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C!-RIGIDITY OF CIRCLE MAPS WITH BREAKS
FOR ALMOST ALL ROTATION NUMBERS

BY KonsTaNTIN KHANIN, Sa$a KOCIC axp ELio MAZZEO

ABSTRACT. — We prove that, for almost all irrational p € (0, 1), every two C2+%-smooth,
a € (0, 1), circle diffeomorphisms with a break point, i.e., a singular point where the derivative has a
jump discontinuity, with the same rotation number p and the same size of the break ¢ € Ry \{1}, are
C!-smoothly conjugate to each other.

RESUME. — Nous démontrons que pour presque tous les irrationnels p € (0, 1), deux difféomor-
phismes du cercle C21¢ lisses, @ € (0, 1), avec un point de singularité de type rupture ot la dérivée a
une discontinuité de saut, avec le méme nombre de rotation p et la méme taille de rupture ¢ € R4\ {1},
sont C1-conjugués I'un a I'autre.

1. Introduction

This paper establishes generic C!-rigidity for circle diffeomorphisms with breaks. The
result can viewed as a one-parameter extension of Herman’s theory on the linearization of
circle diffeomorphisms.

The problem of smoothness of a conjugacy to a linear rotation for smooth diffeomor-
phisms of a circle is a classic problem in dynamical systems. It was proven by Arnol’d [1],
using the methods of KAM (Kolmogorov-Arnol’d-Moser) theory, that every analytic circle
diffeomorphism with a Diophantine rotation number p, sufficiently close to the rigid rotation
R, : x — x 4+ p mod I, is analytically conjugate to R,. A number p is called Diophantine
if there exists C > 0 and B > 0 such that |p — p/q| > C/q*#, for every p € Z and ¢ € N.
Arnol’d also conjectured that the result remains true if the requirement of closeness to the
rigid rotation is removed. A version of this global rigidity result, for smooth circle diffeo-
morphisms, was proven by Herman [6], and is the subject of classical Herman’s theory. The
theory was further developed for C”-smooth maps, r > 3, by Yoccoz [20] who established
a dependence of the regularity of the conjugacy on the Diophantine properties of the rota-
tion numbers. For more recent work we refer the reader to [7, 11, 13, 18]. In a recent formu-
lation [13], every C2**-smooth, & € (0, 1), circle difftomorphism, with rotation number
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1164 K. KHANIN, S. KOCIC AND E. MAZZEO

p Diophantine with exponent 8 < «, is C'** A_smoothly conjugate to the rotation R o
Arnol’d also proved that this result cannot be extended to all irrational rotation numbers [1].
He constructed examples of analytic circle diffeomorphisms with irrational rotation numbers
for which the invariant measure is singular, which implies that the conjugacy to the rigid rota-
tion is not absolutely continuous.

We use the term rigidity for the phenomenon that any two maps within a given equiv-
alence class determined by topological conjugacy are, in fact, C!-smoothly conjugate to
each other. Herman’s theory establishes that, in the case of smooth circle diffeomorphisms,
rigidity is guaranteed when rotation numbers satisfy a Diophantine condition. Over the
last two decades, great effort has been made to understand the rigidity properties of circle
diffeomorphisms with a singular point where the diffeomorphism condition is violated.
The singular points refer either to points where the derivative vanishes (critical points)
or where it has a jump discontinuity (break points). In the case of critical circle maps,
i.e., circle maps with a single singular point where the derivative vanishes, the first rigidity
results were obtained by de Faria and de Melo [4, 5]. They established the convergence
of renormalizations — the main technical tool in proving rigidity results — and rigidity
for analytic critical circle maps with the same irrational rotation number of bounded type
(i.e., with bounded partial quotients) and the same (odd-integer) order of the critical point
(i.e., the exponent of the power law behavior of the map in a neighborhood of the critical
point). Renormalizations f, of a circle map T are obtained from the restriction of 77" to
a small interval, by an affine change of coordinates, where g, is the denominator of the
rational convergent p,/q, of the rotation number p (see next section). The convergence
of renormalizations for analytic critical circle maps and for all irrational rotation numbers
was later established by Yampolsky [19]. The results of de Faria and de Melo [4] show that
even stronger C ! *¢-rigidity of analytic critical circle maps, for some ¢ > 0, is generic, i.e., it
holds for almost all irrational rotation numbers. C!-rigidity of analytic critical circle maps
holds for all irrational rotation numbers, as was shown by Khanin and Teplinsky [12]. This
phenomenon, when rigidity holds without any Diophantine-type conditions, is referred to
as robust rigidity. Rigidity theory of non-analytic critical circle maps, however, has remained
an open problem since, up to now, there is no proof of the convergence of renormalizations
in this case.

The above results for critical circle maps suggested [8] that the rigidity might also be robust
in the case of circle diffeomorphisms with a break point. In [§8], rigidity was established for a
set of rotation numbers of zero Lebesgue measure. However, as was shown by two of us [9],
the above conjecture is false — robust rigidity does not hold for circle maps with breaks.
We proved in [9] that there are irrational rotation numbers p, and pairs of analytic circle
diffeomorphisms with breaks, with the same rotation number p and the same size of the break
(i.e., the square root of the ratio of the left and right derivatives at the break point), for which
any conjugacy between them is not even Lipschitz continuous. The question whether rigidity
holds for typical rotation numbers, however, remained open. The main result of this paper
provides an affirmative answer to this question.

Before we state our main result, let us define precisely the class of maps that we consider.
A C"-smooth circle diffeomorphism (map) with a break isamap 7 : T' — T!, T! = R/Z,
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GENERIC C!-RIGIDITY OF CIRCLE MAPS WITH BREAKS 1165

for which there exists xp,, € T' such that T € C” ([xp,, Xpr + 1]); T/(x) is bounded from below
by a positive constant on [xp,, Xpr + 1]; the one-sided derivatives of T at xy,, are such that the
size of the break

L Ti(xbr)
(1.1) ci= /H(xbr) £ 1

The main result of this paper is based on the following theorem.

THEOREM 1.1 ([10]). — Let a € (0,1) and let ¢ € RT\{1}. There exists A € (0,1) such
that, for every two C21®-smooth circle diffeomorphisms with a break T and T, with the same
irrational rotation number p € (0, 1), and the same size of the break c, there exists C > 0, such
that the renormalizations f, and ]"; of T and T, respectively, satisfy || fn — f,:”cz < CA", for
alln e N.

REMARK 1. — This theorem establishes the exponential convergence of renormalizations
for circle diffeomorphisms with a break, with a uniform rate A for all irrational rotation
numbers. Moreover, there exists i € (0, 1), independent of «, such that A = u*. This result
is stronger than what is needed for our next theorem. Note that the statement of the theorem
remains true if ¢ = 1. This essentially follows from Herman’s theory.

LetA; € (A,1)and C; > 0. Let S.(Cq,A1) and S,(Cq, A1) be the sets of all irrational
rotation numbers p = [ky,k2,...] € (0, 1) whose subsequence of partial quotients k41
(see next section) for all n even or odd, respectively, satisfies the bound k, 1 < CiA7".
Let S (1) := Uc1>o Se(C1, A1) and S,(Aq) := Uc1>0 So(C1,A1). We define S := S, (1),
if0<c<1,and S := S,(A1),if ¢ > 1. Theorem 1.1 and Theorem 2.2, proven in this paper,
imply the following strong rigidity statement for circle diffeomorphisms with a break.

THEOREM 1.2. — Any two C?>*%-smooth, a € (0, 1), circle diffeomorphisms with a break
T and T, with the same size of the break ¢ € Ri\{1} and the same rotation number
p € S, are C'-smoothly conjugate to each other, i.e., there exists a C '-smooth diffeomorphism
¢ :T! > T suchthatpoT o™ = T.

REMARK 2. — Set S has full Lebesgue measure. One can also see that it contains some
strongly Liouville numbers. The difference between the cases of odd and even 7 is related to
a difference in the behavior of the renormalizations f,, which will be explained in detail in
the next section. If 0 < ¢ < 1 and n is even and sufficiently large or if ¢ > 1 and n is odd and
sufficiently large, the renormalizations f, are concave and the renormalization parameter
a™ = f,(0) (see the next section) can be exponentially small in k4. If 0 < ¢ < 1
and n is odd and sufficiently large or if ¢ > 1 and n is even and sufficiently large, the
renormalizations f,, are convex and ™ is bounded away from zero. The imposed condition
on the rotation numbers controls the smallness of this parameter. It is not difficult to see
that even the set of rotation numbers (),  ¢(.1) So(A1) N Se (A1), for which rigidity holds for
any o € (0,1) and any ¢ € R*\{1}, has full Lebesgue measure. On the other hand, it is
not obvious that the sets |, ¢(x,1) So(A1) and Uy, ea 1) Se(A1), for which rigidity holds for
some « € (0, 1) and ¢ € Ry \{1}, can be extended.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1166 K. KHANIN, S. KOCIC AND E. MAZZEO

REMARK 3. — It was recently proven by Koci¢ [16] that the result of Theorem 1.2 cannot
be strengthened by requiring that the conjugacy ¢ is C'T¢-smooth, for some ¢ > 0. Kocié¢
proved [16] that, for a set of full Lebesgue measure irrational p € (0, 1), forevery ¢ € Ry \{1},
every r > 2, and every ¢ > 0, there exists a pair of C”-smooth circle diffeomorphisms
with a break of size ¢, with the same rotation number p, which are not C'*¢-smoothly
conjugate to each other. In fact, he proved a stronger result: for a set of full Lebesgue
measure irrational p € (0,1), every ¢ € Ry\{l} and every r > 2, there exists a pair
of C"-smooth circle diffeomorphisms with a break of size ¢, with rotation number p, which
are not C'™¢-smoothly conjugate to each other, for any & > 0.

REMARK 4. — The main difficulty in the proofs of Theorem 1.1 and Theorem 1.2 is
that the geometry is strongly unbounded in this case. This means that the ratio of two nearby
elements of dynamical partitions 2, (see next section) may be of the order of «™ which can
be exponentially small with k1. This should be compared to algebraic decay with k1 in
the case of circle diffeomorphisms, and the bounded geometry of critical circle maps. Since
this ratio plays an important role in analysis of circle diffeomorphisms with breaks with
typical rotation numbers, we must deal with quantities which are smaller than exponentially
small with n. This creates major difficulties since, in general, renormalizations of these
maps converge only exponentially fast [16]. Due to this difficulty, earlier rigidity results
on circle maps with breaks were restricted to rotation numbers for which the geometry
is bounded. Those include [8], where rigidity was established for a countable set of rota-
tion numbers and [14], where rigidity was established for a larger set of zero measure. The
strongly unbounded geometry is also the reason that one cannot obtain robust rigidity in
the case of circle diffecomorphisms with breaks [9]. The set of rotation numbers for which
C!-rigidity holds includes those for which the geometry is super-exponentially bounded,
i.e., the logarithms of the ratios of nearby elements of dynamical partitions are bounded by
an exponential function. Finally, the strongly unbounded geometry is also the reason that
circle diffeomorphisms with breaks are, generically, not C'*¢-rigid, for any ¢ > 0 [16] (see
Remark 3).

At the end of this introduction, let us mention that there is a close relationship between
circle maps with breaks and nonlinear (generalized) interval exchange transformations.
A nonlinear interval exchange transformation (IET) is obtained by replacing the branches
of a piecewise-linear map of an IET by smooth nonlinear homeomorphisms. It is well-known
that an IET of two intervals (subintervals of [0, 1]) can be viewed as a rigid rotation on a
circle, if the end points of the interval [0, 1] are identified. Since, in general, the derivatives
at the end points of the intervals do not match, a nonlinear IET of two intervals is a circle
map with two break points. As the points are on the same orbit of the map, the map can
be conjugated piecewise-smoothly to a circle map with one point of break. Theorem 1.2,
thus, corresponds to a non-linearizable case of two intervals. The linearizable case of general
nonlinear IET has been studied by Marmi, Moussa and Yoccoz in [17]. The case of cyclic
permutations, which corresponds to circle maps with more than one point of break, with
the product of the sizes of breaks being equal to 1, was studied in [2, 3]. Renormalizations
of such maps approach the space of piecewise-linear maps. We consider the general case
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GENERIC C!-RIGIDITY OF CIRCLE MAPS WITH BREAKS 1167

when the renormalized maps are essentially nonlinear. The convergence of renormaliza-
tions Theorem 1.1 and the rigidity Theorem 1.2 are currently the only results in the general
non-affine case, for generic rotation numbers. They can also be considered a one-parameter
extension of Herman’s theory, with the parameter being the size of break c.

The paper is organized as follows. In Section 2, we introduce a general renormalization
setting for orientation-preserving circle homeomorphisms and formulate regularity condi-
tions and a rigidity theorem (Theorem 2.2) for maps whose renormalizations satisfy these
conditions. In Section 3, we formulate a criterion of smoothness of the conjugacy in terms
of ratios of the lengths of the corresponding intervals of dynamical partitions. In the same
section, we obtain necessary estimates on these ratios on a fundamental interval and prove
Theorem 2.2 by spreading them to the whole circle and using the criterion of smoothness. In
Section 4, Theorem 1.2 is proven by verifying that the conditions of Theorem 2.2 hold true
in the case of circle diffeomorphisms with breaks.

2. Renormalizations of circle homeomorphisms and a rigidity theorem

2.1. Renormalizations of circle homeomorphisms

It has been known since Poincar¢ that, for every orientation-preserving homeomorphism
T : T!' — T!, there is a unique rotation number p € [0, 1), which is given by the
x-independent limit p 1= lim, oo & " (x)/n mod 1, where & is any lift of T to R. If the
rotation number p € (0, 1), it can be expressed in the form of a continued fraction expansion

1
@2.1) p= :

ki +
k

1
+—
Tt

that we write as p = [k, k2, k3, ...]. The sequence of integers k,, called partial quotients, is
infinite and defined uniquely if and only if p is irrational. Every infinite sequence of partial
quotients defines uniquely an irrational number p as the limit of the sequence of rational
convergents pn/qn = [k1, ka2, ..., ky]. It is well-known that this is a sequence of best rational
approximates of p, i.e., there are no rational numbers with denominators smaller or equal
to qn, that are closer to p than p,, /¢,. The rational convergents can also be defined recursively
as pn = knpn—1 + pn—2 and gn = knqu-1 + qn—2, starting with po = 0, g0 = 1,
p-1=1,49-1=0.

