had an unpublished document in which higher
dimensional formal loops are studied. I am very grateful to Kapranov for letting me read
those notes, both inspired and inspiring.

This work is extracted from my PhD thesis [10] under the advisement of Bertrand Toén.
I am very grateful to him for those amazing few years.

Preliminaries

In this part, we recall some results and definitions from (oo, 1)-category theory and
derived algebraic geometry.

0.1. A few tools from higher category theory

In the last decades, theory of (0o, 1)-categories has tremendously grown. The core idea is
to consider categories enriched over spaces, so that every object or morphism is considered
up to higher homotopy. The typical example of such a category is the category of topological
spaces itself: for any topological spaces X and Y, the set of maps X — Y inherits a topology.
Itis often useful to talk about topological spaces up to homotopy equivalences. Doing so, one
must also consider maps up to homotopy. To do so, one can of course formally invert every
homotopy equivalence and get a set of morphisms [X, Y]. This process loses information and
mathematicians tried to keep trace of the space of morphisms.
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614 B. HENNION

The first fully equipped theory handy enough to work with such examples, called model
categories, was introduced by Quillen. A model category is a category with three collec-
tions of maps—weak equivalences (typically homotopy equivalences), fibrations and
cofibrations—satisfying a bunch of conditions. The datum of such collections allows us
to compute limits and colimits up to homotopy. We refer to [13] for a comprehensive review
of the subject.

Using model categories, several mathematicians developed theories of (oo, 1)-categories.
Let us name here Joyal’s quasi-categories, complete Segal spaces or simplicial categories.
Each one of those theories is actually a model category and they are all equivalent one to
another—see [1] for a review.

In [17], Lurie developed the theory of quasi-categories. In this book, he builds everything
necessary so that we can think of (oo, 1)-categories as we do usual categories. To prove
something in this context still requires extra care though. We will use throughout this work
the language as developed by Lurie, but we will try to keep in mind the 1-categorical intuition.

In this section, we will fix a few notations and recall some results to which we will often
refer.

Notations. — Let us first fix a few notations, borrowed from [17].

— We will denote by Cat[go the (oo, 1)-category of U-small (oo, 1)-categories—see [17,
3.0.0.1];

— Let Pr{;g,“ denote the (o0, 1)-category of U-presentable (and thus V-small) (oo, 1)-cate-
gories with left adjoint functors—see [17, 5.5.3.1];

— The symbol sSets will denote the (co, 1)-category of U-small simplicial sets up to
homotopy equivalences (this is equivalent to the category of (nice) topological spaces
up to homotopy);

- For any (oo, 1)-categories C and ) we will write Fct(C, &) for the (oo, 1)-category of
functors from C to ) (see [17, 1.2.7.3]). The category of presheaves will be denoted
P(C) = Fct(C°P, sSets).

— For any (oo, 1)-category C and any objects ¢ and d in C, we will denote by Map(c, d)
the space of maps from ¢ to d.

— For any simplicial set K, we will denote by K* the simplicial set obtained from K by
formally adding a final object. This final object will be called the cone point of K*.

The following theorem is a concatenation of results from Lurie.

THEOREM 0.1.1 (Lurie). — Let C be a V-small (0o, 1)-category. There is an (0o, 1)-cate-
gory IndY(C) and a functor j: C — IndY(C) such that
(i) The (oo, 1)-category Ind" (C) is V-small;
(ii) the (00, 1)-category Ind" (C) admits U-small filtered colimits and is generated by U-small
filtered colimits of objects in j(C);
(iii) the functor j is fully faithful and preserves finite limits and finite colimits which exist in C;
(iv) for any c € C, its image j(c) is U-small compact in Ind"(C);
(v) for every (oo, 1)-category ) with every U-small filtered colimits, the functor j induces
an equivalence

Fet’(nd"(0), &) > Fet(C, D),

4¢ SERIE - TOME 50 — 2017 - N° 3



HIGHER DIMENSIONAL FORMAL LOOP SPACES 615

where FctV=¢(IndV (0), &) denote the full subcategory of Fet(Ind” (C), D) spanned by
functors preserving U-small filtered colimits,

(vi) if C is U-small and admits all finite colimits then Ind”(C) is U-presentable;

(vii) if C is endowed with a symmetric monoidal structure then there exists such a structure
on IndV(C) such that the monoidal product preserves U-small filtered colimits in each
variable.

Proof. — Let us use the notations of [17, 5.3.6.2]. Let ¥ denote the collection of U-small
filtered simplicial sets. We then set Ind”(C) = 535% (0). Tt satisfies the required properties
because of loc. cit. 5.3.6.2 and 5.5.1.1. We also need tiny modifications of the proofs of loc.
cit. 5.3.5.14 and 5.3.5.5. The last item is proved in [19, 6.3.1.10]. O

REMARK 0.1.2. — Note that when C admits finite colimits then the category Ind”(()
embeds in the V-presentable category Ind" (C).

DEFINITION 0.1.3. — Let C be a V-small oo-category. We define ProY(C) as the
(00, 1)-category
Pro”(C) = (Ind"(C°?))"".
It satisfies properties dual to those of Ind"( ().
DEerFINITION 0.1.4. — Let C be a V-small (oo, 1)-category. Let
i:Fet(C, Cat)) — Fct(IndY((), Caty,)
denote the left Kan extension functor. We will denote by M% the composite functor

IndV o—

Fet(C, Cat”.) —— Fet(Ind”(0), Cat’,) — "= Fet(Ind” (), Cat?.)
We will denote by mucj the composite functor

U
Fct(C, Cat(‘;’o) _ Pro o= | Fet(C, Cat}fo

) — Fct(Pro”((), Cat_)
We define in the same way

Ind/: Fet(C, Cat) ) — Fct(Ind" (), Catoo)

Pro/.: Fct(C, Cat,) — Fct(Pro’((), Caty).

REMARK 0.1.5. — The Definition 0.1.4 can be expanded as follows. To any functor
f:C— Cat(‘;’o and any ind-object ¢ colimit of a diagram
K—— C——1mad’(0)
we construct an (oo, 1)-category
Ind)(f)(c) ~ Ind”(colim £ (¢)).

To any pro-object d limit of a diagram

G J— Pro”(C)

we associate an (oo, 1)-category

Pro;(f)(d) = limPro”(f(d)).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



616 B. HENNION

DEFINITION 0.1.6. — Let Cat*' denote the subcategory of Cat), spanned by stable
categories with exact functors between them—see [19, 1.1.4]. Let Cati’gft’ld denote the full
subcategory of Catz‘;st spanned by idempotent complete stable categories.

REMARK 0.1.7. — It follows from [19, 1.1.4.6, 1.1.3.6, 1.1.1.13 and 1.1.4.4] that the func-
tors M% and m“g restricts to functors

Ind¥: Fet(C, Catl™) — Fet(Ind”(C), Catl:™)
Pro7: Fct(C, Cat*') — Fet(Pro”(C), Cat ™).

0.1.0.1. Symmetric monoidal (co, 1)-categories. — We will make use in the last chapter of
the theory of symmetric monoidal (co, 1)-categories as developed in [19]. Let us give a (very)
quick review of those objects.

DEerINITION 0.1.8. — Let Fin* denote the category of pointed finite sets. For any n € N,
we will denote by (n) the set {*, 1,...,n} pointed at x. For any n and i < n, the Segal map
§':(n) — (1) is defined by §/(j) = 1if j =i and §'(j) = * otherwise.

DEFINITION 0.1.9. — (See [19, 2.0.0.7]) Let C be an (oo, 1)-category. A symmetric
monoidal structure on C is the datum of a coCartesian fibration p: C®¥ — Fin* such that

— the fibre category 8281’) is equivalent to C and
— for any n, the Segal maps induce an equivalence Ca) — (Gg’))” ~ (",

where Ca) denote the fibre of p at (n). We will denote by Cat?};V the (oo, 1)-category
of V-small symmetric monoidal (oo, 1)-categories—see [19, 2.1.4.13].

Such a coCartesian fibration is classified by a functor ¢:Fin* — Cat(‘;’o—see [17,
3.3.2.2]—such that ¢({n)) ~ C". The tensor product on C is induced by the map of
pointed finite sets u: (2) — (1) mapping both 1 and 2 to 1

® = ¢(u): O — C.
REMARK 0.1.10. — The forgetful functor Cat®;" — Cat_, preserves all limits as well as

filtered colimits—see [19, 3.2.2.4 and 3.2.3.2]. Moreover, it follows from Theorem 0.1.1 - (vii)
that the functor Ind” induces a functor

Ind”: Cat®" — Cat®".
The same holds for ProV. The constructions Ind” and ProY therefore restrict to
Ind}: Fet(C, Cat2;") — Fet(Ind"(C), Cat")

Proy: Fct(C, Cat®") — Fct(Pro”(C), CatS").
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HIGHER DIMENSIONAL FORMAL LOOP SPACES 617

0.1.0.2. Tate objects. — We now recall the definition and a few properties of Tate objects
in a stable and idempotent complete (oo, 1)-category. The content of this paragraph comes
from [11]. See also [10].

DEFINITION 0.1.11. — Let C be a stable and idempotent complete (oo, 1)-category.
Let Tate” (C) denote the smallest full subcategory of Pro” Ind”(() containing IndV(() and
Pro”((), and both stable and idempotent complete.

The category Tate” (C) naturally embeds into Ind” Pro"( () as well.

0.1.12. — If moreover C is endowed with a duality equivalence C°P 5 C then the induced
functor
Pro” Ind”(C) — (Pro” Ind”(())*” ~ Ind” Pro”(C)

preserves Tate objects and induces an equivalence Tate” (C) ~ TateV(()°P.

DEFINITION 0.1.13. — Let C be a V-small (oo, 1)-category. We define the functor

TateU o—

Tate”: Fct(C, Cat:™) — L Fct(Ind?(0), Cat’ss)————Fct(Ind"( (), Catls"19).

0.2. Derived algebraic geometry

We present here some background results about derived algebraic geometry. Let us assume
k is a field of characteristic 0. First introduced by Toén and Vezzosi in [25], derived algebraic
geometry is a generalization of algebraic geometry in which we replace commutative algebras
over k by commutative differential graded algebras (or cDGA’s). We refer to [24] for a recent
survey of this theory.

0.2.0.1. Generalities on derived stacks. — We will denote by cdga,f0 the (o0, 1)-category of
CDGA’s over k concentrated in non-positive cohomological degree. It is the (oo, 1)-local-
isation of a model category along weak equivalences. Let us denote dAff; the opposite
(00, 1)-category of cdga,fo. It is the category of derived affine schemes over k. In this work,
we will adopt a cohomological convention for CDGA’s.

A derived prestack is a presheaf dAff)” ~ cdga,f0 — sSets. We will thus write P(dAffy)
for the (oo, 1)-category of derived prestacks. A derived stack is a prestack satisfying the étale
descent condition. We will denote by dSt; the (oo, 1)-category of derived stacks. It comes
with an adjunction

(—)T: P(dAffy) = dSty,

where the left adjoint (—)7 is called the stackification functor.

REMARK 0.2.1. — The categories of varieties, schemes or (non derived) stacks embed
into dSt;.

DEerFINITION 0.2.2. — The (oo, 1)-category of derived stacks admits an internal hom
Map(X, Y) between two stacks X and Y. It is the functor cdga,f0 — sSets defined by

A > Mapgg, (X x Spec 4,Y).
We will call it the mapping stack from X to Y.

There is a derived version of Artin stacks of which we first give a recursive definition.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



618 B. HENNION

DEerINITION 0.2.3. — (See for instance [23, 5.2.2]) Let X be a derived stack.

— We say that X is a derived 0-Artin stack if it is a derived affine scheme;

— wesay that X is a derived n-Artin stack if there is a family (7, ) of derived affine schemes
and a smooth atlas

u: ]_[ T & X

such that the nerve of u has values in derived (n — 1)-Artin stacks;

— we say that X is a derived Artin (or algebraic) stack if it is an n-Artin stack for some 7.

— we say that X is locally of finite presentation if there exists a smooth atlas| |7, — X as
above, such that the derived affine schemes 7, are all finitely presented (i.e., their CDGA
of functions is finitely presented, or equivalently compact is the category of CDGA’s).
We also say that X is finitely presented if there is such an atlas with a finite number
of T,’s.

We will denote by dStﬁrt the full subcategory of dSt; spanned by derived Artin stacks.

DEFINITION 0.2.4. — A morphism X — Y of derived stacks is called algebraic if for any
CDGA A and any map Spec A — Y, the derived intersection X xy Spec A4 is an algebraic
stack.

To any cDGA A we associate the category dgMod, of dg-modules over A. Similarly, to any
derived stack X we can associate a derived category Qcoh(X) of quasicoherent sheaves. It is
a U-presentable (oo, 1)-category given by the formula

h(X)~ I dgMod
QCO( ) Speclzrtln—>X gYI0oCs

Moreover, for any map f: X — Y, there is a natural pull back functor f*:Qcoh(Y) —
Qcoh(X). This functor admits a right adjoint, which we will denote by f. This construction
is actually a functor of (oo, 1)-categories.

DEFINITION 0.2.5. — Let us denote by Qcoh the functor
Qcoh: dSt;” — Pri;".

For any X we can identify a full subcategory Perf(X) C Qcoh(X) of perfect complexes. This
defines a functor
Perf: dSt;” — CatJ.

REMARK 0.2.6. — For any derived stack X the categories Qcoh(X) and Perf(X) are actu-
ally stable and idempotent complete (oo, 1)-categories. The inclusion Perf(X) — Qcoh(X) is
exact. Moreover, for any map f: X — Y the pull back functor f* preserves perfect modules
and is also exact.

DEerINITION 0.2.7 (See for instance the appendix of [9]). — Let X be a derived stack and
let 7: X — * denote the projection. We say that X is of finite cohomological dimension if
there is a non-negative integer d such that the complex 7. Oy = RI'(X, Ox) € dgMod,, is
concentrated in degree lower or equal to d.

