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MOTIVES OF RIGID ANALYTIC TUBES AND
NEARBY MOTIVIC SHEAVES

 J AYOUB, F IVORRA  J SEBAG

A. – Let k be a field of characteristic zero, R D kŒŒt �� the ring of formal power series and
K D k..t// its fraction field. Let X be a finite type R-scheme with smooth generic fiber. Let X be the
t -adic completion of X and X� the generic fiber of X . Let Z � X� be a locally closed subset of the
special fiber of X . In this article, we establish a relation between the rigid motive of �ZŒ (the tube of Z
in X�) and the restriction toZ of the nearby motivic sheaf associated with theR-schemeX . Our main
result, Theorem 7.1, can be interpreted as a motivic analog of a theorem of Berkovich.

As an application, given a rational point x 2 X� , we obtain an equality, in a suitable Grothendieck
ring of motives, between the motivic Milnor fiber of Denef-Loeser at x and the class of the rigid motive
of the analytic Milnor fiber of Nicaise-Sebag at x.

R. – Soient k un corps de caractéristique nulle, R D kŒŒt �� l’anneau des séries formelles sur
k et K D k..t// son corps des fractions. Soit X un R-schéma de type fini génériquement lisse. Soient
X la complétion t -adique de X et X� sa fibre générique. Soit Z � X� un sous-ensemble localement
fermé de X . Dans cet article, nous lions le motif rigide du tube �ZŒ de Z dans X� à la restriction à Z
du faisceau cycles proches motivique associé au R-schéma X . Le théorème 7.1, qui est notre résultat
principal, peut être interprété comme un analogue motivique d’un théorème de Berkovich.

Comme application, étant donné un point rationnel x 2 X� , nous obtenons une égalité dans un
anneau de Grothendieck de motifs adéquat entre la fibre de Milnor motivique de Denef-Loeser en x
et la classe du motif rigide de la fibre de Milnor analytique de Nicaise-Sebag en x.

1. Introduction

1.1. – Let k be a field of characteristic zero, R D kŒŒt �� be the ring of formal power series
and K D k..t// be its fraction field. Let ƒ be a commutative ring (that we call the ring of
coefficients). While the main body of the article is written in a greater generality, we restrict

The first author (Ayoub) was supported in part by the Swiss National Science Foundation, project no. 200021-
144372/1.
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1336 J. AYOUB, F. IVORRA AND J. SEBAG

ourselves in the introduction to the categories of motives without transfers DA.k;ƒ/ and its
rigid analytic version RigDA.K;ƒ/. These categories are related by triangulated functors

RigDA.K;ƒ/
R
�! QUDA.k;ƒ/

1�

�! DA.k;ƒ/;

where QUDA.k;ƒ/ is the full triangulated subcategory of DA.Gm;k ; ƒ/ whose objects are
the quasi-unipotent motives; the functor R is an equivalence of categories (see [6, Scholie
1.3.26]) and 1� is the pullback functor along the unit section. For a quick recollection on
motives and rigid motives, the reader is referred to §3.

1.2. – Let X be a finite type R-scheme and denote by f WX ! Spec.R/ its structural
morphism. We denote by X� and X� the generic and special fibers of X .

By [3, Chapitre 3] (see also [6, §A.1]), one has the nearby motivic sheaf‰f .ƒX�/ associated
with f ; this is an object of DA.X� ; ƒ/. It realizes to the classical complexes of nearby cycles
by [4, Théorème 4.9] (for the Betti realization and when X is the base-change of a finite type
kŒt �-scheme) and [5, Théorème 10.11] (for the `-adic realization).

Consider the t -adic completion Of WX ! Spf.R/ of f and denote by X� the generic fiber
of X . The rigid analytic variety X� is an open analytic subvariety of the analytificationXan

�

of the algebraic generic fiberX� (e.g., see [12, (0.3.5)]). Given a locally closed subsetZ � X�
(endowed with its reduced structure), denote by �ZŒ its tube; this is an open rigid analytic
subvariety of X�.