To define the renormalizations, we start with a marked point xo € T!, and consider
the marked semi-orbit x; = T'xg, fori € Ny, where Ny := N U {0}. The subsequence
(xg, )neny, indexed by the denominators of the sequence of rational convergents p, /g, of
the rotation number p, will be called the sequence of dynamical convergents. Although x,_,
and xy coincide on the circle, we formally set x,_, := xo — 1. The combinatorial equivalence
of all circle homeomorphisms with the same irrational rotation number implies that the order
of the dynamical convergents of T is the same as the order of the dynamical convergents for
the rigid rotation R,. The well-known arithmetic properties of the rational convergents now
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1168 K. KHANIN, S. KOCIC AND E. MAZZEO

imply that dynamical convergents alternate their order in the following way:
(2.2) Xgg < Xgp <Xgy <0< Xg <0< Xgy < Xgg-

The intervals [x4,, xo], for n odd, and [x¢, x4,], for n even, will be denoted by A(()”), and
called the n-th renormalization segments. The n-th renormalization segment associated to
the marked point x; will be denoted by A™. We also define AL := Al u AP,
and ALY = ATI\APHD 4 addition to the property (2.2), we also have the following
important property: the only points of the orbit {x; : 0 < i < g,+1} that belong to Af,"_l)
are {Xg,_,+ig, 1 0 <1 < kpy1}.

Certain images of A(()"_l) and A(()") cover the whole circle without overlapping beyond the
end points, forming the n-th dynamical partition of T,

(2.3) P = AT (A )10 =i <gu} ULTI(ASY) 10 =i < guy).
The endpoints of the intervals from 2, form the set
(2.4) En={xi :0<i<gn-1+qn}

We also define the extended partition P} := P, U {T% (AL™D), Tan-1(AS)} and the
extended set 2 1= &, U {x4,_,+qg,}
The following lemma follows directly from the properties of the continued fractions.

LEmMMA 2.1. — For every m > n, we have the following decomposition

(2.5) EnN A(()"_l) = U U X1 gpy+ign -

x1€ EmNAY \{xg, } 05T <knt1

= (n) = A ()
Furthermore, for every x; € B NAG \{xg, }, wehave Xi4q, | +kpi1gn=Xi+qn41 € EmNAy -

The n-th renormalization of an orientation-preserving homeomorphism of the circle 7',
with rotation number p = [ky, k3, k3, ...], with respect to the marked point xo € T, is a
function f, : [-1,0] — R obtained from the restriction of 797 to A(()"_l), by rescaling the
coordinates. More precisely, if 7, is the affine change of coordinates from Af,"_l) to [—1,0]
that maps x,4,_, to —1 and xo to 0, then

(2.6) foi=toTTor, .

If we identify xo with zero, then 7, is exactly a multiplication by (—1)"/ |Af)"71) |. Here and
in what follows, we use | - | to denote the length of an interval. Definition (2.6) is valid for all
n € Ny if and only if p is irrational.

2.2. Renormalizations of circle diffeomorphisms with breaks

In the case of a circle diffeomorphism with a break, we will use the break point xp, = 0
as the marked point x.

It was shown in [15] that the renormalizations f, of C27%-smooth circle diffeomorphisms
with a break of size ¢ € R4 \{1} approach, exponentially fast in the C2-norm, a particular
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GENERIC C!-RIGIDITY OF CIRCLE MAPS WITH BREAKS 1169

a) b)

(1) (2) (2
-1 z, z, 0 Z -1 Zi Zi) 0 z

FiGure 1. The graph of a renormalized map f, for sufficiently large n: a) Case
0O<c<landneven,orc > 1andn odd;b)Case0 <c < 1landn odd,orc > 1
and n even.

family of fractional linear transformations

a® 4+ (@@ 4 p® )
1—(M®™ —1)z

)

(27) Fa(n),b(n)’M(n),c(n) Lz

where ¢™ = ¢, ifniseven, ¢™ = ¢!, if n is 0odd, and

(2.8)
—1
o _ A o _ INaRINGS ™ _ e (Tany"(z)
a — b : , M exp | (1) -
1Ay ATV 2(Tan)'(2)

(n—1)
A0

The following estimates were also proven in [15]. For every C2+%-smooth, « € (0, 1), circle
diffeomorphism with a break T, with a break of size ¢ € R;\{1}, there exist constants
V := Vargem InT < 00, C > 0and A € (0, 1), such that, for all n € N, we have

(A) |In(T9) (x)| <V, forall x € T! (at points where the derivative has a break, both left
and right derivatives are considered),

(B) ”fn - Fa("),b("),M("),c(”) ||C2 < Gln,

(C) [a®™ + bW M® — M| < Ca™ A" and

(D) |M(n+1) _ c(n+1)(1 + a(n-‘rl)a(n)(M(n) —1)| < Ca@+D g0 )n

We will refer to (A) as the Denjoy estimate. As we showed in [10], the constant A € (0, 1) can
be chosen uniformly for all 7 with the same size of the break ¢ and Holder exponent «.

As already mentioned in Remark 2, for maps with breaks, the graphs of the renormaliza-
tions f, look different in the cases of odd and even n (Figure 1).

The following behavior of renormalizations of circle maps with breaks will be verified
in the proof of Theorem 1.2. If ¢ > 1, the map f, is concave for sufficiently large odd n.
Moreover, as k,+1 — 00, the graph of f,, approaches the diagonal w = z at the end points
z = —1 and z = 0. Below, we call the small intervals containing these end points the
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1170 K. KHANIN, S. KOCIC AND E. MAZZEO

gates (the intervals [—1, zé(,l) ) and (Zéz) ,0] on Figure 1 (a)). On the contrary, if n is even and

sufficiently large, the map f, is convex and its graph approaches the diagonal as k,,+; — oo
at a single point of almost-tangency, strictly between —1 and 0. We will later call an interval
containing this point of almost-tangency the tunnel (the interval (zt(l), zt(z)) on Figure 1 ()).
The restriction on k,+; in the definition of the set S is related to the concave case. Inside
the gates, the distance between successive iterates of f;, grows/decays exponentially, which
makes the smallest distance and a™ to be exponentially small with &, ;. The restriction on
the growth rate of k,4; provides a restriction on the rate of decrease of a™. In the convex
case, a®™ is bounded away from zero, and no restriction on k, is necessary.

If 0 < ¢ < 1, the behavior of the renormalizations f, is the opposite.

This behavior of renormalizations serves as a motivation for the (more general) regularity
conditions introduced in the next section.

2.3. Regularity conditions and a rigidity theorem

Let n := (ng)¢ey be an increasing subsequence (infinite, finite or empty) of numbers in Ny.
A sequence of functions g, : [-1,0] — R, with n € Ny, will be called K-regular with
respect to n, for some vector K = (Ky, K3, K3, K4, K5, K¢) € RS, ifall gn satisfy the below
conditions (i) and (ii); each g,, such that n = ny, for some £ € N, satisfies (iii) and (iv); and
each g,, such that n # ny, for any £ € N, satisfies (v) and (vi), where:

() llgnllc> < Ky on [~1,01,

(i) g,(z) > K, for every z € [—1,0],

(iii) theset Bg, k, := {z € [-1,0] : g»(2) — z < K3} is either empty or consists of one or
the union of two disjoint intervals each of which contains one end point, [—1, zél)) and
(zg,z), 0], where zg,l), zéz) € (—1,0) (we refer to these intervals as the gates),

(iv) gi(z) < —Ky, for z € Bg, k3,

(v) the set Bg, k5 is either an open interval or empty (we refer to this interval as the tunnel,
since the points —1 and 0 are outside of the tunnel, this implies g,(—1) > K5 — 1 and
8n (O) = KS);

(vi) gi(z) > Ke, for z € Bg, k.

Let A; € (0,1). For a given subsequence n of N, let &, = J&n(A1) be the set of
p € (0, D\Q for which there exists C1(p) > 0 such that the partial quotients of p satisfy
kn,+1 < C1A] ", for every £ € N. In the following, C; = Cj(p) is the constant associated
top € Sn.

A system of nested partitions 2,, i.e., a sequence of partitions such that each element of a
partition 2, is contained in an element of a partition 2,, is called refining if the maximal
length of elements of partition 2, approaches zero as n — oo; it is called exponentially
refining if there exist Crer > 0 and Arer € (0, 1), such that |I,,| < CreeAlL"|1,], for any
I, € P,and I, € P, with I,, C I,,.

In the following, let xo € T! be an arbitrary point on the circle.

THEOREM 2.2. — Letn := (ng)gen be an increasing subsequence of Ng. Let T and T be two
C2 % _smooth on (xg — 1,x0), a € (0, 1), orientation-preserving circle homeomorphisms that
satisfy the following conditions for some A € (0, 1) and A, € (A, 1):
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GENERIC C!-RIGIDITY OF CIRCLE MAPS WITH BREAKS 1171

@ o(T) = p(T) = p € Sultr),

(b) thﬁre exists a vector K € Ri such that the sequences of renormalizations ( fn)nen, and
(fa)nen, are K-regular with respect to n;

(¢c) the systems of dynamical partitions P, and 35,, are exponentially refining,

@A) || fn — fullc2 < CA™, for some C > 0 and all n € Ny.

Then, there exists a C '-smooth orientation-preserving circle diffeomorphism ¢ such that
2.9) poTop !l = T.

REMARK 5. — As we show in the proof of Theorem 1.2, in the case of circle maps with
breaks of size ¢ € R4\{1}, condition (b) is satisfied, if xo is the break point, for the
subsequence n consisting of even n, for 0 < ¢ < 1, and odd n, for ¢ > 1.

REMARK 6. — Conditions (a) and (c) of Theorem 2.2 guarantee that T and T are topo-
logically conjugate to each other. It is easy to see that, in the case of circle maps with breaks,
the conjugacy ¢ can be C !-smooth only when it maps the break point x¢ of T into the break
point X of T. This condition defines the topological conjugacy ¢ uniquely.

Under different regularity conditions, valid for renormalizations of critical circle maps, an
analogous theorem was proven in [12]. In that case, however, the geometry is bounded, and
it requires a much simpler analysis. At present, Theorem 2 in [12] can be viewed as a special
case of a more general Theorem 2.2 (with a slightly modified regularity condition (ii)), when
the subsequence n is empty.

3. A criterion of smoothness and the proof of the main theorem

3.1. A criterion of smoothness

To prove Theorem 2.2, we will use the following criterion of smoothness of ¢. It is inspired
by a similar criterion in [4] called the “coherence property”. For a segment I C T! or R, we
define

1
(3.1) o(1) = #DI
7]
where | - | is the length of an interval on T! or R.

ProrosITION 3.1 ([12]). — Suppose that the system of partitions P, of the circle is
refining, and that there exist constants C > 0 and A € (0, 1) such that for any two segments
1,1’ € P, which are either adjacent or I,1' C J for some J € P,_1, the following estimate
holds

(3.2) |Ino(I)—Ino(I')] < CA".
Then, ¢ € C1(T") and ¢’ > 0.

Proof. — We present the proof for completeness of the argument. Let ¢, be a homeo-
morphism of T! that equals ¢ on E, and is linear on each of the segments I C 2,. Let

further (¢,)’, be the right derivative of ¢,. It follows from (3.2) that the sequence of differ-
ences In((¢, )", (x)) is a Cauchy sequence, uniformly on T!, and thus converges to some /(x).
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To see this, notice first that over each I C P, without the right endpoint, (¢,)’, (x) = o (1),
and that (3.2), for any two intervals I, I’ C J for some J € 2,_;, implies that

(3.3) |Ino(I) —Ino(J)| < CA™.

Now, it is easy to show, using (3.2) for adjacent intervals 1,1’ € P,, that the function
h is continuous on T'. Taking the limit n — oo of @,(x) = fox(go,,)ﬁr(z) dz, we get
p(x) = fox e"@) dz. Thus, ¢’ = e’ is continuous and positive on T!. O

We will also use the ratios of the corresponding rescaled intervals:

[Tn(p(1))]
34 L(1) =
oy =)
In addition, we will use the notation
(3.5) r(l) = |Tn(77—)_75n(77—)|’ r,:“(l) — |Tn(77+)—r,,(n+)|’

|Tn (1) lTn (1)
where n— and 74 are the end points of I such that t,(n-) < 7,(n+); and 7- = ¢(n-) and
T+ = @(n4) are the end points of ¢(7) such that 7, (-) < 7,(74+). Clearly,

(3.6) l5n (1) = 1] < 1y (1) + 1,0 (D).

To simplify the notation, we will also use t; 1= T, (Xy,_,+ign) — T (Xg,_,+ign)-

3.2. Renormalization graphs concave inside the gates

In this section, we restrict our consideration to subsequences of renormalizations f;
and f, of T and T, respectively, for n = ny, for some £ € N, which satisfy the regularity
conditions (i), (ii), (iii) and (iv). The graphs of these renormalizations are concave inside the
gates.

The following proposition summarizes the main result of this section. We emphasize that
the constants C; that appear in this paper are all independent of 7.

Let A, € (1/A/A1, 1) be a fixed number in the given interval.

PROPOSITION 3.2. — Assume that the conditions of Theorem 2.2 hold. There exists C, > 0
such that for all n = ny, for some £ € N, and for 0 < j < k1, we have

(3.7) on(Dg) 1 jg,)- (n(Ag) )T < 14 Gl

The proof of this proposition follows directly from Proposition 3.11 and Proposition 3.14
below. Proposition 3.11 establishes that the relative difference of lengths of the renormalized
intervals 7, (A" ) and 7, (A% ) is exponentially small, i.e, inequalities (3.7), for j = 0,
while Proposition 3.14 extends this estimate to j satisfying 1 < j < k,4+;. The proof of
Proposition 3.11 is based on Lemma 3.9 and Lemma 3.10. In the proofs of these lemmas, we
use Lemma 3.7 and Lemma 3.8, which provide estimates on the iterates of “long” intervals,
i.e., intervals whose length is at least of the order of A%, forsome A3 € (A/45, A1 A,). Similarly,
in the proof of Proposition 3.14, we use Lemma 3.13, which provides the desired estimates
on the iterates of the long intervals. To prove Proposition 3.11 and Proposition 3.14, we also
use the topological conjugacy of the maps (implied by conditions (a) and (c) of Theorem 2.2)
and the exponential convergence of renormalizations (condition (d)). We also use the fact
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that, for n = ny, for some £ € N, the renormalizations f, and j‘; satisfy regularity
conditions (i), (ii), (i) and (iv) (condition (b)). In particular, we use the fact that, due
to the concavity of renormalizations f, inside the gates, the intervals between successive
iterates of renormalizations, inside the e-neighborhoods of the end points, are either longer
than a constant or their iterates under f;, grow exponentially, as implied by the following
proposition.