ExaMmPLE 0.2.8. — Any derived affine scheme is of finite cohomological dimension (take
d = 0). Any quasi-compact quasi-separated derived stack (i.c., a finite colimit of derived
affine schemes) is of finite cohomological dimension.
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Any derived Artin stack X over a basis S admits a cotangent complex Ly,s € Qcoh(X).
If X is locally of finite presentation, then the its cotangent complex is perfect

Lx/s S Perf(X).

0.2.0.2. Symplectic structures. — Following [22], to any derived stack X we associate two
complexes A?(X) and A”°/(X) in dgMod,, respectively of p-forms and closed p-forms
on X. They come with a natural morphism A”°/(X) — A?(X) forgetting the lock closing
the forms @. This actually glues into a natural transformation

Ap.cl
/_\
dSt; u dgMod,, .
~ >
AP
Let us emphasize that, as soon as X is Artin, the complex AZ(X) is canonically equivalent to
the global sections complex of Ly ALy . In particular, any n-shifted 2-forms k[-n] — A?(X)

induces a morphism COx|[—n] — Ly A Ly in Qeoh(X). If X is locally of finite presentation,
the cotangent Ly is perfect and we then get a map

TX [—n] d L}(.

DEFINITION 0.2.9. — Let X be a derived Artin stack locally of finite presentation.

— An n-shifted 2-form wy:k[-n] — AZ(X) is called non-degenerated if the induced
morphism Ty [—n] — Ly is an equivalence;

— an n-shifted symplectic form on X is a n-shifted closed 2-form wy: k[-n] — A% (X)
such that underlying 2-form k[—n] — AZ°(X) — A2(X) is non degenerate.

0.2.0.3. Obstruction theory. — Let A € cdgaZ’ and let M € dgMod; ' be an A-module
concentrated in negative cohomological degrees. Let d be a derivation A — A & M and
s:A — A ® M be the trivial derivation. The square zero extension of A by M [—1] twisted
by d is the fibre product

A®y M[-1]—2— 4

-l

A 2 Ae M.
Let now X be a derived stack and M € Qcoh(X)="!. We will denote by X [M] the trivial
square zero extension of X by M. Let also d: X[M] — X be a derivation—i.e., a retract of

the natural map X — X[M]. We define the square zero extension of X by M[—1] twisted
by d as the colimit

Xa[M[-1]] = f:S%gCIiAHLX Spec(A ®f+a f*M[-1]).

It is endowed with a natural morphism X — X [M[—1]] induced by the projections p as
above.

@ This lock is a structure on the form: being closed in not a property in this context.
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0.2.10 (Obstruction theory on stacks). — Let F — G be an algebraic morphism of
derived stacks. Let X be a derived stack and let M € Qcoh(X)=~1. Let d be a derivation

d € Mapy,_(X[M], X).
We consider the map of simplicial sets
V:Map(Xq[M[-1]], F) - Map(X, F)  x  Map(Xq[M[-1]], G).
Map(X,G)
Let y € Map(X, F) Xmap(x,6) Map(X4[M[—1]], G) and let x € Map(X, F) be the induced

map. There exists apointo(y) € Map(x*Lr,g, M) such that the fibre vy, of Y at y is equivalent
to the space of paths from 0 to a(y) in Map(x*Lg;c, M)

Iﬁy ~ Qo’a(y) Map(x*ILF/G, M)

Proof. — This is a simple generalization of [25, 1.4.2.6]. The proofis very similar. We have
a natural commutative square

X[M]—4— x

|

X —— Xy[M[-1]].
It induces a map
a: Map(X, F)Mapz(X’G)Map(Xd[M[—l]], G) — Mapy,_,g(X[M], F) ~ Map(x*Lp/g. M).
Let Q¢,0(y) Mapy,_,g(X[M], F) denote the space of paths from 0 to a(y). It is the fibre

product
Qo,a(y) Mapy,_/g(X[M], F) —————— %

l J lm)

* Mapy, /6 (X[M], F).

The composite map oy is by definition homotopic to the 0 map. This defines a morphism

S Q0,ap) Mapy,_ g (X[M], F) — ¥y.

It now suffices to see that the category of X’s for which f is an equivalence contains every
derived affine scheme and is stable by colimits. The first assertion is exactly [25, 1.4.2.6] and
the second one is trivial. O

0.2.0.4. Postnikov towers. — To any CDGA A, one can associate its n-truncation A<, for
some n. It is, by definition, the universal cDGA with vanishing cohomology H? (A<,) for p <
—n associated to A. The truncation comes with a canonical map A — A<, so that one can
form the diagram
Acog < A<y < -+
This induces a canonical morphism A — lim, A<, which is an equivalence.
This phenomenon has a counterpart when dealing with derived stacks. Let us denote

by cdga,E_"’O] the category of cDGA’s with cohomology concentrated in degrees —n to 0. It

]

comes with the fully faithful embedding i,: cdgagc_”’0 — cdga’.
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For any prestack X: cdga,f0 — sSets, we define its truncation t<, X as the restriction of X

to the category cdga,[c_"’ol. We will abuse notations and also denote by <, X the functor

obtained after left Kan extending along i,. The prestack t<,X comes with a canonical
morphism <, X — X which, as n varies, assembles to define a canonical map

colimr<, X — X.
n
Remark that this morphism is not necessarily an equivalence. We will study it in Lemma 1.3.1.

0.2.0.5. Algebraizable stacks. — Let X be a derived stackand A a cDGA. Leta = (ay, ..., ap)

be a sequence of elements of A° forming a regular sequence in H%(A). Let A/a'l’, C..al
denote the Kozsul complex associated with the regular sequence (a7, ..., ay). It is endowed

with a cDGA structure. There is a canonical map

Y(A)g:colim X (4/gn, . ar) > X (lmajap, . an)-

This map is usually not an equivalence.

DEerINITION 0.2.11. — A derived stack X is called algebraizable if for any A and any
regular sequence a the map ¥ (A4), is an equivalence.

Amap f: X — Y is called algebraizable if for any derived affine scheme 7" and any map
T — Y, the fibre product X xy T is algebraizable.

We will say that a derived stack X has algebraizable diagonal if the diagonal morphism
X — X x X is algebraizable.

REMARK 0.2.12. — A derived stack X has algebraizable diagonal if for any A and a the
map v (A), is fully faithful. One could also rephrase the definition of being algebraizable as
follows. A stack is algebraisable if it does not detect the difference between

co'l1im Spec(A/afll’ o ag) and Spec<lirrln Afan, ..., a;).

ExampPLE 0.2.13. — Any derived affine scheme is algebraizable. Another important
example of algebraizable stack is the stack of perfect complexes. In [2], Bhargav Bhatt
gives some more examples of algebraizable (non-derived) stacks—although our defini-
tion slightly differs from his. He proves that any quasi-compact quasi-separated algebraic
space is algebraizable and also provides with examples of non-algebraizable stacks. Let
us name K(G,,,2)—the Eilenberg-Maclane classifying stack of G,,—as an example of
non-algebraizable stack. Algebraizability of Deligne-Mumford stacks is also look at in [18].

1. Ind-pro-stacks

Throughout this section, we will denote by S a derived stack over some base field & and
by dSts the category of derived stack over the base S.
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1.1. Cotangent complex of a pro-stack

DEFINITION 1.1.1. — A pro-stack over S an object of Pro” dSts.

REMARK 1.1.2. — Note that the category Pro” dStg is equivalent to the category of pro-
stacks over k with a morphism to S.

DEerINITION 1.1.3. — Let Perf: dStgp — Catgo denote the functor mapping a stack to its
category of perfect complexes. We will denote by IPerf the functor

IPerf = M“;Stgp (Perf): (Pro” dSts)°? — Prk ,

where Ind" was defined in Definition 0.1.4. Whenever X is a pro-stack, we will call IPerf(X)
the derived category of ind-complexes on X. It is U-presentable. If f: X — Y is a map of
pro-stacks, then the functor

IPerf( /): IPerf(Y) — IPerf(X)

admits a right adjoint (as both the involved categories are presentable and the functor
preserves all colimits). We will denote f;* = IPerf(f) and f} its right adjoint.

REMARK 1.1.4. — Let X be a pro-stack and let X: K — dStg denote a U-small
cofiltered diagram of whom X is a limit in ProY dSts. The derived category of ind-perfect
complexes on X is by definition the category

IPerf(X) = Ind”(colim Perf(X)).

It thus follows from [19, 1.1.4.6 and 1.1.3.6] that IPerf(X) is stable. Note that it is also
equivalent to the colimit

IPerf(X) = colim IPerf(X) Prk;v.
It is therefore equivalent to the limit of the diagram
IPerf, (X): K — dSty — Pry’ ~ (Pri;")°P.

An object E in IPerf(X) is therefore the datum of an object E; of IPerf(X (k)) for each
k € K and of some compatibilities between them. We will then have E; ~ pj,E where
pr: X — X (k) is the natural projection.

DEerINITION 1.1.5. — Let X be a pro-stack. We define its derived category of pro-perfect
complexes
PPerf(X) = (IPerf(X))°®.
Recall that perfect complexes are precisely the dualizable objects in the category of quasi-
coherent complexes. They therefore come with a duality equivalence Perf(—) 5 (Perf(—))°P.
This gives rise to the equivalence

PPerf(X) ~ Pro" (colim Perf(X))
whenever X: K°P — dStg is a cofiltered diagram of whom X is a limit in Pro” dStg.
DEFINITION 1.1.6. — Let us define the functor Tatey: (Pro” dSts)°P — Cat*%¢

TateupJ = TateUlS (P (Perf).
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REMARK 1.1.7. — The functor Tatey maps a pro-stack X given by a diagram

X: K°P — dStg to the stable (oo, 1)-category
Tate},J (X) = TateV(colim Perf(X)).
There is a canonical fully faithful natural transformation
Tatep — Pro" o IPerf .

We also get a fully faithful
Tatep — Ind" o PPerf .

DEerINITION 1.1.8. — Let Qcoh: dStgp — Catﬁ’O denote the functor mapping a derived
stack to its derived category of quasi-coherent sheaves. It maps a morphism between stacks
to the appropriate pullback functor. We will denote by IQcoh the functor

IQcoh = ME&OP (Qcoh): (ProY dStg)°P — Cat},’o.
S

If f: X — Y is a map of pro-stacks, we will denote by f;* the functor IQcoh( /). We also
define

IQcoh=’ = IndUlStgp (Qcoh=?)

the functor of connective modules.

REMARK 1.1.9. — There is a fully faithful natural transformation IPerf — IQcoh; for

any map f: X — Y of pro-stacks, there is therefore a commutative diagram

IPerf(Y) —— IQcoh(Y)

al G

IPerf(X) —— IQcoh(X).
The two functors denoted by f;* are thus compatible. Let us also say that the functor

/" 1Qcoh(Y) — IQcoh(X)
does not need to have a right adjoint. We next show that it sometimes has one.

1.1.10. — Let f: X — Y be a map of pro-stacks. If Y is actually a stack then the functor
JiF:1Qcoh(Y') — IQcoh(X) admits a right adjoint.

sketch of. — For a complete proof, we refer to [10, 1.2.0.8]. Let us denote by X: K°P — dStg
a cofiltered diagram of whom X is a limit in Pro” dSts. The map X — Y factors through
the projection X — X (k) for some k € K. The right adjoint of Ji¥ is then (informally) given
by the limit
lim £ (D).
where f (1)« is the right adjoint to the induced functor f(/)*:IQcoh(Y) — IQcoh(X (/)).
O

DEerINITION 1.1.11. — Let f: X — Y be a map of pro-stacks. We will denote by f*IQ the
right adjoint to f;*:IQcoh(Y) — IQcoh(X) if it exists.
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REMARK 1.1.12. — In the situation of 1.1.10, there is a natural transformation

IPerf(X) —— IQcoh(X)

|~

IPerf(Y) —— IQcoh(Y).
It does not need to be an equivalence.

DEFINITION 1.1.13. — Let X be a pro-stack over S. The structural sheaf Oy of X is the
pull-back of Os along the structural map X — S.

ExaMPLE 1.1.14. — Let X be a pro-stack over S and X: K°® — dStg be a U-small
cofiltered diagram of whom X is a limit in Pro” dSts. Let k be a vertex of K, let X
denote X (k) and let py denote the induced map of pro-stacks X — Xj.If f:k — [ isan
arrow in K, we will also denote by f the map of stacks X (). We have

IQ 0 ~ li * 0)( .
(pk)* ( X) ?%clnllf 3
One can see this using [10, 1.2.0.7].

DEerFINITION 1.1.15. — For any category C with finite colimits, we will denote by BléI the

functor GAl — Cat}fo mapping a morphism ¢:¢ — d to the category of factorizations
¢ — e — d of ¢. For a formal definition in the context of (co, 1)-categories, we refer to
[10, 1.3.0.14].

DEeFINITION 1.1.16. — Let T be a stack over S. Let us consider the functor

< : op
Qeoh(7T)=" — BlLer (id7) ~ (T/dStT)

mapping a quasi-coherent sheaf E to the square zero extension T — T[E] — T. This
construction is functorial in 7 and actually comes from a natural transformation

Ex: Qcoh=* — Bl op (id-)
S
of functors dStg” — Cat_,. We will denote by Ex"™ the natural transformation

Ex" = Ind o (EX): 1Qcoh=" — Indgion (Bigion (id-)) 2 B, 0 gy y0p (d-)

between functors (Pro” dStg)°P — Cat.,. The equivalence on the right is the one from [10,
1.3.0.18]. If X is a pro-stack and E € IQcoh(X)=° then we will denote by X — X[E] — X
the image of E by the functor ExF™(X).

REMARK 1.1.17. — Let us give a description of this functor. Let X be a pro-stack and
let X: K°P — dStg denote a U-small cofiltered diagram of whom X is a limit in Pro” dSts.
For every k € K we can compose the functor mentioned above with the base change functor

X [-] —Xxx, X
(Qcoh(X}))°P —— Xk /dSty, —— X /Pro” dSty.

