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DURFEE’S CONJECTURE ON THE SIGNATURE OF
SMOOTHINGS OF SURFACE SINGULARITIES

BY JiAnos KOLLAR aND ANDRAS NEMETHI
WITH AN APPENDIX BY TOMMASO DE FERNEX

ABSTRACT. — In 1978 Durfee conjectured various inequalities between the signature o and the
geometric genus pg of a normal surface singularity. Since then a few counter examples have been found
and positive results established in some special cases.

We prove a ‘strong’ Durfee-type inequality for any smoothing of a Gorenstein singularity, provided
that the intersection form of the resolution is unimodular. We also prove the conjectured ‘weak’ in-
equality for all hypersurface singularities and for sufficiently large multiplicity strict complete intersec-
tions. The proofs establish general inequalities valid for any numerically Gorenstein normal surface
singularity.

REsumE. — En 1978 Durfee a conjecturé plusieurs inégalités entre la signature o et le genre géo-
métrique pg d’une singularité normale de surface. Depuis, quelques contre-exemples ont été trouvés
et des résultats positifs établis dans des cas particuliers.

Nous montrons ici une inégalité ‘forte’ de type Durfee pour toute lissification d’une singularité de
Gorenstein, sous la condition que la forme d’intersection de la résolution est unimodulaire. Nous prou-
vons aussi I'inégalité ‘faible’ pour toute singularité d’hypersurface et pour les intersections complétes
strictes de multiplicité suffisamment grande. Les preuves établissent des inégalités générales valables
pour toute singularité normale et numériquement Gorenstein de surface.

1. Introduction

Durfee’s conjectures. — Let (X,0) be a complex analytic normal surface singularity and
X — X aresolution. The geometric genus Pg is defined as h'! (Og). For any one-parameter
smoothing with generic (Milnor) fiber F, the rank of the second homology H,(F,Z) is the
Milnor number of the smoothing . Furthermore, H,(F, Z) has a natural intersection form
with Sylvester invariants (@4, o, t—). Then u = 4 + o+ p— and o := p4 — p— is called
the signature of the smoothing. The Milnor number and the signature usually depend on the
choice of the smoothing; but if (X, 0) is Gorenstein, they depend only on (X, 0) satisfying
explicit formulas. For more details see the monographs[2, 1, 17, 20] or [16, 18, 35]. Formulas
for various classes of singularities can be found in [8, 9, 10, 11, 14, 15, 12, 22].
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788 J. KOLLAR AND A. NEMETHI

These local invariants should be viewed as analogs of the most important global invari-
ants: Todd genus, Euler number and signature.

Durfee proved that 2p, = o + p+ [5]. Furthermore, 1o equals the first Betti
number by (Ly) of the link Ly of (X, 0).

Examples show that for a surface singularity p_ is usually large compared to the other
Sylvester invariants. Equivalently, p, is substantially smaller than x and o tends to be rather
negative. These observations led to the formulation of Durfee’s Conjectures [5].

Strong inequality. — If (X, 0) is an isolated complete intersection surface singularity (ICIS)
then 6p, < u.

Weak inequality. — 1If (X,0) is a normal surface singularity, then for any smoothing
4ps < 1+ po. Equivalently, o < 0.

Semicontinuity of 0. — If {(X;,0)};e(c,0) 1s a flat family of isolated surface singularities then
0(Xi=0) < 0(X;0).

Other invariants are provided by the combinatorics of a resolution 7 : X — X. Let
s denote the number of irreducible 7-exceptional curves and K the canonical class of X.
Then K? + s is independent of the resolution and, for smoothable Gorenstein singularities,

(1 u:12pg+K2+s—,u0 and —U:Spg+K2+s;

see [5, 16, 32, 35]. Therefore, an inequality of type p + o > C - p, (for some constant C)
transforms into

2) (12— C)pg + K> +5>0, or —0>(C—4)p,.

In particular, one can ask for these inequalities (2) even in the non-Gorenstein case.

The resolution defines the maximal (ideal) cycle Z ax, which is the divisorial part of the
ideal sheaf 7~ my ¢ - O (well defined even if this ideal sheaf is not principal).