PROPOSITION 3.3. — Let T : T! — T! be an orientation preserving homeomorphism and
let its sequence of renormalizations f, be K -regular withrespect ton. There exists B > 1+ K3 /4
and 0 < ¢ < K3/2 such that, for alln = ny, for some £ € N, either f,(—=1) + 1 > K3/2 or
f(z) > B for z € [-1,—1 + ¢] and either f,(0) > K3/2 or f,(z) < B™! for z € [-¢,0].

Proof. — It follows from the continuity of f, and regularity condition (iii) (see Section 2.3)

that, forn = ny, for some £ € N, if f,(—1) + 1 < K3, there is xf”) € (0,1) such that
fu(=1+ }ff")) +1- xg") = Kz and f,(z) —z < Kz forz € [-1,—1 + }cf")). Since,

z z ¢
(8) fule) = ful-1) + /_ i) dE = fi-D + /_ 1 (fn’(—l) + [_ A d;’) dt.

using the regularity condition (iv), we obtain

K
(3.9) Fa@) = D+ FIEDE+ D = S+ D
Evaluating this expression at z = —1 + }ti"), we obtain

K
(3.10) S+ T+ (D =D 2 Ks 4 22 0")? > Ko,

Therefore, if f,(—1) + 1 < K3/2, then f,/(—1) > 1+ K3/2. Similarly, if f,(0) < K3/2, then
f(0) < 1— K3/2. Since the second derivative of f, is bounded (by regularity condition (i)),
in these cases, there exist ¢ > 0 and B > 1+ K3/4 such that f,(z) > B,forz € [-1,—1+¢],
and f,(z) < 2— B < B7!, for z € [—&,0]. The claim follows. In fact, one can choose any
e < K3/4K4. |

The next proposition will be used repeatedly, without always mentioning it explicitly. It
implies that the length of the longest of the exponentially growing iterates of an interval is of
the order of the sum of their lengths.

ProOPOSITION 3.4, — Let by > 0,b; > B > 1fori € N, and
n o Jj
(3.11) sn=y []b-
j=0i=0

Then, there exists A > 0 such that ]_[?:0 b; > Asy, foralln € N.

Proof. — We can assume, without loss of generality, that by = 1. The claim is proven by

simple induction. For n = 1, the claim is, obviously, true, for any A < 1+LB' Assume that the
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claim is true for somen € N, with 4 < 1 — %. Then,

n+1 n+1
(3.12) l_[ bi > Aspbyy1 = Abpy1(Sny1 — l_[ bi),
i=0 i
and, thus,
n+1
(3.13) ]_[b >A1+Ab,, S > Aspy1.
The claim follows. O

PROPOSITION 3.5. — Under the assumptions of Proposition 3.3, there exists A > 0, such
that, for alln = ny, for some £ € N, and, for 0 < j < ky41,
(3.14)
kni1—1

J
. +1
[t (A 4yl > Amin 33 1m (A7 Lol Y (BG4 )+ (A5
i=0 i=j

Proof. — By Proposition 3.3, there exist ¢ > 0 and B > 1 + K3/4 such that either
fu(=1)+1>K3/2or f)(z) > Bforz € [-1,—1 + ¢] and either f,(0) > K3/2 or
fi@) < BV forz € [~&,0l. If fu(—1) + 1 > K3/2, then |5, (AL . )| > K3/2, for
any j such that 7, (Af]'z)_l +jg,) N[=1.—1 +¢) # @, since, due to regularity conditions (iii)
and (iv), f,(z) — z is monotone inside the gates and f,(z) — z > Kj outside them;
consequently, for any such j, (3.14) holds for any A < K3/2. If f,(—1) + 1 < K3/2,
then fi(z) > B,forz € [-1,—1 + ¢] and, by Proposition 3.4 applied to by = 1,

= |ty (A‘(I':l) g/ 1T ,,(A(") e l)q )|, fori > 0, there exists A > 0 such that (3.14) holds

with A < A, for any ;j such that 7, (A " +jg,)N[=1.—1+¢€) # 0. Similar arguments can be
used to show that for sufficiently small A, (3.14) holds for any j such that 7, (A(” ) " tian)

(—&,0] # @. It remains to show that (3.14) holds, for sufficiently small A4, and all j such that
tn(A(”) \+jgn) C [=1+e&,¢]. This holds since f,(—1+¢)+1, fu(—¢) > (1—B~")e and since
fn(2) — z is monotonically increasing in [—1, Z!E,I)) and monotonically decreasing in (zg), 0],
while f,(z) — z > K3, outside of these intervals. Therefore, the claim follows for sufficiently
small A satisfying all the upper bounds. O

COROLLARY 3.6. — Under the assumptions of Proposition 3.3, there exists A> 0, such
that, for all n = ny, for some £ € N, and, for 0 < j < ky41,

(3.15)
jt1 kn41—1
1
|T”(A!(1’;) 1+1qn)| > Amln Z |T"(A(n) 1+iqn)|’ Z |Tn(At(1’;)_1+iqn)| + |Tn(A(()n+ ))|
i=0 i=j—1

Proof. — Tt follows directly from Proposition 3.5, taking into account that, by regu-
larity conditions (i) and (ii), the lengths of the neighboring intervals A(") and

— T4n (A(n)

—1+ign

) are of the same order, as (7%) (x) = f, (14 (x)). O

(n)
AqhH+(i+l)q 1+iqn
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The following two lemmas will be used in the proofs of Lemma 3.9 and Lemma 3.10,
respectively.

To simplify the notation v; := 7, (Xy,,_; +ig,) — Tn(Xg,_ +ign)-

LemMaA 3.7. — Assume that the conditions of Theorem 2.2 hold. Let A4 € (A,1), C3 > 0
and, for alln = ny, for some £ € N, let jl(") be such that 0 < j(") < kynt1. There exists C4 > 0

such that, for all n = ny and sufficiently large £ € N, lft Q0 > C3A1 then, for all j > j( n)
4 G=1)g,) N [=1.—€] # @, we have
(3.16) o = Gl

satisfying T, (A

Proof. — It follows from the mean value theorem and condition (d) of Theorem 2.2 that

G17) = GG +G-0a) = So (@ (g1 G-1an) = Fr(Eim1)tj—1 — CA”,

where &;_; is a point in the interval (z,(xq,_,+(— l)qn) Tn(Xy,_ 1 +(j—1)qn))- By Proposi-
tion 3.3, lf‘Cn(A( ) C [-1,—1 + €], thenf(gj 1) > B > 1+ K3/4 and,
therefore,

1+ —Dgn

(3.18) =T,

if K3tj_1/4 > CA". Since A < A4, then this condition is satisfied for j = j + 1,ifn is

large enough such that K3C3A} / 4 > CA". The estimate (3.18) now implies that (3.16) holds
- (n)

forall j > j,” satisfying f,,(Aqn +G—Dg,) C [FL =1 +el.
Using the regularity condition (ii), from the inequality (3.17), we also have
(3.19) T = Kztj_l —CA".

This inequality can be iterated a number of times bounded by a constant, if A < A4, to obtain
(3.16), with some constant C4 > 0, and all j > jl(") such that

~ K
WAy (g N (1 +e—e] # 0.

This follows from the fact that the number of such indices j is bounded by a constant,
independent of n. To see this, notice first that it follows from Corollary 3.6 that the length
of all intervals T, (A(”) \+jqn)> such that T, (A(”) t(—1)g,) N (=1 + & —¢] # 0, is bounded
from below by a positive constant proportlonal to €. The claim follows. O

Similarly, we have the following.

LemmA 3.8. — Assume that the conditions of Theorem 2.2 hold. Let Cs > 0 and, for all
n = ny, for some £ € N, let ]r") be such that 0 < j, () < kpy1. There exists Cg > 0 such that,
for all n = ny and sufficiently large £ € N, if — ton > CsA} then, forall j < ]( )satisfying

rn(A(") +jgn) N[=1+ 0] # @, we have
(3.20) “v > oAl

Proof. — The mean value theorem and condition (d) of Theorem 2.2 give us that

~ K3
(3.21) —t; > (f1(€) " (—tj41 —CA") = (1 + T) (—tjt1 —CA") = —tj4q,
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if Kstjy1/4> (14 %)C A™. This condition clearly holds for sufficiently large n since A4 > A.
As before, £; is a point in the interval (t,(Xq, _,+jgn)s Tn(Xg,_,+jq.))- Here, we have used
that, by Proposition 3.3, (f (§,))"! > B > 1+ K3/4, aslong as the intervals 7, (A(n)
lie inside [—¢, O].

1+an)

Using the regularity condition (i), from the first inequality in (3.21), we have
(3.22) —t; = Ky ' (=tj41 = CA"),

which can be iterated, a number of times bounded by a constant, to obtain (3.20) for some
Cs > 0,and all j such thatT, (A(") oy qn) N[—1+¢&,—¢) # @. Here, we have used again that,
by Corollary 3.6, the number of such j is bounded, as explained in the proof of Lemma 3.7.
The claim follows. O

Throughout the paper, A, € (v/A/A1,1) and A5 € (A/A,,A11,) are fixed numbers in the
given intervals.

LeEmMA 3.9. — Assume that the conditions of Theorem 2.2 hold. Let C;7 > 0. There exists
Cs > 0 such that, for n = ny and £ sufficiently large, if

(3.23) sn(AP ) > 1+ G723,
then
(3-24) Tn(Xqu1+ian) = T (Xg,_1+jan) = CAz A3,

for all j such that T, (A( n) YN (=1 +¢,—¢) #0.

—1+Jjqn
Proof. — Assume first that [T,(AY)_ )| < A%Z. Due to (3.23), |t, (A% )| < A% as well.
Using conditions (b) (regularity conditions (i) and (ii)) and (d) of Theorem 2.2, for 1 < j < kj4+1

such that ‘L’n(A 4+ G=Dan ), T, ,,(Aqn G- 1)%) C [-1, -1 4 %], we have

e =1 1+ %) w(85).)

i=0
(3.25) g 1@ — FLE| + 1 £1E@) — £1@)
> 1 - Yn i n\Gi n\5i n\5i " A(")
-1 ( 4@l Bar)
> (1—- K51 (CA" + K1AD))’ 5,,(A§;;> ).

Here, ¢; € r,,(A( ") " tidn ) and {, € r,,(A(") L ign)- Since, by condition (a), j < kp41 <
CiAT", for every g1 > 0, if n is large enough we have

(3.26) su (A ) > 1+ (1) CrA)

Here, we have used that A < A3 < A1A,.
Let j,, be theindex j of the last interval 7, (A(")
i.e., such that7T, (A( ")

+ign ) that is contained in [—1, —14AZ%],

) C [-1.—1+2%] and 7, (A YN (=14A%,0] # 0.

—1+Jjx34n n—1+0rz+1D4qn
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The previous estimate then implies that

(3.27)
j)L3
TR+ 0y +000) — Ty 4Gy +00) = D (BB g ) = e (A0 )
j=0
JAs
(1 —¢1)C745 e AIND)
[Th (A )| > CoAL A%,
1+ (1—-e1)C775 jg(:) A2 gn—1+7jqn 273
for some Cy > 0, since ZJJ-SO [T (Z;’:{l n qn)l is of the order of A%, as follows from Corol-

lary 3.6. If [z, (AA/,(I'Z)_I)| > A%, we formally define j,, := 0. In this case, the final estimate in
(3.27) follows directly from (3.23).

Since A < AyA3, Lemma 3.7, with A4 = A,A3, gives (3.24), with some constant Cg > 0,
forall j > j,, such that?;,(zz(lz)_lﬂqn)ﬂ [—1, —¢) # 0. Since, for sufficiently large n, A < e,
this interval of indices includes all j such thatﬁ(ZfI” )N (=1 +4¢,—¢) # @. The claim

n—1+tJjdn
follows. O

LemMma 3.10. — Assume that the conditions of Theorem 2.2 hold. Let Cy9,Cy1 > 0. There
exists C1o > 0 such that, for n = ny and £ sufficiently large, if [T, (AL(;:,)HN < C1oA} and

(3.28) sp (AW, ) > 1+ CiuAj,

then

(3.29) Tn(Xg,—1+jan) = n(Xg,_1+jgn) = C1243A5,
for all j such thal?}l(zl(l?ﬂﬂqn) N(=1+¢e —5) #0.

Proof. — The estimates in the proof of this claim are similar to the estimates for forward
iterations that were used in the proof of the previous lemma. It follows from (3.28) that

|r,,(A,(JZ)+1)| < CioAs. The regularity condition (ii) guarantees that [z, (Z;’;{rl_qnﬂ <
K5;1C1oA% and |Tn(A((I’:l)_,’_l—q")| < K5'CyoA. Since ATV ¢ ASI'Z)H, there exists € > 0

such that7z, (FAV,(I’Z,L_%), Tn (AE,';LI_,M) C [-€A%,0]. For0 < j < k,41 such that the intervals
Ta(A™ ), T (A ) C [—=€A%, 0], we have

dn—1+Jjdn dn—1+Jjqn
o kljl (1 . fn’(ci}Z éj‘)Z(Z))sn( AD )
. ) klj (1 A }‘Z@i}’z TE?@ - J"Z(z?)) N
) ktll (1 AR f,Z(z,-% ? ?J)fT,Z@i) - ﬁZ@n)sn A )
> (1 —jK;I(CA" + K1) s (AL ).
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As before, ¢; € ‘L’n(A( ”) " +ig,) and E; € T, (A(") L ign)- Since, by condition (a) of
Theorem 2.2, j < k,,+1 < CiA{" and, since A < A3 < AjAz, using (3.28), for any
gy > 0, if n 1s sufficiently large, we obtain

(3.31) Su (AP ) > 1+ (1= e2)CpiAl.
Let j_j, be the smallest index j such that7, (A(") \+ja,) C [-€A5,0]. Then, we have
(3.32)
0 (gt iayan) = T G tioayan) = (B3 ) = (A5
knt1—1 kny1—1
+ 2 G )= 2 A )
J=J-23 J=J-23
kny1—-1 kpy1—-1
= Y @By )= 20 m(Ag) )l = 2KiCA”
J=J-23 J=J-23
knt1—1
(1 —&2)C111) ~(n)
> (AT —2K,CA" > C13A5A%,
T+ (—e)Cpi Al Z [Ta ( an— 1+/q,,)| 1 134343
J=i-as
for some Cy3 > 0, since A < A»A3 and, by regularity condition (i), Y "_tlk; [Tn( Az(;:,) i)

is of the order of 15. In the first of these inequalities, we have also used that [z, (Ag’ +1))| —

|rn(A(()"+1))| < 2K;CA", as follows from the condition (d) and the regularity condition (i).