This is functorial in k and we get a functor (colim Qcoh(X ))Op — X /ProV dSty which we
extend and obtain a more explicit description of the square zero extension functor

X[-]: IQcoh(X))°P — X /Pro¥ dSty .
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DEeriNITION 1.1.18. — Let X be a pro-stack.

— We finally define the functor of derivations over X :
Der(X,—) = Mapy,_;s(X[-], X):1Qcoh(X)=" — sSets.

— Wesay that X admits a cotangent complex if the functor Der(X, —) is corepresentable—
i.e., there exists a Ly/s € IQcoh(X) such that for any E € IQcoh(X)=°

Der(X, E) ~ Map(LLy/s, E).

DEFINITION 1.1.19. — Let dSt‘;‘rt be the full sub-category of dSts spanned by derived
Artin stacks over S. An Artin pro-stack is an object of Pro” dStg™. Let dSt’;‘rt’lfp be the full

sub-category of dSt’§rt spanned by derived Artin stacks locally of finite presentation over S.

An Artin pro-stack locally of finite presentation is an object of Pro" dStI;rt’lfp

1.1.20. — Any Artin pro-stack X over S admits a cotangent complex Ly,s. Let us assume
that X: K°P — dSt’;rt is a U-small cofiltered diagram of whom X is a limit in Pro" dSt’Sm.
When k is a vertex of K, let us denote by Xy the derived Artin stack X (k). If f:k — [ is an
arrow in K, we will also denote by f: X; — Xy the map of stacks X (). The cotangent complex
is given by the formula

Ly/s = collcim piLx, s € Ind”(colim Qeoh(X)) ~ IQcoh(X),
where py is the canonical map X — Xy. The following formula stands
pkiQ]LX/S ~ colim f*LXl/S‘
fik—1

If X is moreover locally of finite presentation over S, then its cotangent complex belongs
to IPerf(X).

Before proving this proposition, let us fix the following notation

DEFINITION 1.1.21. — Let C be a full sub-category of an co-category ). There is a
natural transformation from O g:d cf/)/d to the constant functor ): &) — Cats. We
denote by Of@ the fiber product

Oc%zO?@EG:f[)eCatoo.

REMARK 1.1.22. — The functor OC%: &) — Caty, maps an object d € ) to the comma
category of objects in C over d

- d Al
Cla = (Cx ) x D

Proof of the proposition. — The cotangent complex defines a natural transformation

(dstgrtyop

A OdStgp — Qcoh(-).

To any stack 7" and any Artin stack U over S withamap f: T — U, it associates the quasi-

coherent complex f*Ly,s on T. Applying the functor Ind[Uls (op We get a natural transforma-
S

tion APro

U Artyo
AT = Indly op (3): o 955" _, [Qeoh(-).

——d (Pro” dStg)°P

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



626 B. HENNION

Specifying it to X we get a functor
AR (X /Pro” dSt’g‘”)op — IQcoh(X).
Let us set Ly,s = A;“’ (X) € IQcoh(X). We have by definition the equivalence
Ly/s =~ collcim Pilx,/s-
Let us now check that it satisfies the required universal property. The functor Der(X, —) is
the limit of the diagram K°P — Fct(IQcoh(X)=?, sSets)
Mapy /s (X[-]. X).

Fixingk € K, the functor Mapy, (X [—]. Xx):IQcoh(X)=° ~ Ind"(colim Qcoh(X)=%) —
sSets preserves filtered colimits. It is hence induced by its restriction to colim Qcoh(X)=°. It
follows that the diagram Mapy,_, s (X[—], X) factors through a diagram

§: K°P — Fct(colim Qeoh(X)=’, sSets) =~ lim Fct(Qcoh(X)=’, sSets).

Similarly, the functor Map(Ly,s, —) is the limit of a diagram

KoP — 5 lim Fct(Qcoh(X)=°, sSets) —— Fct(IQcoh(X)=?, sSets) .

The universal property of the usual cotangent complex defines an equivalence between §
and u.

To get the formula for pkiQ]LX /s, one uses [10, 1.2.0.7] and the last statement is obvious.

O

REMARK 1.1.23. — The definition of the derived category of ind-quasi-coherent modules
on a pro-stack is build for the above proposition and remark to hold.

REMARK 1.1.24. — We have actually proven that for any pro-stack X, the two functors
IQcoh(X)=0 x X /dStg™ — sSets
defined by
(E.Y) — Mapy, /5(X[E].Y)
(E.Y) = Mapigeon(x) Ay (V). E)

are equivalent.

1.2. Cotangent complex of an ind-pro-stack
DEerINITION 1.2.1. — An ind-pro-stack is an object of the category

IPdStg = Ind” Pro” dStg.

DEerINITION 1.2.2. — Let us define the functor PIPerf: (IPdSts)°P — Cat}fO as

U
PIPerf = m(PmU dSt5)op (IPerf),

where Pro” was defined in Definition 0.1.4. Whenever we have a morphism f: X — Y of
ind-pro-stacks, we will denote by fpj the functor

Sfor = PIPerf(f): PIPerf(Y) — PIPerf(X).
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REMARK 1.2.3. — Let X be an ind-pro-stack. Let X: K — Pro"” dStg denote a U-small
filtered diagram of whom X is a colimit in IPdSts. We have by definition

PIPerf(X) =~ lim Pro” (IPerf(X)).
1.2.4. — Let f: X — Y be a map of ind-pro-stacks. If 'Y is a pro-stack then the functor
Jp1: PIPerf(Y) — PIPerf(X) admits a right adjoint.
DErFINITION 1.2.5. — Let f: X — Y be a map of ind-pro-stacks. If the functor
Sor: PIPerf(Y) — PIPerf(X)

admits a right adjoint, we will denote it by fFI.

of the proposition. — If both X and Y are pro-stacks, then fF = Pro”( £}l is right adjoint
to foi = Pro(f{*). Let now X be an ind-pro-stack and let X: K — Pro" dSts denote a
U-small filtered diagram of whom X is a colimit in IPdSts. We then have

foi: PIPerf(Y) — PIPerf(X) ~ lim PIPerf(X).
The right adjoint is the informally given by the formula
= lim £ (0,
where f (k) is the induced map X (k) — Y. For a formal proof, we refer to [10, 1.2.0.5]. O

DEFINITION 1.2.6. — Let X € IPdSts. We define IPPerf(X) = (PIPerf(X))°P. If X is
the colimit in IPdStg of a filtered diagram K — Pro” dStg then we have

IPPerf(X) ~ lim(Ind" o PPerfoX).
We will denote by (—)": IPPerf(X) — (PIPerf(X))°P the duality functor.

DEFINITION 1.2.7. — Let us define the functor Tatel,: (IPdSts)°® — Cat’:s“1¢ as the
right Kan extension of Tateg along the inclusion (Pro” dStg)°? — (IPdStg)°P. It is by
definition endowed with a canonical fully faithful natural transformation

Tate;, — PIPerf.
For any X € IPdStg, an object of Tateg,(X ) will be called a Tate module on X.

REMARK 1.2.8. — We can characterize Tate objects: a module £ € PIPerf(X) is a Tate
module if and only if for any pro-stack U and any morphism f:U — X € IPdStg, the
pullback fip(E)isin Tatej (U).

Let us also remark here that

LeEmMA 1.2.9. — Let X be an ind-pro-stack over S. The fully faithful functors

(@M

Tate(X) —— PIPerf(X) (IPPerf(X))°P «—— (Tate[p(X))""

have the same essential image. We thus have an equivalence
(—)": Tatefp(X) ~ (Tatep, (X ).

Proof. — This is a corollary of 0.1.12. O
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DEerINITION 1.2.10. — Let us define PIQcoh: (IPdStg)°P — Cath to be the functor
_ U
PIQcoh = m(PmU dSt5)oP (IQcoh).

From Remark 0.1.10, for any ind-pro-stack X, the category PIQcoh(X) admits a natural
monoidal structure. We also define the subfunctor

PIQcoh=" = Pro, o 46, op (IQCOR=0).

REMARK 1.2.11. — Letus give an informal description of the above definition. To an ind-
pro-stack X = colimy limg X,g we associate the category

PIQcoh(X) = lim Pro” Ind" (co}lgim Perf(Xaﬂ)).
o

DEFINITION 1.2.12. — Let f: X — Y be a map of ind-pro-stacks. We will denote by fp;
the functor PIQcoh( /). Whenever it exists, we will denote by f*PIQ the right adjoint to fpy.

1.2.13. — Let f: X — Y be a map of ind-pro-stacks. If Y is actually a stack, then the
induced functor fp; admits a right adjoint.

Proof. — This is very similar to the proof of 1.2.4 but using 1.1.10. O

REMARK 1.2.14. — There is a fully faithful natural transformation PIPerf — PIQcoh.
Using the same notation fpp for the images of a map f: X — Y is therefore only a small
abuse. Moreover, for any such map f: X — Y, for which the right adjoints drawn below
exist, there is a natural transformation

PIPerf(Y) —— PIQcoh(Y)

A 1

PIPerf(X) —— PIQcoh(X).

It is generally not an equivalence.

DEFINITION 1.2.15. — Let Ex'f denote the natural transformation mg)mU aSts)oP (ExPro)
P, <0 U 11 . ~ Rl :
Ex™: PIQcoh=" — m(PmU dStg)°oP (B (Pro" dStg)oP (ld—)) - B(IPdSts)"p (id-)

of functors (IPdStg)°? — Caty,. If X is an ind-pro-stack and E € PIQcoh(X)=° then we
will denote by X — X[E] — X the image of E by the functor

op
ExP(X): PIQcoh(X)=* — (X /IPdStX) .

REMARK 1.2.16. — Let us decipher the above definition. Let X = colim, limg X,p be
an ind-pro-stack and let £ be a pro-ind-module over it. By definition E is the datum, for
every «, of a pro-ind-object E? in the category Pro” IndU(colimﬂ Qcohfo(Xaﬂ)). Let us
denote E* = lim, colims E;‘B. For any y and §, there is a Bo(y, §) such that E;‘S is in the
essential image of Qcoh=°(Xyp,(;.5))- We then have

X[E] =colimlim Ilim X,g[E,s] € IPdStg.
[ ] @y 8 B=Po(rd) aﬂ[ y8] S

DEerINITION 1.2.17. — Let X be an ind-pro-stack.
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— We define the functor of derivations on X
Der(X, —) = Mapy,_,s(X[-], X).

— We say that X admits a cotangent complex if there exists Ly,;s € PIQcoh(X) such that
for any E € PIQcoh(X)=°

Der(X, E) ~ Map(Lyx/s, E).

— Letusassume that f: X — Y isa map of ind-pro-stacks and that ¥ admits a cotangent
complex. We say that f is formally étale if X admits a cotangent complex and the
natural map f*Ly,s — Lx/s is an equivalence.

DEFINITION 1.2.18. — An Artin ind-pro-stack over S is an object in the category

IPdSt5™ = Ind” Pro” dStg™.
An Artin ind-pro-stack locally of finite presentation is an object of

1PdSts™'"™ = Ind" Pro" dSty™'™.

1.2.19. — Any Artin ind-pro-stack X admits a cotangent complex
IL}(/S € PIQCOh(X).

Let us assume that X: K — Pro dSt‘g?rt is a U-small filtered diagram of whom X is a colimit
in IPdSt?rt. For any vertex k € K we will denote by Xy the pro-stack X (k) and by iy the
structural map Xy — X. For any f:k — [l in K, let us also denote by f the induced map
X — X;. We have for allk € K

i]:p[LX/S ~ lim f]*]LX//S € PIQcoh(Xy).
> fik—l1
If moreover X is locally of finite presentation then Ly ;s belongs to PIPerf(X).
Proof. — Let us recall the natural transformation A’ from the proof of 1.1.20

U Artyop
AP — IndY_ ., (1): 00, 857)

=asty (ProV aSts)op 1Qcoh(-)

U

(Prot dstg)or WE define the

of functors (Pro” dStg)°® — Cats. Applying the functor Pro

natural transformation AP

AP = Prol (APr); o(pasts™)°r

===(Pro" dSts)°P -~ (IPdSt g )P — PIQcoh(-)

between functors (IPdSts)°P — Cat,. Specifying to X we get a functor
op
AP, (X /IPdStj;”) — PIQcoh(X).
We now define Ly, s = A}}’(X ). By definition we have
Pro

i]:’pl]LX/S ~ lin’l/\Xk ()Z) ~ fllchE, fI*LXl/S

for every k € K. Let us now prove that it satisfies the expected universal property. It suffices
to compare for every k € K the functors

Mapy, /—/s (Xk[=], X) and Mappigeon(x, ) iz prlex /s —)
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defined on PIQcoh(X})=°. They are both pro-extensions to PIQcoh(X} )= of their restric-
tions IQcoh(X;)=% — sSets. The restricted functor Mapy, /—/s (Xg[=], X) is a colimit of the
diagram

Mapy, ;s (Xi[-]. X): (k/K>Op — Fct(IQecoh(Xy)=?, sSets)

while Mappigeon(x; ) (i prlex /s> —) is a colimit to the diagram
_ op
Mapigeancr) (e (X), -): (F/K) ™ — Fet(1Qeoh(X;) =", sSets).
We finish the proof with Remark 1.1.24. O

Let us record here a technical result we will use later on. For a proof, we refer to [10,
2.1.2.20].

1.2.20. — Let X € IPASty™. Let us denote by w: X — S the structural map. Let also L
denote the functor

op
(IPdStg*“) — Pro” Ind” Qcoh(S)
obtained by extending l~he functor (dSt’;“)013 — Qcoh(S) mapping f:T — S to filly;s. Then
we have ' Uy s ~ LP(X).
DEFINITION 1.2.21. — Let X by an Artin ind-pro-stack locally of finite presentation
over S. We will call the tangent complex of X the ind-pro-perfect complex on X

']Tx/s = H“}/S S IPPerf(X).

