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NON-AFFINE LANDAU-GINZBURG MODELS
AND INTERSECTION COHOMOLOGY

 T REICHELT  C SEVENHECK

A. – We construct Landau-Ginzburg models for numerically effective complete intersec-
tions in toric manifolds as partial compactifications of families of Laurent polynomials. We show a
mirror statement saying that the quantum D-module of the ambient part of the cohomology of the
submanifold is isomorphic to an intersection cohomology D-module defined from this partial com-
pactification and we deduce Hodge properties of these differential systems.

R. – Nous construisons un modèle de Landau-Ginzburg pour les intersections complètes
numériquement effectives dans les variétés toriques lisses. Il s’agit de compactifications partielles de
familles de polynômes de Laurent. Nous démontrons un théorème de symétrie miroir qui exprime le
D-module quantique de la partie ambiante de la cohomologie de la sous-variété comme un D-mo-
dule de cohomologie d’intersection défini par cette compactification partielle. Nous en déduisons des
propriétés de Hodge de ces systèmes différentiels.

1. Introduction

The aim of this paper is the construction of a mirror model for complete intersections
in smooth toric varieties. We consider the case where these subvarieties have a numerically
effective anticanonical bundle. This includes in particular toric Fano manifolds, whose
mirror is usually described by oscillating integrals defined by a family of Laurent polyno-
mials and also the most prominent and classical example of mirror symmetry, namely, that
of Calabi-Yau hypersurfaces in toric Fano manifolds. Here the mirror is a family of Calabi-
Yau manifolds and the mirror correspondence involves the variation of Hodge structures
defined by this family. One interesting feature of our results is that these apparently rather
different situations occur as special cases of a general mirror construction, called non-affine
Landau-Ginzburg model.

During the preparation of this paper, Th.R. was supported by a postdoctoral fellowship of the “Fondation
sciences mathématiques de Paris” and by the DFG grant He 2287/2-2; Ch.S. was supported by a DFG Heisenberg
fellowship (Se 1114/2-1/2). Both authors acknowledge partial support by the ANR grant ANR-08-BLAN-0317-01
(SEDIGA).
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666 T. REICHELT AND C. SEVENHECK

It is well-known that quantum cohomology theories admit expressions in terms of certain
differential systems, called quantum D-modules. This yields a convenient framework in
which mirror symmetry is stated as an equivalence of such systems. Moreover, Hodge
theoretic aspects of mirror correspondences can be incorporated using the machinery of
(mixed) Hodge modules. However, quantum D-modules have usually irregular singularities,
except in the Calabi-Yau case. In our mirror construction, this corresponds to the fact that
we let the Fourier-Laplace functor act on various regular D-modules obtained from the
Landau-Ginzburg model.

The quantum cohomology of a smooth complete intersection (which in our case is given
as the zero locus of a generic section of a vector bundle) can be computed using the so-called
Euler-twisted Gromov-Witten invariants. Basically, these are integrals over moduli spaces of
stable maps of pull-backs of cohomology classes on the variety and of the Euler class of the
vector bundle. It is well known (see [38, 42, 21] and also [31] as well as [39] for more recent
accounts) that the ambient part of the quantum cohomology of the subvariety (consisting of
those classes which are induced from cohomology classes of the ambient variety), is given as
a quotient of the Euler-twisted quantum cohomology.

From the combinatorial toric data of this vector bundle, we construct in a rather straight-
forward manner an affine Landau-Ginzburg model, which is a family of Laurent poly-
nomials. The Euler-twisted quantum D-module (which encodes the above mentioned
Euler-twisted Gromov-Witten invariants) can then be shown to be isomorphic a certain
proper FL-transformed Gauß-Manin system, namely, the Fourier-Laplace transformation
of the top cohomology group of the compactly supported direct image complex (in the sense
of D-modules) of this affine Landau-Ginzburg model. On the other hand we show that the
Euler�1-twisted quantum D-module which encodes the so-called local Gromov-Witten
invariants is isomorphic to the usual FL-transformed Gauß-Manin system.

The actual non-affine Landau Ginzburg model is constructed by a certain partial
compactification of the affine one, which yields a family of projective varieties. Our main
result is Theorem 6.13 (which also contains the above mirror statements on twisted resp.
local quantum D-modules), it states that the ambient quantum D-module is isomorphic to
a Fourier-Laplace transform of the direct image of the intersection cohomology D-module
of the total space of this family, notice that this total space is usually not smooth.

One of the big advantages of using this singular variety together with the intersection
cohomology D-module is the fact that we do not need any kind of resolutions. In partic-
ular, we do not need to construct (or suppose the existence of) crepant resolutions like in [2].
Notice also that [31] discusses Landau-Ginzburg models of a more special class of subva-
rieties in toric orbifolds (the so-called nef partitions). In that paper, a mirror statement is
shown in terms of A- resp. B-periods, but this construction needs a hypothesis on the smooth-
ness of a certain complete intersection (given as the intersection of fibres of several Laurent
polynomials, see Section 5.2 of loc.cit.). Some more remarks on the nef-partition model and
how it relates to our construction can be found in Section 1.5 below.

We will show that the direct image of the intersection cohomology D-module of the
total space is itself (modulo some irrelevant free O-modules) an intersection cohomology
D-module with respect to a local system measuring the intersection cohomology of the
fibers of the projective family. An important point in our paper is that this intersection
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NON-AFFINE LANDAU-GINZBURG MODELS 667

cohomology D-module admits a hypergeometric description, that is, it can be derived from
so-called GKZ-systems (as defined and studied by Gelfand’, Kapranov and Zelevinsky).
More precisely, it appears as the image of a morphism between two such GKZ-systems
(Theorem 2.16). This result is interesting in its own, as in general there are only very few
cases where geometrically interesting intersection cohomology D-modules have an explicit
description by differential operators.

Notice that the intersection cohomology D-module mentioned above underlies a pure
Hodge module. From this we can deduce a Hodge-type property of the reduced quantum
D-module (see Corollary 6.14). As already mentioned above, it cannot underly itself
a Hodge module, as in general it acquires irregular singularities (this never happens
for D-modules coming from variation of Hodge structures resp. Hodge modules due
to Schmid’s theorem). Rather, it is part of a non-commutative Hodge (ncHodge) structure
due to a key result by Sabbah ([48]).

There is another important aspect in the paper that has not yet been mentioned. The
various quantum D-modules are actually not D-modules in the proper sense, rather,
they are families of vector bundles on P1 together with a connection operator with poles
along zero and infinity. This is reflected in the fact that we are looking at Fourier-Laplace
transforms of certain regular D-modules (like Gauß-Manin systems) together with a given
filtration. The filtration induces a lattice structure on the FL-transformed D-module (i.e., it
yields a coherent O-submodule generating the FL-transformed D-module). These lattices
can be reconstructed by a twisted logarithmic de Rham complex (in the sense of log geom-
etry) of an intermediate compactification of the family of Laurent polynomials. We show
in Corollary 3.20 that this twisted logarithmic de Rham complex can also be explicitly
described by hypergeometric equations. Notice that for this result to hold true, we have to
restrict to an open subspace of the parameter space, where certain singularities at infinity of
these Laurent polynomials are allowed, but not all of them. This situation is different to the
one in our earlier paper [47] where we had to exclude any singularity at infinity.

The remaining part of this introduction is a rather detailed synopsis of the content of
the paper. It can be read as a warm-up, where the main playing characters are introduced
together with some examples which illustrates the constructions done later.

Our main case of interest is the following: Let X† be an n-dimensional smooth projective
toric variety. Suppose that L1 D OX†.L1/; : : : ; L c D OX†.Lc/ are ample line bundles
on X† such that �KX† �

Pc
jD1Lj is nef (for many intermediate results, we can actually

relax both assumptions and suppose only that the individual bundles L1; : : : ; L c are nef).
Put E WD

Lc
jD1 Lj , then E is a convex vector bundle. We will be interested in several

quantum D-modules, which correspond to twisted Gromov-Witten invariants of .X†; E /

as well as to Gromov-Witten invariants on the ambient cohomology of the complete
intersection Y WD s�1.0/ defined by a generic section s 2 �.X†; E /. Let us consider the
total space V. E _/, which is a quasi-projective toric variety with defining fan †0. We set
†0.1/ D fR�0b1; : : : ;R�0b tg, where the vectors bi are the primitive integral generators of
the rays of†0. From this set of data one can construct Lefschetz fibrations, that is, family of
hyperplane sections of some projective toric varieties. The actual Landau-Ginzburg models
of the above toric variety (resp. of the complete intersection Y ) will be obtained by restricting
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668 T. REICHELT AND C. SEVENHECK

the base of such families to a certain sub-parameter space which is an open subset of the
Kähler moduli space of X†. Actually, we do consider two different situations: Either we
start with the data of a toric variety and some line bundles satisfying the above positivity
conditions, and construct the set fbig as sketched, or we consider only such a set of vectors,
in which case we do not have a Kähler moduli space, and the reduction of the parameter
space of the Lefschetz fibration is done using an equivariance property of this fibration with
respect to a natural torus action. Nevertheless, many of our constructions also make sense
in this more general setup, therefore, the material in Sections 2 and 3 below only depend on
vectors fbig and do not suppose the existence of X†; L1; : : : ; L c .

1.1. Lefschetz fibrations

We consider the following situation: Let B be s � t -matrix of integer numbers, written
as B D .b1; : : : ; b t /. The only assumption we make is that

Pt
iD1Zbi D Zs . As just

explained, the example the reader should have in mind is when these vectors are the primitive
integral generators of the rays of a possibly non-compact toric variety, but most of the
constructions below do not depend on this assumption. As a concrete and easy though non-
trivial example which will be considered throughout this introduction, letX† D P5,H � P5

a hyperplane, and take the bundles L1 D OP5.2H/ and L2 D OP5.3H/. They are obviously
ample, and we have OP5.�KP5 � 2H � 3H/ D OP5.6 � 2 � 3/ D OP5.1/, which is also
ample. The defining fan †0 of the total space V

�
L
_

1 ˚ L
_

2

�
has rays b1; : : : ; b8, and the

matrix B D .b1; : : : ; b8/ is given by

B D

0BBBBBBBBBBBB@

1 0 0 0 0 �1 0 0

0 1 0 0 0 �1 0 0

0 0 1 0 0 �1 0 0

0 0 0 1 0 �1 0 0

0 0 0 0 1 �1 0 0

0 1 1 0 0 0 1 0

0 0 0 1 1 1 0 1

1CCCCCCCCCCCCA
:

Let us return to the general setup of a matrix B 2M.s � t;Z/ of rank s. Put S WD .C�/s ,
and consider the following map

g W S ! Pt ;

.y1; : : : ; ys/ 7! .1 W yb1 ; : : : ; ybt /;

which is an embedding due to the assumption on the rank of B. Here we write ybi for the

product
Qs
kD1 y

bki
k

, bki being the entries ofB. The map g is only locally closed, so we denote
byX its closure inPt . We are interested in a family of hyperplane sections ofX , constructed
in the following way: Consider the incidence varietyZ WD

˚Pt
iD0 �i � wi

	
� Pt�CtC1, where

�0; : : : ; �t are coordinates on CtC1 and where w0 W � � � W wt are homogenous coordinates
onPt . The situation is visualized in the following diagram where p1 resp. p2 is the restriction
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of the projection to the first resp. second factor

(1) Z

p1

yy

p2

""

S � X � Pt CtC1:

Here we have identified S with its image under g. The family of hyperplane sections is by
definition the morphism ˆ WD .p2/jp�1

1
.X/
W p�11 .X/! CtC1. It is a projective map, and its

restriction ' WD ˆjp�1
1
.S/

is nothing but the family of Laurent polynomials

(2)
S � Ct ! C�0 � C

t

.y1; : : : ; ys; �1; : : : ; �t / 7�!
�
�
Pt
iD1 �t � y

bi ; �1; : : : ; �t

�
:

For the concrete example from above, the first component of ' is given by

.y1; : : : ; y7; �1; : : : ; �8/ 7! ��1 � y1 � �2 � y2y6

� �3 � y3y6 � �4 � y4y7 � �5 � y5y7 � �6
y7

y1 � � �y5
� �7y6 � �8y7:

The partial compactificationˆ of this family is easy to calculate as the closureX of im.g/ is a
hypersurface in P8, namely, it is given by the binomial equation w0w27w

3
8 � w1w2w3w4w5w6 D 0.

Hence Z is the codimension 2 subvariety of P8 � C9 cut out by the two equations

w0w
2
7w

3
8 � w1w2w3w4w5w6 D 0 and �0w0 C � � � C �8w8 D 0;

and ˆ is the projection from this variety to the space C9 with coordinates �0; : : : ; �8.

For various reasons, we will also need to work with the family ˆU , where in the above
diagram (1) the incidence variety Z is replaced by its complement U WD .Pt � CtC1/nZ.
Although geometrically the two morphisms ˆ and ˆU behave differently (e.g., ˆU is no
longer proper), they are strongly related on the cohomological level. The transformation
corresponding in cohomology to the geometrical operation of taking the inverse image
of X under p1 followed by the projection by p2 is the so-called Radon transformation
for D-modules (see Section 2.2 for more details).

The morphism ' resp. ˆ can be considered as the maximal family of hyperplane sections
ofS resp. of its compactificationX . However, in applications like those presented in Section 6
of this paper, we need to restrict these families to some subspace of the parameter space Ct

which is called K M ı in the main part of this article (see the discussion before Defini-
tion 6.3). We will not give the precise definition of K M ı here, let us only mention that the

torus S acts on .C�/t by .y; �/ 7!
�
y�b1 ; : : : ; y�bt

�
� � (see Formula (27) in Section 2.4

below). Then we consider the orbit space of this action, which is a torus of dimension t � s.
The parameter subspace K M ı is a certain open subvariety of this orbit space. We will
actually chose an embedding K M ı

,! Ct , so that we always see C�0 � K M ı as a locally
closed subspace of CtC1.

In the case where our matrix B is defined by a toric variety X† together with a set of
line bundles, K M ı is not just an open subset of an abstract torus, but of .C�/t�s , i.e.,
it comes with a set of coordinates called q1; : : : ; qt�s . Notice however that the choice of
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670 T. REICHELT AND C. SEVENHECK

these coordinates is not unique, it depends on the choice of a basis of H 2.X†;Z/ with good
properties.

D 1.1 (see Definition 6.3). – Let X† be smooth, toric and projective. Let
L1 D OX†.L1/; : : : ; L c D OX†.Lc/ be ample line bundles onX† such that�KX†�

Pc
jD1Lj is

nef. Let †0 be the defining fan of the total space V. E _/, where E WD
Lc
jD1 Lj is a convex

vector bundle on X†. Let †0.1/ D fR�0b1; : : : ;R�0b tg, where bi are the primitive integral
generators of the rays of †0. Let K M ı be the parameter space described above. Then the
restrictions

… WD ˆjZıX
W Z
ı

X WD Z \ p
�1
1 .X/ \

�
Pt � C�0 � K M ı

�
! C�0 � K M ı

resp.

� WD 'jZ\p�1
1
.S/\.Pt�C�0�K M ı/

W Z \ p�11 .S/ \
�
Pt � C�0 � K M ı

�
! C�0 � K M ı

are called the non-affine resp. affine Landau-Ginzburg model of .X†; L1; : : : ; L c/.

Let us notice that in the main body of this text, the affine Landau-Ginzburg model appears
in two versions, called � and � . Actually, � is an intermediate partial compactification of �
(i.e., the fibres of � contain those of � and are contained in those of …).

To illustrate this definition, we discuss the parameter subspace K M ı for the above
example of complete intersections of degree .2; 3/ inP5. AsB is a 7�8-matrix in this case, we
see from what has been said above that K M ı must be an open subset ofC�. We can choose
the embedding C� ,! C7, q 7! .1; 1; 1; 1; q; 1; 1/. The condition for a point q 2 C� to be
in K M ı is then simply that the family ', when restricted toZ \ p�11 .S/ \

�
Pt � C�0 � fqg

�
yields a non-degenerate Laurent polynomial, i.e., has no singularities at infinity (see Defini-
tion 3.8). One can easily show that the condition that �KP5 � L1 � L2 is ample (and not
only nef) implies that this is the case for all q 2 C� (one has to argue along the lines of [47,
Lemma 2.8]). Hence in this example, we have K M ı

D C�, and therefore the affine and the
non-affine Landau-Ginzburg model of .P5; OP5.2/; OP5.3// are given as

� W .C�/7 � C� ! C�0 � C
�

.y1; : : : ; y7; q/ 7�!
�
�y1 � y2y6 � y3y6 � y4y7 � y5y7 � q

y7
y1���y5

� y6 � y7; q
�

… W Z
ı

X ! C�0 � C
�

.w0 W � � � W wt ; �0; q/ 7�! .�0; q/ ;

where the quasi-projetive subvariety Z
ı

X of Pt � C�0 � C
� is given by

Z
ı

X D
˚
w0w

2
7w

3
8 � w1w2w3w4w5w6 D 0; �0w0 C w1 C � � � C w5 C qw6 C w7 C w8 D 0

	
� Pt � C�0 � C

�:

1.2. GKZ-hypergeometric systems and Fourier-Laplace transformation

The main idea of this paper is that mirror correspondences can be expressed using the
language of (filtered) D-modules. For the toric varieties (and possibly non-toric subvarieties
of them) that we are concerned with here, these D-modules are of special type, namely they
are constructed from the GKZ-system. Let us therefore start by recalling their definition (see
Definition 2.7 below). We only treat here a special case which leads to a regular holonomic
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NON-AFFINE LANDAU-GINZBURG MODELS 671

system. Let as before a matrix B 2 M.s � t;Z/ be given. Here we do not even need the
condition rank.B/ D s. Consider the matrix eB 2M ..s C 1/ � .t C 1/;Z// defined by0BBBBB@

1 1 : : : 1

0

::: B

0

1CCCCCA :

D 1.2. – Let eB be as above. Moreover, let ě D .ˇ0; : : : ; ˇs/ be an element
in CsC1. Write L for the module of relations among the columns of eB, i.e., the kernel of the
linear mapping ZtC1 ! ZsC1 given by eB. Let DCtC1 be the Weyl algebra in t C 1 variables,
i.e., DCtC1 WD CŒ�0; �1; : : : ; �t �h�0; �1; : : : ; �t i Define

M
ěeB WD DCtC1= �.�l /l2L C .Ek � ˇk/kD0;:::s� ;

where
�l WD

Q
i Wli<0

@
�li
�i
�
Q
i Wli>0

@
li
�i
; l 2 L

Ek WD
Pt
iD0

ebki�i@�i ; k 2 f0; : : : ; sg

where eB D �ebki�. Then M ˇeB is called a GKZ-system.

We will quite often work with the corresponding sheaf of DCtC1 -modules, denoted

by M
ěeB . It is well known (see, e.g., [1, 28]) that M

ěeB is a regular holonomic DCtC1 -module.

Given the matrix B from the example of the last section (i.e for .2; 3/-complete intersec-

tions in P5), we have M
ěeB D DCtC1=I , with

I D
�
@�0@

2
�7
@3
�8
� @�1@�2@�3@�4@�5@�6 ; �0@�0 C �1@�1 C � � � C �8@�8 � ˇ0;

�1@�1 � �6@�6 � ˇ1; �2@�2 � �6@�6 � ˇ2; : : : ; �5@�5 � �6@�6 � ˇ5;

�2@�2 C �3@�3 C �7@�7 � ˇ6; �4@�4 C �5@�5 C �6@�6 C �8@�8 � ˇ7

�
;

where Q̌ D .ˇ0; ˇ1; : : : ; ˇ7/.

Let us describe a basic result from [46] that shows how these D-modules enter into the
study of Landau-Ginzburg models. It uses the notion of Gauß-Manin systems, which are
differential systems associated to any morphism between smooth algebraic (or analytic)
varieties. Intuitively, solutions of such systems are given by period integrals (at least on
the smooth locus of the map). The formal definition requires the notion of direct images
of D-modules and is recalled in Section 2.1 below. With these remarks in mind, we can
state the result as follows (in the main part of the text it appears in a more precise version
as Theorem 2.11). For simplicity, we also impose the additional assumption of normality,
which is discussed in detail in Section 5. We write NeB for the semi-group associated to eB,
that is,NeB WDPt

iD0N
ebi � Zs .

T 1.3. – Let the matrices B and eB be as above. Suppose moreover that the
associated semi-group ring CŒNeB� is normal. Consider the family of Laurent polynomials
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672 T. REICHELT AND C. SEVENHECK

' W S � Ct ! CtC1 defined in Equation (2). Then we have an exact sequence of regular
holonomic DCtC1 -modules

0! H s�1.S;C/˝ OCtC1 ! H0
'C OS�CtC1 ! M

0eB ! H s.S;C/˝ OCtC1 ! 0:

Here the left- and the rightmost terms are vector bundles on CtC1 together with the trivial
connection operator which annihilates sections in H s�1.S;C/ resp. H s.S;C/, and
H0

'C OS�CtC1 is the Gauß-Manin system of ' alluded to above.

An important aspect of the construction in [46] that yields this result is that all the above
DCtC1 -modules underly mixed Hodge modules and that the exact sequence exists in the
abelian category MHM.CtC1/. Although Hodge theoretic considerations are one of the
main motivations of this paper, we will not use this fact directly, and results on Hodge
modules will not come into play until Corollary 6.14.

The theorem above shows that there is a tight connection between the Gauß-Manin
system of the morphism ' and the GKZ-system associated to the matrix eB. However, they
are not equal, but their difference (i.e., kernel and cokernel of the morphism
H0

.'C OS�CtC1/! M
0eB ) are relatively simple. The next construction has the effect of

erasing this difference and yields an isomorphism of the two D-modules we are interested
in. First we need a certain variant of the Fourier-Laplace transformation for holonomic
D-modules. Again we present a simplified version, the actual definition can be found in the
next subsection as Definition 2.4.

D 1.4. – Let Y be a smooth affine variety and let DC��Y the ring of global
algebraic differential operators on C� � Y . If M is a DC�Y -module, we denote by FLY .M/

the object which is equal to M as a module over DY and where the new variable � acts as @�
from the left and where @� acts as left multiplication by ��. In this way FLY .M/ becomes a
left module over DC��Y . Then we define

FLloc
Y .M/ WD FLY .M/Œ��1�

to be the localized Fourier-Laplace transformation of M . Again we will denote by the same
symbol the corresponding functor acting on sheaves of left DC��Y -modules.

With this definition at hand, we have the following easy consequence of Theorem 1.3.

C 1.5. – Let B and eB be as above. Write bCtC1 for the affine space
Spec CŒ�; �1; : : : ; �t �. Then there is an isomorphism of DbCtC1 -modules

FLloc
Ct

�
H0

'C OS�CtC1
�
Š FLloc

Ct
.M

0eB/:
In the above example, we have FLloc

Ct
.M

0eB/ D DbCtC1=bI , where

bI D ��@2�7@3�8 � @�1@�2@�3@�4@�5@�6 ;��@� C �1@�1 C � � � C �8@�8 � 1; �1@�1 � �6@�6 ;
�2@�2 � �6@�6 ; : : : ; �5@�5 � �6@�6 ; �2@�2 C �3@�3 C �7@�7 ;

�4@�4 C �5@�5 C �6@�6 C �8@�8

�
:
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The partial compactificationˆ of ' is a projective morphism, but its source space p�11 .X/

is usually singular. For that reason, we are more interested in the direct image of the corre-
sponding intersection cohomology D-module. More precisely, consider the regular holo-
nomic DPt -module M IC

.X/ which corresponds to the intersection complex ICX of the
variety X (recall that X was defined as the closure in Pt of the image of the embedding
g W S ,! Pt ) under the Riemann-Hilbert correspondence. Formally, M IC

.X/ can be
defined as the image of the natural morphism g� OS ! gC OS , where g� is the “direct
image with proper support”-functor for holonomic D-modules. It is the minimal (also
called intermediate) extension of its restriction to the smooth part of X , and as such is an
irreducible DPt -module. More important, it underlies a pure polarizable algebraic Hodge
module, i.e., an object of the category MHp.Pt / (see [50]). This last property will play a key
role in Hodge theoretic application of our mirror statement (see Corollary 6.14).

In general it is quite hard to describe such intersection cohomology D-modules explicitly,
however, this is possible in the current situation. We have the following result (which we state
directly in a form involving the functor FLloc

Ct
since this is the result that will be used later)

T 1.6 (see Theorem 3.6 below). – Suppose that CŒNeB� is normal, then there is
some parametere
 D .
0; 
1; : : : ; 
s/ 2 ZsC1 such that

(3) FLloc
Ct

�
H0

p2Cp
C
1 M IC

.X/
�
Š im

�
FLloc

Ct
.M

e
eB/ D! FLloc
Ct
.M

0eB/
�
:

Here D is the morphism induced from right multiplication by ��
0 � @
g1
�1
� � � @

gt
�t

, where
g D .g1; : : : ; gt / is any element in Zt such that B � gtr D �.
1; : : : ; 
s/.

The object on the left hand side of the above isomorphism should be seen (up to the action
of the functor FLloc

Ct
) as a D-module extending a local system the fibres of which are itself

intersection cohomology groups, namely those of the fibres of the morphism ˆ. We could
also replace the object pC1 M IC

.X/ by M IC
.Z
ı

X /, by which we mean the regular holo-
nomic DPt�CtC1 -module corresponding to the intersection complex IC Z

ı
X

via the Riemann-

Hilbert correspondence (so that the complex p2CpC1 M IC
.X/ Š p2CM IC

.Z
ı

X / corre-
sponds to the topological direct image complex R…�IC Z

ı
X

).

Notice that the functors pC1 and H0
p2C exist in MHp, hence the object occurring in the

last theorem is the Fourier-Laplace transform of a D-module underlying a pure polarizable
Hodge module (this is basically the proof of Corollary 6.14)

We would like to explain in an informal way the reason for this theorem to hold true. The
main point is that GKZ-systems behave quite well with respect to the duality functor for
holonomic D-modules. More precisely, we have the following very nice result of Walther
(see [54]).

T 1.7. – LetB and eB be as above. Suppose again for simplicity that the semi-group
ring CŒNeB� is normal. Then there is a parametere
 2 ZsC1 such that

DM
0eB Š M

e
eB :
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



674 T. REICHELT AND C. SEVENHECK

From this statement we see that the above morphism D can actually be seen (up to
some shifts and notational conventions) as a morphism DFLloc

Ct
.M

0eB/ ! FLloc
Ct
.M

0eB/.
As mentioned above, M IC

.X/ is the image of g� OS ! gC OS , notice further that these
two D-modules are also dual to each other. Applying the Radon transformation functor
to them yields precisely the two GKZ-systems on the right hand side of Equation (3) (see
Theorem 2.11 below for more details), hence it is plausible that the intersection cohomology
module (resp. its Fourier-Laplace transform) on the left hand side of Equation (3) can be
identified with the image of the morphisms D between these two GKZ-systems.

For our purposes, we need actually a stronger duality statement: We consider the object
.M

0eB ; F ord
� / consisting of the regular holonomic DCtC1 -module M

0eB together with the
good filtration by coherent OCtC1 -submodules induced from the filtration by the order
of differential operators on DCtC1 . This is an object of M. Saito’s category MF.DCtC1/

(see [50, Section 2.4]), and there is duality functor on this category extending the duality
functor for holonomic D-modules. Then we have (see Theorem 5.4) that D.M

0eB ; F ord
� / Š

.M
e
eB ; F ord

�Ck
/ for some integer k.

For our guiding example, a parametere
 such that DM
0eB D M

e
eB can be chosen ase
 D .�1; 0; 0; 0; 0; 0;�1;�1/
and the map D is induced by right multiplication with � � @�7 � @�8 .

Similarly to the considerations of Lefschetz families above, we will need to restrict these
D-modules to the parameter subspace K M ı

� Ct . We will not explain here how to do this
in detail, since it is a bit technical (see the presentation in Section 2.4 and Section 6 below).
Instead, let us consider again the above example and the embedding

C� � K M ı
,! C� � C

7

.�; q/ 7�! .�; 1; 1; 1; 1; 1; q; 1; 1/:

Then we consider the inverse images under this map of M
0eB and M

e
eB as well as the
morphism D. For simplicity, we will also set � D 1, more precisely, we will consider the
inverse image under the map q 7! .1; q/. We will also twist the restriction of M

e
eB by some
invertible map (see Definition 6.1) Then the (restriction of the) morphism D is given as

(4)
CŒq˙�h@qi=.P1/ ! CŒq˙�h@qi=.P2/

Q 7�! Q � .q@q/
2;

where

P1 D q � .3q@q C 1/.3q@q C 2/.3q@q C 3/.2q@q C 1/.2q@q C 2/C .q@q/
6

D .q@q/
2
�
�
6q � .3q@q C 1/.3q@q C 2/.2q@q C 1/C .q@q/

4
�„ ƒ‚ …

Q.2;3/

DW .q@q/
2
�Q.2;3/

P2 D q � .3q@q/.3q@q C 1/.3q@q C 2/.2q@q/.2q@q C 1/C .q@q/
6

D
�
6q � .3q@q C 1/.3q@q C 2/.2q@q C 1/C .q@q/

4
�„ ƒ‚ …

Q.2;3/

�.q@q/
2
DW Q.2;3/

� .q@q/
2:
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The map D is obviously well defined, its kernel is generated by Q.2;3/ and we see that

im.D/ Š
CŒq˙�h@qi=.P1/

ker.D/
Š CŒq˙�h@qi=.Q

.2;3//:

Q.2;3/ is an inhomogenous hypergeometric operator with a regular singularity at q D 0 and
irregular singularity at q D1.

The following statement summarizes the above calculation and can be seen as an illustra-
tion of Theorem 1.6

P 1.8. – Consider the example from above. Then we have an isomorphism of
left CŒq˙�h@qi-modules�

FLloc
Ct

�
H0

…CM IC
.Z
ı

X //
��
j�D1
Š CŒq˙�h@qi=.Q

.2;3//:

Let us finish this discussion with some remarks on the case of Calabi-Yau complete inter-
sections in toric manifolds. Suppose that instead of the above example we had considered a
.2; 4/-complete intersections in P5, i.e., the matrix

B D

0BBBBBBBBBBBB@

1 0 0 0 0 �1 0 0

0 1 0 0 0 �1 0 0

0 0 1 0 0 �1 0 0

0 0 0 1 0 �1 0 0

0 0 0 0 1 �1 0 0

1 1 0 0 0 0 1 0

0 0 1 1 1 1 0 1

1CCCCCCCCCCCCA
then the same arguments as above would lead to the operator

Q.2;4/
WD 8q � .2q@q C 1/.4q@q C 1/.4q@q C 2/.4q@q C 3/ � .q@q/

4

which is regular and homogeneous (with singularities at q D 0; 2�10;1). In that case, the
above statement can be sharpened in the following way.

