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NON-AFFINE LANDAU-GINZBURG MODELS
AND INTERSECTION COHOMOLOGY

BY THOMAS REICHELT AND CHRISTIAN SEVENHECK

ABSTRACT. — We construct Landau-Ginzburg models for numerically effective complete intersec-
tions in toric manifolds as partial compactifications of families of Laurent polynomials. We show a
mirror statement saying that the quantum )-module of the ambient part of the cohomology of the
submanifold is isomorphic to an intersection cohomology )-module defined from this partial com-
pactification and we deduce Hodge properties of these differential systems.

REsuME. — Nous construisons un modele de Landau-Ginzburg pour les intersections complétes
numériquement effectives dans les variétés toriques lisses. Il s’agit de compactifications partielles de
familles de polynomes de Laurent. Nous démontrons un théoréme de symétrie miroir qui exprime le
)-module quantique de la partie ambiante de la cohomologie de la sous-variété comme un )-mo-
dule de cohomologie d’intersection défini par cette compactification partielle. Nous en déduisons des
propriétés de Hodge de ces systémes différentiels.

1. Introduction

The aim of this paper is the construction of a mirror model for complete intersections
in smooth toric varieties. We consider the case where these subvarieties have a numerically
effective anticanonical bundle. This includes in particular toric Fano manifolds, whose
mirror is usually described by oscillating integrals defined by a family of Laurent polyno-
mials and also the most prominent and classical example of mirror symmetry, namely, that
of Calabi-Yau hypersurfaces in toric Fano manifolds. Here the mirror is a family of Calabi-
Yau manifolds and the mirror correspondence involves the variation of Hodge structures
defined by this family. One interesting feature of our results is that these apparently rather
different situations occur as special cases of a general mirror construction, called non-affine
Landau-Ginzburg model.

During the preparation of this paper, Th.R. was supported by a postdoctoral fellowship of the “Fondation
sciences mathématiques de Paris” and by the DFG grant He 2287/2-2; Ch.S. was supported by a DFG Heisenberg
fellowship (Se 1114/2-1/2). Both authors acknowledge partial support by the ANR grant ANR-08-BLAN-0317-01
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666 T. REICHELT AND C. SEVENHECK

It is well-known that quantum cohomology theories admit expressions in terms of certain
differential systems, called quantum )-modules. This yields a convenient framework in
which mirror symmetry is stated as an equivalence of such systems. Moreover, Hodge
theoretic aspects of mirror correspondences can be incorporated using the machinery of
(mixed) Hodge modules. However, quantum £&)-modules have usually irregular singularities,
except in the Calabi-Yau case. In our mirror construction, this corresponds to the fact that
we let the Fourier-Laplace functor act on various regular &)-modules obtained from the
Landau-Ginzburg model.

The quantum cohomology of a smooth complete intersection (which in our case is given
as the zero locus of a generic section of a vector bundle) can be computed using the so-called
Euler-twisted Gromov-Witten invariants. Basically, these are integrals over moduli spaces of
stable maps of pull-backs of cohomology classes on the variety and of the Euler class of the
vector bundle. It is well known (see [38, 42, 21] and also [31] as well as [39] for more recent
accounts) that the ambient part of the quantum cohomology of the subvariety (consisting of
those classes which are induced from cohomology classes of the ambient variety), is given as
a quotient of the Euler-twisted quantum cohomology.

From the combinatorial toric data of this vector bundle, we construct in a rather straight-
forward manner an affine Landau-Ginzburg model, which is a family of Laurent poly-
nomials. The Euler-twisted quantum )-module (which encodes the above mentioned
Euler-twisted Gromov-Witten invariants) can then be shown to be isomorphic a certain
proper FL-transformed Gaufp-Manin system, namely, the Fourier-Laplace transformation
of the top cohomology group of the compactly supported direct image complex (in the sense
of &)-modules) of this affine Landau-Ginzburg model. On the other hand we show that the
Euler—!-twisted quantum &)-module which encodes the so-called local Gromov-Witten
invariants is isomorphic to the usual FL-transformed GauB3-Manin system.

The actual non-affine Landau Ginzburg model is constructed by a certain partial
compactification of the affine one, which yields a family of projective varieties. Our main
result is Theorem 6.13 (which also contains the above mirror statements on twisted resp.
local quantum Z)-modules), it states that the ambient quantum )-module is isomorphic to
a Fourier-Laplace transform of the direct image of the intersection cohomology Z)-module
of the total space of this family, notice that this total space is usually not smooth.

One of the big advantages of using this singular variety together with the intersection
cohomology )-module is the fact that we do not need any kind of resolutions. In partic-
ular, we do not need to construct (or suppose the existence of) crepant resolutions like in [2].
Notice also that [31] discusses Landau-Ginzburg models of a more special class of subva-
rieties in toric orbifolds (the so-called nef partitions). In that paper, a mirror statement is
shown in terms of A- resp. B-periods, but this construction needs a hypothesis on the smooth-
ness of a certain complete intersection (given as the intersection of fibres of several Laurent
polynomials, see Section 5.2 of loc.cit.). Some more remarks on the nef-partition model and
how it relates to our construction can be found in Section 1.5 below.

We will show that the direct image of the intersection cohomology )-module of the
total space is itself (modulo some irrelevant free O-modules) an intersection cohomology
&O-module with respect to a local system measuring the intersection cohomology of the
fibers of the projective family. An important point in our paper is that this intersection

4¢ SERIE - TOME 50 — 2017 - N° 3



NON-AFFINE LANDAU-GINZBURG MODELS 667

cohomology &)-module admits a hypergeometric description, that is, it can be derived from
so-called GKZ-systems (as defined and studied by Gelfand’, Kapranov and Zelevinsky).
More precisely, it appears as the image of a morphism between two such GKZ-systems
(Theorem 2.16). This result is interesting in its own, as in general there are only very few
cases where geometrically interesting intersection cohomology &)-modules have an explicit
description by differential operators.

Notice that the intersection cohomology )-module mentioned above underlies a pure
Hodge module. From this we can deduce a Hodge-type property of the reduced quantum
JD-module (see Corollary 6.14). As already mentioned above, it cannot underly itself
a Hodge module, as in general it acquires irregular singularities (this never happens
for &-modules coming from variation of Hodge structures resp. Hodge modules due
to Schmid’s theorem). Rather, it is part of a non-commutative Hodge (ncHodge) structure
due to a key result by Sabbah ([48]).

There is another important aspect in the paper that has not yet been mentioned. The
various quantum Z)-modules are actually not &)-modules in the proper sense, rather,
they are families of vector bundles on P! together with a connection operator with poles
along zero and infinity. This is reflected in the fact that we are looking at Fourier-Laplace
transforms of certain regular )-modules (like GauB3-Manin systems) together with a given
filtration. The filtration induces a lattice structure on the FL-transformed )-module (i.e., it
yields a coherent (O-submodule generating the FL-transformed 2)-module). These lattices
can be reconstructed by a twisted logarithmic de Rham complex (in the sense of log geom-
etry) of an intermediate compactification of the family of Laurent polynomials. We show
in Corollary 3.20 that this twisted logarithmic de Rham complex can also be explicitly
described by hypergeometric equations. Notice that for this result to hold true, we have to
restrict to an open subspace of the parameter space, where certain singularities at infinity of
these Laurent polynomials are allowed, but not all of them. This situation is different to the
one in our earlier paper [47] where we had to exclude any singularity at infinity.

The remaining part of this introduction is a rather detailed synopsis of the content of
the paper. It can be read as a warm-up, where the main playing characters are introduced
together with some examples which illustrates the constructions done later.

Our main case of interest is the following: Let Xx be an n-dimensional smooth projective
toric variety. Suppose that Z1 = Oxy(L1),...,Zc = Oxx(L.) are ample line bundles
on Xy such that — Ky, — Z]c-zl L; is nef (for many intermediate results, we can actually
relax both assumptions and suppose only that the individual bundles Z1,..., Z. are nef).
Put & = @j_; Z;, then € is a convex vector bundle. We will be interested in several
quantum )-modules, which correspond to twisted Gromov-Witten invariants of (Xx, £)

as well as to Gromov-Witten invariants on the ambient cohomology of the complete

intersection Y := s71(0) defined by a generic section s € I'(Xg, €). Let us consider the
total space V(&Y), which is a quasi-projective toric variety with defining fan X’. We set
¥ (1) = {Rxoby,...,Rx0b,}, where the vectors b; are the primitive integral generators of

the rays of X’. From this set of data one can construct Lefschetz fibrations, that is, family of
hyperplane sections of some projective toric varieties. The actual Landau-Ginzburg models
of the above toric variety (resp. of the complete intersection Y') will be obtained by restricting

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



668 T. REICHELT AND C. SEVENHECK

the base of such families to a certain sub-parameter space which is an open subset of the
Kéhler moduli space of Xs. Actually, we do consider two different situations: Either we
start with the data of a toric variety and some line bundles satisfying the above positivity
conditions, and construct the set {b; } as sketched, or we consider only such a set of vectors,
in which case we do not have a Kdhler moduli space, and the reduction of the parameter
space of the Lefschetz fibration is done using an equivariance property of this fibration with
respect to a natural torus action. Nevertheless, many of our constructions also make sense
in this more general setup, therefore, the material in Sections 2 and 3 below only depend on
vectors {b;} and do not suppose the existence of Xz, Z1, ..., Z..

1.1. Lefschetz fibrations

We consider the following situation: Let B be s x t-matrix of integer numbers, written
as B = (by,...,b,). The only assumption we make is that Z§=1 Zb;, = Z°. As just
explained, the example the reader should have in mind is when these vectors are the primitive
integral generators of the rays of a possibly non-compact toric variety, but most of the
constructions below do not depend on this assumption. As a concrete and easy though non-
trivial example which will be considered throughout this introduction, let Xs = P>, H C P>
a hyperplane, and take the bundles Z1 = COps(2H) and Z» = COps(3H). They are obviously
ample, and we have Ops(—Kps —2H — 3H) = Ops(6 — 2 — 3) = Ops(1), which is also
ample. The defining fan X' of the total space V (Z, @ ;) has rays b,,...,bg, and the
matrix B = (b, ..., bg) is given by

10000-100
01000-100
00100-100
B=100010-100
00001-100
01100010
00011 1 01

Let us return to the general setup of a matrix B € M(s x t,Z) of rank 5. Put S := (C*)*,
and consider the following map

g:8 — P,
1, ys) = (1 :fl,-..,f’),

which is an embedding due to the assumption on the rank of B. Here we write Zéi for the

product [;_, y,l;’" !, by; being the entries of B. The map g is only locally closed, so we denote
by X its closure in P?. We are interested in a family of hyperplane sections of X, constructed
in the following way: Consider the incidence variety Z := {3j_y A; - w;} C P*xC'*!, where
Ao, ..., A are coordinates on C'*! and where wy : --- : w; are homogenous coordinates
on IP?. The situation is visualized in the following diagram where p; resp. ps is the restriction
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NON-AFFINE LANDAU-GINZBURG MODELS 669

of the projection to the first resp. second factor
(D z
SCcXcP! CrL
Here we have identified S with its image under g. The family of hyperplane sections is by

definition the morphism ® := (p2)|p_1(X) : prH(X) — €' It is a projective map, and its
1

restriction ¢ = d>|p_1 ) is nothing but the family of Laurent polynomials
1

SxC — Cy, xC
(Vs oo Vou A e hg) — (_zl?:lx,.zéf,xl,...,x,).

For the concrete example from above, the first component of ¢ is given by

(@)

D1see s Y72 AL, A) > =AYy — A2 - Y2 s
Y
—/13‘J’3y6—14')’4Y7—15')’5Y7—16—y 7y —A7ye — Agy7.
L+ Vs

The partial compactification ® of this family is easy to calculate as the closure X of im(g)isa
hypersurface in P8, namely, it is given by the binomial equation wow2w3 — wiwaw3wswswe = 0.

Hence Z is the codimension 2 subvariety of P® x C? cut out by the two equations
wow%wg —wiwawswawswe =0 and Agwg + -+ + Agwg = 0,

and @ is the projection from this variety to the space C° with coordinates Ao, ..., Asg.

For various reasons, we will also need to work with the family ®Y, where in the above
diagram (1) the incidence variety Z is replaced by its complement U := (P? x C'T)\Z.
Although geometrically the two morphisms ® and ®Y behave differently (e.g., ®Y is no
longer proper), they are strongly related on the cohomological level. The transformation
corresponding in cohomology to the geometrical operation of taking the inverse image
of X under p; followed by the projection by p, is the so-called Radon transformation
for &)-modules (see Section 2.2 for more details).

The morphism ¢ resp. @ can be considered as the maximal family of hyperplane sections
of S resp. of its compactification X . However, in applications like those presented in Section 6
of this paper, we need to restrict these families to some subspace of the parameter space C’
which is called FeM° in the main part of this article (see the discussion before Defini-
tion 6.3). We will not give the precise definition of ZeM° here, let us only mention that the
torus S acts on (C*)! by (y,A) — (y_él ey y‘éf> - A (see Formula (27) in Section 2.4
below). Then we consider the orbit space of this action, which is a torus of dimension ¢ — s.
The parameter subspace FeM° is a certain open subvariety of this orbit space. We will
actually chose an embedding FeM°® < €7, so that we always see Cj,, x FcM° as a locally
closed subspace of C* 1.

In the case where our matrix B is defined by a toric variety Xs together with a set of
line bundles, FcM° is not just an open subset of an abstract torus, but of (C*)*~, i.e.,
it comes with a set of coordinates called ¢y, ..., ¢,—s. Notice however that the choice of

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



670 T. REICHELT AND C. SEVENHECK

these coordinates is not unique, it depends on the choice of a basis of H?(Xyx, Z) with good
properties.

DEerINITION 1.1 (see Definition 6.3). — Let Xs be smooth, toric and projective. Let
21 = Ox(L1), ..., Lc = Oxx(L¢) be ample line bundles on Xx, such that—KXZ—Z;:1 Ljis
nef. Let X' be the defining fan of the total space V(E"), where £ = Bi_1 ) is a convex
vector bundle on Xs. Let /(1) = {Rxob,,...,Rx0b,}, where b; are the primitive integral
generators of the rays of ¥'. Let JeM® be the parameter space described above. Then the
restrictions

=@, Zy = Z N pi (X)) N (P x Cyy x KM°) = Cyy X KM’
resp.
T= (p|zmpfl(S)ﬂ(]Ptxcxo><c%c%°) Znpri$)n (IP[ x Gy X fﬂwo) — Chy X KM’
are called the non-affine resp. affine Landau-Ginzburg model of (Xx, Z1. ..., Zc).

Let us notice that in the main body of this text, the affine Landau-Ginzburg model appears
in two versions, called 7 and 7. Actually, 7 is an intermediate partial compactification of &
(i.e., the fibres of 7 contain those of 7 and are contained in those of IT).

To illustrate this definition, we discuss the parameter subspace FeM° for the above
example of complete intersections of degree (2, 3) in IP°. As B is a 7 x 8-matrix in this case, we
see from what has been said above that Fe#° must be an open subset of C*. We can choose
the embedding C* < C7, g +~ (1,1,1,1,¢, 1, 1). The condition for a point ¢ € C* to be
in M’ is then simply that the family ¢, when restricted to Z N py'(S) N (P! x Cy, x {q})
yields a non-degenerate Laurent polynomial, i.e., has no singularities at infinity (see Defini-
tion 3.8). One can easily show that the condition that —Kps — Ly — L, is ample (and not
only nef) implies that this is the case for all ¢ € C* (one has to argue along the lines of [47,
Lemma 2.8]). Hence in this example, we have FcM° = C*, and therefore the affine and the
non-affine Landau-Ginzburg model of (P>, Cps(2), Cps(3)) are given as

7 (C*) xC* > Cy, xC*
vz

O1s-0¥7.9) — (-)’1 —Y2Y6 — Y3Ye — VaY71 = V5V1 — {4550 — Ve — J’756])

M: %y — C, xC*
(wo : -+ 2w, Ao, q) —> (Ao.9) .
where the quasi-projetive subvariety Zy of P! x C 20 X C* is given by
Zy = {wowIws — wiwrw3wawswe = 0, Lowo + W1 + -+ + Ws + qwe + w7 + wg = 0}
CP'xC;, xC".

1.2. GKZ-hypergeometric systems and Fourier-Laplace transformation

The main idea of this paper is that mirror correspondences can be expressed using the
language of (filtered) )-modules. For the toric varieties (and possibly non-toric subvarieties
of them) that we are concerned with here, these &)-modules are of special type, namely they
are constructed from the GKZ-system. Let us therefore start by recalling their definition (see
Definition 2.7 below). We only treat here a special case which leads to a regular holonomic
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NON-AFFINE LANDAU-GINZBURG MODELS 671

system. Let as before a matrix B € M(s x t,7Z) be given. Here we do not even need the
condition rank(B) = s. Consider the matrix B € M ((s + 1) x (¢t + 1), Z)) defined by

DEFINITION 1.2. — Let B be as above. Moreover, let ,E = (Bo,-...,PBs) be an element
in C*T1. Write L for the module of relations among the columns of B, i.e., the kernel of the
linear mapping 7!™' — Z5*1 given by B. Let Dee+1 be the Weyl algebra in t + 1 variables,
ie., Dcr+1 = C[/Xo, A], ey At]</\0, /\1, ey /‘{t) Deﬁne

Mg := Dor+1/ (@p1er + (Ex — Bi)k=0,...5) -

where
L _l l
U = Hi:li<o axil - ni:li>0 8)Ci’ lel

Ep =Y _obiiridy,, ke{0,....s)
where B = (Eki). Then M g is called a GKZ-system.

We will quite often work with the corresponding sheaf of ¢)¢r+1-modules, denoted
by JM%. It is well known (see, e.g., [1, 28]) that oﬂ%’% is a regular holonomic )¢r+1-module.

Given the matrix B from the example of the last section (i.e for (2, 3)-complete intersec-
tions in IP°), we have Mg = Dgi+1/1, with

= (a/\()alzl7ais - allalga/\3al4aksa/\6s A()a)t() + A18)L1 + e+ ASakg - /307
A0y, —Ae0ng — B1.A204, —AOrg — B2...., A504s — Aedarg — Bs.
A0, + A30, + A705, — B, Aa0n, + A50)5 + A60n, + Ag0s — ﬂ7),

where 8 = (Bo, B1.---,P7).

Let us describe a basic result from [46] that shows how these )-modules enter into the
study of Landau-Ginzburg models. It uses the notion of Gaul3-Manin systems, which are
differential systems associated to any morphism between smooth algebraic (or analytic)
varieties. Intuitively, solutions of such systems are given by period integrals (at least on
the smooth locus of the map). The formal definition requires the notion of direct images
of &-modules and is recalled in Section 2.1 below. With these remarks in mind, we can
state the result as follows (in the main part of the text it appears in a more precise version
as Theorem 2.11). For simplicity, we also impose the additional assumption of normallty,
which is discussed in detail in Section 5. We write INB for the semi- group associated to B,
that is, NB := Zi=0 ]ngi Cc 7.

THEOREM 1.3. — Let the matrices B and B be as above. Suppose moreover that the
associated semi-group ring C[INB] is normal. Consider the family of Laurent polynomials
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672 T. REICHELT AND C. SEVENHECK

@ 1 S xC — C'! defined in Equation (2). Then we have an exact sequence of regular
holonomic Dge+1-modules

0— H1(S,C) ® Ogi+1 = F 01 Ogucit — (’]MQE = H*(S.0) ® Ogrv1 > 0.

Here the left- and the rightmost terms are vector bundles on C'+1 together with the trivial
connection operator which annihilates sections in H*1(S,C) resp. H*(S,C), and
Hoy Ogxer+1 is the Gaufs-Manin system of ¢ alluded to above.

An important aspect of the construction in [46] that yields this result is that all the above
Der+1-modules underly mixed Hodge modules and that the exact sequence exists in the
abelian category MHM(C't!). Although Hodge theoretic considerations are one of the
main motivations of this paper, we will not use this fact directly, and results on Hodge
modules will not come into play until Corollary 6.14.

The theorem above shows that there is a tight connection between the GauB3-Manin
system of the morphism ¢ and the GKZ-system associated to the matrix B. However, they
are not equal, but their difference (i.e., kernel and cokernel of the morphism
O (04 Ogxor+1) — QM%) are relatively simple. The next construction has the effect of
erasing this difference and yields an isomorphism of the two )-modules we are interested
in. First we need a certain variant of the Fourier-Laplace transformation for holonomic
J-modules. Again we present a simplified version, the actual definition can be found in the
next subsection as Definition 2.4.

DEFINITION 1.4. — Let Y be a smooth affine variety and let D¢, xy the ring of global
algebraic differential operators on Cy, x Y. If M is a Dgxy-module, we denote by FLy (M)
the object which is equal to M as a module over Dy and where the new variable t acts as 0,
from the left and where 0. acts as left multiplication by —A. In this way FLy (M) becomes a
left module over D¢ xy. Then we define

FLY*(M) := FLy(M)[r ']

to be the localized Fourier-Laplace transformation of M. Again we will denote by the same
symbol the corresponding functor acting on sheaves of left ¢, xy -modules.

With this definition at hand, we have the following easy consequence of Theorem 1.3.

COROLLARY 1.5. — Let B and B be as above. Write C'*' for the affine space
Spec Clt, A1, ..., A:]. Then there is an isomorphism of @@,H -modules

Lloc (e% 04 05xct+1) LIOC(W~)

In the above example, we have FL1°°((J/J ) = Dgit1/ T, where

TZ (T8i7ai8 — 8/118128138/148)@816’_7781 + AIBM + .- —i—/lga,\g - 1,113)“ _/XGB/\G’
A203, —A6Ong, ... . As50ss —AeOag, Ao0a, + A30y, + 17817,

Maday + 250 + Aedag + Asdiy )-
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The partial compactification @ of ¢ is a projective morphism, but its source space p; ! (X)
is usually singular. For that reason, we are more interested in the direct image of the corre-
sponding intersection cohomology )-module. More precisely, consider the regular holo-
nomic &)pr-module M C(X ) which corresponds to the intersection complex /Cx of the
variety X (recall that X was defined as the closure in P! of the image of the embedding
g : S < P') under the Riemann-Hilbert correspondence. Formally, ¢*’€ (X) can be
defined as the image of the natural morphism g+C0s — g+ Os, where g4 is the “direct
image with proper support”-functor for holonomic &)-modules. It is the minimal (also
called intermediate) extension of its restriction to the smooth part of X, and as such is an
irreducible )p:-module. More important, it underlies a pure polarizable algebraic Hodge
module, i.e., an object of the category M H? (P?) (see [50]). This last property will play a key
role in Hodge theoretic application of our mirror statement (see Corollary 6.14).

In general it is quite hard to describe such intersection cohomology )-modules explicitly,
however, this is possible in the current situation. We have the following result (which we state

directly in a form involving the functor F L:é’,c since this is the result that will be used later)

THEOREM 1.6 (see Theorem 3.6 below). — Suppose that (D[]NE] is normal, then there is
some parameter Vv = (Yo, V1, ..., vs) € Z°! such that

3) FLE (9 p2+pf M€ (X)) = im (F L (M) = FLg’C(W%)) '

Here D is the morphism induced from right multiplication by t=v - 95'...93', where
1 t
g =(g1,...,8) is any element in Z! such that B - g'" = —(y1,....¥s).

The object on the left hand side of the above isomorphism should be seen (up to the action
of the functor FLI&C) as a J)-module extending a local system the fibres of which are itself
intersection cohomology groups, namely those of the fibres of the morphism ®. We could
also replace the object pfr M€ (X) by M C(Z;), by which we mean the regular holo-
nomic ¢p: c:+1-module corresponding to the intersection complex IC 78 via the Riemann-

Hilbert correspondence (so that the complex ps 4 p; MEC(X) = pyryp M€ (Zx) corre-
sponds to the topological direct image complex RIT,.IC %}’()'

Notice that the functors p; and SH° p» 4 exist in MHP, hence the object occurring in the
last theorem is the Fourier-Laplace transform of a )-module underlying a pure polarizable
Hodge module (this is basically the proof of Corollary 6.14)

We would like to explain in an informal way the reason for this theorem to hold true. The
main point is that GKZ-systems behave quite well with respect to the duality functor for
holonomic ¢)-modules. More precisely, we have the following very nice result of Walther
(see [54]).

THEOREM 1.7. — Let B and B be as above. Suppose again for simplicity that the semi-group
ring C[INB] is normal. Then there is a parameter y € 751 such that

]D)c%% o~ c%%.
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From this statement we see that the above morphism D can actually be seen (up to
some shifts and notational conventions) as a morphism ]D)FL%’,C (@ﬂ%%) — FL%’,C (eﬂ%%).

As mentioned above, M'(X) is the image of g+0s — g4 Os, notice further that these
two Z)-modules are also dual to each other. Applying the Radon transformation functor
to them yields precisely the two GKZ-systems on the right hand side of Equation (3) (see
Theorem 2.11 below for more details), hence it is plausible that the intersection cohomology
module (resp. its Fourier-Laplace transform) on the left hand side of Equation (3) can be
identified with the image of the morphisms D between these two GKZ-systems.

For our purposes, we need actually a stronger duality statement: We consider the object
(@ﬂ/l%, F2™) consisting of the regular holonomic gr+1-module @M% together with the
good filtration by coherent Og:+1-submodules induced from the filtration by the order
of differential operators on g:+1. This is an object of M. Saito’s category MF(Dgi+1)
(see [50, Section 2.4]), and there is duality functor on this category extending the duality
functor for holonomic &)-modules. Then we have (see Theorem 5.4) that D(@]M%, Ford) ~

(MZ. F29) for some integer k.

For our guiding example, a parameter ' such that D W%, = eﬂ%% can be chosen as
7 =(~1,0,0,0,0,0,—1,—-1)

and the map D is induced by right multiplication with 7 - 93, - 9;,.

Similarly to the considerations of Lefschetz families above, we will need to restrict these
D-modules to the parameter subspace FeM° C C'. We will not explain here how to do this
in detail, since it is a bit technical (see the presentation in Section 2.4 and Section 6 below).
Instead, let us consider again the above example and the embedding

C; X FM® > Cp x C7
(T’ q) > (T’ 17 17 17 17 1’ q7 17 1)~
Then we consider the inverse images under this map of cﬂﬁ% and oﬂ/l% as well as the
morphism D. For simplicity, we will also set T = 1, more precisely, we will consider the

inverse image under the map g — (1, ¢). We will also twist the restriction of oﬂ/f% by some
invertible map (see Definition 6.1) Then the (restriction of the) morphism D is given as

@ Clg™(3q)/(P1) — Clg*dg)/(P2)
0 — 0 - (qq)>,

where
P =q-(3qdq + )(3q0, + 2)(39d, + 3) (293, + 1)(2¢d, +2) + (¢9,)°
= (494)* - (69 - (3qd4 + 1)(3q04 + 2)(2q0g + 1) + (qg)*) =: (qd4)* - 0*?
Q(Z,S)
Py = q - (3994) (3994 + 1)(3¢8, + 2)(2q04) (2994 + 1) + (¢8,4)°
= (69 - (3¢94 + 1)(3qd + 2)(2904 + 1) + (q04)*) (q0g)* =: 0¥ - (q0,)*.
Q(2,3)
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The map D is obviously well defined, its kernel is generated by 0?3 and we see that

Clg*1(dq)/ (P1)

~ + (2,3)
rer(p) = Cla*120)/ ()

im(D) =

Q@3 is an inhomogenous hypergeometric operator with a regular singularity at ¢ = 0 and
irregular singularity at ¢ = oo.