Assume that the rigid analytic variety X� is smooth overK; this is the case for instance if
the scheme X� is smooth over K. Let M_rig.�ZŒ/ be the cohomological motive of �ZŒ; this is
an object of RigDA.K;ƒ/. The main theorem of this article is the following (see Theorem 7.1
for a more general statement):

T. – Denote by z W Z ,! X� the inclusion. Then, there is a canonical isomorphism

(1) 1� ıR.M_rig.�ZŒ// ' .f� /�z�z
�‰f .ƒX�/

in the category of motives DA.k;ƒ/.

TakingZ D X� , one gets that the cohomological motive M_rig.X�/ is related to the nearby
motivic sheaf by a canonical isomorphism

1� ıR.M_rig.X�// ' .f� /�‰f .ƒX�/

in DA.k;ƒ/. In fact, we first prove this particular case of our main theorem (see Theorem 4.11
and Corollary 4.12) and then use it, with other ingredients, to derive the general case.

As a by-product of this work, we show that the rigid motives of tubes are compact (see
Proposition 5.9), and we extend to motivic stable homotopy theory the computation of
nearby motivic sheaves obtained previously by Ayoub in the context of étale motives (see
Theorem 6.1).
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1.3. – Our main theorem is a motivic analog of a theorem of Berkovich that we explain now.
LetK be the completion of an algebraic closure of the valued fieldK and let k be its residue
field. Set Z D Z �k k and �ZŒ D�ZŒ O�KK. In [10, 11], Berkovich constructed canonical
isomorphisms of étale hypercohomology groups

(2) Hi
ét.�ZŒ;Q`/ ' Hiét.Z;R‰ Of .Q`;X�

/jZ
/ ' Hiét.Z;R‰f .Q`;X�/jZ

/:

(Here the tube �ZŒ has to be considered as a Berkovich space in order to take its non-
archimedean étale cohomology [9].) The first isomorphism is shown in [11, Corollary 3.5];
the second one follows from [10, Corollary 5.3].

We expect that the isomorphism (1) realizes to the composition of the isomorphisms
in (2). However, we do not make any attempt to check this in this article. It is worth noting
that Berkovich’s theorem holds over general non-archimedean fields whereas, for the very
statement of our theorem, we need to assume that K has equal characteristic zero. Indeed,
this is required for [6, Scholie 1.3.26] which ensures the existence of the equivalence R.

1.4. – Let x 2 X� be a rational point. In [16, Définition 4.2.1], Denef and Loeser have
introduced the motivic Milnor fiber  f;x 2 Mk as the limit of the motivic zeta function
associated with f ; in [33], Nicaise and Sebag have defined the analytic Milnor fiber at x to
be Fx D �xŒ. The present work and [24] show that the (stable) motivic homotopy theory is
a natural framework to relate and study these different notions of Milnor fiber. A particular
case of our main theorem (see Theorem 8.8) gives an isomorphism of motives

1� ıR.M_rig.Fx// ' x
�‰f .ƒX�/:

Theorem 6.1 shows that [24, Theorem 1.2] remains valid in a more general setting, and we
deduce the following formula in the Grothendieck group of constructible motives

(3) Œ1� ıR.M_rig.Fx//� D �k;c. f;x/:

Here, we denote by �k;c W Mk ! K0.DAct.k;ƒ// the motivic Euler characteristic [24,
Lemma 2.1].

Formula (3) expresses the fact that the motivic Milnor fiber of Denef-Loeser, at least as
a class in the Grothendieck ring of constructible motives, is determined by the rigid motive
of the analytic Milnor fiber. A formula of a similar nature, comparing the motivic Milnor
fiber of Denef-Loeser to the analytic Milnor fiber, appears in [23, Corollary 8.4.2]. (See
Remarks 8.14 and 8.15 for an attempt to relate the two formulas.)

Notations, conventions

1.5. – Although this is not really necessary, all schemes, formal schemes and rigid varieties
will be assumed to be separated. Schemes and formal schemes will be also assumed to
be quasi-compact. Given a base-scheme S , we denote by Sm=S the category of smooth
S -schemes. Given a non-archimedean complete fieldF , we denote by SmRig=F the category
of smooth rigid F -varieties.