P 1.9. – Consider a .2; 4/-complete intersection in P5, then we have the
isomorphism of left CŒq˙�h@qi-modules�

H0
…CM IC

.Z
ı

X /
�
j�0D1

Š CŒq˙�h@qi=.Q
.2;4//:

The reason for this to be true is that in the Calabi-Yau case, Fourier-Laplace transfor-
mation together with restriction to � D 1 has basically no effect, i.e., can be identified with
restriction to �0 D 1. In particular, the object thus obtained still underlies a pure polarizable
Hodge module (whereas in general, we obtain a variation on non-commutative Hodge struc-
tures, see 6.14 and Conjecture 6.15 below). This is consistent with classical results on mirror
symmetry for Calabi-Yau hypersurfaces like the quintic in P4. Notice however that in these
constructions, one uses certain crepant desingularizations in order to work with ordinary
cohomology together with its Hodge structures instead of intersection cohomology as in the
present paper. This may introduces a new difference when compared to our construction,
which will however disappear when using the functor FLloc. This should basically follow
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from the decomposition theorem (say, for pure Hodge modules, see [50, Corollaire 3]) when
applied to the desingularization map. We will make some more remarks on how our construc-
tion is related to known mirror models for complete intersections in the later Sections 1.4
and 1.5 below. However, a thorough treatment of this comparison issue is delicate and will
be postponed to a subsequent paper.

1.3. Mirror Correspondence

We would like to state here in a slightly informal way the main results of this paper.
They can be expressed as isomorphism of two DC��K M ı -modules, one obtained as
sketched above (i.e., direct image D-modules under the morphisms … resp. �), the other
one derived from Gromov-Witten theory of the variety X† resp. from its subvarieties. The
actual picture is considerably more complicated, in the sense that we do not just look
at D-modules over C� � K M ı, but at modules over DP1�K M ı together with a structure
of RC

��1
�K M ı -modules where RC

��1
�K M ı is the sheaf of Rees rings for the filtra-

tion by orders on differential operators on D K M ı . This corresponds to the fact that the
Gauß-Manin-systems as well as the direct image modules of intersection cohomology
modules occurring do carry Hodge filtrations, i.e., underly objects of the category MHM
of (algebraic) mixed Hodge modules (see [52]). This very important additional information
can be reformulated as the structure of an R -module, and the latter is conserved by the
functor FLloc. Hence our actual statements in Section 6 are considerably stronger than what
is announced here. In particular, the simplified statement below is basically only an identifi-
cation of local systems and hence does not take into account the fact that these D-modules
have irregular singularities in general. Nevertheless, we think that it is still instructive. It
should be seen as a snapshot of what the actual result looks like.

We consider the situation described above, that is, we let X† be a smooth, projec-
tive toric variety, and L1 D OX†.L1/; : : : ; OX†.Lc/ ample line bundles such that the
class �KX† �

Pc
jD1Lj is nef. Then for a generic section s 2 �.X†; E /, the zero locus

Y WD s�1.0/ � X† is a complete intersection with nef anticanonical class. Put E D
Lc
jD1 Lj ,

then E is a convex vector bundle onX†, and we can consider twisted Gromov-Witten invari-
ants which give rise to the (small) twisted quantum- D-modules QDM.X†; E /, i.e., a vector
bundle onP1�K M ı with fibreH�.X†;C/with connection operator defined by the twisted
quantum product. Moreover, we have the endomorphism ctop. E / of H�.X†;C/ given by
cup product with the Euler class of E , and we put H�.X†;C/ WD H�.X†;C/=ker.ctop. E //.
Then the reduced or ambient quantum D-modules, denoted by QDM.X†; E /, is a vector
bundle on P1 � K M ı with fibres H�.X†;C/, and the connection is defined via the
quantum product on ambient cohomology classes, i.e., classes in the image of the morphism
H�.X†;C/ ! H�.Y;C/ (notice that this image is isomorphic to the quotient H�.X†;C/).
Finally, we can also consider moduli spaces of stable maps into the total spaceV. E _/ of the
vector bundle dual to E (then E _ is concave), and this yields the so-called local Gromov-
Witten invariants. The corresponding quantum- D-module is denoted by QDM. E _/. We
refer to the Sections 4 and 6 for precise definitions of the various quantum D-modules.

With these notions at hand, we have the following results.
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T 1.10 (see Theorems 6.13 and 6.16). – GivenX†, L1 D OX†.L1/; : : : ; OX†.Lc/

as above, but suppose moreover that L1; : : : ; L c are ample (but �KX† �L1 � � � � �Lc is still
only required to be nef). Consider the matrix B constructed from the rays of†0. Let � resp.…
the affine resp. the non-affine Landau-Ginzburg models of .X†; L1; : : : ; L c/. Then we have

FLloc
Ct

�
H0

�� OS�K M ı

�
jC���B

�
"
Š .idC�� �Mir/�

�
QDM.X†; E /jC���B�"

�
;

FLloc
Ct

�
H0

�C OS�K M ı

�
jC���B

�
"0

Š .idCz �Mir0/�
�

QDM. E _/jC���B�"0

�
;

FLloc
Ct

�
H0

…CM IC
.Z
ı

X /
�
jC���B

�
"
Š .idC�� �Mir/�

�
QDM.X†; E /

�
jC���B

�
"
:

Here B�" ; B
�
"0 are some (pointed) convergency neighborhoods of the large volume limit point

in K M ı, Mir is the mirror map (see, e.g., [9, 39]) and Mir0 is some other coordinate change
(which also involves the mirror map Mir).

From the pureness property of M IC
.Z
ı

X / we can deduce the following corollary, which
is (part of) the Hodge theoretic aspect of our mirror correspondence. As mentioned earlier,
it relies on the notion of non-commutative Hodge structures (see [49] for an overview) which
is adapted to the occurrence of irregular singularities in the various quantum D-modules.

C 1.11 (see Corollary 6.14). – Under the assumptions of the last theorem, the
ambient quantum D-module QDM.X†; E / (or at least its restriction to the convergency
neighborhood B�" ) is part of a variation of non-commutative Hodge structures.

We conjecture in 6.15 below that QDM.X†; E / is itself a non-commutative Hodge struc-
ture, however, the proof of this conjecture would need some additional results on the Hodge
filtration of H0

p2CM IC
.Z
ı

X / which are not yet available.

1.4. Givental’s mirror model

The aim of the next two subsection is to give some ideas on the relation of our construction
to other mirror models for Calabi-Yau resp. nef-complete intersections inside a smooth toric
variety X†. The reader should be warned that a complete comparison of the construction
presented in this paper to other models is not yet available, and will be subject to some future
work. Nevertheless, we hope that the following remarks indicate that our mirror model can
be considered as a unification and generalization of other constructions.

First we consider a construction that can be found (although in a very sketchy form) in [21,
pages 10-11]. Let as above X† be smooth, projective and toric, and let L1 D OX†.L1/; : : : ;

L c D OX†.Lc/ be nef line bundles such that�KX†�
Pc
jD1Lj is nef. Let again b1; : : : ; b t be

the primitive integral generators of the rays of†0. Notice that if a1; : : : ; am are the generators
of the rays of †, then t D m C c (namely, we have m generators bi projecting to the a0is,
and c generators bi that projects to zero under †0 � †.) Consider the affine space CmCc

with coordinates w1; : : : ; wmCc . Let l1; : : : ; lr be a basis of the module of relations between
the vectors b1; : : : ; bmCn (so that r D m � n, since the bi ’s ly in ZnCc). Actually, this basis
should not be chosen in an arbitrary way, it is the basis dual to the basis p1; : : : ; pr one
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of H 2.X†;Z/ chosen in Section 6 (see the discussion after the exact sequence (60) below).
Write la D .la1; : : : ; lat / and consider the affine variety

E WD

8<:.w; q/ 2 .C�/m � Cc � K M ı
j

 
mCcY
iD1

w
lai
i D qa

!
aD1;:::;r

9=; :
Actually, Givental has a slightly different definition as he consider equivariant quantum
cohomology, but we ignore this aspect here and concentrate on the case of the non-
equivariant limit. Notice also that in Givental’s paper appears only the restriction
Eq WD Ej.C�/m�Cc�fqg

.

It can be shown that the closure of E inside CmCc � K M ı equals E (see the argument
in Proposition 4.8 below), and that the projection E ! K M ı

I .w; q/ 7! q is precisely the
mapping ˛ ı ˇ ı 
1 W Z

ı

Xaff ! K M ı as appearing in the diagram (61) in Section 6.

In [21, page 10-11], Givental very briefly mentions the following oscillating integral

(5)
Z
��E

e� �.
Pm
iD1wi�

Pc
jD1wmCj / �

d log.w1/ ^ � � � ^ d log.wm/ ^ dwmC1 ^ � � � ^ dwmCc
d log.q1/ ^ � � � ^ d log.qm�n/

;

where � is some real non-compact nCc-dimensional cycle insideE, i.e., a Lefschetz thimble.
Notice however that E is singular in general, so that in any case one would need to specify
further how to define this cycle. It is claimed in loc.cit (and easily verified) for any relation
l D .l1; : : : ; lt / with

PmCc
iD1 libi D 0 satisfying l1 � 0; : : : ; lm � 0, this integral is annihilated

by the differential operators

�l WD

mY
iD1

li�1Y
�D0

.

rX
aD1

laiqa�@qa � ��/ �

rY
aD1

q
hpa;li
a �

mCcY
iDmC1

liY
�D1

.

rX
aD1

lai�qa@qa C ��/:

In order to connect this statement to our construction, one needs to discuss the relation
between oscillating integrals and Gauß-Manin systems in some detail. This is a rather clas-
sical subject, although there does not seem to exist a general reference covering the present
situation. One can find in [44, 45] a definition of oscillating integrals for certain polyno-
mial mappings, and in [48, Section 1.b] a discussion of the topological Fourier-Laplace
transformation which yields a cohomological description of Lefschetz thimbles.

Assuming that this relation between oscillating integrals and Gauß-Manin systems is
properly established, one may conjecture that the integral (5) yields a solution of the module

FLloc
Ct

�
H0

�� OS�K M ı

�
that appeared in Theorem 1.10. However, even if this were proved, it is still unclear whether
this integral satisfy a stronger differential equation (this has been noticed by Givental himself
in [21, page 10]), namely, one would like to show that it is even a solution of the system

FLloc
Ct

�
H0

…CM IC
.Z
ı

X /
�

. However, we do not have any further evidence at this point for

this conjecture.
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1.5. Nef partition Landau-Ginzburg models

There is a special case of the construction described in the last subsection, for which a
more complete description of a mirror model is available in the literature. Namely, assume
that the nef line bundles L1; : : : ; L c are obtained as (line bundles associated to) a sum of
some of the torus invariant divisors of X†. Then already in [21] is a sketch of how the above
mentioned general construction of oscillating integrals can be made more precise. We will
use the more recent paper [31] as a references, which also incorporates ideas from [4]. Let us
give a very brief reminder of the part of [31] relevant in the present situation.

D 1.12 ([21, 31]). – Let X† be a n-dimensional, smooth toric variety given by
a fan † with torus-invariant divisors D1; : : : ;Dm. A nef-partition is a partition f1; : : : ; mg D
I0 t I1 t � � � t Ic such that Lj D O.

P
k2Ij

Dk/ is nef for j D 0; : : : ; c.

Notice that Iritani’s paper covers a larger domain of applications than this definition since
he considers (nef partitions of) toric orbifolds. However, in the main body of our paper we
are only concerned with complete intersections in manifolds, so we restrict to this situation
here.

To a nef-partition one associates as above a vector bundle E D
Lc
jD1 Lj (notice that

the sum here is running only from 1 to c and does not include the bundle L0). Choosing a
generic section s 2 �.X†; E / gives a smooth nef complete intersection Y � X†. Hence we
see that the data of a toric manifold with a nef partition are a particular case of the setup
considered in the main part of our paper. We will show in Remark 1.17 below an example
which falls in the scope of this paper but which does not come from a nef partition. In that
sense our construction is a true generalization of the Givental-Iritani model. Notice also that
in the case I0 D ; the complete intersection Y is a Calabi-Yau manifold, this is exactly the
situation considered by Batyrev and Borisov in [4].

In the approach of Iritani the mirror model of Y is given by a function on a family of
complete intersections of Laurent polynomials inside an n-dimensional torus LT D .C�/n

with coordinates t1; : : : ; tn. In order to construct this, one associates to each Ij the following
Laurent polynomial

W .j /
˛ D

X
i2Ij

˛i t
bi for j D 0; : : : ; c

where the bi are again the primitive integral generators of the one-dimensional cones of †.
The family of complete intersections LY˛ over ˛ 2 .C�/m is then given by

LY˛ D ft 2 LT j W
.1/
˛ D � � � D W .c/

˛ D 1g:

A 1.13 ([31, page 2936]). – In the above situation, we suppose that the affine
variety LY˛ is a smooth complete intersection in LT for generic ˛ 2 .C�/m.

To the best of our knowledge, there is up to now no result available which would show
how restrictive this assumption is. There are some speculations in [31, Remark 5.6] that the
smoothness of LY˛ should be related to the smoothness of Y � X†, at least in the case I0 D ;.
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D 1.14. – Let X† and a nef partition f1; : : : ; mg D I0 t I1 t � � � t Ic be given.
Suppose that assumption 1.13 holds true. If I0 ¤ ;, we call the restriction

W .0/
˛ W LY˛ ! C

the nef-partition Landau-Ginzburg model of .X†; .Ij /jD1;:::;m/. If I0 D ; we consider the
(affine) Calabi-Yau complete intersection LY˛ � LT (smooth by the above assumption) itself as
the nef-partition mirror model.

In the case I0 D ;, Batyrev and Borisov considered a compactification Y ˛ of LY˛ inside the
projetice toric varietyPr , given by the polytoper D r1C� � �Crc withrj D Conv.fbigi2Ij /.
Since the Calabi-Yau varieties Y ˛ are usual singular and the ambient variety Pr does not
always admit a crepant resolution Batyrev and Borisov introduced so-called string-theoretic
Hodge numbers hp;qst .Y ˛/ and could show in [3] that

h
p;q
st .Y ˛/ D h

n�p;q
st .Y / for 0 � p; q � n

where n D n � c is the dimension of Y .

In the case where I0 is non-empty Iritani defines (under assumption 1.13) an oscillating
integral Z

�R.˛/

e�W
.0/
˛ .t/���˛

where �R.˛/ D LY˛ \ LTR is a non-compact cycle in LY˛ ( LTR WD .R>0/
n � LT being the real

torus), i.e., a real Lefschetz thimble, and

�˛ D

dt1
t1
^ � � � ^

dtn
tn

dW
.1/
˛ ^ � � � ^ dW

.c/
˛

is a holomorphic volume form on LY˛. Notice that the definition of the volume form uses
the smoothness assumption 1.13 in an essential way. Notice also that in loc.cit., the variable
z WD 1

�
is used.

In order to get a mirror theorem, Iritani defines a so-called A-period of the complete
intersection Y � X†

….1; OY / D .JY .q;�z/; z
n�

deg
2 z� O�Y /

here JY is the J -function, which is a particular solution of the quantum D-module of Y ,
and O�Y is the Gamma class of Y . We refer the reader to [31] for details. The aforementioned
mirror theorem of Iritani is the equality (see [31, Theorem 5.7])

(6) …Y .1; OY / D
1

F.˛/

Z
�R.˛/

e�W
.0/
˛ .t/���˛ ˛ 2 K M ı

where F.˛/ is a certain coordinate change.

From the remarks in the last subsection on the relation between oscillating integrals and
Gauß-Manin systems it seems plausible that the oscillating integral on the right hand side of
Equation (6) gives a solution of the following (Fourier-Laplace transformed) Gauß-Manin
system

FLloc H0
.W .0/

˛ /C O LY˛ 2Modhol.DC� /:
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As before, we need to consider families of such differential systems by letting the parameter ˛
vary within K M ı, hence, we rather look at the DC��K M ı -module

FLloc
K M ı

H0
.W .0/

˛ ; pr˛/C OY˛�K M ı :

Finally, we have to eliminate the asymmetry between W .0/
˛ and W .j /

˛ for j D 1; : : : ; c. This

can be easily done in the following way: As Y˛ D
Tc
jD1

�
W
.j /
˛

��1
.1/, instead of considering

the direct image H0
.W

.0/
˛ /C OY˛ , we can consider the direct image H0

�
W
.0/
˛ ; W

.1/
˛ ; : : : ; W

.c/
˛

�
C
O LT

and restrict it to the subspace where the last c coordinates are set to 1 (this follows from the
base change theorem for holonomic D-modules, see Theorem 2.1 below). Finally, in order
to be able to use the Radon transformation functor alluded to above, we need to allow ˛ to
vary withinCm, and not just in the subspace K M ı. This motivates the following definition.

D 1.15. – Let us be given a nef partition f1; : : : ; mg D I0 t I1 t � � � t Ic on X†.
Then we call the morphism

‚ W LT � Cm ! CtC1 D C � Cm � Cc

.t ; ˛/ 7! .�0; : : : ; �mCc/ D .�W
.0/
˛ ; ˛;�W .1/

˛ ; : : : ;�W .c/
˛ /

the nef partition Landau-Ginzburg model of
�
X†; .Ij /jD0;:::;c

�
We proceed by comparing the nef partition Landau-Ginzburg model to our construction,

as outlined before in this introduction. First notice that if we consider the variety X†, then
the collection of line bundles L1 D O.

P
k2I1

Dk/; : : : ; L c D O.
P
k2Ic

Dk/ satisfies (almost)

the assumptions of our construction: Namely we have that �KX† �
Pc
jD1

�P
k2Ij

Dk

�
is

nef, since it is simply equal to
P
k2I0

Dk and then its nefness follows from the nef partition
assumption. For our main result (Theorem 6.13, see also Theorem 1.10), we need the stronger
assumption that L1; : : : ; L c are ample but this is unnecessary for many intermediate results.

In any case, given a nef partition, we have nef line bundles L1; : : : ; L c on X† such that
the bundle OX†.�KX†/ ˝ L

�1
1 ˝ � � � ˝ L

�1
c is nef, and we can consider the matrix B as

constructed in the beginning of this introduction from the primitive integral generators of
the fan†0 of the total spaceV. E _/ with E D

Lc
jD1 Lj . If we denote by Bj the matrix with

columns .bi /i2Ij for j D 0; : : : ; c, then B is an .nC c/ � .mC c/ integer matrix given by

B WD

0BBBBBB@
B0 B1 B2 � � � Bc 0

0 � � � 0 1 � � � 1 0 � � � 0 � � � 0 � � � 0 1

0 � � � 0 1 � � � 1 � � � 0 � � � 0
:::

:::
:::

: : :

0 � � � 0 0 � � � 0 1 � � � 1 1

1CCCCCCA :
As before we get an associated family of Laurent polynomials

' W S � Ct ! C � Ct

.y1; : : : ; ys; �1; : : : ; �t / 7! �W
.0/

�
�

cX
iD1

.W
.i/

�
C �mCi / � ynCi ;

remember that S D .C�/s where s WD nC c and t WD mC c.
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With these definition, we can state the following conjectural relationship of the nef-
partition Landau-Ginzburg to our non-affine Landau-Ginzburg model.

C 1.16. – Consider a smooth projective toric variety X† with torus invariant
divisors D1; : : : ;Dm and a nef partition f1; : : : ; mg D I0 t I1 t � � � t Ic . Then

1. there exists a morphism

FLloc
Ct
.H0

‚C O LT�Cm/! FLloc
Ct
.H0

'C OS�Ct / ' FLloc
Ct
.M

0eB/
of holonomic DbCtC1 -modules;

2. this morphism induces an epimorphism DbCtC1 -modules

FLloc
Ct
.Wmin H0

‚C O LT�Cm/

� FLloc
Ct
.Wmin H0

'C OS�Ct / ' im
�

FLloc
Ct
.M

e
eB/ D! FLloc
Ct
.M

0eB/
�
;

where Wmin is the minimal step of the weight filtration on the Gauß-Manin system
H0

‚C O LT�Cm resp. H0
'C OS�Ct (which underlies a mixed Hodge modules, i.e., an

element of the abelian category MHM.DCtC1/).

We are actually able to show the first part of this conjecture, but the proof is far to technical
to be reproduced here. The second part is still open. Some evidence for this part of the
conjecture comes from the fact that the DCtC1 -module Wmin H0

'C OS�Ct (which underlies
a pure Hodge module) is, as we will see later, irreducible, and hence the above morphism must
be surjective if it is not the zero map. Using the mirror symmetry statement of [31] together
with our main result, one may even speculate further that this map must be an isomorphism.
We postpone a thorough discussion of these matters to a subsequent paper.

R 1.17. – We give an example of a smooth toric varietyX† with two nef line bundles
L1 D OX†.L1/, L2 D OX†.L2/ and �KX† � L1 � L2 D 0, which is not representable as a
nef partition. Consider the two-dimensional toric variety given by the fan

b5

b1b6b2

b7

b3 b8 b4:

The primitive generators of the rays give rise to a matrix

A D

 
1 �1 �1 1 1 0 �1 0

1 1 �1 �1 0 1 0 �1

!
:
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The rows of the following matrix

L D

0BBBBBBBBB@

1 0 0 0 0 0 1 1

0 1 0 0 0 0 �1 1

0 0 1 0 0 0 �1 �1

0 0 0 1 0 0 1 �1

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

1CCCCCCCCCA
provide a basis for the module of relations among the columns of A. The well-known sequence

0!M
At

!

8M
iD1

ZDi
Lt

! H 2.X;Z/! 0

for torus-invariant Weil divisors endows the free Z-module H 2.X;Z/ (which has rank 6) with
a basis. The coordinates of the image ŒDi � of Di with respect to this basis are given by the i -th
column vector of the matrix L. The closure of the Kähler cone is generated by the vectors0BBBBBBBBB@

1

0

0

1

1

0

1CCCCCCCCCA
;

0BBBBBBBBB@

1

1

�1

1

1

1

1CCCCCCCCCA
;

0BBBBBBBBB@

2

0

0

2

2

1

1CCCCCCCCCA
;

0BBBBBBBBB@

1

1

0

1

1

1

1CCCCCCCCCA
;

0BBBBBBBBB@

2

0

0

0

1

1

1CCCCCCCCCA
;

0BBBBBBBBB@

2

1

0

0

1

1

1CCCCCCCCCA
;

0BBBBBBBBB@

2

0

0

1

1

1

1CCCCCCCCCA
;

0BBBBBBBBB@

2

2

0

0

1

2

1CCCCCCCCCA
;

0BBBBBBBBB@

2

1

�1

1

1

1

1CCCCCCCCCA
;

0BBBBBBBBB@

3

1

�1

1

1

2

1CCCCCCCCCA
;

0BBBBBBBBB@

1

1

0

0

0

1

1CCCCCCCCCA
;

0BBBBBBBBB@

3

1

�1

1

2

1

1CCCCCCCCCA
:

One easily sees that the vectors

ŒL1� WD

0BBBBBBBBB@

1

1

�1

1

1

1

1CCCCCCCCCA
and ŒL2� WD

0BBBBBBBBB@

2

0

0

0

1

1

1CCCCCCCCCA
;

which lie in the closure of the Kähler cone, are not of the type ŒDi1 �C� � �CŒDis � for fi1; : : : ; isg �
f1; : : : ; 8g. But

ŒL1�C ŒL2� D ŒD1�C � � � C ŒD8� D Œ�KX† �:

Therefore the line bundles L1 WD O.2D2 CD6 CD7/ and L2 WD O.2D1 CD5 CD6/ as well
as �KX† � L1 � L2 are nef.

Notice that although most of the constructions of our article apply to this example, it
does not satisfy the assumptions of our main Theorem 6.13 simply because the bundles L1
and L2 are nef but not ample. We could also give an example which consists of ample line
bundles on a toric variety that do not come from a nef partition, but which would even be more
complicated. Actually, we need ampleness only to apply results from quantum cohomology (like
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those presented in [39]), whereas for the constructions of the present paper, the nef assumption
is sufficient.
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2. Intersection Cohomology of Lefschetz fibrations

In this section we use the comparison result between Gauß-Manin systems of Laurent
polynomials and GKZ-systems from [46] to describe the direct image of the intersection
complex of a natural compactification of a generic family of Laurent polynomials. The input
data is an integer matrixB of maximal rank and the GKZ-system in question will be defined
by a certain homogenized matrix eB. The main tool is the Radon transformation resp. the
Fourier-Laplace transformation for monodromic D-modules ([6]).

We start by a short remainder on some basic notions from the theory of algebraic
D-modules. Then we discuss Gauß-Manin systems, GKZ-systems and intersection coho-
mology D-modules associated to the above mentioned families. Finally, we show using
some facts about quasi-equivariant D-modules that most of the objects considered here
behave well with respect to a natural torus action on the parameter space of the families of
Laurent polynomials resp. of their compactification.

2.1. Preliminaries

We review very briefly some basic results from the theory of algebraic D-modules, which
will be needed later. Let X be a smooth algebraic variety (we only consider algebraic varieties
defined over C in the paper) of dimension n and D X be the sheaf of algebraic differential
operators on X . We denote by M.D X / the abelian category of algebraic D X -modules
on X and the abelian subcategory of (regular) holonomic D X -modules byMh.D X / (resp.
.Mrh.D X //. The full triangulated subcategory in Db.D X / consisting of objects with
(regular) holonomic cohomology is denoted by Db

h
.D X / (resp. Db

rh
.D X /).

Let f W X ! Y be a map between smooth algebraic varieties. Let M 2 Db.D X /

and N 2 Db.D Y / be given, then we denote by fCM WD Rf�.D Y X

L
˝ M / resp.

f CN WD D X!Y

L
˝ f �1 N the direct resp. inverse image for D-modules. Notice that the

functors fC; f C preserve (regular) holonomicity (see e.g., [29, Theorem 3.2.3]). We denote
by D W Db

h
.D X / ! .Db

h
.D X //

opp the holonomic duality functor. Recall that for a single
holonomic D X -module M , the holonomic dual is also a single holonomic D X -module
([29, Proposition 3.2.1]) and that holonomic duality preserves regular holonomicity ([29,
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Theorem 6.1.10]). For a morphism f W X ! Y between smooth algebraic varieties we
additionally define the functors f� WD D ı fC ı D and f � WD D ı f C ı D.

In [29], the definition of the inverse image functors from above follows a different conven-
tion, which is better adapted to the Riemann-Hilbert correspondence. Our functor f C corre-
sponds to f �Œdim.Y / � dim.X /� from [29, page 31], whereas our functor f � corresponds
to f FŒdim.X / � dim.Y /� from loc.cit, Definition 3.2.13.

Let i W Z ! X be a closed embedding of a smooth subvariety of codimension d and
j W U ! X be the open embedding of its complement. This gives rise to the following
triangles for M 2 Db

rh
.D X /

iCi
CM Œ�d�! M ! jCj

CM
C1
!;(7)

j�j
� M ! M ! i�i

� M Œd �
C1
! :(8)

The first triangle is [29, Proposition 1.7.1] and the second triangle follows by dualization. We
will often use the following base change theorem.

T 2.1 ([29, Theorem 1.7.3]). – Consider the following cartesian diagram of alge-
braic varieties

Z
f 0
//

g0

��

W

g

��

Y
f
// X ;

then we have the canonical isomorphism f CgCŒd � ' g
0
Cf
0CŒd 0�, where d WD dim Y � dim X

and d 0 WD dim Z � dim W.

R 2.2. – Notice that by symmetry we have also the canonical isomorphism
gCfCŒ Qd� ' f 0Cg

0CŒ Qd 0� with Qd WD dim W � dim X and Qd 0 WD dim Z � dim Y . In the
former case we say we are doing a base change with respect to f , in the latter case with respect
to g.

R 2.3. – Using the duality functor we get isomorphisms:

f �g�Œ�d� ' g
0
�f
0�Œ�d 0� and g�f�Œ� Qd� ' f

0
� g
0�Œ� Qd 0�:

In the sequel, we will consider Fourier-Laplace transformations of various D-modules.
We give a short reminder on the definition and basic properties of the Fourier-Laplace trans-
formation. Let X be a smooth algebraic variety, U be a finite-dimensional complex vector
space and U 0 its dual vector space. Denote by E 0 the trivial vector bundle � W U 0 � X ! X

and by E its dual. Write can W U � U 0 ! C for the canonical morphism defined by
can.a; '/ WD '.a/. This extends to a function can W E � E 0 ! C.

D 2.4. – Define L WD O E 0�X E e
�can, this is by definition the free rank one

module with differential given by the product rule. Denote by p1 W E 0 �X E ! E 0,
p2 W E 0 �X E ! E the canonical projections. The Fourier-Laplace transformation is then
defined by

FL X .M / WD p2C.p
C
1 M

L
˝ L / M 2 Db

h.D E 0/:
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If the base X is a point we will simply write FL. In general, the Fourier-Laplace trans-
formation does not preserve regular holonomicity. However, it does preserve regular holo-
nomicity for the derived category of complexes of D-modules the cohomology of which
are so-called monodromic D-modules. We will give a short reminder on this notion. Let
� W C� � E 0 ! E 0 be the natural C� action on the fiber U 0 and let � be a coordinate on C�.
We denote the push-forward ��.�@� / as the Euler vector field E.

D 2.5 ([6]). – A regular holonomic D E 0 -module M is called monodromic, if the
Euler field E acts locally finite on ��.M /, i.e., for a local section v of ��.M / the set En.v/,
.n 2 N/, generates a finite-dimensional vector space. We denote by Db

mon.D E 0/ the derived
category of bounded complexes of D E 0 -modules with regular holonomic and monodromic
cohomology.

T 2.6 ([6]). – 1. FL X preserves complexes with monodromic cohomology.
2. In Db

mon.D E 0/ we have

FL X ıFL X ' Id and D ı FL X ' FL X ıD:

3. FL X is t -exact with respect to the natural t -structure on Db
mon.D E 0/ resp. Db

mon.D E /.

Proof. – The above statements are stated in [6] for constructible monodromic complexes.
One has to use the Riemann-Hilbert correspondence [6, Proposition 7.12, Theorem 7.24]
to translate the statements. So the first statement is Corollaire 6.12, the second statement is
Proposition 6.13 and the third is Corollaire 7.23 in [6].

We will make occasionally use of the so-called R -modules. More precisely, let M be a
smooth algebraic variety and consider the product of M with the affine line Cz where z is a
fixed coordinate. Then by definition RCz�M is the OCz�M -subalgebra of DCz�M locally
generated by z2@z and by z@x1 ; : : : ; z@xn where .x1; : : : ; xn/ are local coordinates on M .
Notice that j �M RCz�M Š DC�z�M

, where jM W C�z �M ,! Cz �M is the canonical open
embedding.

We will also consider the OCz�M -subalgebra R
0

Cz�M
of RCz�M which is locally gener-

ated by z@x1 ; : : : ; z@xn only. Sometimes we omit the subscript which denotes the underlying
space, so we write R resp. R

0 instead of RCz�M resp. R
0

Cz�M
. The inclusion R

0
,! R

induces a functor from the category of R -modules to the category of R
0-modules, which

we denote by Forz2@z (“forgetting the z2@z-structure”).