Other invariants of (X, 0) are the multiplicity, denoted by v, and the embedding dimension,
denoted by e.

KNOwWN RESULTS 3. — A counterexample to the weak inequality was given by Wahl [35,
p. 240]; it is a minimally elliptic normal surface singularity (not ICIS) with v = 12, u = 3,
to =0, pg = land 0 = 1. If one combines the results from [35, 2.2(d)] with [21] or [31],
examples with arbitrary large positive o can be constructed.

Nevertheless, both the strong and the weak inequalities hold in most examples and the
intrinsic structure responsible for the positivity/negativity of the signature of a given germ
has not been understood.

A counterexample to the semicontinuity of the signature was found in [13]: the semicon-
tinuity already fails for some degenerations of hypersurfaces with non-degenerate Newton
principal part. This excludes degeneration arguments in possible proofs of the inequalities.

The articles [14, 15] show that the strong inequality also fails for some non-hypersurface
ICIS, and without other restrictions the best that we can expect is the weak inequality.

For hypersurfaces we have the following ‘positive’ results:

8pg < u for (X,0) of multiplicity 2, Tomari [33],
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DURFEE’S CONJECTURE 789

6ps < n—2for (X,0) of multiplicity 3, Ashikaga [3],

6pg < u—v + 1 for quasi-homogeneous singularities, Xu-Yau [36],

6pg < pu for suspension singularities {g(x, y) + z¥ = 0}, Némethi [24, 26],
6pg < u for absolutely isolated singularities, Melle-Hernandez [19].

For a short proof of 0 < 0 in the suspension case see [25].

In this note we estimate the expression 8p, + K2 + s using properties of the dual graph
of the minimal resolution. For smoothable Gorenstein singularities we obtain the following.

THEOREM 4. — Let (X,0) be a normal Gorenstein surface singularity with embedding
dimension e and geometric genus pg. Let o denote the signature of a smoothing. Then

1. If the resolution intersection form is unimodular then —o > 24¢(pg + 1).
2. If (X, 0) is a hypersurface singularity then —6 > pg + Smin, Where Smin is the number of
irreducible exceptional curves in the minimal resolution.

The intersection form is unimodular if and only if the integral homology of the link is
torsion-free [23]. Part (1) is a generalization of the following result, valid for a special family
of ICIS’s with unimodular lattice, namely for splice type singularities of Neumann-Wahl [30].
The Casson Invariant Conjecture, proved in [29, 28], states that the Casson invariant of the
link is minus one-eighth the signature. As the Casson invariant is additive under splicing, and
each splice component is a Brieskorn complete intersection with positive Casson invariant,
the negativity of the signature follows.

We prove several inequalities that hold without the Gorenstein assumption. In fact, the
strategy is to prove general inequalities using the combinatorial properties of the resolution
lattice. In order to simplify the technicalities we will assume that the lattice is numerically
Gorenstein. Then we apply these primary inequalities in different analytic situations.

At each step we ‘lose something’. Analyzing these steps should lead to better estimates in
many cases. Our aim is not to over-exploit these technicalities, but to show conceptually the
general principles behind the inequalities.

It seems that —o > O for all ‘sufficiently complicated’ complete intersections, but we can
prove this only for strict complete intersection singularities, where a local ring (Ox,o, mx o) is
called a strict complete intersection iff the corresponding graded ring Gryy ,(Cx,0) is a
complete intersection; see [4].

PROPOSITION 5. — Fix e and consider the set of strict ICIS of embedding dimension e. Then
—a tends to infinity whenever the multiplicity v tends to infinity.

ExaMPLE 6. — [14, 15] Assume that (X,0) is a homogeneous ICIS of codimension
r = e —2 and multidegree (d,...,d). If r = 1 then 6p, = u + 1 — v. For any r the
inequality 4p, < u+1—visvalid. Moreover, if r > 2 is fixed, then p% asymptotically tends

to Gy = j(:_—f/g), although C, , - pg < u + 1 does not hold in general. (The constant 4 is

the best bound valid for any d and r.) For precise formulae see [loc.cit.].