Using again that A < A;A3, Lemma 3.8, with 14 = 4,43, now gives (3.29), for some
Ci2>0,and all j < j_,, such that r,,(A( ") " i4jg) N (=1 + &0 # @. Since, for a
sufficiently large n, €A} < ¢, this interval of indices includes all j such thatz, (A(") N
(—1 4 &,—¢) # @ and the claim follows.

1+J‘1n)

The following proposition shows that the ratio of lengths of the intervals ?},(Zg}?_l

and 1, (Aqn 1) is exponentially close to 1. The proof is by contradiction. We will show
that if the first of these intervals were sufficiently longer, then the corresponding sum
Zk"“ ' n(A(") [+ jg,)| Would need to be significantly larger than Zk”+1 1 "(At(z?_ﬁjqn”
such that it would lead to a contradiction.

PROPOSITION 3.11. — Assume that the conditions of Theorem 2.2 hold. There exists
C14 > 0 such that, for alln = ny, for some £ € N, we have

(3.33) sn(AP ). (5a (A )TN <14 Crahl.

Proof Notice that it is sufficient to prove the claim for sufficiently large £. If either
| n( dn— 1)| > Aj or |z, (AEI';) | = A%, then the claim follows directly from the closeness
of renormalizations (condition (d) of Theorem 2.2), since |7, (Ag}? Dl = |r,,( G 1)||
|fn( 1) — fu(=1)| < CA". In the case when |tn(A(”) Dl < A% and |‘Cn(A ") < A5, we
will prove the claim by contradiction. To prove the first mequallty, let us assume that, for
every Ci4 > 0 and every n; € N, there exists n > n; such that s, (A,(I'Zl)_l) > 14 C14A}. The
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proof of the second inequality is analogous, by exchanging the roles of f,, and j‘; Lemma 3.9
implies that

(3.34) Tn(Xgp_14jgn) = T (Xg,_1+jgn) = C15A3A5,

\tjan) N (=1 + & —¢) # 0.
We will now prepare the setting to estimate the same difference starting from the other
end of the interval [—1, 0]. Notice that

F—1 (=10 7, (%0))
/ _1(Tp—-10 ‘Cn I(CO))

) yJn= 1—1(—fn— 1(0)§0)

for some constant C;5 > 0, and all j such that T, (A(”)

5, (A7) = 5,(A) )22

dn—1

:En(Aqn 1 /
(3.35) (= Fu1(0)C0) N o
N )(1 L Sl 0%) - ,;_1(—fn_1(0)zo))
n qn—1 Y

w1 (= fa-1(0)20)
= 5,(A00 ) (1= K€" + K3C2"™" + K3l — o))

where £o € 1,(AM) and Ty € %, (AU). We next estimate | — Co|. Since

L+ fa=D) v
(3.36) (g, ) = 1 p o) = ! T (AG) )]

and, by assumption 5,,(A,(I'}’1)71) > 1 4+ Ci4A%, we have C14|rn(A51"y,ll)| < CA%, since
A < AzA,. Furthermore, since by the regularity conditions (i) and (ii), the length of the
interval 7, (Afln s 1e, | (A(") I = fi_i =101, (0))|tm (A(()"))L is of the same order
as |rn(Ag" )| = fu(0), we have f,(0) < CiA%, for some C;¢ > 0. This implies that
[Co — EE,| < fu(0) + CA™ < Ci6A5 + CA". Using this estimate and the last inequality in
(3.35), we obtain that, for some &3 > 0, if n is large enough,

(3.37) 5n(AS) > 1+ (1 — £3)Crarl.
Notice, further, that

5"(A5(1rrll)+l _ Jat100) = fug1(=1)

5o (ALY a1 (0) = S (1)

and that the right hand side is bounded from below by 1—C17A", for some Cy7 > 0. Together
with (3.37), this implies that, if n is large enough,

(3.39) 5p (A ) > 1+ (1—263)Cral.

(3.38)

Furthermore, since A,(I';)H Tan+1(T—4n— I(A(") 1)), by the regularity conditions (i) and

(ii), [T, (A +1)| is of the same order as [z, (A( n) " )| < A%. Conditions of Lemma 3.10 are,
therefore, satisfied. Applying Lemma 3.10, we obtain

(3.40) T (Xgu_1+jgn) = Tn(Xgu_1+jgn) = C18A3A3,
for some Cyg > 0 and all j such that t,,(A(") \+dn )N (=1 + &,—¢) # 0. Since, in

Proposition 3.3, ¢ > 0 can be chosen arbltrarlly small, due to the regularity condition (i),
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the set of such indices j is nonempty. By considering this estimate for any such j, we get a
contradiction with (3.34). The claim follows. O

COROLLARY 3.12. — Assume that the conditions of Theorem 2.2 hold. There exists C19 > 0
such that, for all n = ny, for some £ € N, we have

(3.41) 50 (A, (5,(A) ™! < 1 4 Crorl.

Proof. — We will prove the first inequality; the proof of the second is analogous. If
|r,,(A(()"))| > A%, the claim follows directly from the convergence of renormalizations
(condition (d)). Assume that |z, (A(()"))| < A%. Using the first three equalities in (3.35), we
obtain

(42 5O =s AR ) (14 KO + KRONT + KIS — o))

where & € 1,(AM) and ¢y € T, (A™). Since |¢o — Co| < f,(0) + CA™ and £, (0) =
[t (A)] < A%, the claim follows. O

The next lemma deals with the iteration of “long” intervals, i.e., intervals whose lengths
are at least of the order of A5. In Proposition 3.14, it will be applied to long intervals

Tn (A((;,‘l)_1 +jg,)- The number of such intervals is at most of the order of n since, by Proposi-
tion 3.3, the length of the intervals t,,(Ag’I)_lJrjqn) inside of [—-1,—1 + &) grows and inside

of (—e&,0] decays exponentially under the iteration of f,, and inside the gates the func-
tion f,(z) — z is monotone and increasing or decreasing, respectively (see the regularity
conditions (iii) and (iv)). Lemma 3.13 provides the desired estimates for long intervals. The
analysis of “shorter” intervals is more subtle, since one has to deal with quantities that are
small on the exponential scale and the convergence of renormalizations (condition (d)) is
only exponential.

Let n and 7 be two corresponding end points of the intervals I C A(()"_l) andT C Zg”_l),
respectively (either n = n—and =7_ orn = ny and =74 ),and let r, (1) := W
That is r, (/) stands for either r, (1) or r(I) (see (3.5). Let I; := 7, '(f}(za(I))) and
I =T, (fy @(D)).

LemMa 3.13. — Assume that the conditions of Theorem 2.2 hold. Assume that there exist
Cz0, Ca1,Con > 0 such that, for alln = ny, for some £ € N, there exist intervals I and T
satisfying I; C Agn_l), Z C Zgn_l) and |ty (I;)| = CaoAL, for all 0 < i < N,, where
Nn < Cyin. Assume further that rp(I1) < CaA5. Then, there exists Co3 > 0 such that, for
alln = ny, for some £ € N, r,(I;) < Ca3A}, for0 <i < N,.

Proof. — Notice first that it is sufficient to prove that the claim holds for sufficiently
large £. We will assume that n and 7 are the smaller end points. For the larger end points,
the proof is essentially the same. The lemma is proven by induction. For i = 0, the claim is
true. Assume that for all0 <i < j, r,({;) < C3A} < 1, for some Cp3 > 0 specified below
and n large enough.
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Using the mean value theorem, condition (d) and regularity conditions (i) and (ii), we
obtain

Ja i) [T () — T (ni)] + CA”
SaGiv )|t (1i)]
(3.43) < (1 n [faGi1) = fu i)l
Sa@iv1)

= (1 + KIKEI(I + rn(li))|fn(li)|) ra(li) +

ra(lig1) <

cA"
K>Cr0A%

CcA"
K>CyoMy’

)rn(li) +

where &1 € (t,(7;). Ta(ni)) and &1 € 1,(1;). Here, we have also used that |z, ()| >
CoA. Applying this inequality recursively from i = j down toi = 0, we find

J
ra(lip) < [T (1 + 2K K3 e (I))) ra (1) + CCag' K3 (A / 23)"
i=0

-1 k
(3.44) -(1 +Y J1a +2K1K{1Itn(1i)l))
k=1i=1

< KK (1) + CCo K5 Y (A/A3)" (1 + Cagne?K1K2

n
=< C23A'29

— _ n
if Cp3 > Cppe?K1 Ky + CCl K71+ CCh K51 Cye2 K1 K ' max (n ()Lj_/lz) ) For n, large

neN
enough such that c23/\§2 < 1 and all £ such that n = ng > n,, we, thus, have r,(/j4+1) <

Ca3A%. The claim follows. O

In the next proposition, we again use k,+1 < CiA]", for those n considered here. We
will show that, under this assumption, if the ratio of lengths of the intervals 7, (A((I’:r)—l) and
Tn ( A,(I';l] ) is exponentially (in n) close to 1 then, due to the convergence of renormalizations

(condition (d) in Theorem 2.2), for all j = 1,...,k,+1, the ratios of the lengths of the

intervals T, (Z‘(;,'l)_l +igy) and T (A((I’:z)—l + jq,) A€ exponentially close to 1.

PRroOPOSITION 3.14. — Assume that the conditions of Theorem 2.2 hold. Assume that there
exists Cy14 > 0 such that for alln = ng, £ € N, (3.33) is valid. Then, there exists Co4 > 0 such
that for all 0 < j < ky+1, we have

(3.43) Sn(AY g Gn (A

@ i) S 1+ Coull

Proof. — 1t suffices to prove that the claim holds for large enough £. Recall that A, and
A3 have been chosen such that A < A;A3 < A3 < A4, < 1. We will assume first that
|?,,(A,g’f,)_l)| < A% and |1, (A,(I’Z,)_l)| < M.Forl < j < ku41 such that both intervals
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o Gna) T B g C 1 —1 + 28], we have

w20 = T (1 HO A

1 £1@)
(3.46) g | 1@ — £1E) + 1 £1@) — £ n
" ( 5G] (80
< (1+ K H(CA" + KiAD) 5,08 ).

Here, i € 7,(AY . yandq; € %, (AT

conditions (i) and (i1).

\+ig,)- Wehave used condition (d) and regularity
Let j,, be the largest index j such that both intervals 7, (A(") \+idn ) and tn(A(") oy qn)
are contained inside the interval [-1, —1 + A%]. Since, by condltlon @), j <knpt1 = Ci1AT",
and since A < A3 < A1A,, by using estimate (3.46) and Proposition 3.11, we obtain the first
inequality in (3.45), for 1 < j < j,, + 1. By exchanging the roles of f, and ]7”, we can obtain
the second inequality in (3.45), for the specified indices ;.
Using the estimates (3.45) for 0 < j < jj,, we obtain that, for some Cs5 > 0,

(3.47)  [ta(Xg,_14+G+1an) — T (Xg,_ +(+1)gn)| =

J
(n)
Sn (U A‘In—l‘“"]n) -1

i=0

J J
D 1on(AG) siq)| = g [an (A0 i) = 1| (87 g, < Casia
i=0 =

~(n) (n)

—1+Jx3 qn)| |7 (A dn—1+Jrzqn

—1+Jja34 ) and z, (A(n) 1+Jas 4n) 15,

thus, of the order of A%5. Together with the estimates (3. 45) for J = Jas, this gives that

mm{lr,,(A(") A ), |rn(A((I") \tiragn) [} = CazA%, for some Co7 > 0, and the length of
n n— 3 n

the shorter of these intervals is, thus, also of the same order.

Corollary 3.6 implies that max{[T, (A4, )} = CaAl, for some

Cy6 > 0, and the length of the longer of the intervals T, (A( )

We will now prepare the setting to extend these estimates to j such that, for some € > 0,
both intervals 7,(AY” . ) %, (AW ) € [~€A%.0]. It follows from (3.38) and Corol-
lary 3.12 that, for some Cyg, C29 > 0,

(3.48) |50 (A ) = 1] < 54 (AJ”) — 1] + Ca8A" < Ca023.

In particular, this implies (3.45) for j = kj4+1.
We can now perform backward iterations of f, and j‘;, starting from the intervals

(AP ) and T, (A%, ), respectively. For | < j < kp41 such that both intervals

dn+1 dn+1
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T (A (n) 1+jqn) Tn (A(n) 1+jqn) C [-€A%, 0], we have
kny1—1
. [ — FI@) .
o o= 11 1+ 29D )
(3.49) Fnp1 1 Lf1&) — Ll + 1 £1&) — F1E)I .
< .H. (1 * 177Gl )5"(A‘(’")*‘)
< (1+ K1 (€A + Kiea) ' s,a0) ).

Here, we have used again condition (d) and regularity conditions (i) and (ii). Since, by
condition (a), j < k41 < C1A]", and since A < A3 < A1A,, by using (3.48) and (3.49),
we obtain the first inequality in (3.45), for the considered indices j. By exchanging the roles
of f, and f,:, we can obtain the second inequality in (3.45), for the these indices ;.

Let j_j, be the smallest index j satisfying 1 < j < kp41 such that both intervals
rn(A(") \+jq,) and r,,(A(") \+jq,) are subsets of [~€A%,0]. Since Ac(]';)_l = Tq"—l(Af,")),
A,(I';LI = T (AM) and Ag?ﬂ = Tin (A‘(IZLl—‘In)’ using regularity conditions (i)
and (ii) (these conditions imply that (T9) (x) = f,(t,(x)) is uniformly bounded and

bounded away from zero on A(”_l)) one can easily see that the lengths of the intervals A,(I’Z,) .