2.2. Gauß-Manin systems, hypergeometric D-modules and the Radon transformation

In this subsection we adapt some results from [46] to our situation. More precisely, for a
given generic family of Laurent polynomials, we describe the canonical morphism between
its Gauß-Manin-systems with compact support and its usual Gauß-Manin-systems. This
mapping can be expressed as a morphism between the corresponding GKZ-systems. We will
use this result in the next subsection to describe certain intersection cohomology modules.

We start by fixing our initial data and by introducing the GKZ-hypergeometric D-modules.
Let B be a s� t -integer matrix such that the columns of B, which we denote by .b1; : : : ; b t /,
generate Zs . Consider the torus SD .C�/s and the t C 1-dimensional vector space V (with
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coordinates �0; �1; : : : ; �t ) as well as its dual V 0 (with coordinates �0; �1; : : : ; �t ). Define
the map

g W S ! P.V 0/;

.y1; : : : ; ys/ 7! .1 W yb1 ; : : : ; ybt /;(9)

where ybi WD
Qs
kD1 y

bki
k

for i 2 f1; : : : ; tg. The condition on the columns of the matrix B
ensures that this is an embedding. If we denote the closure of the image of g in P.V 0/ by X ,
thenX is a (possibly non-normal) toric variety in the sense of [17, Chapter 5]. So we have the
following sequence of maps

(10) S
j
! X

i
! P.V 0/;

where j is an open embedding and i a closed embedding.
We will denote the homogeneous coordinates on P.V 0/ by .�0 W � � � W �t /. Let Q be the

convex hull of the elements fb0 D 0; b1; : : : ; b tg in Rs . Then by [17, Chapter 5, Prop. 1.9]
the projective variety X has a natural stratification by torus orbits X0.�/, which are in
one-to-one correspondence with faces � of the polytope Q. The orbit X0.�/ is isomorphic
to .C�/dim.�/ and is specified inside X by the conditions

(11) �i D 0 for all bi … �; �i ¤ 0 for all bi 2 �:

In particular the torus S � X is given by the face � D Q, i.e., by the equations �i ¤ 0

for all i 2 f0; : : : ; tg.
To this setup we associate the following D-modules. Write W D Ct with coordinates

�1; : : : ; �t so that V D C�0 �W .

D 2.7 ([19], [1]). – Consider a latticeZs and vectors b1; : : : ; b t 2 Z
s . Moreover,

letˇ D .ˇ1; : : : ; ˇs/ be an element inCs . WriteL for the module of relations among the columns
of B. Any element l 2 L will be written as a vector l D .l1; : : : ; lt / in Zt . Define

M
ˇ
B WD DW =

�
.�l /l2L C .Ek � ˇk/kD1;:::s

�
;

where
�l WD

Q
i Wli<0

@
�li
�i
�
Q
i Wli>0

@
li
�i
; l 2 L

Ek WD
Ps
iD1 bki�i@�i ; k 2 f1; : : : ; sg

where bki is the k-th component of bi . The DW -module M
ˇ
B is called a GKZ-system.

As GKZ-systems are defined on the affine space W , we will often work with the
DW -modules of global sections M ˇ

B WD �.W; M
ˇ
B/ rather than with the sheaves them-

selves, where DW D CŒ�1; : : : ; �t �h@�1 ; : : : ; @�t i is the Weyl algebra.
We will also consider a homogenization of the systems above. Let eB be the .sC1/�.tC1/

integer matrix with columnseb0 WD .1; 0/;eb1 WD .1; b1/; : : : ;eb t WD .1; b t /.
D 2.8. – Consider the hypergeometric system M

ěeB on V D CtC1 associated to

the vectorseb0;eb1; : : : ;eb t 2 ZsC1 and ě2 CsC1. More explicitly, M
ěeB WD DV =I , where I is

the sheaf of left ideals in DV defined by

I WD DV .�l /l2L C DV .Ek � ˇk/kD0;:::;s;
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where
�l WD @l

�0
�
Q

i Wli<0

@
�li
�i
�

Q
i Wli>0

@
li
�i

if l � 0;

�l WD
Q

i Wli<0

@
�li
�i
� @�l

�0
�
Q

i Wli>0

@
li
�i

if l < 0;

Ek WD
Pt
iD1 bki�i@�i ;

E0 WD
Pt
iD0 �i@�i :

The generic rank of the GKZ-systems M
ˇ
B resp. M

ěeB may be difficult to predict

depending the parameter (see, e.g., [40]), but if we suppose that the matrix B resp. eB satisfies
the normality assumption (see Proposition 5.1 and its proof below), then it is known that the
rank of both modules equals sŠ � vol.Conv.b1; : : : ; b t // (where vol denotes the normalized
volume, i.e., such that the volume of the hypercube is Œ0; 1�d is one).

Let h be the map given by

h W T ! V 0;(12)

.y0; : : : ; ys/ 7! .y
eb0 ; : : : ; yebt / D .y0; y0yb1 ; : : : ; y0ybt /;

where T D C��S D .C�/sC1. Notice that the restriction of h to f1g�S is exactly the map g
from Formula (9), when seen as a map to the affine chart f�0 D 1g � P.V 0/. We will later
also need the closure of the image of h in V 0, which we denote by Y . Hence Y is the affine
cone over X .

As a piece of notation, for any matrix C D .c1; : : : ; ck/, we writeNC for the semi-group
generated by the columns c1; : : : ; ck , that isNC WD

Pk
i1
Nci , where we adopt the convention

that the set N of natural numbers contains the element 0. Then we can consider the semi-
group ring CŒNeB�, which is naturally Z-graded due to the first line of the matrix eB. Hence
we can consider the ordinary spectrum of this ring as well as its projective spectrum, and it
is clear that we have Y D Spec CŒNeB� and X D Proj CŒNeB�.

We will now consider natural DV -linear maps between GKZ-systems, which will induce
a shift of the parameter. Let eB be as above and consider the map of monoids

� W NtC1 ! NeB(13)

ei 7! ebi
where the ei are the standard generators ofNtC1. Let c 2 NtC1 be given and pute
 WD �.c/.
Notice that for every ě2 CsC1 the morphism

M
ěeB !M

ěCe
eB
P 7! P � @c

is well-defined. Now let c1; c2 2 ��1.e
/. Because c1 and c2 map to the same image, their
difference c1 � c2 is a relation l among the columns of the matrix eB, thus @c1 � @c2 2 .�l /.

This shows that P � @c1 D P � @c2 in M
ěCe
eB . Thus, we are lead to the following definition.

D 2.9. – Let eB and ěbe as above. For everye
 2 NeB define the morphism

M
ěeB �@e
 // M ěCe
eB
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given by right multiplication with @c for any c 2 ��1.e
/.
In the next lemma, we establish a relation between a direct image under this morphism h

and the GKZ-systems just introduced.

L 2.10. – There exists a ıeB 2 NeB such that we have an isomorphism

(14) a W FL.hC OT /
'
! M

ěeB
for every ě2 ıeB C .R�0eB \ZsC1/. Furthermore, we have a dual isomorphism

(15) a_ W FL.h� OT /
'
 � M

�ě0eB
for every ě0 2 .R�0eB/ı \ ZsC1. For every ě; ě0 as above, the diagram below commutes up to
a non-zero constant

M
�ě0eB �@

ěC ě0
//

'a_

��

M
ěeB

FL.h� OT / // FL.hC OT /;

' a

OO

where the lower horizontal morphism is induced by the natural morphism h� OT ! hC OT .

Proof. – By [53, Corollary 3.7] we have the isomorphism FL.hC. OT � y
ě
// ' M

ěeB for

every ě … sRes.eB/ where sRes.eB/ is the set of so-called strongly resonant parameters ([53,
Definition 3.4]). Here OT � y

ě
is again the free rank one module with differential given by

the product rule. Using [46, Lemma 1.16], which says that there exists an ıeB 2 NeB such that
ıeB C .R�0eB \ZsC1/\ sRes.eB/ D ; and the fact that OT ' OT �y

e
 for everye
 2 ZsC1, the
first statement follows. The second statement follows from taking the holonomic dual of (14),
namely, we put

a_ WD Da W DM
ěeB '
! DFL.hC OT / ' FL.DhC OT / ' FL.h� OT /

and then we conclude by applying [46, Proposition 1.23].

The last statement follows from the fact that the only non-zero morphism between M
�ě0eB

and M
ěeB is right multiplication @

ěCě0 up to a non-zero constant (cf. [46, Proposition 1.24]).

We will denote by Z� P.V 0/ � V the universal hyperplane given by Z WD f
Pt
iD0 �i�i D 0g

and by U WD .P.V 0/ � V / nZ its complement. Consider the following diagram

U
�U
2

((

�U
1

uu

� _

jU
��

P.V 0/ P.V 0/ � V
�1oo

�2 // V ;

Z:

�Z
1

ii

?�

iZ

OO

�Z
2

66

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



690 T. REICHELT AND C. SEVENHECK

We will use in the sequel several variants of the so-called Radon transformation. These are
functors from Db

rh
.DP.V 0// to Db

rh
.DV / given by

R.M/ WD �Z2C .�
Z
1 /
CM ' �2C iZC i

C

Z �
C
1 M;

Rı.M/ WD �U2C .�
U
1 /
CM ' �2C jUCj

C

U �
C
1 M;

Rıc .M/ WD �U2� .�
U
1 /
CM ' �2C jU� j

C

U �
C
1 M;

Rcst.M/ WD �2C .�1/
CM;

The adjunction triangle corresponding to the open embedding jU and the closed embedding
iZ gives rise to the following triangles of Radon transformations.

RŒ�1�.M/! Rcst.M/! Rı.M/
C1
!;(16)

Rıc .M/! Rcst.M/! RŒ1�.M/
C1
!;(17)

where the second triangle is dual to the first.

We can now introduce the generic family of Laurent polynomials mentioned at the begin-
ning of this subsection. It is defined by the columns of the matrix B, more precisely, we put

'B W S �W ! V D C�0 �W;(18)

.y1; : : : ; ys; �1; : : : ; �t / 7! .�

tX
iD1

�iy
bi ; �1; : : : ; �t /:

The following theorem of [46] constructs a morphism between the Gauß-Manin
system H0

.'B;C OS�W / resp. the its proper version H0
.'B;� OS�W / and certain GKZ-

hypergeometric systems. For this we apply the triangle (16) to M D g� OS and the
triangle (17) to M D gC OS , which gives us the result.

T 2.11. – [46, Lemma 1.16, Theorem 2.7] There exists an ıeB 2 NeB such that for
every ě2 ıeBCR�0eB\ZsC1 and every ě0 2 .NeB/ı D NeB\.R�0eB/ı, the following sequences
of DV -modules are exact and dual to each other:

H s�1.S;C/˝ OV H0
.'B;C OS�W / M

ěeB H s.S;C/˝ OV

0 // H�1.Rcst.gC OS //

'

OO

// H0
.R.gC OS //

'

OO

// H0
.Rıc .gC OS //

'

OO

// H0
.Rcst.gC OS //

'

OO

// 0

0 H1
.Rcst.g� OS //oo

'

��

H0
.R.g� OS //oo

'

��

H0
.Rı.g� OS //oo

'

��

H0
.Rcst.g� OS //oo

'

��

0:oo

H sC1
c .S;C/˝ OV H0

.'B;� OS�W / M
�ě0eB H s

c .S;C/˝ OV
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If moreover NeB is saturated, then the vector ıeB can be taken to be 0 2 NeB, in particular, the
above statement holds for ěD 0 2 ZsC1.

Thus we get the following exact 4-term sequences which can be connected vertically
by the map � W H 0.R .g� OS // ! H 0.R .gC OS // induced by the natural morphism
g� OS ! gC OS . Define � to be the composition �2 ı � ı �1. The next result gives a concrete
description of this morphism:

0 // H s�1.S;C/˝ OV // H0
.R.gC OS // �2

// M
ěeB // H s.S;C/˝ OV // 0

0 H sC1
c .S;C/˝ OVoo H0

.R.g� OS //oo

�

OO

M
�ě0eB�1oo

�

OO

H s
c .S;C/˝ OVoo 0:oo

L 2.12. – The morphism � is induced by right multiplication with @ěCě0 up to a non-
zero constant.

Proof. – Once we can prove that �2 ı � ı �1 is not equal to zero we apply a rigidity

result of [46, Proposition 1.24] which says that the only maps between M
�ě0eB and M

ěeB is

right-multiplication with c � @
ěCě0 for c 2 C. We only have to show that �2 ı � ı �1

becomes an isomorphism after micro-localizing with respect to @0 � � � @t . This is sufficient as

the microlocalization of the GKZ-systems M
ěeB resp. M

�ě0eB are not zero for otherwise the
sheaves hC OT and h� OT would be supported on the divisor f�0 � �1 � � ��t D 0g, which is
obviously wrong.

It is clear that �1 and �2 become isomorphisms after (micro-)localization with respect
to @0 � � � @t because these maps have OV -free kernel and cokernel. It remains to prove that
� is an isomorphism after this micro-localization. To prove this we will use a theorem of
[12] which compares the Radon transformation with the Fourier-Laplace transformation
for D-modules. Consider the following diagram

T
h //

Qh

""

�T

��

V 0 Bl0.V
0/

p
oo

q

��

V 0 n f0g

j0

OO

�

��

S
g
// P.V 0/;

where Bl0.V 0/ � P.V 0/ � V 0 is the blow-up of 0 in V 0 and q is the restriction of the
projection to the first component. Notice that the map h W T ! V 0 from Formula (12) factors
via V 0nf0g, that is, we have h D j0 ıeh, where j0 W V 0nf0g ,! V 0 is the canonical inclusion.

It follows from [12, Proposition 1] that we have the following isomorphism

(19) R.gC OS / ' FL.pCqCgC OS /

and its holonomic dual

(20) R.g� OS / ' FL.pCqCg� OS /;
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where we have used R ı D Š D ıR, FL ıD Š D ı FL, pC ı D Š D ı pC (p is proper) and
qC ı D Š D ı qC (q is smooth). Recall that we want to show that the morphism

H0
.R.g� OS //

�
! H0

.R.gC OS //;

becomes an isomorphism after localization with respect to @�0 � � � @�t . Using the isomor-
phisms (19) and (20) and the fact that FL is an exact functor and that it exchanges the action
of �i and @�i we see that it is enough to show that

(21) H0
.pCq

Cg� OS /! H0
.pCq

CgC OS /

becomes an isomorphism after localization with respect to �0 � � ��t . In other words, we
have to show that the kernel and the cokernel of the morphism (21) are supported on
f�0 � � ��t D 0g � V

0. Obviously, we have f0g � f�0 � � ��t D 0g and hence V 0nf�0 � � ��t D 0g
� V 0nf0g. It is thus sufficient to show that kernel and cokernel of the restriction of the
morphism (21) to V 0nf0g are supported on f�0 � � ��t D 0gnf0g. Notice that the restriction
of H0

.pCq
Cg� OS / resp. H0

.pCq
CgC OS / to V 0 n f0g is isomorphic to H0

.�Cg� OS / resp.
H0

.�CgC OS /. Thus the kernel and the cokernel of (21) are supported on f�0 � � ��t D 0g

if and only if kernel and cokernel of

H0
.�Cg� OS /! H0

.�CgC OS /

are supported on f�0 � � ��t D 0gnf0g. The map � is smooth and therefore �C is an exact
functor. It is therefore enough to show that kernel and cokernel of

H0
.g� OS /! H0

.gC OS /

are supported on f�0 : : : �t D 0g � P.V 0/. But this follows from the description of the
map g, namely, by the remark right after Equation (11) the support of the cone of the
morphism g� OS ! gC OS is contained in f�0 : : : �t D 0g.

2.3. Intersection cohomology D-modules

As mentioned in the beginning of this section, our aim is to describe a DV -module
derived from the intersection complex of a natural compactification of the family of Laurent
polynomials 'B as defined in Formula (18). This module will actually appear as the Radon
transformation of the ( D-module corresponding to the) intersection complex of the variety
X � P.V 0/.

We start by fixing some notations concerning these D-modules. Let P be a smooth
variety and U � P be a smooth subvariety, write X for the closure of U inside P ,
jU W U ,! X for the open embedding of U in X and iX W X ! P for the closed embed-
ding of the closure of X in P . Consider the abelian category Perv.P/ of perverse
sheaves on P (with respect to middle perversity). For a reference about the defini-
tion and basic properties of perverse sheaves, see [14]. Recall that the simple objects
in Perv.P/ are the objects .iX /ŠIC.X ; L / where L is an irreducible local system on U

and IC.X ; L / is the intersection complex of X with coefficient in L , that is the image
of the morphism p H0

..jU /Š L / !
p H0

..RjU /� L / in Perv.X /. We will denote the
corresponding D-module on P by M IC

.X ; L /. If L is the constant sheaf CU we
will simply write M IC

.X /. The p-th intersection cohomology group of X (see [22])
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is denoted by IHp.X / and is obtained from the intersection complex by the formula
IHp.X / D Hp�dim.X/.IC.X ;CU //.

We will apply this formalism to the special situation where U D g.S/ (where g is the
embedding defined by Formula (9)), X D X and P D P.V 0/. The module M IC

.X/ is
the image of the morphism g� OS ! gC OS . In the next result, we will compute the Radon
transformation of this module.

P 2.13. – In the above situation, we have the following (non-canonical)
isomorphism of DV -modules

H0R.M IC
.X// ' M IC

.Xı; L /˚ .IH s�1.X/˝ OV /;

and

H iR.M IC
.X// ' IH iCsC1.X/˝ OV for i > 0;

H iR.M IC
.X// ' IH iCs�1.X/˝ OV for i < 0;

whereXı is some subvariety of V and L some local system on some smooth open subset ofXı.

Proof. – Using the comparison isomorphism between the Radon transformation and the
Fourier-Laplace transformation (Equation (19)) from above, we have

H iR.M IC
.X// ' H i FL.pCqCM IC

.X//

' FL H i
.pCq

CM IC
.X//

' FL H i
.pCM IC

.q�1.X///;

where the second isomorphism follows from the exactness of FL and the last isomorphism
follows from the smoothness of q. We now apply the decomposition theorem [50, corollaire 3,
Equation 0.12] which gives

(22) H i
.pCM IC

.q�1.X/// '
M
k

M IC
.Y ik ; L

i
k/

for some subvarieties Y i
k
� V 0 and some local systems L

i
k on a Zariski open subset of Y i

k
.

Notice that

jC0 H i
.pCM IC

.q�1.X/// ' jC0 H i
.pCq

CM IC
.X//

' H i
.jC0 pCq

CM IC
.X//

' H i
.�CM IC

.X//

' H i
.M IC

.��1.X///;

which is equal to 0 for i ¤ 0 and equal to M IC
.Y n f0g/ for i D 0 (recall from Section 2.2,

more precisely, from the discussion before Lemma 2.10, that Y is the cone of X in V 0). Thus
the decomposition from (22) becomes

H0
.pCM IC

.q�1.X/// ' M IC
.Y /˚ S 0;

resp.
H i

.pCM IC
.q�1.X/// ' S i i ¤ 0;
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where the S i are D-modules with support at 0, i.e., S i ' i0CSi , where the Si are finite-
dimensional vector spaces and i0 W f0g ! V 0 is the natural embedding. We now use the
fact that FL is an equivalence of categories, which means that it transforms simple object to
simple objects, so we set

(23) M IC
.Xı; L / WD FL.M IC

.Y //:

It also transforms D-modules with support at 0 to free O-modules, i.e., FL.S i / ' Si ˝ OV .
In order to show the claim, we have to compute the Si . Recall that we have

(24) pCqCM IC
.X/ '

M
j

H j
.pCq

CM IC
.X//Œ�j � '

M
j¤0

Sj Œ�j �˚ S 0 ˚ M IC
.Y /;

where the first isomorphism is non-canonical. We compute

H i .aV 0/CpC.q
CM IC

.X// ' H i .aP/CqC.q
CM IC

.X//

' H i .aP/CM IC
.X/Œ1� ' IH iCsC1.X/

(here aV 0 W V 0 ! fptg resp. aP W P.V 0/ ! fptg are the projections to a point), where
the second isomorphism follows from [35, Corollary 2.7.7 (iv)] and the Riemann-Hilbert
correspondence. For the right hand side of Equation (24) we get

H i .aV 0/C

0@M
j¤0

Sj Œ�j �˚ S 0 ˚ M IC
.Y /

1A ' Si for i � 0;

H i .aV 0/C

0@M
j¤0

Sj Œ�j �˚ S 0 ˚ M IC
.Y /

1A ' Si ˚ IH iCsC1.Y /(25)

' Si ˚ IH
iCsC1
p .X/ for i < 0;

where IH iCsC1
p .X/ is the primitive part of IH iCsC1.X/ and where the last isomorphism

follows from [37, Chapter 4.10]. Therefore we have

Si ' IH
iCsC1.X/ for i � 0;

Si ' L.IH
iCs�1.X// ' IH iCs�1.X/ for i < 0;

whereL W IH iCs�1.X/! IH iCsC1.X/ is the Lefschetz operator which is injective for i � 0.

In the next proposition we show that at a generic point � 2 V the Radon transformation
R.M IC

.X// of M IC
.X/ measures the intersection cohomology of X \H�, where H� is

the hyperplane in P.V 0/ corresponding to �.

P 2.14. – Let � be a generic point of V and denote by i� W f�g ! V its
embedding. We have the following isomorphism

iC
�

R.M IC
.X// ' R�.X \H�; ICX\H�/;

in particular
H j

.iC
�

R.M IC
.X/// ' IH jCs�1.X \H�/:
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Proof. – Consider the following diagram where all squares are cartesian

X

i

��

ZX
�X
1oo

�

��

X \H�
iXoo

�H

��

P.V 0/ Z
�Z
1oo

�Z
2

��

H�

�H

��

iHoo

V f�g:
i�

oo

We have

DR.iC
�

R.M IC
.X/// ' i Š�R�

Z
2�.�

Z
1 /

ŠiŠIC.X/Œ1�

' i Š�R�
Z
2�R���

XŠ
1 IC.X/Œ1�

' R�H� i
Š
HR���

XŠ
1 IC.X/Œ1�

' R�H� R�
H
� i

Š
X�

XŠ
1 IC.X/Œ1�

' R.�H ı �H /�.�
X
1 ı iX /

ŠIC.X/Œ1�

' R.�H ı �H /�IC.X \H�/

' R�.X \H�; IC.X \H�//;

where the first isomorphism follows from DR ı iC
�
D i Š

�
ı DRŒt C 1� and DR ı .�Z1 /

C '

.�Z1 /
Š ı DRŒ�t � (see e.g., [29, Theorem 7.1.1]), the second, third and fourth isomorphism

follows from base change (see e.g., [14, Theorem 3.2.13(ii)] and the sixth isomorphism follows
from [22, Section 5.4.1] (notice that their IC.X/ is our IC.X/Œn� where n D dimC.X/) and
the fact that for a generic � the hyperplaneH� is transversal to a given Whitney stratification
ofX . The first claim now follows from the fact that the de Rham functorDR is the identity on
a point. The second claim follows fromHj�sC1.X\H�; IC.X\H�// ' IH j .X\H�/.

R 2.15. – Combining Proposition 2.13 and Proposition 2.14 we see that we have the
following decomposition for generic � 2 V :

IH s�1.X \H�/ ' H0
.iC
�

R.M IC
.X///

' iC
�

H0
.R.M IC

.X/// ' iC
�

M IC
.Xı; L /˚ IH s�1.X/:

This is the intersection cohomology analog of the decomposition of the cohomology of a smooth
hyperplane section of a smooth projective variety into its vanishing part and the ambient part.

We will now show that M IC
.Xı; L / can expressed as an image of a morphism between

GKZ-systems.

T 2.16. – Let ě; ě0 be as in Theorem 2.11, then

M IC
.Xı; L / ' im.M

�ě0eB �@
ěC ě0
! M

ěeB/:
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Proof. – First recall that we have shown in the proof of Proposition 2.13. that
M IC

.Xı; L / ' FL.M IC
.Y //. On the other hand, as Y is the closure in V 0 of the image of

the morphism h, the module M IC
.Y / is isomorphic to the image of h� OT ! hC OT . As the

Fourier-Laplace transformation is exact we can conclude that M IC
.Xı; L / is isomorphic

to the image of FL.h� OT /! FL.hC OT /.

By Lemma 2.10 we know that FL.hC OT / is isomorphic to M
ěeB for everyě2 ıeB C .R�0eB \ZsC1/ and that FL.h� OT / is isomorphic to M

�ě0eB for everyě0 2 .R�0eB/ı \ ZsC1. It follows now from the last statement of Lemma 2.10, that the

induced morphism between M
�ě0eB and M

ěeB is equal to �@
ěCě0 up to some non-zero

constant.

In general it is quite difficult to make any precise statement on the varietyXı and the local
system L which define the module M IC

.Xı; L /. Nevertheless, if we restrict our attention
to the situation where the matrix B defining the embedding g W S ,! P.V 0/ is given
by the primitive integral generators of a toric manifold which is given by a total bundle
V. E _/� X†, where E is a split convex vector bundle over another toric manifold X† such
that the zero locus of a generic section is a nef complete intersection (i.e., the situation
considered from Section 4 on, see also the introduction in Section 1), then we expect that
Xı D V . In order to show this, one would need to prove that if we restrict the morphism

M
�ě0eB �@

ěC ě0
! M

ěeB from the last theorem to a generic point of V , then it is not the zero map.

It is well known (see, e.g., [1]) that the restriction of M
ěeB to a generic point is the quotient

of CŒNeB� by the ideal generated by the Euler vector fields
Pt
iD0

ebki�i@�i (k D 0; : : : ; s),
where now .�0; : : : ; �t / are the components of the generic point we restrict to. Hence one
needs to show that the monomial @

ěCě0 does not lie in this ideal. Nevertheless, we do not
have, at this moment, any further evidence for this to be true.

Even under the above restrictive assumptions on B and even if we suppose that Xı D V ,
it is not easy to predict the rank of L . What we expect is that the generic rank of the

module dM IC
.Xı; L / from Theorem 3.6 below can be identified with the dimension of the

image of the map

H�.X†;C/
[ctop. E /
! H�.X†;C/:

However, the module M IC
.Xı; L / resp. the local system L may contain constant subobjects

that vanish after localized Fourier-Laplace transformation (see Section 3 below for more

details). Hence its rank may be different from that of dM IC
.Xı; L /.

For applications like those in the last section, we need a description of M IC
.Xı; L / as

a quotient of a GKZ-system, rather than submodule of it. For this purpose, denote by K

the kernel of the morphism M
�ě0eB �@

ěC ě0
! M

ěeB , then M IC
.Xı; L / is isomorphic to the

quotient M
�ě0eB =K in the abelian category of regular holonomic D-modules. The next

result gives a concrete description of K as a submodule of M
�ě0eB .
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First, we define a sub-DV -module �@;c.M
�ě0eB / of M�

ě0eB , where c 2 ��1.ěC ě0/ (cf.
Equation (13)) :

�@;c.M
�ě0eB / WD fm 2M

�ě0eB j 9n 2 N with .@c/n �m D 0g:

Recall that two elements @c1 and @c2 with c1; c2 2 ��1.ěC ě0/ differ by some element P ��l ,

where P 2 CŒ@0; : : : ; @s� and l D c1 � c2. Any element m 2 M
�ě0eB is eliminated by left

multiplication with some high enough power ofP ��l . This shows that�@;c.M
�ě0eB / is actually

independent of the chosen c 2 ��1.ěC ě0/. Thus we denote it just by �@.M
�ě0eB / and the

corresponding sub- DV -module of M
�ě0eB by �@.M

�ě0eB /.

P 2.17. – Let ě, ě0 be as in Theorem 2.11 and let K be the kernel of

M
�ě0eB �@

ěC ě0
! M

ěeB . Then

K ' �@.M
�ě0eB /; in particular M IC

.Xı; L / ' M
�ě0eB =�@.M

�ě0eB /:

Proof. – Recall that the morphism M
�ě0eB �@

ěC ě0
! M

ěeB is induced by the morphism

FL.h� OT / ! FL.hC OT /, where we used the isomorphisms M
�ě0eB ' FL.h� OT / and

M
ěeB ' FL.hC OT /. Applying the Fourier-Laplace transformation again and using

FL ıFL D Id , we see that the morphism FL.M
�ě0eB /

�w
ěC ě0
! FL.M

ěeB/ is induced by

the morphism h� OT ! hC OT . We will calculate the kernel of FL.M
�ě0eB /

�w
ěC ě0
! FL.M

ěeB/.
First notice that the map h can be factorized as h D k ı l , where k is the canonical inclusion
of .C�/tC1 ! V 0 and the map l is given by

l W T ! .C�/tC1;

.y0; : : : ; yr / 7�! .y
eb0 ; : : : ; yebt / D .y0; y0yb1 ; : : : ; y0ybt /:

This shows that FL.M
ěeB/ ' kClC OT is localized along V 0 n .C�/tC1, i.e., FL.M

ěeB/ '
kCk

C FL.M
ěeB/. Let D1 D fw

ěCě0 D 0g, set U1 WD V 0 n D1 and denote by j1 W U1 ! V 0

the canonical inclusion. Because .C�/tC1 � U1, the D-module FL.M
ěeB/ is also local-

ized along D1, i.e, FL.M
ěeB/ ' j1Cj

C
1 FL.M

ěeB/. Notice that the induced morphism

jC1 FL.M
�ě0eB / ! jC1 FL.M

ěeB/ is an isomorphism, because w
ěCě0 is invertible on U1.

Therefore we can conclude that j1CjC1 FL.M
�ě0eB / ! j1Cj

C
1 FL.M

ěeB/ ' FL.M
ěeB/ is an

isomorphism. It is therefore enough to calculate the kernel of FL.M
�ě0eB /! j1Cj

C
1 FL.M

�ě0eB /.

On the level of global sections this is H 0
D1
.FL.M�

ě0eB // (cf. [29, Proposition 1.7.1]) which is
given by

H 0
D1
.FL.M�

ě0eB // D fm 2 FL.M�
ě0eB / j 9n 2 N with .w

ěCě0/n �m D 0g:
Applying the Fourier-Laplace transformation to this kernel shows the claim.
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2.4. The equivariant setting

In this section we show that the D-modules discussed above are quasi-equivariant
with respect to a natural torus action. We review the definition of an quasi-equivariant
D-modules from [34, Chapter 3] and prove some simple statements for these.