Finally we wish to emphasize that the ‘strong inequality’ 6p, < u, conjecturally valid for
all hypersurface singularities, still remains open.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



790 J. KOLLAR AND A. NEMETHI

The structure of the article. — In the introduction in (1) and (2) we recall signature formulae
for smoothable Gorenstein singularities. The minimal (analytic) Euler characteristic of a
resolution is introduced and discussed in Section 2; the key Proposition § gives a graphical
inequality relating this object with the geometric genus and embedding dimension. Its proof
uses a commutative algebra result from the Appendix. When the graph is unimodular, a
theorem of Elkies combined with Proposition 8 gives a strong inequality (Section 3). The
non-unimodular case is treated in Section 4.

Acknowledgments. — We thank M. Mustata for useful suggestions. Partial financial support
to JK was provided by the NSF under grant numbers DMS-07-58275 and DMS-13-62960.
Partial financial support to AN was provided by OTKA Grants 81203 and 100796. This
paper was written while AN visited Princeton University.

2. Minimal Euler characteristic of a resolution

Let (X,0) be a normal surface singularity with minimal resolution X — X. We write
L = H»(X.Z), (-,-) denotes the intersection form on L, and L’ is the dual lattice Homy (L, Z)
with natural inclusions L C L' C L ® Q.

Let Zx € L’ bethe anticanonical cycle, thatis, (Zg, E;) = —(K, E;) for every exceptional
curve E;. By the minimality of the resolution (Zg,/) < 0 for any effective rational cycle /
and Zg > 0. A singularity is called numerically Gorensteinif Zg € L.

Set y(I') = —(I',l' — Zg)/2 for any I’ € L ® Q. By Riemann-Roch and the adjunction
formula, y(I) = y(0;) for any non-zero effective cycle [ € L. We set

min y 1= rlrg{l x().

It is a topological invariant of (X,0), strongly related to arithmetical properties of the
lattice L. It takes some effort to compute in explicit examples. In the literature | — min y = p,
is called the arithmetic genus of (X, 0) [34].

(The expression min y is also the normalization term of the Seiberg-Witten invariant of
the link expressed in terms of the lattice cohomology [27]. The comparison of min y with the
d-invariant of the link provided by the Heegaard-Floer theory and the involved topological
inequalities lead the authors to the ideas of the present note.)

If (X, 0) is a rational singularity (that is, p, = 0) then min y(/) is realized by the empty
cycle [ = 0. (Under the condition that the lattice is numerically Gorenstein, rational singu-
larities are exactly the Du Val singularities with Zx = 0.) Since the realization of min y (/)
by I = 0 mess up our formulas, we exclude the rational case in the sequel.

The quantity min y satisfies two obvious inequalities. Since 1°(C0;) —h'(0;) > 1 — p, for
any non-zero effective cycle /, and min y is realized (in the non-rational) case by a non-zero
effective cycle (see Lemma 7 below), we get min y > 1 — p,. Also, since the real quadratic
function y(x) = —(x,x — Zg)/2 has its minimum at Zg /2, and x(Zg/2) = K?/8, we get
that min y > K?/8.

We wish to understand how sharp these inequalities are. The first inequality min y > 1 — pg
will be improved to min y > —Cp, for a certain constant 0 < C < 1. This will be applied in
the form pg + x(/) > (1 — C)p, for any [.
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DURFEE’S CONJECTURE 791

On the other hand, we wish to bound the difference min y— K2 /8 from above. The strategy
is the following. Assume that for some rational cycle &€ one has Zg — & = 2/ € 2L. Then
(1) = (K? — £2)/8, hence x(I) — K?/8 is minimal exactly when —£2/8 is minimal among
the rational cycles £ satisfying Zg — £ € 2L. Thus, if there exists a cycle £ with £2 + 5 > 0
and Zg — £ € 2L, then (K? + 5)/8 > min y. This combined with the first inequality gives
pg+ (K> +5)/8= (1-C)py.

LEmMMA 7. — The minimum min y is achieved by an effective cycle. If (X, 0) is numerically
Gorenstein, then min y is achieved by a cycle | € L satisfying Zg /2 <1 < Zg.