When there is no risk of confusion, a scheme S will be identified with its maximal reduced
subscheme that we denote by Sred. Also, a locally closed subset of a scheme will be auto-
matically endowed with its reduced subscheme structure. The same applies for rigid analytic
varieties.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1338 J. AYOUB, F. IVORRA AND J. SEBAG

We fix a ground field k of characteristic zero and an indeterminate t . We set A1
k
D

Spec.kŒt �/ and Gm;k D Spec.kŒt; t�1�/. We also set R D kŒŒt �� and K D k..t//. Up to
isomorphism, K is the unique complete non-archimedean field with discrete valuation ring
and having k as residue field.

Unless otherwise stated, formal R-schemes will always be t -adic. We denote by RfT1; : : : ; Tng
the t -adic ring of strictly convergent power series. If X is a separated formalR-scheme topo-
logically of finite type, we denote by X� its special fiber, that is a finite type k-scheme, and
by X� its generic fiber (in the sense of Raynaud), that is a quasi-compact rigid analytic
variety over K. If X D Spf.A/ is affine, then X� D Spm.AŒ1=t�/ and X� D Spec.A=.t//.

As in [6], we denote by � Ő � the completed tensor product, and by � O�� the fiber
product in the category of rigid analytic varieties or the category of formal schemes.
Following the notation of [6, §1.1.2], we denote by B1K D Spm.KfT g/ the unit ball and,
for X a rigid analytic K-variety, we set B1X D B1K O�KX . More generally, given a rigid
analytic K-variety X , f 2 O.X/� and p 2 N n f0g, we denote by B1X .o; jf j

1=p/ the
relative ball over X with radius jf .x/j1=p at x 2 X . If X D Spm.A/ is affinoid and
f 2 Aı (i.e., jf j1 � 1), then B1X .o; jf j

1=p/ D Spm.AfT;U g=.f U � T p//. Moreover,
for f; g 2 O.X/� and p; q 2 N n f0g such that jg.x/j1=q � jf .x/j1=p for every x 2 X , we
denote by CrX .o; jgj1=q; jf j1=p/ the relative annulus (aka., relative corona) with small radius
jg.x/j1=q and big radius f .x/1=p at x 2 X . If X D Spm.A/ is affinoid and f; g 2 Aı, then
CrX .o; jgj1=q; jf j1=p/ D Spm.AKfT;U;W g=.f U � T

p; T qW � g//. Finally, if f D g and
p D q, we denote the corresponding annulus by @B1X .o; jf j

1=p/; this is the boundary of the
relative ball B1X .o; jf j

1=p/.

If X is a formal R-scheme, and Z � X� a locally closed subset (endowed with its
reduced structure), we recall that its tube �ZŒ is defined, set-theoretically, as the inverse
image of Z by the specialization map sp W X� ! X� . If X D Spf.A/ is affine and
Z D .

Tr
iD1 V.fi // \ .

Ss
jD1D.gj // in Spec.A=.t// where fi ; gj 2 A, this is the set of

x 2X� such that jfi .x/j < 1, for all 1 � i � r , and jgj .x/j D 1, for at least one 1 � j � s
(see, e.g., [26, §2.2]).

1.6. – LetX be a finite typeR-scheme and f WX ! Spec.R/ be its structural morphism. We
form the usual commutative diagram with cartesian squares

X�

f�

��

j
//

�

X

f

��

X�

f�

��

ioo

�

� D Spec.K/
j
// Spec.R/ Spec.k/ D �;

ioo

where i is the inclusion of the special point of Spec.R/ and j is the inclusion of its generic
point.

1.7. – We fix a ring of coefficients ƒ. (The main examples we are interested in are Z and Q.)
More generally, we fix a category of coefficientsM in the sense of [6, Définition 1.2.31]. The
reader may assume, without a real loss of generality, that M is the category Compl.ƒ/ of
complexes of ƒ-modules or the category Spect†

S1
.�op S et�/ of symmetric S1-spectra.
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2. Formal schemes and semi-stability

In this section we recall some basic facts concerning formal schemes, completions and
rigid analytic varieties. We also make precise the definition of semi-stability used in this
article. (For details on formal schemes, rigid analytic varieties, see, for example, [19, §10],
[1, 34, 13] or [6, §1.1].)