The following statement summarizes the above calculation and can be seen as an illustra-
tion of Theorem 1.6

ProrosiTION 1.8. — Consider the example from above. Then we have an isomorphism of
left Clg*1(d,)-modules

(FLE (7T M (Z30) )|, = Cla*1(04)/(Q2).

Let us finish this discussion with some remarks on the case of Calabi-Yau complete inter-
sections in toric manifolds. Suppose that instead of the above example we had considered a
(2, 4)-complete intersections in P>, i.e., the matrix

10000-100
01000-100
00100-100
B=100010-100
00001-100
11000 010
00111 101

then the same arguments as above would lead to the operator
0% 1= 8¢ - (240 + 1)(4q0g + 1)(4q0g + 2)(4q0g + 3) — (g95)"

which is regular and homogeneous (with singularities at ¢ = 0,271°, 00). In that case, the
above statement can be sharpened in the following way.

PROPOSITION 1.9. — Consider a (2,4)-complete intersection in P>, then we have the
isomorphism of left C[q*](d,)-modules

(M M (L)) 1,2y = Cla*10)/(Q0).

The reason for this to be true is that in the Calabi-Yau case, Fourier-Laplace transfor-
mation together with restriction to r = 1 has basically no effect, i.e., can be identified with
restriction to Ao = 1. In particular, the object thus obtained still underlies a pure polarizable
Hodge module (whereas in general, we obtain a variation on non-commutative Hodge struc-
tures, see 6.14 and Conjecture 6.15 below). This is consistent with classical results on mirror
symmetry for Calabi-Yau hypersurfaces like the quintic in P4. Notice however that in these
constructions, one uses certain crepant desingularizations in order to work with ordinary
cohomology together with its Hodge structures instead of intersection cohomology as in the
present paper. This may introduces a new difference when compared to our construction,
which will however disappear when using the functor FL!°°. This should basically follow
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from the decomposition theorem (say, for pure Hodge modules, see [50, Corollaire 3]) when
applied to the desingularization map. We will make some more remarks on how our construc-
tion is related to known mirror models for complete intersections in the later Sections 1.4
and 1.5 below. However, a thorough treatment of this comparison issue is delicate and will
be postponed to a subsequent paper.

1.3. Mirror Correspondence

We would like to state here in a slightly informal way the main results of this paper.
They can be expressed as isomorphism of two A¢_y g eo-modules, one obtained as
sketched above (i.e., direct image &)-modules under the morphisms IT resp. 7), the other
one derived from Gromov-Witten theory of the variety Xx resp. from its subvarieties. The
actual picture is considerably more complicated, in the sense that we do not just look
at &)-modules over C; x FM°, but at modules over Dp1y oo together with a structure
of ﬂcrqx woo-modules where C%@f] « e 18 the sheaf of Rees rings for the filtra-
tion by orders on differential operators on /) ¢ . This corresponds to the fact that the
GauB-Manin-systems as well as the direct image modules of intersection cohomology
modules occurring do carry Hodge filtrations, i.e., underly objects of the category MHM
of (algebraic) mixed Hodge modules (see [52]). This very important additional information
can be reformulated as the structure of an JR-module, and the latter is conserved by the
functor FL!°°. Hence our actual statements in Section 6 are considerably stronger than what
is announced here. In particular, the simplified statement below is basically only an identifi-
cation of local systems and hence does not take into account the fact that these Z)-modules
have irregular singularities in general. Nevertheless, we think that it is still instructive. It
should be seen as a snapshot of what the actual result looks like.

We consider the situation described above, that is, we let X5 be a smooth, projec-
tive toric variety, and <1 = Oxy(L1),..., Oxs (L) ample line bundles such that the
class —Kxy, — Z]c'=1 L;j is nef. Then for a generic section s € I'(Xz. €), the zero locus
Y :=s71(0) C Xz isa complete intersection with nef anticanonical class. Put & = @j_, Z;,
then € is a convex vector bundle on X5, and we can consider twisted Gromov-Witten invari-
ants which give rise to the (small) twisted quantum- 4)-modules QDM (Xx, &), i.e., a vector
bundle on P! x FM° with fibre H*(Xx, C) with connection operator defined by the twisted
quantum product. Moreover, we have the endomorphism cop(E) of H*(Xx, C) given by
cup product with the Euler class of £, and we put H*(Xz, C) := H*(Xz., C)/ker(ctop(E)).
Then the reduced or ambient quantum &)-modules, denoted by QDM(Xsx, €), is a vector
bundle on P! x FoM° with fibres H*(Xg, C), and the connection is defined via the
quantum product on ambient cohomology classes, i.e., classes in the image of the morphism
H*(Xx,C) — H*(Y, C) (notice that this image is isomorphic to the quotient H *(Xx, C)).
Finally, we can also consider moduli spaces of stable maps into the total space V(&) of the
vector bundle dual to & (then £ is concave), and this yields the so-called /ocal Gromov-
Witten invariants. The corresponding quantum- Z-module is denoted by QDM(EY). We
refer to the Sections 4 and 6 for precise definitions of the various quantum Z)-modules.

With these notions at hand, we have the following results.
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THEOREM 1.10 (see Theorems 6.13 and 6.16). — Given Xx, Z1 = Oxs(L1), ..., Oxs (L¢)
as above, but suppose moreover that 1, ..., L. are ample (but —K x5, — L1 — -+ — Ly is still
only required to be nef). Consider the matrix B constructed from the rays of ¥'. Let w resp. T1
the affine resp. the non-affine Landau-Ginzburg models of (Xs, Z1, ..., Z.). Then we have

FL§F (O%O”T OSXC%OM’) oy = (dey xMin* (QDM(XE’ 8)|c¢x3:) :
FLgf ((%On_l_ OSXC%WO) |C?XB:, =~ (id@z XMiI'/)* (QDM(EV)|C;_<XB:/) B
1C [z - v (ODM
FLEF (T4 M (Z0)) gy = (dez <MD (QDMXs, ©)) [y e

Here B}, B}, are some (pointed) convergency neighborhoods of the large volume limit point

in KM, Mir is the mirror map (see, e.g., [9, 39]) and Mir’ is some other coordinate change
(which also involves the mirror map Mir ).

From the pureness property of o€ ( Zx) we can deduce the following corollary, which
is (part of) the Hodge theoretic aspect of our mirror correspondence. As mentioned earlier,
it relies on the notion of non-commutative Hodge structures (see [49] for an overview) which
is adapted to the occurrence of irregular singularities in the various quantum &)-modules.

COROLLARY 1.11 (see Corollary 6.14). — Under the assumptions of the last theorem, the
ambient quantum -module QDM(Xx, £) (or at least its restriction to the convergency
neighborhood B} ) is part of a variation of non-commutative Hodge structures.

We conjecture in 6.15 below that QDM (X, €) is itself a non-commutative Hodge struc-
ture, however, the proof of this conjecture would need some additional results on the Hodge
filtration of S#° ps 1+ M € ( Z%) which are not yet available.

1.4. Givental’s mirror model

The aim of the next two subsection is to give some ideas on the relation of our construction
to other mirror models for Calabi-Yau resp. nef-complete intersections inside a smooth toric
variety Xx. The reader should be warned that a complete comparison of the construction
presented in this paper to other models is not yet available, and will be subject to some future
work. Nevertheless, we hope that the following remarks indicate that our mirror model can
be considered as a unification and generalization of other constructions.

First we consider a construction that can be found (although in a very sketchy form)in [21,
pages 10-11]. Let as above Xz be smooth, projective and toric, and let £ = Oxy(L1), ...,
Ze = Oxs(Lc) be nef line bundles such that —Kx, —) ;_; L; isnef. Letagain b,, ..., b, be
the primitive integral generators of the rays of £’. Notice thatifa,, ..., a,, are the generators
of the rays of X, then t = m + ¢ (namely, we have m generators b; projecting to the a;s,
and ¢ generators b; that projects to zero under ¥’ — X.) Consider the affine space C”**¢

with coordinates wy, ..., Wn4c. Let 4, ..., [, be a basis of the module of relations between
the vectors by, ...,b,, ., (so that r = m — n, since the b;’s ly in Z"*¢). Actually, this basis
should not be chosen in an arbitrary way, it is the basis dual to the basis p;,..., p, one
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of H?(Xs,Z) chosen in Section 6 (see the discussion after the exact sequence (60) below).
Write [, = (la1, ..., lqr) and consider the affine variety

m+c
E:={(w.q) € (C)" x C° x FM°| (H wf‘” = qa)
a=1,...,r

i=1

Actually, Givental has a slightly different definition as he consider equivariant quantum
cohomology, but we ignore this aspect here and concentrate on the case of the non-
equivariant limit. Notice also that in Givental’s paper appears only the restriction

Eq = B grymxcextay

It can be shown that the closure of E inside C™ ¢ x FcM° equals E (see the argument
in Proposition 4.8 below), and that the projection E — FoM’; (w, q) > q is precisely the
mapping a o B o y; : Zyar — FeM® as appearing in the diagram (61) in Section 6.

In [21, page 10-11], Givental very briefly mentions the following oscillating integral

5) ot (S 0 =X W) | d log(wy) A -+ Adlog(wm) Adwpmg1 A A dWy4c
I'CE dlog(q1) A--- A d10g(gm—n)

’

where I' is some real non-compact n + c-dimensional cycle inside E, i.e., a Lefschetz thimble.
Notice however that E is singular in general, so that in any case one would need to specify
further how to define this cycle. It is claimed in loc.cit (and easily verified) for any relation
L=(,....1;) with Y€ ;b; = 0 satisfying; > 0, ..., 1, > 0, this integral is annihilated
by the differential operators

li-1 r m+c I;

m r r
A= [T taidarda, = o) = [Tad" - T TTQC laidada, + o).
i=1 a a=1

v=0 a=1 i=m+1v=1 a=1

In order to connect this statement to our construction, one needs to discuss the relation
between oscillating integrals and Gaul3-Manin systems in some detail. This is a rather clas-
sical subject, although there does not seem to exist a general reference covering the present
situation. One can find in [44, 45] a definition of oscillating integrals for certain polyno-
mial mappings, and in [48, Section 1.b] a discussion of the topological Fourier-Laplace
transformation which yields a cohomological description of Lefschetz thimbles.

Assuming that this relation between oscillating integrals and GauB3-Manin systems is
properly established, one may conjecture that the integral (5) yields a solution of the module

FLES (71 Osu e

that appeared in Theorem 1.10. However, even if this were proved, it is still unclear whether
this integral satisfy a stronger differential equation (this has been noticed by Givental himself
in [21, page 10]), namely, one would like to show that it is even a solution of the system
FLE’,C (Q%OH+ QJMI ¢ ( Z;)) However, we do not have any further evidence at this point for
this conjecture.
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1.5. Nef partition Landau-Ginzburg models

There is a special case of the construction described in the last subsection, for which a
more complete description of a mirror model is available in the literature. Namely, assume
that the nef line bundles Z1, ..., Z, are obtained as (line bundles associated to) a sum of
some of the torus invariant divisors of Xx. Then already in [21] is a sketch of how the above
mentioned general construction of oscillating integrals can be made more precise. We will
use the more recent paper [31] as a references, which also incorporates ideas from [4]. Let us
give a very brief reminder of the part of [31] relevant in the present situation.

DEeriNITION 1.12 ([21, 31]). — Let X5 be a n-dimensional, smooth toric variety given by
a fan X with torus-invariant divisors D1, ..., Dy,. A nef-partition is a partition {1,...,m} =
ToU Iy u---Ule such that £j = O3 ey, D) isneffor j =0.....c.

Notice that Iritani’s paper covers a larger domain of applications than this definition since
he considers (nef partitions of) toric orbifolds. However, in the main body of our paper we
are only concerned with complete intersections in manifolds, so we restrict to this situation
here.

To a nef-partition one associates as above a vector bundle £ = @;Zl Z; (notice that
the sum here is running only from 1 to ¢ and does not include the bundle Zg). Choosing a
generic section s € I'(Xx, ) gives a smooth nef complete intersection Y C Xy. Hence we
see that the data of a toric manifold with a nef partition are a particular case of the setup
considered in the main part of our paper. We will show in Remark 1.17 below an example
which falls in the scope of this paper but which does not come from a nef partition. In that
sense our construction is a true generalization of the Givental-Iritani model. Notice also that
in the case Iy = @ the complete intersection Y is a Calabi-Yau manifold, this is exactly the
situation considered by Batyrev and Borisov in [4].

In the approach of Iritani the mirror model of Y is given by a function on a family of
complete intersections of Laurent polynomials inside an n-dimensional torus T = (c*"
with coordinates #1, . . ., t,. In order to construct this, one associates to each /; the following
Laurent polynomial

Wa(j):Za,-LQf for j=0,...,c
iel;
where the b; are again the primitive integral generators of the one-dimensional cones of X.
The family of complete intersections )@ over @ € (C*)™ is then given by

?g={£€f|Wg(l):"':Wg(c)zl}_

AssumPTION 1.13 ([31, page 2936]). — In the above situation, we suppose that the affine
variety Yo is a smooth complete intersection in T for generic « € (C*)™.

To the best of our knowledge, there is up to now no result available which would show
how restrictive this assumption is. There are some speculations in [31, Remark 5.6] that the

smoothness of )V’Q should be related to the smoothness of Y C Xy, at least in the case Iy = 0.
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DEFINITION 1.14. — Let X5, and a nef partition {1,...,m} = Iy U Iy U---U I, be given.
Suppose that assumption 1.13 holds true. If Iy # 0, we call the restriction

Wg(o) Yy — C

.....

(affine) Calabi-Yau complete intersection Yy C T (smooth by the above assumption) itself as
the nef-partition mirror model.

the nef-partition Landau-Ginzburg model of (Xs, (I;);=1,..,m)- If Io = @ we consider the

In the case Iy = @, Batyrev and Borisov considered a compactification ¥,, of Y, inside the
projetice toric variety Py, given by the polytope V = V; 4.4V, with V; = Conv({b;}ier )
Since the Calabi-Yau varieties ¥, are usual singular and the ambient variety Py does not
always admit a crepant resolution Batyrev and Borisov introduced so-called string-theoretic
Hodge numbers h%;?(%,,) and could show in [3] that

W5 (Y,) =hy PU(Y)  for 0<p.g=<n

where 7 = n — ¢ is the dimension of Y.

In the case where [ is non-empty Iritani defines (under assumption 1.13) an oscillating

integral
©
/ W Og,
I'r(@)

where I'g) = f’g N Tg is a non-compact cycle in I?g (Tr := (R=o)" C T being the real
torus), i.e., a real Lefschetz thimble, and

dt,
tn

AW D Ao A d WS

‘iﬁ/\.../\
1

Qg =

is a holomorphic volume form on Y,. Notice that the definition of the volume form uses
the smoothness assumption 1.13 in an essential way. Notice also that in loc.cit., the variable

% is used.

z:=
In order to get a mirror theorem, Iritani defines a so-called A-period of the complete
intersection Y C Xy,
T(1, Oy) = (Jy(q. —2). 2" % zTy)
here Jy is the J-function, which is a particular solution of the quantum )-module of Y,
and I'y is the Gamma class of Y. We refer the reader to [31] for details. The aforementioned
mirror theorem of Iritani is the equality (see [31, Theorem 5.7])

1
—— | MO, ae FW
F(o) I'r(2) B

where F'() is a certain coordinate change.

(6) y(1, Oy) =

From the remarks in the last subsection on the relation between oscillating integrals and
GauB-Manin systems it seems plausible that the oscillating integral on the right hand side of
Equation (6) gives a solution of the following (Fourier-Laplace transformed) Gau3-Manin
system

FL G2 (W) + Oy, € Modhol(De, )-
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As before, we need to consider families of such differential systems by letting the parameter o
vary within ZeM°, hence, we rather look at the D, x oo -module

FLI;;WC’ géo (WQ(O) s prg)-i— OYQX FM®

Finally, we have to eliminate the asymmetry between WQ(O) and Wg(j ) for j=1,...,c. This
N\ —1

can be easily done in the following way: As Y, = ﬂjc-=1 (Wg(] )) (1), instead of considering

the direct image g?zﬁo(WQ,(o))Jr Oy, we can consider the direct image FH (Wg(o), Wg(l), e Wg(c)) O
and restrict it to the subspace where the last ¢ coordinates are set to 1 (this follows fromthe
base change theorem for holonomic )-modules, see Theorem 2.1 below). Finally, in order
to be able to use the Radon transformation functor alluded to above, we need to allow a to

vary within C™, and not just in the subspace Fc°. This motivates the following definition.

DEFINITION 1.15. — Let us be given a nef partition{1,... ,m} = IoU I, U---U I, on Xy.
Then we call the morphism

O:TxC" > =CxC"xC*
(ng) = (A()v'- . 7Am+c) = (_WQ(O)vgv_Wg(l)v .. 7_Wg((:))

.....

We proceed by comparing the nef partition Landau-Ginzburg model to our construction,
as outlined before in this introduction. First notice that if we consider the variety Xx, then
the collection of line bundles Z1 = O3 _yes, Dit)s---» Le = O3 gy, Di) satisfies (almost)

the assumptions of our construction: Namely we have that — Ky, — Z]c.:l (Zke I Dk) is
nef, since it is simply equal to D ;. 1, Dk and then its nefness follows from the nef partition
assumption. For our main result (Theorem 6.13, see also Theorem 1.10), we need the stronger
assumption that Z1, ..., Z, are ample but this is unnecessary for many intermediate results.
In any case, given a nef partition, we have nef line bundles Z1,..., Z. on Xx such that
the bundle Ox,.(—Kxy) ® Z;' ® --- ® Z. " is nef, and we can consider the matrix B as
constructed in the beginning of this introduction from the primitive integral generators of
the fan X’ of the total space V(&) with & = @j_, ;. If we denote by B; the matrix with
columns (b;)ies; for j =0,...,c, then Bisan (n + ¢) x (m + ¢) integer matrix given by

By By B, --- B.| O

0---01---10---0---0---0|1
B = 0---01+--1---0---0

0---00---0 1---1 1

As before we get an associated family of Laurent polynomials
p:SxC - CxC*
C
(J’l, R J/s, Ala L] At) = _WL(O) - Z(Wil) + Am+i) : yn-i—is

i=1
remember that S = (C*)® where s :=n +candt :=m + c.
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With these definition, we can state the following conjectural relationship of the nef-
partition Landau-Ginzburg to our non-affine Landau-Ginzburg model.

CONJECTURE 1.16. — Consider a smooth projective toric variety Xx. with torus invariant
divisors D1, ..., Dy, and a nef partition {1,...,m} = IoU I; U---U I.. Then
1. there exists a morphism
FLE (04 O yom) — FLEF(Tp4 Osxen) = FLEF (M%)

of holonomic (f{)@prl -modules;
2. this morphism induces an epimorphism {g;11-modules

FLE (Wanin 0+ O om)
' 5. D
— FL (Wanin H 04+ Osxer) =~ im (FL@C(W%) - FLBC(W%)) ’

where Wi is the minimal step of the weight filtration on the Gaufi-Manin system
(%064_ Ofseom Tesp. (%0904_ Osxgt (which underlies a mixed Hodge modules, i.e., an
element of the abelian category MHM( Dgi+1)).

We are actually able to show the first part of this conjecture, but the proofis far to technical
to be reproduced here. The second part is still open. Some evidence for this part of the
conjecture comes from the fact that the )¢+1-module Wi, (%ngur Osxct (which underlies
a pure Hodge module) is, as we will see later, irreducible, and hence the above morphism must
be surjective if it is not the zero map. Using the mirror symmetry statement of [31] together
with our main result, one may even speculate further that this map must be an isomorphism.
We postpone a thorough discussion of these matters to a subsequent paper.

REMARK 1.17. — We give an example of a smooth toric variety X, with two nef line bundles
Z1 = Oxx(L1), L2 = Oxs, (L) and —Kxy, — L1 — Lo = 0, which is not representable as a
nef partition. Consider the two-dimensional toric variety given by the fan

by b by
by bs

b3 bs by.

The primitive generators of the rays give rise to a matrix
l1-1-1 110-1 0
A= .
I 1-1-101 0-1
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The rows of the following matrix

100000 1 1
010000-1 1
001000—-1-1
000100 1-1
000010 1 O
000001 O 1

provide a basis for the module of relations among the columns of A. The well-known sequence

8
A L
0—>M>EzD; > H*(X.Z) > 0
i=1
for torus-invariant Weil divisors endows the free Z-module H?*(X,Z)) (which has rank 6) with
a basis. The coordinates of the image [D;] of D; with respect to this basis are given by the i-th
column vector of the matrix L. The closure of the Kihler cone is generated by the vectors

1 1 2 1 2 2 2 2 2 3 1 3
0 1 0 1 0 1 0 2 1 1 1 1
0 —1 0 0 0 0 0 0 —1 —1 0 —1
11 I IO I 1 N O KON A O N I O I O O R I O I
1 1 2 1 1 1 1 1 1 1 0 2
0 1 1 1 1 1 1 2 1 2 1 1
One easily sees that the vectors
1 2
1 0
-1 0
L] := and [L,] := )
[L1] | [L] 0
1 1
1 1

which lie in the closure of the Kihler cone, arenot of the type [D; |+ --+[D;,] for {i1, ..., is} C
{1,....8). But

[L1] + [L2] = [D1] + -+ + [Ds] = [-Kxs].
Therefore the line bundles Ty := 02Dy + Dg + D7) and <5 := 02Dy + D5 + Dsg) as well
as —Kxs, — L1 — L, are nef.

Notice that although most of the constructions of our article apply to this example, it
does not satisfy the assumptions of our main Theorem 6.13 simply because the bundles %1
and Zo are nef but not ample. We could also give an example which consists of ample line
bundles on a toric variety that do not come from a nef partition, but which would even be more
complicated. Actually, we need ampleness only to apply results from quantum cohomology (like
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those presented in [39] ), whereas for the constructions of the present paper, the nef assumption
is sufficient.
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2. Intersection Cohomology of Lefschetz fibrations

In this section we use the comparison result between Gaul3-Manin systems of Laurent
polynomials and GKZ-systems from [46] to describe the direct image of the intersection
complex of a natural compactification of a generic family of Laurent polynomials. The input
data is an integer matrix B of maximal rank and the GKZ-system in question will be defined
by a certain homogenized matrix B. The main tool is the Radon transformation resp. the
Fourier-Laplace transformation for monodromic )-modules ([6]).

We start by a short remainder on some basic notions from the theory of algebraic
J-modules. Then we discuss GauB-Manin systems, GKZ-systems and intersection coho-
mology Z)-modules associated to the above mentioned families. Finally, we show using
some facts about quasi-equivariant )-modules that most of the objects considered here
behave well with respect to a natural torus action on the parameter space of the families of
Laurent polynomials resp. of their compactification.

2.1. Preliminaries

We review very briefly some basic results from the theory of algebraic Z)-modules, which
will be needed later. Let ¢ be a smooth algebraic variety (we only consider algebraic varieties
defined over C in the paper) of dimension n and g be the sheaf of algebraic differential
operators on . We denote by M(Dg) the abelian category of algebraic %) g-modules
on & and the abelian subcategory of (regular) holonomic ) g-modules by My, (D) (resp.
(M,1,(Dg)). The full triangulated subcategory in D?(Dg) consisting of objects with
(regular) holonomic cohomology is denoted by D 2( D) (resp. th( D))

Let f : & — ¥ be a map between smooth algebraic varieties. Let o# € D?(Dg)
L
and o € D®(Ds) be given, then we denote by f4 M = Rfi(Dycg ® M) resp.

fteN =9 Ky é) f 1N the direct resp. inverse image for )-modules. Notice that the
functors fy, f+ preserve (regular) holonomicity (see e.g., [29, Theorem 3.2.3]). We denote
by D : DY(Dg) — (DE(De))°PP the holonomic duality functor. Recall that for a single
holonomic ) g-module M, the holonomic dual is also a single holonomic ) g-module
([29, Proposition 3.2.1]) and that holonomic duality preserves regular holonomicity ([29,
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Theorem 6.1.10]). For a morphism f : ¥ — % between smooth algebraic varieties we
additionally define the functors f; := Do fi oDand fT:=Do f+oD.

In [29], the definition of the inverse image functors from above follows a different conven-
tion, which is better adapted to the Riemann-Hilbert correspondence. Our functor f+ corre-
sponds to fT[dim(%) — dim(&)] from [29, page 31], whereas our functor fT corresponds
to f*[dim(0) — dim(¥)] from loc.cit, Definition 3.2.13.

Leti : Z — & be a closed embedding of a smooth subvariety of codimension d and
j U — & be the open embedding of its complement. This gives rise to the following
triangles for oM € th(él)ﬂ%)

) it M—d] > M — jijt M,
(8) it oM = M — irit Md]) S .

The first triangle is [29, Proposition 1.7.1] and the second triangle follows by dualization. We
will often use the following base change theorem.

THEOREM 2.1 ([29, Theorem 1.7.3]). — Consider the following cartesian diagram of alge-
braic varieties
W
lg

54

then we have the canonical isomorphism f*g[d] ~ g/, f’ *1d'], where d := dim Y —dim ¥
and d' := dim % — dim .

/

f/
—
g
f
—

LN

REMARK 2.2. — Notice that by symmetry we have also the canonical isomorphism
gt fild] ~ f+’g’+[d’] with d := dim W — dim & and d' := dim Z — dim Y. In the
former case we say we are doing a base change with respect to f, in the latter case with respect
tog.

REMARK 2.3. — Using the duality functor we get isomorphisms:
[Tesl-dl =g, f"1=dl  and g fil-d) = fg"[-d.

In the sequel, we will consider Fourier-Laplace transformations of various <)-modules.
We give a short reminder on the definition and basic properties of the Fourier-Laplace trans-
formation. Let X be a smooth algebraic variety, U be a finite-dimensional complex vector
space and U’ its dual vector space. Denote by &’ the trivial vector bundle t : U’ x 0 — &0
and by & its dual. Write can: U x U’ — C for the canonical morphism defined by
can(a, ¢) := ¢(a). This extends to a function can : & x & — C.

DEFINITION 2.4. — Define ¢ := 08’sz g€ ", this is by definition the free rank one
module with differential given by the product rule. Denote by p; : & xg & — €&,

p2: & xg € — & the canonical projections. The Fourier-Laplace transformation is then
defined by

FLy(M) 1= pos (pF M S L) oM € DDy,
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If the base & is a point we will simply write FL. In general, the Fourier-Laplace trans-
formation does not preserve regular holonomicity. However, it does preserve regular holo-
nomicity for the derived category of complexes of )-modules the cohomology of which
are so-called monodromic )-modules. We will give a short reminder on this notion. Let
x: C* x & — & be the natural C* action on the fiber U’ and let 6 be a coordinate on C*.
We denote the push-forward y.(69g) as the Euler vector field &.