A(") A,(i,',’l)+1 and A,(i,',’l)+1 —g, are all of the same order. Therefore, if |‘L’n(Aql Dl < A% and

|tn(A(") Dl < A%, there exists € > 0 such that AQY, | _,. AP, _, C [~€A%,0] (one can

choose € = (K; + K#)K5') and j_;, < kn41 — 1. As before, Proposition 3.5 implies that

there exists C3o > 0 such that |z, (AEI") l+] )l I?,,(Z‘(I") 1+] 234 )| = C30A% and, thus,
n 3 n n n
the lengths of both of the intervals 7, (Aqn VA3 dn ) and t,,(Aqn Vg ) are of the order

of A5.

So far, we have established (3.45) for 0 < j < jj, and j_;, < j < k,41.In order to prove
the desired estimates (3.45) for j,, < j < j—a,, we use Lemma 3.13. We will now verify the
assumptions of this lemma. First, for all such j, the lengths of the corresponding intervals

(A ((I';) \+jq,) are at least of the order of A5. This follows from the fact that the lengths
of t, (A(") ) and 1, (A(") . ) are of the order of A%, and that, due to regularity

1+Jas4n dn—1+Jj-r34qn

conditions (iii) and (iv), inside the gates [—1, zg¢ )) and (2(2), 0], the function f,(z) — z is
monotone, increasing and decreasing, respectively, while f,,(z) —z > K3, forz € [zél), zg)].
To see this, notice that f,(z;) —z; = |ta( A(" " +jqn)]s Where z; = 1,(xg,_, +jq,), and that,
inside the gates, the derivative f,(z) — 1 is of definite sign.

We will now show that the number of indices j satisfying j;, < j < j_,, is of the order
of n. Proposition 3.3 establishes that (since f,(— 1) +1 < K3/2, for sufficiently large £) inside
[=1,—1 + &) the length of these intervals t, (A ") \+ian ) grows while (since f,(0) < K3/2)
inside (—¢, 0] it decreases exponentially with ;. I je and j_, are the smallest and largest

index j such that the intersection t, (Af;”l)_l +jgn) N[=1+ & —¢] # @, it follows from Corol-

lary 3.6 that there exists &; > 0, of order &, such that |z, (Ag’l) tieg)|s [T (A ‘(I’,’l) 1+] EQn)| >

. Furthermore, since, for j,, < j =< J., the length of the intervals r,,(A
)|, which is of order AZ, to |rn(A(")

1+an)

grows exponentially from |z, (A

qn— 1+]/l qn 1+]SQn)|
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which is of order 1, the number of such indices, denoted by N,fl), is of the order of n.
Namely, since the rate of this exponential growth is bounded by B > 1 (by Proposi-
tion 3.3) from below, and K; from above (by regularity condition (i)), we have BNy <

(n) (n) - N
|Tn(Aqn—l+jsqlz)|/|Tn(Aqn_]+jA3qn)| = K] s and, thus,
(n) )
n 2P tiean) LT EETRL
lon (2g) ) 2 (A )
— 1+ixz4n dn—1+iryan
(350) C3lll’l < " < N’El) < n— < C31n’
In Kl In B

for some C3; > 1. Similarly, the number N, ) of indices satisfying j_, < j < ja, isof
order n as well. Finally, the number N, (C) of indices satisfying j. < j < j_. is bounded
by a constant since, due to the above mentloned monotonicity of f,(z) — z inside the gates,
the length of all corresponding intervals z, (A( ") "\ +jq,) 18 bounded from below by a positive
constant. Therefore, the number N, of 1ndlces J thatsatisfy ji, < j < j_j, is of the order
of n and, in particular, there exists C3, > 0 such that N, = N, DL N LN < .

The inequality (3.47) implies that r,, (A(") ) and r+(A(") ) are at most of

1+]A dn 1+]A qn
the order of A% (since the length of r,,(A(") \iasdn ) is of the order of 1%), i.e., we have
ry (A z(zr;)—1+jx3qn) < C33A% and r;(Ag;)_ﬁthn) < Ci3A%, for some Cs3 > 0. This verifies

the assumptions of Lemma 3.13 which implies that, for j satisfying ji, < j < j_;,, we have
(AW ) < Cadjand rf (A L
(3.45) now also follow for j, < j < j_a, since, by inequality (3.6), |s, (A(")
C35AZ, where C35 = 2C34

To complete the proof, we need to consider the case when either |7, (Aqn Dl > A% or
[T (AY )| > A% If either of the intervals %, (AS” ) and 7,(AY” ) has a length larger
than A%, then the other one has a length which is at least of the order of A% as well. This

) < C34A%, for some C34 > 0. The estimates

1+]qn) - 1|

follows from the estimate |[Z,(AS )| — [t (AY )| = | fu(=1) — fu(=1)| < CA". The
same lower bound on the lengths of the intervals 7, (AA/;',?JFI) and 7, (Afl'fl)Jrl) holds true since,

as explained earlier in this proof, due to regularity conditions (i) and (ii), the lengths of these
intervals are of the same order as 7, (Afln ) and 7, (Afln 1), respectively. We will now verify
that the intervals t, (A,(In)_l) satisfy the conditions of Lemma 3.13, in this case, and apply this
lemma to obtain estimates (3.45) for all j satisfying 0 < j < kp41. If f(—=1) +1 < K3/2,
using the same arguments as above for j;, < j < j_»,, we obtain that there exists C3¢ > 0
such that |rn(A(") \+idn )| = C36A%, for 0 < j < ky41, and that there exists C37 > 0 such
that k11 < C37n If f,(—=1) +1 > K3/2, we obtain, using, as above, the monotonicity
of f,(z)—z inside the gates, that the length of all intervals t, (A( n) At idn ), for0 < j <kpt1,
is bounded from below by a positive constant, independent of n, and that, in this case,
kn11 is bounded from above, uniformly in n. Since |[%, (RS )] — [t (AY) )| < CA™ and
|tn(A,(;,l,) )| is at least of the order of A%, we have r+(A,(1’Z,) ) < C3gAl, for some Csg > 0.
Therefore, the assumptions of Lemma 3.13 are satisfied with I = Az(zr:,) ,and N, = k41, and
we can conclude that r+(A(") tian) = C39A, for some C39 > 0and 0 < j < ky1. The
estimates (3.45), in this case, follow directly from this lemma, by using inequality (3.6). [
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3.3. Renormalization graphs that are convex inside the tunnels

In this section, we consider the subsequences of renormalizations f, and ]7,1 of maps T
and T, respectively, for all n such that n # ny, for any £ € N. These renormalizations satisfy
the regularity conditions (i), (ii), (v) and (vi). The graphs of these renormalizations are convex
inside the tunnels. The same holds in the case of critical circle maps and some estimates in
this section have already been proven in [12]. We include their proofs for completeness of the
presentation.

If By, k. is not empty, let ;; be a point such that f,({y) = 1 (such a point, that we
will refer to as the center of the tunnel exists due to regularlty conditions (v) and (vi)).
Similarly, if Bf Ks is not empty, let §n be a point such that fn (Zn) 1. If kpy1 > 1/Ks,
the tunnel By, g is nonempty and ¢, is defined. The affine orientation-preserving change of
variables

1
(3.51) y=h@) = Efn"(é“:)(z — &)

maps ¢, into 0 and normalizes the second derivative of f, there. Under this change of
variables f, is transformed into g, = h o f, o h~! which satisfies g/,(0) = 1 and g/ (0) = 2
We refer to k. = g,(0) = min, {g,(y)—y}as the size of the tunnel. Since f, () —¢; < n+1,
by regularity condition (vi), we have 0 < k < % knil. Since f; is C2T*-smooth, it follows
from the Definition (3.51) that

(3.52) lgn(¥) — (K + ¥ + ¥?)| < Caoly?*®.  y € h[-1,0],

where C49o > 0. Similarly, taking into account that (£, 1) (¢*) = 1and (£, 1)"(}) =
—f,7(&r), we have that, for some C4q > 0,

(3.53) g0 () + (k =y + ¥ < CalyP™™, € hlfu(=1), fn(O)].

To estimate the distance of the iterates of the point —1, under f,, to the center of the
tunnel, as well as the distance between its successive iterates, we will use the following
two lemmas that were proven in [12]. Namely, it follows from (3.52) and (3.53) that, if
k < const|y|?>T¥, the « term does not influence the asymptotic behavior of g, while, in
the opposite case, it does. The following two lemmas will allow us to obtain two different
asymptotic formulas, one for |y| > const« 7@ and the other for ly| < const k 7@ .

LemMA 3.15 ([12]). — Suppose that, for a sequence of real numbers {s;}i>o, there exist
Cyp > Oand a € (0,1) such that |si+1 — (s;i — 512)| < Ca|si|**®, for every i > 0. Then,
there exist constants D1 > 0 and dy € (0, 1) such that, as long as s € (0, d1], the estimate

1 D1

<
i+sgt| T (4 syt

holds, for every i > 0. Moreover, there exists D, > 0 such that

(3.54)

Si —

(3.55) Si —Sit1 = (I+4).

1
(i +s51)2
where |8;| < D,s§, for alli > 0, as long as sy € (0,d;].

LeEmMA 3.16 ([12]). — Suppose that, for a sequence of real numbers {s;}i>o, there exist
C43,Cyq4 > 0and i, € (0, 1) such that
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1. |so| < Cask,
2. Isig1 — (k 4+ 5i + 5P| < Caalsi P12, for every i = 0.

o

Fix arbitrary Cy4s > 0 and define N = k=2 tan~1(Cysk~ 2@+@). Then, there exist constants
D3 > 0and dy € (0,1) such that, as long as « € (0, d3], the following estimate holds for every
0<i <N,

(3.56) Is; — /i tan(ki + ao)| < D3(v/& tan ki) + =5

where ag = tan~!(so/ k). Moreover, there exists D4 > 0 such that

(3.57) (1+6),

K
Sitl — 8 = ————
T (cos \/ki)?

a(a+1)
where |§;| < D4k 2@+, for all0 <i < N, as long as k € (0, d].

Lemma 3.15 allows us to establish an upper bound on the distance of the points f;/ (—1),
for 0 <i < ku+1, to the center of the tunnel.

Let to = h(—1) and t; = g',(t0), i.e., t = h(f;}(=1)).

LEMMA 3.17. — Let kny1 > 1/Ks. Let 0 < L, < knt1 and let fl(=1) — {F < 0,
for0 <i < L,. There exists C4g > 0 such that | f}(—=1) — £¥| < Ca6L;; L.

Proof. — Aslong as ; < 0, from (3.52), we have —t; 41 < —k — t; — t7 + Caot;|*T* <
—t; — 17 + Caolt;]>T®. It is easy to show by induction that if s; 11 = s; — s7 + Caols; [>T,
so = —tj and j is large enough such that —¢; < 1/2, then —t;; < s;, foralli € N. It is not
difficult to see that there exists C47 > 0 such that, if j > C47, then —¢; < 1/2. We will prove
the latter claim by contradiction. Namely, since 11 (¢;) — &¥ = 2¢; /£ ({F), if t; > 1/2, then
|h=1(t;) — ¢¥| > K;'!, by the regularity condition (i). By the regularity conditions (v) and
(vi), we find f, (b1 (1)) — h(t;) = min{Ks. Ks(h™" () — §)?/2} > min{Ks, KeK7'}.
It follows, using again the regularity conditions (v) and (vi), that, for 0 < i < j, we have
Sa(h71(@)) — h~1(5;) > min{Ks, KeK{'}. If C47 > 1/ min{Ks, K¢K; '}, this leads to a
contradiction. Therefore, for j > C47, we have —f; < 1/2 and we can apply Lemma 3.15,
with s; specified above. The claim follows. O

LEMMA 3.18. — Let kny1 > 1/Ks. Let 0 < Ly < knyy and let £" 7 (1) — &% > 0,
for0 <i < Ly. There exists Cag > 0 such that | £ (=1) — {F| < CasLy "

Proof. — The proof of this claim is analogous to the proof of Lemma 3.17. O

We will now estimate some important parameters of the tunnel. Since k = g,(0), there
exists a unique number i, satisfying 0 < i, < kp4+; such that;, € [0,k). Leti; =
ic — k2 tan~' k" 2@F@ ] and i, = i, + [c~/2 tan~! k 20+ |. The analogous quantities
associated to g, will be denoted by ¥, i, i; and i,. Combining tan™! 1 =Z _tan! x with

the asymptotic formula tan™! x = x + O(x3), x — 0, it is easy to derive

(3.58) k"2 tan~ ! 20 = %K_% a4 O(K%), kK — 0.
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LemMa 3.19 ([12]). — There exist constants Cya9, Cs9 > 0 such that if k41 > Cyo, then

(3.59) s — 73] < Csok 7
and

kn_i,.l —l+a
(3.60) le — < Csok 2

Proof. — We include the proof for completeness of the presentation. It follows from
Lemma 3.15, together with (3.52) and (3.53), that there exists iy > 1 such that,

1 Csy .
ti0+i+i_[_1 = (l’_t—l)lJra’ 0<i <i;—iop,
io io
(3.61)
HTOTE | T G )T ! ’
respectively, for some Cs; > 0. Lemma 3.16, applied to s; = —g,, " (t;,) and s; = g’ (#;.) (the

assumptions of the lemma are satisfied due to (3.53) and (3.52)), respectively, implies that,
for some Cs, > 0,

1 1 +0t(0t+1)
[iz + Kk2Fa | < C52K 2+a T 202+4) |

(362) 1 14 ofatl)
ti, — k2+a | < Cspi 2+a T 2040,

It follows from (3.61), fori = i; —ip and i = k,4+1 —ip — i, respectively, and (3.62) that, for
small enough «,

. R —1 1 et B 4

i —ig—ti; —k 2Fo| <Cs3k 2,

(363) k . . t_l _ﬁ <C —]2+a
— — L — o

nt1 —lo —lr Tl o T K = Cs3k ,

where C53 > 0. Since kn+1 = (kn+1 — io — ir) + (ir — ic) + (ic - i]) + (il — io) + 2i0, from
=1+«

(3.63), using the asymptotic (3.58) and k —2~ > k = , we obtain (3.59). Since k41 —2i, =
kn4+1—1io—ir — (i —ip) and both tigl and tk_,,l_,_l—io are bounded, from (3.63), we also obtain

(3.60). O
COROLLARY 3.20. — There exist Csq, Cs5 > 0 such that, if k,+1 > Csa, then
(3.64) 1| < cssi.
K

Proof. — Tt follows from Lemma 3.19, by using the corresponding inequalities (3.59) fork
and «, and the fact that, for x close to 1, x> — 1 is of the same order as x — 1. O

COROLLARY 3.21. — There exist Csg, C57 > 0 such that, if ky+1 > Cse, then

i~ . ~ . i~ . —l+a
(3.65) lic —icl, lir —irl|,li; —i1] < Cs7~ 2

Proof. — Tt follows from Lemma 3.19, using estimate (3.60) for i, and’i,, and the asymp-
totic formula (3.58). O
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COROLLARY 3.22. — There exist Csg, Cs9 > 0 such that, if ky+1 > Cssg, then

s 1+4
(3.66) K — 2 < Cs9k T2,
n+1
Proof. — Tt follows directly from estimate (3.59) of Lemma 3.19. O

The next lemma gives a lower bound on the distance between the successive iterates
of fi(=1),for 0 <i < ky41. To simplify the notation, let z; = f;/(=1) = 1, (xXq, | +iq,)-

LeEmMA 3.23. — There exists Cgp > 0 such that, for alln # ny, for any £ € N,

. (A o)l = Cooi 2 0 <i <ie,
|Tn(A¢(1’:,)_l+,-qn)| > Ceo(kny1 —1)2 e —1<i <kny1.