1.3. Uniqueness of pro-structure
LEMMA 1.3.1. — Let Y and Z be derived Artin stacks. The following is true

(1) The canonical map
Map(Z,Y) — limMap(t<,Z,Y)
n

is an equivalence;
(1) If'Y isq-Artin and Z is m-truncated then the mapping space Map(Z,Y) is (m + q)-trun-
cated.

Proof. — We prove both items recursively on the Artin degree of Z. The case of Z affine
is proved in [25, C.0.10 and 2.2.4.6]. We assume that the result is true for n-Artin stacks. Let
Z be (n + 1)-Artin. There is an atlasu: U — Z. Let us remark that for k € N the truncation
T u: T<x U — 1<1 Z is also a smooth atlas — indeed we have t<x U >~ U xz 1< Z. Let us
denote by U, the nerve of u and by 7 U, the nerve of t-;u. Because k-truncated stacks are
stable by flat pullbacks, the groupoid 7 U, is equivalent to t<x(Us). We have

Map(Z,Y) ~ lim Map(U,,Y) ~ lim lim Map(t<xU,,Y) >~ lim Map(z<xZ,Y).
[pleA [pleA k - k =

That proves item (i). If moreover Z is m-truncated, then we can replace U by 1<, U . If follows
that Map(Z,Y) is a limit of (m + g)-truncated spaces. This finishes the proof of (ii). O

We will use this well known lemma:
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LemMma 1.3.2 (See [3, Chapter XI]). — Let S: A — sSets be a cosimplicial object in simpli-
cial sets. Let us assume that for any [p] € A the simplicial set S, is n-coconnective. Then the
natural morphism

lim S, > Ilim S
plea * " [plea ”
p<n+l

is an equivalence.

LEMMA 1.3.3. — Let X:N°P — dStg be a diagram such that
(i) there are two integers m and n such that for any k € N the stack X (k) is n-Artin,

m-truncated and of finite presentation,

(ii) there exists a diagram i: N°P x A' — dStg such that the restriction of ii to N°P x {1} is
equivalent to X, every map u(k):u(k)(0) — u(k)(1) >~ X (k) is a smooth atlas and the
limit limy, 1 (k) is an epimorphism.

If'Y is an algebraic derived stack of finite presentation then the canonical morphism
colim Map()f, Y) — Map(lim X, Y)

is an equivalence.

Proof. — Let us prove the statement recursively on the Artin degree n. If n equals 0, this
is a simple reformulation of the finite presentation of Y. Let us assume that the statement
at hand is true for some n and let X (0) be (n + 1)-Artin. Considering the nerves of the
epimorphisms u(k), we get a diagram

Z:N° x A°P — dStg.

Note that Z has values in n-Artin stacks. We observe that the diagram limg Z (k)s: AP — dStg
is the nerve of the map limy, # (k). Since limy, # (k) is by assumption an epimorphism (whose
target is lim X), the natural map

colim lim Z (k lim X ~ lim colim Z (k
[pleA keN *)p = keN [pleA (k)

is an equivalence. We now write

Map(limX,Y) ~ M lim lim Z (k),,Y
ol 1) 2 o sl 20,1

~ lim Map|( lim Z(k),,Y
i, P(m )y )

~ i lim Map(Z (k),.Y).
i colim Map(Z (k). ¥)

We also have

colimMap(X,Y) =~ cl(c)llén D})l}renA Map(Z (k). Y).

It thus suffices to prove that the canonical morphism of simplicial sets

lim lim Map(Z(k),,Y li lim Map(Z (k),, Y
cgegn [pl]renA ap( ©)p )_) [1171]IenA CI?EIRIIH ap( “p )

is an equivalence. Let us notice that each Z (k)p is m-truncated. It is indeed a fibre product
of m-truncated derived stacks along flat maps. Let ¢ be an integer such that Y is g-Artin. The
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simplicial set Map(Z (k)p.Y) is then (m + g)-coconnective (Lemma 1.3.1). It follows from
Lemma 1.3.2 that the limit at hand is in fact finite and we have the required equivalence. [

LEMMA 1.3.4. — Let M:N°P — sSets be a diagram. For any i € N and any point
X = (x,) € lim M, we have the following exact sequence

0 — lim 7,4 (M (1), xp) —— ; (lim M), x) s lim 7 (M (n), x,) —— 0.

A proof of that lemma can be found for instance in [12].

LEmMA 1.3.5. — Let M:N°Px K — sSets denote a diagram, where K is a filtered simplicial
set. If for any i € N there exists N; such that for any n > N; and any k € K the induced
morphism M(n, k) — M(n — 1, k) is an i-equivalence then the canonical map

¢:colimlim M(n, k) — lim colim M(n, k)
keK neN neN kek
is an equivalence. We recall that an i -equivalence of simplicial sets is a morphism which induces
isomorphisms on the homotopy groups of dimension lower or equal to i.

Proof. — We can assume that K admits an initial object ko. Let us write M, instead
of M(n, k). Letusfixi € N.Ifi > 1, we also fix a base point x € lim, M,,. Every homotopy
group below is computed at x or at the natural point induced by x. We will omit the reference
to the base point. We have a morphism of short exact sequences

00— collcim lim's; .y (M) —— co]l(im L8 (lim M,,k> E— collcim limm; (M) —— 0
n n n

| | |

0 — lim* collcim wit1(Myx) — 7 (lim collcim Mnk) — lim colim 7; (M) —— 0.
n n n k

We can restrict every limit to n > N;4;. Using the assumption we see that the limits on the
right hand side are then constant and so are the 1-limits on the left. If follows that the vertical
maps on the sides are isomorphisms, and so is the middle map. This begin true for any i, we
conclude that ¢ is an equivalence. O

DEFINITION 1.3.6. — Let X:N°P — dStg be a diagram. We say that X is a shy diagram if

(i) For any k € N the stack X (k) is algebraic and of finite presentation;
(ii) Forany k € Nthe map X (k — k 4+ 1): X (k + 1) — X (k) is affine;
(iii) The stack X (0) is of finite cohomological dimension.

If X is the limit of X in the category of prostacks, we will also say that X is a shy diagram
for X.

1.3.7. — Let X:N°P — dStg be a shy diagram. If Y is an algebraic derived stack of finite
presentation then the canonical morphism

colim Map(X,Y) — Map(lim X, Y)

is an equivalence.
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Proof. — Since for any n, the truncation functor 7, preserves shy diagrams, let us use
Lemma 1.3.1 and Lemma 1.3.3

Map(lim X,Y) ~ lizn Map(t<, (lim X), Y)
~ lizn Map(lim 7, X,Y) ~ lirrln colim Map(t<, X, Y).
On the other hand we have
colim Map(X,Y) ~ colim lign Map(t<, X.Y)
and we are to study the canonical map
¢: colim lirlln Map(t<, X.Y) — lirrln colim Map(t<, X.Y).

Because of Lemma 1.3.5, it suffices to prove the assertion

(1) Forany i € N there exists N; € N such that for any n > N; and any k € N the map
Pnj:Map(t<n X (k),Y) — Map(t<p—1 X (k). Y)
induces an equivalence on the 7;’s for any j <i.

For any map f: t<,—1 X (k) — Y we will denote by F,, & (f) the fibre of p, x at f. We have to
prove that for any such f the simplicial set F;, x () is i-connective. Let thus f be one of those
maps. The derived stack t<,, X (k) is a square zero extension of 7<,—; X (k) by amodule M [n],
where

M = ker(@rﬁni(k) —> Offn—l}z(k)) [_n].

Note that M is concentrated in degree 0. It follows from the obstruction theory of Y —see
0.2.10—that F, x(f) is not empty if and only if the obstruction class

a(f) € Gui(f) = Mapg__ (f*Ly, M[n +1])
of f vanishes. Moreover, if «( /) vanishes, then we have an equivalence

Fuie(f) = Mapg,_ (f*Ly, M|n]).

Using assumptions (iii) and (ii) we have that X (k) — and therefore its truncation too — is
of finite cohomological dimension d. Let us denote by [a, b] the Tor-amplitude of Ly. We
get that G, x(f) is (s 4+ 1)-connective for s = a + n — d and that F, x(f) is s-connective
if a(f) vanishes. Let us remark here that d and a do not depend on either k or f and thus
neither does N; =i + d —a (we set N; = 0 if this quantity is negative). For any n > N; and
any f as above, the simplicial set G,  (f) is at least 1-connective. The obstruction class (1)
therefore vanishes and F, x(f) is indeed i-connective. This proves (1) and concludes this
proof. O

n—1X k)

117])?“‘)

DEerINITION 1.3.8. — Let PdStSShy denote the full subcategory of Pro” dSts spanned by
the prostacks which admit shy diagrams. Every object X in PdStSShy is thus the limit of a shy
diagram X:N°P — dStg.

We will say that X is of cotangent tor-amplitude in [a, b] if there exists a shy diagram
X:N°P — dStg for X such that every cotangent Ly 1s of tor-amplitude in [a, b]. We
will also say that X is of cohomological dimension at most d if there is a shy diagram X
with values in derived stacks of cohomological dimension at most d. The pro-stack X will
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be called g-Artin if there is a shy diagram for it, with values in g-Artin derived stacks. Let
us denote by G I the full subcategory of PdSt spanned by objects of cotangent tor-
amplitude in [a, b] of cohomological dimension at most d and g-Artin.

THEOREM 1.3.9. — The limit functor ishy: PdStfghy — dStg is fully faithful and has values
in Artin stacks.

Proof. — This follows directly from 1.3.7. O

DEeriNITION 1.3.10. — A map of pro-stacks f: X — Y is an open immersion if there

exists a diagram
FiN°P x Al — dSt;

such that

— the limit of f in maps of pro-stacks is f ;

— the restriction N°P x {0} — dSt; of f is a shy diagram for X and the restriction

NP x {1} — dSty is a shy diagram for Y;
— for any n, the induced map of stacks {n} x A! — dSt; is an open immersion.

1.4. Uniqueness of ind-pro-structures

DEFINITION 1.4.1. — Let IPdStShy *® denote the full subcategory of IndU(PdStShy)
spanned by colimits of U-small filtered diagrams K — PdStShy which factors through 0[; qb ]

for some 4-uplet a,b,d,q. For any X € IPdStShy * we will say that X is of cotangent

tor-amplitude in [a, b] and of cohomological dlmension at most d if it is the colimit
(in Ind" (PdStShy)) of a diagram K — Ggl’qb].

THEOREM 1.4.2. — The colimit functor IndU(PdStShy) — dStg restricts to a full faithful
embedding IPdStShy LN dStgs.

LEMMA 1.4.3. — Leta,b,d, q be integers witha < b. Let T € PdStShy and X: K — O[a 6]
be a U-small filtered diagram. For any i € N there exists N; such that for any n > N; and any
k € K, the induced map

Map(t<, T, X (k)) = Map(tr<,_1T. X (k))

is ani-equivalence. We recall that an i -equivalence of simplicial sets is a morphism which induces
isomorphisms on the homotopy groups of dimension lower or equal to i.

REMARK 1.4.4. — For the proof of this lemma, we actually do not need the integer ¢.

Proof. — Letus fixi € N. Let k € K and T:N — dStg be a shy diagram for 7. We
observe here that 7, T is a shy diagram whose limit is 7<, T'. Let also Y;: N — dStg be a shy
diagram for X (k). The map at hand

Ynk: Map(t<, T, X (k)) — Map(t<,—1 T, X (k))
is then the limit of the colimits

lmkll colim Map(t<, T (q). Yi(p)) — 11m collm Map(t<p—1T(q). Y (p)).
peEN geN
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Let now f be amap 1<, T — X (k). It corresponds to a family of morphisms
Joix — colimMap(t<n—17 (@). Yi(p))-
For any p, let F np (/) denote the fibre of the map
yh colim Map(r<n T(q).Yk(p)) — colim Map(r<n—1 T(q), Yi(p))

over the point f,. We also set F,,x(f) = lim, ank(f) and observe that F,; (/) is nothing
but the fibre of v, over f.

To prove the result, it suffices to show that for any such f, the fibre F,x (f) is i-connective.
Using the exact sequence of Lemma 1.3.4, it suffices to prove that F fk (f)is (i +1)-connective
for any f and any p.

Fixing such an f and such a p, there exists go € N such that the map f, factors through
the canonical map

Map(t<n—17 (q0). Yi(p)) — cgégn Map(t<n—1T(q), Yi(p)).

We deduce that F ,f’ (/) 1s equivalent to the colimit
P ~ calim (P4
Fo(f) ~ szlé? G (),
where GZZ(f) is the fibre at the point induced by f, of the map
Map(t<nT'(9), Yi(p)) — Map(t<n—1T (q). Yi(p)).

The interval [a, b] contains the tor-amplitude of Ly ) and d is an integer greater than
the cohomological dimension of 7(g). We saw in the proof of 1.3.7 that Gfl’ IZ (f) is then
(a +n —d)-connective. Weset N; =i +d —a + 1. O

Proof of Theorem 1.4.2. — We will prove the sufficient following assertions

(1) the colimit functor IndU(PdStSShy) — P(dAffg) restricts to a fully faithful functor

7 IPASEYY° — D(dAffs);
(2) the functor n has values in the full subcategory of stacks.

Let us focus on assertion (1) first. We consider two U-small filtered diagrams X : K — PdStfghy

and Y: L — PdSt;hy. We have

Map, (colim X, colimY) =~ lilzn MaplndU(PdSt?y)(f (k),colim Y)

U(pastyY)
and
Map o(gam) (colim ishy)?, colim ishyl_/) ~ lilzn Map o(gam) (ishy)?(k), colim ishy)_’).