DEFINITION 2.5 ([6]). — A regular holonomic &) ¢-module oM is called monodromic, if the
Euler field € acts locally finite on t.(cM), i.e., for a local section v of T« (M) the set €" (v),
(n € N), generates a finite-dimensional vector space. We denote by Df;on(f[) ¢’) the derived
category of bounded complexes of ) ¢r-modules with regular holonomic and monodromic
cohomology.

THEOREM 2.6 ([6]). — 1. FLg preserves complexes with monodromic cohomology.
2. In Db (Der) we have

FLyoFLyg ~Id and DoFLg ~ FLg oD.

3. FLg is t-exact with respect to the natural t-structure on D2 (D¢r) resp. DB (De).

Proof. — The above statements are stated in [6] for constructible monodromic complexes.
One has to use the Riemann-Hilbert correspondence [6, Proposition 7.12, Theorem 7.24]
to translate the statements. So the first statement is Corollaire 6.12, the second statement is
Proposition 6.13 and the third is Corollaire 7.23 in [6]. O

We will make occasionally use of the so-called R-modules. More precisely, let M be a
smooth algebraic variety and consider the product of M with the affine line C, where z is a
fixed coordinate. Then by definition R, xpr is the Oc.xamr-subalgebra of )¢, xpr locally
generated by z20, and by zdy,,...,z0y, where (x1,...,x,) are local coordinates on M.
Notice that j;; Rie.xm = Dorxm»> Where jyr : C; x M — C; x M is the canonical open
embedding.

We will also consider the Cg, xps-subalgebra ﬁ&;zx u Of Re.xp Wwhich is locally gener-
ated by z0x,, ..., z0x, only. Sometimes we omit the subscript which denotes the underlying
space, so we write R resp. R/ instead of Rc. xM TESP. %EZX - The inclusion R > R
induces a functor from the category of R-modules to the category of R'-modules, which
we denote by For,2,_ (“forgetting the z29,-structure”).

2.2. GauB-Manin systems, hypergeometric )-modules and the Radon transformation

In this subsection we adapt some results from [46] to our situation. More precisely, for a
given generic family of Laurent polynomials, we describe the canonical morphism between
its Gaul3-Manin-systems with compact support and its usual Gaul3-Manin-systems. This
mapping can be expressed as a morphism between the corresponding GKZ-systems. We will
use this result in the next subsection to describe certain intersection cohomology modules.

We start by fixing our initial data and by introducing the GKZ-hypergeometric )-modules.
Let B be a s x t-integer matrix such that the columns of B, which we denote by (b, ...,b,),
generate Z°. Consider the torus S= (C*)® and the ¢ + 1-dimensional vector space V' (with
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coordinates Ag, Aq,...,A;) as well as its dual V'’ (with coordinates g, i1, ..., ;). Define
the map
g:S—>PW,
©9) 1. ys) > (L ybr oy,
where Xéi = [Trey y,f’” fori € {1,...,t}. The condition on the columns of the matrix B

ensures that this is an embedding. If we denote the closure of the image of g in P(V’) by X,
then X is a (possibly non-normal) toric variety in the sense of [17, Chapter 5]. So we have the
following sequence of maps

(10) shxLpo,

where j is an open embedding and i a closed embedding.

We will denote the homogeneous coordinates on P(V’) by (g : --- : ). Let O be the
convex hull of the elements {, = 0,b,,...,b,} in R®. Then by [17, Chapter 5, Prop. 1.9]
the projective variety X has a natural stratification by torus orbits X°(T"), which are in
one-to-one correspondence with faces T' of the polytope Q. The orbit X°(I") is isomorphic
to (C*)9mI) and is specified inside X by the conditions

(11 wi =0 forall b, ¢T, p; #0 forall b, eT.

In particular the torus S C X is given by the face I' = Q, i.e., by the equations y; # 0
foralli € {0,...,¢}.

To this setup we associate the following )-modules. Write W = C' with coordinates

A, .., Ay sothatV =Cy ) x W.

DErFINITION 2.7 ([19], [1]). — Consider a lattice Z*° and vectors b, ..., b, € Z°. Moreover,
let B = (B1,. .., Bs) be an element in C°. Write L for the module of relations among the columns
of B. Any element | € L will be written as a vector | = (I1,...,1;) in Z'. Define

M= D/ ((@1eL + (Ex — B)r=1,..5) -
where y
DL::H11<O Hzl>0)i’ Lel
Ep = Zi:l bk,/\,aki, k € {1,.. . ,S}
where by; is the k-th component of b;. The LDy -module Wg is called a GKZ-system.

As GKZ-systems are defined on the affine space W, we will often work with the
Dy -modules of global sections M{;:: rw, eﬂ/lg) rather than with the sheaves them-
selves, where Dy = C[A1,...,A¢]{04,,...,04,) is the Weyl algebra.

We will also consider a homogemzatwn of the systems above Let B be the (s+1D)x@E+1)
integer matrix with columns bO = (1,0), b1 = (1,b;),. = (1,b,).

DEFINITION 2.8. — Consider the hypergeometric system W% onV = C'*! associated to

the vectorszo,zl, ... ,Zt Y/ an andﬁe C*t1. More explicitly, @]Vl% = Dv/J, where J is
the sheaf of left ideals in )y defined by

J = Dy (OpieL + Dv(Ek — Bi)k=o.....s-
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where B l .
.— 3l —ti T
0 = 810-‘]_[ P H d;, if 1=0,
i:l;<0 B i:l;>0
O = [T 87" —a;- 1 8% if <o,
- iili<0 ! 0 iili>0 !
Ep =Y i_; bkiridy,,
Eo:i= Yi_ohidy.

The generic rank of the GKZ-systems oﬂ%g resp. oﬂ%% may be difficult to predict
depending the parameter (see, e.g., [40]), but if we suppose that the matrix B resp. B satisfies
the normality assumption (see Proposition 5.1 and its proof below), then it is known that the
rank of both modules equals s! - vol(Conv(b,, ..., b,)) (where vol denotes the normalized
volume, i.e., such that the volume of the hypercube is [0, 1]¢ is one).

Let /& be the map given by

(12) h:T =V,

(Dou- - ys) > (Y20 vty = (o yoyPi. . yoyPe).
where T = C* x § = (C*)**!. Notice that the restriction of & to {1} x S is exactly the map g
from Formula (9), when seen as a map to the affine chart {o = 1} € P(V'). We will later
also need the closure of the image of 4 in V', which we denote by Y. Hence Y is the affine
cone over X.

As a piece of notation, for any matrix C = (c;,...,¢;), we write INC for the semi-group
generated by the columnsc,, ..., ¢y, thatisINC := Zﬁ IN¢;, where we adopt the convention
that the set IN of natural numbers contains the element 0. Then we can consider the semi-
group ring (D[]N§ ], which is naturally Z-graded due to the first line of the matrix B. Hence
we can consider the ordinary spectrum of this ring as well as its projective spectrum, and it
is clear that we have Y = Spec G[]NE] and X = Proj C[]Nﬁ].

We will now consider natural Dy -linear maps between GKZ-systems, which will induce
a shift of the parameter. Let B be as above and consider the map of monoids

(13) p: Nt 5 NB
e; HE

where the e; are the standard generators of IN*T1. Let ¢ € IN**! be given and put 7 := p(c).
Notice that for every g € C**! the morphism

B B+7
M~B~—>M§
P~ P .0

is well-defined. Now let ¢1,c, € p~!(¥). Because ¢; and ¢, map to the same image, their
difference ¢ — ¢, is a relation [ among the columns of the matrix B, thus 9! — 92 € (OJy).

This shows that P - 01 = P -9°2in M §+7. Thus, we are lead to the following definition.

DEFINITION 2.9. — Let B and Ebe as above. For everyy € NB define the morphism
B 07, o B+Y
oﬂ/lg — JVIE
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given by right multiplication with 3¢ for any ¢ € p~ 1 (y).

In the next lemma, we establish a relation between a direct image under this morphism /4
and the GKZ-systems just introduced.

LEMMA 2.10. — There exists a §g € INB such that we have an isomorphism
(14) a: FL(hy Or) > M
for every Ee S + (Rzogﬂ Z5+YY. Furthermore, we have a dual isomorphism
(15) a” : FL(hy Or) < o5

Jor every ,BV’ € (R>o B)° N Z5tL. For every BV, ,BV’ as above, the diagram below commutes up to
a non-zero constant

g aFtF B
My ———— M

FL(h Or) —— FL(h4 Or),

where the lower horizontal morphism is induced by the natural morphism hy Oy — hy Or.

Proof. — By [53, Corollary 3.7] we have the isomorphism FL(A4(Or - XE )) ~ J/l% for
every E ¢ sRes(ﬁ) where sRe~s(§) is the set of so-called strongly resonant parameters ([53,
Definition 3.4]). Here O7 - Zﬂ is again the free rank one module with differential given by
the product rule. Using [46, Lemma 1.16], which says that there exists an 5 € INB such that
85+ (R>oB NZ*T1)NsRes(B) = @ and the fact that Or ~ Or -17 for every 7 € Z**!, the
first statement follows. The second statement follows from taking the holonomic dual of (14),
namely, we put

a¥ :=Da : DM S DFL(hy Or) ~ FL(Dh Or) ~ FL(h+Cr)
and then we conclude by applying [46, Proposition 1.23].
The last statement follows from the fact that the only non-zero morphism between W,—Eﬁ /

and QM% is right multiplication 9B+B’ up to a non-zero constant (cf. [46, Proposition 1.24]).
O

We will denote by ZC P(V') x V the universal hyperplane given by Z := {Z§=0 Aipi = 0}
and by U := (P(V') x V) \ Z its complement. Consider the following diagram

U
=Y _ ¥
JUu
] 2

PV)e— PWV)xV —2 3V,
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We will use in the sequel several variants of the so-called Radon transformation. These are
functors from th((f/)]p(w)) to th((fl)y) given by
RBM) :=nf (7E)TM ~mayizyif 7 M,
B°M) =¥, 7)TM ~ nay juijfn M,
(M) = n3 (x))TM ~ 1oy jut jimi M,
Rest(M) := oy (1)) M,

The adjunction triangle corresponding to the open embedding jiy and the closed embedding
iz gives rise to the following triangles of Radon transformations.

(16) R-1)(M) = Be(M) — F°(M) 5

ﬁ’
o +1
a7 He (M) — Fest(M) — Z[1|(M) —,
where the second triangle is dual to the first.
We can now introduce the generic family of Laurent polynomials mentioned at the begin-
ning of this subsection. It is defined by the columns of the matrix B, more precisely, we put

(18) Y SXW =V =Cy, xW,

t
(V1o Yoo Ae o A) B (= Y AP AL A,

i=1

The following theorem of [46] constructs a morphism between the GauB-Manin
system §#°(¢p.+ Osxw) rtesp. the its proper version $#°(pp.+ Csxw) and certain GKZ-
hypergeometric systems. For this we apply the triangle (16) to M = g+Us and the
triangle (17) to M = g4 Og, which gives us the result.

THEOREM 2.11. — [46, Lemma 1.16, Theorem 2.7] There exists an §g € INB such that for

every E € 8§+R20§ﬂ 75 and every E’ € (]1\T§)° =INBN (R>o E)", the following sequences
of Ly -modules are exact and dual to each other:

H*1(S,C) ® Oy T (9B.+ Osxw) c%% H3(S,C) ® Oy

T T

0— K (Resi(g+ 0s)) — T (%(g+0s)) — T (% (g+ 0s)) — H(Zest(g+ Os)) — 0
0 +— J' (Rest (g1 Os)) +— F(R(g+ Os)) +— F(%° (g4 Os)) +— . (Fest(g4 Os)) +— 0.

LT

HEPU(S,Q) @ Oy JpnsCsxw) M7 HI(S.€) ® Oy
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If moreover INB is saturated, then the vector 8 can be taken to be 0 € ]NE in particular, the
above statement holds for B = 0 € Z5T1,

Thus we get the following exact 4-term sequences which can be connected vertically
by the map n : H°(R(g+0s)) — H°(R(g+Cs)) induced by the natural morphism
g+Us — g+ Os. Define 0 to be the composition k, o 7 o k1. The next result gives a concrete
description of this morphism:

0— H\(S.0)® Oy — G (R(g+ 0s)) —— M — H(S.C)® Oy — 0

P

0 HIH(S.0)® Oy +— F (R (g1 0s)) +—— MG +— HI(S.C)® Oy + 0.

LeEmMMA 2.12. — The morphism 0 is induced by right multiplication with 9B+F up to a non-
zero constant.

Proof. — Once we can prove that k o 1 o k1 is not equal to zero we apply a rigidity
result of [46, Proposition 1.24] which says that the only maps between W%ﬂ "and cﬂ/ﬂ% is

right-multiplication with ¢ - 3+’ for ¢ € €. We only have to show that k» o 7 o
becomes an isomorphism after micro-localizing with respect to do - - - ;. This is sufficient as
the microlocalization of the GKZ-systems oﬂ%’% resp. W%ﬂ " are not zero for otherwise the
sheaves i Or and h+ Or would be supported on the divisor {4 - 1 --- ¢ = 0}, which is
obviously wrong.

It is clear that x; and «, become isomorphisms after (micro-)localization with respect
to do - -+ d; because these maps have Oy -free kernel and cokernel. It remains to prove that
n is an isomorphism after this micro-localization. To prove this we will use a theorem of
[12] which compares the Radon transformation with the Fourier-Laplace transformation
for &)-modules. Consider the following diagram

T—" Ly

N

nr v\ oy ?

|

s—5.p),

p

Blo(V")

where Blo(V') < P(V') x V' is the blow-up of 0 in V' and ¢ is the restriction of the

projection to the first component. Notice that the map & : T — V' from Formula (12) factors

via V'\{0}, that is, we have h = jj o T, where Jjo : V/\{0} — V" is the canonical inclusion.
It follows from [12, Proposition 1] that we have the following isomorphism

(19) Z(g+0s) ~ FL(p+q* g+ Os)
and its holonomic dual
(20) Z(g+0s) ~ FL(p+q™ g1 Os).
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where we have used Z oD =~ Do #Z, FLoD = Do FL, py oD = Do py (p is proper) and
gt oD = Dog™ (qis smooth). Recall that we want to show that the morphism

TP (% (g1 Os)) — T (R(g+ Os)).

becomes an isomorphism after localization with respect to 9, ---d,,. Using the isomor-
phisms (19) and (20) and the fact that FL is an exact functor and that it exchanges the action
of u; and 9, we see that it is enough to show that

1) F(p+qT g+ O0s) — FH(p+qt g+ Os)

becomes an isomorphism after localization with respect to o --- ;. In other words, we
have to show that the kernel and the cokernel of the morphism (21) are supported on
{po---pr =0} C V'. Obviously, we have {0} C {o---u; = 0} and hence V'\{uo---p; = 0}
C V’\{0}. It is thus sufficient to show that kernel and cokernel of the restriction of the
morphism (21) to V/\{0} are supported on {u¢---u; = 0}\{0}. Notice that the restriction
of F°(p+q* g+ Cs) resp. FH°(p+qT g+ Os) to V' \ {0} is isomorphic to $#°(w* g; Os) resp.
H° (7T g4+ Os). Thus the kernel and the cokernel of (21) are supported on {ig--- u; = 0}
if and only if kernel and cokernel of

S (T g1 Os) — (T g4 Os)

are supported on {ug---i; = 0}\{0}. The map 7 is smooth and therefore 7 is an exact
functor. It is therefore enough to show that kernel and cokernel of

S (g+0s) — F°(g+0s)

are supported on {pg...u; = 0} C P(V’). But this follows from the description of the
map g, namely, by the remark right after Equation (11) the support of the cone of the
morphism g+ Os — g4+ Os is contained in {uo ... u; = 0}. O

2.3. Intersection cohomology Z)-modules

As mentioned in the beginning of this section, our aim is to describe a )y -module
derived from the intersection complex of a natural compactification of the family of Laurent
polynomials ¢p as defined in Formula (18). This module will actually appear as the Radon
transformation of the (%)-module corresponding to the) intersection complex of the variety
X cPV).

We start by fixing some notations concerning these )-modules. Let 2 be a smooth
variety and %/ C P be a smooth subvariety, write &0 for the closure of %/ inside P,
Jas : U < & for the open embedding of % in ¥ andig : & — P for the closed embed-
ding of the closure of & in P. Consider the abelian category Perv(.P) of perverse
sheaves on 2 (with respect to middle perversity). For a reference about the defini-
tion and basic properties of perverse sheaves, see [14]. Recall that the simple objects
in Perv(P) are the objects (i )11 C(X, Z) where Z is an irreducible local system on U
and IC(, 2) is the intersection complex of & with coefficient in Z, that is the image
of the morphism ? #°((jan?) — P F ((Rjw)«Z) in Perv(). We will denote the
corresponding )-module on 2 by MIC (S, ). If T is the constant sheaf Cq, we
will simply write M C(SC). The p-th intersection cohomology group of &l (see [22])
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is denoted by TH?(¢X) and is obtained from the intersection complex by the formula
THP () = HP~4m() (1 C(, Cqp)).

We will apply this formalism to the special situation where % = g(S) (where g is the
embedding defined by Formula (9)), ¢ = X and & = P(V’). The module #/€ (X) is
the image of the morphism g+ Os — g4+ Os. In the next result, we will compute the Radon
transformation of this module.

PROPOSITION 2.13. — In the above situation, we have the following (non-canonical)
isomorphism of )y -modules
AR (X)) = M (X, D) & IH ™ (X) ® Op),
and
H AR (X) = [HTH (X))@ Oy fori >0,
HR(MC (X)) ~ IHTYX)® Oy fori <0,
where X ° is some subvariety of V and L some local system on some smooth open subset of X°.
Proof. — Using the comparison isomorphism between the Radon transformation and the
Fourier-Laplace transformation (Equation (19)) from above, we have
HR( M (X)) = ' FL(p1q™ M (X))
~ FL S (p+q™ M (X))
~ FL ' (p+ M (g (X)),

where the second isomorphism follows from the exactness of FL and the last isomorphism
follows from the smoothness of ¢. We now apply the decomposition theorem [50, corollaire 3,
Equation 0.12] which gives

(22) S (pr M (@7 ) = P ML L)
k

for some subvarieties Y ,é C V'’ and some local systems %}C on a Zariski open subset of Y, ,é
Notice that

Jor H (s M@ (X)) = jom FH (prgT M (X))
~ J (g prat M C (X))
~ G (T M (X))
~ (M (7 (X)),

which is equal to 0 for i # 0 and equal to M€ (Y \ {0}) for i = O (recall from Section 2.2,
more precisely, from the discussion before Lemma 2.10, that Y is the cone of X in V’). Thus
the decomposition from (22) becomes

T (p+ M C(@H(X)) = M) @ S,

resp.

T (pr MG X)) = S i #0,
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where the & are &)-modules with support at 0, i.e., &; =~ io+S;, where the S; are finite-
dimensional vector spaces and iy : {0} — V' is the natural embedding. We now use the
fact that FL is an equivalence of categories, which means that it transforms simple object to
simple objects, so we set

(23) M'C(X°, 2) := FL(M'C (V).

It also transforms &)-modules with support at 0 to free C-modules, i.e., FL(&;) ~ S; ® Oy.
In order to show the claim, we have to compute the S;. Recall that we have

24) prat MEX) = P H (praT M X1 =P Sil-i1@ So® M (V).
J Jj#0
where the first isomorphism is non-canonical. We compute
H'(ay)+p+(q+ M€ (X)) = H' (ap)+q+(q" M (X))
~ H'(ap)+ M C (O[] = THH ()
(here ays : V' — {pt} resp. ap : P(V') — {pt} are the projections to a point), where

the second isomorphism follows from [35, Corollary 2.7.7 (iv)] and the Riemann-Hilbert
correspondence. For the right hand side of Equation (24) we get

H' (@) | D Si[-/1® So® M (V) | =i fori > 0.
j#0
25)  Hi(av)s [P Si[-i1® So @ M C(Y) | = S @ ITHFH1(x)
J#0
~ S @ TH P (X)  fori <0,
where TH 511 (X) is the primitive part of 7H'*S*1(X) and where the last isomorphism
follows from [37, Chapter 4.10]. Therefore we have
S; ~ ITH'™TY(X) fori >0,
S; ~ LUH ™ Y (X)) ~ IH'"""1(X) fori <0,
where L : TH*S71(X) — IH'*$*t1(X)is the Lefschetz operator which is injective fori < 0.
O

In the next proposition we show that at a generic point A € V the Radon transformation
R(ME (X)) of M€ (X) measures the intersection cohomology of X N H), where H} is
the hyperplane in IP(V’) corresponding to A.

PROPOSITION 2.14. — Let A be a generic point of V and denote by iy : {A} — V its
embedding. We have the following isomorphism

i A(M'C (X)) ~ RU(X N Hy, ICxnmy).
in particular

FE i R( M (X)) ~ THTH7H(X 0 Hy).
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Proof. — Consider the following diagram where all squares are cartesian

X 7y« ™ xnm,
’l "l "Hl
nf iH
P(V) z H,,

|
V2.
We have
DR(if Z(M'C (X)) ~ i} RuZ ()i IC(X)]1]
~ iy Rf. Ry IC(X)[1]
~ RaHil Ry 1C(X)[1]
~ RrH RnHi,n¥'1C(X)[1]
~ R o ™) oix) 1C(X)[1]
~ R(x® opf), 1C(X N H))
~ RT(X N Hy, IC(X N Hy)),

where the first isomorphism follows from DR o i;” = i} o DR[t + 1] and DR o (nf)* ~

(mZ)! o DR[~1] (see e.g., [29, Theorem 7.1.1]), the second, third and fourth isomorphism
follows from base change (see e.g.,[14, Theorem 3.2.13(ii)] and the sixth isomorphism follows
from [22, Section 5.4.1] (notice that their /C(X) is our /C(X)[n] where n = dim¢(X)) and
the fact that for a generic A the hyperplane H), is transversal to a given Whitney stratification
of X . The first claim now follows from the fact that the de Rham functor DR is the identity on
a point. The second claim follows from H/ =T (X N Hy, IC(X NH,)) ~ [H/ (XN Hy). O

REMARK 2.15. — Combining Proposition 2.13 and Proposition 2. 14 we see that we have the
following decomposition for generic A € V :

TH Y (X NH)) ~ (%O(ZZQ(WIC(X)))
~ if FOR(ME (X)) ~ i MIC(X°. D) @ TH T (X).

This is the intersection cohomology analog of the decomposition of the cohomology of a smooth
hyperplane section of a smooth projective variety into its vanishing part and the ambient part.

We will now show that ¥!€ (X°, Z) can expressed as an image of a morphism between
GKZ-systems.

THEOREM 2.16. — Let E ;"}7 be as in Theorem 2.11, then
B+B 7

M (X, D) ~im(MFF = M),
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Proof. — First recall that we have shown in the proof of Proposition 2.13. that
MIC(X°, T) ~ FL(c#'€ (Y)). On the other hand, as Y is the closure in V’ of the image of
the morphism £, the module oﬂél ¢ (Y) is isomorphic to the image of i+ Or — hy Or. Asthe
Fourier-Laplace transformation is exact we can conclude that JV[IC (X°, ) is isomorphic
to the image of FL(h+ Or) — FL(h4 Or).

By Lemma 2.10 we know that FL(hy(Or) is isomorphic to W’% for every
B e 85+ (R=oB NZt") and that FL(h+Cr) is isomorphic to JM%B/ for every
B’ € (R=0B)° N Z5T1. It follows now from the last statement of Lemma 2.10, that the

induced morphism between @M;;ﬁ " and @]I/Z% is equal to 9B+ up to some non-zero
constant. O

In general it is quite difficult to make any precise statement on the variety X ° and the local
system < which define the module JVZIC(X °, Z). Nevertheless, if we restrict our attention
to the situation where the matrix B defining the embedding g : S < P(V’) is given
by the primitive integral generators of a toric manifold which is given by a total bundle
V(&) - Xz, where & is a split convex vector bundle over another toric manifold X such
that the zero locus of a generic section is a nef complete intersection (i.e., the situation
considered from Section 4 on, see also the introduction in Section 1), then we expect that
X° = V. In order to show this, one would need to prove that if we restrict the morphism
QM:E/ .9B+8

B ~
It is well known (see, e.g., [1]) that the restriction of oﬂ/f% to a generic point is the quotient
of C[]Nfﬂ by the ideal generated by the Euler vector fields Zf‘:o ’l\)}ci}&ia,\i k =0,...,5),
where now (4o, ...,A,) are the components of the generic point we restrict to. Hence one
needs to show that the monomial 388" does not lie in this ideal. Nevertheless, we do not
have, at this moment, any further evidence for this to be true.

W% from the last theorem to a generic point of V, then it is not the zero map.

Even under the above restrictive assumptions on B and even if we suppose that X° =V,

it is not easy to predict the rank of Z. What we expect is that the generic rank of the
—IC
module ¥ (X°, Z) from Theorem 3.6 below can be identified with the dimension of the
image of the map
Uctop (€)
H*(X5.0) 5" H*(Xs.C).

However, the module ¢}/ (X°, ) resp. the local system Z may contain constant subobjects
that vanish after localized Fourier-Laplace transformation (see Section 3 below for more

—IC
details). Hence its rank may be different from that of oM (X°, ).

For applications like those in the last section, we need a description of #'“(X°, ) as

a quotient of a GKZ-system, rather than submodule of it. For this purpose, denote by &
. _ 3E+I§I e L. .

the kernel of the morphism M gﬂ — W‘i, then M’ C(X °, Z) is isomorphic to the

quotient (JM? , / & in the abelian category of regular holonomic &)-modules. The next

result gives a concrete description of & as a submodule of eﬂfgﬂ "
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First, we define a sub-Dy-module Fac(MJs ) of M~ ,where ¢ € p'(B + B) (cf.
Equation (13)) :

T (M5P) = {m € MZ*"| 3n € N with (9)" - m = 0}.
Recall that two elements ¢! and 9°2 with ¢1, ¢, € p~! (,E—i— ,B”) differ by some element P -[J;,
where P € Cl[dg,...,05] and [ = ¢; — ¢2. Any element m € M;ﬂ, is eliminated by left
multiplication with some high enough power of P-[J;. This shows that I'y . (M 5’3 /) is actually
independent of the chosen ¢ € ,o_l(E + ,73’7). Thus we denote it just by I'y(M ;ﬁ ,) and the
corresponding sub- )y -module of W%ﬁ / by Fa(pﬂﬁgﬂ /).
PRrROPOSITION 2.17. — Let E f}” be as in Theorem 2.11 and let JE be the kernel of

Q]Vlgﬁl 'aB—J;B/ W%. Then
F = Ty(MP ), inparticular M€ (X°, 2) = MF Ty ).
Proof. — Recall that the morphism @]Vlgﬁ / 'aﬁ—tﬁ/ @]Vlg« is induced by the morphism
FL(h+Or) — FL(hyOr), where we used the isomorphisms oﬂﬁgﬁl ~ FL(h4+COr) and
JVZ% ~ FL(h4+Or). Applying the Fourier-Laplace transformation again and using

% .wBt+F
FLoFL = Id, we see that the morphism FL(@]VZ? ) i FL(W’Z) is 1nduced by

+
the morphism h+ Or — h Or. We will calculate the kernel of FL( ¥ 5’3 ) — FL( W =).
First notice that the map / can be factorized as i = k o/, where k is the canonical 1nclus1on
of (C*)**! — V' and the map [ is given by

[:T — (C*)' 1,
o, Yr) — (XQO,...,XQf) = (yo,yOXél,...,yObe).