Proof. — We will prove the first inequality only. The proof of the second inequality is
similar. It follows from the regularity conditions (v) that there exists C¢; > 0 such that
|r,,(Ag:,)_1)| > Ce1- Let J := [1/K5] + 1. It follows from the regularity condition (ii) that
(3.67) holds for 0 < i < min{J,i.}. If J > i, the claim is proven. In the following, we
assume J < i.. The regularity condition (v) implies that, for all the remaining i, satisfying
J < i =< i, zi € By, .. It follows from (3.62) that, there exists Cs, > 0 such that,
k < Celti|*t¥, for J < i < i;, and we may apply Lemma 3.15to s; = —t;1; (the
assumptions of the lemma are satisfied due to (3.52)) to obtain the first inequality in (3.67),
for J < i < ij. To compare the length of the intervals t, (Ac(zr;)_ﬁiqn) and h(z, (A;’:’)_lJriqn)),
we have also used the fact that, due to regularity condition (i), |#'(z)| < % To complete
the proof, we need to verify (3.67) for i; < i < i.. To do that, we apply Lemma 3.16
with s; = —t;.41—; (the assumptions of the lemma are satisfied due to (3.53)). In particular,
fori; <i <i., Lemma 3.16 implies

(3.68) ligl =i = Sic1—i — Sig—i = (1 + 8i—i)-

K
(cos(vk (ic —)))*

We will now prove that there exists Cg3 > 0 such that, fori; <i <,
(3.69) tis1 —1; > Ce3i 2.

JKi
cos(v/k(ic—i))
increasing. This follows from the fact that the function \/ki tan(y/k (i.—i)) has the maximum

when /ki = % and, therefore,

1 i tan(YRGe — 1))
K ) = —— e =)

fori; <i <i.. Thus,

To prove this, we will first verify that the function y(J/ki) = is monotonically

> (cos(vk(ic — 1) (1 + tan® (Vi (ic —))) ™" > 0,

(cos(Vi(ic —i)? (1 +8ic—i) _ i (1+8.-i)
(cos(Wk(ic —i))* (1 + ie—if) — i2(1+8ip—i))
Taking into account that, by the previously established inequality (3.67) for i = ij,
(ti;+1 — t,-,)il2 is bounded from below by a positive constant and that, by Lemma 3.16,

(3.70) tig1—t; = (tij31—1t;,) (ti;+1—1;)

al@+1)
|8i.—i| < Ceak SGta , for some Cg4 > 0, this proves (3.69). The claim follows. O
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The next proposition gives an estimate on the distance between points 7, (X4, _, +,4,) and
T (Xgu_1+jgn)s 010 = j < kp1.

PROPOSITION 3.24. — Assume that the conditions of Theorem 2.2 hold. There exists
Ces > 0 such that, for alln # ny, forany £ € N, and for 0 < j < k41, we have

(3.71) 1Tn (Xgu—1+ign) = Tn(Xgu_i+jgn)| = CosA"'>.

Proof. — 1t suffices to prove the claim for sufficiently large n # ny. To simplify the
notation, let z; = T,(Xg,_, +iq,) and Z; = T,(Xg,_,+iq,)- Notice that the “first” pair of
points satisfies the desired bound since, by condition (d) of Theorem 2.2,

(3.72) 21 =21l = | oD = fu(=DI = CA".

The same is true for the “last” pair since

BT s — ki = 1050 = fu11(0) £ (0)] < K1 C(1+ WA,

Let & be a point between z; and Z; such that | £, (Z;) — fu(z:)| = f,/(&)|Zi — zi|. Then,
Ziv1 = zis1] < £ (ED)|Z — zi| + CA",

Zic1 — zical < (fEi—0)) T (12 — zil + CA™).

By iterating these two inequalities we obtain

j—1 j—1j-1
(3.75) 5 =zl < -zl [ | £ +Ca (1 +> 11 f,,’(si)) :

(3.74)

i=1 k=2i=k
k11+1_1 kn+1_1 kn-H_1
3 3 -1 -1
pir—i = Zhpir—i | < B — 2ol [ EDTTHCA Y ] (E)T
i=kn+1 —J k=kn+] —j i=k

We can now apply these estimates for all 1 < j < J, where J := [1/K5] + 1, obtaining
|Zj —Zj| < Cg¢eA™, and |an+l—j _an+1—j| < CgeA", for some Cegg > 0. Ifkn_H <2J, then
the claim is proven. Otherwise, all the remaining points z; and Z; belong to By, k. N B FoKs
i andz;’[ are well-defined and |E;’[ —¢¥| < CKg'A", as follows from the regularity condition
(vi) and condition (d).

The objective now is to apply the inequalities (3.75) to obtain the desired estimate for all of
the remaining points. We will first make at most L,, := [A~"/2]+1 steps from both ends. More
precisely, we will make at most L, steps from the left end, but stop when max{z;,z;} > .
From the first of the inequalities (3.75), we obtain |Z; —z;| < Ce7A"/2, for some Cg7 > 0, and
all J < j < L;, where L; := min{L,, min{k € N : max{zg, Zx} > ¢;}}. Here, we have used
the fact that the products of derivatives in (3.75) are smaller than 1, since all points & now
belongto By, ks NB FoKs and satisfy & < ¢,. The same estimate is obtained for k, 41— L, <
J <kpt1—J,suchthat L, := min{L,, k,+; —max{k € N: min{zg, Zx} < {;}}, by applying
the second inequality in (3.75).

If an early stop did not occur in the previous iterations, i.e., if L; = L, = L,, then, for
the rest of the points, by Lemma 3.17 and Lemma 3.18, we have |z; — {| < CesL;! <
CesA™?, and |Z; — C¥| < CegA™?, for some Ceg > 0. Together with [* — £¥| < CKZ'A",
this completes the proof, in this case. If both the forward and the backward iterations were
stopped earlier at L; < L, and L, < L,, respectively, then all the remaining points z; and
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Zj are contained in the interval between the leftmost and the rightmost of the points (i.e., the
smallest and largest values of) zr.,, ZL,, Zk,, ;| —L,» Zk, 4~ L, - The length of this interval, 9 :=
max{zy,, 2L, Zk, 4 —Ly» Zkyqp1—Lr ) — MINZL,, 2L, Zky — Ly s Zkyyq—L, §» 18 Dounded from
above by 2Cg¢7A7/2. If the iteration in one direction was stopped earlier, while in the other was
not, then the two arguments above can be easily combined to complete the proof. Namely, if
Ly<Lyand L, = Lyor L = Lyand L, < Ly, thend < Ce7A"/2 + CKZ'A" 4 CegA/2.
The claim follows. O

COROLLARY 3.25. — Under the assumptions of Proposition 3.24, there exists Ceg > 0 such
that, for alln # ny, forany £ € N, and forall 1 < j <[A™/3] + land k4 — A8 < j <
kn+1, we have

(3.76) |2 (a1 +jan) — T (g1 +jg)| < Ceod™|zu (AL ).

Proof. — For 1 < j < min{i.,[A™/8] + 1} and max{i, — 1.k, — [A7/8]} <
J < kpny1, the claim follows directly from Proposition 3.24, taking into account that, by
Lemma 3.23, there exists C7o > 0 such that |z, (Af;;)_l +ig)| = C70A"*. These estimates
can be extended to ie < j < [AT3] + lork,y — [A7®] < j < i. — 1 since,
by the regularity condition (vi), in these two cases |z, (Afl’:’)_l o)l = |T"(A¢(1r:,)—1 vieg)
and |7, (A((Ir;_1 4 qn)| > |1y, (A(") )|, respectively, for sufficiently large n. The claim

qn—1+Gc—1)gn
follows. O

The following lemma shows that, for the values of n considered (corresponding to the
renormalization graphs that are convex inside the tunnels), the ratios of lengths of the

renormalized intervals T, (Z‘(I};)—l 4 qn) and 1, (A;’;)_l n qn) are exponentially (in n) close to 1.

PROPOSITION 3.26. — Assume that the conditions of Theorem 2.2 hold. There exists C7¢ >
0, such that for alln # ny, forany £ € N, and 0 < j < ky 41, we have
(3.77) sn(Bg) 4 jg,) — 1] < Cro2%,

(4+ao)a
with A5 1= A82+a)

Proof. — It suffices to prove the claim for sufficiently large n. For 0 < j < [A™"/#] and
kni1 —[A7"/8] < j < kny1, it follows directly from Corollary 3.25, by using (3.6), that

(3.78) 5, (A )— 1] < ChA™4,

dn—1+Jjdn
for some C7; > 0. If this constant has been chosen sufficiently large, inequality (3.78) also
holds for j = k,4 since, as follows from (3.73) and (3.74), using that | f,/(z)| < K; by
the regularity condition (1), |7, (Xg, 4| +¢,) — T (Xg,41+¢,)| < C72A", for some C75 > 0;
and by the regularity conditions (v) and (ii), |z, (A,(I’Z,)H)| = |7, (T9n+1 (Ag‘)))| > Ks5K»,
as (an+l)/(-x) = n/+1(Tn+1(x))-

Ifkpyr < [)L_"/ 8], the claim is proven. In the following, we assume k11 > [)k_”/ 8]
and that n is sufficiently large such that [A™"/8] > 1/Ks. This latter condition guaran-
tees that for all the remaining indices j, for which (3.77) remains to be proven, we have
Zi,Z; € ny,,Ks N B]”;,,Ks'
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To prove (3.77) for [A™"/%] < j < min{il,z}, we apply Lemma 3.15 to s; = —t; 4[5 -n/8]
and s; = —1, +[A—n/8], Where i = j — [A~"/8]. The assumptions of this lemma are satisfied
due to (3.52), since it follows from (3.62) that there exists C73 > 0 such that, k < C73|t; [>T,
for [A™"/8] < j < i;. We obtain

(G — A8 =1L, 6)? §) P (e
) _ sy (14 8;) £, (Cr)
G-7) o (Bartian) = (j — [A=/8] —7[;‘_,,/81)2 (A +8;) fr &’

for [A™"/8] < j < min{i;,7;}. Since | 81‘;;2 —1| < Z—i—] |, fora, b > 0, from the last equality,
we find

(3.80)
(1+38) £/ &) (I +8p-nssp) £,/ ()
Sn (A‘(I’:z)fl‘*‘jﬂn) = ’f;/ NZ: -1l = sn(A;n)_1+[k_”/8]Qn) J . ’E// ’V’; o
(L +38;) £/ " (1 + Spp-nrsp) S ()
Since, by Lemma 3.15, for the considered indices j, |§;| < C74t&7n/8], |3;~| < C74'tv["ifn/8],

with C74 > 0, by Lemma 3.17, [5;], |F8Vj| < C75A"/8 for some Cy5 > 0. Using this estimate,
condition (d), |Z*; — ¥ < CKg'A" and that, by regularity condition (vi), ]7,17’(2;*;) > Ko,
inequality (3.80), together with (3.78) for j = [A~"/8], implies that, for [A\™"/8] < j <
min{i.i;},

(3:81) su(Bg) 1 jg,) = 1] < Cr6A™/%,

where C76 > 0. One can similarly obtain the same estimate for max{i, ,?,} <j<kpsi.

It remains to prove (3.77) for min{i; ,Fivl} < j < max{i, i }. To estimate the ratio of lengths

of the intervals T, (Zc(;:z)—1 +ign) and t, (A;’}?_l 4 qn)’ we will apply Lemma 3.16. Since, 7, may

be different from i., we will use the following factorization

~ xm ~ R
(3 82) S (A(n) ) = |Tn(Aqh—l+(j+ic—ic)‘In)| |Tn(AQn—l+jqn)|
: n dn—1+Jjqan’ — |1_ (A(n) )l |';E/ (Z(n) _ )l ’
n qn—1+jqn n gn—1++ic—ic)qn

The second of the ratios in (3.82) can be estimated as follows. To be specific let us assume
that i, < i. (in the opposite case, the proof is similar). We have that

[Tn (A ) ~ ~ a(l+a)
"\ gn—1+Jjgn 1 | | f,,’(éz) — 1| < Cy75 20+,

~ (A1)
|Tn (Aqn—l+(j+Z‘_iC)Qn)| i=j+ic—ic

(3.83)

e T (AN
for some C77 > 0. Here, & € 7, (Aqn_1+iqn

(3.62), |f;’(§;) -1 < C787H%, where C7g > 0. We will now estimate the first ratio in (3.82).
To estimate the lengths of the intervals in the numerator and the denominator, for j < i.,
we apply Lemma 3.16 to s; = —EC +1-; and s; = —t;. 114, respectively. The assumptions
of this lemma are satisfied due to (3.53) (condition 2) and the facts that #;, € [0,x) and
g, is bounded, due to the regularity condition (i) (condition 1). Similarly, one can verify the
assumptions of this lemma for j > i., using (3.52). By Lemma 3.16,

T (eos(VRlie = N L+ 8;45.5) T1ED)

) and we have used Corollary 3.21 and that, by

A )
(384) dn—1+( +ic—ic)qn '
| (AP )| K (cos(VRle— )2 (48 £rECH

dn—1+jdn
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Notice that this holds for min{i; ,7}} < j < max{i, ,7;} since, by Corollary 3.20, we have
K12 tan" 1% 20 @] — [k~ /2 tan" 1 k" 20F® ]| < [k 12 tan"!(Cyok 20F® )], for some
C79 > 0, if « is small enough (which holds for k, 41 > [A™/8] and sufficiently large n, by
Corollary 3.22).