We can thus replace the diagram X in PdSt;hy by a simple object X € PdStfghy. We now

assume that Y factors through Ggl’qb] for some a, b, d, q. We have to prove that the following
canonical morphism is an equivalence

¢ c?lim Map(ishy X, isny Y (1)) — Map(ishy X, colimigny ),
eL

where the mapping spaces are computed in prestacks. If ispy X is affine then ¢ is an equiv-
alence because colimits in J2(dAffs) are computed pointwise. Let us assume that ¢ is an
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equivalence whenever isny X is (¢ — 1)-Artin and let us assume that igyy X is g-Artin. Let
u: U — isny X be an atlas of ishy X and let Z, be the nerve of u in dStg. We saw in the proof
of Lemma 1.3.3 that Z, factors through PdSt}hy. The map ¢ is now equivalent to the natural
map

c?liLm Map(isny X, isny Y (1)) — 1imA colim Map(Z,, isnyY (1))
€
~ [ll]mA Mdp(Zp,cohmlsth) ~ Map(isny X, colimigy Y).
ple

Remembering Lemma 1.3.1, it suffices to study the map

colim lim Map (t<nisny X. isnyY (1)) — Jim colim lim Map(r<n Zp. isnyY (1)).

Applying Lemma 1.4.3 and then Lemma 1.3.5, we see that ¢ is an equivalence if the natural
morphism

11’51’1 c?ehLm [IIJI]IEHA Map(t<nZp. Sth(l)) — 11m [})nepA colle Map(t<n Zp. Sth(l))

is an equivalence. The stack isth(l ) is by assumption g-Artin, where ¢ does not depend
on /. Now using Lemma 1.3.1 and Lemma 1.3.2, we conclude that ¢ is an equivalence. This
proves (1). We now focus on assertion (2). If suffices to see that the colimit in J2(dAffs) of the
diagram isth as above is actually a stack. Let Ho: A°? U{—1} — dAffg be an hypercovering
of an affine Spec(A4) = H_;. We have to prove the following equivalence

colim lim Map(Hp,iSth(l)) — lim colim Map(H,,,isth(l)).
I [pleA [plea I

Using the same arguments as for the proof of (1), we have

co%im[li]mA Map(H, ,ishy)_’(l)) ~ colim lim lim Map(r<, Hp,ishy)_’(l))
ple
~ 11mcollm lim Map(t<, Hp. Sth(l))
n [pleA

~ hrrln [;1]12A co}un Map(t<, Hp, zsth )

~ lim cohmhmMap(t<n poishyY (1))

[pleA
~ 11]m cohmMap(H ,zsth(l)) O
p eA
shy,b

We will need one last lemma about that category IPdStg

LemmA 1.4.5. — The fully faithful functor IPdStShy N IPdAffs — IPdSts — dStg
preserves finite limits.

Proof. — The case of an empty limit is obvious. Let then X — Y <« Z be a diagram
in IPdSti;hy’b N IPdAffg. There exist ¢ and b and a diagram

. [a.b]
o1 K — Fet(A3, C)

such that K is a U-small filtered simplicial set and the colimit in IPdSts is X — Y < Z. We
can moreover assume that o has values in Fct(A2, ProY(dAffs)) ~ ProY(Fct(A2, dAffs)).
We deduce that the fibre product X xy Z is the realization of the ind-pro-diagram in derived
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affine stacks with cotangent complex of tor amplitude in [a—1, b+1]. It follows that X xy Z is
again in IPdSty>"" N IPAAffs. O

2. Symplectic Tate stacks

2.1. Tate stacks: definition and first properties

We can now define what a Tate stack is.
DEFINITION 2.1.1. — A Tate stack is a derived Artin ind-pro-stack locally of finite
presentation whose cotangent complex—see 1.2.19—is a Tate module. Equivalently, an

Artin ind-pro-stack locally of finite presentation is Tate if its tangent complex is a Tate
module. We will denote by dStZate the full subcategory of IPdSt; spanned by Tate stacks.

This notion has several good properties. For instance, using Lemma 1.2.9, if a X is a Tate
stack then comparing its tangent Ty and its cotangent L.y makes sense, in the category of
Tate modules over X. We will explore that path below, defining symplectic Tate stacks.

Another consequence of Tatity @ is the existence of a determinantal anomaly as defined
in [15]. Let us consider the natural morphism of prestacks

0: Tate? — KTate,

where Tate” denote the prestack A — TateV(Perf(A4)) and K™t: 4 - K (Tate” (Perf(4)))—
K denoting the connective K-theory functor. From [11, Section 5] we have a determinant

K™t 5 K(Gp,2),
where K(G,, 2) is the Eilenberg-Maclane classifying stack.
DEFINITION 2.1.2. — We define the Tate determinantal map as the composite map
Tate’ — K(G,y,2).

To any derived stack X with a Tate module E, we associate the determinantal anomaly
[detg] € H3(X, O%), image of E by the morphism

Map(X, Tate”) — Map(X, K(G,, 2)).

Let now X be an ind-pro-stack. Let also R denote the realization functor ProU dSt; — dSt;
mapping a pro-stack to its limit in dSty. Let finally X: K — Pro"” dSt; denote a U-small
filtered diagram whose colimit in IPdSt; is X. We have a canonical functor

Fy:lim Tateg (X) ~ Tate[p(X) — lim Tate" (RX).

DEFINITION 2.1.3. — Let X be an ind-pro-stack and E be a Tate module on X . Let X’ be
the realization of X in Ind” dSt; and X" be its image in dSt;. We define the determinantal
anomaly of E the image of Fyx (E) by the map

Mapy,gv g1, (X', Tate”) — Mapy,qv 450, (X', K(Gp1. 2)) > Mapggy, (X", K(Gp.2)).

In particular if X is a Tate stack, we will denote by [dety] € H*(X"”, Ox) the determinantal
anomaly associated to its tangent Tx € Tatep(X).

(3 Or “Tateness” or “Tatitude”.
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The author plans on studying more deeply this determinantal class in future work. For
now, let us conclude this section with following

LEMMA 2.1.4. — The inclusion dStzate — IPdSt; preserves finite limits.

Proof. — Let us first notice that a finite limit of Artin ind-pro-stacks is again an Artin
ind-pro-stack. Let now X — Y <« Z be a diagram of Tate stacks. The fibre product

XxyZ 25X

Z——Y

is an Artin ind-pro-stack. It thus suffices to test if its tangent Ty, z is a Tate module. The
following cartesian square concludes

Txxyz — pxTx

-
p}Tz E— p;g*']ry. O

2.2. Shifted symplectic Tate stacks

We assume now that the basis S is the spectrum of a ring k of characteristic zero. Recall
from [22] the stack in graded complexes DR mapping a CDGA over k to its graded complex
of forms. It actually comes with a mixed structure induced by the de Rham differential. The
authors also defined there the stack in graded complexes NCY mapping a CDGA to its graded
complex of closed forms. Those two stacks are linked by a morphism NC% — DR forgetting
the closure.

We will denote by AP, APl cdga,f0 — dgMod, the complexes of weight p in DR[—p] and
NCY¥[— p] respectively. The stack A? will therefore map a CDGA to its complexes of p-forms
while A?-! will map it to its closed p-forms. For any cDGA A, a cocycle of degree n of AP (A) is
an n-shifted p-forms on Spec A. The functors A?>! and A? extend to functors

APl AP:dSt}P — dgMod,.

DEFINITION 2.2.1. — Let us denote by A%, and A% the extensions
(IPdSt;)°P — Pro" Ind” dgMod,

of A? and AP, respectively. They come with a natural projection Aﬂ;Cl — ApL.

Let X € IPdSt. An n-shifted (closed) p-form on X is a morphism k[—n] — AfL(X) (resp.
Aﬁ;CI(X )). For any closed form w: k[-n] — Aﬁ,’CI(X ), the induced map k[—n] — Af’P’Cl(X ) —
AL(X) is called the underlying form of .

REMARK 2.2.2. — In Def. 2.2.1, we associate to any ind-pro-stack X = colim, limg X,
its complex of forms

AL(X) = lim co}%im A?(X,p) € Pro” Ind"” dgMod, .
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For any ind-pro-stack X, the derived category PIQcoh(X) is endowed with a canonical
monoidal structure. In particular, one defines a symmetric product E +— Symlz,I(E ) as well
as an antisymmetric product

E p E = Symy(E[-1])[2].

THEOREM 2.2.3. — Let X be an Artin ind-pro-stack over k and w: X — x the projection.

The push-forward functor
771 PIQcoh(X) — Pro’ Ind” (dgMod,,)

exists (see 1.2.13) and maps Lx Ap1Lx to AZp(X). In particular, any 2-form k[—n] — AZp(X)
corresponds to a morphism Ox[—n] — Ly Apr Ly in PIQcoh(X).

Proof. — This follows from [22, 1.14], from 1.2.20 and from the equivalence

AT A A = Pro"” Ind” (1) Qm“ Ind”(%) ~ Pro” Ind”( A 1),

where AP is defined in the proof of 1.2.19. O

DEFINITION 2.2.4. — Let X be a Tate stack. Let w:k[-n] — AZ(X) be an n-shifted
2-form on X. It induces a map in the category of Tate modules on X

w: Ty — Lyx|[n].

We say that w is non-degenerate if the map o is an equivalence. A closed 2-form is non-
degenerate if the underlying form is.

DEerFINITION 2.2.5. — A symplectic form on a Tate stack is a non-degenerate closed
2-form. A symplectic Tate stack is a Tate stack equipped with a symplectic form.
2.3. Mapping stacks admit closed forms

In this section, we will extend the proof from [22] to ind-pro-stacks. Note that if X is a
pro-ind-stack and Y is a stack, then Map(X, Y) is an ind-pro-stack. We will then need an
evaluation functor Map(X,Y) x X — Y. It appears that this evaluation map only lives in
the category of ind-pro-ind-pro-stacks

colim lifr}n coéim lign Map(Xye,Y) x Xge — Y.
o
To use this map properly, we will need the following remark.

DEFINITION 2.3.1. — Let C be a category. There is one natural fully faithful functor
¢:PI(C) — (IP)*(C)

but three IP(C) — (IP)?( (). The first one is given by applying IP to the canonical embedding
functor ¢ — TIP(C). The second one by considering the canonical embedding functor
D — IP() for &) = IP(C). In this work, we will only consider the third functor

v IP(C) — (IP)2(0)

given by applying Ind” to the canonical embedding &) — PI(9) for &) = Pro”((). Let us
also denote by £ the natural fully faithful functor C — (IP)2(().
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DEerINITION 2.3.2. — Let Y be a stack and X be a pro-ind-stack. Let us denote the
evaluation map in IP?dStg

ev®¥: y Mapg(X,Y) XPX——EY.
For a formal definition of this map, we refer to [10, 2.2.3.2].
We assume now that S = Speck. Let us recall the following definition from [22, 2.1].

DEFINITION 2.3.3. — A derived stack X is O-compact if for any derived affine scheme T
the following conditions hold:

— the quasi-coherent sheaf Cxx7 is compact in Qeoh(X x T);
— pushing forward along the projection X x T — T preserves perfect complexes.

Let us denote by dSt,f the full subcategory of dSt; spanned by (-compact derived stacks.

DEFINITION 2.3.4. — An (-compact pro-ind-stack is a pro-ind-object in the category
of CO-compact derived stacks. We will denote by PIdSt,? their category.

LEMMA 2.3.5. — There is a functor
PIdSt] — Fct(IPdSt, x A' x A, (IP)?(dgMod, )°F)

defining for any O-compact pro-ind-stack X and any ind-pro-stack F a commutative square

APSUF x ¢X) —— AR (W F) @ ¢ Ox

| |

ALL(UF % §X) —— AL (U F) @ ¢ Ox.

where Aﬁ;;l and AL, are the extensions of ABN and AD, 10
(IP)?dSt, — (IP)*(dgMod;").

Proof. — Recall in [22, part 2.1] the construction for any (-compact stack X and any
stack F' of a commutative diagram (of graded complexes):

NCY(F x X) —— NC¥(F) ®; 7+ Ox
DR(F x X) —— DR(F) ®j 7« Ox,
where 7: X — *. Taking the part of weight p and shifting, we get
APNF x X) —— AP F) @ 74 Ox
AP(F x X) —— AP(F) ® 7« Ox.
This construction is functorial in both F and X so it corresponds to a functor

dSt{ — Fet(dSt, x A' x A', dgMod;P).
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We can now form the functor
PIdSt! — PIFct(ProdSt, x A' x A', Pro(dgMod;"))
— Fet(ProdSt, x A' x A', PIPro(dgMod,"))
— Fot(IPdSt, x A' x A', (IP)*(dgMod;")).

By construction, for any ind-pro-stack F and any (-compact pro-ind-stack, it induces the
commutative diagram

APSWF x pX) —— Y AR (F) ®k ¢ Cx

| |

AL (WF x §X) —— YAR(F) ® ¢ Ox. O

P2

REMARK 2.3.6. — Let us remark that we can informally describe the horizontal maps
using the maps from [22]:

Op2(YF x ¢X) = lim Co}}im lim coym O(Fus X Xgy)
o %
— lim co}im lim co‘lgim O(Fus) ® (Ox4,) = ¥OIR(F) ® ¢ Ox,
« v
where @ is either A7 or A?.

DEFINITION 2.3.7. — Let F be an ind-pro-stack and let X be an (-compact pro-ind-
stack. Let n: Ox — k[—d] be amap of ind-pro-k-modules. Let finally ® be either A? or A?.
We define the integration map

id @¢n
/ O (WF x $X)—— Y Om(F) & ¢ Ox 2Py Orp(F)[—d].
n

THEOREM 2.3.8. — LetY be aderived stack and wy be an n-shifted closed 2-formonY . Let
X be an O-compact pro-ind-stack, let w: X — * be the projection, and let n: 7w Ox — k[—d] be
a map. The mapping ind-pro-stack Map(X, Y) admits an (n — d)-shifted closed 2-form.