This shows that FL( W%) ~ kil Or is localized along V' \ (C*)'*!, ie., FL(JM%) ~
kik™ FL(JM’%}. Let D; = {wE“LE/ = 0}, set Uy := V'\ D; and denote by j; : Uy — V'
the canonical inclusion. Because (C*)'™! c Ui, the &-module FL(WE ) is also local-
ized along D1, i.e, FL(W%) >~ JitJ; FL(Q]M’S ). Notice that the induced morphism

iF FL(cﬂ/ﬁE Y > jtF L(@]Vﬂz) is an 1somorph1sm because wP*# is invertible on U,.
Therefore we can conclude that ji4 j;F FL(J/I~ ) — Jit+J; FL(J/I'S) ~ FL(Q]I/lﬂ) is an
isomorphism. It is therefore enough to calculate the kernel of FL(W F )= Jji+ ]1 FL(QM P ).
On the level of global sections this is H gl (FL(M 7 )) (cf. [29, Proposition 1.7.1]) which is
given by

HY, (FL(MJ’ ) ={me FL(MJS )| 3 € N with (WP . m = 0}

Applying the Fourier-Laplace transformation to this kernel shows the claim. O
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2.4. The equivariant setting

In this section we show that the )-modules discussed above are quasi-equivariant
with respect to a natural torus action. We review the definition of an quasi-equivariant
-modules from [34, Chapter 3] and prove some simple statements for these.

Let X be a smooth, complex, quasi-projective variety and G be a complex affine algebraic
group, which acts on ¢¥. Denote by v : G x ¥ — &K the action of G on ¢ and by
p2: G x J — & the second projection. A 2 g-module M is called quasi-G-equivariant
if it satisfies vF M ~ pf oM as Og X £Dg-modules together with an associative law (cf.
[34, Definition 3.1.3]). We denote the abelian category of quasi-G-equivariant ) g-modules
by M(Dg, G) and the subcategories of coherent, holonomic and regular holonomic quasi-
G-equivariant ) g-modules by Mcon(Dg;, G) resp. Mp (D, G) resp. Myp(Dg, G). The
corresponding bounded derived categories are denoted by D2 (g, G) for x = @, coh, h, rh.

A Og-module & is called G-equivariant if v* ¥ ~ pr* &# as Ogxg-modules and if it
satisfies an associative law (expressed as the commutativity of a certain diagram, see [34,
Definition 3.1.2]). We denote by Mod(Cg;, G) the category of G-equivariant Og-modules
and by Modon(Og, G) the subcategory of coherent G-equivariant (g-modules.

Let f: X — Y be a G-equivariant map. Then the direct image resp. the inverse image
functors preserve quasi-G-equivariance (cf. [34, Equation (3.4.1), Equation (3.5.2)].

We will now show that the duality functor preserves quasi-G-equivariance.

PROPOSITION 2.18. — Let M € D%,

(De.G) thenD(M) € D2 (D . G)OPP.

coh

Proof. — By a dévissage we may assume that M is a single degree complex, i.e.,
M € Modeon(Dg, G). By [34, Lemma 3.3.2] for every N € Modcon(Cg, G) there exists
a G-equivariant locally-free Og module L of finite rank and a surjective G-equivariant
morphism L —» N. Notice that there exists a G-equivariant coherent Og-submodule K
of M with g ® K = M. This enables us to construct a locally-free, G-equivariant
resolution

o>l —>Li > Ly—> K—>0

of K in Modcon(COg, G), which gives rise to a resolution of M
o> Dy ®Ly > Dy @ Ly — Dy @ Lo —>M — 0
in Modcon (D g, G) by the exactness of ) g® 0+ We have
DM = R&lom 9, (M, D) ® QE ' [dim K]

~ (%omm(@% ® Le, D) ® Q?c_l[dim X

~ (Flompy(Le. Og) ® Dg) ® QE ' [dim K]

~ D ® Hompg(Le, Og)[dim ]
But SHlom o, (L., Og) is again a complex in Modeon (Cg. G), which can be easily seen by the
local-freeness of the L;. Thus we can conclude that DM € Di’oh((@ a5, G)°PP. O

COROLLARY 2.19. — Let f : X — Y be a G-equivariant map. Then the proper direct
image and the exceptional inverse image functor preserves quasi-G-equivariance.

Proof. — This follows from f; = Do fy oDand fT =Do f*oD. O
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In the next proposition we will show that the characteristic variety of a quasi-G-equiv-
ariant &)-module is G-invariant. For that purpose, we will consider the action induced by v
on the cotangent bundle 7* {¥. More precisely, consider the differential dv of the action map,
which is a map of vector bundles dv : v*T* X — T*(G x X)) = T*G X T* & over G x &V,
or, equivalently, amap dv : (G x ) X g T* N — T*G x T* I of smooth complex varieties.
Notice that

t:GXT*H — (Gx N)xgT*X =1{((g,x),v)|7(v) =v(g,x) € X},
(g.v) > (g, v(g™" 7 (v)),v)
is an isomorphism, with inverse map sending ((g, x), v) to (g, v). Now consider the compo-
sition§ : poodvot : GXT*H — T*N, where pp : T*G x T* N — T* &Y is the second
projection. One easily checks that we have £(g; - g2, x) = £(g1,£(g2, X)), 1.e., that we obtain
an action of G on T* &Y. Notice that for any g € G, themap &(g,—) : T*X — T*X is

nothing but the differential dvg of the map vy : X — X where vg(x) := v(g, x). Notice
that for M € D?(Dg. G) one has v;M ~ M by the quasi-G-equivariance of M.

PROPOSITION 2.20. — Let M € Dfoh(f/)gc, G), then the characteristic variety char(M)
of M is invariant under the G-action on T* U given by &. Moreover, if G is irreducible then the

irreducible components of char(M) are also G-invariant.

Proof. — For both statements it is sufficient to show invariance under the morphism
ve for any g € G. We are going to use the following fact (cf. [29, Lemma 2.4.6(iii)]).
Let f: &0 — ¥ be a morphism between smooth algebraic varieties. One has the natural
morphisms

T* I —L Foxy T*Y L T*Y.
Let M € Modcon( D). If f is non-characteristic then char(f+M) C pfa);l(char(M )).

We want to apply this to the case f = v,. Notice that in this case the maps p,, and w,,

are isomorphisms and p,,, o Wy, ! = dvg. Thus we have

char(M) = char(v;M) C dvg(char(M)).
Repeating the argument with v,—1 gives char(M) C dv,—1(char(M)). Now applying dvg to
both sides of the latter inclusion shows the first claim.

Now assume that G is irreducible and let C; be an irreducible component of Ch(M).
Notice that G x C; is irreducible. Consider the scheme-theoretic image I of G x C; under
the induced action map & : G x char(M) — char(M). Then & : G x C; — I is a dominant
morphism. We want to show that [ is irreducible. Let U C I be an affine open set. The
restriction g_l(U ) — U is still dominant and induces an injective ring homomorphism
Or(U) — Ogxc; (g_l(U)). As G x C; is irreducible and reduced the ring Og xc; (E_l U)) is
a domain. Thus O (U) is also a domain and because U was chosen arbitrary we conclude

that 7 is irreducible. Notice that we have C; C I C char(M) and therefore C; = I, which
shows the claim. O

The proposition above enables us to prove that a section of a quotient map of a free action
is non-characteristic with respect to quasi-G-equivariant &)-modules.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



700 T. REICHELT AND C. SEVENHECK

LEMMA 2.21. — Let G x 0 — &b be a free action and wg : X — /G a geometric
quotient. Letig : 0/ G — &Y be a section of mg, then ig is non-characteristic with respect to
every M € th(G’ D).

Proof. — We consider (/G as smooth subvariety of &f. Notice that ¢/ G is transversal
to the orbits of the G-action on ¢ given by v. Let char(M) = J;<; Ci be the decomposi-
tion into irreducible components and put ¢¥; := 7(X;) so that C; = Tgc,» . From Proposi-
tion 2.20 we know that C; is invariant under the action given by &, and hence a union of orbits
of this G-action. On the other hand, the image under the projection 7 : T* & — &X of such
an orbit is necessarily an orbit of the original action given by v. Hence ¢¥); is a union | J ; SCZU )
of G-orbits, more precisely, these orbits form a Whitney stratification of &; (see, [13, Propo-
sition 1.14]). Whitney’s condition A then implies that Tgci Xcl ; ng 5 i Transversality

of ¥/ G and the orbits Sél(l ) means that Té‘c /G an ng i C Tgc X0, from which we deduce
that Tgc/qgc ﬂ.Tékc,» X C Tyl and hence T&/G 5)’& N char(M) C Tg cl. Thus ig non-
characteristic with respect to M as required. O

Let V* = C x (C*)" and let jy= : V* — V be the canonical embedding. Consider the
following diagram

(26) S p I e
N
Jz*
X Iy« 7%
iJ/ n &
”12 Jz*
P(V)L—2Z Z*
nzz 8
y Iy

where the varieties Z*, Zg, I'* together with the maps jz+, j z;.Jjr= and 8, &, ¢ are induced
by the base change jy«. Thus all squares in the diagram above are cartesian.
We now specify to the case G = (C*)*. We let G act on S and V by

(27) GxS—S,

(gl,--wgs,}ﬁ,---,ys)'_)(glylv---gsys);
GxV =7V,

(81,285, A0, A1) > (ko,g_élkl,...,g_bf)t,).
We also define the following G-action on IP(V"):
(28) GxPWV) —=PWV),
(8102 & (o 1+ 1) > (o s g%V <o g2 ).

This makesmap g = i o j : § — IP(V’) G-equivariant. There is a natural action of G
on P(V’') x V resp. S x V which leaves the subvarieties Z = {Z§=o Aip; = 0} resp.
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I = {d + Zﬁ:] A;ybi = 0} invariant. It is now easy to see, using the induced actions

on I' resp. Z, that the maps nIZ , nzz , nf as well as n and 6 are G-equivariant.

Notice that G leaves V* invariant and acts freely on it, but this shows that G acts also
freely on Z*, Zg and I'*. Therefore also the maps 6, ¢, { are G-equivariant. Notice that the
action of G on IP(V’) as defined in Formula (28) is not free, there are orbits of dimension
strictly smaller dimension than s = dim(G).

Because we have ZB = Z°, there exist matrices N; € GI(s x s,7Z) and N, € GI(t x t,7Z)
such that

29) B = N1 - (Is | Osxr) - Na,

where r := t — 5. Define matrices
I

OI‘XS

0
L:Nz_l(s_xr)y M=(Orxs|]r)N2, CZNZ_I(

)-Nl_l, D :=(C-B),
I,

whose entries we denote by /;;, m;;, c;x and d;;, respectively. Then M - L = I,, B - C = I,
B-L=0M-C =0and

(30) C-B+L-M=1,.

Consider the following map, where F := (C*)* and M := (C*)*:
Tp :P(V)xCx F x FoM—PV)xV*,
((I*LO el H’t)’A’OLfIV"'7fS1q17""qr) = ((/’LO : f_bllil et i_étﬂt),

)Lo,fél -qml,...,fét g™

with iéi =[Tr=1 fkbki, g™ = ]_[]r-=1 q;nj " and inverse

Tp'  P(V)x V* - P(V)xCx F x FM,

(o = ) Aow k) o (o s A%y oo s 2% ) Mg, A9, A8 AL Al
with A% := [T, A7, A= [Tz Afij and A4 :=[T;_, )“?il =ITiz ’\iZk cawber,

Notice that the space FM will reappear in Section 6 (see the explanations after the exact
sequence (60)), where it similarly denotes the r-dimensional torus (C*)". There is however
a difference: in the present section, our input data is the matrix B, and the map 7p and
its inverse T 1 are defined by the choice of the matrices N; and N, which have to satisfy
only Equation 29. In Section 6, we work with a toric variety (and the matrix B is given by
the primitive integral generators of its rays), and here these choices have to satisfy much
finer conditions. Nevertheless, we will use the same symbol in order to avoid overloading the
notation too much.

Recall the following G-action on P(V’) x V*
Gx(PV)YxV*—=>PWV)xV*
(812 gss (Mo s oot e) Aowe o Ae) > (ot g% 2o g0 pe) ho g2 A0 8720 ).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



702 T. REICHELT AND C. SEVENHECK

Consider the following G-action on P(V') x C x F x M
GXx(PV)YXxCxFx FM) —PV)xCxF x FM,
(81r- - & (o s+ e) Aos froo s fsoquo e qr) > (ot o0 2 ),
ho.gi fio g feqr ).

It is easy to see that Tp resp. Tp ! is G-equivariant with respect to the G-actions above.
Consider the map

Ts :SXCXF x FM—>SxV*,
(yl’-"7yS7A'07f17"‘7f:}‘7ql?"‘7qr)|_)(fl_lyla"‘af:g_lyS’A07iél 'zmlv"‘vibt 'qmt)

and its inverse
TS_I:SXV*—>S><C><F><§€J%
s e e VsaAos oo os Ae) > (AU y1, o A% yg, Ao, ASL, L ASs Al A,

where one has to use (30).
Recall the G-actionon S x V*

Gx(SxV*)—SxV*,
(81:-- 2 852 h0r - Ar) > (€110 EsVsa Ao 8 PV A, ... g 20 Ay)
and consider the following G-actionon S x C x F x M
GXx(SxCxFx FM —SxCxF x KM,
(81, &8s ¥1s- - ¥s. ho S S qra o gr) B (V1a L D,
Moo &7 fisee gy foadus e dr):

It is again easy to see that Ts resp. T'g !is G-equivariant with respect to the G-actions above.

The subvarieties Z* resp. I'* are then given by Aguo + Z§=1 wi - g™ = 0 resp.
Xo + ZE:IXQ g™ = 0.

Finally consider the maps

T:CxF x FM—>V*,
(Ao fioeees fsQroeendr) = (hou f21 g flr gy,
T71:V* > Cx F x FM,
owee i de) > (Ao  AST, . ASs Al b,

which are G-equivariant with respect to the G-action on V* and the following G-action

on C x F x FM

(31

Gx(Cx Fx FM) — CxF x KM,
(gla"'»gSaAOsflv"-7f3'5q17'-'sqr)|_> (107g1_1f1»---,gs_lwaI»---»Qr)

The G-equivariant isomorphisms above show that the geometric quotients of V*, Z* and
I'* by G exist and are given by C x &M,

Z = {hopo + ) _q" i =0} CP(V') x Cx FoM

i=1
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and
t
Q:={Ao+ ) _q"yp, =0} C S xCx FcM.
i=1
respectively. We denote the corresponding quotient maps by 7 , & and %"

Notice that we have a natural section i g " to ng *, which is induced by the inclusion

Cx FM— CxF x FM,
(Ao,ql,...,qr)I—)(/\o,l,...,l,ql,...,qr)

and the isomorphism above. This gives also rise to sections iZ~ and il of 7&" resp. 7§ .
Consider the following diagram

wf jre i
(32) S T r* S ¢
=L
J 0 ¢ 4
jZ* ~Z)*(
X Zy 2 zp 57y
i n & B
xZ % iZ"
PV z 2 zx ——— 7
L7
7122 § o

. LYk
Jv* i
Vv L Cx FoM.
\_ﬁ
5"
Notice also that all squares are cartesian.

PROPOSITION 2.22. — Let iGZ* 4 — Z* resp. ig* i C x FM — V* be the sections
constructed above.

1. The &) z+-modules
(€00)+0r. (004 Cr+ and M'C(Z})

are quasi-G-equivariant and non-characteristic with respect to i g *
2. The Qy+-modules

T (pp.+ Osxw) and  SH°(@B.+ Osxw~)

are quasi-G-equivariant and non-characteristic with respect to i g .
3. We have

GEHT M C(23) ~ M (Zx).

In particular we have
(33) ar M (Zx) 2ily,, 7 (M),

where i g, 1= jv* o ig* is non-characteristic with respect to Z( M€ (X)).
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Proof. — 1. First notice that because the map (i o j) : S — IP(V’) is affine and this
property is preserved by base change, the map (¢o¢) is also affine. Thus the direct image
as well as the proper direct image of Cr~ is a single )z+-module. The closure of T'*
in Z* is Zy, therefore we have

(34) M'C(Z3) = im((e 0 )+ Ors — (£ 08)4 Cr+) € Mod,n(Dz+) .

To show the first claim, it is enough by Lemma 2.21 to show that the corresponding
J-modules are quasi-G-equivariant. First recall that T* C S x V* and denote by
t : I'* — S the restriction of the projection to the first factor. Notice that ¢ is G-equiv-
ariant and Or= ~ 1T Og. Therefore COr~ is a quasi-G-equivariant )-module. Because
&, £ is G-equivariant we see that (¢ o {)+ Or= and (g o {)+ Op= are quasi-G-equivariant.
Furthermore, because of Equation (34) and the fact that Mod(G, )z+) is an abelian
category the &)-module M€ (Zy) is quasi-G-equivariant.
2. For the second point, consider the action of G on W* = (C*)’ which is given by

GxW*— W*,
(810 85 Aloen A > (72100, g2 )).
This action together with the action (27) induces a G-action on § x W*. It is easy
to see that gp| gy« is G-equivariant. Thus the )y «-modules O%O(W;,T Osxw+) and
H° (¢B,+ Osxw=) are quasi-G-equivariant.The fact that i g * is non-characteristic with

respect to these &)y +-modules follows now again from Lemma 2.21.
3. To show the third claim, consider the following isomorphisms

M (Zx) = im ((Boy):Op — (Boy)+0p)

~im ((B 0915 Cre — (Boy)+ (5 )" Or+ )

~im (&) (60 0)+Ore — (&) F (e 00)+ Or)

~ (&) im ((e 0 )4 Orx — (£08)4 Orx)

~ (g M (Z3),
where the second isomorphism follows from (ig*)+ Or+ =~ Og, the fact that Op« is
non-characteristic for ig* and [29, Theorem 2.7.1(ii)]. The third isomorphism follows
by base change and the fourth isomorphism follows from the fact that icz;* is non-

characteristic with respect to (¢ o ¢)+ Or+ and (g 0 {)4 Or=.
For the last claim consider the following diagram

7 Jz* 7 ’g* 7
HZZJ/ J/S J/a
Jy* il
Ve V*+— Cx FM
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We have the following isomorphisms
ap M C(Zx) = ar (&) M (25)
~ i (i§ )T g M (Zx)
G jZ M (Zx)
~ it M (Zx)
~ it ot () M (X)
~ it R M (X))

The non-characteristic property of i @9, = jy= o i(‘;/ * follows from Lemma 2.21 and
the fact that jJ*%(WI ¢ (X)) is quasi-G-equivariant. O

12

¢

3. Fourier-Laplace transformation and lattices

In this section we apply the Fourier-Laplace transformation functor FLy to the various
J-modules considered in Section 2. For the families of Laurent polynomials resp. compact-
ifications thereof that appear in mirror symmetry, we obtain )-modules that can eventu-
ally be matched with the differential systems defined by quantum cohomology. They have
in general irregular singularities, and this is reflected in the fact that although the modules
considered in Section 2 were monodromic on V, they do not have necessarily that property
with respect to the vector bundle V' = C; ,xW — W . Hence the functor FLy, will in general
not preserve regularity.

In the second part of this section, we study a lattice in the Fourier-Laplace transformation
of the GauB3-Manin system of the family of Laurent polynomials ¢p. It is given by a so-called
twisted de Rham complex, however, in order to obtain a good hypergeometric description
of it, we have to introduce a certain intermediate compactification of ¢ and replace this de
Rham complex by a logarithmic version. Moreover, the parameters of the family ¢ have to
be restricted to a Zariski open set excluding certain (but not all) singularities at infinity. Then
we can show the necessary finiteness and freeness of the lattice. It will later correspond to
the twisted quantum )-module (see Section 4), seen as a family of algebraic vector bundles
over C; (not only over C}) with connection operator which is meromorphic along {z = 0}.

3.1. Localized Fourier-Laplace Transform

We discuss here a partial localized Fourier-Laplace transform of the Gau3-Manin systems
of g and of the &-module M€ (X°, 2).

Consider the product decomposition V' = €y, x W, where W is the hyperplane given
by Ao = 0. We interpret V' as a rank one bundle with base W and consider the Fourier-
Laplace transformation with respect to the base W as in Definition 2.4, where we denote the
coordinate on the dual fiber by 7. Set z = 1/t and denote by j; : C; x W — C,; x W and
Jz 1 CEXW — Vi=C,xW = P\ {r = 0} x W the canonical embeddings. Let ¢V be a
Qv -module, the partial, localized Fourier-Laplace transformation is defined by

FLY (V) := jz+ 7 FLw(H).
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The localized Fourier-Laplace transformations of the GauB3-Manin systems are denoted
by

(35) O := FLS (A" (95, + Osxw)),
(36) 0" = FLS* (S (9.1 Osxw)) -

We also consider the partial, localized Fourier-Laplace transform of the )-modules oﬂ%’%.
The following notation will be useful.

DEFINITION 3.1. — Let 1\//7;/30"8) be the Dy-module Dﬁ[z_l]/], where I is the left ideal
generated by the operators EL, Ey — Brz and E - Boz, which are defined by
pi= [1 G-03)7" = [ (z-93)% Lelp
i:l;<0 i:l;>0
=220, + 30, zhids,,
=3 bkizhidy,, k=1,...,s.

h

S

—(B0,8)
We denote the corresponding 0)y-module by My o

LemMaA 3.2. — We have the following isomorphism

——(Bo+1.8)

FLYF (M) ~ My
for every B = (Bo, B) € Z*+1.

Proof. — This is an easy calculation, using the substitution

Ao = —0; = 223, and Oy —>1=1/2
—(Bo.B) . .
and the fact that o is localized along z = 0. O

Notice that in the lemma above we used the subscript B for the GKZ-system on the left
hand side and the subscript B for its localized Fourier-Laplace transform on the right hand

side. This notation takes into account the fact that the properties of the system oﬂfl’% are

governed by the geometry of the semi-group INB, whereas the properties of its localized

. —~(Bo+1.8) . .
Fourier-Laplace transform o 0 depend on the geometry of INB. This explains the

different sets of allowed parameters in Proposition 3.3 resp. Theorem 3.6 in contrast to
Theorem 2.11 resp. Theorem 2.16 and Proposition 2.17.

. . . . ~ —(Bo,B)
Notice that under the normality assumption on the semi-group INB, the rank of Mg 0
is also equal to d! - vol(Conv(b,, ..., b,)) (this can be shown by an argument similar to [47,

Proposition 2.7]).

The following proposition gives an isomorphism between the localized partial Fourier-
Laplace transform of the GauB-Manin systems (' and C}T and the hypergeometric

—(Bo.B) .
systems cMp " introduced above.
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PRrROPOSITION 3.3. — There exists a §p € INB such that we have an isomorphism

—(Bo.B)
" = oMy

for every Bo € Zand B € 8 + (R>oB N Z°). If NB is saturated, then 8p can be taken to be
0 € INB (in particular, the statement holds for (Bo, B) = (Bo.0) € Z'*5).
Furthermore, we have an isomorphism
—(By—B")
QT = cMp ’
Sor every By € Z and B’ € (R>oB)° N Z°.

Proof. — We construct the isomorphisms by applying the Fourier-Laplace trans-
form FLy to the exact sequences in Theorem 2.11. First notice that the first and last
term in the exact sequences are free Oy -modules, thus their Fourier-Laplace transform has
support on T = 0, i.e., their localized Fourier-Laplace transform is 0. Thus there is some
A INB such that we have the following isomorphisms

O+ = FLS (S (0.4 Osnw)) ~ FLE (2
and
¢ = FLI(F°(¢p.4 Ossw)) = FLE (M)

forany B € 85 + (R=oB N Z*+') and any B’ € (R=oB)° N Z5t!. Write 85 = (. 8p) with
dp € Z°. Nowglvenany (Bo. B) € Zx(6p+ R0 BNZ*)) resp. (,30,/3 ) € Zx((Rs0B)°NZ®)
we can find a yo,y, € Z such that (yo.f) € 65 + (]R>0B N Z**Y) resp. (v4,B) €
R0 B)° N Z**1, 1t remains to show that there are 1somorphlsm
— (BB —(v0.B)

(37) Mg~ My
for (Bo. B) € Z x (83 + (R=oB N Z*)) and (yo. B) € 85 + (R=0B N Z51)) resp.

o /’_ I /\(_ /’_
(38) fgﬂo B') ~ ¢ Y0—B)

for (By.B') € Z x (RxoB)° N Z°) and (—yy,—P') € ((R20§)° N Zs*1) . Notice that

Zjﬂ?ffo P is localized along z = 0 for all (B, 8) € Z**! by Lemma (3.2). Therefore the

morphism given by right multiplication with z

—(Bo.B) —(Bo—1,8)
(39) My > My
is an isomorphism, which shows (37) and (38).

Concerning the last statement, suppose that INB is saturated. Let 8 € NB = (R>0B N Z°)
and let Bp € Z be arbitrary. By [46, Lemma 1.17] we have B ¢ sRes(B), where
sRes(B) C C° is the set of strongly resonant values (cf. [53, Definition 3.4]). Using [46,
Lemma 1.19] there exists a yy € Z such that (yg, 8) ¢ sRes(B). Now we argue as above, i.e.,
by [46, Theorem 2.7] we have ¢ = FLIS*(F° (¢4 Osxw)) = FLE (ML) which in

—(Bo.B)
turn is isomorphic to cﬂ% B o O

If the semigroup INB is saturated, we will compute the isomorphism above explicitly
for (Bo, B) = (0, 0). For this we will need a direct description of the localized, partial Fourier-
Laplace transformed GauB-Manin system 7.
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LEMMA 3.4, — Write gp = (F.pr), where F : S x W — C, (y.4) > —Y i Aiy¥
andpr : S x W — W is the projection. Recall from Formula (35) that we denote by (}+
the localized Fourier-Laplace transformation of the Gaufs-Manin system of the morphism ¢p.
Write Gt = Ho(f/\, Qﬁ) for its module of global sections. Then there is an isomorphism
of Dy-modules

Gt = H (Rt wletl.d =27 dy FA),
where d is the differential in the relative de Rham complex Q:va/W' The structure of a
Dyp-module on the right hand side is defined as follows

(- z2)=iw- 27"+ F w7172,
(-2 =0, () 2" =9 Fro-27 =0, (@) 2" + y2 w27,

N
where w € QSXW/W.

Proof. — The expression for the module G* as well as the formulas for the p-structure
are an immediate consequence of the definition of the direct image functor. See, e.g., [46,
Equations 2.0.18, 2.0.19], from which the desired formulas can be easily obtained. O

Using the description of G* via relative differential forms, we find a distinguished
element, which is (the class of) the volume form on §, that is

d d
A Ds

Y1 Vs

In the next lemma we compute the image of wo under the isomorphisms in Proposition 3.3
under the assumption of normality of INB.

o -

LEMMA 3.5. — Let INB be a saturated semigroup, then the isomorphism from Proposi-

tion 3.3
~ —(0,0

d: 0 S My

maps wy to 1.