Let X be a smooth, complex, quasi-projective variety andG be a complex affine algebraic
group, which acts on X . Denote by � W G � X ! X the action of G on X and by
p2 W G � X ! X the second projection. A D X -module M is called quasi-G-equivariant
if it satisfies �CM ' pC2 M as OG � D X -modules together with an associative law (cf.
[34, Definition 3.1.3]). We denote the abelian category of quasi-G-equivariant D X -modules
by M.D X ; G/ and the subcategories of coherent, holonomic and regular holonomic quasi-
G-equivariant D X -modules by Mcoh.D X ; G/ resp. Mh.D X ; G/ resp. Mrh.D X ; G/. The
corresponding bounded derived categories are denoted byDb

�.D X ; G/ for � D ;; coh; h; rh.
A O X -module F is called G-equivariant if �� F ' pr� F as OG�X -modules and if it

satisfies an associative law (expressed as the commutativity of a certain diagram, see [34,
Definition 3.1.2]). We denote by Mod. O X ; G/ the category of G-equivariant O X -modules
and by Modcoh. O X ; G/ the subcategory of coherent G-equivariant O X -modules.

Let f W X ! Y be a G-equivariant map. Then the direct image resp. the inverse image
functors preserve quasi-G-equivariance (cf. [34, Equation (3.4.1), Equation (3.5.2)].

We will now show that the duality functor preserves quasi-G-equivariance.

P 2.18. – Let M 2 Db
coh.D X ; G/ then D.M/ 2 Db

coh.D X ; G/
opp.

Proof. – By a dévissage we may assume that M is a single degree complex, i.e.,
M 2 Modcoh.D X ; G/. By [34, Lemma 3.3.2] for every N 2 Modcoh. O X ; G/ there exists
a G-equivariant locally-free O X module L of finite rank and a surjective G-equivariant
morphism L � N . Notice that there exists a G-equivariant coherent O X -submodule K
of M with D X ˝ K D M . This enables us to construct a locally-free, G-equivariant
resolution

� � � ! L2 ! L1 ! L0 ! K ! 0

of K in Modcoh. O X ; G/, which gives rise to a resolution of M

� � � ! D X ˝ L2 ! D X ˝ L1 ! D X ˝ L0 !M ! 0

in Modcoh.D X ; G/ by the exactness of D X˝ O X
. We have

DM D RHomD X
.M; D X /˝�

˝�1
X Œdim X �

' HomD X
.D X ˝ L�; D X /˝�

˝�1
X Œdim X �

' .Hom O X
.L�; O X /˝ D X /˝�

˝�1
X Œdim X �

' D X ˝ Hom O X
.L�; O X /Œdim X �:

But Hom O X
.L�; O X / is again a complex in Modcoh. O X ; G/, which can be easily seen by the

local-freeness of the Li . Thus we can conclude that DM 2 Db
coh.D X ; G/

opp.

C 2.19. – Let f W X ! Y be a G-equivariant map. Then the proper direct
image and the exceptional inverse image functor preserves quasi-G-equivariance.

Proof. – This follows from f� D D ı fC ı D and f � D D ı f C ı D.
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In the next proposition we will show that the characteristic variety of a quasi-G-equiv-
ariant D-module is G-invariant. For that purpose, we will consider the action induced by �
on the cotangent bundle T �X . More precisely, consider the differential d� of the action map,
which is a map of vector bundles d� W ��T �X ! T �.G � X / D T �G � T �X over G � X ,
or, equivalently, a map d� W .G� X /�X T

�X ! T �G�T �X of smooth complex varieties.
Notice that

t W G � T �X ! .G � X / �X T
�X D f..g; x/; v/ j�.v/ D �.g; x/ 2 X g ;

.g; v/ 7�! .g; �.g�1; �.v//; v/

is an isomorphism, with inverse map sending ..g; x/; v/ to .g; v/. Now consider the compo-
sition � W ep2 ı d� ı t W G � T �X ! T �X , where ep2 W T �G � T �X ! T �X is the second
projection. One easily checks that we have �.g1 �g2; x/ D �.g1; �.g2; x//, i.e., that we obtain
an action of G on T �X . Notice that for any g 2 G, the map �.g;�/ W T �X ! T �X is
nothing but the differential d�g of the map �g W X ! X where �g.x/ WD �.g; x/. Notice
that for M 2 Db.D X ; G/ one has �Cg M 'M by the quasi-G-equivariance of M .

P 2.20. – Let M 2 Db
coh.D X ; G/, then the characteristic variety char.M/

ofM is invariant under theG-action on T �X given by �. Moreover, ifG is irreducible then the
irreducible components of char.M/ are also G-invariant.

Proof. – For both statements it is sufficient to show invariance under the morphism
�g for any g 2 G. We are going to use the following fact (cf. [29, Lemma 2.4.6(iii)]).
Let f W X ! Y be a morphism between smooth algebraic varieties. One has the natural
morphisms

T �X X �Y T
� Y

�f
oo

!f
// T � Y :

Let M 2Modcoh.D Y /. If f is non-characteristic then char.f CM/ � �f !
�1
f
.char.M//.

We want to apply this to the case f D �g . Notice that in this case the maps ��g and !�g
are isomorphisms and ��g ı !

�1
�g
D d�g . Thus we have

char.M/ D char.�Cg M/ � d�g.char.M//:

Repeating the argument with �g�1 gives char.M/ � d�g�1.char.M//. Now applying d�g to
both sides of the latter inclusion shows the first claim.

Now assume that G is irreducible and let Ci be an irreducible component of Ch.M/.
Notice that G � Ci is irreducible. Consider the scheme-theoretic image I of G � Ci under
the induced action map � W G � char.M/! char.M/. Then � W G � Ci ! I is a dominant
morphism. We want to show that I is irreducible. Let U � I be an affine open set. The

restriction �
�1
.U / ! U is still dominant and induces an injective ring homomorphism

OI .U /! OG�Ci .�
�1
.U //. As G � Ci is irreducible and reduced the ring OG�Ci .�

�1
.U // is

a domain. Thus OI .U / is also a domain and because U was chosen arbitrary we conclude
that I is irreducible. Notice that we have Ci � I � char.M/ and therefore Ci D I , which
shows the claim.

The proposition above enables us to prove that a section of a quotient map of a free action
is non-characteristic with respect to quasi-G-equivariant D-modules.
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L 2.21. – Let G � X ! X be a free action and �G W X ! X=G a geometric
quotient. Let iG W X=G ! X be a section of �G , then iG is non-characteristic with respect to
every M 2 Db

rh
.G; D X /.

Proof. – We consider X=G as smooth subvariety of X . Notice that X=G is transversal
to the orbits of the G-action on X given by �. Let char.M/ D

S
i2I Ci be the decomposi-

tion into irreducible components and put X i WD �.Xi / so that Ci D T �X i X . From Proposi-
tion 2.20 we know thatCi is invariant under the action given by �, and hence a union of orbits
of this G-action. On the other hand, the image under the projection � W T �X ! X of such
an orbit is necessarily an orbit of the original action given by �. Hence X i is a union

S
j X

.j /
i

ofG-orbits, more precisely, these orbits form a Whitney stratification of X i (see, [13, Propo-
sition 1.14]). Whitney’s condition A then implies that T �X i X �

S
j T
�

X
.j/

i

X i . Transversality

of X=G and the orbits X
.j /
i means that T �

X=G
X\T �

X
.j/

i

X i � T
�
X X , from which we deduce

that T �
X=G

X \ T �X i X i � T �X X and hence T �
X=G

X \ char.M/ � T �X X . Thus iG non-
characteristic with respect to M as required.

Let V � D C � .C�/t and let jV � W V � ! V be the canonical embedding. Consider the
following diagram

(26) S

j

��

�
�S
1oo

�

��

��
j��oo

�

��

X

i

��

ZX

�

��

oo Z�X

"

��

j
Z�
Xoo

P.V 0/ Z
�Z
1oo

�Z
2

��

Z�
jZ�oo

ı

��

V V �
jV�oo

where the varieties Z�; Z�X ; �
� together with the maps jZ� ; jZ�

X
; j�� and ı; "; � are induced

by the base change jV � . Thus all squares in the diagram above are cartesian.
We now specify to the case G D .C�/s . We let G act on S and V by

G � S ! S;(27)

.g1; : : : ; gs; y1; : : : ; ys/ 7! .g1y1; : : : gsys/;

G � V ! V;

.g1; : : : ; gs; �0; : : : ; �t / 7! .�0; g
�b1�1; : : : ; g

�bt�t /:

We also define the following G-action on P.V 0/:

G � P.V 0/! P.V 0/;(28)

.g1; : : : ; gs; .�0 W � � � W �t // 7! .�0 W g
b1�1 W � � � W g

bt�t /:

This makes map g D i ı j W S ! P.V 0/ G-equivariant. There is a natural action of G
on P.V 0/ � V resp. S � V which leaves the subvarieties Z D f

Pt
iD0 �i�i D 0g resp.
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� D f�0 C
Pt
iD1 �iy

bi D 0g invariant. It is now easy to see, using the induced actions
on � resp. Z, that the maps �Z1 ; �

Z
2 ; �

S
1 as well as � and � are G-equivariant.

Notice that G leaves V � invariant and acts freely on it, but this shows that G acts also
freely on Z�, Z�X and ��. Therefore also the maps ı; "; � are G-equivariant. Notice that the
action of G on P.V 0/ as defined in Formula (28) is not free, there are orbits of dimension
strictly smaller dimension than s D dim.G/.

Because we have ZB D Zs , there exist matrices N1 2 Gl.s � s;Z/ and N2 2 Gl.t � t;Z/
such that

(29) B D N1 � .Is j 0s�r / �N2;

where r WD t � s. Define matrices

L WD N�12 �

�
0s�r

Ir

�
; M WD .0r�s j Ir / �N2; C WD N�12 �

�
Is

0r�s

�
�N�11 ; D WD .C �B/t ;

whose entries we denote by lij , mj i , cik and dil , respectively. Then M � L D Ir , B � C D Is ,
B � L D 0, M � C D 0 and

(30) C � B C L �M D It :

Consider the following map, where F WD .C�/s and K M WD .C�/s :

TP W P.V
0/ � C � F � K M ! P.V 0/ � V �;

..�0 W � � � W �t /; �0; f1; : : : ; fs; q1; : : : ; qr / 7! ..�0 W f
�b1�1 W � � � W f

�bt�t /;

�0; f
b1 � qm1 ; : : : ; f bt � qmt /

with f bi D
Qs
kD1 f

bki
k

, qmi D
Qr
jD1 q

mji
j and inverse

T �1P W P.V 0/ � V � ! P.V 0/ � C � F � K M ;

..�0 W � � � W �t /; �0; : : : ; �t / 7! ..�0 W �
d1�1 W � � � W �

d t�t /; �0; �
c1 ; : : : ; �cs ; �l1 ; : : : ; �lr /

with �ck WD
Qt
iD1 �

cik
i , �lj D

Qt
iD1 �

lij
i and �d l WD

Qt
iD1 �

dil
i D

Qt
iD1 �

P
k cikbkl

i .

Notice that the space K M will reappear in Section 6 (see the explanations after the exact
sequence (60)), where it similarly denotes the r-dimensional torus .C�/r . There is however
a difference: in the present section, our input data is the matrix B, and the map TP and
its inverse T �1P are defined by the choice of the matrices N1 and N2 which have to satisfy
only Equation 29. In Section 6, we work with a toric variety (and the matrix B is given by
the primitive integral generators of its rays), and here these choices have to satisfy much
finer conditions. Nevertheless, we will use the same symbol in order to avoid overloading the
notation too much.

Recall the following G-action on P.V 0/ � V �

G � .P.V 0/ � V �/! P.V 0/ � V �;

.g1; : : : ; gs; .�0 W � � � W �t /; �0; : : : ; �t / 7! ..�0 W g
b1�1 W � � � W g

bt�t /; �0; g
�b1�1; : : : ; g

�bt�t /:
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Consider the following G-action on P.V 0/ � C � F � K M

G � .P.V 0/ � C � F � K M /! P.V 0/ � C � F � K M ;

.g1; : : : ; gs; .�0 W � � � W �t /; �0; f1; : : : ; fs; q1; : : : ; qr / 7! ..�0 W �1 W � � � W �t /;

�0; g
�1
1 f1; : : : ; g

�1
s fs; q1; : : : ; qr /:

It is easy to see that TP resp. T �1P is G-equivariant with respect to the G-actions above.
Consider the map

TS W S � C � F � K M ! S � V �;

.y1; : : : ; ys; �0; f1; : : : ; fs; q1; : : : ; qr / 7! .f �11 y1; : : : ; f
�1
s ys; �0; f

b1 � qm1 ; : : : ; f bt � qmt /

and its inverse

T �1S W S � V � ! S � C � F � K M ;

.y1; : : : ; ys; �0; : : : ; �t / 7! .�c1y1; : : : ; �
csys; �0; �

c1 ; : : : ; �cs ; �l1 ; : : : ; �lr /;

where one has to use (30).
Recall the G-action on S � V �

G � .S � V �/! S � V �;

.g1; : : : ; gs; �0; : : : ; �t / 7! .g1y1; : : : ; gsys; �0; g
�b1�1; : : : ; g

�bt�t /

and consider the following G-action on S � C � F � K M

G � .S � C � F � K M /! S � C � F � K M ;

.g1; : : : ; gs; y1; : : : ; ys; �0; f1; : : : ; fs; q1; : : : ; qr / 7! .y1; : : : ; ys;

�0; g
�1
1 f1; : : : ; g

�1
s fs; q1; : : : ; qr /:

It is again easy to see that TS resp. T �1S isG-equivariant with respect to theG-actions above.
The subvarieties Z� resp. �� are then given by �0�0 C

Pt
iD1 �i � q

mi D 0 resp.

�0 C
Pt
iD1 y

bi � qmi D 0.
Finally consider the maps

(31)

T W C � F � K M ! V �;

.�0; f1; : : : ; fs; q1; : : : ; qr / 7! .�0; f
b1 � qm1 ; : : : f bt � qmt /;

T �1 W V � ! C � F � K M ;

.�0; : : : ; �t / 7! .�0; �
c1 ; : : : ; �cs ; �l1 ; : : : ; �lr /;

which are G-equivariant with respect to the G-action on V � and the following G-action
on C � F � K M

G � .C � F � K M /! C � F � K M ;

.g1; : : : ; gs; �0; f1; : : : ; fs; q1; : : : ; qr / 7! .�0; g
�1
1 f1; : : : ; g

�1
s fs; q1; : : : ; qr /:

TheG-equivariant isomorphisms above show that the geometric quotients of V �,Z� and
�� by G exist and are given by C � K M ,

Z WD f�0�0 C

tX
iD1

qmi�i D 0g � P.V
0/ � C � K M
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and

G WD f�0 C

tX
iD1

qmiybi D 0g � S � C � K M ;

respectively. We denote the corresponding quotient maps by �V
�

G ; �Z
�

G and ��
�

G .

Notice that we have a natural section iV
�

G to �V
�

G , which is induced by the inclusion

C � K M ! C � F � K M ;

.�0; q1; : : : ; qr / 7! .�0; 1; : : : ; 1; q1; : : : ; qr /

and the isomorphism above. This gives also rise to sections iZ
�

G and i�
�

G of �Z
�

G resp. ��
�

G .
Consider the following diagram

(32) S

j

��

�
�S
1oo

�

��

��
j��oo

�

��

��
�

G

66 G




��

i�
�

Goo

X

i

��

ZX

�

��

oo Z�X

"

��

j
Z�
Xoo ZX

ˇ

��

i
Z�
X

Goo

P.V 0/ Z
�Z
1oo

�Z
2

��

Z�
jZ�oo

ı

��

�Z
�

G

66 Z

˛

��

iZ
�

Goo

V V �
jV�oo

�V
�

G

33
C � K M :

iV
�

Goo

Notice also that all squares are cartesian.

P 2.22. – Let iZ
�

G W Z ! Z� resp. iV
�

G W C � K M ! V � be the sections
constructed above.

1. The DZ� -modules

." ı �/� O�� ; ." ı �/C O�� and M IC
.Z�X /

are quasi-G-equivariant and non-characteristic with respect to iZ
�

G .
2. The DV � -modules

H0
.'B;� OS�W �/ and H0

.'B;C OS�W �/

are quasi-G-equivariant and non-characteristic with respect to iV
�

G .
3. We have

.iZ
�

G /CM IC
.Z�X / ' M IC

.ZX /:

In particular we have

(33) ˛CM IC
.ZX / ' i

C

K M
R
�

M IC
.X/

�
;

where iK M WD jV � ı i
V �

G is non-characteristic with respect to R.M IC
.X//.
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Proof. – 1. First notice that because the map .i ı j / W S ! P.V 0/ is affine and this
property is preserved by base change, the map ."ı�/ is also affine. Thus the direct image
as well as the proper direct image of O�� is a single DZ� -module. The closure of ��

in Z� is Z�X , therefore we have

(34) M IC
.Z�X / D im.." ı �/� O�� ! ." ı �/C O��/ 2Modrh.DZ�/ :

To show the first claim, it is enough by Lemma 2.21 to show that the corresponding
D-modules are quasi-G-equivariant. First recall that �� � S � V � and denote by
� W �� ! S the restriction of the projection to the first factor. Notice that � is G-equiv-
ariant and O�� ' �

C OS . Therefore O�� is a quasi-G-equivariant D-module. Because
"; � is G-equivariant we see that ." ı �/� O�� and ." ı �/C O�� are quasi-G-equivariant.
Furthermore, because of Equation (34) and the fact that Mod.G; DZ�/ is an abelian
category the D-module M IC

.Z�X / is quasi-G-equivariant.
2. For the second point, consider the action of G on W � D .C�/t which is given by

G �W � ! W �;

.g1; : : : ; gs; �1; : : : ; �t / 7! .g�b1�1; : : : ; g
�bt�t /:

This action together with the action (27) induces a G-action on S � W �. It is easy
to see that 'B jS�W � is G-equivariant. Thus the DV � -modules H0

.'B;� OS�W �/ and
H0

.'B;C OS�W �/ are quasi-G-equivariant.The fact that iV
�

G is non-characteristic with
respect to these DV � -modules follows now again from Lemma 2.21.

3. To show the third claim, consider the following isomorphisms

M IC
.ZX / ' im

�
.ˇ ı 
/� O G ! .ˇ ı 
/C O G

�
' im

�
.ˇ ı 
/�.i

��

G /� O�� ! .ˇ ı 
/C.i
��

G /C O��
�

' im
�
.iZ
�

G /�." ı �/� O�� ! .iZ
�

G /C." ı �/C O��
�

' .iZ
�

G /Cim
�
." ı �/� O�� ! ." ı �/C O��

�
' .iZ

�

G /CM IC
.Z�X /;

where the second isomorphism follows from .i�
�

G /C O�� ' O G , the fact that O�� is
non-characteristic for i�

�

G and [29, Theorem 2.7.1(ii)]. The third isomorphism follows
by base change and the fourth isomorphism follows from the fact that iZ

�

G is non-
characteristic with respect to ." ı �/� O�� and ." ı �/C O�� .

For the last claim consider the following diagram

Z

�Z
2

��

Z�
jZ�oo

ı

��

Z
iZ
�

Goo

˛

��

V V �
jV�oo C � K M

iV
�

Goo
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We have the following isomorphisms

˛CM IC
.ZX / ' ˛C.i

Z�

G /CM IC
.Z�X /

' ˛C.i
Z�

G /CjCZ� M IC
.ZX /

' .iV
�

G /CjCV ��
Z
2CM IC

.ZX /

' iC
K M

�Z2CM IC
.ZX /

' iC
K M

�Z2C.�
Z
1 /
CM IC

.X/

' iC
K M

R.M IC
.X//:

The non-characteristic property of iK M D jV � ı i
V �

G follows from Lemma 2.21 and
the fact that jCV �R.M IC

.X// is quasi-G-equivariant.

3. Fourier-Laplace transformation and lattices

In this section we apply the Fourier-Laplace transformation functor FLW to the various
D-modules considered in Section 2. For the families of Laurent polynomials resp. compact-
ifications thereof that appear in mirror symmetry, we obtain D-modules that can eventu-
ally be matched with the differential systems defined by quantum cohomology. They have
in general irregular singularities, and this is reflected in the fact that although the modules
considered in Section 2 were monodromic on V , they do not have necessarily that property
with respect to the vector bundle V D C�0�W ! W . Hence the functor FLW will in general
not preserve regularity.

In the second part of this section, we study a lattice in the Fourier-Laplace transformation
of the Gauß-Manin system of the family of Laurent polynomials 'B . It is given by a so-called
twisted de Rham complex, however, in order to obtain a good hypergeometric description
of it, we have to introduce a certain intermediate compactification of 'B and replace this de
Rham complex by a logarithmic version. Moreover, the parameters of the family 'B have to
be restricted to a Zariski open set excluding certain (but not all) singularities at infinity. Then
we can show the necessary finiteness and freeness of the lattice. It will later correspond to
the twisted quantum D-module (see Section 4), seen as a family of algebraic vector bundles
over Cz (not only over C�z ) with connection operator which is meromorphic along fz D 0g.

3.1. Localized Fourier-Laplace Transform

We discuss here a partial localized Fourier-Laplace transform of the Gauß-Manin systems
of 'B and of the D-module M IC

.Xı; L /.
Consider the product decomposition V D C�0 � W , where W is the hyperplane given

by �0 D 0. We interpret V as a rank one bundle with base W and consider the Fourier-
Laplace transformation with respect to the baseW as in Definition 2.4, where we denote the
coordinate on the dual fiber by � . Set z D 1=� and denote by j� W C�� �W ,! C� �W and
jz W C

�
� �W ,! OV WD Cz �W D P

1
� n f� D 0g �W the canonical embeddings. Let N be a

DV -module, the partial, localized Fourier-Laplace transformation is defined by

FLloc
W .N / WD jzCj

C
� FLW .N /:
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The localized Fourier-Laplace transformations of the Gauß-Manin systems are denoted
by

GC WD FLloc
W .H0

.'B;C OS�W //;(35)

G � WD FLloc
W .H0

.'B;� OS�W // :(36)

We also consider the partial, localized Fourier-Laplace transform of the D-modules M
ěeB .

The following notation will be useful.

D 3.1. – Let cM .ˇ0;ˇ/
B be the DbV -module DbV Œz�1�=I , where I is the left ideal

generated by the operators b�l , bEk � ˇkz and bE � ˇ0z, which are defined byb�l WD Q
i Wli<0

.z � @�i /
�li �

Q
i Wli>0

.z � @�i /
li ; l 2 LBbE WD z2@z CPt

iD1 z�i@�i ;bEk WDPt
iD1 bkiz�i@�i ; k D 1; : : : ; s:

We denote the corresponding DbV -module by dM .ˇ0;ˇ/

B .

L 3.2. – We have the following isomorphism

FLloc
W .M

ěeB/ 'dM .ˇ0C1;ˇ/

B

for every ěD .ˇ0; ˇ/ 2 ZsC1.

Proof. – This is an easy calculation, using the substitution

�0 ! �@� D z
2@z and @�0 ! � D 1=z

and the fact that dM .ˇ0;ˇ/

B is localized along z D 0.

Notice that in the lemma above we used the subscript eB for the GKZ-system on the left
hand side and the subscript B for its localized Fourier-Laplace transform on the right hand

side. This notation takes into account the fact that the properties of the system M
ěeB are

governed by the geometry of the semi-group NeB, whereas the properties of its localized

Fourier-Laplace transform dM .ˇ0C1;ˇ/
depend on the geometry of NB. This explains the

different sets of allowed parameters in Proposition 3.3 resp. Theorem 3.6 in contrast to
Theorem 2.11 resp. Theorem 2.16 and Proposition 2.17.

Notice that under the normality assumption on the semi-groupNeB, the rank of dM .ˇ0;ˇ/

B

is also equal to dŠ � vol.Conv.b1; : : : ; b t // (this can be shown by an argument similar to [47,
Proposition 2.7]).

The following proposition gives an isomorphism between the localized partial Fourier-
Laplace transform of the Gauß-Manin systems GC and G � and the hypergeometric

systems dM .ˇ0;ˇ/

B introduced above.
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P 3.3. – There exists a ıB 2 NB such that we have an isomorphism

GC 'dM .ˇ0;ˇ/

B

for every ˇ0 2 Z and ˇ 2 ıB C .R�0B \ Zs/. If NB is saturated, then ıB can be taken to be
0 2 NB (in particular, the statement holds for .ˇ0; ˇ/ D .ˇ0; 0/ 2 Z1Cs).

Furthermore, we have an isomorphism

G � 'dM .ˇ 0
0
;�ˇ 0/

B

for every ˇ00 2 Z and ˇ0 2 .R�0B/ı \Zs .

Proof. – We construct the isomorphisms by applying the Fourier-Laplace trans-
form FLW to the exact sequences in Theorem 2.11. First notice that the first and last
term in the exact sequences are free OV -modules, thus their Fourier-Laplace transform has
support on � D 0, i.e., their localized Fourier-Laplace transform is 0. Thus there is some
ıeB 2 NeB such that we have the following isomorphisms

GC D FLloc
W .H0

.'B;C OS�W // ' FLloc
W .M

ěeB/
and

G � D FLloc
W .H0

.'B;� OS�W // ' FLloc
W .M

�ě0eB /

for any ě2 ıeB C .R�0eB \ ZsC1/ and any ě0 2 .R�0eB/ı \ ZsC1. Write ıeB D .ı0; ıB/ with
ıB 2 Z

s . Now given any .ˇ0; ˇ/ 2 Z�.ıBC.R�0B\Zs// resp. .ˇ00; ˇ
0/ 2 Z�..R�0B/

ı\Zs/

we can find a 
0; 
 00 2 Z such that .
0; ˇ/ 2 ıeB C .R�0eB \ ZsC1/ resp. .
 00; ˇ
0/ 2

.R�0eB/ı \ZsC1. It remains to show that there are isomorphism

(37) dM .ˇ0;ˇ/

B 'dM .
0;ˇ/

B

for .ˇ0; ˇ/ 2 Z � .ıB C .R�0B \Zs// and .
0; ˇ/ 2 ıeB C .R�0eB \ZsC1// resp.

(38) dM .ˇ 0
0
;�ˇ 0/

B 'dM .�
 0
0
;�ˇ/

B

for .ˇ00; ˇ
0/ 2 Z � ..R�0B/

ı \ Zs/ and .�
 00;�ˇ
0/ 2 ..R�0eB/ı \ ZsC1/ . Notice thatdM .ˇ0;ˇ/

B is localized along z D 0 for all .ˇ0; ˇ/ 2 ZsC1 by Lemma (3.2). Therefore the
morphism given by right multiplication with z

(39) dM .ˇ0;ˇ/

B

�z
!dM .ˇ0�1;ˇ/

B

is an isomorphism, which shows (37) and (38).
Concerning the last statement, suppose thatNB is saturated. Letˇ 2 NB D .R�0B \Zs/

and let ˇ0 2 Z be arbitrary. By [46, Lemma 1.17] we have ˇ … sRes.B/, where
sRes.B/ � Cs is the set of strongly resonant values (cf. [53, Definition 3.4]). Using [46,
Lemma 1.19] there exists a 
0 2 Z such that .
0; ˇ/ … sRes.eB/. Now we argue as above, i.e.,
by [46, Theorem 2.7] we have GC D FLloc

W .H0
.'B;C OS�W // ' FLloc

W .M
.
0;ˇ/eB / which in

turn is isomorphic to dM .ˇ0;ˇ/

B .

If the semigroup NB is saturated, we will compute the isomorphism above explicitly
for .ˇ0; ˇ/ D .0; 0/. For this we will need a direct description of the localized, partial Fourier-
Laplace transformed Gauß-Manin system GC.
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L 3.4. – Write 'B D .F; pr/, where F W S � W ! C, .y; �/ 7! �
Pt
iD1 �iy

bi

and pr W S � W ! W is the projection. Recall from Formula (35) that we denote by GC

the localized Fourier-Laplace transformation of the Gauß-Manin system of the morphism 'B .
Write GC WD H 0.bV ; GC/ for its module of global sections. Then there is an isomorphism
of DbV -modules

GC Š H 0
�
��Cs
S�W=W

Œz˙�; d � z�1 � dyF^
�
;

where d is the differential in the relative de Rham complex ��
S�W=W

. The structure of a
DbV -module on the right hand side is defined as follows

@z.! � z
i / D i � ! � zi�1 C F � ! � zi�2;

@�i .! � z
i / WD @�i .!/ � z

i � @�iF � ! � z
i�1 D @�i .!/ � z

i C ybi � ! � zi�1;

where ! 2 �s
S�W=W

.

Proof. – The expression for the moduleGC as well as the formulas for the DbV -structure
are an immediate consequence of the definition of the direct image functor. See, e.g., [46,
Equations 2.0.18, 2.0.19], from which the desired formulas can be easily obtained.

Using the description of GC via relative differential forms, we find a distinguished
element, which is (the class of) the volume form on S , that is

!0 WD
dy1

y1
^ � � � ^

dys

ys
:

In the next lemma we compute the image of!0 under the isomorphisms in Proposition 3.3
under the assumption of normality ofNB.

L 3.5. – Let NB be a saturated semigroup, then the isomorphism from Proposi-
tion 3.3

ˆ W GC
'
!dM .0;0/

B

maps !0 to 1.

Proof. – Recall from the proof of Proposition 3.3, that there exists a 
0 2 Z such that
.
0; 0/ … sRes.eB/ (notice that here we only assume that NB is saturated which does not
imply thatNeB is saturated). Denote by

 .
0;0/ W �.V; H0
.'B;C OS�W //!M

.
0;0/eB
the morphism from Theorem 2.11. We first compute the image of !0 under the morphism
 .
0;0/ using the description of H0

.'B;C OS�W / by relative differential forms (see e.g., [46,
Equation 2.0.17]). We will use the following two facts of loc. cit. Proposition 2.8 whose proofs
extend directly to our slightly more general situation (there it was assumed thatNeB is satu-
rated). Namely first, that there exists a non-zero morphism M

.�1;0/eB ! �.V; H0
.'B;C OS�W //

which sends 1 to !0 and second that  .
0;0/.!0/ ¤ 0. Concatenating this morphism

with  .
0;0/ gives a non-zero morphismM
.�1;0/eB !M

.
0;0/eB , where 1 2M .�1;0/eB is sent to the
image of !0 under .
0;0/. By [46, Proposition 1.24] this morphism is uniquely given by right
multiplication with @
0C1

�0
(up to a non-zero constant). Applying now the partial localized
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Fourier-Laplace transform to the morphism .
0;0/, we see that .
0;0/.!0/ D z
�
0�1. Using

the isomorphism dM .
 0
0
;0/

B

�z
!dM .
 0

0
�1;0/

B , which holds for any 
 00 2 Z, shows the claim.

By Proposition 2.16, we can now give a concrete description of the partial, localized

Fourier-Laplace transform M̂ IC
.Xı; L /WD FLloc

W .M IC
.Xı; L // of the intersection coho-

mology D-module M IC
.Xı; L /.

T 3.6. – Let ˇ 2 ıB C .R�0B \ Zs/, ˇ0 2 .R�0B/ı \ Zs and ˇ0; ˇ00 2 Z, then
we have the following isomorphisms

M̂ IC
.Xı; L / ' im

 dM .ˇ 0
0
;�ˇ 0/

B
�z
ˇ0
0
�ˇ0@ˇCˇ

0

//dM .ˇ0;ˇ/

B

!
;

resp.