Proof. — Assume that y(/) = min y and write [ = a — b, where a,b € L are effective
and have no common components. Then y(a + b) — y(a — b) = (b, Zg — 2a) < 0, thus
x(a + b) < y(a — b). This proves the first part. Similarly, write /| = Zg — a + b. Then
x(Zx —a +b) — y(Zg —a — b) = (b,2a — Zg) > 0. These two inequalities applied
repeatedly show that the minimum is achieved for some / € L with0 </ < Zg.

Take such a cycle and writeitas /| = Zg/2 +a —b,a,b € %L, effective and without
common components. Then y(Zg /2 +a + b) — x(I) = —2(a,b) < 0. O

If (X, 0) is a Du Val singularity, then Zx = 0 and min y(/) is realized by the empty cycle
[ = 0.If (X, 0) is numerically Gorenstein but not Du Val then the support of Zg, and hence
the support of [ > Zg /2, is the whole exceptional set of the resolution.

ProOPOSITION 8. — Set ¢ = 1if (X, 0) is Gorenstein, and ¢ = 0 otherwise. Then for any
numerically Gorenstein, non-Du Val surface singularity pe + min y > 2°7¢(pg + 1).

Proof. — Fixl € L suchthat Zg/2 <[ < Zg and min y = y(/). In the non-Du Val case
Zk > 0, hence ! > 0too and
pg + x() = pg = ' (O) + h°(0r) = h°(0y).
Note that for any effective m € L we have
h®(Om) = dim(H(0g)/H®(Cg(—m))).
The inequality is usually strict but if m = Zk then the k' (Oy(—Zk)) = 0 vanishing implies
) h°(0z) = dim(H®(0%)/H° (03 (~Zk))) = pg-

Note that HO(OX) equals the local ring R of (X, 0) and each HO(OX (—m)) can be iden-
tified with an ideal sheaf /(m) C R. This correspondence is sub-multiplicative, that is,
I(my) - I(m3) C I(my + my). Thus, for every m, Lemma 26 from Appendix shows that

dim(H°(Cz)/H®(05(—m))) = 27¢(1 + dim(H°(0g)/H®(Og(—2m)))).
Putting these together gives that
pg + x(1) = dim(H®(0g)/H(Cx(~1)))
> (1 +dim(H%(0g)/H(0g(-21))))
2 (1 +dim(H°(05)/H(C5(—Zk))))

= 5 (pg + 1.

%
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792 J. KOLLAR AND A. NEMETHI

In the Gorenstein case this can be improved as follows. Let 0 < m < Zg be a cycle and set
m = Zg — m. The Gorenstein duality gives

h'(Om) = h°(Om(—m)) = dim(H(Og (—m))/H (O (~Zk)))
= pg —dim(H(0g)/H®(Og(—m))),
hence, using in the 3rd line Lemma 26 from Appendix again, we get that

pg + x(m) = pg —h'(Om) + h°(COm)

(10) > dim(HO(OX)/HO(O ¢ (—=m))) + dim(H°(0g)/H°(Og(—m)))
> 2L 1 (1 + dim(H°(03)/H* (0 (—Zk))))
= ze—l (pg )
For m = [ this gives the claimed inequality. O

EXAMPLE 11. — Assume that Zx € 2L. Then miny = K?2/8, and, by Proposition 8,
Pe + (K> +5)/8 = pe +miny +5/8 > 267¢(pg + 1) + 5/8. Hence, if additionally (X, 0) is
smoothable Gorenstein (i.e., ¢ = 1), then one has —o > 247¢(pgy + 1) + 5.

REMARK 12. — The property Zg € 2L has a conceptual meaning as well. The (almost)
complex structure on X gives a spin® structure oy on X . On the other hand, by the adjunc-
tion formula, L is an even lattice if and only if Zg € 2L’. In this case X has a unique spin
structure, say & . The point is that, in general, 03 # ey, and their restrictions r(05) and
r(eg) to the link can be different as well, even if r(og) is spin. One has the following facts:
r(og)isspinifand onlyif Zx € L;and r(og) = r(eg) if and only if Zx € 2L.