Proof. — Let us denote by Z the mapping ind-pro-stack Map(X,Y). We consider the
diagram

w ev* c J c
Jh[—n]——= y A2 (Y ) == A2 (X x Z)——y AR (Z)[-d].

where y:dgMod;” kX IP(dgMod,”) ¥ (IP)2(dgMod,”) is the canonical inclusion. Note
that since the functor v is fully faithful, this induces a map in IP(dgMod;”)

tk——ARN(2)n — d]

and therefore a (n — d)-shifted closed 2-form on Z = Map(X, Y). The underlying form is
given by the composition

k[—n]—"— yA2<l(Y) HA2(Y) A2 <X><Z>LwA%P(z>[—d]. O

P2
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REMARK 2.3.9. — Let us describe the form issued by Theorem 2.3.8. We set the notations
X = limg colimg Xop and Zgg = Map(Xeg, V). By assumption, we have a map

n:colimlim Oy, , — k[—d].
o B
For any «, there exists therefore B(«) and a map 7ep(a): Oxppy — k[—d] in dgMod(k).
Unwinding the definitions, we see that the induced form fn wy
Ek——A%(Map(X,Y))[n — d] =~ limy colimg A?(Zp)[n — d]
is the universal map obtained from the maps

Do f(er)

k=" A2(Zopay)[n — d]——colimp A2(Zgp)n — dI.

where wqp(q) is built using neg() and the procedure of [22]. Note that wqpg(y) can be seen as
amap Tx,z, ® Txyp0) = CXypie)- We also know from Theorem 2.2.3 that the form [, wy
induces a map

T, Tz — Oz[n —d]
in IPP(Z). Let us fix «p and pull back the map above to Z,,,. We get

colimlirn,gr;()mla‘;tﬁ(’]l‘szj ® Tz,,) i;o('ﬂ‘z RTz) — 02% [n—d].

a=ap B

This map is the universal map obtained from the maps
llé’n g;()a p;ﬂ (Tzaﬁ ® Tzaﬁ) —> g;oap;ﬂ(ot) (Tzotﬁ(a) ® Tzaﬁ(a))

— g;()ap;ﬂ(a)(OXaﬂ(a))[n - d] x~ OXao [I’l - d],

where gogq is the structural map Z,, — Z, and pyg is the projection Z, = limg Zog — Zyp.

2.4. Mapping stacks have a Tate structure
DEFINITION 2.4.1. — Let S be an O-compact pro-ind-stack. We say that S is an O-Tate
stack if there exist a poset K and a diagram S: K°P — IndY dSt; such that

(i) The limit of S in PIdSty, is equivalent to S;
(ii) foranyi < j € K the pro-module over S(i)
coker(OS(i) — S@i < j)« Og(j))
is trivial in the pro-direction—i.e., belong to Qcoh(S(i));
(iii) foranyi < j € K the induced map S(i < j) is represented by a diagram
fiL x Al — dSt,
such that . .
— for any / € L the projections f(I,0) — x and f(I,1) — x satisfy the base
change formula, .
— forany !/ € L the map f(/) satisfies the base change and projection formulae,

— forany m <[ € L the induced map f(m < [,0) satisfies the base change and
projection formulae.

REMARK 2.4.2. — We will usually work with pro-ind-stacks S given by an explicit
diagram already satisfying those assumptions.
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2.4.3. — Let us assume that Y is a derived Artin stack locally of finite presentation. Let
S be an O-compact pro-ind-stack. If S is an O-Tate stack then the ind-pro-stack Map(S,Y) is
a Tate stack.

Proof. — Let Z = Map(S,Y) as an ind-pro-stack. Let S: K°? — Ind" dSt; be as in
Definition 2.4.1. We will denote by Z: K — Pro” dSt; the induced diagram and for any
i € Kbys;: Z(i) — Z the induced map.

Let us first remark that Z is an Artin ind-pro-stack locally of finite presentation. It suffices
to prove that s*IL.z is a Tate module on Z(i), foranyi € K. Let us fix such an i and denote
by Z; the pro-stack Z(i).

We consider the differential map
siLz — Lg,.
It is by definition equivalent to the natural map
lim A (Z] =) > ABR(Z)),
where K=’ is the comma category I /K and Z|g=; is the induced diagram
Kz — Zi/proV dSts.

Let ¢; denote the diagram
it (K= — TPerf(Z;)
obtained as the kernel of f. It is now enough to prove that ¢; factors through Perf(Z;).

Let j > i in K and let us denote by g;; the induced map Z; — Z; of pro-stacks.
Let f:L x A' — dSt; represents the map S(i < j):S(j) — S(i) € Ind”dSt; as in
assumption 2.4.1 in Definition 2.4.1. Up to a change of L through a cofinal map, we can
assume that the induced diagram

coker(Og(i) — S3 < j)« Og(j))

is essentially constant—see assumption 2.4.1. We denote by 7: L°P x A! — dSt; the
induced diagram, so that g;; is the limit of / in Pro” dSt;. For any / € L we will denote
by h;: Z;y; — Zj; the map h(1). Let us denote by Z; the induced diagram [ — Z;; and by Zj
the diagram / — Zj;. Let also p; denote the projection Z; — Z;;.

We have an exact sequence
¢i(j) — co%im pihiLz,, — co%im Lz,
Let us denote by v;; the diagram obtained as the kernel
Vij > AZNZ) — AF(Zy)

so that ¢;(j) is the colimit colimv;; in IPerf(Z;). It suffices to prove that the diagram
Vit L — Perf(Z;) is essentially constant (up to a cofinal change of posets). By definition,
we have

Vi (1) ~ pl*LZil/Z_/l[_l]'
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Let m — [ be amap in L and ¢ the induced map Z;; — Z;,,. The map y;;(m — [) is
equivalent to the map p;'§ where ¢ fits in the fibre sequence in Perf(Z;;)
*Lz; 1zl =1l —— t*hy Lz, — "Lz,
| ]
Lzyjz, -l ———hLz;, —— Lz,
We consider the dual diagram
1*Tz;)Zm W) S 1*hy Tz, ———1*Tz,,
| [ = ]
Tz,/z, 1] «————hiTz;, «——Tgz,.

Using base change along the maps from S;j, S;» and S;; to the point, we get that the
square (o) is equivalent to

T4 (Id X8 f1) 1 (id X5 f)* E —— 7. (1d x5) (1d x8)* E

T

wx(id X f)4(id % f})* E +———————— 7, E

where : Z;; X S;; — Z;; is the projection, where s: S;;,;, — S;; is the map induced by m — [
and where E ~ ev* Ty with ev: Z;; x S;; — Y the evaluation map. Note that we use here
the well known fact Tvap(x,y) = pryev* Ty where

Map(X, Y) +—— Map(X,Y) x X —— Y

are the canonical maps.

Now using the projection and base change formulae along the morphisms s, f; and f;,
we get that (o) is equivalent to the image by n, of the square

E® p*S*fm* GSjm —E® p*S* OS,',,,

T |

E®p*ﬁ*0Sj] E®p*0Sil.
We therefore focus on the diagram

S*fm* OS_/m A Osim

]

fl*OSﬂ 0551-

The map induced between the cofibres is an equivalence, using assumption 2.4.1. It follows
that the diagram v;; is essentially constant, and thus that Z is a Tate stack. O
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3. Formal loops

In this part, we will at last define and study the higher dimensional formal loop spaces.
We will prove it admits a local Tate structure.

3.1. Dehydrated algebras and de Rham stacks

In this part, we define a refinement of the reduced algebra associated to a CDGA.
This allows us to define a well behaved de Rham stack associated to an infinite stack.
Indeed, without any noetherian assumption, the nilradical of a ring—the ideal of nilpotent
elements—is a priori not nilpotent itself. The construction below gives an alternative defini-
tion of the reduced algebra—which we call the dehydrated algebra—associated to any cDGa
A, so that A is, in some sense, a nilpotent extension of its dehydrated algebra. Whenever A4 is
finitely presented, this construction coincides with the usual reduced algebra.

DEerINITION 3.1.1. — Let 4 € cdgafo. We define its dehydrated algebra as the ind-
algebra Agen, = colim; H® (A)/1 where the colimit is taken over the filtered poset of nilpotent
ideals of H%(A4). The case / = 0 gives a canonical map A — Agqep in ind-cDGa’s. This
construction is functorial in A4.

REMARK 3.1.2. — Whenever 4 is of finite presentation, then Agep is equivalent to the
reduced algebra associated to A. In that case, the nilradical ~/4 of 4 is nilpotent. Moreover,
if A is any CDGa, it is a filtered colimits of CDGA’s A, of finite presentation. We then have
Agden >~ colim(Agy)req in ind-algebras.

LEMMA 3.1.3. — The colimit B of the ind-algebra Agen in the category of algebras is
equivalent to the reduced algebra Ayeq.

Proof. — Let us first remark that B is reduced. Indeed any nilpotent element x of B comes
from a nilpotent element of A. It therefore belongs to a nilpotent ideal (x). This define a
natural map of algebras A,g — B. To see that it is an isomorphism, it suffices to say that
/A is the union of all nilpotent ideals. O

DEerINITION 3.1.4. — Let X be a prestack. We define its de Rham prestack X4r as the
composition

(“)de mmdV(Xx) :
cdga;’ — Ind¥ (cdga;®) = IndY (sSets) <ol Sets.

This defines an endofunctor of (oo, 1)-category SP(dAff;). We have by definition
X4r (A) = colim X (H(4)/;).
ar (4) colim (H(4)/1)

REMARK 3.1.5. — If X is a stack of finite presentation, then it is determined by the images
of the cDGA’s of finite presentation. The prestack Xg4g is then the left Kan extension of the
functor

cdga,fo’fp —  sSets

A > X(Ared)-
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DEerINITION 3.1.6. — Let f: X — Y be a functor of prestacks. We define the formal
completion Xy of X in Y as the fibre product

Xy — Xar
I~ |
Y —— Y4r.
This construction obviously defines a functor FC: @(dAffk)Al — P(dALLY).
REMARK 3.1.7. — The natural map Xy — Y is formally étale, in the sense that for any

A € cdgag’ and any nilpotent ideal / C H®(A4) the morphism

Xy (A) — Xy (H°(A)/1) x Y(A)
Y (HO(4)/7)

is an equivalence.

3.2. Higher dimensional formal loop spaces

Here we finally define the higher dimensional formal loop spaces. To any CDGA A we
associate the formal completion V& of 0 in A4. We see it as a derived affine scheme whose
ring of functions A[X;. 4] is the algebra of formal series in d variables X1, ..., X4. Let us
denote by U j the open subscheme of VAd complementary of the point 0. We then consider
the functors dSt; x cdgaf0 — sSets

~d d
Zy: (X, A) = Mapggy, (Vi X)

~d d
Zy: (X, A) = Mapggy, (U, X).

~d ~d
DEFINITION 3.2.1. — Let us consider the functors Z;; and Zy, as functors dSty —
~d  ~d ~d
JP(dAff). They come with a natural morphism <, — Z;. Wedefine Z to be the pointwise

formal completion of if, into Ef;f, :
2% (x) = FC(Z%‘;(X) — sz,(X)).

~d ~d ~d
We also define 29, Z¢ and Z? as the stackified version of Z*, Z;, and Z,, respectively. We
will call Z¢ (X) the formal loop stack in X.

REMARK 3.2.2. — The stack %f, (X) is a higher dimensional analog to the stack of germs
in X, as studied for instance by Denef and Loeser in [7].

REMARK 3.2.3. — By definition, the derived scheme U /‘f is the (finite) colimit in derived
stacks

Uf = colim colim Spec(A[[led]][X.—1 ])7
q

. l]...i
el q
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where A[X;_ 4][X;7'. ] denote the algebra of formal series localized at the generators
11...lg

X ;1, . ¢ igl. It follows that the space of A-points of 7¢ (X) is equivalent to the simplicial
set

%d(X)(A) ~ colim lim lim Map(Spec(A|[X1___d]][Xl-__1”i ]ﬁ),X),
ICHO(A) qd il,..nig L--tq

1Y is the sub-cpGA of AIIXI---d]][XiT.l..iq] consisting of series

ni nqg
E Qny,..ng Xq ...Xd,

where A[ X1 4][X

-1
i1...ig

where a,,,....n, 13 in the kernel of the map 4 — HO(A)/I as soon as at least one of the n;’s is
negative. Recall that in the colimit above, the symbol I denotes a nilpotent ideal of H’(4).

LEmMMA 3.2.4. — Let X be a derived Artin stack of finite presentation with algebraizable
diagonal (see Definition 0.2.11) and let t: T = Spec(A) — X be a smooth atlas. The induced

map EZ?,(T) — %{d, (X) is an epimorphism of stacks.

~d ~d
Proof. — Ttsuffices to study themap Zy, (T) — Zy (X). Let B be a cDGA. Let us consider
~d
a B-point x: Spec B — Zy,(X). It induces a B-point of X

Spec B — Spec(B[X1.4]) > X.

Because ¢ is an epimorphism, there exists an étale map f: Spec C — Spec B and a commu-
tative diagram

Spec C =T
o
Spec B —— X.
It corresponds to a C-point of Spec B xy T. For any n € N, let us denote by C, the cDGA
Clxy,... ,xd]/(x;l, X and by S, the spectrum Spec C,,.
We also set B, = B[xy,... ,xd]/(x'f, Xy and X, = Spec B,. Finally, we define 7, as
the pullback 7' xx X,.
We will also consider the natural fully faithful functor A" ~ {0,...,n} — N. We have a
natural diagram

i A??2x N I A?x A° - dSt
A2:2x A0

informally drown has a commutative diagram

So Sn
| |
Xo X
1 1
To T,

Let n € N and let us assume we have built a diagram

o (A2 xN) I A?x A" — dSt;
A22x AN
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extending o, 1. There is a sub-diagram of o,

Sp = Sn+1

|

T, —— Tt

ltn-H

Xnt1.

Since the map #,,41 is smooth (it is a pullback of ¢), we can complete this diagram with a
map S,4+1 — Tp+1 and a commutative square. Using the composition in dSt;, we get a
diagram a4, extending a,,. We get recursively a diagram a: A2 x N — dSt;. Taking the
colimit along N, we get a commutative diagram

Spec C —— colim,, Spec C, T
/| | |
Spec B —— colim, Spec B, —— Spec(B[X1..4]) — X.

This defines a map ¢: colim Spec(C,) — Spec(B[X:..4]) xx T. We have the cartesian
diagram
Spec(B[X1. .al) xx T ——— X

|- |
Spec(B[X1..q4]) x T — X x X.