M̂ IC
.Xı; L / 'dM .ˇ 0

0
;�ˇ 0/

B = b�@�dM .ˇ 0
0
;�ˇ 0/

B

�
;

where b�@ �dM .ˇ 0
0
;�ˇ 0/

B

�
is the sub- D-module corresponding to the sub-D-module

b�@ �cM .ˇ 0
0
;�ˇ 0/

B

�
WD fm 2 cM .ˇ 0

0
;�ˇ 0/

B j 9n 2 N with
�
@ˇCˇ

0
�n
�m D 0g:

Furthermore, if NB is saturated, then ıB can be taken to be 0 2 NB (so that, similarly to
Proposition 3.3, the statement holds true for .ˇ0; ˇ/ D .ˇ0; 0/ 2 Z1Cs).

Proof. – Using the isomorphism

(40) dM .ˇ0;ˇ/

B

�z
!dM .ˇ0�1;ˇ/

B ;

which holds for every .ˇ0; ˇ/ 2 ZsC1, we can assume that .ˇ0C1; ˇ/ 2 ıeBC.R�0eB\ZsC1/
resp. .ˇ00 C 1; ˇ

0/ 2 .R�0eB/ı \ ZsC1. Then the first isomorphism follows by applying the
functor FLloc

W to the isomorphism in Theorem 2.16 and Lemma 3.2.

For the second isomorphism we can assume again that .ˇ00 C 1; ˇ
0/ 2 .R�0eB/ı \ ZsC1.

Now the desired statement is obtained by applying FLloc
W to the second isomorphism in

Proposition 2.17 and the fact that b�@.dM .ˇ 0
0
;�ˇ 0/

B / is stable under left multiplication with z.

Now assume thatNB is saturated and let ˇ 2 NB. Arguing as in the last part of the proof
of Proposition 3.3 we can find a 
0 2 Z such that .
0; ˇ/ … sRes.ě/. By [53, Corollary 3.7] we
have an isomorphism FL.hC OT / ' M

.
0;ˇ/eB . Now the proof of Theorem 2.16 shows that

M IC
.Xı; L / ' im.M

�ě0eB �@.
0;ˇ/C
ě0

! M
.
0;ˇ/eB /:

Now applying the functor F loc
W and using the isomorphism (40) shows the claim in the

saturated case.
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3.2. Tameness and Lattices

In this section we define a natural lattice in the Fourier-Laplace transformed Gauß-Manin
system GC outside some bad locus where the Laurent polynomial acquires singularities at
infinity. For this we need to study the characteristic variety of the Gauß-Manin system of 'B
and the corresponding GKZ system M

ěeB . Throughout this section we assume that NB is
a saturated semigroup. Recall the embedding of the torus S in the projective space from
Formula (10)

S
j
! X

i
! P.V 0/:

The projective variety X serves as a convenient ambient space to compactify fibers of the
family of Laurent polynomials 'B . However, we will also need an intermediate partial
compactification of S , which is still an affine variety.

D 3.7. – The restriction of X to the affine chart of P.V 0/ given by �0 D 1 is
called Xaff, in other words, Xaff is the closure of the map

gB W S ! Ct ;

.y1; : : : ; ys/ 7! .yb1 ; : : : ; ybt /;

and thererfore isomorphic to Spec .CŒNB�/.

Consider the following diagram, which is a refinement of a part of diagram (26):

(41) �
�2 //

��

ZXaff

��

�1 // ZX
�
//

��

Z
�Z
2 //

�Z
1

��

V

S
j2 // Xaff j1 // X

i // P.V 0/

where j1 and j2 are the canonical inclusions and the three squares are cartesian. Recall that
Z � P.V 0/ � V was given by the incidence relation

Pt
iD0 �i�i D 0 and the composed map

g D i ı j D i ı j1 ı j2 was defined by Formula (9). Thus � resp. ZXaff is the subvariety
of S � V D S � C�0 � W resp. Xaff � V given by the equation �0 C

Pr
iD1 �iy

bi D 0. It
follows from the definition that � is the graph of 'B . Therefore the maps

�ZX WD �
Z
2 ı � W ZX ! V

resp.

�Z
Xaff WD �

Z
2 ı � ı �1 W ZXaff ! V

provide natural (partial) compactifications of the family of Laurent polynomials 'B . Putting
He� WD fPt

iD0 �i�i D 0g � P.V 0/ for any e� 2 V , we see that the fiber ��1ZX .
e�/ resp.

��1Z
Xaff

.e�/ is given by X \He� resp. f�0 C
Pt
iD1 �iy

bi D 0g � Xaff.

Recall that the toric variety X has a natural stratification by torus orbits X0.�/, which
are in one-to-one correspondence with the faces � of the polytope Q, which is the convex
hull of the elements fb0 WD 0; b1; : : : ; b tg. Notice that the stratification S WD fX0.�/g is a
Whitney stratification of X (see e.g., [13, Proposition 1.14]).
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By [17, Chapter 5, Prop 1.9] the orbit X0.�/ ' .C�/dim.�/ is the image of the map

g� W S ! P.V 0/;

.y1; : : : ; ys/ 7! ."01 W "1y
b1 W � � � W "ty

bt /;

where "i D 0 if bi … � and "i D 1 if bi 2 �. It is easy to see that

Xaff
D

[
�j02�

X0.�/

and this induces a Whitney stratification of Xaff.

The preimage of X0.�/ \He� under g� is given by

f.y1; : : : ; ys/ 2 S j
X
bi2�

�iy
bi D 0g:

It follows from [17, Chapter 5.D] that the morphism g� W S ! X0.�/ ' .C�/dim.�/ is a
trivial fibration with fiber being isomorphic to .C�/d�dim.�/.

Denote by Scrit;e�
� the set

(42)�
.y1; : : : ; ys/ 2 S j

X
bi2�

e�iybi D 0 I yk@yk .X
bi2�

e�iybi / D 0 for all k 2 f1; : : : ; sg

�
:

Then its image under g� is exactly the singular set sing.X0.�/ \He�/ of X0.�/ \He�. This
motivates the following definition.

D 3.8. – Lete� 2 V .

1. The fiber ��1ZX .
e�/ has stratified singularities in X0.�/ if X0.�/ \ He� is singular, i.e.,

S
crit;e�
� ¤ 0.

2. The set

�B WD fe� 2 V j Scrit;e�
Q ¤ ;g

D fe� 2 V j '�1B .e�/ is singularg

is called the discriminant of 'B .
3. The fiber '�1B .e�/ has singularities at infinity if there exists a proper face � of the Newton

polyhedron Q so that Scrit;e�
� ¤ ;. The set

�1B WD f
e� 2 V j 9 � ¤ Q so that Scrit;e�

� ¤ ;g

is called the non-tame locus of 'B .
4. The fiber '�1B .e�/ has bad singularities at infinity if there exists a proper face � of the

Newton polyhedron Q not containing the origin such that Scrit;e�
� ¤ ;. The set

�bad
B WD fe� 2 V j 9 � ¤ Q; 0 … � so that Scrit;e�

� ¤ ;g � �1B

is called the bad locus of 'B .
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R 3.9. – Notice that �bad
B is independent of �0. We denote its projection to W

by W bad. Let W � D W n f�1 : : : �t D 0g and define

W ı WD W � nW bad;

which we call the set of good parameters for 'B .

Recall that Xaff is isomorphic to Spec .RB/ with RB WD CŒNB�. Let � 2 W and set
f�.�/ WD 'B.�; �/. Notice that the Laurent polynomials f� and yk@f�=@yk for k D 1; : : : ; s,
which were defined on S before are actually elements of RB and can thus naturally be
considered as functions on Xaff.

L 3.10. – Let � 2 W ı be a good parameter, then

dimC

�
RB=.yk@f�=@yk/kD1;:::;s

�
D vol.Q/;

where the volume of a hypercube Œ0; 1�s � Rs is normalized to sŠ. Moreover, we have

supp.RB=.yk@f�=@yk/kD1;:::;s/ D
[
�02C

sing S .�
�1
ZX
.�0; �//;

where we see ��1ZX .�0; �/ as a subset of X � P.V 0/ and where sing S .�
�1
ZX
.�0; �// denotes the

stratified singular locus with respect to the stratification S of X by torus orbits defined above.

Proof. – For the first claim consider the following increasing filtration on RB . Let as
above Q be the convex hull of b1; : : : ; b t and 0 in Rs . Let u 2 NB then the weight of yu is
defined by inff� 2 R�0 j u 2 � � Qg. It is easy to see that there is an integer e so that all

weights lie in e�1N. Denote by R
k
e

B the elements in RB with weight � k=e. Let grRB be the
graduated ring with respect to this filtration. By [1, Equation 5.12] we have

dimC gr.RB/=.yk@f�=@yk/kD1;:::;s D vol.Q/;

where yk@f�=@yk is the image of yk@f�=@yk in gr.RB/. It remains to show that

dimC gr.RB/=.yk@f�=@yk/kD1;:::;s D dimCRB=.yk@f�=@yk/kD1;:::;s :

The proof of this equality is an easy adaptation of the proof of [1, Theorem 5.4].

For the proof of the second statement we notice first that

sing S .�
�1
ZX
.�0; �// D

[
�j02�

sing.X0.�/ \H.�0;�//

because the fiber over .�0; �/ has no bad singularities at infinity.

Define the following r hyperplanes H k
�

for k 2 f1; : : : ; sg and � 2 W ı:

H k
� WD f.�0 W � � � W �t / 2 P.V

0/ j

tX
iD1

bki�i�i D 0g:

We have sing.X0.�/ \ H.�0;�// D X0.�/ \ H.�0;�/ \ .
Ts
kD1H

k
�
/ by Equation (42) and

therefore

sing S .�
�1
ZX
.�0; �// D X

aff
\H.�0;�/ \ .

s\
kD1

H k
� /:
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Notice that[
�02C

.Xaff
\H.�0;�/ \ .

s\
kD1

H k
� // D

[
�02C

supp.RB=RB.f� � �0/CRB.@f�=@yk/kD1;:::;s/

D supp.RB=RB.@f�=@yk/kD1;:::;s/;

which shows the claim.

Let eB be the .s C 1/ � .t C 1/-matrix as introduced before Definition 2.8. Let eQ be the
convex hull ofeb0; : : : ;eb t in RsC1. Notice that eQ � f1g � Rs and therefore no face e� of eQ
contains the origin. Adolphson characterized the characteristic variety char.M

ěeB/ of the

GKZ system M
ěeB as follows. Let T �V ' V �V 0 be the holomorphic cotangent bundle with

coordinates .�0; : : : ; �t ; �0; : : : ; �t /. Define the following Laurent polynomials on .C�/sC1

efe�.y/ WD efe�; eQ.y/ WD tX
iD0

�iy
ebi ;

efe�;e�.y/ WD X
ebi2e�

�iy
ebi ;

where we define y
ebi WDQr

kD0 y
ebki
k

.

L 3.11 ([1] Lemma 3.2, Lemma 3.3). – 1. For each .e�.0/;e�.0// 2 char.M
ěeA/

there exists a (possibly empty) face e� such that e�.0/j ¤ 0 if and only ifebj 2 e�.

2. Ife�.0/ is a singular point of M
ěeB and e� the corresponding (non-empty) face, then the

Laurent polynomials @ efe�.0/;e�=@y0; : : : ; @ efe�.0/;e�=@ys have a common zero in .C�/sC1.

We can use this result in the next lemma to compute the singular locus of the D-modules
we are interested in.

L 3.12. – The singular locus of M
ěeB as well as the singular locus of the modules

H0
.'BC OS�W / resp. H0

.'B� OS�W / is given by

�S WD �B [�
1
B :

Proof. – Notice that the polytope eQ � f1g � Rs is just the shifted polytope Q � Rs

defined above. One easily sees that the Laurent polynomials @ efe�.0/; eQ=@y0; : : : ; @ efe�.0/; eQ=@ys
have a common zero in .C�/sC1 if and only if '�1B .e�.0// is singular, i.e., the set ofe�.0/’s which
satisfy this condition is exactly the discriminant �B of 'B . If there exists a proper face e�
of eQ such that the Laurent polynomials @ efe�.0/;e�=@y0; : : : ; @ efe�.0/;e�=@ys have a common zero

in .C�/sC1, then fiber '�1B .e�.0// has a singularity at infinity, i.e., its compactification has a
singularity in X0.�/, where � is the corresponding face of Q.

L 3.13. – The restriction of the discriminant �S to C �W ı � V is finite over W ı�W .
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Proof. – We will first show quasi-finiteness of the map p W �S jC�W ı ! W ı. First notice
that we have �S jC�W ı D .�S n �

bad
B /jC�W ı . Fix some � 2 W ı. We have to show that

�S jC�f�g is a finite set. By the definition of�S it is enough to show that sing S .�
�1
ZX
.�0; �// is

a finite set, but this is Lemma 3.10.
To prove finiteness of the map p W �S jC�W ı ! W ı it remains to show that it is

proper. Let K be any compact subset of W ı. Suppose that p�1.K/ is not compact, then
it must be unbounded in V ' CtC1 for the standard metric. Hence there is a sequence
.�
.i/
0 ; �

.i// 2 p�1.K/with limi!1 j�
.i/
0 j D 1, asK is closed and bounded inW ı � W D Ct .

In order to construct a contradiction, we use the partial compactification of the family 'B
from above. Recall the spacesZ WD f

Pt
iD0 �i ��i D 0g � P.V

0/�V andZX WD .X � V / \Z.
Introduce the spacesZk WD f

Pt
iD1 bki�i�i D 0g for k 2 f1; : : : ; tg. ThenZX \.

Td
kD1Zk/ is

the stratified critical locus crit S .�ZX / of the family �ZX , where we denote by abuse of
notation by S also the stratification on ZX induced from the torus stratification on X used
above.

Because the projection from the stratified critical locus crit S .�ZX / of �ZX to �S is
onto, there is a sequence ..�.i/0 W �.i//; .�

.i/
0 ; �

.i/// 2 Xaff � p�1.K/ projecting under

�ZX jXaff�p�1.K/ to .�.i/0 ; �
.i// (Notice that we consider here Xaff as a subset of P.V 0/ under

the embedding iıj1.) Consider the first component of the sequence ..�.i/0 W �
.i//; .�

.i/
0 ; �

.i///,

then this is a sequence .�.i/0 W �.i// in X which converges (after possibly passing to a
subsequence) to a limit .0 W �lim

1 W � � � W �lim
t / (this is forced by the incidence relationPt

iD0 �i�i ). In other words this limit lies in X n Xaff by the definition of Xaff (see Defi-
nition 3.7). But because .X � V / \ Z \

Td
kD1Zk D ZX \

Td
kD1Zk is closed, the point

..0 W �lim
1 W � � � W �lim

t /; .�lim
0 ; �lim// lies in ..X n Xaff/ � p�1.K// \ Z \

Td
kD1Zk , i.e.,

��1ZX .limi!1.�
.i/
0 ; �

.i/// has a bad singularity at infinity, which is a contradiction by the
definition of W ı.

We can now prove the following regularity property of dM .ˇ0;ˇ/

B , which is essentially the
same proof as in [47, Lemma 4.4].

L 3.14. – Consider dM .ˇ0;ˇ/

B as a DP1�W -module, where W is a smooth projective

compactification of W . Then dM .ˇ0;ˇ/

B is regular outside .fz D 0g �W / [ .P1z � .W nW
ı//

and smooth on C�z �W
ı.

Proof. – It suffices to show that any � D .�1; : : : ; �t / 2 W
ı has a small analytic neigh-

borhood W ı
�
� W ı

an
such that the partial analytization OanW ı

�
Œ�; ��1� ˝ O

C���W
ı
dM .ˇ0;ˇ/

B

is regular on C� � W ı
�

(but not at � D 1). This is precisely the statement of [15,

Theorem 1.11 (1)], taking into account the regularity of M
ěeB (c.f. [28, Section 6]), the

fact that the singular locus of M
ěeB coincides with �S (see Lemma 3.12) as well as the last

lemma (notice that the non-characteristic assumption in [15, Theorem 1.11 (1)] is satisfied,
see, e.g., [43, page 281]).

The next step is to study several natural lattices in dM .ˇ0;ˇ/

B . They are defined in terms
of R -modules, see the end of Section 2.1.

4 e SÉRIE – TOME 50 – 2017 – No 3



NON-AFFINE LANDAU-GINZBURG MODELS 715

D 3.15. – 1. Consider the left ideal

I WD DCz�W �.
b�l /l2L C DCz�W �.

bEk � z � ˇk/kD1;:::;r C DCz�W �.
bE � z � ˇ0/

in DCz�W � and write �dM .ˇ0;ˇ/

B for the cyclic D-module DCz�W �=I . Here the opera-
tors b�l , bEk and bE are those from Definition 3.1.

2. Consider the left ideal 0 I WD RCz�W �.
b�l /l2L C RCz�W �.

bEk � z � ˇk/kD1;:::;r C
RCz�W �.

bE � z � ˇ0/ in RCz�W � and write 0
�dM .ˇ0;ˇ/

B for the cyclic R -module
RCz�W �=I .

3. Consider the open inclusions W ı � W � � W and define ıR WD R jCz�W ı
with ring of

global sections ıR. Define the DCz�W ı -module

ıdM .ˇ0;ˇ/

B WD

�dM .ˇ0;ˇ/

B

�
jCz�W ı

and the RCz�W ı -module

ı
0
dM .ˇ0;ˇ/

B WD

�
0
�dM .ˇ0;ˇ/

B

�
jCz�W ı

:

R 3.16. – 1. We have DCz�W � ˝RCz�W�
0
�dM .ˇ0;ˇ/

B DdM .ˇ0;ˇ/

B jCz�W � .

2. The restriction of 0�dM .ˇ0;ˇ/

B to C�z �W
� equals the restriction of dM .ˇ0;ˇ/

B to C�z �W
�.

3. Forz2@z .0
�dM .ˇ0;ˇ/

B / D R
0
=0 I 0, where 0 I 0 is given by

0 I 0 WD R
0
.b�l /l2L C R

0
.bEk � z � ˇk/kD1;:::;r :

L 3.17. – The quotient 0
�dM .ˇ0;ˇ/

B =z � 0
�dM .ˇ0;ˇ/

B is the sheaf of commutative
OW � -algebras associated to

(43)
CŒ�˙1 ; : : : ; �

˙
t ; �1; : : : ; �t �

.
Q
li<0

�
�li
i �

Q
li>0

�
li
i /l2L C .

Pt
iD1 bki�i�i /kD1;:::;s

'
CŒNB�Œ�˙1 ; : : : ; �

˙
t �

yk@f�=@yk
;

where yk@f�=@yk D
Pt
iD1 bki�iy

bi .

Proof. – Let �i be the class of z@�i . Because the commutator Œ�i ; �i � is zero we see that

0
�dM .ˇ0;ˇ/

B =z � 0
�dM .ˇ0;ˇ/

B is a commutative algebra and isomorphic to the module on the left
hand side of Equation (43). To show the isomorphism (43), consider theCŒ�˙1 ; : : : ; �

˙
t �-linear

morphism

 W CŒ�˙1 ; : : : ; �
˙
t ; �1; : : : ; �t �! CŒNB�Œ�˙1 ; : : : ; �

˙
t �;

�i 7! ybi

which is surjective by the definition of CŒNB�. The kernel of this map is equal to
.
Q
li<0

�
�li
i �

Q
li>0

�
li
i /l2L by [41, Theorem 7.3]. Finally notice that  .

Pt
iD1 bki�i�i / D

yk@f�=@yk , which shows the claim.

We need the following result saying that the GKZ-system M
ˇ
B is isomorphic to the

restriction of the Fourier-Laplace transformed GKZ system dM .ˇ0;ˇ/

B .
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L 3.18. – Let i1 W f1g �W ! OV D Cz �W be the canonical inclusion. Then

H0

�
iC1
dM .ˇ0;ˇ/

B

�
' M

ˇ
B :

Proof. – During the proof we will work with modules of global sections rather with the
D-modules itself. Recall that the left ideal defining the quotient cM .ˇ0;ˇ/

B is generated by the
operators b�l , bEk � ˇkz and bE � ˇ0z, whereb�l WD Q

i Wli<0

.z � @�i /
�li �

Q
i Wli>0

.z � @�i /
li ;

bE WD z2@z CPt
iD1 z�i@�i ;bEk WDPt

iD1 bkiz�i@�i :

The presence of z�2.bE0 � ˇ0z/ in this ideal show that have the an isomorphism of
CŒz˙; �1; : : : ; �n�h@�1 ; : : : @�ni-modules

(44) cM ' CŒz˙; �1; : : : ; �n�h@�1 ; : : : @�ni=CŒz˙; �1; : : : ; �n�h@�1 ; : : : @�nibI
where the left CŒz˙; �1; : : : ; �n�h@�1 ; : : : @�ni-ideal bI is generated by b�l2L and bEk � ˇk for

k 2 f1; : : : ; dg. The DW -module corresponding to H0
�
iC1
dM�

is given by cM=.z � 1/cM .

Using the isomorphism (44) one easily sees thatcM=.z � 1/cM 'M ˇ
B ;

which shows the claim.

P 3.19. – The OCz�W ı -module ı0dM .ˇ0;ˇ/

B is locally-free of rank vol.Q/.

Proof. – Notice that it is sufficient to show that ı0dM .ˇ0;ˇ/

B is OC�W ı -coherent. Namely,
ı
0
dM .ˇ0;ˇ/

B =z � ı0dM .ˇ0;ˇ/

B is OW ı -locally free of rank vol.Q/ by Lemma 3.10. Moreover, the

restriction of ı0dM .ˇ0;ˇ/

B to C�z � W
ı is a locally-free OC�z�W ı -module by Lemma 3.14. Its

restriction to f1g �W ı is isomorphic to the restriction of M
ˇ
B toW ı by Lemma 3.18 which

is locally free of rank vol.Q/. Now we use the fact that a coherent O-module which has
everywhere the same rank is locally-free.

It is actually sufficient to show the coherence of N WD Forz2@z .
ı
0
dM .ˇ0;ˇ/

B /, as this is the

same as ı0dM .ˇ0;ˇ/

B when considered as an OCz�W ı -module. Let us denote by F� the natural
filtration on R

0

Cz�W ı
defined by

Fk R
0

Cz�W ı
WD

8<:P 2 R
0

Cz�W ı
j P D

X
j˛j�k

g˛.z; �/.z@�1/
˛1 � : : : � .z@�t /

˛t

9=; :
This filtration induces a filtration F� on N which satisfies Fk R

0

Cz�W ı
� Fl N D FkCl N .

Obviously, for any k, Fk N is OCz�W ı -coherent, so that it suffices to show that the filtra-
tion F� becomes eventually stationary. Let P D

P
j˛j�k g˛.z; �/.z@�1/

˛1 � : : : � .z@�t /
˛t then

its symbol is defined as

�k.P / WD
X
j˛jDk

g˛.z; �/.�1/
˛1 � : : : � .�t /

˛t 2 OCz�W ı Œ�1; : : : ; �t �;
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which is a function onCz�T �W ı with fiber variables �1; : : : ; �t . Let I be the radical ideal of
the ideal generated by the symbols ofb�l2L and bEk�z�ˇk for k D 1; : : : ; t . Then the vanishing
locus of I is the R

0

Cz�W ı
-characteristic variety of N . Notice that N is OCz�W ı -coherent

if and only if its R
0

Cz�W ı
-characteristic variety is a subset ofCz�T �W ıW

ı. The proof of this
fact is completely parallel to the D-module case (see e.g., [43, Proposition 10.3]).

To compute the R
0

Cz�W ı
-characteristic variety, notice that the symbols of b�l2L andbEk�z �ˇk are independent of z. Thus it is enough to compute its restriction to f1g�W ı. Now

notice that the generators of the ideal corresponding to the GKZ-system M
ˇ
B have exactly

the same symbols as the operators above. Thus it is enough to show that the restriction of
the GKZ-system M

ˇ
B toW ı is OW ı -coherent. But this follows from [1, Lemma 3.2 and 3.3]

and the definition of W ı (see Definition 3.8 and Lemma 3.12).

C 3.20. – The natural map ı
0
dM .ˇ0;ˇ/

B ! ıdM .ˇ0;ˇ/

B which is induced by the
inclusion RCz�W � ! DCz�W � is injective.

Proof. – Recall that DCz�W � ˝R 0
dM .ˇ0;ˇ/

B 'dM .ˇ0;ˇ/

B jCz�W � and DCz�W � ' RŒz
˙�.

Thus the kernel of 0dM .ˇ0;ˇ/

B !dM .ˇ0;ˇ/

B jCz�W � has z-torsion. On the open set Cz �W ı �

Cz � W
� the module ı0dM .ˇ0;ˇ/

B D 0
dM .ˇ0;ˇ/

B jCz�W ı is OCz�W ı -locally free. In particular it
has no z-torsion, but this shows the claim.

The next step is to describe the image of ı0dM .0;0/

B in GC. In order to do this, consider
once again the affine toric variety Xaff D Spec .CŒNB�/ from Definition 3.7, which contains
the torus gB.S/ Š S as an open subset. Denote by D the complement of S in Xaff. We
will consider Xaff as a log scheme in the sense of logarithmic geometry (see, e.g., [23]).
More precisely, we endow Xaff with divisorial log structure induced by D and W � with the
trivial log structure. We consider the relative log de Rham complex��

Xaff�W �=W �
.logD/ ([23,

Section 3.3]). We have isomorphisms �k
Xaff�W �=W �

.logD/ Š OXaff�W � ˝Z
Vk

Zr .

P 3.21. – Let NB be a saturated semigroup. There exists the following
RCz�W ı -linear isomorphism

H 0
�
��Cs
Xaff�W ı=W ı

.log D/Œz�; zd � dyF^
�
Š
ı
0
cM .0;0/

B ;

which maps !0 to 1.

Proof. – We first define the RCz�W -linear morphism

 W 0cM .0;0/

B ! H 0
�
��Cs
Xaff�W �=W �

.log D/Œz�; zd � dyF^
�
;

1 7! !0;

which is well-defined by 3.4. Let

! D
X
˛;
;ı

c˛
ı�

1
1 : : : �


t
t z

ıy˛1�b1 : : : y˛t �bt!0
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be a general element in �s
Xaff�W �=W �

.log D/Œz� with ˛ 2 Nt , 
 2 Zt and ı 2 N. ThenX
˛;
;ı

c˛
ı�

1
1 : : : �


t
t z

ı.z@�1/
˛1 : : : .z@�t /

˛t

is a preimage, which shows that the map  is surjective. Notice that the restricted map

ı W ı0cM .0;0/

B ! H 0.��Cs
Xaff�W ı=W ı

.log D/Œz�; zd � dyF^/

is also surjective. Consider the following commutative diagram

ıcM .0;0/

B

' // H 0.��Cs
S�W ı=W ı

Œz˙�; zd � dyF^/

ı
0
cM .0;0/

B

ı 
//

?�

OO

H 0.��Cs
Xaff�W ı=W ı

.log D/Œz�; zd � dyF^/

OO

where the upper horizontal map is an isomorphism by Proposition 3.3 and Lemma 3.4 , the
left vertical map is injective by Corollary 3.20 and the right vertical map is induced by the
morphism

�s
Xaff�W ı=W ı

.log D/Œz�! �s
Xaff�W ı=W ı

.�D/Œz˙� D �sS�W ı=W ı Œz
˙�:

But this shows that ı is also injective, which shows the claim. Notice that as a by-product,
we also obtain that the morphism

H 0.��Cs
Xaff�W ı=W ı

.log D/Œz�; zd � dyF^/! H 0.��Cs
S�W ı=W ı

Œz˙�; zd � dyF^/

is injective.

4. Quantum cohomology of toric complete intersections

We recall in this section some rather well known notations and results concerning twisted
Gromov-Witten invariants on the one hand, and basic constructions from toric geometry for
smooth complete intersections in toric varieties on the other hand. Any of the statements
of this section can be found in either the original articles like [38], [21, 20], [9] (for twisted
Gromov-Witten invariants), the references [16], [11] and [10], (for facts on toric geometry of
complete intersections) but also in the more recent paper [39], from which we borrow some of
the notation. By collecting the material we need later here we hope to make this paper more
self-contained.

4.1. Twisted and reduced quantum D-modules

A smooth complete intersection inside a smooth projective variety can be described as the
zero locus of a generic section of a split vector bundle on that variety. Associated to such a
bundle are the twisted Gromov-Witten invariants, which we describe first. They give rise to
the twisted quantum product, and to the twisted quantum- D-module. From this one can
derive (basically by dividing by the kernel of the multiplication by the first Chern classes of
the factors of the vector bundle) the reduced quantum D-module, which corresponds to the
ambient part of the quantum cohomology of the subvariety. We also discuss this reduced
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module here, and we define pairings (coming from the Poincaré pairing on the ambient
variety) on both the twisted and the reduced quantum D-module.

Let X be a smooth projective n-dimensional variety. Let L1; : : : ; L c be line bundles
on X which are globally generated and define E WD

Lc
iD1 L i . We are going to recall the

construction of the so-called twisted quantum D-module QDM.X ; E / and the reduced
quantum D-module QDM.X ; E /. Our notation follows the exposition in [39, Chapter 2.5].

For l 2 N and d 2 H2.X ;Z/ we denote by M 0;l;d .X / the moduli space of stable maps
of degree d from curves of genus 0 with l marked points to X . Denote by ei W M 0;l;d .X /! X

the evaluation at the i marked point for i 2 f1; : : : ; lg and denote by � W M 0;lC1;d .X / !

M 0;l;d .X / the map which forgets the last marked point. Let E 0;l;d be the locally free
sheaf R0��e�lC1 E and for any j 2 f1; : : : ; lg, let E 0;l;d .j / be the kernel of the surjective
morphism E 0;l;d ! e�j E which evaluates a section at the j -marked point.

For i 2 f1; : : : ; lg denote by N i the line bundle on M 0;l;d .X / whose fiber at a
point .C; x1; : : : ; xl ; f W C ! X / is the cotangent space T �xiC . Put  i WD c1.N i / 2

H 2.M 0;l;d .X //.

D 4.1. – Let l 2 N, .m1; : : : ; ml 2 N
l /, 
1; : : : ; 
l 2 H 2�.X / and

d 2 H2.X ;Z/. The j -th twisted Gromov-Witten invariant with descendants is denoted
by

h�m1.
1/; : : : ;
˜�mj .
j /; : : : ; �ml .
l /i0;l;d WD

Z
ŒM 0;l;d .X/�vir

ctop. E 0;l;d .j //

lY
iD1

 
mi
i e�i 
i ;

where ŒM 0;l;d .X /�vir is the virtual fundamental class of M 0;l;d .X /.
An invariant h: : : ; 
k ; : : :i0;l;d has to be understood as h: : : ; �0.
k/; : : :i0;l;d . Below we will

actually use only such non-descendant (i.e., with all mk D 0) invariants.