3. Inequalities in the unimodular case.

Assume that the intersection form of L is unimodular, thatis L = L’. Note that this holds
iff the first integral homology of the link of (X, 0) is torsion free since this torsion group is
isomorphic to L’/ L by [23].

THEOREM 13. — Let (X, 0) be a normal surface singularity of embedding dimension e. Let
X — X be the minimal resolution with canonical class K and s irreducible exceptional curves.
Assume that the resolution intersection form is unimodular. Then

1. (K? +5)/8 > min y and
2. pe + (K% +5)/8 > 257¢ (pg + 1), equivalently, (K? + 5)/8 > —(1 —257¢) py + 267,
where ¢ is as in Proposition 8.

Proof. — By a result of Elkies [6, Theorem, p. 4], there isa £ € L such that €2 +5 > 0
and (m,m — £) is even for every m € L. (That is, £ is a characteristic element of ‘small’
norm.) If E is an irreducible exceptional curve then (E, E — Zg) = 2g(E) — 2 is even, thus
(m,m — Zg) is even for every m € L. Therefore (m, Zx — &) is even for every m € L and
l:= %(Z x — &) € L. (We used unimodularity here and it is also needed in [6].)

Then (K2 + 5)/8 = x(I) + (§2 + 5)/8 > x(I) and we can apply Proposition 8. O
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DURFEE’S CONJECTURE 793

If, in addition, (X, 0) is smoothable and Gorenstein, then ¢ = 1 thus (2) of Theorem 13
and the second formula of (1) from the introduction give that

(14) —0=8pg + K> +5>2"(pg + 1).
This completes the proof of part (1) of Theorem 4. O

The above theorem shows that the torsionfreeness of the first homology of the link has
more substantial effect on the negativity of the signature than the embedded properties, like
being a hypersurface or an ICIS.

ExaMPLE 15. — Assume that (X, 0) is a hypersurface singularity with L = L’. Then
—0 > 2pg +2, or equivalently, u + (o > 6pg + 2. In particular, if the link of a hypersurface
singularity is an integral homology sphere (hence ;o = 0 too), then it satisfies the strong
Durfee inequality 6pg < p — 2 with the optimal asymptotic constant 6.

4. The non-unimodular case

In the previous section we used the strong result of Elkies, valid for unimodular defi-
nite lattices. This statement has no analog in the non-unimodular case. Therefore, it is
somewhat surprising that combinatorial manipulation on the lattice can produce a similar
(though weaker) inequality, at the price of introducing a negative contribution given by the
multiplicity. This is what we present next.

Let { } and | | denote the rational/integral part of a cycle. In this section we assume that
(X, 0) is numerically Gorenstein but not Du Val. Set x := 2{Zg/2} € L and ¥ := E — x,
where E is the reduced exceptional curve. Thenm := (Zx—x)/2 = | Zx /2| € L. We write &
for 8pg + K? + s. (Thus, in the smoothable Gorenstein case, 0 = —X.)

Since 8y (m) = K — x2, by Proposition 8

(16) 2 =8(pg + x(m)) +x* +5 =23 (p, + 1) + 2% + .

Similarly,

(17) D =8(pg+ x(m+E)+(E+3)°+s=2""(pg + 1)+ (E + %)* +.
Since x = E — X, adding the equations (16) and (17) gives that

(18) X > 23 (py + 1) + EZ 4+ X% +5.

For each cycle y = x, X and E write the relation y> = —2y(y) + (v, Zg) and add the
equations (16) and (18). We get that

(19) 2> 277 (pg + 1) + 5 — x(x) = 1(¥) — x(E) + (E, Zg).

Since x, x, E are reduced, y(x) + y(x) + y(E) <s+1—b1(Lyx) (since by (Lx) = b1(E) >
h'(Cg)). Hence (19) can be rewritten as

PROPOSITION 20. — ¥ > 28737¢(p, + 1) — | + by(Lx) + (E, Zg) where (E, Zk) also
equals E? + 2x(E). Furthermore, —1 + by(Lx) + (E, Zx) = E? + x(I') where y(T) is the
Euler characteristic of the topological realization of the resolution graph T. O

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



794 J. KOLLAR AND A. NEMETHI

Although the term (E, Zk ) is negative, in many cases (e.g., hypersurfaces, ICIS) it is much
smaller than p,. We do not have a good general estimate, but the following argument gives
a bound that implies the negativity of the signature in several cases.