The diagonal of X is algebraizable and thus so is the stack Spec(B[X;. 4]) xx T. The
morphism ¢ therefore defines the required map

Spec(C[X1..4]) = Spec(B[X1..4l) X T. O
~d
REMARK 3.2.5. — Let us remark here that if X is an algebraizable stack, then Zy, (X) is
a stack, hence the natural map is an equivalence
~d d
Ly (X) ~ Zy(X).

LEMMA 3.2.6. — Let f: X — Y be an étale map of derived Artin stacks. For any CDGA
Ae cdga,f0 and any nilpotent ideal I C H°(A), the induced map

0: Zo(X)(4) — %(X)(H"(@)/I) x Zo(¥)(4)
Ly (V) (HO(A)/1)

is an equivalence.

Proof. — The map 6 is a finite limit of maps

w X(EA) — X (£(H° (A)/z)g x Y(EA).
Y (6(HO(4yp))
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where £4 = A[ X 4][X i_l.l..i,,] is obtained from the cDGA of formal power series in A with

d variables by inverting the variables x;;. Let also & (HO(A)/ 1) be defined similarly. The
natural map £(H°(4)) — £ (HO(A)/ 1) is also a nilpotent extension. We deduce from the
étaleness of f that the map

X(EH(4)) — X (§(H(A)/1 )2 x Y(£(H’(A)))
Y (§(HO(4)1))

is an equivalence. Let now n € N. We assume that the natural map

X(E(A<n) — X(S(HO(A)/I)2 x Y (§(A<n))
Y (§(H(4)1))

is an equivalence. The cDGA £(A<,+1) =~ (§A)<n+1 1s a square zero extension of §(A<p)
by H™"~!(£4). We thus have the equivalence

X(§(A<n1)) — X(E(A<n)) x Y (E(A<nt1))-
Y(E(A=n))

The natural map

X(E(A<pt1) — X(S(HO(A)/1)2 X Y(§(A<n+1))
Y (§(H(A)r))

is thus an equivalence too. The stacks X and Y are nilcomplete, hence p is also an
equivalence—recall that a derived stack X is nilcomplete if for any cDGA B we have

X(B) = lim X(Bzp).

Also recall that any Artin stack is nilcomplete. It follows that 6 is an equivalence. O

COROLLARY 3.2.7. — Let f: X — Y bean étale map of derived Artin stacks. For any CDGA
A€ cdga,f0 and any nilpotent ideal I € H°(A), the induced map

0: 7 00)(4) — T O Ayr) x 2 (1))
om0y

is an equivalence.

3.2.8. — Let X be a derived Deligne-Mumford stack of finite presentation with algebraiz-
able diagonal. Let t:T — X be an étale atlas. The induced map id(T) - Z° (X) is an
epimorphism of stacks.

, ~d ~d <0
Proof. — We can work on the map of prestacks £ (T) — Z (X). Let A € cdga; . Let

~d
x be an A-point of £ (X). It corresponds to a vertex in the simplicial set

colim Ziy (X) (HO(4)/1) x Loy (X)(A).
! 74, (0 (HO () )
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There exists therefore a nilpotent ideal / such that x comes from a commutative diagram

d s 174

|

VHO(A)/I v ? X.

Using Lemma 3.2.4 we get an étale morphism ¥: A — B such that the map v lifts to a map
u: Vg, — T where J is the image of / by y. This defines a point in

T (1) (HO(B) 1) x Ty (X)(B).
Ly (X)(HO(B)y)

~d
Because of Lemma 3.2.6, we get a point of Z (T')(B). We now observe that this point is
compatible with x. O

In the case of dimension d = 1, Lemma 3.2.6 can be modified in the following way. Let
f:X — Y be a smooth map of derived Artin stacks. For any CDGA A € cdga,fo and any
nilpotent ideal I ¢ H°(A), the induced map

0: Ly (0)(A) — Ly(X)(H(A)/1) x Ly (¥)(A)
Zy (V) (HO(A)/1)

is essentially surjective. The following proposition follows.

3.2.9. — Let X be an Artin derived stack of finite presentation and with algebraizable
diagonal. Let t:T — X be a smooth atlas. The induced map EZI(T) — %I(X) is an
epimorphism of stacks.

ExaMPLE 3.2.10. — The proposition above implies for instance that EZI(B G)~B z! (G)
for any algebraic group G—where B G is the classifying stack of G-bundles.
3.3. Tate structure and determinantal anomaly

We saw in subsection 2.1 that to any Tate stack X, we can associate a determinantal
anomaly. It a class in H?(X, O%). We will prove in this subsection that the stack 74 (X) s
endowed with a structure of Tate stack as soon as X is affine. We will moreover build a
determinantal anomaly on 74 (X) for any quasi-compact and separated scheme X .

LEmMaA 3.3.1. — Forany B € cdga,fo of finite presentation, the functors

~d ~d
Ly (Spec B)., £ (Spec B): cdgai’ — sSets
are in the essential image of the fully faithful functor

IPdSE™ " N IPdAff; — IPdSt; — dSt; — P(dAff)

~d ~d
(see Definition 1.4.1). It follows that Zy;(Spec B) ~ Sé‘{] (Spec B) and ¢ (Spec B) =~ 74 (Spec B).
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Proof. — Let us first remark that Spec B is a retract of a finite limit of copies of the affine

~d
line A'. It follows that the functor Z; (Spec B) is, up to a retract, a finite limit of functors
Z§: A > Map(k[Y], ALX1.al(X7 1, 1),

where £ = {iy,...,ig} C F = {l,...,d}. The functor Z% is the realization of an affine
ind-pro-scheme

.....

where §; = 1ifi € E and §; = 0 otherwise. The variable aq, ... o, corresponds to the
coefficient of X7'' ... X 3" . The functor Z f; is thus in the category IPdSt*™® N IPdAffy. The

~d ~d
result about Zy; (Spec B) then follows from Lemma 1.4.5. The case of Z (Spec B) is similar:
we decompose it into a finite limit of functors

G4: 4 colim Map(k[y],A[[Xl,,,d]][x,;li ]ﬁ),
ICHO(4) e

where 7 is a nilpotent ideal of H°(A4). We then observe that G% is the realization of the ind-
pro-scheme

G = colimlim Spec(k[da, ..aq» —n8i < i < ply ).
where J is the ideal generated by the symbols ag) ,, with at least one of the &;’s negative.

O

.....

REMARK 3.3.2. — Letn and p be integers and let k(E, n, p) denote the number of fami-
lies (o1, ...,aq) such that —né; < o; < p for all i. We have

Z4 ~ colimlim(A!YF(E-P),
n p

DEerINITION 3.3.3. — From Lemma 3.3.1, we get a functor Qd:dAffzp — IPdSt;. It
follows from 3.2.8 that gd is a costack in ind-pro-stacks. We thus define
Z%:dst® — TPdSt;
to be its left Kan extension along the inclusion dAff,fcp — dSt}cfp—where dSt}cfp is (o0, 1)-cate-

gory of derived stacks locally of finite presentation. This new functor zd preserves small
colimits by definition.

3.3.4. — There is a natural transformation 0 from the composite functor

od |_|IP

z
dSt;? —— IPdSty dSty

to the functor 74 Moreover, the restriction of 0 to derived Deligne-Mumford stacks of finite
presentation with algebraizable diagonal is an equivalence.
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Proof. — There is by definition a natural transformation
.1rd P d
0:1L" ()" — 27 (-)
Moreover, the restriction of 6 to affine derived scheme of finite presentation is an equiv-

alence—see Lemma 3.3.1. The fact that 0y is an equivalence for any Deligne-Mumford
stack X follows from 3.2.8. O

LemMaA 3.3.5. — Let F be a non-empty finite set. For any family (Mp) of complexes over k
indexed by subsets D of F, we have
colim P Mp ~ Mpld — 1.

V#ECF
7 P9#DCE

where d is the cardinal of F (the maps in the colimit diagram are the canonical projections).

Proof. — We can and do assume that F is the finite set {1,...,d} and we proceed recur-
sively on d. The case d = 1 is obvious. Let now d > 2 and let us assume the statement is
true for F <~ {d}. Let (Mp) be a family as above. We have a cocartesian diagram

colim @ Mp ——  colim @ Mp

{d}ECF 0£DCE P#ECF~{d} 0£DCE

| 4l

My colim Mp.
td} O#ECF Z;éEDBcE

We have by assumption

colim @ Mp >~ Mpa3ld —2]

PAECF~{d} 0£DCE
and
colim GB Mp ~ Mgy, & | colim @ Mp | ® | colim @ Mp
ECE Dk ECE bk YECE o DCEd)
~ M{d} D MF[d — 2] D M}:\{d}[d — 2].
The result follows. O

LeEmMaA 3.3.6. — Forany B € cdga,f0 of finite presentation, the ind-pro-stackzg (Spec B)
is a Tate stack.

Proof. — Let us first focus on the case of the affine line A!. We have to prove that the
cotangent complex ]ng/ @) is a Tate module. For any subset D C F we define M} to be

the free k-complex generated by the symbols
{@ay,.ay,—n < o; <0ifi € D,0 <a; < p otherwise}
in degree 0. From the proof of Lemma 3.3.1, we have
d . . , d N . d
Zg ~ co}llmlgnSpec(k[EBDcE ME"]) and Zpy(Al) ~ Q?élgréF VA3
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where F = {1,...,d}. If we denote by 7 the projection 2‘;’] (A1) — Speck, we get

Lyd a1y = 7*| colim lim colim @ Mp" | ~ 7*(limcolim colim @ Mp" .
=U @#ECF n p DCE n p Q);éEcFDcE

Using Lemma 3.3.5 we have
Lyd a1y = Jr*(lirrlncoll)im MJ" & MP"[d - 1]).

Moreover, we have M ~ M} O and M o~ Mg’". It follows that L is a Tate module

24 (1)
on the ind-pro-stack Q'Z, (A). The case of 2?] (Spec B) then follows from Lemma 1.4.5 and
from Lemma 2.1.4. O

LEmMA 3.3.7. — Let B — C be an étale map between CDGA’s of finite presentation. The
induced map f: gg (SpecC) — gg (Spec B) is formally étale—see Definition 1.2.17.

Proof. — Let us denote X = Spec B and Y = Spec C. We have to prove that the induced
map

jiMapyg o (L4 WL ZG)) > Mapyy o (2501 Z5(X)

is an equivalence of functors PIQcoh( gf‘ (Y))=% — sSets. Since g‘l’, (Y) is ind-pro-affine, we
can restrict to the study of the morphism

jziMapz,(ZI-1, g (Y)) > Mapz,_(Z[-). 25 (X))

of functors IQcoh(Z)=® — sSets, for any pro-affine scheme Z and any map Z — 2‘(1] (Y).
Let us fix E € IQcoh(Z)=°. The pro-stack Z[E] is in fact an affine pro-scheme. Recall that
both z‘[ij (Y) and gg (X) belong to IPdStzhy’b. It follows from the proof of Theorem 1.4.2
that the morphism jz (FE) is equivalent to

jz(E)l:Map,z,_(1Z[E]l, Z5(Y)) — Map,zy,_(1Z[E]l, 2 (X)),

where | — | is the realization functor and the mapping spaces are computed in dSty. It now
suffices to see that | Z[E]]| is a trivial square zero extension of the derived affine scheme |Z|
and to use Lemma 3.2.6. O

3.3.8. — Let Spec B be a derived affine scheme of finite presentation. The ind-pro-stack
gd (Spec B) admits a cotangent complex. This cotangent complex is moreover a Tate module.
For any étale map B — C the inducedmap f: zd (SpecC) — gd (Spec B) is formally étale—
see Definition 1.2.17.

Proof. — Letuswrite Y = Spec B. Let us denote byi: zd Y) — gg (Y) the natural map.
We will prove that the map i is formally étale, the result will then follow from Lemma 3.3.6
and Lemma 3.3.7. To do so, we consider the natural map

JiMapa gy, (2101 24 () = Map ga gy, (290D Z5(1))
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of functors PIQcoh(ﬁ_Z;d (Y))=% — sSets. To prove that j is an equivalence, we can consider
for every affine pro-scheme X — gd (Y) the morphism of functors IQcoh(X)=% — sSets

. d d
jx:Mapy,_(X[-1. 2% () — Mapy,_(X[-1, 25 (V).
Let us fix E € IQcoh(X)=°. The morphism jx (E) is equivalent to

Ljx (E)J:Mapyy— (IXE]l, 2° (V) - Mapjx,— (IX[E]l, Z5(Y)),

where the mapping space are computed in dSt;. The map | jx (£)| is a pullback of the map

£:Mapjy,_ (IXIE]L 24 (¥ )ar ) = Mapyxy—(IXTE], 2 (Y )ar)-

It now suffices to see that |X[E]| is a trivial square zero extension of the derived affine
scheme | X | and thus f is an equivalence (both of its ends are actually contractible). O

Let us recall from Definition 2.1.3 the determinantal anomaly

NE Hz(zd(SpecA), o )

[Det 74 (Spe 74 (Spec A)

(Specd) € Tateg,@d (Spec A)) through the determinant
map. Using 3.3.8, we see that this construction is functorial in 4, and from 3.2.8 we get that it
satisfies étale descent. Thus, for any quasi-compact and quasi-separated (derived) scheme (or
Deligne-Mumford stack with algebraizable diagonal), we have a well-defined determinantal
anomaly

It is associated to the tangent T 74

[Det i) € H2(2(X), Cla )

REMARK 3.3.9. — Itis known since [16] that in dimension d = 1, if [Det,,1 ( X)] vanishes,
then there are essentially no non-trivial automorphisms of sheaves of chiral differential
operators on X.

4. Bubble spaces

In this section, we study the bubble space, an object closely related to the formal loop
space. We will then prove the bubble space to admit a symplectic structure.

4.1. Two lemmas

In this subsection, we will develop two duality results we will need afterwards.

Let A € cdga,fo be a cDGA over a field k. Let (f1, ..., fp) be points of A% whose images
in H(A) form a regular sequence.