Proof. — Recall from the proof of Proposition 3.3, that there exists a yo € Z such that
(Y0,0) ¢ sRes(B) (notice that here we only assume that INB is saturated which does not
imply that INB is saturated). Denote by

0
Vo0 : T(V. H(@B.+ Csxw)) — Mi(éy())

the morphism from Theorem 2.11. We first compute the image of wo under the morphism
Y(yo,0) Using the description of K/ (¢B.+ Osxw) by relative differential forms (see e.g., [46,
Equation 2.0.17]). We will use the following two facts of loc. cit. Proposition 2.8 whose proofs
extend directly to our slightly more general situation (there it was assumed that INB is satu-
rated). Namely first, that there exists a non-zero morphism M l({l’g) ST, H (9B.+ Osxw))
which sends 1 to wo and second that v, 0)(wo) # 0. Concatenating this morphism

with v, o) gives a non-zero morphism M 1%_1’9) - M g 09 where 1 € M )»(3;1’9) is sent to the
image of wy under v/, o). By [46, Proposition 1.24] this morphism is uniquely given by right

multiplication with 81‘;“ (up to a non-zero constant). Applying now the partial localized
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Fourier-Laplace transform to the morphism ¥, o), we see that ¥y, 0)(@o) = z770~ 1. Using

()/O,O) Z A(yo 1,0) . , .
the isomorphism Mg B , which holds for any y; € Z, shows the claim. [

By Proposition 2.16, we can now give a concrete description of the partial, localized

Fourier-Laplace transform o¥'¢(X°, Z):= FLII,CI’/C(WI €(X°, 2)) of the intersection coho-
mology &-module M€ (X°, Z).

THEOREM 3.6. — Let f € 6p + (R=oB N Z*), B’ € (R>0B)° N Z* and Py, By € Z, then
we have the following isomorphisms

gfch(X", Z) ~ im

—(By:—B") 2P0oBogs+8 —(Bo.B)

resp.
W!C(Xo’ EZ) (ﬁO / 1"3( (ﬂ() -B )) ’

~ [—By—B)
where T'y ( B 0 ) is the sub- )-module corresponding to the sub-D-module

77 77(Bo—B")

T, (MBﬂO nd )) {m e My | 3n € N with (3“5/)" —

Furthermore, if NB is saturated, then §p can be taken to be 0 € B (so that, similarly to
Proposition 3.3, the statement holds true for (Bo, B) = (Bo.0) € Z'*5).

Proof. — Using the isomorphism

—(Bo,B) —(Bo—1,B8)
(40) My S My ,

which holds for every (Bo. 8) € Z5+!, we can assume that (8o + 1, B) € 85 + (R0 B NZ5t1)
resp. (By + 1, B') € (R>0B)° N Z*!. Then the first isomorphism follows by applying the
functor FL}¢ to the isomorphism in Theorem 2.16 and Lemma 3.2.

For the second isomorphism we can assume again that (8, + 1, ') € (R20§)° nzs+1,
Now the desired statement is obtained by applying FLIV‘[’,c to the second isomorphism in
.. ~ BB . S .
Proposition 2.17 and the fact that T'y( Mg 0 ) is stable under left multiplication with z.
Now assume that INB is saturated and let § € INB. Arguing as in the last part of the proof

of Proposition 3.3 we can find a yy € Z such that (yg, 8) ¢ sRes(8). By [53, Corollary 3.7] we
have an isomorphism FL(Ah4 O7) ~ JM%’O”S ) Now the proof of Theorem 2.16 shows that

5 d00- B+B

MExe D) =im(eM TS MR,

Now applying the functor Féﬁc and using the isomorphism (40) shows the claim in the
saturated case. O
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3.2. Tameness and Lattices

In this section we define a natural lattice in the Fourier-Laplace transformed Gau3-Manin
system C}+ outside some bad locus where the Laurent polynomial acquires singularities at
infinity. For this we need to study the characteristic variety of the GauBB-Manin system of ¢p

and the corresponding GKZ system W%. Throughout this section we assume that INB is
a saturated semigroup. Recall the embedding of the torus S in the projective space from
Formula (10)

sLxLpo).
The projective variety X serves as a convenient ambient space to compactify fibers of the

family of Laurent polynomials ¢p. However, we will also need an intermediate partial
compactification of S, which is still an affine variety.

DEFINITION 3.7. — The restriction of X to the affine chart of (V') given by po = 1 is
called X*%, in other words, X*% is the closure of the map

gp:S — (',
1eeeys) > (P2 yPn),
and thererfore isomorphic to Spec (C[INB]).

Consider the following diagram, which is a refinement of a part of diagram (26):

Z
(41) r— 2 zew sz " .7 " .y
| T R
S J2 yaff J1 0% i P(V)

where j; and j, are the canonical inclusions and the three squares are cartesian. Recall that
Z C P(V') x V was given by the incidence relation Z;zo Aip; = 0 and the composed map
g =ioj =1iojjo j,wasdefined by Formula (9). Thus I" resp. Zy.r is the subvariety
of S x V = 8§ x €y, x W resp. X*T x V given by the equation Ao + 3/_, A;y% = 0.1t
follows from the definition that I is the graph of ¢p. Therefore the maps a

nzx:znzzon:ZXaV
resp.
=afonob: Zyw -V
Nzxaﬂ =TTy n 1+ Lxaff

provide natural (partial) compactifications of the family of Laurent polynomials ¢p. Putting
Hy = {Z§=0 Aipi = 0} € P(V’) for any A € V, we see that the fiber ng}l( (A) resp.
ng)l(aﬂ (Z) is given by X N Hy resp. {4 + i, )LiXQi =0} C xaf,

Recall that the toric variety X has a natural stratification by torus orbits X°(T"), which
are in one-to-one correspondence with the faces I' of the polytope Q, which is the convex
hull of the elements {b, := 0,b;,...,b,}. Notice that the stratification § := {X%(")}is a
Whitney stratification of X (see e.g., [13, Proposition 1.14]).
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By [17, Chapter 5, Prop 1.9] the orbit X°(I") ~ (C*)9™(@) js the image of the map
gr: S =P,
(V1-e0s) > (eol terylicoee gy,
wheree; = 0ifb; ¢ I"'and e; = 1if b; € I'. It is easy to see that
yaff U XO(T)

T|oel

and this induces a Whitney stratification of X2f
The preimage of X°(I') N Hy under gr is given by

{1, y9) €S| Z Aiybi =0},
b;el’

It follows from [17, Chapter 5.D] that the morphism gr : § — X°(I') ~ (C*)4m@ js
trivial fibration with fiber being isomorphic to (C*)4~dim(I)

crit,z

Denote by S~ the set
(42)
%(yl,...,ys)eS| Z'EXQ =0; ykayk(ZIiff)=o forall ke {l,...,s};.

b;el’ b;el’
Then its image under gr is exactly the singular set sing(X°(I") N Hy) of X ‘myn Hy. This
motivates the following definition.
DErFINITION 3.8. — Letz eV.
1. The fiber 712)1( (D has stratified singularities in X°(T') if X°(T") N Hy is singular, i.e.,

Scrit,& ;é 0
r .
2. The set

Api={LeV|Sy* 0}
= {Z eV <p§1® is singular}

is called the discriminant of ¢p.
3. The fiber 5" (L) has singularities at infinity if there exists a proper face " of the Newton

polyhedron Q so that S;rit’i # 0. The set
AP :={X eV |3T # Q sothat ST™* + g}

is called the non-tame locus of ¢p.
4. The fiber ¢§1@) has bad singularities at infinity if there exists a proper face I' of the
Newton polyhedron Q not containing the origin such that S;f“’i # 0. The set

A% = (X eV |3T # 0.0 ¢ T sothat ST £ @} € AY

is called the bad locus of ¢p.
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REMARK 3.9. — Notice that A%ad is independent of Lo. We denote its projection to W
by Wb Let W* = W\ {1 ..., = 0} and define
We = Ww*\ woad

which we call the set of good parameters for ¢p.

Recall that X2 is isomorphic to Spec (Rg) with Rp := C[INB]. Let A € W and set
fa.(®) := ¢p(e, 1). Notice that the Laurent polynomials f} and yxdf, /dyx fork =1,...,s,
which were defined on S before are actually elements of Rp and can thus naturally be
considered as functions on X2,

LemMaA 3.10. — Let A € W*° be a good parameter, then
dime (Rg/(ykdfp/0yi)k=1,...s) = vol(Q).

where the volume of a hypercube [0, 1]° C R® is normalized to s!. Moreover, we have

Ap€C

where we see 712)1( (Lo, A) as a subset of X C P(V') and where singé»(ng)l( (Ao, A)) denotes the
stratified singular locus with respect to the stratification & of X by torus orbits defined above.

Proof. — For the first claim consider the following increasing filtration on Rp. Let as
above Q be the convex hull of b,....,b, and 0 in R*. Let u € INB then the weight of y* is
defined by inf{A € R>o | v € A - Q}. It is easy to see that there is an integer e so that all

k
weights lie in e"'IN. Denote by Ry the elements in Rp with weight < k /e. Let grRp be the
graduated ring with respect to this filtration. By [1, Equation 5.12] we have

dime gr(Re)/(yi0fa/0yi)k=1,...,s = vol(Q),
where yidf,/0yk is the image of yxdfy /0y in gr(Rp). It remains to show that

dimg gr(Rp)/(Yk9fa/0yi)k=1....s = dime Rp/(vk9f3/0yi)k=1.....s-
The proof of this equality is an easy adaptation of the proof of [1, Theorem 5.4].
For the proof of the second statement we notice first that
sing g (75 (ho. 1)) = ) sing(X°(T) N Hey )
T|oerl’
because the fiber over (A9, A) has no bad singularities at infinity.
Define the following r hyperplanes H /{‘ fork e{l,...,s}and A € W*:

t
Hf = {(uo - p) € P(V') | ) bridipui = O}

i=1
We have sing(X°(T') N Hpop) = X°(I) N Higmy N (Ni=g HY) by Equation (42) and

therefore

N
singé»(ﬂg( (R0, 1) = X*"N Hpy N (ﬂ Hik)-
k=1
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Notice that

/\OEC k=1 A()EC
= supp(Rp/Rp(9/2/0yi)k=1,...s):

which shows the claim. O

Let B be the e (s + 1) x (¢ + 1)-matrix as introduced before Definition 2.8. Let Q be the
convex hull of QO, .. b in RS*!. Notice that Q C {1} x R’ and therefore no face T of Q

contains the origin. Adolphson characterized the characteristic variety char( @%i) of the

GKZ system QM% as follows. Let T*V ~ V x V' be the holomorphic cotangent bundle with
coordinates (Ag, ..., As, io. ..., 7). Define the following Laurent polynomials on (C*)S+!

)= el = Zm

Z Azyq

Qel‘

e

where we define le = [Tk=o ybkl-

LemMa 3.11 ([1] Lemma 3.2, Lemma 3.3). — 1. For each (A" ) € char(ojw )
there exists a (possibly empty) face T such that ,LL;O) # 0 if and only lfQj eT.

2. Ifz{o) is a singular point of oﬂ/l’% and T the corresponding (non-empty) face, then the
Laurent polynomials 3}}(0) F/Byo, ey 8]7%(0) F/Bys have a common zero in (C*)**1.

We can use this result in the next lemma to compute the singular locus of the )-modules
we are interested in.

LeEmMMA 3.12. — The singular locus of cﬂ/&% as well as the singular locus of the modules
T (pB+ Osxw) resp. T (opt Osxw) is given by
As = Ap U A%o.
Proof. — Notice that the polytope Q C {1} x R* is just tI}E shifted polytope~ 0 CR
defined above. One easily sees that the Laurent polynomials 0 f'Z(O) Q~/ y0,-..,0 f'Z(O) g /0y

have a common zero in (C*)**! if and only if ¢ (A 70 ) is singular, i.e., the set of )L 7% which
satlsfy this condition is exactly the discriminant Ag of ¢p. If there exists a proper face T
of Q such that the Laurent polynomlals 0 f 7O & / dyg,...,0 f ~0) ~ / dys have a common zero

in (C*)**!, then fiber ¢z’ (& ) has a smgularlty at infinity, i.e., its compactification has a
singularity in X°(T"), where T is the corresponding face of Q. O

LemMA 3.13. — The restriction of the discriminant Ag to Cx W° C V is finite over W° CW.
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Proof. — We will first show quasi-finiteness of the map p : Agjcxwe — W°. First notice
that we have Agicxwe = (As \ A%9)cxwo. Fix some A € W°. We have to show that
As|cx{ay is a finite set. By the definition of Ag it is enough to show that singé»(ng)l( (Ao, A))1s
a finite set, but this is Lemma 3.10.

To prove finiteness of the map p : Agjexwe — W? it remains to show that it is
proper. Let K be any compact subset of W°. Suppose that p~!(K) is not compact, then
it must be unbounded in V'~ C’*! for the standard metric. Hence there is a sequence
(Aéi),&(i)) € p~1(K) withlim; o |)L(()i)| = 00, as K is closed and bounded in W° Cc W = C!.

In order to construct a contradiction, we use the partial compactification of the family ¢p
from above. Recall the spaces Z := {Z§=0 Aisi =0} CP(V)xVand Zy := (X x V)N Z.
Introduce the spaces Z := {Z§=1 bridipn; = 0} fork € {1,...,t}. Then Zxy N (ﬂ,f=1 Zy)is
the stratified critical locus crit g(z, ) of the family nz,, where we denote by abuse of
notation by & also the stratification on Zx induced from the torus stratification on X used
above.

Because the projection from the stratified critical locus critg(wz,) of mz, to Ag is
onto, there is a sequence ((;Lg) : E(i)), ()L(()i),&("))) e X x p~1(K) projecting under
Tz | XafTx p—1(K) 1O (Ag), /\(i)) (Notice that we consider here X as a subset of P(V’) under
the embeddingi o j;.) Consider the first component of the sequence ((M(l) E(i ), ()Lg), A (i))),
then this is a sequence (,uo : &(’)) in X which converges (after possibly passing to a
subsequence) to a limit (0 : /,Lllim : «+- ¢ plimy (this is forced by the incidence relation
Zl _oAifti). In other words this limit lies in X \ X*T by the definition of X*T (see Defi-
nition 3.7). But because (X x V) N Z N ﬂk 1 Zk = Zx N ﬂk 1 Zy 1s closed, the point
(0 @ phim o ..oc plimy (lim lmy) fieg in (X \ X2®) x p~1(K)) N Z N i, Zk. ie.,
ng)l( (limi_mo()k(()i), &(’))) has a bad singularity at infinity, which is a contradiction by the
definition of W°. O

—=(B0,8) L .
We can now prove the following regularity property of QJM B ? , which is essentially the

same proof as in [47, Lemma 4.4].

—=(Bo,B) —
LEmMA 3.14. — Consider M BO as a Dp1yy-module, where W is a smooth projective

—~(Bo.B)
compactification of W. Then WB&) g is regular outside ({z = 0} x W) U (P x (W \ W°))
and smooth on C} x W°.

Proof. — Tt suffices to show that any A = (A1,...,A;) € W° has a small analytic neigh-

an . .. —(Bo.B)
borhood W C W such that the partial analytization [‘L’ 1 B Opr ypo JMBO
is regular on C; x W (but not at t = o00). This is premsely the statement of [15,

Theorem 1.11 (1)], taking into account the regularity of eﬂ/l% (c.f. [28, Section 6]), the

fact that the singular locus of Q/M% coincides with Ag (see Lemma 3.12) as well as the last
lemma (notice that the non-characteristic assumption in [15, Theorem 1.11 (1)] is satisfied,
see, €.g., [43, page 281]). O

—(Bo.B) .
The next step is to study several natural lattices in W B ’ . They are defined in terms

of R-modules, see the end of Section 2.1.
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DerINITION 3.15. — 1. Consider the left ideal
J = DexwODier + Deoxw+ (Ex =2 - Bk=1,...r + Doxw+(E =2 - o)

——(Bo,B)
in Do, xw+ and write My 0 Jor the cyclic {)-module D¢, xw~/J. Here the opera-
tors ﬁL , Ek and E are those from Definition 3.1.
2. Consider the left ideal o J := Rc.xw+(ODier + R, xw*(Ex — z * Br)k=1...r +

R, xW* (E — z - Bo) in R, xw* and write 0* /30,[3 for the cyclic R-module

(‘y?/CZXW*/ (’7
3. Consider the open inclusions W° C W* C W and define ° R := C%|C <o with ring of

global sections °R. Define the D¢, xwo-module

S (130,ﬂ) —(Bo.B)
M (WB ) leaxwe

and the R, xwo-module
——(Bo,B) —(Bo,B)
OWB = (O*OMB ) |cszo-

(ﬂo B)  —(Bo.B)

REMARK 3.16. — 1. We have @C_XW* ®$C W Y = Mg |Cs xW*-
—~(Bo.B) —(Bo.B)
2. The restriction of o' BO to C; x W* equals the restriction of JMBO to C; x W*.
—(Bo.B)

3. Foryzy (d'eMp ) = R[0T, where o T is given by
o = R @ier, + R (Ex — 2 Bik=1,..r-
(130,,3) ——(Bo,B)

LEmMMA 3.17. — The quotient o /z *WB is the sheaf of commutative
Ow+-algebras associated to
3) CIAL,.... A k1, k4] N CINB][AT, ..., AE]
(Hli<0 Ki_li - Hl,->0 Kili)leJL + (Z§=1 bridiki)k=1,...,s Yidfa/ 0y 7

where ydf1/0yr = Z;:l bkikiléi.

Proof. — Let «; be the class of zdA;. Because the commutator [«;, A;] is zero we see that

—(B0.8) (ﬂ B) . . . .
o Mg ” /Z 0 """ is a commutative algebra and isomorphic to the module on the left

hand side of Equatlon (43). To show the isomorphism (43), consider the C[A1, ..., A]-linear
morphism

v CIAE, . A kL. k] = CINBIAE, ... AT,
Ki I—)XQI'

which is surjective by the definition of C[INB]. The kernel of this map is equal to
(T <ok " = Tli>0 Kl )L by [41, Theorem 7.3]. Finally notice that ¥ (3/_, brihiki) =
Vi Bfi/fiyk, which shows the claim. O

We need the following result saying that the GKZ-system QMB is isomorphic to the

——(Bo.B)
restriction of the Fourier-Laplace transformed GKZ system Mg o
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LEmMaA 3.18. — Letiy : {1} x W — V= C, x W be the canonical inclusion. Then
.1 —(Bo.B)
S (I;JVJB ) ~ Mh.

Proof. — During the proof we will work with modules of global sections rather with the
J-modules itself. Recall that the left ideal defining the quotient A//I\l(?ﬂ 0-8) is generated by the
operators ﬁb Ek — Brz and E— Boz, where

b= T1 (z-02)7" = T1 92",

illi <0 iili >0
=220, + 30 zhis,,
= Z§=1 brizAidy,.
The presence of 2_2(E\o — Poz) in this ideal show that have the an isomorphism of
ClzE, X1, + .., An){D2,, - .. 0;,)-modules
(44) M~ ClzE A )02, 0,)/ClzE Ars o AR] (00,0 0, )T
where the left C[z*, A1, ..., A,](d5,.. .. 0y, )-ideal T is generated by Cljer, and Ej — By for
k €{l,...,d}. The Dy-module corresponding to G° (zfgl\/l) is given by ]/l/l\/(z — I)JT/I\.
Using the isomorphism (44) one easily sees that

M/(z-1)M ~ M,

h

I )

which shows the claim. O

PrOPOSITION 3.19. — The O¢, xwo-module 0°/(Jljlggo’ﬂ) is locally-free of rank vol(Q).

. .. . —(Bo,B) .
Proof. — Notice that it is sufficient to show that ¢cMp " s Ocxweo-coherent. Namely,

——(Bo,B) —(Bo,B) .
oM BO /Z oM BO is Owe-locally free of rank vol(Q) by Lemma 3.10. Moreover, the

.. —(Bo.B) .
restriction of §cM BO to C; x W¢ is a locally-free Ogxpo-module by Lemma 3.14. Its

restriction to {1} x W° is isomorphic to the restriction of cﬂ/fﬁ to W° by Lemma 3.18 which
is locally free of rank vol(Q). Now we use the fact that a coherent J-module which has

everywhere the same rank is locally-free.

. . —(Bo,B) ..
It is actually sufficient to show the coherence of /¥ := For,25_(gcMp ? ), as this is the

—(Bo,B) .
same as geMp " When considered as an Oc, xwo-module. Let us denote by F, the natural

filtration on R_, o defined by

Fe Rigwo = P € Rigswo | P =D a2, 1)(203)* - ...+ (20,)*

la|<k

This filtration induces a filtration F, on ¢/ which satisfies Fj C%éjzxwo -FjoN = Frypel.
Obviously, for any k, Fj o/ is Oc, xwo-coherent, so that it suffices to show that the filtra-
tion F, becomes eventually stationary. Let P = Zlalsk 8a(z,A)(z0;,)% -...-(20,,)% then
its symbol is defined as

ox(P) = Z 8a(Z, M) (k) - - (k)™ € OCZXW"[Klau-,Kt],
la|=k
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which is a function on C,; x T* W ° with fiber variables k1, . . ., ;. Let .7 be the radical ideal of
the ideal generated by the symbols of rjle]L and E, r—z-Br fork = 1,...,t. Then the vanishing
locus of 7 is the ﬂ&zxwo-characteristic variety of o//. Notice that o/ is Og, xweo-coherent
if and only if its (&%32 <«wo-characteristic variety is a subset of C; x T};,o W°. The proof of this
fact is completely parallel to the &)-module case (see e.g., [43, Proposition 10.3]).

To compute the ﬂézxwo—characteris‘[ic variety, notice that the symbols of Oer, and
E, r — 2+ Br are independent of z. Thus it is enough to compute its restriction to {1} x W°. Now
notice that the generators of the ideal corresponding to the GKZ-system cﬂ’lg have exactly
the same symbols as the operators above. Thus it is enough to show that the restriction of
the GKZ-system Wg to W°is Owo-coherent. But this follows from [1, Lemma 3.2 and 3.3]
and the definition of W*° (see Definition 3.8 and Lemma 3.12). O

—~(Bo,B) —~(Bo,B)
COROLLARY 3.20. — The natural map ()"(JMBO — °JMBO which is induced by the

inclusion Roc_xw+ = De.xw+ IS injective.

—~(Bo.B)  —=(Bo.B)
Proof. — Recall that D¢ xw ®Cygooﬂ¢30 ~ WBO ic.xw* and Do, xw+ =~ R[z%].

—(Bo.B) —(Bo.B) .
Thus the kernel of g Mg N B ° |c,xw=* has z-torsion. On the open set C, x W° C

——(Bo,B) —(Bo,B) . . .
C, x W* the module 0°WBO = ooﬂ/JBO ic.xwe 18 Og.xwo-locally free. In particular it

has no z-torsion, but this shows the claim. O

. . . —(0,0) . . .
The next step is to describe the image of gcMp  in (}+. In order to do this, consider

once again the affine toric variety X*% = Spec (C[INB]) from Definition 3.7, which contains
the torus gp(S) = S as an open subset. Denote by D the complement of S in X7, We
will consider X*T as a log scheme in the sense of logarithmic geometry (see, e.g., [23]).
More precisely, we endow X* with divisorial log structure induced by D and W* with the
trivial log structure. We consider the relative log de Rham complex Q%.¢, S (log D) ([23,

Section 3.3]). We have isomorphisms Q')‘(aﬁxw*/w* (log D) = Oxariyy+ @z /\k 7.

PROPOSITION 3.21. — Let NB be a saturated semigroup. There exists the following
R, xwe-linear isomorphism

HO (83, e o l0g DL 2d — dy FA) = MY,

which maps wyg to 1.

Proof. — We first define the R¢, xw-linear morphism
YoMy — HO (@45 4y - (og D)lz).2d —dy F 1)),
1 = wo,
which is well-defined by 3.4. Let

w = Z Cays Ay .../Xf’z‘sl"”’él Lyl

a,y,6
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be a general element in Q;aﬁxw*/w* (log D)[z] witha € IN!, y € Z! and § € IN. Then

D CaysAl AL 2 (203 L (202

a,y,8

is a preimage, which shows that the map  is surjective. Notice that the restricted map

o o 0,0 .
Wﬁ 0/\}(} 0 %HO(théXWO/Wo(log D)[Z],Zd—dyF/\)
is also surjective. Consider the following commutative diagram
o7 7(0,0 =~ .
MG — = HOQ§ 0 olz*].2d — dy F A)
070,00 °V . T
7 —— HO QLS gy o log D)[2],2d — dy F 1)

where the upper horizontal map is an isomorphism by Proposition 3.3 and Lemma 3.4 , the
left vertical map is injective by Corollary 3.20 and the right vertical map is induced by the
morphism

;(aﬂXWO/WO (IOg D)[Z] g Qg(aﬂXWO/WO (*D)[Zi] = Q:YS‘XWO/WO [Z:t]'
But this shows that °y is also injective, which shows the claim. Notice that as a by-product,

we also obtain that the morphism

HOQ3E e o0 D)2).2d —dy FA) — HOQSTy o,y [2%).2d — dy FA)

is injective. O

4. Quantum cohomology of toric complete intersections

We recall in this section some rather well known notations and results concerning twisted
Gromov-Witten invariants on the one hand, and basic constructions from toric geometry for
smooth complete intersections in toric varieties on the other hand. Any of the statements
of this section can be found in either the original articles like [38], [21, 20], [9] (for twisted
Gromov-Witten invariants), the references [16], [11] and [10], (for facts on toric geometry of
complete intersections) but also in the more recent paper [39], from which we borrow some of
the notation. By collecting the material we need later here we hope to make this paper more
self-contained.

4.1. Twisted and reduced quantum )-modules

A smooth complete intersection inside a smooth projective variety can be described as the
zero locus of a generic section of a split vector bundle on that variety. Associated to such a
bundle are the twisted Gromov-Witten invariants, which we describe first. They give rise to
the twisted quantum product, and to the twisted quantum- )-module. From this one can
derive (basically by dividing by the kernel of the multiplication by the first Chern classes of
the factors of the vector bundle) the reduced quantum %)-module, which corresponds to the
ambient part of the quantum cohomology of the subvariety. We also discuss this reduced
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module here, and we define pairings (coming from the Poincaré pairing on the ambient
variety) on both the twisted and the reduced quantum )-module.

Let & be a smooth projective n-dimensional variety. Let Z4,..., Z. be line bundles
on & which are globally generated and define & := @j_, Z;. We are going to recall the
construction of the so-called twisted quantum )-module QDM( &, €) and the reduced
quantum )-module QDM (X, ). Our notation follows the exposition in [39, Chapter 2.5].

Forl € Nand d € Hy(, Z) we denote by M1 4(El) the moduli space of stable maps
of degree d from curves of genus 0 with / marked points to ¢f. Denote by e; : Wo,l,d(%) - X
the evaluation at the i marked point fori € {I,...,/} and denote by 7 : Wo,lﬂ,d(ﬁc) —
Wo,l,d(ﬁ@ the map which forgets the last marked point. Let €4 be the locally free
sheaf Ron*e;‘+1 € and forany j € {1,...,1}, let €o;1.4(j) be the kernel of the surjective
morphism o4 — e;-‘ & which evaluates a section at the j-marked point.