Let .T0; T1; : : : ; Th/ be a homogeneous basis of H 2�.X / such that T0 D 1 and
T1; : : : ; Tr is a basis of H 2.X ;Z/ modulo torsion which lies in the Kähler cone of X .
Let T be the torus H 2.X ;C/=2�iH 2.X ;Z/. Then the basis T1; : : : ; Tr of H 2.X ;Z/ gives
rise to coordinates q D .q1; : : : ; qr / on T .

D 4.2. – Let 
1; : : : ; 
2 2 H 2�.X ;C/ and q 2 T . The twisted small quantum
product is defined by


1 �
tw
q 
2 WD

hX
aD1

X
d2H2.X ;Z/

qd h
1; 
2; eTai0;3;dT a;
where qd is shorthand notation for qhT1;di1 ; : : : ; q

hTr ;di
r .

Notice that h
1; 
2; eTai0;3;d ¤ 0 only if d lies in the semigroup of effective classes, i.e.,
d 2 Eff X � H2.X ;Z/. Hence, by our assumption on the basis T1; : : : ; Tr , only positive
powers of the qi appear in the formula above. Let NT D Cr be a partial compactification
of T with respect to the coordinates q1; : : : qr . In the following we assume that there exists
an open neighborhood NU of 0 2 NT such that the twisted quantum product is convergent on NU
as a power series in q1; : : : ; qr . The twisted quantum product is associative, commutative and
has T0 as a unit (see, e.g., [39, Proposition 2.14]).
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Put U WD NU \ T . In analogy to the untwisted case one defines a trivial vector bundle F
on H 0.X / � Cz � U with fiber H 2�.X / together with a flat meromorphic connection

r@t0
WD @t0 C

1

z
T0�

tw
q ; rqa@qa WD qa@qa C

1

z
Ta�

tw
q ; rz@z WD z@z �

1

z
E �twq C�;

where � is the diagonal morphism defined by �.Ta/ WD 1
2
.deg.Ta/ � .dimC X � rk E //Ta

and E WD t0T0 C c1.T X / � c1. E / is the so-called Euler field.
Define a twisted pairing on H 2�.X / by:

.
1; 
2/
tw
WD

Z
X


1 [ 
2 [ ctop. E / for 
1; 
2 2 H 2�.X /:

This pairing is degenerate with kernel equal to ker mctop , where mctop is defined by

mctop W H
2�.X /! H 2�.X /;

˛ 7! ctop. E / [ ˛

and satisfies the Frobenius relation:

.
1 �
tw
q 
2; 
3/

tw
D .
1; 
2 �

tw
q 
3/

tw for 
1; 
2; 
3 2 H 2�.X /:

Denote by F the sheaf sections of F and define an involution � by

� W H 0.X / � Cz � U ! H 0.X / � Cz � U;

.t0; z; q/ 7! .t0;�z; q/:

We define a r-flat sesquilinear pairing

S W ��.F / � F ! O;

.s1; s2/ 7! S.s1; s2/.t0; z; q/ D .s1.t0;�z; q/; s2.t0; z; q//
tw :

We call H 2�.X / WD H 2�.X /= kermctop the reduced cohomology ring of .X ; E /.

For 
 2 H 2�.X / denote by 
 its class in H 2�.X /. The pairing .�; �/tw gives rise to a
pairing .�; �/red on H 2�.X / by

.
1; 
2/
red
WD .
1; 
2/

tw for 
1; 
2 2 H 2�.X /:

Because the kernel of .�; �/tw is kermctop this pairing is well-defined and non-degenerate.

Denote byF the trivial bundle onH 0.X /�Cz�U with fiberH 2�.X /. The pairingS induces
a pairing S on F by

S.s1; s2/ WD S.s1; s2/;

which is non-degenerate.
Notice that H 2�.X / is naturally graded because mctop is a graded morphism. Let

.�0; : : : ; �s0/ be a homogeneous basis of H 2�.X / and denote by .�0; : : : ; �s
0

/ its dual basis
w.r.t. .�; �/red. The reduced Gromov-Witten invariants are defined by

h
1; : : : ; 
 li
red
0;l;d WD h
1; : : : ;

˜ctop. E /
li0;l;d

and the reduced quantum product is


1 �
red
q 
2 WD

s0X
aD0

X
d2H2.X ;Z/

qd h
1; 
2; �ai
red
0;3;d�

a;
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where the restriction is compatible with the multiplication , i.e.,


1 �twq 
2 D 
1 �
red
q 
2:

The bundle F carries the following connection:

r@t0
WD @t0 C

1

z
T 0�

red
q ; rqa@qa C

1

z
T a�

red
q ; rz@z WD z@z �

1

z
E �red

q C�;

where � is the diagonal morphism defined by �.�A/ WD 1
2
.deg.�a/ � .dimC X � rk E //�a

and E WD t0T 0 C c1.T X / � c1. E /. One can show that r is flat and S is r-flat.

D 4.3. – Consider the above situation of a smooth projective variety X and
globally generated line bundles L1; : : : ; L c .

1. The triple .F;r; S/ is called the twisted quantum D-module QDM.X ; E /.
2. The triple .F ;r; S/ is called the reduced quantum D-module QDM.X ; E /.

4.2. Toric geometry of complete intersection subvarieties

In this subsection we consider the case where the variety X from above is toric. It will be
denoted by X†, where † is the defining fan (see below). We recall some well-known results
on the toric description of the total space of the bundle E resp. its dual, on Picard groups,
Kähler cones etc. All this is needed in Section 6 below.

Let, as usual, N be a free abelian group of rank n for which we choose once and for all a
basis which identifies it withZn. Let† be a complete smooth fan inNR WD N˝R andX† the
associated toric variety, which is compact and smooth. We recall the toric description of the
Kähler resp. the nef cone of †. Let †.1/ D fR�0a1; : : : ;R�0amg be the rays of †, where
ai 2 N Š Z

n are the primitive integral generators of the rays of †. Then we have an exact
sequence

(45) 0! LA ! Z†.1/ D Zm ! N ! 0;

where the morphismZm � N is given by the matrix (henceforth calledA) having the vectors
a1; : : : ; am as columns. LA is the module of relations between these vectors. We also consider
the dual sequence

0!M ! .Z†.1//_ D Zm ! L_A ! 0;

where M WD N_ is the dual lattice. It is well known that as X† is smooth and compact, we
have

H 2.X†;Z/ ' Pic.X†/ Š L_A ;
moreover, the group .Z†.1//_ is the free abelian group generated by the torus invariant
divisors on X†. We denote these generators by D1; : : : ;Dm. Its images in L_A (calledDi ) are
thus the cohomology classes which are Poincaré dual to these divisors, and they generate the
Picard group.

Any element in
�
Z†.1/

�_
˝ R can be considered as a function on NR (actually on

the support of †, but this equals NR by completeness), which is linear on each cone
of †, these are called piecewise linear functions with respect to †. For a given divisor
D 2 Div.X†/ Š .Z†.1//_, we denote the piecewise linear function it corresponds to by  †D .
Inside

�
Z†.1/

�_
˝R we have the cone of convex functions, which are those piecewise linear

functions  having the property that for any cone � 2 † and for any n 2 NR, we have
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 .n/ �  � .n/, where  � is the extension to a linear function on all of NR of the restric-
tion  j� . The interior of the cone of convex functions are those which are strictly convex,
that is, those such that the above inequality is strict on NRn� . Notice that any linear func-
tion on N is piecewise linear and this inclusion is precisely given by MR ,!

�
Z†.1/

�_
˝ R.

We define the nef cone KX† of X† to be the image of the cone of convex functions
in
�
Z†.1/

�_
˝ R under the projection

�
Z†.1/

�_
˝ R � L_A ˝ R. Its interior is the Kähler

cone K
ı

X†
of †. We assume that K

ı

X†
is non-empty, which amounts to say that X† is

projective. Let us recall the following description of the cone KX† , the proof of this fact
can be found, e.g., in [10, Section 3.4.2].

L 4.4. – For any cone � 2 †, put

J� WD fi 2 f1; : : : ; mg jR�0ai … �g

and define
L� WD

X
i2J�

R�0Di � .L_A/R:

We call L� the anticone associated to � . Then we have KX† D
T
�2† L� � .L_A/R.

We proceed by considering the toric analog of the situation from Section 4.1. More
precisely, let L1 D OX†.L1/; : : : ; L c D OX†.Lc/ be line bundles on X† with L1; : : : ; Lc 2
Div.X†/. We suppose that the following two properties hold

A 4.5. – 1. For all j D 1; : : : ; c, the line bundle Lj is nef. Notice that
according to [16, Section 3.4], on a toric variety, Lj is nef iff it is globally generated.

2. Let�KX† be the anti-canonical divisor ofX†. Then we assume that�KX† �
Pc
jD1Lj is

nef.

Put E WD
Lc
jD1 Lj and consider the dual bundle E _WD Hom OX†

. E ; OX†/. We have the
following fact.

D-L 4.6. – The total space V. E _/ WD Spec OX†

�
Sym OX†

. E /
�

of E _,
is a smooth toric variety defined by a fan †0 which is described in the following way. First we
define the set of rays †0.1/: For this, we choose divisors DmCj D

Pm
iD1 dj iDi with dj i � 0

and O.DmCj / D Lj . This choice is possible due to Lemma 4.4 as all Lj are nef. Write
d i WD .d1i ; : : : ; dci / 2 Z

c and put a0i WD .ai ; d i / 2 N
0 WD N �Zc Š ZnCc . Moreover, letting

enC1; : : : ; enCc be the last c standard generators of ZnCc , we put a0mCj WD enCj . Then we
let†0.1/ WD fR�0a01; : : : ;R�0a

0
mCcg and we group, as before, the column vectors a01; : : : ; a

0
mCc

in a matrix A0 2Mat ..nC c/ � .mC c/;Z/. This means that

(46) A0 D

 
A 0n;c

.dj i / Idc

!
:

The fan †0 is now defined as follows: For any set of vectors b1; : : : ; br 2 Rk define
hb1; : : : ; bri WD

Pr
jD1R�0bj . Then we put

†0 WD
˚
ha0i1 ; : : : ; a

0
ik
; ej1 ; : : : ; ejt i � N

0
R

ˇ̌
hai1 ; : : : ; aik i 2 †.k/; fj1; : : : ; jtg � fnC 1; : : : ; nC cg

	
:

In other words, considering the canonical projection � W N 0R ! NR which forgets the last
c components, we have that � 0 2 †0 iff �.� 0/ 2 †.
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In the following proposition, we list some rather obvious properties of the cohomology
(resp. its toric description) of the space V. E _/.

P 4.7. – Let X†, L1; : : : ; L c and the sum E resp. its dual E _ be as above.

1. The projection map p W V. E _/ � X† induces an isomorphism p� W H�.X†;Z/ Š

H�.V. E _/;Z/.
2. Consider the analog of sequence (45) for the matrix A0, that is, the sequence

(47) 0! LA0 ! Z†
0.1/
D ZmCc ! N 0 ! 0;

then we have an isomorphism

(48)
LA ! LA0

l D .l1; : : : ; lm/ 7�! l 0 WD .l1; : : : ; lm; lmC1; : : : ; lmCc/;

where lmCj WD �
Pm
iD1 lidj i D �hc1. Lj /; li for all j D 1; : : : ; c, and where h�;�i is

the non-degenerate intersection product between L Š H2.X†;Z/ and Pic.X†/. Notice
that in the definition of this isomorphism we consider LA resp. LA0 as embedded into Zm

resp. ZmCc .

3. The scalar extension H 2.X†;R/
Š
! H 2.V. E _/;R/ of the isomorphism p� from above

identifies the Kähler cones (resp. the nef cones) K
ı

X†
and K

ı

V. E _/ (resp. KX† and
KV. E _/).

4. The manifoldV. E _/ is nef. Moreover, if s 2 �.X†; E / is generic, and Y WD s�1.0/ is the
zero locus of this section, then also Y is smooth and also nef.

Proof. – The first point follows from the fact that V. E _/ and X† are homotopy equiva-
lent. The second point follows from a direct calculation. For the third point notice that the
isomorphism p� restricted to H 2.X†/ is given by

p� W H 2.X†/ '

mM
iD1

ZDi=.

mX
iD1

akiDi /kD1;:::;n!

mCcM
iD1

ZD0i=.

mCcX
iD1

a0kiD
0
i /kD1;:::;nCc ' H

2.V. E _//;

mX
iD1

diDi 7!

mX
iD1

diD
0
i :

We first prove p�.KX†/ � KV. E _/. Let D D
Pm
iD1 diDi be a divisor in X† with

D 2 KX† . Then  †D is given on a maximal cone � 2 †.n/ by u†� 2 M ' Zn which is
defined by hu†� ; ai i D �di for ai 2 � . The PL-function  †D is convex if and only if for
all � 2 †.n/ the following inequalities hold hu†� ; ai i � �di for all i 2 f1; : : : ; mg. Now
consider the corresponding PL-function  †

0

p�.D/
for p�.D/. Let � 0 2 †0.nCc/ be a maximal

cone in †0 with � 0 D ha0i1 ; : : : ; a
0
in
; enC1; : : : ; enCci, where fi1; : : : ; ing � f1; : : : ; mg. Then

u†
0

� 0 2M
0 ' ZnCc is defined by

hu†
0

� 0 ; a
0
i i D �di for i 2 fi1; : : : ; ing

and

(49) hu†
0

� 0 ; ei i D 0 for i 2 fnC 1; : : : ; nC cg:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



724 T. REICHELT AND C. SEVENHECK

But because of Equation (49) we have

hu†
0

� 0 ; a
0
i i D hu

†
� ; ai i � �di for i 2 f1; : : : ; mg;

which shows that  †
0

p�.D/
is convex, i.e., p�.D/ 2 KV. E _/. Now assume D0 2 KV. E _/.

Because p� is an isomorphism, we can assume that D0 has a presentation
PmCc
iD1 d

0
iD
0
i in

which d 0mCj D 0 for j 2 f1; : : : ; cg, i.e., D0 D p�.D/ with D D
Pm
iD1 d

0
iDi . Let � 2 †.n/

and � 0 2 †.nC c/ be maximal cones with �.� 0/ D � . Because of the presentation of D0 we
have hu†

0

� 0 ; ei i D 0 for i 2 fnC 1; : : : ; nC cg. Therefore we have

hu†� ; ai i D hu
†0

� 0 ; a
0
i i � �di ;

which shows that  †D is convex, i.e., D 2 KX† . The statement for the open parts follows
from the fact that p� is a homeomorphism.

For the fourth point recall that V. E _/ is nef, i.e., has a nef anticanonical divisor, if the
class of the divisor

�KV. E _/ D

mX
iD1

D0i C

cX
jD1

D0mCj

lies in KV. E _/. Because of 3. it is enough to show that .p�/�1.�KV. E _// lies in KX† . But
we have

.p�/�1.�KV. E _// D

mX
iD1

Di �

cX
jD1

mX
iD1

dj iDi D �KX† �

cX
jD1

c1. Lj /

and the term on the right hand side lies in KX† by Assumption 4.5 2. Let s 2 �.X†; E / be
a generic section, then one can show that Y D s�1.0/ is smooth by repeatedly applying
Bertini’s theorem. The nefness of Y is obtained by repeatedly applying the adjunction
formula and Assumption 4.5 2. .

We finish this section by the following remark, which will not be explicitly used in the
sequel, but which helps to understand the geometry of the torus embedding considered in
the beginning of Section 2. More precisely, let S WD Spec CŒZnCc � and denote again by
g W S ! PmCc the map defined by .y1; : : : ; ymCc/ 7�! .1 W ya

0
1 W � � � W ya

0
mCc /. In Section 2

we considered the factorization g W S
j
,! X

i
,! PmCc (with X WD Im.g/) where j is

an open embedding and i is a closed embedding. However, we will also need to consider
some other factorization, namely, we write g D g.2/ ı g.1/, where g.1/ W S ! Cm � .C�/c

sends y to .ya
0
i /iD1;:::;mCc and g.2/ is the composition of the two open embeddings

Cm � .C�/c ,! CmCc and CmCc ,! PmCc . Now we have the following fact.

P 4.8. – The morphism g.1/ is a closed embedding. Hence, we have

XnIm.g/ � f�0 � �mC1 � � ��mCc D 0g ;

where we use .�0 W �1 W � � � W �mCc/ as homogeneous coordinates on PmCc and �1; : : : ; �m as
coordinates on CmCc (resp. on .C�/mCc , Cm � .C�/c etc).
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Proof. – It suffices obviously to show the first statement. We will use a method similar
to the proof of [47, Proposition 2.1]. First notice that the embedding ˛ W S ,! .C�/mCc

sending y to .ya
0
i /iD1;:::;mCc is obviously closed, so that it suffices to show that im.g.1// \

.Cmn.C�/m/�.C�/c D ;. Recall that im.g.1// is the closed subvariety ofCm�.C�/c defined
by the binomial equations Y

i Wl 0
i
>0

�
l 0
i

i �

Y
i Wli<0

�
�l 0
i

i

for any l 0 2 LA0 (these equations form the toric ideal of A0). It was shown in loc.cit. that due
to the compactness of X†, there is some l lying in LA \Zm>0. Hence, the image l 0 of l under
the isomorphism (48) lies inZm>0�Z

c
<0, as the coefficients dj i appearing in Formula (48) are

non-negative (see Definition 4.6) and moreover, for fixed j , not all dj i can be zero. It follows
that the toric ideal of A0 contains an equation

(50)
mY
iD1

�
l 0
i

i �

mCcY
iDmC1

�
�l 0
i

i ;

where none of the exponents is zero.

Now suppose that there is a point x D .x1; : : : ; xm; xmC1; : : : ; xmCc/ 2 im.g.1// \
.Cmn.C�/m/ � .C�/c , that is, we have xi D 0 for some i 2 f1; : : : ; mg, then as Equa-
tion (50) vanishes on x, we must have some j 2 f1; : : : ; cg with xmCj D 0, which
contradicts the assumption that x 2 .Cmn.C�/m/ � .C�/c . Hence the intersection
im.g.1// \ .Cmn.C�/m/ � .C�/c is indeed empty from which it follows that
g.1/ W S ,! Cm � .C�/c is a closed embedding.

Remark. – The GKZ-systems (see Definition 2.8) associated to the matrix A0 is not neces-
sary regular, as the vectors a01; : : : ; a

0
mCc do not necessarily lie on an affine hyperplane

in ZmCc (see [28] for this regularity criterion). The situation is similar to that considered in
our earlier paper [47], and for the same reasons as in loc.cit., we will work with the extended
matrix A00 2 Mat..1 C n C c/ � .1 C m C c/;Z/ with columns a000; a

00
1; : : : ; a

00
mCc , where

a00i WD .1; a0i / and a000 WD .1; 0; 0/. In particular we have a00mCj D .1; enCj / 2 ZnCcC1

for j D 1; : : : ; c where enCj is the n C j -th standard vector in CnCc . We write LA00 for
the module of relations between the columns of A00, obviously we have an isomorphism
LA0 ! LA00 sending l D .l1; : : : ; lmCc/ to .�

PmCc
iD1 li ; l/. As a matter of notation, we will

often write the parameter of the GKZ-systems defined by the matrix A00, which are vectors
in C1CmCc by definition, as .˛; ˇ; 
/ 2 C1CmCc , where ˛ 2 C, ˇ 2 Cm and 
 2 Cc .

5. Euler-Koszul homology and duality of GKZ-systems

In this section, we show a duality result for the GKZ-systems associated to the toric situa-
tion just described. We will explain how to calculate the holonomic dual of the system M

ˇ
A00

for some specific ˇ, this is used to get a more precise description of the various D-module
considered in Sections 2 and 3. The methods used here somehow similar [47, Section 2.3],
but we have to take into account the non-compactness of the toric varieties involved.
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P 5.1. – Let X† be smooth, toric and projective and suppose that
L1 D OX†.L1/; : : : ; L c D OX†.Lc/ are nef line bundles on X†. However, we do not make any
assumption on the positivity of �KX† �

Pc
jD1Lj . Let A0 be the matrix from in Definition 4.6

(i.e., with columns the primitive integral generator of the fan ofV. E _/) . Then the semi-group
ring CŒNA0� is normal and Cohen-Macaulay. The map

‰ W NA0 ! .NA0/ı;

m 7�! mC a0mC1 C � � � C a
0
mCc

is a bijection. Hence, CŒNA0� is a Gorenstein ring where the generator of the canonical
module !CŒNA0� is given by the monomial ya

0
mC1
C���Ca0

mCc .

We can deduce the following immediate corollary.

C 5.2. – In the situation of the last proposition, suppose moreover that
�KX† �

Pc
j Lj is nef. Let A00 be the extension considered at the end of Section 4. Then

also the semi-groupNA00 is normal and we have

.NA00/ı D a000 C a
00
mC1 C � � � C a

00
mCc CNA

00:

Hence CŒNA00� is a normal, Cohen-Macaulay and Gorenstein ring, with

!CŒNA00� Š CŒNA
00� � ya

00
0
Ca00

mC1
C���Ca00

mCc :

Proof. – This follows directly by applying Proposition 5.1 to the toric varietyX† and the
collection of nef line bundles L1; : : : ; L c ; L cC1 WD OX†.�KX† �

Px
jD1Lj /.

The following lemma is a rather obvious consequence of the nefness condition of the
bundles L1; : : : ; L c .

L 5.3. – Let as before X† be toric and let L1; : : : ; L c be nef line bundles. Consider
the fan†0 of the spaceV. E _/, where E D

Lc
jD1 Lj . Then the support supp.†0/ is convex. As

a consequence, we have the following equality

(51) supp.†0/ D R�0A0

where R�0A0 WD
PmCc
iD1 R�0a

0
i .

Proof. – This is obvious from the construction of †0 as presented in Definition 4.6.
Namely, for any j 2 f1; : : : ; cg, the functions  †DmCj D

Pm
iD1 dj i 

†
Di

are convex due to

the nefness of Lj (remember that O.DmCj / D Lj ), and one can describe the set supp.†0/
as

supp.†0/ D
�
.x1; : : : ; xn; xnC1; : : : ; xnCc j .x1; : : : ; xn/ 2 supp.†/ D Rn;

xnCj � � 
†
DmCj

.x1; : : : ; xn/ 8j D 1; : : : ; c

�
:

Then the convexity of the set supp.†0/ is precisely the convexity condition on the func-
tions  †DmCj .
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For the second statement, notice that the inclusion supp.†0/ � R�0A0 is trivial (and does
not depend on the convexity of supp.†0/). On the other hand, if supp.†0/ is convex, then we
have the inclusion

(52) supp.†0/ � Conv.a01; : : : ; a
0
mCc/;

where Conv.a01; : : : ; a
0
mCc/ denotes the convex hull of the vectors a01; : : : ; a

0
mCc , since the left

hand side must contain the convex hull of any of its subsets. On the other hand, we obviously
have that

R�0A D
˚
� � x j x 2 Conv.a01; : : : ; a

0
mCc/; � 2 R�0

	
;

so that the desired inclusion supp.†0/ � R�0A
0 follows from Equation (52) and the fact

that the set Supp.†0/ is conical, i.e., for all x 2 Supp.†0/ and all � 2 R�0 we have that
� � x 2 Supp.†0/ .

Proof of the proposition. – We first show the normality of NA0: Given any vector
x0 2 R�0A

0 \N 0, then by Equation (51) there is some maximal cone hai1 ; : : : ; aini 2 †

such that x0 2 ha0i1 ; : : : ; a
0
in
; a0inC1 ; : : : ; a

0
inC1
i 2 †0 (recall that a0inCj D a0mCj D enCj ).

Hence we have an equation

(53) x0 D

nCcX
kD1

�ka
0
ik

with �k 2 R�0. We know that .a0i1 ; : : : ; a
0
inCc

/ D .a0i1 ; : : : ; a
0
in
; emC1; : : : ; emCc/ is a Z-basis

of N 0 as ha0i1 ; : : : ; a
0
inCc
i is a smooth n C c-dimensional cone in †0. Hence �k 2 N for

k D 1; : : : ; nC c, and x0 2 NA0, which is the defining property of normality of NA0. It
follows that CŒNA0� is Cohen-Macaulay by Hochster’s theorem ([27, Theorem 1]).

It remains to show the second statement concerning the characterization of the interior
points ofNA0. We will actually show the following

Claim. – Let x0 2 NA0. Consider the representation (53) of x0 as an element of
PnCc
jD1 R�0a

0
ij

,

that is, an equation x0 D
PmCc
iD1 �ia

0
i 2 NA

0, where �k D 0 if k 2 f1; : : : ; mgnfi1; : : : ; ing .
Then x0 lies in .NA0/ı iff �i > 0 for i 2 fmC 1; : : : ; mC cg D finC1; : : : ; inCcg.

Notice that a representation as in the claim is unique, if there are two maximal cones
of†.n/ such that x0 is contained in both of the cones generated by the corresponding column
vectors of A0, then it lies on a common boundary, and the two expressions (53) are equal.

The claim implies that the map‰ from the proposition is well-defined and surjective, and
it is obviously injective. In order to show the claim, notice that

.NA0/ı D
�
R�0A

0
n@.R�0A

0/
�
\N 0 D

�
R�0A

0
\N 0

�
n
�
@.R�0A

0/ \N 0
�

D NA0n
�
@.R�0A

0/ \N 0
�
;

so that we have to show that the points in @.R�0A0/\N 0 are precisely those fromNA0 where
in the above representation (53) there is at least one index i 2 fmC1; : : : ; mCcgwith �i D 0.
From Formula (51) we deduce that

@.R�0A
0/ �

[
hai1

;:::;ain i2†A.n/

@ha0i1 ; : : : ; a
0
in
; a0mC1; : : : ; a

0
mCci:
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More precisely, for each hai1 ; : : : ; aini 2 †.n/ the cone ha0i1 ; : : : ; a
0
in
; a0mC1; : : : ; a

0
mCci has

two types of facets: those that are facets of @.R�0A0/ (call them “outer boundary”) and those
which are not (“inner boundary”). The union (over all n-dimensional cones of†) of the outer
boundaries is the set @.R�0A0/ we are interested in.

The fan †0 is smooth, in particular simplicial, this implies that for any cone
ha0i1 ; : : : ; a

0
in
; a0mC1; : : : ; a

0
mCci 2 †

0 we have the following description of its boundary.

@ha0i1 ; : : : ; a
0
inCc
i D @ha0i1 ; : : : ; a

0
in
; enC1; : : : ; enCci

Š
D

nS
kD1

ha0i1 ; : : : ;ba0ik ; : : : ; a0in ; enC1; : : : ; enCci [ cS
lD1

ha0i1 ; : : : ; a
0
in
; emC1; : : : ;bemCl ; : : : ; emCci:

The facet ha0i1 ; : : : ;ba0ik ; : : : ; a0in ; enC1; : : : ; enCci is an inner boundary, i.e., it is not contained
in @.R�0A0/. This is a consequence of the completeness of †, namely, there is some other
cone haj1 ; : : : ; ajni 2 † having hai1 ; : : : ;baik ; : : : ; aini as a facet, and then similarly the
cone ha0i1 ; : : : ;ba0ik ; : : : ; a0in ; enC1; : : : ; enCci is a facet of both ha0i1 ; : : : ; a

0
in
; enC1; : : : ; enCci

and ha0j1 ; : : : ; a
0
jn
; enC1; : : : ; enCci, hence it is not contained in @.R�0A0/. However, the facet

ha0i1 ; : : : ; a
0
in
; enC1; : : : ;benCl ; : : : ; enCci (for l D 1; : : : ; c) is an outer boundary, i.e., a facets

of R�0A0. We conclude that

@.R�0A
0/ D

S
hai1

;:::;ain i2†.n/

"
cS
lD1

ha0i1 ; : : : ; a
0
in
; enC1; : : : ;benCl ; : : : ; enCci# :

We see that for any point @.R�0A0/ \ N 0, there must be some l 2 f1; : : : ; cg such that in
the representation (53) the coefficient �mCl is zero. This shows the claim, and proves that
the map‰ is an isomorphism. Finally, it follows from standard arguments about semigroup
rings (see, e.g., [5, Corollary 6.3.8]) that CŒNA0� is Gorenstein, and that the generator of the
canonical module !CŒNA0� is as claimed.

As a consequence, we obtain the following duality result for those GKZ systems that we
will be interested in the sequel.

T 5.4. – etA00 be as above, that is, suppose that its columns .a000; a
00
1; : : : ; a

00
mCc/ are

of the form a00i D .1; a0i / where a000 D .1; 0/ and where a0i (i D 1; : : : ; mC c) are the integral
primitive generator of the fan ofV. E _/. For ˇ 2 Z1CmCc , consider the GKZ-system M

ˇ
A00 as

in Definition 2.7.

1. There is an isomorphism

D.M
.0;0;0/

A00 / Š M
�.cC1;0;1/

A00 D M
�a00
0
�
Pc
lD1 a

00
mCl

A00 :

2. Consider the natural good filtration F�M
ˇ
A00 induced by the order filtration on D.

Let D.M
ˇ
A00 ; F�/ be the dual filtered module in the sense of [50, Section 2.4], i.e.,

D.M
ˇ
A00 ; F�/ D .DM

ˇ
A00 ; F

D
� /whereF D

� .DM
ˇ
A00/ is the filtration dual toF�M

ˇ
A00 . Then

we have

D
�

M
�a00
0
�
Pc
lD1 a

00
mCl

A00 ; F�

�
Š .M

.0;0;0/

A00 ; F�Cn�.mCcC1//:
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Proof. – 1. The proof is parallel to [54, Proposition 4.1] or [47, Theorem 2.15 and
Proposition 2.18], so that we only sketch it here, referring to loc.cit. for details. First
one has to define the so-called Euler-Koszul complex resp. co-complex (see [40]). Its
global sections complex K�.T;E � ˇ/ is a complex of free DV ˝R T -modules where
R D CŒ@0; @1; : : : ; @mCc � and where T is a so-called toric R-module. A particular
case is T D CŒNA00�. Notice that the terms of K�.T;E � ˇ/ are not free over DV .
However, for T D CŒNA00�, this complex is a resolution by left DV -modules of the
modules M ˇ

A00 .The differentials of K�.T;E � ˇ/ are defined by the operators E and

Zk entering in the definition of M ˇ
A00 . From a resolution of the toric ring CŒNA00� by

freeCŒ@0; @1; : : : ; @mCc �-modules one can also construct a resolution ofM .0;0;0/

A00 by free
DV -modules. Applying HomDV .�;DV / yields basically the same complex, but where
the parameters in the differentials are changed, and where the toric module is now the
canonical module of the ring CŒNA00�. Now from the Gorenstein property of CŒNA00�
with the precise description of the interior ideal from Corollary 5.2 we obtain the
desired result by taking the cohomology of the two complexes, that is, we can show
the identification of the holonomic dual of M

.0;0;0/

A00 with M
�.cC1;0;1/

A00 .
2. The proof is literally the same as in [47, Proposition 2.19, 2.] with the indices shifted

appropriately.