Using Corollary 3.20, |3;], |’8Vi+7c—ic| < Cg()l(% (see Lemma 3.16), where Cgg > 0,
condition (d) and the estimate |{; — (| < CKeA" (that follows from the regularity condition
(v1)), it follows from (3.82), (3.83) and (3.84) that

: (cos(WElie = D2| _ o instiis)
o O o)~ e TR | =

where Cg; > 0, since, by Corollary 3.22, k and ¥ are at most of the order of A*/4, due
to kp4+1 > [A7"/8]. Using the elementary inequalities (that can be easily verified by taking
the derivative with respect to j)

cos(VRie = j = )| _ |, cos(VK(ic = )

cos(vK(ic —j — 1)) cos(v/K(ic — J))

for min{il,E} <j <icand

cos(vk(j —ic — 1)) cos(Vk(j —ic))
n . . <|kn = .

cos(vVE(j —ic — 1)) cos(v&(j —ic))

fori. < j < max{ir,Z}, together with the estimates (3.81) and (3.85) for j = min{i; ,E}

and j = max{i,, i,}, and the asymptotic formula In(1 + x) = x + 0(x?), x — 0, we obtain
(3.77), for min{i;, i;} < j < max{i,,i,}. O

(3.86) 1

(3.87) I

)

3.4. The estimates on the fundamental intervals

In this section, we first show that the ratio of lengths of the renormalized fundamental
intervals ?;,(Z(()") ) and t, (A(()")) is exponentially in n close to 1. Then, we show that, after
an arbitrarily smooth conjugation of one of the maps, the ratio of lengths of the actual
fundamental intervals A and AY" is exponentially close to 1.

LeEmMA 3.27. — Assume that the conditions of Theorem 2.2 hold. There exists Cgy > 0 such
that, for alln = ny, for some £ € N,

(3.88)

sn(A0) ~ 1| = Cean,
and for alln # ny, for any £ € N,
(3.89)

sn(Ag) — 1] = ™.

Proof. — For alln = ny, for some £ € N, the claim follows directly from Corollary 3.12.
The improved estimate for n # ny, for any £ € N, follows from the equality

2(0) — f4(0)

3.90 AD) | = | £2Q = /O

(3.90) 5 (85" 1] 0

taking into account the convergence of renormalizations (condition (d)) and that, for such n,
the regularity condition (v) implies f,(0) > Ks. O
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LeEmMa 3.28. — Assume that the conditions of Theorem 2.2 hold. There exists 600 > 0 and
Cg3 > 0 such that, for alln € N, we have

A5

(3.91) |A(()")| — 0oo| < Cg3)l

0

A (n)
Proof. — Leto, = %. It follows from Lemma 3.27, that
0

(3.92) I 1| < Caall,

On—1
and, thus, |Ino, — Ino,—1| = &,-1, where 0 < g,_1 < Cg4qA%, for some Cgq > 0. Since

the sequence of non-negative numbers ¢, decreases at least exponentially fast with n, the
sequence (In 0, ),en is @ Cauchy sequence and converges to some £, := lim,_, Ino,. The
sequence oy, thus, converges to 050 = el > 0.

Furthermore, since

o0
An

(3.93) lIn oo —Inoy,| < ";l em =< Csga 1 —Z)tz )
we have

Ooo
(3.94) — — 1| < Cgsij,

On
for some Cgs > 0. The claim follows. O

Without loss of generality, we may assume that o, = 1. This follows from the following
simple lemma.

LEMMA 3.29. — Assume that the conditions of Theorem 2.2 hold. There exists an arbitrarily
smooth conjugation T of T and Cge > 0 such that, for alln € N, we have 60o(T) = 1 and, thus,
the length of the fundamental interval Ag') of T satisfies

(3.95)

Proof. — Ttisenough to rescale the intervals of Z(()") by means of a smooth change of coor-
dinates affine in a neighborhood of Xo = ¢(xg). Assume that oo, > 1. Let ¢ bea C*°-smooth
orientation-preserving diffeomorphism of T!, which is affine on Zgl) U ”A*(()z)’ with derivative
ot Let T = W oTo ¥ 1. This change of T will not affect the renormalizations f,,, forn > 2,
and they will stay regular uniformly with respect to n, but o4, corresponding to T and T will
be equal to 1. A similar argument works in the case 05, < 1. O

In this paper, we assume that 7" and T have already been adjusted such that (3.91) holds
with 05 = 1.
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3.5. Estimates on the intervals of the partition 2,,, inside A (()"_1), with » a constant fraction
of m

In the previous sections, we have obtained the necessary estimates on the ratios of lengths
of the rescaled intervals of partition 2,4 inside A(()"fl). We would like to extend these
estimates to the whole circle. In order to do that, we need to consider the intervals of
higher-level partitions 2, for m > n + 1, inside this interval. For I C A,(I':Ll and
T=9()cC Z;’?_l , we define, as before, I; := t, 1 (fi(t,(1))) and T; := 7.1 (f] G (]))).

The following lemma will be used in the case when n # ny, forany £ € N, and k,+; >
[A~"/#]. 1t concerns “small” intervals inside the tunnel of the convex renormalization graphs.

LemMA 3.30. — There exists Cg7 > 0 such that for all n # ny, for any £ € N, and
[A78] < j < kpy1 — [A78], we have

(3.96) |1n5n(1j)| =< |1n5n(1[,17n/8])| + Cg7)&g.
Proof. — Notice first that there exist {; € 1, (Ii),a € ?,,(E), (.03 € 1, (At(;:,)_1+iqn) and

5.0 € %AW ) such that

(3.97)

(n)
s, (1; 5, (A ) ~ —~ ~ o~
In n(lit1) dn—1+idn = |In £,(&1) —In £,(&1) —In £, () + In £,($2)]
(1) g, (AL

n—1+@E+1)gn

= 10n 7Y @)@ ~T0) — (0 [ @) ~ 2l < -6~ Tl + hea =Gl
2 2

Summing up these inequalities from i = [A™"/8] to j — I, for some [A™/3] < j <
kni1 —[A7"/#], we obtain that
(n) j—1
| ) sn(By s, K Y & (E® )|
- dn—1+ign
Sn (Ipp—n/87) 5,,(Ag’1)71+jqn) K> i8] !

(3.98)
Jj—1 K,
D0 @A) )| = Casr A,
2
i=[A—1/8]

for some Cgg > 0. The last inequality follows from Lemma 3.17 and Lemma 3.18. Therefore,
(3.99)

K
. (n) (n) 1 /8
[Ins,(1j)| < |Insy(Ij3-nss))|+|Insy, (Aqn_l +[A—"/8]q,1)| +|Ins, (Aqn_l +jqn)| +Css _K2 AME,
and the claim follows from this inequality, by using Proposition 3.26. O

We recall that, for the set of rotation numbers considered here, we have a constraint
kny+1 < CiA]", for all £ € N (by condition (a)). Let A¢ := max{A,,As}, and let
Sl = IIlaX{Cz, C7()}.

PROPOSITION 3.31. — Assume that the conditions of Theorem 2.2 hold. There exists S, > 1
such that the following holds. Assume that there exists Cgo > 1 such that for any sufficiently
largen € N, any m > n, and all intervals I, with 5, > I C Af]',l,)_l and the corresponding
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intervals T, with Dém 5T C Z((IZ)_I, we have |s,(I) — 1| < CgoAZ. Then, for all 0 <i < kpy1,
we have |5, (1;) — 1] < §2CgoAg.

Proof. — Let y; and z; be the left (i.e., smaller) and right (i.e., larger) end point of the
interval 7, (I;), respectively. Analogously, let J; and Z; be the left and right end point of the
interval 7, (I;), respectively. If z; — y; < max{|y; — yil, [Z; — zi|}, then

(3.100)

e ~
@O -
[sn(Zi+1) — 1| = M—l
JaGi)lzi — yil
_ _ ~ ~ Zi —yil | |17 — Vil
< (CA"K3' 4+ 3K Ky max{|y; — yil. % — zi}) :zl-—yf|+ |zl~—yl~|_1‘
1 1 1 1

< (2CA"K5" + 6K K5 max{|V; — yil|. [Zi — zil}) + |sn(L;) — 1],

if |5, (1;)| < 2.If z; — y; > max{|y; — yi|,|Z; — zi|}, then

(3.101) B
)d¢ TG =) — [ FI©E —T)dE

|5n(li+1)_| -1 = , Zli " -1
f f,,(z)dz K@) G =y = [ fIOE — ydE

;’égii:ij —-1- fn(z,)(z, —yi) (le ]?7/(;)(( —’)\;i)dé' —fyzii fn“(g‘)(é- _yi)dé->
- fn(z,)(z ) f 2 (O —yi)d¢

’

and, thus,

— z ] 3 .
|50 (Ti41) — 1] < [ZCKzW' (1 += y’) + S KK 3 — il

4
(3.102)

+ 4K K5 7 — zi| + |sa (1) — 1|](1 + K1 K5 ' zi — yil).

Here, we have used that

G Z - i _
(3.103) ?(:’; Zf _if — 1| < 2(CK;"A" + K1 K5V 2 — zi]) + |sa (1) — 1],
if |8, (1;)| < 2,
1 / Z
. IO =Fde - / I (¢ —yi)df‘
JaGi)zi —yi) | /5 Vi
2
= K [an( 2)/1) + K1lyi — yillzi — yil
(3.104) 2(z — 1)
i — yi)? =
+ KIT +2K1|zi — yillzi — zi
i — Vi 3.~ ~
— [Clnu + S Kulyi — yil + 2Kz _Zi|i| ,
2 2 2
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and

1 @ " 1 —1
(3.105) m/y, | fo O = yi)d¢ < EKle lzi — yil.

We have also used that (1 —x)~! <1+ 2|x|, for x < 1/2, and assumed K; K5 '|z; — y;| < 1.
Therefore, in either case, we have

Zi — )i

ln(Ti1) — 1] < [2619‘11” (1+ ) + 6K1 K3 max{[§i — yil. [5 - =i}
(3.106)

+lsn(1;) — 1|}(1 + K1 K5 zi — yil).

Using the estimate

(3.107)
max{|5 — yil. B —zil} < | CooS1AL +  max s, (1) = 1| [t (A 0l
Q@mall!cAgl'L]an

with Cgg > 0, which holds forn = ny, forany £ € Nand 0 < i < ky4+1, and for n # ny,
LeN,and0<i <[A8]orkpyy —[A™/3] <i < kny1, we obtain

(3.108)

l5n(Iit1) — 1] < [ 4CK;'A" + 6K K5 | CooSiAL + max lsn (1) — 1]

¢ ’ (n)
c?,,,alichn7]+iqn

Tt )|+ max  Jsu(1) =11 | (1+ K1 Ky m(Ag) D)
ymali/CAqn_1+iqn

In the estimate (3.107), we have used the fact that for all n = ny, for some £ € N
(corresponding to renormalization graphs concave inside the gates), the distance of the
corresponding endpoints of the intervals z, (A‘(I" ) and?}l(A(") ) is bounded from

n—1+iqn dn—1+iqn
above by CopS1A% |T"(Az(1r;)71+iqn)|' This follows from Proposition 3.2 and the fact that, by

Corollary 3.6, the sum of the lengths of the intervals t, (A;’;)_l +igq,) Inside the gates is of the
order of the longest of them. Since A1/4 < A5 < A¢, by Corollary 3.25, estimate (3.107) is
valid for n # ny, for any £ € N (corresponding to renormalization graphs convex inside the
tunnels), if 0 < i < [A™/3] or k1 — [A78] <i < kny1.

Taking the maximum of the left hand side of (3.108) over all I; 1, such that 2, > I; 11 C

((1';)_1 4 (i+1)g,> We obtain the inequality
(3.109) Mt < P + OiM;,
where M; := max |sn(1;) — 1], and
c@malicAg;)71+iq’1
(3.110)
P = (4c1<2—u" + 61<1K;lcgoslxg|fn(Af]’;)_l+iqn)|) (1 + K K5 (A D,

0= (1+ 6K1K2_1|rn(A;';)_l+iqn)|) (1+ KK e (A ).
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By iterating this inequality from i = j down to i = 0, we obtain

Jj—1 J J
(3.111) Mig <P+ P [[ @o+Mo]] 00
k=0 I=k+1 =0
and, thus,
(3.112)
50 (1) — 1] < K152 | 4CKTIA"(j + 1) + 6K, K5 ' CooSiAZ +  max s, (1) —1]|.
PmdI'CAY) |
Here, we have used that Z{:o |T"(A¢(1’:,)_1+iqn)| < 1 and the inequality 1 + x < €%,
for x > 0. Using (3.112), we can prove the claim for n = ny, and £ € N sufficiently

large, corresponding to the case of renormalization graphs concave inside the gates, with our
standing assumption kn,+1 < CiA; "¢, and for n # ny, £ € N, corresponding to the case
of renormalization graphs convex inside the tunnels, if k, 41 < [A™/8] and n is sufficiently
large. From (3.112), we obtain [s,(/;) — 1| < Co1CsoA%, forall0 < j < k,41, where
C91 = €8K1K2_1 (4CK2_1C1C8_91 + 6K1K2_1C9051C8_91 + 1) Ifn 75 Ny, for any ! € N,
and k41 > [A‘”/g], the same analysis leads to the bound |s,(1;) — 1| < Co1CgoAg,
for 0 < j < [A7"/8]. The latter bound for j = [A™"/#] and the estimate

(3113) |5n(1j) — l| < |5n(I[A—"/8]) — 1| =+ C92Cg7kg,

where Coo > 0, which follows from Lemma 3.30, give |s,(/;) — 1| < Co3CgoAf, where
Co3 = Co1 + C92Cs7Cgy!, for [A™/8] < j < kpy1 — [A7"/8]. Finally, by iterating the
inequality (3.109) from i = j — 1 downtoi = kn4+1 — [A™/%], we obtain an estimate
analogous to (3.112) and s, ({;) — 1| < CosCgoAf, where

C94 = €8K1K2_1 (4CK2_1C1C8_91 + 6K1K2_1C9051C8_91 + C93),

for kpy1 — [A7/8] < j < kp41. The claim is proven. O
In the following, let [’ := T9—1(I).