In order to simplify the notation let us denote the constant 2°73~¢ —1 4 b (Ly) by A. Let
Z = Zmax € L be the maximal cycle. Hence Z > E, which implies that (E, Zg) > (Z, Zk).
Foranyt > e — e — 3 write (2' 71 Z, Zk) as (2t1Z)? 4+ 2y(2'*1 Z), hence we obtain that

@0 S > (5= = 9r)Pe + 3 (pe + 2@ 2)) + 271 22 1 A
Then using Z2 > —v (cf. [34]) and Proposition 8 we get the following.

LeEMMA 22. — Fort > e — ¢ — 3 one has
2> (5= — o ) Pe — 2T v+ A+ 5=

With different choices of 7 the coefficient of pg can be arranged to be as close to 1/2¢7¢3
as we wish, but the price is a more negative coefficient for v. This expression shows that for
an arbitrary normal surface singularity we should expect an inequality of the form

¥ > Cipg —Cov + C3  for some constants Cj,C, > 0and C3 > —1

that depend on the embedding dimension e. If v dominates p,—as in the example of Wahl—
then X can be negative. However, if p, dominates the multiplicity, then ¥ becomes positive,
as in the next examples.

The case of strict complete intersections. — A strict ICIS (X, 0) is a normally flat deforma-
tion of its tangent cone, which, by definition, is a homogeneous complete intersection singu-
larity [4] (though this cone might have non-isolated singularities). In the next argument we
concentrate on the right hand side of the inequality, valid for (X, 0),

(23) EZ(;_%+2,+%)pg—2’+1u+28+3—"—1+2,+%,

Se—e—3
obtained from Lemma 22 by b, (Lx) > 0. (Now ¢ = 1 and e and ¢ are fixed.)

We wish to show that the right hand side tends to infinity whenever v tends to infinity.

We may assume that the lowest degree parts of the equations of the strict ICIS (X, 0) are
the equations of the tangent cone. Then we proceed in two steps. First, we deform lowest
degree parts into generic homogeneous equations; in this way we achieve that the tangent
cone of the new ICIS is isolated. Then the multiplicity of the general fiber is the same, and the
geometric genus is less that or equal to the original. Then, we degenerate the new singularity
to its tangent cone (via a positive weight deformation of the isolated cone), replacing the
new equations by their lowest degree parts. Under this second step the multiplicity and the
geometric genus are both constant. In particular, the right hand side of the inequality (23)
will not increase during this procedure.

Therefore, in order to prove that —o = X is positive for large v and fixed e = r+2, by (23)
and the above deformation argument, it is enough to show that p¢ /v tends to infinity with v

for homogeneous complete intersections. In that case, if d1, ..., d, (d; > 2) are the degrees
of the defining equations, then
Pg (di —1)(d;i —2) (di —1)(dj — 1)
24 = = +
24) v Xl: 6 ; 4

4¢ SERIE - TOME 50 — 2017 - N° 3



DURFEE’S CONJECTURE 795

and v =[], d;, cf. [14, 15].

Note that (24) does not imply the negativity of the signature for every strict ICIS, but
it gives a much stronger result asymptotically. This suggests that the positivity of X (or,
the negativity of the signature in the presence of Gorenstein smoothing) is guided by the
ratio p,/v. This seems to be a general phenomenon, not specifically related to embedded
properties.

The case of hypersurfaces. — We apply Lemma 26 from Appendix to the ideal a; = a, =
HO(OX(—ZK)) CR:= HO(OX), where X — X is the minimal resolution. Since ¢ = 3, and
using (9), we get

(25)  8pg = dim HO(Og)/H"(C5(~Zx)® = dim H(Og)/H (05 (~2Zk)).