As a consequence, we can make more specific statements on the parameter vectors of the
various GKZ-systems occurring in the results of the previous sections.

C 5.5. – Consider the situation in Section 2 where the matrix B is A0, i.e., given
by the primitive integral generators of the fan of V. E _/, in particular, both NB D NA0 and
NeB D NA00 are normal semigroups. Then

1. The statements of Theorem 2.11, Theorem 2.16 and of Proposition 2.17 hold true for the
parameter values ěD .0; 0; 0/; ě0 D .c C 1; 0; 1/ 2 Z1CnCc .

2. The statements of Proposition 3.3 and of Theorem 3.6 hold true for the parameter values
ˇ D .0; 0/; ˇ0 D .0; 1/ 2 ZnCc and for any ˇ0; ˇ00 2 Z.

For later use, we introduce the following piece of notation.

D 5.6. – In the situation of Theorem 5.4, we call the map

� W M
�.cC1;0;1/

A00 ! M
.0;0;0/

A00

induced by right multiplication by @0 �@mC1 � � � @mCc the duality morphism. For any ˇ0 2 Z, we
obtain an induced morphism b� WdM .ˇ0;0;�1/

A0 !dM .ˇ0Cc;0;0/

A0

given by right multiplication with @mC1 � � � @mCc (see 3.1 for the definition of the modulesdM ˇ
).

The case ˇ0 D �2c will be particularly important, and we will also call the mapb� WdM�.2c;0;1/

A0 !dM .�c;0;0/

A0

the duality morphism.
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Remark. – In our previous paper [47], we obtained from a similar construction a non-
degenerate pairing on the Fourier-Laplace transformed GKZ-system (see [47, Corol-
lary 2.20], where this system was called dM eA). It was given by an isomorphism of dM eA
to its holonomic dual (which is isomorphic to its meromorphic dual, see also the proof
of Lemma 6.6 below). The fact that in the current situation, we only have a morphismb� W dM�.2c;0;1/

A0 ! dM .�c;0;0/

A0 which is not an isomorphism unless c D 0 (in which case
we are exactly in the situation of [47], see the remark at the end of Section 6 of this paper)
corresponds to the fact that the pairing S on the twisted quantum D-module as introduced
in Definition 4.3 is degenerate. As we have seen in the definition of the reduced quantum-
D-module, it becomes non-degenerate when we divide out the kernel of the cup product
with the first Chern classes of the line bundles Lj . We will show below in Corollary 6.14
that the reduced quantum D-module is part of a non-commutative Hodge structure, which
implies in particular that it carries a non-degenerate pairing like the one from [47].

6. Mirror correspondences

In this section we combine the results obtained so far with the GKZ-type description
of the ambient resp. reduced quantum D-modules from [39] for the toric case. We obtain
a mirror statement which identifies them with D-modules constructed from our Landau-
Ginzburg models. The results from Section 2 will be applied for the case where the matrix B
(used for the construction of GKZ-systems and of families of Laurent polynomials) is given
byA0 (see Definition 4.6) the columns of which are the primitive integral generators of the fan
of the total bundleV. E _/. Recall also (remark at the end of Section 4) that we denote by A00

the matrix constructed from A0 by adding 1 as an extra component to all columns and by
adding .1; 0/ as extra column. Hence, if B is equal to A0, then the matrix eB used in Section 2
is exactly the matrixA00. Recall also that the parameter of the GKZ-systems of the matrixA00

is written as .˛; 
; ı/ 2 C1CmCc with ˛ 2 C, 
 2 Cm and ı 2 Cc .
The starting point for our discussion here is the duality morphism from the last section.

We need to consider a slight variation of it, which is defined only outside the boundary�i D 0
and only outside the bad parameter locus as defined in Section 3.2. Recall that V D C�0�W ,
and that this bad parameter locus of the family 'A0 was calledW bad � W . The complement
of this locus outside the boundary �i D 0 was called W ı, that is, W ı WD W �nW bad.

D-L 6.1. – For any ˇ D .ˇ0; ˇ1; : : : ; ˇm; ˇmC1; : : : ; ˇnCc/ 2 Z
1CnCc ,

consider the restricted, Fourier-Laplace transformed GKZ-system �dM .ˇ0;ˇ/

A0 we have

�dM .ˇ0;ˇ/

A0 D
DCz�W � Œz

�1�

DCz�W � Œz
�1�.b��

l
/l2LA0 C DCz�W � Œz

�1�.bEk � zˇk/kD0;:::;nCc ;
whereb��

l
WD

Q
i2f1;:::;mCcgW li>0

�
li
i .z � @i /

li �

mCcQ
iD1

�
li
i �

Q
i2f1;:::;mCcgW li<0

�
�li
i .z � @i /

�li ; l 2 LA0bE0 WD z2@z CPmCc
iD1 �i � z@i ;bEk WDPmCc

iD1 a
0
ki
�i � z@i k D 1; : : : ; nC c
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and moreover, �0dM ˇ

A0 is the RCz�W � -subalgebra generated by Œ1�, and we have

�
0
dM ˇ

A0 D
RCz�W �

RCz�W �.
b��
l
/C RCz�W �.

bEk � zˇk/kD0;:::;nCc :
Moreover, we define the modules �cN .ˇ0;ˇ/

A0 as the cyclic quotients of DCz�W � Œz
�1� by the

left ideal generated by e�l for l 2 LA0 and bEk � zˇk for k D 0; : : : ; nC c, where

e�l WD Q
i2f1;:::;mgW li>0

�
li
i .z � @i /

li
Q

i2fmC1;:::;mCcgW li>0

liQ
�D1

.�i .z � @i / � z � �/

�

mCcQ
iD1

�
li
i �

Q
i2f1;:::;mgW li<0

�
�li
i .z � @i /

�li
Q

i2fmC1;:::;mCcgW li<0

�liQ
�D1

.�i .z � @i / � z � �/:

Consider the morphism

(54) ‰ W �cN .0;0;0/

A0 !
�dM�.2c;0;1/

A0

given by right multiplication with zc �
QmCc
iDmC1 �i . As it is obviously invertible, the two modules

�cN .0;0;0/

A0 and �dM�.2c;0;1/

A0 are isomorphic. We definee� to be the compositione� WD b�ı‰, whereb� is the duality morphism introduced in Definition 5.6. In concrete terms, we have:e� W �cN .0;0;0/

A0 ! �dM .�c;0;0/

A0 ;

m 7�! b�.m � zc � �mC1 � � ��mCc/ D m � .z�mC1@mC1/ � � � .z�mCc@mCc/:
In view of Corollary 5.5, 2. (see also Theorem 3.6) we obtain

(55) im.e�/ Š im.b�/ Š .idCz �j /C M̂ IC
.Xı; L /:

For any ˇ 2 Z1CnCc , consider the RCz�W � -subalgebra of

DCz�W � Œz
�1�

.
DCz�W � Œz

�1�
�
.e�l /l2LA0 �C DCz�W � Œz

�1�
�bEk � zˇk/kD0;:::;nCc�

generated by the element Œ1� and denote its restriction to Cz � W ı by ı0cN .ˇ0;ˇ/

A0 . Similarly to
Corollary 3.20, we have

ı
0
cN .ˇ0;ˇ/

A0 D

24CŒz; �˙1 ; : : : ; �˙mCc �hz2@z ; z@�1 ; : : : z@�mCc i�
.e�l /l2LA0 ; .bEk � z � ˇk/kD0;:::;nCc�

35
jCz�W ı

:

In the next lemma we want to describe the restriction of the D-module M̂ IC
.Xı; L /

to Cz �W �.

L 6.2. – Consider the morphism b� WdM�.2c;0;1/

A0 !dM .�c;0;0/

A0 from Definition 5.6

and the isomorphisms M̂ IC
.Xı; L / ' im.b�/ 'dM�.2c;0;1/

A0 =ker.b�/ from Corollary 5.5 (see
also Theorem 3.6). We have the following isomorphism

.idCz � j /
C M̂ IC

.Xı; L / ' �dM�.2c;0;1/

A0 =cK M '
�cN .0;0;0/

A0 =cK N ;

where cK M resp. cK N are the sub- D-modules associated to the sub-D-modules

fm 2 �cM�.2c;0;1/ j 9p 2 Z; k 2 N such that .�@C p/ : : : .�@C p C k/m D 0g
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resp.

fn 2 �bN .0;0;0/
j 9p 2 Z; k 2 N such that .�@C p/ : : : .�@C p C k/n D 0g

with .�@C i/ WD
QmCc
jDmC1.�j @j C i/ for i 2 Z.

Proof. – We will first compute the restriction of M IC
.Xı; L / to V � D C�0�W

�. Recall

the morphism � WM
�.cC1;0;1/

A00 !M
.0;0;0/

A00 from Definition 5.6. We know from Theorem 2.16

and from Propostion 2.17 thatM IC .Xı; L / 'M
�.cC1;0;1/

A00 = ker.�/where ker.�/ is given by

fm 2M
�.cC1;0;1/

A00 j 9 n 2 N such that .@0 � @mC1 � � � @mCc/nm D 0g:

Notice that CŒ�˙� ˝CŒ�� M IC .Xı; L / ' �M
�.cC1;0;1/

A00 =.CŒ�˙� ˝CŒ�� ker.�//, where
�M
�.cC1;0;1/

A00 is the module of global sections of �M�.cC1;0;1/

A00 . The notation CŒ�� is
shorthand for CŒ�0; : : : ; �m; �mC1; : : : ; �mCc �, and the notation CŒ�˙� is shorthand
for CŒ�0; : : : ; �m; �

˙
mC1; : : : ; �

˙
mCc � (and not, as it is usual, shorthand for

CŒ�˙0 ; : : : ; �
˙
m; �

˙
mC1; : : : ; �

˙
mCc �).

We want to characterize CŒ�˙� ˝CŒ�� ker.�/ inside �M�.cC1;0;1/A00 D CŒ�˙� ˝CŒ��

M
�.cC1;0;1/

A00 . For this we define the following submodule in �M�.cC1;0;1/A00 :

K WD fm 2 �M
�.cC1;0;1/

A00 j 9p 2 Z; k 2 N such that @kC10 .�@C p/ : : : .�@C p C k/m D 0g:

Consider the following element of CŒ�˙�˝CŒ�� ker.�/:

(56) �
�p1
mC1 : : : �

�pc
mCc ˝m with p1; : : : ; pc 2 N;

i.e., there exists an n 2 N such that .@0 � @mC1 : : : @mCc/nC1m D 0. Therefore we have

0 D �
�p1
mC1 : : : �

�pc
mCc ˝ .@0 � @mC1 : : : @mCc/

nC1m

D �
�p1
mC1 : : : �

�pc
mCc ˝ .�mC1 : : : �mCc/

nC1.@0 � @mC1 : : : @mCc/
nC1m

D @nC10 � .�
�p1
mC1 : : : �

�pc
mCc ˝ .�@/ : : : .�@ � n/m/

D @nC10 .�@C pmax/ : : : .�@C pmin � n/ � .�
�p1
mC1 : : : �

�pc
mCc ˝m/

D @kC10 .�@C p/ : : : .�@C p C k/ � .�
�p1
mC1 : : : �

�pc
mCc ˝m/;

where pmax WD maxfpig; pmin WD minfpig, p WD pmin � n and k WD pmax � pmin C n.
Because CŒ�˙� ˝CŒ�� ker.�/ is generated by elements of the form (56), we see that
CŒ�˙�˝CŒ�� ker.�/ � K. Therefore we have a surjective morphism

CŒ�˙�˝CŒ��M
IC .Xı; L / ' �M

�.cC1;0;1/

A00 =.CŒ�˙�˝CŒ�� ker.�//� �M
�.cC1;0;1/

A00 =K:

Because CŒ�˙� ˝CŒ�� M IC .Xı; L / corresponds to the restriction of the simple D-module

M IC
.Xı; L / to the open subset V �, it is itself simple. Thus, �M�.cC1;0;1/A00 =K is either equal

to 0 or is isomorphic to CŒ�˙�˝CŒ��M IC .Xı; L /.

In order to prove the lemma, we are going to show that K 6� �M
�.cC1;0;1/

A00 . Denote

byF��M
�.cC1;0;1/

A00 the good filtration on �M�.cC1;0;1/A00 which is induced by the order filtration
on DV � . Notice that we have

(57) K 6� �M
�.cC1;0;1/

A00 ” grFK 6� grF �M
�.cC1;0;1/

A00
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In order to show that grFK 6� grF �M�.cC1;0;1/A00 , we first remark that

grFK � fm 2 grF �M
�.cC1;0;1/

A00 j 9k 2 N such that �kC10 �kC1�kC1m D 0g;

where � D .�mC1 � � ��mCc/, � D .�mC1 � � ��mCc/ and �i is the symbol �.@�i /.

Thus, in order to show the right hand side of (57), it is enough to show that
char.�M�.cC1;0;1/A00 / D supp.grF �M�.cC1;0;1/A00 / � T �.V �/ is not contained in f�0 �� �� D 0g.

Therefore it is enough to find a vector .�0; �0/ 2 char.�M�.cC1;0;1/A00 / � T �.V �/ with

�00 � �
0 � �0 ¤ 0, resp. a vector .�0; �0/ 2 char.M�.cC1;0;1/A00 / � T �.V / with �00 � �

0 ¤ 0

and �0i ¤ 0 for i D 1; : : : ; mC c.

Notice that we have

char.M�.cC1;0;1/A00 / D char.M .0;0;0/

A00 / D char.FL.M .0;0;0/

A00 // D char.hC OT /;

where the first equality follows from [18, Theorem 4], the second equality follows e.g., from
[6, Corollaire 7.25] and the third equality follows from [53, Corollary 3.7]. Recall that the
coordinates on V 0 are denoted by�i for i D 0; : : : ; mCc and the symbols of @�i are denoted
by �i . We now compute the fiber of char.hC OT /! V 0 over the point � D .1; : : : ; 1/. Recall
that the map

h W T ! V 0;

.y0; : : : ; ynCc/ 7! .ya
00
0 ; : : : ; ya

00
mCc /

can be factored into a closed embedding h0 W T ! .C�/mCcC1 and an open embed-
ding .C�/mCcC1 ! V 0. Therefore the fiber of the characteristic variety over .1; : : : ; 1/ is
just the fiber of the conormal bundle of h0.T / in .C�/mCcC1. The tangent space of h0.T /
at .1; : : : ; 1/ is generated by

mCcX
iD0

a00ki@�i for k D 0; : : : ; nC c:

Therefore .1; �0/ lies in char.hC OT / if and only if
PmCc
iD0 a

00
ki
�0i D 0 for all k D 0; : : : ; nC c.

So it remains to prove that there exists such a �0 with �0i ¤ 0 for i D 1; : : : ; m C c. First
notice that it is enough to construct a .�ı1; : : : ; �

ı
mCc/ with

(58)
mCcX
iD1

a0ki�
ı
i D 0

for all k D 1; : : : ; n C c and �ıi ¤ 0 for all i D 1; : : : ; m C c. Recall the structure of the
matrix A0:

(59) A0 D

 
A 0n;c

.dj i / Idc

!
;

where dj i � 0 and the columns ai of the matrix A are the primitive integral generators of
the rays of the fan† corresponding to a complete, smooth toric varietyX†. This ensures the
existence of .�ı1; : : : ; �

ı
m/ 2 Z

m
>0 with

Pm
iD1 �

ı
i ai D 0. Setting �ımCj WD �

Pm
iD1 dj i�

ı
i , we

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



734 T. REICHELT AND C. SEVENHECK

have constructed an element .�ı1; : : : ; �
ı
mCc/ with �ıj ¤ 0 and satisfying

PmCc
iD1 a

0
ki
�ıi D 0.

Summarizing, this shows that K 6� �M�.cC1;0;1/A00 , i.e.,

CŒ�˙�˝CŒ��M
IC .Xı; L / ' �M

�.cC1;0;1/

A00 =K:

Applying the localized Fourier-Laplace transformation to this isomorphism, we obtain the
first isomorphism in the statement of the lemma. The second isomorphism follows from the

D-linearity of the isomorphism �dM�.2c;0;1/

A0 ' �cN .0;0;0/

A0 .

As in [47, Section 3], we proceed by studying the restriction of the modules �M ˇ
A00 ,
�dM ˇ

A00

and �cNˇ

A00 to the Kähler moduli space ofV. E _/ as described in the second part of Section 4
(see Lemma 4.4 and Proposition 4.7). The following construction has some overlap with the
considerations in Section 2.4 on which we comment later.

We apply HomZ.�;C�/ to the exact sequence (47) to obtain the following exact sequence

(60) 1! .C�/nCc ! .C�/mCc ! L_A0 ˝ C
�
! 1:

We will identify the middle torus with Spec CŒ�˙1 ; : : : ; �
˙
mCc �, this space was called W � in

Section 2. Choose a basis .p1; : : : ; pr / of L_A0 with the following properties

1. pa 2 KV. E _/ D KX† for all a D 1; : : : ; r ,
2.
PmCc
iD1 Di 2

Pr
aD1R�0pa.

Using the basis .pa/aD1;:::;r , we identify L_A0 ˝ C� with .C�/r and obtain coordinates
q1; : : : ; qr on this space. We will write K M for this space and call it complexified Kähler
moduli space. Notice that the choice of coordinates is considered as part of the data of K M ,
that is, we really have K M D .C�/r and not only K M D L_A0˝C

�. Notice that this space
already occurred in Section 2.4 in a slightly more general context (which is consistent with
the situation considered here, see the explanations after Formula (31).

Consider the embedding LA0 ,! ZmCc , which is given by a matrix L 2Mat..mC c/ � r;Z/
with respect to the basis p_a of LA0 and the natural basis of ZmCc . Choose a section
ZmCc ! LA0 of this inclusion, which is given by a matrix M 2 Mat.r � .m C c/;Z/.
This defines a section on the dual lattices, i.e., a section L_A0 ! ZmCc of the projection
ZmCc ! L_A0 and a closed embedding %0 W K M D .C�/r ,! W �. We will need to
consider a slight twist of this morphism. Let � W W � ! W � be the involution given
by �.�i / WD .�1/".i/�i with ".i/ D 0 for i D 1; : : : ; m and ".i/ D 1 for i D mC 1; : : : ; mC c.

We will further restrict our objects of study to that part of the complexified Kähler moduli
space which maps to the set of good parameters in W D CmCc as discussed in Section 3.2.
Hence we put K M ı

WD .� ı %0/�1.W ı/ � K M , and write

% WD � ı %0 W K M ı
,! W �:

We can now define the main object of study of this paper. We are going to use the construc-
tions of the Sections 2.4 and 3.2, in particular, the diagrams (26), (32) and (41). We consider
the composed morphism ˛ ı ˇ W ZX ! C�0 � K M as defined by diagram (32). Let
Z
ı

X WD .˛ ı ˇ/
�1.C�0 � K M ı

/ � ZX be the subspace which is parameterized by the good
parameter locus K M ı inside K M .

For future reference, let us collect the relevant morphisms once again in a diagram, in
which the spaces Z

ı, Z
ı

Xaff and Z
ı

X are defined by the requirement that all squares are
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cartesian. For simplicity of the notation, we denote by ˛; ˇ, 
1 and 
2 also the corresponding
restrictions above C�0 � K M ı.
(61)

S

j2

��

� Š S �W
�S
1oo

�2
��

�� Š S �W �

�2
��

oo S � K M


2

��

oo S � K M ıoo


2

��

Xaff

j1

��

ZXaff Š Xaff �W

�1

��

oo Z�
Xaff Š X

aff �W �

�1

��

oo ZXaff Š Xaff � K M


1

��

oo Z
ı

Xaff Š Xaff � K M ıoo


1

��

X

i

��

ZX

�

��

oo Z�X

"

��

oo ZX

ˇ

��

oo Z
ı

X
oo

ˇ

��

P.V 0/ Z
�Z
1oo

�Z
2

��

Z�

ı

��

oo Z

˛

��

oo Z
ıoo

˛

��

V V �oo C�0 � K Moo C�0 � K M ı
:oo

idC�0
�%

hh

D 6.3. – The non-affine Landau-Ginzburg model associated to .X†; L1; : : : ; L c/

is the morphism
… W Z

ı

X ! C�0 � K M ı
;

which is by definition the restriction of the universal family of hyperplane sections of X , i.e,
of the morphism �Z2 ı � W ZX ! V to the parameter space K M ı. We recall once again
that X is defined as the closure of the embedding g W S ! P.V 0/ sending .y1; : : : ; ynCc/
to .1 W ya

0
1 W � � � W ya

0
mCc / where a0i are the columns of the matrix A0 from Definition 4.6.

We also consider the restrictions � D ˛ ı ˇ ı 
1 W Z
ı

Xaff Š Xaff � K M ı
! C�0 � K M ı

resp. � D ˛ ı ˇ ı 
1 ı 
2 W S � K M ı
W! C�0 � K M ı. These are nothing but the family of

Laurent polynomials

.y; q/ 7�!

 
�

mX
iD1

qmi � ya
0
i C

mCcX
iDmC1

qmi � ya
0
i ; q

!
;

where the monomial ya
0
i is seen as an element of OXaff in the first case and as an element of OS

in the second case. Here mi is the i ’th column of the matrix M 2 Mat.r � .m C c/;Z/ from
above. Notice that the first component of � has been split in two sums with opposite signs of
each summand due to the action of the involution � entering in the definition of the morphism
% W K M ı

,! W �. Both morphisms � and � are called the affine Landau-Ginzburg model
of .X†; L1; : : : ; L c/.

As we will see later, the affine Landau-Ginzburg model is related to the twisted quantum
D-module QDM.X†; E / whereas the reduced quantum D-module QDM.X†; E / can be
obtained from the non-affine Landau-Ginzburg model … W Z

ı

X ! C�0 � K M ı. The next
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results are parallel to [47, Corollary 3.3. and Corollary 3.4]. They show that the calculation
of the Gauß-Manin system resp. the intersection cohomology D-module from Section 2 can
be used to describe the corresponding objects for the morphism ….

We consider, as in Section 3.1, the localized partial Fourier-Laplace transformation, this
time with base K M ı, that is, let j� W C�� � K M ı

,! C� � K M ı, jz W C�� � K M ı
,!

Cz � K M ı then we put FLloc
K M ı

WD jz;Cj
C
� FL K M ı .

L 6.4. – We have

FLloc
K M ı

�
H0

�C OS�K M ı

�
Š .idCz �%/

C �dM .�c;0;0/

A0 :

Similarly, the isomorphism

FLloc
K M ı

�
H0

�� OS�K M ı

�
Š .idCz �%/

C �cN .0;0;0/

A0

holds.

Notice that the embedding .idCz �%/ is obviously non-characteristic for both of the

modules �dM .�c;0;0/

A00 and �cN .0;0;0/

A00 as their singular locus is contained in�
f0;1g � K M ı

�
[
�
P1z � .W

�
nK M ı

/
�
:

Hence, the complexes .idCz �%/
C �dM .�c;0;0/

A0 and .idCz �%/
C �cN .0;0;0/

A0 have cohomology
only in degree zero.

Proof. – The proof of the first isomorphism is the same as [47, Corollary 3.3]: Consider
the cartesian diagram (which is part of the diagram (61))

(62) S � K M ı //

�

��

�� Š S �W �

'

��

C�0 � K M ı � �
idC�0

�%
// V � D C�0 �W

�

then the base change property (Theorem 2.1) and the commutation of FLloc with inverse
images shows that

FLloc
K M ı

.H0
�C OS�K M ı/ Š .idCz �%/

C GCjV � ;

where GC is the DC�0�W
-module introduced in Section 3.1, and then one concludes using

Proposition 3.3.

Concerning the second isomorphism, we use base change (with respect to the mor-
phism idC�0 �% in diagram (62)) for proper direct images and exceptional inverse images.
However, the latter ones equal ordinary inverse images if the horizontal morphisms in
the above diagram are non-characteristic for the modules in question. This is the case by
Proposition 2.22, 2., so that we obtain

FLloc
K M ı

�
H0

�� OS�K M ı

�
Š .idCz �%/

C FLloc
W

�
H0

'B;� OS�W

�
jV �
D .idCz �%/

C G �jV � :
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The second part of Corollary 5.5 (and the second part of Proposition 3.3) tells us that

G � Š dM�.c;0;1/

A0 . However, the isomorphism ‰ W �cN .0;0;0/

A0 ! �dM�.2c;0;1/

A0 given by right
multiplication with zc � �mC1 � � ��mCc (see Equation (54)) shows that

.idCz �%/
C �dM�.2c;0;1/

A0 Š .idCz �%/
C �cN .0;0;0/

A0

so that finally we arrive at the desired equality

FLloc
K M ı

�
H0

�� OS�K M ı

�
Š .idCz �%/

C �cN .0;0;0/

A0 :

Next we show the analog of Proposition 3.21 for the morphism � .

L 6.5. – Let eF W Xaff � K M ı
! C�0 be the first component of the morphism � ,

then we have the following isomorphism of RCz�K M ı -modules

(63) z�cHnCc.��
Xaff�K M ı=K M ı

.log D/Œz�; zd � d eF / Š .idCz �%/� �0�dM .�c;0;0/

A0

�
:

Proof. – In order to show the statement, notice that by definition

HnCc.��
Xaff�W �=W �

.log D/Œz�; zd � dF /

is the cokernel of

�nCc�1
Xaff�W �=W �

.log D/Œz�
zd�dF
! �nCc

Xaff�W �=W �
.log D/Œz�;

that is, the cokernel of an OCz�W � -linear morphism between free (though not coherent)
OCz�W � -modules. Hence tensoring with OCz�K M ı yields the exact sequence

�nCc�1
Xaff�K M ı=K M ı

.log D/Œz�
zd�d eF
! �nCc

Xaff�K M ı=K M ı
.log D/Œz�

! OCz�K M ı ˝ OCz�W�
HnCc.��

Xaff�W �=W �
.log D/Œz�; zd � dF /! 0

from which we conclude that

HnCc.��
Xaff�K M ı=K M ı

.log D/Œz�; zd � d eF /
D OCz�K M ı ˝ OCz�W�

HnCc.��
Xaff�W �=W �

.log D/Œz�; zd � dF /:

Notice that the restriction functor . OCz�K M ı ˝ OCz�W�
�/ is defined via the embedding

% W K M ı
,! W �, and hence involves the involution �. Therefore the function eF appears on

the left hand side of the last formula, whereas on the right hand side we have to put F .

We know by Proposition 3.21 that

z�cHnCc.��
Xaff�W ı=W ı

.log D/Œz�; zd � dF / Š z�c0ıdM .0;0;0/

A0 :

On the other hand, we know from Equation (39) that right multiplication by zc induces an
isomorphism �dM .0;0;0/

A0

�
jCz�W ı

�zc

!

�dM .�c;0;0/

A0

�
jCz�W ı
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which maps z�c0ıdM .0;0;0/

A0 �

�dM .0;0;0/

A0

�
jCz�W ı

isomorphically to 0
ıdM .�c;0;0/

A0 ��dM .0;0;0/

A0

�
jCz�W ı

. The desired statement, i.e., Formula (63) follows as the restriction

map % W K M ı
,! W � factors by definition over W ı.

Similarly to the last statement, we now give a geometric interpretation of the (restric-

tion to Cz � K M ı of the) modules 0�cN .0;0;0/

A0 using the twisted relative logarithmic de
Rham complex on Xaff � K M ı. We need some preliminary notations. Denote by .�/0

the duality functor in the category of locally free OCz�K M ı -modules with meromorphic
connection with poles along f0g � K M ı, that is, if .F ;r/ is an object of this category,
we put .F ;r/0 WD .Hom OCz�K Mı

.F ; OCz�K M ı/;r
0/, where r 0 is the dual connection.

Notice that the RCz�K M ı -modules from isomorphism (63) are actually objects of this
category. Notice also that the duality functor in the category of RCz�K M ı -modules (i.e.,
the functor Ext rC1

RCz�K Mı
.�; RCz�K M ı/) restricts to .�/0 on the subcategory described

above (this follows from [15, Lemma A.12]).
As a piece of notation, for any complex manifold M we denote by � the involution of

Cz �M defined by .z; x/ 7! .�z; x/.

L 6.6. – There is an isomorphism of RCz�K M ı -modules

��zn
�
HnCc.��

Xaff�K M ı=K M ı
.log D/Œz�; zd � d eF /�0 Š! .idCz �%/

�

�
0
�cN .0;0;0/

A0

�
:

Proof. – Consider the filtration on DCz�W resp. on DCz�W � which extends the order
filtration on DW (resp. on DW � ) and for which z has degree�1 and @z has degree 2. Denote

by G� the induced filtrations on the modules �cN .0;0;0/

A0 and dM .�c;0;0/

A0 resp. on �dM .�c;0;0/

A0 ,

in particular, we haveG0

�
�cN .0;0;0/

A0

�
D 0
�cN .0;0;0/

A0 andG0

�dM .�c;0;0/

A0

�
D 0

dM .�c;0;0/

A0 resp.

G0

�
�dM .�c;0;0/

A0

�
D 0
�dM .�c;0;0/

A0 .

Similar to the proof of [47, Proposition 2.18, 3.], we consider the saturation of the filtra-
tion F� on M

ˇ
A00 by @�1

�0
. More precisely, we first notice that Lemma 3.2 can be reformulated

by saying that for any ˇ0 D .ˇ00; ˇ
0
1; : : : ; ˇ

0
nCc/ 2 Z

1CnCc , we havedM ˇ

A0 D FLW
�

M
ˇ 0

A00 Œ@
�1
�0
�
�
;

where ˇ0 D ˇ00 C 1 and ˇi D ˇ0i for i D 1; : : : ; n C c and where we write M
ˇ 0

A00 Œ@
�1
�0
� WD

DV Œ@
�1
�0
�˝DV M

ˇ 0

A00 .