LemMA 3.32. — Assume that the conditions of Theorem 2.2 hold. There exists S5 > 1 such
that the following holds. Assume that there exists Cos > 1 such that for any n € N large enough,
any m > n, and all intervals I, with P,, > I C A(()") and the corresponding intervals I~ with
P 3T C DA™ we have |5,41(I) — 1] < CosAZ. Then, sy (I') — 1| < S3Cos5AL.

Proof. — Tt follows from Lemma 3.27 that, there exists Cog > 0, such that
(3.114) l5n1(1) = 1] = |sn11(Dsn(A§)sn-1(AF ™) = 1] < CogCosA.

Let v,y and z,7Z be the left (i.e., smaller) and right (i.e., larger) end points of the intervals
t,—1(I) atT,—1 (). Since (3.114) holds for all intervals I such that 2, > I C A(()"), we have

(3.115) max{|y — y|[, [ — z|} < CoCo5s.
Since I’ = 7Y, (fu—1(tn—1(1))) and T" = 7}1(}‘;_1(?,,_1(73)), we can derive, completely

analogously to (3.106) (in other words, for I C Ag” ), we can apply (3.106) with n — 1 instead
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of n and k,, instead of i),

zZ — ~ ~
lsp_1(I') — 1] < [201(;%”‘1 (1 + Ty) + 6K Ky max{|y — y|.[F - z|}

(3.116)
+lsp—1(1) — 1I}(l + K1K5'z = y)).

Taking into account that |z — y| < 1, this inequality, together with (3.114) and (3.115), gives
that, for some Co7 > 0,

(3.117) |sn—1(1") = 1] < C97CosAg.
Since s, (1) = sp—1(I")/5n—1 (Ag"_l)), together with Lemma 3.27, this proves the claim. [J

PROPOSITION 3.33. — Assume that the conditions of Theorem 2.2 hold. For every
A7 € (Ae, 1), there exists v > 0 and Cog > 0, such that

(3.118) jo(I) — 1] < Cos2T.

forall I € P,y,, such that I C A(()m_[vm]), and all m € Ny.

Proof. — It suffices to prove the claim for sufficiently large m. It follows from Proposi-
tion 3.2, Proposition 3.26 and Lemma 3.27 that there exists Cog9 > 1 such that, for all inter-
vals I € P, such that I C Ag"_z), we have

(3.119) lsm—1(1) — 1] = CooAg.

There exist S4 > 1 and n3 € N, such that, if all intervals I € 2,,, with I C Af,"), where
ny < n < m—2,satisfy |s,+1(I) — 1| < CigoA?, for some Cigo > 1, then all intervals
1" € P, such that I” C A(()"*l), satisfy |s, (/") — 1| < S4Cio0A%. To see this, notice that
every interval I” € %, such that I” C Af)"_l), is either a subset of Ag"_l) or a subset
of AW 1f 17 ¢ Al then there exist i, such that 0 < i < ky1, and intervals I C A
and I’ C AU, such that I” = T (I’yand I’ = T-1(I), and the claim follows,
with S4 > §,83, if n3 is large enough, by applying Lemma 3.32 and Proposition 3.31. If
1" C A(()"), since s, (I") = sp41(I")sp (Ag')), using Lemma 3.27, we have

(3.120) 150 (1") = 1] < |5p1(I") = 1| + 8p41(I")]5,(A) — 1],

and the claim follows with S4 > 1 + 2Cs,.

Applying this spreading of estimates from the intervals of partition 2, inside Ag’) to
intervals of partition 2, inside A(()"_l) recursively, fromn = m —2 down ton = n’ > n3,
and using estimate (3.119), for all I € 2, such that I C A(()"/), we have

(3.121) s 1 (1) — 1] <SP CooAlY .

The claim follows from the latter inequality, after we set n’ = m — [vm], choose v > 0 small
enough such that SYAL™ < 17, and rescale the intervals, using (1) = $,41 (I)G(Af,")) and
(3.91) with oo = 1. O
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At the end of this section, let us summarize the relations among the various rates A;
that are used in this paper. A]! is the maximal rate of the exponential growth of the partial
quotients. A; can be chosen to be an arbitrary number in (4, 1), where A is the minimal
rate of convergence of renormalizations. The established rate of convergence of the ratios
of lengths of the renormalized intervals s, (A((;:l)_1 n qn)’ forn = ny, for some ¢ € N, is
A2 € (/A/A1,1). To prove this, we use a natural separation of length scales given by the
exponential rate A3 € (1/A,, A1A,). The distance between the corresponding end points of

the intervals T, (AL(I"’LI +jq,) and ?,,(ZEI':L "y q"z i)s controlled by the rate A4 = AA3. The
n

established rate of convergence of ratios s,(A, " | ;.
dtaa . . .

As = A8C+a |, The established rate of convergence of these ratios, for any n € N, is therefore

Ae = max{d,, As}. Any A7 € (4¢, 1) is the established rate of convergence of ratios o (/) for

intervals of partition / € %, inside Ag’_[v"]), for some v € (0, 1). Finally, as we will see in

the next section, the rate A in Proposition 3.1 can be taken to be A = max{A7, A},¢}.

), forn # ny, forany { € N, is

3.6. Spreading the estimates to the whole circle

Theorem 2.2. — In order to prove the claim, we will use Proposition 3.1. To verify
the assumptions of Proposition 3.1, we need to verify the estimates (3.2) for all intervals
1,1' C P, which are either adjacent or belong to the same element of partition 2,,_;.
Proposition 3.33 implies the estimate

(3.122) |Ino(I) —Ino(I')] < Cio1 A2,

where Cy; > 0, for all pairs of such intervals 7, I’ which are both contained in Ag"_[vm]) )
We will now spread such an estimate from A(()") to Af)"_l) in m — [vm] steps, starting with
n = m — [vm], and counting down to n = 0. In each step, the new intervals for which
we need to show such an estimate appear in threads I; = T%97(l,) and I = Tian (1),
for 0 <i < kp41. Let us fix the order of the pairs in such a way that 1) is closer to x¢ than I,.
This implies that Iy C 7971 (Ag’)) and that either /) belongs to 79»~! (Af)”)) as well or is
adjacent to it.

We will now show that there exists C9> > 0 such that, for any two intervals Io, I € P,
with Iy C T9n—1 (A(()")), n € Ng, m > n, that are either adjacent to each other or belong to
the same element of partition 2,,_;, and for all 0 < j < k, 41, we have

(3.123) |Ino(1;) — lno(ljf)| < |lno(1kn+1) - 1no(],én+l)| + Cro2Ales .
Let
(3.124) §i = |In |ty (Ii+1)| = In |ty (1})| = In|z, (J]4 )] + In |z, (1)1,

and letE be the corresponding quantity associated to T.
Clearly, there exist é_‘i € 1, (1)), El/ € 1,(I])and §; € (E,-, E;), such that
S Gi)
Ja (&)
If Ip and I belong to the same element Jy of Pp,_1, then there is a thread J; =
Tin(Jo) € Pm1, With0 < i < knpy,such that I; U I) C J; C Tan-1tian (A,

(3.125) 8 = & — il
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Using the estimate (3.125), regularity conditions (i) and (ii), and condition (c), we find that
— — —— . kn+1—1

8 < Ki K3 [ta(Ji)] < K1 K3 Coapd" 2, (ALY L] Since Y26 7 (A L <1,

the bound (3.123) follows by summing up the inequalities

(3.126) 1085 (1) = In sy (I)] = | I8 (T11) = In s (/4| < 61 + 31,
fromi = j toi = k,4+1 — 1, we obtain
(3.127) |Ins,(1j) —Ins, ()] < [Insp(lx, ) —Insa (I, )|+ CrozAgs "

where Cioo > 0. If Iy and 7 are adjacent to each other, belong to different elements
of Pm_1,but Iy, I C A,(]';)_l, then we similarly have §; < 2K; Kz_lCrengf_"_l|rn(A‘(I"’1)71+iq”)|,

and the bound (3.127) follows, using the same estimates. If /o C A,(]"n)_l and I C A((I';)_l +an>

then we have §; < KiK' CratAZ7 " 1|7 (AY o)+ 1ma(AY L iiya)Ds for0 < i <

ref

— —n— +1
knir — Land 8,1 = KiK3' G711z (AY o]+ [ma(ATT)).

In the last estimate, we have used that 2,, > I]én-l—l_l C AE)"H) € Pni1. Since
Zf.‘;j‘;ll T (A )+ [T (AT )] < 1, we obtain again estimate (3.127).

Inequality (3.123) follows directly from (3.127), taking into account that (/) =
su (Do (AT™D),

Applying (3.123) recursively, fromn = m — [vm] — 1 ton = 0, and using the estimate
(3.122) for intervals of partition 2, inside A" "D we obtain

m—[vm]—1
(3128) |lno(1) —1110(1/)| < C]o]/\;n + C102 Z A:’;f_n = CIOS(AZI +A¥er? s
n=0
where C1o3 > 0, for all pairs of 1,1’ € #,,, as in Proposition 3.1. Hence, (3.2) holds with

A = max{As, Arers> and Theorem 2.2 is proven. O

4. Proof of the main theorem

In the proof of Theorem 1.2, we will use the following properties of renormalizations of
circle diffeomorphisms with a break that were proven in [10]. Let 7 be a C?>*t*-smooth circle
diffeomorphisms with a break of size ¢ € R4 \{1} at xp; = x¢ and an irrational rotation
number p € (0, 1).

LemMa 4.1 ([10]). — For sufficiently largen € N, f, is uniformly bounded away from zero
and positive if ¢®™ > 1 and negative if ¢ < 1.

We can now show that the renormalizations of circle diffeomorphisms with a break are
K-regular.

LEmMMA 4.2, — There exists K € Ri such that the sequence of its renormalization
(fn)nen, is K-regular with respect to the sequence n consisting of all odd numbers in Ny, if
¢ > 1, and all even numbers in Ny, if 0 < ¢ < 1.
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Proof. — The regularity condition (i) holds, with large enough K; > 0, by the Denjoy esti-
mate (A) (which implies that the derivative of renormalizations f,/(z) = (T9") (z, ' (2)) is
uniformly bounded) and the fact that the second derivative of renormalizations f, is
uniformly bounded. This fact follows from estimate (B) and the explicit form of the second
derivative

@™ +p™)ypm®

(1) Fio o g oo (2) = 2M® = 1) s

taking into account that a® = |AW|/|AT™V| < |Ta(AP™D))/1A" Y| < & (due to
(A)), b™ < 1 and that

qn—1 T//(Z)
n n
4.2) M® =exp| (-1) Z / ZT’(Z)
A(Vl 1)
is bounded and bounded away from zero, as can be easily seen from the fact that 7" is
bounded and T’ is bounded from below by a positive constant.
The regularity condition (ii) holds, if K; > 0 is small enough, by the Denjoy estimate (A).
Lemma 4.1 implies that, for sufficiently large n € N, there can be at most one point
{¥ € [-1,0], such that £,({y) = 1. Due to the continuity of f,, f,(z) — z is monotone
in each of the intervals [—1,¢;] and [{,0]. If n isodd and ¢ > 1, orniseven and ¢ < 1,
then ¢™ < 1 and, by Lemma 4.1, SJ(z) < —K4, for some K4 > 0, allz € [-1,0], and
sufficiently large n € N. Thus, we either have f,(z) > 1, forz € [—1,—%) or f,/(z) < 1,
for z € (—3,0]. In either case, f,(—3) + 3 can be, uniformly in 1, bounded from below by a
positive constant. Since,

43) @) = fo (——) / / (f,:<—1/2>+ / i/zfn”@’)dé’) at.

if f/(z) <1,forz e (—%,O], we obtain f, —%) + % > f,(0) + % > %. In the other case,
the proof is similar. This ensures that point —% does not belong to any of the gates and the
regularity condition (iii) holds, if K3 > 0 is small enough.

The regularity condition (iv) follows immediately from Lemma 4.1, for small enough
K3 > 0 and K4 > 0. Notice that by choosing K3 > 0 small enough, we can always achieve
that finitely many renormalizations f,,, for which Lemma 4.1 does not guarantee concavity,
have no gates, i.e., satisfy f,(z) —z > K3, forall z € [-1,0].

If niseven and ¢ > 1, ornis odd and ¢ < 1, then ¢®™ > 1 and, by Lemma 4.1,
f.V(z) > Ko, for some K¢ > 0, and sufficiently large n € N. Together with the fact that,
by the Denjoy estimate (A), fp,(—1) + 1 = |1, (Af,flll)| is of the same order as f,(0) =
|r,,(A(()"))|, this implies that the renormalizations f, satisfy the regularity condition (v) as
well, if K5 > 0 is small enough. To see this, notice that, if ¢® > 1, we either have i) <1,
forz e [—1,—%) or f/(z) > 1,forz € (—%,0]. In either case, both f,(—1) 4+ 1 and f,(0)
are, uniformly in n, bounded away from zero. It follows from (4.3) that in the second case,
fn(0) > %; in the other case, the proof is similar. We can choose the constant K5 > 0 small
enough such that f,(—1) > K5 — 1 and f,(0) > K5, for sufficiently large n.
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The regularity condition (vi) follows immediately, for small enough K5 > 0 and K¢ > 0,
from Lemma 4.1. We choose K5 > 0 small enough such that finitely many renormaliza-
tions f,, for which Lemma 4.1 does not guarantee convexity, have no tunnels. O

Theorem 1.2. — To prove Theorem 1.2, we need to verify that the conditions of Theorem 2.2
hold true in the case of circle diffeomorphisms with a break point. Condition (a) is an
assumption of Theorem 1.2. To verify condition (b), we will show that the renormalization
sequences f, and j‘; of C?*®.smooth circle diffeomorphisms with breaks 7 and T are
K-regular, for some K € RS, with respect to the sequence n consisting of all odd numbers
in Ny, if ¢ > 1, and all even numbers in Ny, if 0 < ¢ < 1. This follows from Lemma 4.2.
Condition (c) follows from the Denjoy estimate (A) (see Lemma 2 in [18]). Condition (d)
follows from Theorem 1.1, proven in [10]. O
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