Fori € {l1,...,1} denote by o¥; the line bundle on Wo,l,d(%) whose fiber at a
point (C,x1,...,x;, f : C — ) is the cotangent space 7y C. Put ¢; := ci(cV;) €
H?(Mo,1.a(X)).

DEFINITION4.1. — Let 1 €N,  (my,....m; €N, y1,....yp € H*()  and
d € Hy(N,Z). The j-th twisted Gromov-Witten invariant with descendants is denoted

by

(T (VD)oo T, (V) oo o Ty (VD)) 0,00 2= /7 , Ctop(gold(J))Hlﬁm'e*Vu
[eMo,1.a (D] i=1
where [Wo’l’d(ﬂé)]”i’ is the virtual fundamental class ofWOJ’d(SC).
An invariant ..., Yk, ...)o,1,4 has to be understood as ..., to(yk). .. .)o,1.a. Below we will
actually use only such non-descendant (i.e., with all my = 0) invariants.

Let (Ty, T1,...,T) be a homogeneous basis of H?*(() such that Ty = 1 and
Ti...., T, is a basis of H2($(,Z) modulo torsion which lies in the Kihler cone of .
Let T be the torus H2(&0, C)/2niH?*(0, Z). Then the basis Ty, ..., T, of H*>(0, Z) gives
rise to coordinates ¢ = (q1,....¢,)on T.

DEFINITION 4.2. — Let y1,...,v2 € H?>*(X,C) and g € T. The twisted small quantum
product is defined by

o 72 —Z Z q* (1. v2. Ta)o3.aT"

a=1deH,(X,7)
where q? is shorthand notation for q§T' ’d), e, qﬁT”d).
Notice that (yy, y2, T, Yo,3,4 7 0 only if d lies in the semigroup of effective classes, i.e.,

d € Effy € H,(X, 7). Hence, by our assumption on the basis 71, ..., Ty, only positive
powers of the g; appear in the formula above. Let T = C” be a partial compactification
of T with respect to the coordinates ¢, ...q,. In the following we assume that there exists
an open neighborhood U of 0 € T such that the twisted quantum product is convergent on U
as a power seriesin ¢y, . .., ¢r. The twisted quantum product is associative, commutative and
has Tp as a unit (see, e.g., [39, Proposition 2.14]).
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Put U := U N T. In analogy to the untwisted case one defines a trivial vector bundle F
on H%($) x €, x U with fiber H?*( ) together with a flat meromorphic connection

1 1 1
Va[O = atO + ETo.tqw’ Vﬂ]aaqa = qaal]a + ETa.tqw’ VZaz =20z — EE .;w +u,

where pu is the diagonal morphism defined by u(7,) := %(deg(Ta) — (dim¢ &0 — rk ENT,
and E := 10Ty + ¢1(J g) — c1(E) is the so-called Euler field.
Define a twisted pairing on H2*( &) by:

(™= [ Uy (@) forn.p e H2 ()
This pairing is degenerate with kernel equal to ker mc,,, , where m.,,, is defined by
Mey, H* () — H** (),
o cop(E) Ua
and satisfies the Frobenius relation:

(195" v2,73)™ = (y1, 72 8" y3)"™  for y1,y2,v5 € H* ().
Denote by of the sheaf sections of F and define an involution ¢ by
L HY () x C, xU — H°(&) x C, x U,
(t0.z,9) = (to,—z.q).

We define a V-flat sesquilinear pairing

S (F)x f = O,
(s1,52) > S(s1,52) (0. 2,9) = (s1(to, —2.9). 52(t0, 2. ¢))"™.

We call H2*(X) := H?**(X)/kerme,, the reduced cohomology ring of (&, £).
For y € H?>*(§0) denote by ¥ its class in H2*(&(). The pairing (-,-)*" gives rise to a
pairing (-, )™ on H2*(&X) by

717" = (y1.72)™  for y1.y2 € H*(N).

Because the kernel of (-,-)"™ is kermy,,, this pairing is well-defined and non-degenerate.
Denote by F the trivial bundle on H° () xC, xU with fiber H2*( (). The pairing S induces
a pairing S on F by
S(51.52) 1= S(s1.52).

which is non-degenerate.

Notice that Hz*—(SC) is naturally graded because me,,, is a graded morphism. Let
(¢o. . ... ¢s) be a homogeneous basis of H2*( ) and denote by (¢°, ..., ¢%) its dual basis
w.r.t. (,-)"d. The reduced Gromov-Witten invariants are defined by

—_~—

(71»~~-»Vl)01d (Vlv---,Ctop(((})Vl)o,l,d

and the reduced quantum product is

AR Sl SR L R

a=0deH,(,7)
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where the restriction is compatible with the multiplication , i.e.,
V1o ya =7, o5y,

The bundle F carries the following connection:

— 1= = 1— = 1—
Vat0 = 8tO + ;To.zed’ anaqa + ;Ta.?d? Vzaz = Zaz - ;E .;ed +ﬁa

where 1 is the diagonal morphism defined by (¢4) := %(deg(zﬁa) — (dim¢ & — rk €))¢a
and E :=toT o + c1(J g) — c1(E). One can show that V is flat and S is V-flat.

DEFINITION 4.3. — Consider the above situation of a smooth projective variety X and
globally generated line bundles L., . .., Z..

1. The triple (F,V,S) is called the twisted quantum &)-module QDM(E(, €).
2. The triple (F,V,S) is called the reduced quantum D-module QDM(EX, &).

4.2. Toric geometry of complete intersection subvarieties

In this subsection we consider the case where the variety ¢¥ from above is toric. It will be
denoted by X5, where X is the defining fan (see below). We recall some well-known results
on the toric description of the total space of the bundle £ resp. its dual, on Picard groups,
Kahler cones etc. All this is needed in Section 6 below.

Let, as usual, N be a free abelian group of rank n for which we choose once and for all a
basis which identifies it with Z". Let ¥ be a complete smooth fanin Ng := N ® R and X5 the
associated toric variety, which is compact and smooth. We recall the toric description of the
Kaihler resp. the nef cone of £. Let £(1) = {Rso04,....,R>04,,} be the rays of X, where
a; € N = 7" are the primitive integral generators of the rays of X. Then we have an exact
sequence

(43) 0Ly Z50 = zm s N S0,

where the morphism Z™ — N is given by the matrix (henceforth called A) having the vectors
a,,...,a, ascolumns. L, is the module of relations between these vectors. We also consider
the dual sequence

0> M — (ZEV)Y =7" 5 LY -0,
where M := NV is the dual lattice. It is well known that as X5, is smooth and compact, we
have

H*(Xs,Z) ~ Pic(Xsg) = L},

moreover, the group (ZZ(M)V is the free abelian group generated by the torus invariant
divisors on Xx. We denote these generators by D1, ..., Dy,. Its images in L) (called D;) are
thus the cohomology classes which are Poincaré dual to these divisors, and they generate the
Picard group.

Any element in (Zz(l))V ® R can be considered as a function on Ny (actually on
the support of X, but this equals Ny by completeness), which is linear on each cone
of X, these are called piecewise linear functions with respect to X. For a given divisor
D e Div(Xy) = (Z¥M)V, we denote the piecewise linear function it corresponds to by wg.
Inside (Zz(l))v ® R we have the cone of convex functions, which are those piecewise linear
functions ¥ having the property that for any cone ¢ € ¥ and for any n € Np, we have
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w(n) < Ys(n), where ¥, is the extension to a linear function on all of Ny of the restric-
tion ¥, The interior of the cone of convex functions are those which are strictly convex,
that is, those such that the above inequality is strict on INg\o. Notice that any linear func-
tion on N is piecewise linear and this inclusion is precisely given by My — (ZE(”)v ® R.
We define the nef cone Fx, of Xx to be the image of the cone of convex functions
in (Zz(l))V ® R under the projection (ZE(D)V ® R — LY ® R. Its interior is the Kéhler
cone 056;2 of X. We assume that J&;Z is non-empty, which amounts to say that Xy is
projective. Let us recall the following description of the cone Fx,., the proof of this fact
can be found, e.g., in [10, Section 3.4.2].

LemMMA 4.4. — For any cone o € %, put
Jo:={i €{l,...,m}|Rsoqa; ¢ 0}

and define
&= RsoD; C (LY.
iclo
We call & the anticone associated to o. Then we have Kxy = (gex 0 C (LY)R.

We proceed by considering the toric analog of the situation from Section 4.1. More
precisely, let 1 = Oxs,(L1), ..., Zc = Oxx(Lc) be line bundles on X5 with Ly,..., L, €
Div(Xg). We suppose that the following two properties hold

ASSUMPTION 4.5. — 1. Forall j = 1,...,c, the line bundle Z; is nef. Notice that
according to [16, Section 3.4], on a toric variety, Zj is nef iff it is globally generated.

2. Let —Kx. be the anti-canonical divisor of Xx. Then we assume that — K x5, — ch'=1 L;is

nef.

Put £ := @;_, Z; and consider the dual bundle £":= Slompy_(E, Oxs). We have the
following fact.

DEFINITION-LEMMA 4.6. — The total space V(EY) = SpecGXE (Symgxz(é”)) of Y,
is a smooth toric variety defined by a fan X' which is described in the following way. First we
define the set of rays X'(1): For this, we choose divisors Dy+; = Y it dj;iD; withd;; > 0
and O(Dpmyj) = <j. This choice is possible due to Lemma 4.4 as all T are nef. Write
d; = (dvi,....dei) € ZF and put @} := (a;.d;) € N' :== N x Z¢ = Z"*. Moreover, letting
€nils....enic be the last ¢ standard generators of Z"+¢, we put c_l;nﬂ- = epqj. Then we
let ¥'(1) := {Rxo0a].....Rxoa,, .} and we group, as before, the column vectors a’, . ...a,, .
in amatrix A’ € Mat ((n + ¢) x (m + ¢), Z). This means that

(46) A = A |One
\w@)|1de )’

The fan X' is now defined as follows: For any set of vectors b,,....b, € TRK define
(by,....b,) := 37— Rsob;. Then we put

Y= {{a},. ... a0 0e;) CNR | (g, nay) € SR 4.y Cla+ 1L n+ e}
In other words, considering the canonical projection & : Ny, — Ngr which forgets the last
¢ components, we have that o’ € X' iff m(0’) € X.
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In the following proposition, we list some rather obvious properties of the cohomology
(resp. its toric description) of the space V(EV).
PROPOSITION 4.7. — Let Xs, T, ..., Ze and the sum € resp. its dual £ be as above.

1. The projection map p : V(EY) — Xg induces an isomorphism p* : H*(Xz,Z) =
H*(V(EY), 7).
2. Consider the analog of sequence (45) for the matrix A’, that is, the sequence

47 0Ly — 72D =7mt 5 N -0,

then we have an isomorphism

L Lar
(48) 4 — /A
LZ (11,...,lm) l—)L = (11,...,lm,lm+1,...,lm+c),
where by ; = —Y iy Lidji = —(c1(Zj),1) forall j = 1,...,c, and where (—,—) is

the non-degenerate intersection product between . =~ H,(Xx,Z) and Pic(Xx). Notice
that in the definition of this isomorphism we consider L resp. Lar as embedded into Z7™
resp. Zm+¢.

3. The scalar extension H*(Xs, R) S H 2(V(EY),R) of the isomorphism p* from above
identifies the Kihler cones (resp. the nef cones) c%}z and c%%,(gv) (resp. Kxs and
Wv(é’v))-

4. The manifold V(&) is nef. Moreover, if s € T'(Xs, €) is generic, and Y := s~1(0) is the
zero locus of this section, then also Y is smooth and also nef.

Proof. — The first point follows from the fact that V(€") and Xy are homotopy equiva-
lent. The second point follows from a direct calculation. For the third point notice that the
isomorphism p* restricted to H?(Xx) is given by

m+c m+c

p* H(X2) ~ @ ZDi /(Y akiDidi=1,...~> D ZD}/ (Y aj; Dk=1...nte = H*(V(EY)),

i=1 i=1 i=1 i=1

m m
ZdiDi = Zd,Dll
i=1 i=1
We first prove p*(Kxs) C Kyevy Let D = >" , diD; be a divisor in Xz with
D € Kxy. Then ¢} is given on a maximal cone 6 € Z(n) by uZ € M ~ Z" which is
defined by (uZ,a;) = —d; for a; € o. The PL-function wg is convex if and only if for
all o € X(n) the following inequalities hold (uZ,a;) > —d; for alli € {1,...,m}. Now
consider the corresponding PL-function WPE; (D) for p*(D). Let ¢’ € X/(n + ¢) be a maximal
cone in X’ with o/ = (c_zgl,...,ggn,gnH, s €uie), where {iy, ... in} C {l1,...,m}. Then
uZ € M' =~ 7"+ is defined by

(uf/,,gg) =—d; foriel{iy,...,in}
and

(49) (uf,/,gi)=0 forie{n+1,...,n+c}.
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But because of Equation (49) we have

>/ a/)

WZ,dl) = WwZ a;) > —d; forie{l,...,m}

which shows that Wp%/(p) is convex, i.e., p*(D) € Hy(evy. Now assume D’ € Fy(evy.

Because p* is an isomorphism, we can assume that D’ has a presentation Y 7o/ d/Dj in

which d;, | ; = 0for j € {1.....c}, ie, D' = p*(D)with D = Y7 d!D;. Let o € =(n)
and 0’ € X(n + ¢) be maximal cones with 7(c’) = ¢. Because of the presentation of D’ we
have (uf,’,gi) =0fori € {n+1,...,n+ c}. Therefore we have

(g a;) = (ugr.aj) = —d;.

which shows that 1//5 is convex, i.e., D € & x5 - The statement for the open parts follows
from the fact that p* is a homeomorphism.

For the fourth point recall that V(&) is nef, i.e., has a nef anticanonical divisor, if the
class of the divisor

m C
—Ky@evy=Y_Dj+ Y D ;
i=1 =1

lies in Fy(¢v). Because of 3. it is enough to show that (p*)~! (—Ky,gvy) lies in Fys.. But
we have

m c m c
(P ) ' (~Kyevy) =Y Di—Y.Y djiDi = —Kxy — Y _c1(Z))
i=1 j=1i=1 j=1

and the term on the right hand side lies in Fx;, by Assumption 4.52. Let s € I'(Xx, ) be

a generic section, then one can show that Y = s7!(0) is smooth by repeatedly applying
Bertini’s theorem. The nefness of Y is obtained by repeatedly applying the adjunction
formula and Assumption 4.5 2. . O

We finish this section by the following remark, which will not be explicitly used in the
sequel, but which helps to understand the geometry of the torus embedding considered in
the beginning of Section 2. More precisely, let S := Spec C[Z"¢] and denote again by
g : S — P™*¢ the map defined by (y1,..., ymic) — (1 : Xﬂ/l D Xﬂinﬂ‘). In Section 2

we considered the factorization g : S Iy x <& pme (with X := Im(g)) where j is
an open embedding and i is a closed embedding. However, we will also need to consider
some other factorization, namely, we write g = g® o g, where gV : § — €™ x (C*)¢
sends y to (Zﬂg)izl mie and g@ is the composition of the two open embeddings

.....

€™ x (C*)° — C™*¢ and €< < PM+¢. Now we have the following fact.

PROPOSITION 4.8. — The morphism gV is a closed embedding. Hence, we have

X\Im(g) C {io - m+1- Mmte = 0},

where we use (jto : L1 : -+ : fmac) as homogeneous coordinates on P™ V¢ and yy, .. ., pm as
coordinates on C™ ¢ (resp. on (C*)™¢, C™ x (C*)¢ etc).
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Proof. — 1t suffices obviously to show the first statement. We will use a method similar
to the proof of [47, Proposition 2.1]. First notice that the embedding & : S — (C*)"*¢

.....

(C™\(C*)™) x (C*)¢ = @. Recall that im(g(D) is the closed subvariety of C" x (C*)¢ defined
by the binomial equations
I -
1_[ i = M; !

i:l/>0 i:l;<0
for any I’ € L4/ (these equations form the toric ideal of A’). It was shown in loc.cit. that due
to the compactness of X, there is some [ lying in Ly N Z™,. Hence, the image !" of  under
the isomorphism (48) lies in Z7, x Z< , as the coeflicients d;; appearing in Formula (48) are
non-negative (see Definition 4.6) and moreover, for fixed j, not all d;; can be zero. It follows
that the toric ideal of A’ contains an equation

m I m+tc "
(50) [Tei - TT w™.
i=1 i=m+1
where none of the exponents is zero.
Now suppose that there is a point X = (X1,...,Xm, Xma1s---»Xmic) € im(gD) N
(C™\(C*)™) x (C*)¢, that is, we have x; = 0 for some i € {l,...,m}, then as Equa-
tion (50) vanishes on x, we must have some j € {l,...,c} with x,4; = 0, which

contradicts the assumption that x € (C™\(C*)™) x (C*)°. Hence the intersection
im(gM) N (C™\(C*)™) x (C*)¢ is indeed empty from which it follows that
g 1§ < €™ x (C*)° is a closed embedding. O

Remark. — The GKZ-systems (see Definition 2.8) associated to the matrix A’ is not neces-
sary regular, as the vectors a},...,a,,, . do not necessarily liec on an affine hyperplane
in Z™*¢ (see [28] for this regularity criterion). The situation is similar to that considered in
our earlier paper [47], and for the same reasons as in loc.cit., we will work with the extended
matrix A” € Mat((1 + n + ¢) x (1 + m + ¢),Z) with columns ag.df.....a,, .. where
aj := (1,g)) and ag := (1,0,0). In particular we have @, , . = (l.¢,4;) € zZntetl
for j = 1,...,c where e,4; is the n 4+ j-th standard vector in C"*¢. We write Ly~ for
the module of relations between the columns of A”, obviously we have an isomorphism
Lo — Lgvsending L = (I1.....Inte) to (= 741, 1), As a matter of notation, we will
often write the parameter of the GKZ-systems defined by the matrix A”, which are vectors
in C'*"*¢ by definition, as (a, B, y) € C'*"*¢, wherea € C, f € C" and y € C°.

5. Euler-Koszul homology and duality of GKZ-systems

In this section, we show a duality result for the GKZ-systems associated to the toric situa-
tion just described. We will explain how to calculate the holonomic dual of the system Wﬁ,,
for some specific B, this is used to get a more precise description of the various )-module
considered in Sections 2 and 3. The methods used here somehow similar [47, Section 2.3],
but we have to take into account the non-compactness of the toric varieties involved.
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ProPOSITION 5.1. — Let Xs be smooth, toric and projective and suppose that
Z1 = Oxs,(L1), ..., Lc = Oxs, (L) are nef line bundles on Xs. However, we do not make any
assumption on the positivity of —K x5, — ch‘=1 Lj. Let A’ be the matrix from in Definition 4.6
(i.e., with columns the primitive integral generator of the fan of V(EY)) . Then the semi-group
ring C[INA'] is normal and Cohen-Macaulay. The map

W:INA — (INA)°,
M M gy g F ot
is a bijection. Hence, C[INA'] is a Gorenstein ring where the generator of the canonical
/ e ’
module wopy 4] is given by the monomial y®m+17"+eme,

We can deduce the following immediate corollary.

COROLLARY 5.2. — In the situation of the last proposition, suppose moreover that
—Kxy, — Y5 Lj is nef. Let A" be the extension considered at the end of Section 4. Then
also the semi-group WA" is normal and we have

(INA") =ag+ahp i+ +ap . +NA".
Hence CINA"] is a normal, Cohen-Macaulay and Gorenstein ring, with
WCINA"] = (D[]NA//] . X£6+Q;;’+l+"'+%+c .

Proof. — This follows directly by applying Proposition 5.1 to the toric variety Xy and the
collection of nef line bundles 1, ..., Z¢. Let1 = Oxs (—Kxs — Z}“:l Lj). O

The following lemma is a rather obvious consequence of the nefness condition of the
bundles Z, ..., Z..

LEMMA 5.3. — Let as before Xx, be toric and let Ly, ..., L. be nef line bundles. Consider
the fan X' of the space V(E"'), where £ = @;;1 Z;. Then the support supp(X') is convex. As
a consequence, we have the following equality

(1) supp(Z’) = Rxo4’
where RzoA' = YA€ R>o4;.

Proof. — This is obvious from the construction of X’ as presented in Definition 4.6.
Namely, for any j € {I1,...,c}, the functions wgmﬂ =y, dj,-wgi are convex due to
the nefness of Z; (remember that O(D,,+;) = Z;), and one can describe the set supp(X’)
as

Supp(Z’) = (X1, » Xns Xng1s e - o> Xnte | (X1,...,x,) € supp(Z) = R”,
Xn+j z—wngH_(xl,...,xn) Vji=1,...,cy.

Then the convexity of the set supp(X’) is precisely the convexity condition on the func-

: b
tions meH .
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For the second statement, notice that the inclusion supp(X’) C R¢A’ is trivial (and does
not depend on the convexity of supp(Z’)). On the other hand, if supp(X’) is convex, then we
have the inclusion

(52) supp(2') D Conv(a], ... . dp ).

where Conv(a}.....a,,, ) denotes the convex hull of the vectors a}. ... .a;, ., since the left
hand side must contain the convex hull of any of its subsets. On the other hand, we obviously
have that

R>0A = {A-x|x € Conv(d].....a), ). A € Rxo},
so that the desired inclusion supp(X’) O RsoA’ follows from Equation (52) and the fact
that the set Supp(X’) is conical, i.e., for all x € Supp(X’) and all A € R we have that

A-x € Supp(¥'). O
Proof of the proposition. — We first show the normality of INA": Given any vector

x" € RyoA’ N N’, then by Equation (51) there is some maximal cone <£i1 Y. ,c_zin) € X
such that x’ € <C—l;1""Zggn"—l;n+1"'.’c—l;n+l) € Y/ (recall that Q;n+j = dhy; = Cnij)
Hence we have an equation

n+c
(53) X =) hdj,

k=1
with A € Rxo. We know that (c_z;.1 . ’c—l;n-kc) = (g;.l yenn ,c_zgn,gmﬂ, ooy €y 1S a Z-basis
of N"as (aj,... ,QQHC‘) is a smooth n + c-dimensional cone in ¥’. Hence Ay € IN for

k=1,....n+c,and x’ € INA’, which is the defining property of normality of INA". It
follows that C[INA’] is Cohen-Macaulay by Hochster’s theorem ([27, Theorem 1]).

It remains to show the second statement concerning the characterization of the interior
points of INA’. We will actually show the following

Claim. — Letx’ € INA'. Consider the representation (53) of x” as an element of Z;’: ! lRZoc_zgj ,

that is, an equation x’ = Y"1 X;a} € INA, where Ay = 0ifk € {1,...,m}\{i1,... in}.
Then x’ liesin (INA")®iff A; > O0fori e {m+ 1,....m+c} = {in+1,..-»intc}-

Notice that a representation as in the claim is unique, if there are two maximal cones
of X (n) such that x’ is contained in both of the cones generated by the corresponding column
vectors of A’, then it lies on a common boundary, and the two expressions (53) are equal.

The claim implies that the map W from the proposition is well-defined and surjective, and
it is obviously injective. In order to show the claim, notice that

(INA")® = (R0A\d(R>04")) N N' = (R0A’ N N')\ (0(R>0A") N N')
= NA\ (d(R>04) N N'),

so that we have to show that the points in d(R>oA4’) N N are precisely those from INA” where

in the above representation (53) there is at least one index i € {m+1,...,m+c}withA; = 0.
From Formula (51) we deduce that
d(Rs0A") C U N IR (RN N §
(@i) >ty ) €T 4 (0)
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a;,) € Z(n) the cone (g; ,....q; .q, ea@y, ) has

More precisely, for each (g; Lol s A1
two types of facets: those that are facets of 9(R>(A’) (call them “outer boundary”) and those
which are not (“inner boundary”). The union (over all n-dimensional cones of ¥) of the outer

boundaries is the set d(R>oA’) we are interested in.

The fan X’ is smooth, in particular simplicial, this implies that for any cone

<‘—’;'1’ .. ’C—l;n lpyyqs- -Gy ) € X' we have the following description of its boundary.
B(Q;.l,...,g;n+c) = 0(a} - G} Cpprs s Cnpe)
n c
ékgl(ggl,...,zk,...,c_lgn,gnH,...,gnH) u 191(6_1;1,...,c_z;n,gmH,...,§m+,,...,gm+c).
The facet (c_zg1 e zk .. ,Q;n 2 €ni1s-- - €uye) isaninner boundary, i.e., it is not contained

in d(R>oA’). This is a consequence of the completeness of X, namely, there is some other

cone (le"”’f—f/jn) € X having (4;,,....4;,,....4;,) as a facet, and then similarly the
!/ li : !/ /
cone (Qil,...,Qik,...,gin,gn+1,...,gn+c) is a facet of both (Qil,...,gin,gnH,...,gn+c)
and (@} ,....a} .€,41,---+ €4 ), henceitis not contained in d(R>oA’). However, the facet
(@i a)  €nprse €yt npe) (forl =1,... c)is an outer boundary, i.e., a facets
of R>9A’. We conclude that
c
n — / !/ -
d(Rx04’) = U U@ s @ Cpgts s Cngo - Enee) | -
(@i} >y )€T(n) | I=1

We see that for any point d(R>9A4’) N N’, there must be some / € {I,...,c} such that in
the representation (53) the coefficient A,,; is zero. This shows the claim, and proves that
the map W is an isomorphism. Finally, it follows from standard arguments about semigroup
rings (see, e.g., [5, Corollary 6.3.8]) that C[INA'] is Gorenstein, and that the generator of the
canonical module w¢ 4 is as claimed. O

As a consequence, we obtain the following duality result for those GKZ systems that we
will be interested in the sequel.

THEOREM 5.4. — et A” be as above, that is, suppose that its columns (ag.a¥. ... .a,, ) are
of the form a] = (1,a}) where ag = (1,0) and where a} (i = 1,...,m + c¢) are the integral
primitive generator of the fan of V(E"). For B € Z11"+¢, consider the GKZ-system Wﬁ,, as
in Definition 2.7.

1. There is an isomorphism

0,0,0 —(c+1,0,1 —ag—i=14a),,
D(W‘g//ij) = A/(/ 0.1 == A mt .

2. Consider the natural good filtration F, oﬂ/fﬁ// induced by the order filtration on .
Let D(Wﬁﬁ, F,) be the dual filtered module in the sense of [50, Section 2.4], i.e.,
D(Wﬁ,,, Fo) =D Wﬁ,,, FP) where FP(D Wﬁ,,) is the filtration dual to F, Wﬁ,,. Then
we have

—ag—>i=14), 0,0,0
]D) ( A//O I=15mtl ) Fo) % (QM1(4”7)’ Fo+n—(m+c+1))~
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Proof. — 1. The proof is parallel to [54, Proposition 4.1] or [47, Theorem 2.15 and
Proposition 2.18], so that we only sketch it here, referring to loc.cit. for details. First
one has to define the so-called Euler-Koszul complex resp. co-complex (see [40]). Its
global sections complex Ko(7, E — ) is a complex of free Dy ® g T-modules where
R = C(Jdg, 0d1,...,0m+c] and where T is a so-called toric R-module. A particular
case is T = C[INA”]. Notice that the terms of Ko(7T, E — B) are not free over Dy .
However, for T = C[INA”], this complex is a resolution by left Dy -modules of the
modules M f,,.The differentials of K.(7, E — B) are defined by the operators £ and
Zy entering in the definition of Mf,,. From a resolution of the toric ring C[INA”] by
free C[dg, 01, . . ., Om+c]-modules one can also construct a resolution of MIS),’Q’Q) by free
Dy -modules. Applying Homp,, (—, Dy) yields basically the same complex, but where
the parameters in the differentials are changed, and where the toric module is now the
canonical module of the ring C[INA”]. Now from the Gorenstein property of C[INA”]
with the precise description of the interior ideal from Corollary 5.2 we obtain the
desired result by taking the cohomology of the two complexes, that is, we can show
the identification of the holonomic dual of 0]1%(939’@ with eﬂ%;,(,cﬂ’g’D .