Now we consider the natural localization morphism cloc W M
ˇ 0

A00 ! M
ˇ 0

A00 Œ@
�1
�0
� and we

put

Fk M
ˇ 0

A00 Œ@
�1
�0
� WD

X
j�0

@
�j

�0
cloc
�
FkCj M

ˇ 0

A00

�
:

As we have

Fk M
ˇ 0

A00 Œ@
�1
�0
� D im

�
@k�0CŒ�0; �1; : : : ; �mCc �h@

�1
�0
; @�1�0 @�1 ; : : : ; @

�1
�0
@�mCc i

�
in M

ˇ 0

A00 Œ@
�1
�0
�;
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the filtration induced by Fk M
ˇ 0

A00 Œ@
�1
�0
� on dM ˇ

A0 is precisely GkdM ˇ

A0 . We conclude from [51,
Formula 2.7.5] and from the fact that Fourier-Laplace transformation commutes with the
duality functor up to the action of � that

.GldM�.c;0;1/

A0 /0 D Hom OCz�W

�
GldM�.c;0;1/

A0 ; OCz�W

�
Š
D ��GD

lC.mCcC2/
dM .1;0;0/

A0 ;

whereGD
�
dM .1;0;0/

A0 is the filtration induced by the saturation of the filtration on M
.0;0;0/

A00 dual

to the order filtration F� on M
�.cC1;0;1/

A00 . By Theorem 5.4, 2. and by restriction to Cz �W �

we obtain

GD
�
�dM .1;0;0/

A0 D G�Cn�.mCcC1/
�dM .1;0;0/

A0 :

Hence

.Gl
�dM�.c;0;1/

A0 /0 D ��GlCnC1
�dM .1;0;0/

A0 :

Now we use the fact that for any k 2 Z, the isomorphism (see Equation (39))

�zk WdM .ˇ0;ˇ/

A0
Š
!dM .ˇ0�k;ˇ/

A0

sends GkdM .ˇ0;ˇ/

A0 D z�k0dM .ˇ0;ˇ/

A0 to G0dM .ˇ0�k;ˇ/

A0 D 0
dM .ˇ0�k;ˇ/

A0 . Therefore (setting
l D 0) we have

.G0dM�.c;0;1/

A0 /0 Š ��GnC1
�dM .1;0;0/

A0 D ��Gn
�dM .0;0;0/

A0 :

which implies

G0
�dM�.c;0;1/

A0 Š

�
��Gn

�dM .0;0;0/

A0

�0
The isomorphism ‰ from Formula (54) satisfies

‰ W 0
�cN .0;0;0/

A0
Š
! zc � 0

�dM�.2c;0;1/

A0 Š 0
�dM�.c;0;1/

A0

In conclusion, we obtain

0
�cN .0;0;0/

A0 Š

�
��z�n � 0

�dM .0;0;0/

A0

�0
Š ��zn �

�
0
�dM .0;0;0/

A0

�0
;

and then the statement follows from Proposition 3.21 as the inverse image under idCz �%
�

commutes with the functor .�/0.

Now we can construct a DCz�K M ı -module from the non-affine Landau-Ginzburg model
… W Z

ı

X ! C�0 � K M ı that will ultimately give us the reduced quantum D-module.
It will consist in a minimal extension of the local system of intersection cohomologies of
the fibres of …. Recall that M IC

.Z
ı

X / is the intersection cohomology D-module of Z
ı

X ,
that is, the unique regular singular D Z

ı -module supported on Z
ı

X which corresponds to the
intermediate extension of the constant sheaf on the smooth part of Z

ı

X .

P 6.7. – 1. Consider the local system L from Proposition 2.13. Then

H0
˛CM IC

.Z
ı

X / Š .idC�0 �%/
C
�

M IC
.Xı; L /˚

�
IHnCc�1.X/˝ OV

��
jV �

:
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Using the Riemann-Hilbert correspondence, the above isomorphism can be expressed
in terms of the morphism … as

pH0
R…�IC.Z

ı

X / Š .idC�0 �%/
�1
�
.jXı/ŠIC.X

ı; L /˚ IHnCc�1.X/
�
jV �

;

where pH denotes the perverse cohomology functor, where jXı W X0 ,! V is the
canonical closed embedding and where IHnCc�1.X/ is the constant sheaf on V with fibre
IHnCc�1.X/.

2. We have isomorphisms of DCz�K M ı -modules

FLloc
K M ı

�
H0

˛CM IC
.Z
ı

X /
�
Š .idCz �%/

C M̂ IC
.Xı; L /jV � Š .idCz �%/

C im.e�/;
where e� W �cN .0;0;0/

A0 ! �dM .�c;0;0/

A0 is the morphism introduced in Definition 6.1.

Proof. – 1. As the inclusion Z
ı
,! Z is open and hence non-characteristic for any

D Z -module, the assertion to be shown follows from Proposition 2.22 (more precisely,
from Formula (33)) and Proposition 2.13.

2. The first isomorphism is a direct consequence of the last point, using again the commu-
tation of FLloc with the inverse image and the fact that OV -free modules are killed
by FLloc

W . The second isomorphism follows from Equation (55).

For future use, we give names to the D-modules on the Kähler moduli space considered
above. We also define natural lattices inside them.

D 6.8. – Define the following DCz�K M ı -modules:

QMA0 WD .idCz �%/
C

�
�cN .0;0;0/

A0

�
and QM IC

A0 WD .idCz �%/
C
�
im.e�/� :

Define moreover

0QMA0 WD .idCz �%/
�

�
0
�cN .0;0;0/

A0

�
and 0QM IC

A0 WD .idCz �%/
�

�e� �0�cN .0;0;0/

A0

��
;

where here the functor .idCz �%/
� is the inverse image in the category of holomorphic vector

bundles on Cz � K M ı with meromorphic connection (meromorphic along f0g � K M ı).

We proceed by comparing the objects QMA0 and QM IC
A0 just introduced to the twisted

and the reduced quantum D-module from Section 4. For the readers convenience, let us
recall one of the main results from [39] which concerns the toric description of the twisted
resp. reduced quantum D-modules.

T 6.9 ([39, Theorem 5.10]). – Let X† be as before, and suppose that
L1 D OX†.L1/; : : : ; L c D OX†.Lc/ are ample line bundles onX† such that�KX† �

Pc
jD1Lj

is nef. Put again E WD
Lc
jD1 Lj . For any L 2 Pic.X†/ with c1. L / D

Pr
aD1 dapa 2 L_A , we

put bL DPr
aD1 zdaqa@qa 2 RCz�K M . Define the left ideal J of RCz�K M by

J WD RCz�K M .Ql /l2LA0 CRCz�K M �
bE;
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where

Ql WD
Y

i2f1;:::;mgWli>0

li�1Y
�D0

�cDi � �z
� Y
j2f1;:::;cgWlmCj>0

lmCcY
�D1

�bLj C �z�

� ql �
Y

i2f1;:::;mgWli<0

�li�1Y
�D0

�cDi � �z
� Y
j2f1;:::;cgWlmCj<0

�lmCcY
�D1

�bLj C �z� ;
bE WD z2@z � bKV. E _/:

Here we write Di 2 Pic.X†/ for a line bundle associated to the torus invariant divisor Di ,
where i D 1; : : : ; m. Notice that the ideal J was called G in [39, Definition 4.3].

Moreover, let Quot be the left ideal in RCz�K M generated by the following set

G WD
˚
P 2 RCz�K M jbctop � P 2 J

	
;

where bctop WD
Qc
jD1

bLj . We define P WD RCz�K M =J resp. P res WD RCz�K M =Quot

and denote by P D RCz�K M =J resp. P
res
D RCz�K M =Quot the corresponding

RCz�K M -modules. Notice that we have J � Quot , hence there is a canonical surjec-
tion P � P

res.
Put B�" WD fq 2 .C

�/r j 0 < jqj < "g � K M ı, then there is some " such that the following
diagram is commutative and the horizontal morphisms are isomorphisms of RCz�B

�
"

-modules.

P jCz�B�"
Š //

����

.idCz �Mir/� .QDM.X†; E //

�
����

P
res
jCz�B

�
"

Š // .idCz �Mir/�
�

QDM.X†; E /
�
:

Here MirW B�" ! H 0.X†/ � U is the mirror map, as described in [21, Theorem 0.1] (see also
[9, Corollary 5 and the remark thereafter]).

Recall that U � H 2.X†;C/=2�iH
2.X†;Z/ Š .C�/r is the convergency domain of the

twisted quantum product, i.e., the quantum D-modules QDM.X†; E / and QDM.X†; E / are
defined on Cz �H 0.X†;C/ � U (see Section 4.1).

We now define another quotient Qres of P which is better suited to our approach and

which turns out to be isomorphic to P
res resp. to .idCz �Mir/�

�
QDM.X†; E /

�
in some

neighborhood of q D 0.

D 6.10. – Let K be the following ideal in RCz�K M :

K WD fP 2 RCz�K M j 9 p 2 Z; k 2 N such that
kY
iD0

bcpCitop P 2 J g;

wherebcitop WD
Qc
jD1.

bLj C i/. Define

Qres
WD RCz�K M =K

and denote by Qres be the corresponding RCz�K M -module.
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P 6.11. – Using the notations from above, we have the following isomorphisms:

P
res
jCz�B

�
"
' Qres

jCz�B
�
"
' .idCz �Mir/�

�
QDM.X†; E /

�
:

Proof. – First notice that we have a surjective morphism P
res � Qres because the

generating set G of Quot is contained in the ideal K. If we can construct a well-defined
morphism

(64) QresjCz�B�"
! .idCz �Mir/�

�
QDM.X†; E /

�
such that the following diagram

P
res
jCz�B

�
"

// //

'

��

Qres
jCz�B

�
"

uu

.idCz �Mir/�
�

QDM.X†; E /
�

commutes, the proposition follows. In order to construct the morphism (64) we recapitulate
the construction from [39] of the morphisms

P jCz�B�"
! .idCz �Mir/� .QDM.X†; E //

resp. P
res
jCz�B

�
"
! .idCz �Mir/�

�
QDM.X†; E /

�
:

It relies on a certain multivalued sectionLtw in End.QDM.X†; E // having the property that

Ltwz��zc1.T X /�c1. E /

is a fundamental solution of QDM.X†; E / (see again [21] and [9]). We use the formulation
from [39, Proposition 2.17]. Moreover we also need the multi-valued section J tw having the
property that

J tw WD .Ltw/�11 in QDM.X†; E /:

Finally, we are going to use the cohomological multi-valued section

I WD qT=z
X

d2H2.X;Z/

qdAd .z/;

where

Ad .z/ WD

cY
iD1

QdLi
mD�1.ŒLi �Cmz/Q0
mD�1.ŒLi �Cmz/

Y
�2†.1/

Q0
mD�1.ŒD� �Cmz/Qd�
mD�1.ŒD� �Cmz/

;

qT=z WD e
1
z

Pr
aD1 Ta log.qa/;

d� WD
R
d
D� and dLi WD

R
d
c1. L i / and which has asymptotic development I D F.q/1CO.z�1/.

The aforementioned mirror theorem of Givental ([21, Theorem 0.1] and [9, Corollary 5]),
which we use it in the version stated in [39, Theorem 5.6], says that

I.q; z/ D F.q/ � J tw.Mir.q/; z/:
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Now one defines the following morphism

RCz�B
�
"
! .id �Mir/� .QDM.X†; E // ;(65)

P.z; q; zq@q; z
2@z/ 7! Ltw.Mir.q/; z/z��zc1.T X /�c1. E /P.q; z; z@qi ; z

2@z/(66)

� z�c1.T X /Cc1. E /z�F.q/J tw.Mir.q/; z/

D Ltw.Mir.q/; z/z��zc1.T X /�c1. E /P.q; z; z@qi ; z
2@z/(67)

� z�c1.T X /Cc1. E /z�I.q; z/

the proof of its surjectivity can be found in the proof [39, Theorem 5.10].

The morphism above descends to P jCz�B�" by the fact that

P.q; z; zq@q; z
2@z/z

�c1.T X /Cc1. E /z�I D 0 for P 2 J :

If one composes the morphism (65) with the quotient morphism �, then this descends to a
morphism

(68) P
res
jCz�B

�
"
! .idCz �Mir/�

�
QDM.X†; E /

�
;

which follows from

(69) P.q; z; zq@q; z
2@z/z

�c1.T X /Cc1. E /z�I 2 ker.mctop/ for P 2 Quot

and the fact that Ltw preserves ker.mctop/ (cf. [39, Lemma 2.31]).

As explained above, the proposition will follow if the morphism (68) descends to Qres
jCz�B

�
"

,
i.e., we have to show that

(70) P.q; z; zq@q; z
2@z/z

�c1.T X /Cc1. E /z�I 2 ker.mctop/ for P 2 K :

We will adapt the proof of (69) from [39, Lemma 5.21] to our situation. First notice that

z�c1.T X /Cc1. E /z�I D
X

d2H2.X;Z/

qTCdz�c1.T X /Cc1. E /�
R
d .c1.T X /�c1. E //Ad .1/:

Now let P.q; z; q@q; z2@z/ 2 K and decompose it:

P.q; z; q@q; z
2@z/ D

X
d 02H2.X;Z/

finite

qd
0

Pd 0.z; z@q; z@z/:

This gives

P.q; z; q@q; z
2@z/z

�c1.T X /Cc1. E /z�I

D

X
d2H2.X;Z/

qTCdz�c1.T X /Cc1. E /�
R
d .c1.T X /�c1. E //Bd .z/;

where

Bd .z/ WD
X

d 02H2.X;Z/
finite

Pd 0

�
z; z.T C d/; z.�c1.T X /C c1. E / �

Z
d

�
c1.T X / � c1. E /

�
/

�
Ad�d 0.1/:
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Similarly to loc. cit., the statement (70) will follow from the fact that ctopBd .z/ D 0 for all
d 2 H2.X;Z/. Because P 2 K, there exists p 2 Z and k 2 N such that 

kY
iD0

bcpCitop

!
P.q; z; zq@q; z

2@z/z
�c1.T X˝ E _/z�I D 0;

which gives

X
d2H2.X;Z/

qTCdz
�c1.T X /Cc1. E /�dTX˝ E_

0@ kY
iD0

cY
jD1

z.ŒLj �C dLj C p C i/

1ABd .z/ D 0:
Notice that the sum above is zero if and only if each summand is zero. For .z; q/ 2 C�z �W

the term qTCdz
�c1.T X /Cc1. E /�dTX˝ E_ is invertible, so we deduce that0@ kY
iD0

cY
jD1

.ŒLj �C dLj C p C i/

1ABd .z/ D 0 8d 2 H2.X;Z/:

Let Jd WD fj 2 f1; : : : ; cg j 9i 2 f0; : : : ; kg with dLj C pC j D 0g and notice that for every
j there is at most one i 2 f0; : : : ; kg such that dLj C p C i D 0. Because cup-product with
ŒLj �C l is an automorphism of H 2�.X;C/ for every l ¤ 0, we conclude that0@Y

j2Jd

ŒLj �

1ABd .z/ D 0 8d 2 H2.X;Z/;

which in turn shows that ctopBd .z/ D .
Qc
jD1ŒLj �/Bd .z/ D 0 for all d 2 H2.X;Z/.

The next proposition compares the R -modules from Theorem 6.9 and Definition 6.10
with 0QMA0 and 0QM IC

A0 .

P 6.12. – We have isomorphisms of RCz�K M ı -modules

P jCz�K M ı Š 0QMA0 and Qres
jCz�K M ı Š 0QM IC

A0 :

Proof. – The first isomorphism follows from a similar argument as [47, Proposition 3.2],
namely, the section

% D i ı %0 W K M ,! W �;

.q1; : : : ; qr / 7! .�1 D q
m1 ; : : : ; �m D q

mm ; �mC1 D �q
mmC1 ; : : : ; �mCc D �q

mmCc /

can be used to construct an isomorphism

� W F � K M ! W �;

.f1; : : : ; fnCc ; q1; : : : ; qr / 7! .qm1ya1 ; : : : ; qmmyam ;�qmmC1yamC1 ; : : : ;�qmmCcyamCc /

with inverse

��1 W W � ! F � K M ;

.�1; : : : ; �mCc/ 7! .fj D .�1/
PmCc
iDmC1

cij �cj ; qa D .�1/
PmCc
iDmC1

lia�la/;
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whereL D .la/ resp.M D .mi / are the matrices which were introduced above Definition 6.3
and C D .cj / is a .mC c/� .nC c/-matrix such that the following equations are fulfilled (cf.
Section 2.4):

M � L D Ir ; B � C D InCc ; B � L D 0; M � C D 0; C � B C L �M D ImCc :

Under this coordinate change the module 0�cN .0;0;0/

A0 has the following presentation:

RCz�F�K M =..Ql /l2L C .bE/C .bE 0k/kD1;:::;nCc/
with Ql and bE as in Definition 6.9 and bE 0

k
WD fk@k for k 2 f1; : : : ; nC cg.

Its module of global sections can be described simply by forgetting @fk , i.e., we have the
following description

(71)
CŒz; f ˙1 ; : : : ; f

˙
nCc ; q

˙
1 ; : : : ; q

˙
r �hz

2@z ; z@q1 ; : : : ; z@qr i

..Ql /l2L C .bE// :

Notice that the map % can be factorized as � ı i� with

i� W K M ! F � K M ;

.q1; : : : ; qr / 7! .1; : : : ; 1; q1; : : : ; qr /:

Thus the inverse image of (71) with respect to i� is given by

CŒz; q˙1 ; : : : ; q
˙
r �hz

2@z ; z@q1 ; : : : ; z@qr i

..Ql /l2L C .bE// ;

which is exactly the definition of the module P from Theorem 6.9.
Concerning the second isomorphism, the associated sub-RCz�F�K M -module corre-

sponding to cK N from Lemma 6.2 can be described by

fP 2 CŒz; f ˙1 ; : : : ; f
˙
nCc ; q

˙
1 ; : : : ; q

˙
r �hz

2@z ; z@q1 ; : : : ; z@qr i

j 9p 2 Z; k 2 N s.t.
kY
iD0

bCpCitop P 2 ..Ql /l2L C .bE//g;
where

bC ktop WD

mCcY
iDmC1

..

nCcX
jD1

cijfj @j C

rX
aD1

liaqa@a/C l/;

D

mCcY
iDmC1

..

nCcX
jD1

cijfj @j C
cDi /C k/

for k 2 Z. It is easy to see that its inverse image under .idCz�i� / is given by

fP 2 CŒz; q˙1 ; : : : ; q
˙
r �hz

2@z ; z@q1 ; : : : ; z@qr i

j 9p 2 Z; k 2 N s.t.
kY
iD0

bcpCitop P 2 ..Ql /l2L C .bE//g;
which is exactly the definition of the ideal K in Definition 6.10. Thus, the second isomor-
phism follows.
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Combining Proposition 6.12, Theorem 6.9, Lemma 6.4 and 6.6 as well as Proposition 6.7,
we obtain the following mirror statement.

T 6.13. – Let X† and L1; : : : ; L c be as in Theorem 6.9. Consider the affine resp.
non-affine Landau-Ginzburg models � D .eF ; q/ W Xaff � K M ı

! C�0 � K M ı,

� W S � K M ı
! C�0 � K M ı and … W Z

ı

X ,! Z
ı ˛
! C�0 � K M ı associated

to .X†; L1; : : : ; L c/. Let B�" � K M ı be the punctured ball from Theorem 6.9. Then there
are isomorphisms of DCz�B

�
"

-modules

FLloc
K M ı

�
H0

�� OS�K M ı

�
jCz�B

�
"
Š .idCz �Mir/� .QDM.X†; E //

�
�.f0g � B�" /

�
;

FLloc
K M ı

�
H0

˛CM IC
.Z
ı

X /
�
jCz�B

�
"
Š .idCz �Mir/�

�
QDM.X†; E /

� �
�.f0g � B�" /

�
and an isomorphism of RCz�B

�
"

-modules

��zn �
�
HnCc.��

Xaff�K M ı=K M ı
.log D/Œz�; zd � d eF /�0 jCz�B�" Š .idCz �Mir/� .QDM.X†; E // :

The following corollary is the promised Hodge theoretic application of the above main
theorem.

C 6.14. – There exists a variation of non-commutative pure polarized Hodge
structures .F ; LQ; iso; P / on K M ı (see [36], [26] or [49] for the definition) such that

(72) F
�
�.f0g � B�" /

�
Š .idCz �Mir/�

�
QDM.X†; E /

� �
�.f0g � B�" /

�
:

Proof. – Using Theorem 6.13, this is a direct consequence of [50, Théorème 1] and [48,
Corollary 3.15].

It would of course be desirable to remove the localization with respect to f0g � B�" from
the above theorem. We conjecture that the corresponding statement still holds, however, we
cannot give a complete proof of this for the moment as we are not able to control the Hodge
filtration on M IC

.Z
ı

X /. More precisely, we expect the following to be true.

C 6.15. – 1. Write FH� H0
˛CM IC

.Z
ı

X / for the Hodge filtration on
H0

˛CM IC
.Z
ı

X /, which underlies a pure Hodge module due to[50, Théorème 1],
and which has weight n C c C .m � n/ D m C c. Let FH� Œ@

�1
�0
� be the satura-

tion of FH� as in the proof of Lemma 6.6 and write GH� for the induced filtration
on FL K M ı.H0

˛CM IC
.Z
ı

X //. Then under the isomorphism of Proposition 6.7, 2., we
have that

GH
��.mCc/ FL K M ı.H0

˛CM IC
.Z
ı

X // Š z
�
� 0QM IC

A0 :

Notice that the bundle F which was used in the isomorphism from Corollary 6.14 is
nothing but the object GH

�.mCc/
FL K M ı.H0

˛CM IC
.Z
ı

X //.
2. The isomorphism (72) holds without localization, i.e., there is an isomorphism of

RCz�B
�
"

-modules�
GH
�.mCc/ FL K M ı.H0

˛CM IC
.Z
ı

X //
�
jCz�B

�
"
Š .idCz �Mir/�QDM.X†; E /:

As a consequence, the reduced quantum D-module underlies a variation of non-
commutative Hodge structures.
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This conjecture, if proved, should be seen as a first step towards establishing the existence
of a very special geometric structure on the cohomology space of the complete intersection
subvariety Y � X†, known as t t�-geometry (see [7, 8] or [25] for a modern account). Its
existence is known for the quantum cohomology of nef toric manifolds themselves (this
follows from [47, Theorem 5.3], see also [32]). For (non-toric) complete intersections one
needs of course to consider its total quantum cohomology, not just the ambient part, but
at least on this part the above conjecture would give the desired result.

Comparing Theorem 6.13 with Lemma 6.4 one may wonder whether the module

FLloc
K M ı

�
H0

�C OS�K M ı

�
also has an interpretation as a mirror object. This is actu-

ally the case, namely, it corresponds to the so-called Euler�1-twisted quantum D-module
(whereas the object QDM.X†; E / from Definition 4.3 would be the Euler-twisted quantum
D-module in this terminology). The Euler�1-twisted quantum D-module encodes the so-
called local Gromov-Witten invariants of the dual bundle E _ and is denoted by QDM. E _/

(see [20, Theorem 4.2]). There is a non-degenerate pairing between QDM.X†; E / and�
idCz �.h ı f /

��
QDM. E _/ (this is the non-equivariant limit of the quantum Serre theorem

from [9, Corollary 2]) where f ; h 2 CŒŒH�.X†;C/_��n are maps. The existence of this pairing
has been proved in the recent paper [33]. However, in the formulation of this result, all objects
are defined on the total cohomology space, i.e., correspond to the big (twisted) quantum
product. Nevertheless, we are able to obtain a mirror theorem for local Gromov-Witten
invariants.

Consider the situation of Theorem 6.13, in particular, let E WD
Lc
jD1 Lj . As Lj are nef

bundles and hence globally generated, also E is globally generated and therefore convex. Let
QDM. E _/ be the (Euler�1/-twisted quantum D-module governing local Gromov-Witten
invariants, that is, integrals over the moduli space M 0;l;d .V. E _// of stable maps to the total
space V. E _/ (notice that M 0;l;d .V. E _// is compact unless d D 0).

T 6.16. – Let again X† and L1; : : : ; L c be as in Theorem 6.9. There is some
convergency neighborhood B�"0 , an isomorphism of DCz�B

�
"0

-modules

FLloc
K M ı

�
H0

�C OS�K M ı

�
jCz�B

�
"0

Š
�
idCz �Mir0

�� �
QDM. E _/

� �
�.f0g � B�"0/

�
and an isomorphism of RCz�B

�
"0

-modules

HnCc.��
Xaff�K M ı=K M ı

.log D/Œz�; zd � d eF /jCz�B�"0 Š ��zn � �idCz �Mir0
��

QDM. E _/:

Here Mir0 is some base change involving the above mentioned maps f , h as well as the base
change Mir.

Proof. – It is actually sufficient to show the second statement as the first follows by
applying the localization functor .�/ ˝ OCz�B�"0

�
�.f0g � B�"0/

�
(This follows by using

Proposition 3.21, Remark 3.16, 2. as well as Proposition 3.3 together with Lemma 3.4.)

It follows from [33, Theorem 3.14] that there exists a non-degenerate pairing

.QDM.X†; E // jCz�B�"0
˝

�
idCz �.h ı f /

�� �
QDM. E _/jCz�B�"0

�
! OCz�B�"0
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which is compatible with the connection operators induced by the RCz�B
�
"0

-module
structures of the objects on the left hand side. As has been pointed out above, this state-
ment is given in loc.cit. for the big quantum D-modules, hence, one has to check that�

idCz �.h ı f /
�� �

QDM. E _/jCz�B�"0

�
is still a vector bundle on Cz �B�"0 . From the defini-

tion of the map h (see [33, Proposition 3.11]) it is clear that it restricts to an invertible map
h W H 2.X†;C/! H 2.X†;C/. We claim that f restricts to a map

f W H 2.X†;C/! H 0.X†;C/˚H
2.X†;C/

so that the pullback f
�

 of any class 
 2 H 2.X†;C/ is still an element of H 2.X†;C/. This

can be seen as follows: From [33, Proof of Lemma 3.2], we know that

(73) f .�/ D

hX
˛D0

0@ X
d2H2.X†;C/;n�0

hT˛;e1; �; �; : : : ; �„ ƒ‚ …
n-times;

i0;nC3;d

1AT ˛:
According to the Definition 4.1, the correlator hT˛;e1; � �; : : : ; �„ ƒ‚ …

n-times;

i0;nC3;d is non-zero only if

the degree deg.T˛/ C .n C 1/ C deg
�
e. E 0;nC3;d .2//

�
equals the dimension of the moduli

space ŒM 0;nC3;d .X /�, i.e., the number dim.X†/C
R
d
c1.X/C n. Under the assumption of

the theorem, E 0;nC3;d is represented by a vector bundle, which is of rank
R
d
c1. E /Crank. E /.

Hence E 0;nC3;d .2/, being the kernel of the map E 0;nC3;d ! ev�2. E / is a bundle of rankR
d
c1. E /, so that we see that hT˛;e1; � �; : : : ; �„ ƒ‚ …

n-times;

i0;nC3;d ¤ 0 if and only if

deg.T˛/C1 D dim.X/C
Z
d

c1.X†/�

Z
d

c1. E / D dim.X/C
Z
d

c1.�KX†�

cX
jD1

Lj / � dim.X/

where the last inequality holds due to the assumptions on X† and E . We conclude for any
class T ˛ occurring in Formula (73) the following holds: either its degree is at most 1 or its
coefficient is zero. This means nothing else than im.f / � H 2.X†;C/˚H

0.X†;C/.
Hence we can deduce from [33, Theorem 3.14] that there is an isomorphism�

idCz �.h ı f /
�� �

QDM. E _/jCz�B�"0

�
Š
�
.QDM.X†; E //0

�
jCz�B

�
"0

of RCz�B
�
"0

-modules, and then the desired statement follows from the third line in the
displayed formula in Theorem 6.13.

Remark. – In view of [20, Corollary 4.3], one may conjecture that Mir0 is the identity if the
number c of line bundles defining the bundle E is strictly bigger than 1. However, at this
moment, we do not have any further evidence for this conjecture.

The following consideration shows that the main Theorem 6.13 can also be considered
as a generalization of mirror symmetry for Fano manifolds themselves, as presented in our
previous paper (see [47, Proposition 4.10]). Namely, let us consider the case where the number
c of line bundles on the toric variety X† is zero. Then we have A0 D A, and the duality
morphism � from Definition 5.6 is

� W M
�.cC1;0;1/

A00 D M
.�1;0/

A00 ! M
.0;0;0/

A00 D M
.0;0/

A00
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and is induced by right multiplication by @�0 . In particular, the induced morphismb� is simply the identity on dM .0;0/

A0 . In particular, we have that im.e�/ ŠdM .0;0/

A0 so that
QM IC

A0 Š QMA0 and 0QM IC
A0 Š 0QMA0 . On the other hand, the reduced quantum

D-module QDM.X†; E / is nothing but the quantum D-module of the variety X†, so
that we deduce from Theorem 6.13 that we have an isomorphism of DCz�B

�
"

-modules

FLloc
K M ı

�
H0

�C OS�K M ı

�
jCz�B

�
"
Š .idCz �Mir/� .QDM.X†//

�
�.f0g � B�" /

�
:

One easily sees that we have an even more precise statement, namely, the third assertion of
Theorem 6.13 simplifies in this case to an isomorphism of RCz�B

�
"

-modules

Hn.��
S�K M ı=K M ı

Œz�; zd � d eF /jCz�B�" Š .idCz �Mir/�QDM.X†; E /:

This isomorphism is the restriction of the isomorphism in [47, Proposition 4.10] to Cz � B"
(see also [30, Proposition 4.8]), notice that the neighborhoodB" is calledW0 in [47]. Hence we
see that our main Theorem 6.13 contains in particular the mirror correspondence for smooth
toric nef manifolds, at least on the level of RCz�B" -modules.

One may conclude from the above observation that Landau-Ginzburg models, either
affine or compactified, appear to be the right point of view to study various type of mirror
models of (the quantum cohomology of) smooth projective manifolds, including Calabi-Yau,
Fano and more generally nef ones. The preprint [24] where varieties of general types and their
mirrors are investigated, also seem to confirm this observation. It would certainly be fruitful
to apply our methods to varieties with positive Kodaira dimension to refine the results from
loc.cit.

Index of notations

Objects

E , toric vector bundle, 718
E _, dual toric vector bundle, 722
FLloc

W , localized FL-transformation with basis
W , 705

FL, Fourier-Laplace transformation, 686
FL X , Fourier-Laplace transformation with

basis X , 685
GC, Gauß-Manin system, 706
G�, compactly supported Gauß-Manin

system, 706
K
ı
X†

, Kähler cone of X†, 722
KX† , nef cone of X†, 722

M
ˇ
B

, global sections of GKZ-system, 687

M
ˇ
B

, GKZ-system, 687

M IC .X /, minimal extension of structure
sheaf, 692

M IC .X ; L /, minimal extension of flat
bundle, 692

R, Radon transformation, 690

Rcst, constant Radon transformation, 690

Rı, open Radon transformation, 690

Rıc , compact, open Radon transformation,
690

RCz�M , Rees-ring, 686

R
0
Cz�M

, restricted Rees-ring, 686
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Maps and spaces

g, torus embedding, 687
K M ı, set of good parameters inside Kähler

moduli space, 734
K M , Kähler moduli space, 734
Mir, mirror map, 741
…, non-affine Landau-Ginzburg model, 735
� , affine Landau-Ginzburg model on torus,

735
� , affine Landau-Ginzburg model onXaff , 735

'B , family of Laurent polynomials, 690
%, embedding of Kähler moduli space, 734
S , torus, 686
W ı, set of good parameters, 712
X , compactification of S , 687
Xaff, partial compactification of S , 710
Z, universal hyperplane, 689
Z
ı
X , hyperplane sections of X restricted to

good parameters, 734
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