2.1. Formal completion

Let X be a finite type R-scheme and f WX ! Spec.R/ its structural morphism. By the
completion of f we mean the morphism of formal schemes Of WX ! Spf.R/ obtained from f

by taking the t -adic completion. By construction, the formal R-scheme X is topologically
of finite type.

Locally, one has the following description: if X is given as the spectrum of a finitely
generated R-algebra A D RŒT1; : : : ; Tn�=I , then X D Spf.RfT1; : : : ; Tng=I /.

L 2.1. – Let X be a finite type R-scheme and f WX ! Spec.R/ its structural
morphism. We have the following properties:

1. if f is flat, so is the morphism of formal schemes Of ;
2. if X is regular, so is the formal scheme X ;
3. if X� is smooth, so is the generic fiber X�.

Proof. – Everything in the statement is standard and well-known. For the sake of
completeness we give some indications and references.

To prove the first two statements, note that, for every x 2 X� , the canonical morphism
of local rings OX;x ! OX ;x induces, by mx-completion, an isomorphism of complete local
rings dOX;x ! ÔX ;x :

This said, the first statement follows directly from [30, Theorem 22.4]. Similarly, the second
statement follows directly from [27, Proposition 4.2.26].

The last statement is clear since X� is isomorphic to an open analytic subvariety of .X�/an.

An important construction in formal geometry is that of admissible blow-ups (see for
example [14, §2] or [1, §3.1]). In the following statement, we compare properties of blow-ups
in algebraic and formal settings with respect to completion.

L 2.2. – Let X be a finite type R-scheme and f WX ! Spec.R/ its structural
morphism. Let hWX 0 ! X be a blow-up with center a closed subscheme Z such that Zred � .X� /red.
Denote Of ı Oh WX 0 ! Spf.R/ the completion of f ıh and Oh WX 0 !X the induced morphism
of formal R-schemes. We have the following properties:

1. if f is flat, so is the morphism f ı h W X 0 ! Spec.R/;

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1340 J. AYOUB, F. IVORRA AND J. SEBAG

2. the morphism Oh is canonically isomorphic to the admissible blow-up of X with centerZ;
3. the morphism Oh� WX 0

� !X� is an isomorphism;
4. if T � X� is a locally closed subset and T 0 D h�1.T /, then Oh� induces an isomorphism
�T 0Œ ' �T Œ on the tubes of T and T 0.

Proof. – Everything in the statement is standard and well-known. For the sake of
completeness we give some indications and references.

The first statement follows from [27, Proposition 4.3.9]. The second statement is a direct
consequence of the definition of blow-ups for formal schemes. The third statement follows
from [14, Lemma 2.2]. For the last statement, see, e.g., [26, Corollary 2.2.7].

2.2. Semi-stable reduction

Remember that our base field k has characteristic zero. We will use the following termi-
nology.

D 2.3. – A topologically finite type formal R-scheme X (resp. a finite type
R-schemeX ) is called semi-stable if it is flat overR and satisfies the following condition. For
every x 2 X� (resp. x 2 X� ), there exists a regular open formal subscheme U � X (resp.
a regular open subscheme U � X ) containing x and elements u; t1; : : : ; tn 2 O.U / (resp.
2 O.U /) verifying the following properties:

1. u is invertible and there are integers a1; : : : ; an 2 N n f0g such that t D uta11 � � � t
an
n ;

2. for every non empty subset I � f1; : : : ; ng, the subscheme DI � U� (resp. DI � U� )
defined by the equations ti D 0, for i 2 I , is smooth over k, has codimension #.I /� 1
in U� (resp. U� ) and contains x.

We say that a semi-stable formal R-scheme (resp. R-scheme) is strictly semi-stable, if its
special fiber is a reduced k-scheme (i.e., the integers ai are always equal to 1).

R 2.4. – We warn the reader that our notion of semi-stability differs from the
classical one. Classically, a semi-stable (formal) R-scheme is étale locally strictly semi-stable
in the sense of Definition 2.3. Note also that our definition coincides with the definition of
global semi-stable reduction of [6, Définition 1.1.57] and [3, Définition 3.3.33].