Let us denote by 4, x the Kozsul complex associated to the regular sequence (f7', ..., f")
fork < p. Weset A, 90 = Aand A, = A, for any n. If k < p, the multiplication
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by f",, induces an endomorphism ¢, of A, k. Recall that Ay g1 is isomorphic to the
cone of ¢/ ;:

Pkt
An,k An,k

Ll

0—— Apk+1-
Let us now remark that for any couple (n, k), the A-module A4,,  is perfect.
LEmMa 4.1.1. — Let k < p. The A-linear dual A::{,f = RHomy(An k. A) of Ay is
equivalent to A, x[—k];

Proof. — We will prove the statement recursively on the number k. When k£ = 0, the result
is trivial. Let & > 0 and let us assume that AZ/ ,f is equivalent to A, x[—k]. Let us also assume
that for any a € A, the diagram induced by multiplication by ¢ commutes

A —— A i[K]

aVJ J/ll
A —— A, [k,

We obtain the following equivalence of exact sequences

Pr41
An,k+1[_k - 1] — An,k [_k] — An,k [_k]

~ ~ ~

V/A v/A (v#1) v/A
An,k+1 An,k An,k '
The statement about multiplication is straightforward. O

LEmMMA 4.1.2. — Let us assume A is a formal series ring over Ay

A :Alllfl’“-’fp]]'

It follows that for any n, the Ay-module A, is free of finite type and that there is map
rn: An — Ay mapping f" ... [ to 1 and any other generator to zero. We deduce an equivalence

An :) A;//Al = RHﬂAI (An7A1)
given by the pairing

An @4, An —— Ay —2— A.

A:I//A 1

REMARK 4.1.3. — Note that we can express the inverse — A, of the equivalence

above: it maps a function «: 4, — A; to the series

D a(fHr
i
where i varies through the uplets (i1, ...,i,) and where fi = fli‘ f,,i” .
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4.2. Definition and properties

We define here the bubble space, obtained from the formal loop space. We will prove in
the next sections it admits a structure of symplectic Tate stack.

DEFINITION 4.2.1. — The formal sphere of dimension d is the pro-ind-stack

S¢ = lim colim Spec(A4, ® Hom,(A4,, A)) >~ lim colim Spec(4, ® A,[-d]),
n  p>n n  pzn
where A = k[x1,...,x4] and 4, = Af(xn, ... ,xm).-

REMARK 4.2.2. — The notation Spec(4, @ A,[—d]) is slightly abusive. The cpGa
Ap ® A,[—d] is not concentrated in non positive degrees. In particular, the derived stack
Spec(Ap, ® A,[—d]) is not a derived affine scheme. It behaves like one though, regarding its
derived category:

Qcoh(Spec(Ap ® An[—d])) >~ dgMody g 4,,[—a]-

Let us define the ind-pro-algebra
Oga = co}limlljig Ap & An[—d],
where A, ® A,[—d] is the trivial square zero extension of A, by the module A,[—d]. For any
m € N, let us denote by S¢ the ind-stack
S§¢ = colim Spec(A, ® Ap[—d)).
p=m
DEFINITION 4.2.3. — Let T be a derived Artin stack. We define the d-bubble stack of T
as the mapping ind-pro-stack
B(T) = Map(S¢, T): Spec B — colim lim T(B ® (4p ® Au[—d))).
n p>n
Again, the cDGA A, & A,[—d] is not concentrated in non positive degree. This notation is
thus slightly abusive and by T(B ® (4, & An[—d])) we mean
Map(Spec(A, ® A,[—d]) x Spec B, T).

We will denote by B(7) the diagram N — Pro" dSt; of whom B(7) is a colimit in IPdSty.
Let us also denote by 8B,,(T") the mapping pro-stack

B,,(T) = Map(S,, T): Spec B + lim T'(B ® (4 ® Am[—d]))
p=m
and gm(T): {p € N|p = m}°P — dStg the corresponding diagram. In particular
B, (T) = Map(S¢, T): Spec B > lim T'(B ® 4,).
p

Those stacks come with natural maps

S0 r

By(T) B(T) B (T),

B, (T) —— B(T).
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4.2.4. — If T is an affine scheme of finite type, the bubble stack B(T) is the product in
ind-pro-stacks

B(T) —— ZLy(T)
=
d d
gv (T) E— iy (T)
Proof. — There is a natural map de — §4 induced by the morphism

colimlim A, @ A,[—d] — lim A4,.
n p=>n P

Because T is algebraizable, it induces a map B(7T) — g‘é (T) and thus a diagonal morphism

8:B(T) — Ly (T) x Ly (T).
2y (T)

We will prove that § is an equivalence. Note that because 7 is a (retract of a) finite limit of

copies of A!, we can restrict to the case T = Al. Let us first compute the fibre product

7 = gf, (A1) X gd (a1 Z‘II, (A1). It is the pullback of ind-pro-stacks

.....

b l
lim Spec(k[dq,....ay.0 < @; < p]) — colim lim lim Spec(k[aqy....ay» —nbier < @i < pl),
p n P IC

zZ lim Spec(k[aa,.,...ay. 0 < @i < p])
2

where J = {1,...,d}and §;c; = 1ifi € I and 0 otherwise. For any subset K C J we define
MZ" to be the free complex generated by the symbols

{aay, 0y —n < a; <0ifi € K,0 < o; < p otherwise}.

We then have the cartesian diagram

Z lim,, Spec(k[M]°]
l_l j )
limp SPCC(k[Mgp’O]) — colim,, l1mp limy -y Spec(k [GBKCI M]}{),n])

Using Lemma 3.3.5 we get

Z = colimlim Spec(k[Mé”O ® M}”[d]]). O
REMARK 4.2.5. — Let us consider the map lim, A, — Ao =~ k mapping a formal
series to its coefficient of degree 0. The (lim A, )-ind-module colim A,[—d] is endowed with
a natural map to k[—d]. This induces a morphism Og; — k @ k[—d] and hence a map
S9 — 8§49 where S9 is the topological sphere of dimension d. We then have a rather natural
morphism
B¢ (X) - Map(s?. X).
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4.3. Its tangent is a Tate module

We will prove in this subsection that the bubble stack is a Tate stack. To do so, we could
bluntly apply 2.4.3 but we will give here a direct proof of that statement. We will get another
decomposition of its tangent complex that will be needed when proving BT ) is symplectic.

4.3.1. — Letusassume that the Artin stack T is locally of finite presentation. Foranym € N
we have an exact sequence
SmP“Laga (ryy = Smlepa () T SmLaga (7 w4 7)o

where the left hand side is an ind-perfect module and the right hand side is a pro-perfect module.
In particular, the middle term is a Tate module, and the ind-pro-stack B4 (T) is a Tate stack.

Proof. — Throughout this proof, we will write B instead of gd(T) and B, instead
of B¢ (T)m for any m. Let us first remark that 2B is an Artin ind-pro-stack locally of finite
presentation. It suffices to prove that sy, e is a Tate module on B,,, for any m € N. We will
actually prove that it is an elementary Tate module. We consider the map

k %k *
St Log, — 8, 1Les.

It is by definition equivalent to the natural map

M (By) L lim ke (B.,,(7)).
where izm (T) is the restriction of B(T) to {n > m} C N. Let ¢ denote the diagram
¢:{n € N|n > m}°? — IPerf(8,,(T))

obtained as the cokernel of f. Itis now enough to prove that ¢ factors through Perf(8,,(T)).
Letn > m be an integer and let g,,,, denote the induced map B,,(T) — B, (T). We have an
exact sequence

Sm¥ "L (1) 2 EmnSnT L o(1) = mnlem, () = ¢(n).
Let us denote by ¥ (n) the cofiber
S:r*Lﬁo(T) — ]L§n(T) — I/f(n)

so that ¢(n) ~ g, ¥ (n). This sequence is equivalent to the colimit (in IPerf(%8,,(T))) of a
cofiber sequence of diagrams {p € N|p > n}°? — Perf(8,,(T))

A0y (Bo(T)) = A0 (1y(B,,(T)) = ¥ (n).

It suffices to prove that the diagram ¥ (n): {p € N|p > n}°? — Perf(8,(T)) is (essentially)
constant. Let p € N, p > n. The perfect complex ¥ (n)(p) fits in the exact sequence

t;Pg;‘;PLgO,p(T) - n;,pLgn,p(T) - 1&(n)(17)7

where 1,p: 8, (T) — B, ,(T) is the canonical projection and &,p: B, ,(T) — B, ,(T) is
induced by the augmentation CUs, , — Cs, ,- It follows that ¥ (n)(p) is equivalent to

tapllss,, ,(T)/ B ,(T)-
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Moreover, forany g > p > n, theinduced map v (n)(p) — ¥ (n)(q) is obtained (through lng)
from the cofiber, in Perf(%8,, ,(T))

* * * *
UpgEnplsg (1) — Uppglum, (1) = &ypqlm, (1)) B, ,(T)
Il
* *
€nq%0pq B, ,(T)

l (o)

englm, ) — Ly, ) ——Ls, @)/ 3y,

where appg is themap B, ,(T) — B, ,(T). Let us denote by (o) the square on the left hand
side above. Let us fix a few more notations

B, p(T)xSo.p B, ,(T)xSop = 3,4,(T) xSoyq

aop
SO,p Pnp Ynpq $nq
by
Eup B, ,(T) X Spp =B, ,(T) X Spp ——— B, ,(T) X Sug
evng
anp _ / Brva ang \
Sﬂ,P Sn,p Sn,q @nq T
Wnp
Onpq
B, ,(T) B, ,(T) = B, ,(T).

The diagram (o) is then dual to the diagram

* * * * *
UppgEnp@0p s Vo, TT < 0y @Wnp, eV, T

T |

* * *
-—
g P0g4 V04 Tr Dngy Vg Tr.

Moreover, the functor @, (for any n and p) satisfies the base change formula. This square
is thus equivalent to the image by @, of the square

* * * * *
Vnpq *anQ*bnpq 1ﬂnpq Vng Tr bnpq *bnpq Vng Tr

T

* * *
OngsPnqng LT eV IT.
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Using now the projection and base change formulae along the morphisms ¢4, bnpg and
VYnpg, We see that this last square is again equivalent to

(a:;qﬁnpq*gnp* OS(),,,) ® (CVZq Tr) (a:qlgnpq* OSn,p) ® (evzq Tr)

(a:;qEHQ* Oso,q) ® (eV:q TT) — (a;:q Osn,q) ® (eV:q TT)
We therefore focus on the diagram

_—
Osnvq g"q * OSOJI

| |

IBHPQ*OSn,p :BnPLI*E"P*OSO.p'

By definition, the fibres of the horizontal maps are both equivalent to 4, [—d] and the map
induced by the diagram above is an equivalence. We have proven that forany g > p > n
the induced map ¥ (n)(p) — ¥ (n)(q) is an equivalence. It implies that Lgr) is a Tate
module. O

4.4. A symplectic structure (shifted by d)

In this subsection, we will prove the following

THEOREM 4.4.1. — Assume T is q-shifted symplectic. The ind-pro-stack BI(T) admits a
symplectic Tate structure shifted by ¢ — d. Moreover, for any m € N we have an exact sequence

Sl Loga (7yy = Smlg (1) = S Toga (1), ld — d]-

Proof. — Let us start with the following remark: the residue map r,: 4, — k = A;
defined in Lemma 4.1.2 defines a map U3s — k[—d]. From Theorem 2.3.8, we have a
(¢ — d)-shifted closed 2-form on B¢ (T'). We have a morphism from Theorem 2.2.3

O ryla = dl = Loga(ry ® Liga )

in PIPerf(gd (T)). Let m € N. We get a map

OE(I(T)M [q — d] — S;Lgd(T) ® S;Lgd T)
and then

smTwa(ry ® SmTgary = Ogar),la —dl
in IPPerf(B¢ (T)m). We consider the composite map

0253 T (7 4 7)o ® Sm Tt 1y )0 = Sm Tt 1) ® STt 1) = Oy, 4 — d)-
Using the Remark 2.3.9 and the proof of 4.3.1 we see that 6 is induced by the morphisms
(varying n and p)
A B

wnp*(E QFE® eV;p(TT ® TT)) —— Tp(E® Elg)) — wnp*(Ogd(T)npxsmp[Q])v

where E = ay,&, phnp. Vs Cpa and the map A is induced by the symplectic form on 7. The
map B is induced by the multiplication in Cs, ,. This sheaf of functions is a trivial square
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zero extension of augmentation ideal &,p,/np, ¥, Ona and B therefore vanishes. It follows
that the morphism

SmTpd (1) ® Sm T (1) 84 1y = Sm T (r) ® Sm T (1) = O (1), 14— d]
factors through S;’;,T%d(T)O ® S;’;,T;Bd(T)/ B4 (T Now using 4.3.1 we get a map of exact

sequences in the category of Tate modules over §d (T)m

Sm T ()79 (1), * Sm Topd ()

| |

Sm? *Liga (1), [d — 4] > Sl (1) [d — 4] > Smlmd 7)) 4 (1), [4 — 41,

k* ok
> ST ng(T)O

where the maps on the sides are dual one to another. It therefore suffices to see that the map
Tm: s,*nT%d(T)/%d(T)o — S;r*L%d(T)O [d — ¢] is an equivalence. We now observe that z,, is
a colimit indexed by p > m of maps

— T

* * *
8pmlpp (SPPLﬁd (TMop B (T)pp/ B (T)0p>‘

Letusfix p > mand G = a;,&pp, Os,,- Themap Fp:Tyar) imd (1), = Epplisd (1), &t
hand is induced by the pairing

T (7),p/ 89 Trop © Epp T (1), = Tpps(E ® vy, TT) ® wpp (G @ evy, T1)
@pp . (E® evy, Tt ® G Q@ evy, Tr)

@pp (E ® G)[q]

Dpp « <0§d(T)p,,xspp)[51]

0§d (T)pp [q - d] .

We can now conclude using Lemma 4.1.2. O
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