2. The proof is literally the same as in [47, Proposition 2.19, 2.] with the indices shifted
appropriately. O

As a consequence, we can make more specific statements on the parameter vectors of the
various GKZ-systems occurring in the results of the previous sections.

COROLLARY 5.5. — Consider the situation in Section 2 where the matrix B is A', i.e., given
by the primitive integral generators of the fan of V(E), in particular, both NB = INA" and
INB = NA” are normal semigroups. Then

1. The statements of Theorem 2.11, Theorem 2.16 and of Proposition 2.17 hold true for the

parameter values E: (0, Q,Q),E’ =(c+1,0,1) e Z!+n+e,

2. The statements of Proposition 3.3 and of Theorem 3.6 hold true for the parameter values

B =(0.0).p" = (0.1) € Z"* and for any P, B; € Z.

For later use, we introduce the following piece of notation.

DEFINITION 5.6. — In the situation of Theorem 5.4, we call the map

—(c+1,0,1 0,0,0
R e S v

induced by right multiplication by d¢ - 0m+1 - - * Om+tc the duality morphism. For any o € Z., we
obtain an induced morphism
~ (0.0,  —(Bo+c,0,0)

¢ My — My

—B
given by right multiplication with 0441 * - Om+c (See 3.1 for the definition of the modules M ).
The case By = —2c¢ will be particularly important, and we will also call the map

~ —~—(2¢,0,1) —~(=¢,0,0)
. A — A’

the duality morphism.
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Remark. — In our previous paper [47], we obtained from a similar construction a non-
degenerate pairing on the Fourier-Laplace transformed GKZ-system (see [47, Corol-
lary 2.20], where this system was called /J\% 7). It was given by an isomorphism of (/J\/lg
to its holonomic dual (which is isomorphic to its meromorphic dual, see also the proof

of Lemma 6.6 below). The fact that in the current situation, we only have a morphism
~  ——(2c,0.1) —~(=¢.0,0) Co . . . .
¢ : o — " which is not an isomorphism unless ¢ = 0 (in which case

we are exactly in the situation of [47], see the remark at the end of Section 6 of this paper)
corresponds to the fact that the pairing S on the twisted quantum )-module as introduced
in Definition 4.3 is degenerate. As we have seen in the definition of the reduced quantum-
J-module, it becomes non-degenerate when we divide out the kernel of the cup product
with the first Chern classes of the line bundles Z;. We will show below in Corollary 6.14
that the reduced quantum )-module is part of a non-commutative Hodge structure, which
implies in particular that it carries a non-degenerate pairing like the one from [47].

6. Mirror correspondences

In this section we combine the results obtained so far with the GKZ-type description
of the ambient resp. reduced quantum )-modules from [39] for the toric case. We obtain
a mirror statement which identifies them with &)-modules constructed from our Landau-
Ginzburg models. The results from Section 2 will be applied for the case where the matrix B
(used for the construction of GKZ-systems and of families of Laurent polynomials) is given
by A’ (see Definition 4.6) the columns of which are the primitive integral generators of the fan
of the total bundle V(&Y. Recall also (remark at the end of Section 4) that we denote by A”
the matrix constructed from A’ by adding 1 as an extra component to all columns and by
adding (1, 0) as extra column. Hence, if B is equal to A’, then the matrix B used in Section 2
is exactly the matrix A”. Recall also that the parameter of the GKZ-systems of the matrix A”
is written as («, y,8) € C'*"*¢ witha € C, y € C" and § € C°.

The starting point for our discussion here is the duality morphism from the last section.
We need to consider a slight variation of it, which is defined only outside the boundary A; = 0
and only outside the bad parameter locus as defined in Section 3.2. Recall that V = C) , x W,
and that this bad parameter locus of the family ¢4 was called W24 c W. The complement
of this locus outside the boundary A; = 0 was called W°, that is, W° := W*\Wbad,

DEFINITION-LEMMA 6.1. — For any B = (Bo, B1s-- -+ Bms Bmt1s---s Pute) € 21T

. . . —(Bo,
consider the restricted, Fourier-Laplace transformed GKZ-system *cM 4~ we have

S0P _ Dezxwz7"]

’

where

li I mte li =l -
= IT Ai(z-ai)’—l—[/\i- I Az - 0;)7H, lely
ie{l,...m+c}: ;>0 i=1 ie{l,...m+c}: ;<0
Eo =220, + Y0 A - 20,
Ep = Z?"ztca;dki-z& k=1,....n+c¢

0

I~ %
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—B
and moreover, § My, is the Ric, xw+-subalgebra generated by [1], and we have

*/J\{ﬁ _ Roe.xw*

0 A= = = .
R, xw* (e R xw*(Ek — 2Bk )k=o,....n+c
8)

— (Bo,
Moreover, we define the modules *oV A,O as the cyclic quotients of De,xw+[z"'] by the
left ideal generated by U; for [ € Ly and Ek —zPi fork =0,...,n + c, where

l.
~ I _ i
0= 1 Aot I [T (i(z-8;) —z-v)
ie{l,...m}: ;>0 ie{m+1,....m+c}: [;>0v=1
m+c I I n —I;
= IT 4 [1 Az -0 I ITRi(z-8;)—z-v).
i=1 i€{l,...m}: 1; <0 ie{m+1,...m+c}: ;<0 v=1

Consider the morphism
—-(0,0,0) —~—(2¢,0,1)

(54) v *OJVA/ i *WA/

given by right multiplication with z€ - ]_[:":t,f 11 Ai. As it is obviously invertible, the two modules

—-(0,0,0) ——~—(2¢,0,1)

Ny  and* My are isomorphic. We define ¢ to be the composition ¢ := ¢oW, where
¢ is the duality morphism introduced in Definition 5.6. In concrete terms, we have.
~ 0,00 —~(=¢.0,0)

¢ Ny — "My ,
m — ¢(m -z¢- Am+l . "Am—i-c) =m- (ka+13m+1) (Z)Lm+cam+c).

In view of Corollary 5.5, 2. (see also Theorem 3.6) we obtain

—

(55) im(¢) = im($) = (ide. xj)* M (X°, 2).

For any B € ZXT"*¢, consider the R xw~-subalgebra of

—(Bo.B)
generated by the element [1] and denote its restriction to C, x W° by (fo]VA,O . Similarly to

Corollary 3.20, we have

0B _ Clz. Af. .. AL 1(220:.205,....204,,,.)
0 , =

|CZ><W°'

In the next lemma we want to describe the restriction of the Z)-module #'C(X°, )
to C, x W*.

. .~ ——(2c0D —~(-¢,0,0) ..
LEMMA 6.2. — Consider the morphism ¢ : oM 4 — My from Definition 5.6

o Ic .~ —~—(2¢,0,1 -~
and the isomorphisms JM'C(X°, Z) ~ im(¢) ~ My ‘ /ker(¢) from Corollary 5.5 (see
also Theorem 3.6). We have the following isomorphism
. T e ——2c0.D) (0,00 —
(ide. x j)T MUX°, 2) = * M,y [ K =Ny | Ko
where :j/\VQM resp. /&/\V oy are the sub- )-modules associated to the sub-D-modules

{m e *M~@0D | 3p € 7.k € N such that (A0 + p)...(Ad + p + k)m = 0}
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resp.
(n € *NOLO | 35 c Z k € N such that (A3 + p)...(Ad + p + k)n = 0}

with (A9 + 1) := [[2m 1 (A;0; + 1) fori € Z.

Proof. — We will first compute the restriction of ¥/ (X°, Z)to V* = C 20 X W*. Recall
—(c+1,0,1)
M

the morphism ¢ : M, — Mé‘?/’g’g) from Definition 5.6. We know from Theorem 2.16
and from Propostion 2.17 that M€ (X°, 7) ~ MI;,(CH’Q’D / ker(¢) where ker(¢) is given by
{m e M ETHeD | 3n € IN such that (3g - mr1 - Omre)"m = 0},

Notice that CAE] ®cpy MIC(X°, 2) ~ *M Y /(€] ®cpy ker(¢)), where

*Mf;,(CH’Q’D is the module of global sections of *Q]VJZ,(,CH’Q’D . The notation C[A] is
shorthand for C[Ag,...,Am,Ams1.....Amsc], and the notation C[A*] is shorthand
for (D[AO,...,/\m,)t,fﬂ,...,kiﬂ] (and not, as it is wusual, shorthand for
C[A(:f,...,A,ﬂ;,kiH,...,kiﬂ]).

We want to characterize C[A*] ®cpa) ker(¢) inside *M/;,(CH’Q’D = C[AY] ®c[A]
M;,(CH’Q’D . For this we define the following submodule in *MA_,,(CH’Q’D :

K :={me*M, "D | 3p € 7,k € N such that 351 (A9 + p)... (A0 + p + k)m = 0}.
Consider the following element of C[A%] ®cpa; ker(¢):
(56) i AR ®@m with py,..., pe €N,

m+c

i.e., there exists an n € IN such that (3o - 9p1 ... dmie)" 1 m = 0. Therefore we have

0= /\,_nl_;_ll .. A;Ij_cc ® (o - O+t - - - 8m+c)”+lm

= A;Tl e ~A;,Z_Cc ® Am+1 -- ./\m_,_c)""'l(ao N IR 3m+c)n+lm
=0t (AR AR ® (D) ... (Ad — m)m)

= 0 0 + Pmax) - (AD + Pmin — 1) - (A2 ATPC @ m)
=R A+ p) ... A+ p+ k) - AR . A5 @m),

m+c

where pmax = max{p;}, Pmin = MIn{p;}, p := Pmin — 7 and k := pmax — Pmin + 1.
Because C[A¥] ®cra) ker(¢) is generated by elements of the form (56), we see that
C[A%] ®cpa ker(¢) C K. Therefore we have a surjective morphism

CAE] @cpy MIC(X°, D) = "My MO /(CF] ®cp ker(¢)) — MY /K.

Because C[A™] ®cp M I€(x°, Z) corresponds to the restriction of the simple &)-module
M€ (X°, T) to the open subset V*, it is itself simple. Thus, *MA_,,(CH’Q’D /K is either equal
to 0 or is isomorphic to C[A*] ®¢cpy M€ (X°, 2).

In order to prove the lemma, we are going to show that K & *MA_,,(C—H’Q’D . Denote

by F, *MA_,,(HI’Q’D the good filtration on *MA_,,(CH’Q’D which is induced by the order filtration
on Dy+«. Notice that we have

(57) K g *MA—//(C-FLQ,D — ngK g ng*MA—//(C-Fl,Q,l)
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In order to show that grf K ¢ grf *MA_,,(CH’Q’D , we first remark that
grfK c{me ng*M[;,(CH’Q’D | 3k € IN such that K F1A*+ k1 — oy

where A = (Ap41 - Amae)s b = (Wm+1- - Wm+c) and p; is the symbol 0(dy; ).

Thus, in order to show the right hand side of (57), it is enough to show that
char(*M[;,(CH’Q’D) = supp(ng*MA_//(CH’Q’D) C T*(V*)isnot contained in {10+ u-A = 0}.

Therefore it is enough to find a vector (i/, 1) e char(*M[;,(CH’Q’D ) C T*(V*) with

Mo - 1 - A # 0, resp. a vector (E’,A’) € char(Mf/(C+1’Q’l)) C T*(V) with ug - ' # 0

and A} #Ofori =1,....,m+c.
Notice that we have
Char(MA_,,(CH’Q’D ) = char(M (9/’9’9)) = char(FL(Mfg(,),’Q’Q) )) = char(hy Or),

where the first equality follows from [18, Theorem 4], the second equality follows e.g., from
[6, Corollaire 7.25] and the third equality follows from [53, Corollary 3.7]. Recall that the
coordinates on V'’ are denoted by p; fori = 0, ...,m+ ¢ and the symbols of d,,; are denoted
by A;. We now compute the fiber of char(i O7) — V' over the point n=(1,...,1). Recall
that the map

h:T =V,

(J’O’ e ,yn-l,-c) = (ZQO’ L ’yﬂm+c)

can be factored into a closed embedding #/ : T — (C*)™**1 and an open embed-
ding (C*)™*t¢+tl — V' Therefore the fiber of the characteristic variety over (1,...,1) is
just the fiber of the conormal bundle of 4'(T) in (C*)™*¢*1. The tangent space of 4'(T)
at (1,...,1) is generated by

m+c

Za}éiam for k=0,....n+c.
i=0

Therefore (1, ') lies in char(4 Or) if and only if Y7¢ aj;\j =0forallk =0,....n+c.
So it remains to prove that there exists such a A" with A # 0 fori = 1,...,m + c. First
notice that it is enough to constructa (A7,..., A, ) with

m+c

(58) S s =0
i=1

forallk = 1,...,n +cand A} # Oforalli = I,...,m + c. Recall the structure of the
matrix A’

(59) o= A O
\@n|d. )’

where d;; > 0 and the columns g; of the matrix A4 are the primitive integral generators of
the rays of the fan ¥ corresponding to a complete, smooth toric variety Xs. This ensures the
existence of (A5,...,Ay,) € ZZy with 377" | A?a; = 0. Setting A, ; = —3IL, djiA], we
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have constructed an element (A3, ....5,,,) with 1% % 0 and satisfying Y /2 aj; A7 = 0.
Summarizing, this shows that K £ *M/;/(CH’Q’D, 1.e.,

CIAE @y M€ (X°, 2) ~ "M Y /K.

Applying the localized Fourier-Laplace transformation to this isomorphism, we obtain the

first isomorphism in the statement of the lemma. The second isomorphism follows from the
. . . . —~—(2¢,0,1) —-(0,0,0)
J)-linearity of the isomorphism *c 4, ~ Ny . O

. . . .. —B
Asin [47, Section 3], we proceed by studying the restriction of the modules *eﬂ%ﬁ,,, * Mg

and */J\Vﬁ,, to the Kihler moduli space of V(&) as described in the second part of Section 4
(see Lemma 4.4 and Proposition 4.7). The following construction has some overlap with the
considerations in Section 2.4 on which we comment later.

We apply Homz(—, C*) to the exact sequence (47) to obtain the following exact sequence

(60) 1 — (CH" > (CH™T > LY, @ C* — 1.

We will identify the middle torus with Spec C[AT, ... ,Ai +cl» this space was called W* in
Section 2. Choose a basis (p1,. .., pr) of LY, with the following properties

1. pa € Kyevy= Kxs foralla=1,....r,

2. Y Di € Yoy Reopa
Using the basis (pg)a=1,...,r» We identify LY, ® C* with (C*)" and obtain coordinates
q1,--.,qr on this space. We will write FM for this space and call it complexified Kdhler
moduli space. Notice that the choice of coordinates is considered as part of the data of M,
that is, we really have JFeM = (C*)" and not only FM = L}, ® C*. Notice that this space
already occurred in Section 2.4 in a slightly more general context (which is consistent with
the situation considered here, see the explanations after Formula (31).

Consider the embedding Ly, < Z™*¢, which is given by a matrix L € Mat((m + ¢) x r, Z)
with respect to the basis p) of L4 and the natural basis of Z™*¢. Choose a section
Z"m+¢ — Ly of this inclusion, which is given by a matrix M € Mat(r x (m + ¢),7Z).
This defines a section on the dual lattices, i.e., a section LY, — Z™*¢ of the projection
Z"*t¢ — LY, and a closed embedding ¢’ : FeM = (C*)" — W*. We will need to
consider a slight twist of this morphism. Let ¢ : W* — W™ be the involution given
by t(Ai) := (=1)*DA; withe(i) =0fori =1,...,mande(i) = 1fori =m+1,....,m+c.

We will further restrict our objects of study to that part of the complexified Kdhler moduli
space which maps to the set of good parameters in W = C™*¢ as discussed in Section 3.2.
Hence we put FeM°:= (100" )"H(W°) C FeM, and write

0:=t100 : KM — W*.
We can now define the main object of study of this paper. We are going to use the construc-
tions of the Sections 2.4 and 3.2, in particular, the diagrams (26), (32) and (41). We consider
the composed morphism o o B : Zx — C;, x KM as defined by diagram (32). Let
Zy = (@0 B)"1(Cs, x KeM°®) C Zx be the subspace which is parameterized by the good
parameter locus FeM° inside FM.

For future reference, let us collect the relevant morphisms once again in a diagram, in
which the spaces Z°, Z%r and Zy are defined by the requirement that all squares are
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cartesian. For simplicity of the notation, we denote by «, 8, y; and y, also the corresponding
restrictions above Cj,, X FeM’.

(61)

S P S xW e T e S x W e S X FM e § X FM°

J2 6> o) V2 V2
XM e Zyar = XU X W — Z% 0 = XX W = Zyar = X 5 B M — Lar = X0 x e
J 6 & v 7
X Zy Zy Zx Iy
i n & B B
”Z
P(V') z z* ¢ %
nf 8 a a
vV V* Cry X KM +———— Cpy X HM°.
\/
ide; , xo

DEFINITION 6.3. — The non-affine Landau-Ginzburg model associated to (Xs, 21, ..., Z¢)

is the morphism
: %y — Cjy x KM,

which is by definition the restriction of the universal family of hyperplane sections of X, i.e,
of the morphism nzz on : Zx — V to the parameter space FeM°. We recall once again
that X is defined as the closure of the embedding g : S — P(V’) sending (y1,..., Yn+c)
to (1: XQ,I Dol XQ;'H-C) where a;; are the columns of the matrix A’ from Definition 4.6.

We also consider the restrictions T = a o B oy : Lyar = X x KM — Cyy x KM°
resp. Tt =aofoyioy:Sx KM = Cyry x KM . These are nothing but the family of
Laurent polynomials

m m+c
09— (—ZC_I’"" EaEaD DN z”@z)»

i=1 i=m+1
where the monomial ylg is seen as an element of Oxan in the first case and as an element of Og
in the second case. Here m; is the i 'th column of the matrix M € Mat(r x (m + c¢), Z) from
above. Notice that the first component of 7 has been split in two sums with opposite signs of
each summand due to the action of the involution  entering in the definition of the morphism
0 : KM — W*. Both morphisms w and T are called the affine Landau-Ginzburg model
Of(XE, ‘;Zl, ey .EZC)

As we will see later, the affine Landau-Ginzburg model is related to the twisted quantum
J-module QDM(Xx, €) whereas the reduced quantum Z)-module QDM (Xx, ) can be
obtained from the non-affine Landau-Ginzburg model IT : ,"Z} — C;, X FeM’. The next
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results are parallel to [47, Corollary 3.3. and Corollary 3.4]. They show that the calculation
of the GauB-Manin system resp. the intersection cohomology )-module from Section 2 can
be used to describe the corresponding objects for the morphism IT.

We consider, as in Section 3.1, the localized partial Fourier-Laplace transformation, this
time with base KM’ thatis, let j; : CF x KM — Cr x KM, jo : CF x KM —

C. x KM’ then we put FLI:/G’,.;’CMo = jzJi FL gpe.

LEMMA 6.4. — We have
. —~(=¢,0,0)
FLIOC%CWO (&AOJT+ OSXC%C]VZO> = (ldCz XQ)+ *WA’
Similarly, the isomorphism
. —-(0,0,0)
FL'Y o ((‘%oﬂ’r OSXC%WO) = (idc, x0) ™ "Ny

holds.

Notice that the embedding (id¢, x@) is obviously non-characteristic for both of the
—~(—¢,0,0) —-(0,0,0) . . . .
modules *cM 4 and *c/ 4, as their singular locus is contained in

(10,00} x FM°) U (P} x (W*\ HeM)) .

. ——~(-¢,0,0) . —(0,0,0)
Hence, the complexes (ide, xo)t *M and (idc, x0)™ *eNy have cohomology

only in degree zero.

Proof. — The proof of the first isomorphism is the same as [47, Corollary 3.3]: Consider
the cartesian diagram (which is part of the diagram (61))

(62) S x KeM® [*~8xW*
J{n l‘ﬂ
o ichO X0
Cro X M Ve =Gy x W

then the base change property (Theorem 2.1) and the commutation of FL'°® with inverse
images shows that

FLICO%CWo(%OJH Osx o) = (ide. XQ)+Q+IV*’

where Q+ is the D¢ A()XW-module introduced in Section 3.1, and then one concludes using
Proposition 3.3.

Concerning the second isomorphism, we use base change (with respect to the mor-
phism id¢ 20 X0 in diagram (62)) for proper direct images and exceptional inverse images.
However, the latter ones equal ordinary inverse images if the horizontal morphisms in
the above diagram are non-characteristic for the modules in question. This is the case by
Proposition 2.22, 2., so that we obtain

FLIOC%CQ}/ZO (5]&0]’(—{- Osxc%ej"/o) = (id@z XQ)+ FLII/C‘J/C (C%O(PB’T OSXW) - = (id@z XQ)+ Q/TIV*
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The second part of Corollary 5.5 (and the second part of Proposition 3.3) tells us that
i oD . . 000 -0 .
0"~ My . However, the isomorphism W : *c/,, — " given by right

multiplication with z€ - A, 1 -+ - Am+c (see Equation (54)) shows that

. —~—(2¢,0,1) . —(0,0,0)
(ide, x0)T *eMy, >~ (ide, x0)t *Ny

so that finally we arrive at the desired equality

: — (0,00
FL e (O%O”T Oswaw) = (idc. x0) " "Ny O

Next we show the analog of Proposition 3.21 for the morphism 7.

LEMMA 6.5. — Let F : X x FoM® — Cy, be the first component of the morphism T,
then we have the following isomorphism of Rc. x gy -modules

—c gntcio® = . « [ (=00

(63) =z °H (Qxaﬂxc%%o/wwo (log D)[z],zd — d F) = (id¢, x0)* | 0'cM 4 .

Proof. — In order to show the statement, notice that by definition

H"*e (Q}aﬁxw*/w* (log D)|z],zd — dF)

is the cokernel of

_ zd—dF
anjﬂgxl}y*/w* (log D)[Z] - Q’)l(:_ﬂcxw*/w*(log D)[ZL

that is, the cokernel of an Og,_xw+-linear morphism between free (though not coherent)
Oc. xw~-modules. Hence tensoring with Og_ .5 yields the exact sequence

_ zd—dF
Q')l(jffxcl%wo/c%e%o (log D)[Z] - Q')l(:_ﬂgxc%wo/cﬁwo (log D)[Z]
g Oczx;e(m" ® O, s+ Hn+c(Q;(aﬁ“xW*/W* (log D)|z],zd —dF) — 0

from which we conclude that

H" " (Qary 900 ) e (108 D)z, zd — dF)
= Oc.x #on® ® o H" (v g+ (log D)[z], 2d — dF).
Notice that the restriction functor (Og, x #° ® (. .+ —) 18 defined via the embedding

0: FcM® — W*,and hence involves the involution ¢. Therefore the function F appears on
the left hand side of the last formula, whereas on the right hand side we have to put F.

We know by Proposition 3.21 that

—(0,0,0
Z_CH”JFC(Q;(aﬁXwo/WO (log D)[z],zd —dF) =~ z_co"(ﬂ/li, o

On the other hand, we know from Equation (39) that right multiplication by z¢ induces an
isomorphism
—(0,0,0) z¢ [(—=(=¢,0,0)
(WA/ ) |CZXW° - (WA/ ) |CZ><W°
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. ——(0,0,0) ——(0,0,0) . . —~(-¢,0,0)
which maps z7¢¢eMy, C My . xwo isomorphically to ¢y
——(0,0,0) . . ..
A7 le.xwo- The desired statement, i.e., Formula (63) follows as the restriction

map o : KM’ — W* factors by definition over W°. O

Similarly to the last statement, we now give a geometric interpretation of the (restric-

tion to C, x FeM° of the) modules 0*@;(}9’9) using the twisted relative logarithmic de
Rham complex on X*T x FoM°. We need some preliminary notations. Denote by (—)’
the duality functor in the category of locally free Ug_y .5o-modules with meromorphic
connection with poles along {0} x FeM°, that is, if (&7, V) is an object of this category,
we put (£, V) = (e%m%xwo(g}?, Oc.x #one). V'), where V' is the dual connection.
Notice that the (R x g °-modules from isomorphism (63) are actually objects of this
category. Notice also that the duality functor in the category of (R¢_x . °-modules (i.e.,
the functor 8XI¢r7€_CIZx€7dW° (= Rc.x wne)) restricts to (—)" on the subcategory described
above (this follows from [15, Lemma A.12]).

As a piece of notation, for any complex manifold M we denote by o the involution of
C, x M defined by (z, x) — (—z, x).

LEMMA 6.6. — There is an isomorphism of R x sg°-modules

*_n nte (e 1 d—dF = d « [ 50,00
0z (H ( Xaﬂx(%dfﬁ/(%WO(Og D)[Z],Z - F)) — (1 Cz XQ) OJVA/ .

Proof. — Consider the filtration on ¢, xw resp. on ¢, xw+ which extends the order
filtration on w (resp. on Dy +) and for which z has degree —1 and 9, has degree 2. Denote

. . —(0,0,0) ——(~¢,0,0) ——(—¢,0,0)
by G, the induced filtrations on the modules *c/V 4/ and oMy, resp. on *o My, ,

. . —(0,0,0) — (0,0,0) —(~¢,0,0) —(~¢,0,0)
in particular, we have Gg (*JVA/ ) =o' Ny and G (QJMA,C ) =9 A/C resp.

—(=¢,0,0) o (=¢,0,0)
G() (*WA, ) == ()* ‘A’ .