Using the cohomology sequence of 0 — Og(—2Zg) — Og(—Zg) — Ozx(—Zk) — 0,
the vanishings HI(OX(—ZK)) = HI(OX(—2ZK)) = 0 and Riemann-Roch we get that
dim H°(Og(—Zk))/H°(0g(—2Zk)) = —K2,,. Hence (9) and (25) reads as

7Pg + KI%lin > 0.
This via (1) and (2) transforms into

U+ o = 5pg + Smin and  —0 = pg + Smin-

5. Appendix by Tommaso de Fernex: Colength of a product of ideals

Let R be a local ring with maximal ideal m, essentially of finite type over a field k. Let
e be the embedded dimension of R. For any m-primary ideal a, denote by £(R/a) the length
of R/a.

LEMMA 26. — For any finite collection of m-primary ideals a;, . ..,a5 C R, we have

A"y 0(R/a;) = €(R/ (a1 -+ ag)).

and the inequality is strict if d > 2 and e > 2.

Proof. — By Cohen’s structure theorem, there is a surjection k[[x1,...,x.]] — R,
where R is the m-adic completion of R. After taking the inverse image of the ideals a; R
to k[[x1,...,xe]] and restricting to k[xy,...,x.], we reduce to prove the lemma when
R = k[x1,....xe] and m = (x1,...,x,). If we fix a monomial order which gives a flat
degeneration to monomial ideals, and denote by in(a) the initial ideal of an ideal a C R,
then ¢(R/a) = £(R/in(a)) and ]_[f;l in(a;) C in(]_[f’=1 a;). We can therefore assume that
each q; is monomial.

Leta= ]_[l-d=1 a;. Foru = (u1,...,ue) € Z¢,, we denote x" = ]_[f=1 x}‘j. Let
0; = U (u+R%y) and Q= U (u+R<,).
xU€a; xU€a
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Notice that £(R/a;) = Vol (RS, \ Q;) and £(R/a) = Vol (RS, \ ), where the volumes are
computed with respect to the Euclidean metric. We consider the radial sum

d
Q' = Ai 0i:=J> (0inw)
=1 Woi=1
introduced in [7]: the union runs over all rays W C R, and the sum appearing in the right-
hand side is the usual sum of subsets of a vector space.
For every v € Q’, we can find v; € Q; such thatv = Zid=1 v;. For each i, we have
v, € (u,- + R‘;O) for some u; € Zezo such that x% € ;. Then, settingu = Z?:l u;, we
havex" e aand v € (u + R;O), and therefore v € Q. This means that Q' C Q, and hence

27) Vol (RS \ Q') = Vol (RE,\ Q) .

Then, to prove the inequality stated in the lemma, it suffices to show that

d
(28) de! (Z Vol (RS, \ Qi)) > Vol (R&\ Q).

i=1
To this end, we fix spherical coordinates (6, p) € S x Rso where S is the intersection of
the unit sphere with R%,,. For any 6 € S, we define r;(¢) = inf{p | (6,p0) € Q;} and
r(0) = inf{p | (6, p) € Q’}. By the definition of Q’, we have r(0) = Zle ri (0). We have

ri (6) £ (0)¢
Vol(keo\ 00 = [ [ s apwie) = [ w0
and o
r 0 e
Vol(keo\ 09 = [ [ 5 dpote) = [ M w0

for some volume form w on S. Then the desired inequality follows from

d
(29) A7 > i (0)¢ = r(0)°,
i=1

which follows from Hélder’s inequality.

To conclude, we show that the inequality is strict if ¢ > 2 and e > 2. First observe that
(28) is a strict inequality unless (29) is an equality for almost all 8 € S, which can only happen

if a; = ay for every i. Suppose this is the case, so that a = a‘f. Notice that in this case
Q' is a polyhedron. Let a, b be the smallest integers such that x¢ € a; and x? x4 € a; for
some @’ < a. Then x{¥™ V"% xb ¢ ¢ and hence the vector v = ((d — 1)a + a'.b.0, ... .0)

belongs to Q. Note, on the contrary, that v is not in Q’. Hence Q' Q, and since these sets
are polyhedra, it follows that (27) is a strict inequality. Therefore the inequality stated in the
lemma, which follows as a combination of (27) and (28), is strict. O
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