Similar to the proof of [47, Proposition 2.18, 3.], we consider the saturation of the filtra-
tion F, on oﬂ/fﬁ,, by 8;{:. More precisely, we first notice that Lemma 3.2 can be reformulated
by saying that for any 8’ = (B¢, B1.....Bhic) € Z' "¢, we have

—B /e

My = FL (M4 15511).
where Bo = By + land B; = B/ fori = 1,...,n + ¢ and where we write ojmf;f,[a;(} =
@V[azg] ®07)V (ﬂ%ﬂ//-

Now we consider the natural localization morphism foc : o]%ﬁ,/, — Wﬁ,/, [8;(}] and we
put
Fe My (071 = 3 03 10¢ (Fier s M4, )
Jj=0

As we have

Fi M5, [071] = im (a’;ocuo,xl, Dm0 05 0, a;olalmﬂ)) in M5, (03],
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. / —B . . —B
the filtration induced by Fy oﬂ%ﬁ,, [8;01] on M, is precisely G M ,,. We conclude from [51,
Formula 2.7.5] and from the fact that Fourier-Laplace transformation commutes with the
duality functor up to the action of ¢ that

—~—(c,0,1 —~—(c,0,1) ! —(1,0,0)
(Gr My ) = Hom ge_ oy (Gl My ) Ocsz) = U*GP+(m+c+2) My
—(1,0,0) .

where G2 oM, is the filtration induced by the saturation of the filtration on (Mg‘?;g’@ dual
to the order filtration F, on JV[Z,(,CH’Q’D . By Theorem 5.4, 2. and by restriction to C, x W*

we obtain
——(1,0,0) —(1,0,0)
GP *Cj% ’ = Go+n—(m+c+l) *WA’

Hence
——(c,0.1) —(1,0,0
(Gr"e My ) = 0"Grint1 "My
Now we use the fact that for any k € Z, the isomorphism (see Equation (39))

—~(Bo.B) = ——(Bo—k.B)
koMo — My

—(Bo,B) _i —(B0.B) —(Bo—k.B) —(Bo—k.B)

sends Gy oMy, = z %My to Go My = oMy . Therefore (setting
[ = 0) we have
—~—(c,0,1) ——(1,0,0) ——(0,0,0)
(GOWA/ )/ EU*G”-}-I*QMA/ ZG*GH*QMA/

which implies
e —(c.0.1) —(0.0,0)’

G()*WA/ = (O'*Gn*WA/ )

The isomorphism ¥ from Formula (54) satisfies
—-(0,0,0) =~ ——~—(2¢.,0,1 —~—(c,0.D
\IJZO*JVA/ —)ZC'O*WA/ = *WA’
In conclusion, we obtain
— (0,0,0) _n 0,00 0,000\’
O*ijA/ = (U*Z n. O*WA/ ) = U*Zn . (()*WA/ ) s

and then the statement follows from Proposition 3.21 as the inverse image under id¢, xo*
commutes with the functor (—)'. O

Now we can constructa ¢, x g, -module from the non-affine Landau-Ginzburg model
0 : %y — C;, x KM that will ultimately give us the reduced quantum Z-module.
It will consist in a minimal extension of the local system of intersection cohomologies of
the fibres of I1. Recall that o#'“(Zy) is the intersection cohomology #-module of Z5%.,
that is, the unique regular singular 7)5o-module supported on Zx which corresponds to the
intermediate extension of the constant sheaf on the smooth part of Zy.

PROPOSITION 6.7. — 1. Consider the local system 7 from Proposition 2.13. Then
Hoas MU(L3) = (idoy, %)t (MX°, D) @ (TH" 7' (X) @ Oy))

v
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Using the Riemann-Hilbert correspondence, the above isomorphism can be expressed
in terms of the morphism I1 as

PIORILIC(Zy) = (ide,, x0) ™" ((xeWC(X°, 2) & LH" 7 (X)) .

where P&/ denotes the perverse cohomology functor, where jxo : Xo <> V is the
canonical closed embedding and where IH"T¢~1(X) is the constant sheaf on V with fibre
JH" el (X)

2. We have isomorphisms of Dg_ x spo°-modules

FLIS o (5001 (23)) = (ide, x0) ME(X°, Dy = (de. x0)* im(@).

—(0,0,0) ——(=¢,0,0)
where § = *oV v M A/C is the morphism introduced in Definition 6.1.

Proof. — 1. As the inclusion Z° < % is open and hence non-characteristic for any
D e-module, the assertion to be shown follows from Proposition 2.22 (more precisely,
from Formula (33)) and Proposition 2.13.

2. The first isomorphism is a direct consequence of the last point, using again the commu-
tation of FL'°® with the inverse image and the fact that Oy -free modules are killed
by FLII,‘{,C. The second isomorphism follows from Equation (55). O

For future use, we give names to the &)-modules on the Kéhler moduli space considered
above. We also define natural lattices inside them.

DEFINITION 6.8. — Define the following ¢ x g -modules:

QM = (ide. x0)* (Jvf 20 ) and QS = (idc. xo)* (im(@)).

Define moreover

—~(0,0,0)

0QcM 4 = (idc. x0)* (0 MNa ) and QM := (ide. x0)* (47( */JT/;? . 0))) ,

where here the functor (idc, x0)* is the inverse image in the category of holomorphic vector
bundles on C, x FeM° with meromorphic connection (meromorphic along {0} x KM ).

We proceed by comparing the objects QM and Qoﬂ%ff, just introduced to the twisted
and the reduced quantum )-module from Section 4. For the readers convenience, let us
recall one of the main results from [39] which concerns the toric description of the twisted
resp. reduced quantum &)-modules.

THEOREM 6.9 ([39, Theorem 5.10]). — Let Xx be as before, and suppose that
L1 = Oxx(L1), ..., Zc = Oxs (L) are ample line bundles on Xs, such that —K x,, — Z/c'=1 L;
is nef. Put again € := @5_, Z;. For any T € Pic(Xg) with c\(Z) = Y_,—, dapa € LY, we
put T =31 _,2daqadq, € Re.x - Define the left ideal J of Re,x sg0 by

-~

J = Re.x go(QD1er,, + Re.xgon - E.
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where
li—l - lm+(: R
0, := 1_[ l—[ (c@, — vz) l_[ H (Sﬁj + vz)
i€{l,...,.m}:l;>0 v=0 Je{l,..chilyq >0 v=1
—li—1 g _lm-l—c R
—q" l_[ l_[ ((f/),-—vz) l_[ H (%j—l—vz),
i€f{l,...m}:l;<0 v=0 Jell,...chilyq j<0 v=1

E\ = 2232 — I/(\V(EV)
Here we write ); € Pic(Xx) for a line bundle associated to the torus invariant divisor D;,

wherei = 1,...,m. Notice that the ideal J was called G in [39, Definition 4.3].
Moreover, let Quot be the left ideal in Re_x .5, generated by the following set

G := {PER@ZXC%W|a0p'P€J},

where Ciop = ]_[57:1%]-. We define P := Re_xggu/J resp. P™ = Re,x g/ Quat
and denote by P = Rc.x szl I resp. P = Re.xgopnl Quat the corresponding
R x po-modules. Notice that we have ¢/ C  Quet, hence there is a canonical surjec-
tion P — P,

Put BY :={q € (C*)" |0 < |q| < &} C FKeM°, then there is some & such that the following
diagram is commutative and the horizontal morphisms are isomorphisms of Rc, x g -modules.

Pl xpr - (ide. xMin)* (QDM (Xs, &))

| I

(ide, xMir)* (QD—M(XZ, 8)) .

IR

yares

|CZ XB¥
Here Mir: B} — H°(Xx) x U is the mirror map, as described in [21, Theorem 0.1] (see also
[9, Corollary 5 and the remark thereafter]).

Recall that U ¢ H?*(Xx,C)/2niH?*(Xs,Z) = (C*)" is the convergency domain of the

twisted quantum product, i.e., the quantum )-modules QDM (Xg, ) and QDM (Xx, &) are
defined on C, x H°(Xs, C) x U (see Section 4.1).

res

We now define another quotient @ of 2 which is better suited to our approach and
which turns out to be isomorphic to 2™ resp. to (idg. x Mir)* (QDM(XE, 8)) in some

neighborhood of ¢ = 0.

DEFINITION 6.10. — Let K be the following ideal in R¢, x .-

k
K:={P € Re.xzon |3 p € Z. k € N such that [ [eh}' P e J}.
i=0

where ¢}, 1= H_f=1(§j +i). Define

Qres = RCZXC%Q]/I/K

and denote by Q™ be the corresponding Roc, x s.-module.
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PROPOSITION 6.11. — Using the notations from above, we have the following isomorphisms:

Pl s = Q8 e = (idc. x Mir)* (QDM(XE, 8))_

Proof. — First notice that we have a surjective morphism 2 — Q" because the
generating set G of Quoes is contained in the ideal K. If we can construct a well-defined
morphism

(64) O lo. e — (ide. x Min* (QDM(Xz, )
such that the following diagram

g)res

Qres
|(DZ><B‘;‘< |CZ><B;"

(ide. x Mir)* (QD—M(XE, 8))

commutes, the proposition follows. In order to construct the morphism (64) we recapitulate
the construction from [39] of the morphisms

Ple.xge — (de. x Min* (QDM(Xs. €))

resp. P ~ (ide, x Mir)* (QDM(XE, 8)).

|C; xBX

It relies on a certain multivalued section L* in End(QDM(Xx, £)) having the property that
LW =K €1 (T x)—c1(&)

is a fundamental solution of QDM (X3, £) (see again [21] and [9]). We use the formulation

from [39, Proposition 2.17]. Moreover we also need the multi-valued section J** having the
property that

wo= (L")l in QDM(Xg, &).
Finally, we are going to use the cohomological multi-valued section
I := qT/Z Z qud(z),
deH,(X,Z)

where

T oo ([Li] + mz) [To——oo([Dg] + m2)
A - ,
a(z) = 1_[ O (L]l +mz) 961;[1) M%___(IDg] + mz2)

qT/Z —ezle 1Ta10g(Qa)

dg = [, Dg and dy, := [, c1(Z;) and which has asymptotic development I = F(q)1 + O(z ™).
The aforementioned mirror theorem of Givental ([21, Theorem 0.1] and [9, Corollary 5]),
which we use it in the version stated in [39, Theorem 5.6], says that

I(q,z) = F(q) - J" (Mir(q), z).
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Now one defines the following morphism

(65) Rc.xpr — (id x Min)* (QDM(Xs, €)),

(66) P(z,q,2q04,2%0;) — L’w(Mir(q),z)z_“zcl(gX)_cl(g)P(q,z, 204,,2%0;)
. Z_cl(gXHcl(8)Z”F(q)th(Mir(q), 2)

(67) = L' (Mir(q), 2)z #z¢1 0= p(q 2 2d,.,220,)
. Z_Cl(gX)+cl(8)Zﬂl(q’ z)

the proof of its surjectivity can be found in the proof [39, Theorem 5.10].
The morphism above descends to ¢, xpy by the fact that
P(q,Z,anq,zzaz)zfc‘(gX)Jrc‘(‘g)z“I =0 for Ped.

If one composes the morphism (65) with the quotient morphism &, then this descends to a
morphism

(68) 0731'68

which follows from

lorgs = (e, x Min* (QDM(Xs, ©)) .
(69) P(q.2,2qdq,2%9;)z" 1T OTO T € ker(m,,, ) for P e Quat

and the fact that L' preserves ker(m.,,,) (cf. [39, Lemma 2.31]).

As explained above, the proposition will follow if the morphism (68) descends to Qres| C.xB*
1.e., we have to show that

(70) P(q,Z,anq,zzaz)z_cl(g)()”‘(g)z”“l € ker(me,,,) for P e ¥.
We will adapt the proof of (69) from [39, Lemma 5.21] to our situation. First notice that
=1 (Tx) e (@) ny — Z qT+dZ—cl(<7X)+01(8’)—/'(1(61(5’7X)—61(8))Ad(1)’
deH»(X,7)

Now let P(q,z,qd4,2%9;) € K and decompose it:

P(q,2,q94,2%93;) = Z qd/Pd/(z,zE)q,Zaz).
d’'eH>(X,7Z)

finite

This gives

P(q7 Zv an’ ZzaZ)Z_C] (gX)+C] (S)ZM]
_ Z qT+dZ—Cl(gX)+Cl(8)—fd(cl(gX)_Cl(g))Bd(Z)v
deH>(X,7)
where

Bi):= Y. Pu (z,z(T+d),z(—c1(9“X>+c1(8)— /d (cl(%)—cl(e)))) Ad-a(1).

d’eH>(X,Z)
finite
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Similarly to loc. cit., the statement (70) will follow from the fact that c(op B4 (z) = 0 for all
d € Hy(X,Z). Because P € K, there exists p € Z and k € IN such that

k
(l_['c\tpo'g’) P(q,Z,anq,zzaz)z_"'(g’(@‘gv)zul =0,
i=0

which gives

k ¢
oo gt @0t oo I T ] 2(Ls) +du, + p+1) | Baz) = 0.
deH(X,7) i=0j=1

Notice that the sum above is zero if and only if each summand is zero. For (z,q) € C; x W

the term g7 +t4z7¢! (Tx)+e1O=dgygev is invertible, so we deduce that
k ¢
[TT10L +de, +p+i) | Ba(z) =0 Vd € Hy(X. 7).
i=0j=1

LetJg:={j €{l,...,c}|3i €{0,...,k} withdr;, + p + j = 0} and notice that for every
J there is at most one i € {0,...,k} such that dy; + p + i = 0. Because cup-product with
[L;] + [ is an automorphism of H>*(X, C) for every / # 0, we conclude that

[T1L1])Ba(z) =0 Vd € Hy(X.Z),
J€Ja

which in turn shows that cop B4 (2) = ([15-,[L;])Ba(z) = 0forall d € Hy(X, 7). O

The next proposition compares the JR-modules from Theorem 6.9 and Definition 6.10

with OQWA/ and 0 (JV[IC;
PROPOSITION 6.12. — We have isomorphisms of ﬂczxc%c/%" -modules

~ ~ I1C
Ploxgone = oMy and Q%0 g0 = 0QeMy .

Proof. — The first isomorphism follows from a similar argument as [47, Proposition 3.2],
namely, the section
o=ioQ : HM— W*,
@1, qr) = A= g™ = @ A = =@ A = —ge)
can be used to construct an isomorphism
0:Fx FEM—>W*,
(floeoo JaterQue oo dr) > (@71 Y21, L q™m y%m  —qMmt1 ylmet | —gMmete ydmec)
with inverse
0~ W* > F x FoM,

m+c L. . m+c X
A1 Amge) b (f; = (S)Z=n1 V28 gg = (=)=imm e jla),
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where L = (/) resp. M = (m;) are the matrices which were introduced above Definition 6.3
and C = (¢;) isa (m + ¢) x (n + ¢)-matrix such that the following equations are fulfilled (cf.
Section 2.4):

M-L=1I,, B-C=1I44,, B-L=0, M-C=0, C-B+L-M=1I,4..
. . —-(0,0,0) . .
Under this coordinate change the module ¢*c/V 4/ has the following presentation:

R xFx o] (QDier + (E) + (E\;c)k=1 ..... ntec)

with Q; and E as in Definition 6.9 and E/ := Jrog fork e {1,...,n+c}.
Its module of global sections can be described simply by forgetting dy, , i.e., we have the
following description

C[z,fli,.,., njj_c,qli,...,qr (z%0;,204,,...,20q,)
(QD)1er + (E))
Notice that the map o can be factorized as 6 o iy with
2] : Q%W_) F X $W7
@G1,---5qr) = (..., 1, g1, ..., qr).

(71)

Thus the inverse image of (71) with respect to ig is given by
C[z,qf:, RN ]( 282,28,11 veees20g,)
((QD)ier, + (E))
which is exactly the definition of the module 2 from Theorem 6.9.

Concerning the second isomorphism, the associated sub-Rg¢, xFxg.-module corre-
sponding to ¥y from Lemma 6.2 can be described by

(PeClz, fiE ... £ aF. .. qf1(2%0;,,204,, ..., 20g,)
k
|3peZ.k e Nst. [[CEP € (Q)ier + (E))},
i=0
where

m+c n+c

Céo=[] O ciifid; +Zlmqa da) + 1),

i=m+1 j=1

m+c n+c A

[T (O cijfi9; + D)+ k)
i=m+1 j=1

for k € Z. It is easy to see that its inverse image under (idc, x;, ) is given by

(P eClz,qF, ..., q5)(220,,20,,,...,20,,)
k
|3peZ.keNst [[ehi P e Qe + (E))}
i=0
which is exactly the definition of the ideal K in Definition 6.10. Thus, the second isomor-
phism follows. O
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Combining Proposition 6.12, Theorem 6.9, Lemma 6.4 and 6.6 as well as Proposition 6.7,
we obtain the following mirror statement.

THEOREM 6.13. — Let Xs and 2, ..., Z. be as in Theorem 6.9. Consider the affine resp.
non-affine Landau-Ginzburg models ¥ = (F,q) : X KM — Cpy X KM,

TS X PM = Cpy x KM and Tl . Zy — Z° el Cy, X KM associated
to (X, Z1,...,ZLc). Let BY C KM be the punctured ball from Theorem 6.9. Then there
are isomorphisms of . x gy -modules

FLY o (071 Osx 20 | = (e, XMin)* (QDM(Xs, ) (+({0} x BY))
FLY 0 (H s ML) | pe = (ide. xMin)* (QDM(Xs, €)) (+({0} x B)

and an isomorphism of R¢, x gz -modules
~\/ . Nk
ot (Hn+c(gz;(aﬂx ey e log D[zl zd — dF)) g = (ide. xMin* (QDM(Xs, ).

The following corollary is the promised Hodge theoretic application of the above main
theorem.

COROLLARY 6.14. — There exists a variation of non-commutative pure polarized Hodge
structures (F, Lq, 180, P) on JFeM’ (see [36], [26] or [49] for the definition) such that

(72) o (+(10} x BY)) = (ido, xMir)® (QDM(Xs, €)) (+({0} x BY).

Proof. — Using Theorem 6.13, this is a direct consequence of [50, Théoréme 1] and [48,
Corollary 3.15]. O

It would of course be desirable to remove the localization with respect to {0} x B} from
the above theorem. We conjecture that the corresponding statement still holds, however, we
cannot give a complete proof of this for the moment as we are not able to control the Hodge
filtration on JMIC(%;(). More precisely, we expect the following to be true.

CONJECTURE 6.15. — 1. Write FH oy M'(Z%) for the Hodge filtration on
oy M (Zy), which underlies a pure Hodge module due to[50, Théoréme 1],
and which has weight n + ¢ + (m —n) = m + c. Let FH [8;;] be the satura-
tion of FH as in the proof of Lemma 6.6 and write GH for the induced filtration
on FLJ;WO(%OOM_ WIC(%;)). Then under the isomorphism of Proposition 6.7, 2., we
have that

G ey FL e (Hoos M (Zy)) 2= 2° - oQM 5
Notice that the bundle &f which was used in the isomorphism from Corollary 6.14 is
nothing but the object Gfl(m+c) FLC%QMo(p%OmL W’C(%;)).
2. The isomorphism (72) holds without localization, i.e., there is an isomorphism of
Koo, xgx-modules

(G2 sy FL e (001 ML) | e = (e, xMir)* QDM (X5, €).

As a consequence, the reduced quantum J)-module underlies a variation of non-
commutative Hodge structures.
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This conjecture, if proved, should be seen as a first step towards establishing the existence
of a very special geometric structure on the cohomology space of the complete intersection
subvariety Y C Xs, known as tt*-geometry (see [7, 8] or [25] for a modern account). Its
existence is known for the quantum cohomology of nef toric manifolds themselves (this
follows from [47, Theorem 5.3], see also [32]). For (non-toric) complete intersections one
needs of course to consider its total quantum cohomology, not just the ambient part, but
at least on this part the above conjecture would give the desired result.

Comparing Theorem 6.13 with Lemma 6.4 one may wonder whether the module
FLICO%? e ((»‘775011+ Osx %, QM") also has an interpretation as a mirror object. This is actu-
ally the case, namely, it corresponds to the so-called Euler™!-twisted quantum )-module
(whereas the object QDM (Xyx, £) from Definition 4.3 would be the Euler-twisted quantum
$-module in this terminology). The Euler™!-twisted quantum )-module encodes the so-
called local Gromov-Witten invariants of the dual bundle £V and is denoted by QDM(EY)
(see [20, Theorim 4.2]). There is a non-degenerate pairing between QDM(Xy, &) and

(idcz x(ho 7)) QDM( EY) (this is the non-equivariant limit of the quantum Serre theorem

from [9, Corollary 2]) where f, h € C[[H*(Xs, C)V]]" are maps. The existence of this pairing
has been proved in the recent paper [33]. However, in the formulation of this result, all objects
are defined on the total cohomology space, i.c., correspond to the big (twisted) quantum
product. Nevertheless, we are able to obtain a mirror theorem for local Gromov-Witten
invariants.

Consider the situation of Theorem 6.13, in particular, let £ := @Jc-:l Z;. As Z; are nef
bundles and hence globally generated, also € is globally generated and therefore convex. Let
QDM(&Y) be the (Euler™!)-twisted quantum -module governing local Gromov-Witten
invariants, that is, integrals over the moduli space Wo, 1.a(V(E V)) of stable maps to the total
space V(&) (notice that WO,M(GU( &Y)) is compact unless d = 0).

THEOREM 6.16. — Let again Xy and 7, ..., Zc be as in Theorem 6.9. There is some

convergency neighborhood B}, an isomorphism of /¢, « p* -modules
= &

FLS o (9074 Coin ) e, 2 (ide. xMir)” (QDM(EY) (x(10} x BY)
and an isomorphism of R¢. x By, -modules

H" Qe o) sppee 108 D)Iz) 2d — df)|csz*, =~ ¢*z" - (ide, xMir')* QDM(EY).

Here Mir’ is some base change involving the above mentioned maps f, h as well as the base
change Mir.

Proof. — Tt is actually sufficient to show the second statement as the first follows by
applying the localization functor (=) ® Ce.xa?, (*({0} x B%)) (This follows by using
Proposition 3.21, Remark 3.16, 2. as well as Proposition 3.3 together with Lemma 3.4.)

It follows from [33, Theorem 3.14] that there exists a non-degenerate pairing

QDMK )| 5, ® (idez %o 7)) (QDM(E| 5. ) = Coen
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which is compatible with the connection operators induced by the Ri.x BY, -module
structures of the objects on the left hand side. As has been pointed out above, this state-
ment is given in loc.cit. for the big quantum )-modules, hence, one has to check that

o\
(idcz x(h o f)) (QDM(&V)Icsz*, is still a vector bundle on C; x B};. From the defini-

tion of the map % (see [33, Proposition 3.11]) it is clear that it restricts to an invertible map
h: H?>(Xg,C) — H?(Xx, C). We claim that f restricts to a map

f:H?*(Xs,C) — H(Xs,C) ® H*(Xz,C)

so that the pullback 7*)/ of any class y € H?(Xs, C) is still an element of H?(Xx, C). This
can be seen as follows: From [33, Proof of Lemma 3.2], we know that

h

(73) fo=> Y (Twlrt....Tontsa | T

a=0 \deH,(Xs,C),n>0 n-times,

According to the Definition 4.1, the correlator (TQ,T, TT,...,T)0,n+3,4 1S non-zero only if
Emes,

the degree deg(7y) + (n + 1) + deg (e(80,n+3,d (2))) equals the dimension of the moduli

space [Wo,n+3,d(36)]a i.e., the number dim(Xx) + fd ¢1(X) + n. Under the assumption of

the theorem, € 43,4 is represented by a vector bundle, which is of rank [, ¢; (€)+rank(&).

Hence €o,n+3,4(2), being the kernel of the map £ 43,4 — ev;(E) is a bundle of rank

[ ¢1(€), so that we see that (Tu. 1,77,....T)ont3.a # 0if and only if

n-times,

deg(Ty)+1 = dlm(X)—i—/ c1(Xz)— / (&) = d1m(X)+/ c1(—Kxs— Z Z;) = dim(X)
j=1
where the last inequality holds due to the assumptions on Xy and £. We conclude for any
class T% occurring in Formula (73) the following holds: either its degree is at most 1 or its
coefficient is zero. This means nothing else than im(f) ¢ H?>(Xs,C) @ H°(Xx, C).
Hence we can deduce from [33, Theorem 3.14] that there is an isomorphism

(idC: x(h 07))* (QDM(gV)|szB*/) = ((QDM(XZ’ 8))/) |CZXB*/

of R, x BY, -modules, and then the desired statement follows from the third line in the
displayed formula in Theorem 6.13. O

Remark. — In view of [20, Corollary 4.3], one may conjecture that Mir’ is the identity if the
number ¢ of line bundles defining the bundle £ is strictly bigger than 1. However, at this
moment, we do not have any further evidence for this conjecture.

The following consideration shows that the main Theorem 6.13 can also be considered
as a generalization of mirror symmetry for Fano manifolds themselves, as presented in our
previous paper (see [47, Proposition 4.10]). Namely, let us consider the case where the number
¢ of line bundles on the toric variety Xz is zero. Then we have A’ = A, and the duality
morphism ¢ from Definition 5.6 is

+1,0, 1, 0,0,0 0,0
¢ WA(C 1) W( 0) W( 0) W( 0)
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and is induced by right multiplication by d;,. In particular, the induced morphism

$ is simply the identity on /JTZS@. In particular, we have that im(¢) = ?ﬂ?fﬁ’g) so that
Q@MIC/ =~ @My and OQ(JVZQC/ ~ QM. On the other hand, the reduced quantum
JL-module QDM (Xx, €) is nothing but the quantum &)-module of the variety Xsx, so
that we deduce from Theorem 6.13 that we have an isomorphism of )¢, « gx-modules

FLY% (o%"m Osx.2 c%) g = (ido, XMir)® (QDM(Xz)) (+({0} x BY)).

One easily sees that we have an even more precise statement, namely, the third assertion of
Theorem 6.13 simplifies in this case to an isomorphism of (R, x gx-modules

n L[]

H™ (2

sz e l2) 2d = dﬁ)|@sz: ~ (idg. xMir)* QDM(Xs, &).

This isomorphism is the restriction of the isomorphism in [47, Proposition 4.10] to C,; x B,
(see also [30, Proposition 4.8]), notice that the neighborhood B is called Wy in [47]. Hence we
see that our main Theorem 6.13 contains in particular the mirror correspondence for smooth
toric nef manifolds, at least on the level of (R, x ,-modules.

One may conclude from the above observation that Landau-Ginzburg models, either
affine or compactified, appear to be the right point of view to study various type of mirror
models of (the quantum cohomology of) smooth projective manifolds, including Calabi-Yau,
Fano and more generally nef ones. The preprint [24] where varieties of general types and their
mirrors are investigated, also seem to confirm this observation. It would certainly be fruitful
to apply our methods to varieties with positive Kodaira dimension to refine the results from
loc.cit.

Index of notations

Objects

€, toric vector bundle, 718

&Y, dual toric vector bundle, 722

FLlIfI’,C, localized FL-transformation with basis
W, 705

FL, Fourier-Laplace transformation, 686

FL g, Fourier-Laplace transformation with
basis ¢, 685

¢, GauB-Manin system, 706

C/’T, compactly supported GaulB3-Manin
system, 706

56}2, Kibhler cone of X, 722

Kxs, nef cone of X5, 722

M g , global sections of GKZ-system, 687

oﬁflﬂ, GKZ-system, 687

CMI ¢ (X), minimal extension of structure
sheaf, 692

MIC (K, ), minimal extension of flat
bundle, 692

%, Radon transformation, 690

Pest, constant Radon transformation, 690

Z°, open Radon transformation, 690

%O

-, compact, open Radon transformation,

690

Re, xM » Rees-ring, 686
ﬂ&;zx M > restricted Rees-ring, 686
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Maps and spaces

g, torus embedding, 687 ¢p, family of Laurent polynomials, 690
FeM®, set of good parameters inside Kihler 0, embedding of Kéhler moduli space, 734
moduli space, 734 S, torus, 686
FeM, Kihler moduli space, 734 W*°, set of good parameters, 712
Mir, mirror map, 741 X, compactification of S, 687
I1, non-affine Landau-Ginzburg model, 735 X2 partial compactification of S, 710
7, affine Landau-Ginzburg model on torus, Z, universal hyperplane, 689
735 z;}, hyperplane sections of X restricted to
7, affine Landau-Ginzburg model on X%, 735 good parameters, 734
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