P 2.5. – Let X be a finite type R-scheme and f WX ! Spec.R/ its structural
morphism.

1. X is semi-stable if and only if its t -adic completion X is semi-stable.
2. IfX is regular and .X� /red is a simple normal crossing divisor inX , thenX is semi-stable.
3. Conversely, if X is semi-stable, there exists a neighborhood of X� in X which is regular

and in which .X� /red is a simple normal crossing divisor.

Proof. – Everything in the statement is standard and well-known. We only explain the
second assertion.

Let x 2 X� and let U � X be an affine neighborhood of x such that each component of
the divisor .U� /red D .X� /red\U is principal, i.e., defined by a single equation. ShrinkingU ,
we may assume furthermore that all the components of U� contain x.

Let D1; : : : ;Dn be the irreducible components of .U� /red and, for 1 6 i 6 n,
let ti 2 O.U / be a generator of the ideal defining Di . If ai is the multiplicity of Di in U� ,

4 e SÉRIE – TOME 50 – 2017 – No 6
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then ta11 � � � t
an
n is a generator of the ideal defining U� . This ideal is also generated by t (and

more precisely by the image of t by the morphism R ! O.U /). Therefore, there should be
an invertible element u 2 O.U /� such that t D uta11 � � � t

an
n .

R 2.6. – We will use Proposition 2.5 in the following way. Let X be a finite type
R-scheme and f W X ! Spec.R/ its structural morphism. Assume that f is flat and that the
rigid variety X� is smooth. Then X� admits an open neighborhood U � X such that U� is
smooth. Furthermore, by resolution of singularities, one can find a morphism h W X 0 ! U

satisfying the following properties:

– h is a blow-up of U with center a closed subscheme Z such that Zred � .X� /red;
– X 0 is regular and .X 0� /red is a simple normal crossing divisor.

It follows that X 0
� 'X� and X 0 is a formalR-scheme with semi-stable reduction. Moreover,

the morphism Oh WX 0 !X is an admissible blow-up.

E 2.7. – We recall here the definition of standard semi-stable (formal)R-schemes.
For later use, we give actually a more general construction.

Let X (resp. X , X ) be an R-scheme (resp. a formal R-scheme, a rigid analytic variety
over K). Let a D .a1; : : : ; an/ 2 .N�/n, let v 2 O.X/ (resp. v 2 O.X /, v 2 O.X /). The
standard space of length n associated with the triple .X; v; a/ (resp. .X ; v; a/, .X ; v; a/) is
the R-scheme (resp. formal R-scheme, rigid analytic variety over K) given by:

StvX;a D Spec OX ŒT1; : : : ; Tn�=.T
a1
1 � � �T

an
n � v/

.resp: StvX ;a D Spf OX fT1; : : : ; Tng=.T
a1
1 � � �T

an
n � v/;

StvX ;a D Spm O X fT1; : : : ; Tng=.T
a1
1 � � �T

an
n � v//:

If theR-schemeX is of finite type with t -adic completion X , then StvX ;a is the t -adic comple-
tion of StvX;a. If the formal R-scheme X is of topologically of finite type, then StvX�;a

is the
generic fiber of StvX ;a.

IfX (resp. X ) is a smoothR-scheme of finite type (resp. a smooth formalR-scheme topo-
logically of finite), and if v 2 t O.X/� (resp. v 2 t O.X /�), then the associated standard space
StvX;a (resp. StvX ;a) is semi-stable. General semi-stable R-schemes (resp. formal R-schemes)
are locally, for the Zariski topology, related to standard ones by [3, Proposition 3.3.39] (resp.
[6, Proposition 1.1.62]).

Without necessarily assuming X (resp. X ) smooth over R, the subschemeDi � .StvX;a/�
(resp. Di � .StvX ;a/� ) defined by the equation Ti D 0 is called a branch of the standard
scheme StvX;a (resp. formal scheme StvX ;a).

3. Motivic sheaves and rigid motives

In this section, we recall some elements of the theory of motives and rigid motives that are
used in this article.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1342 J. AYOUB, F. IVORRA AND J. SEBAG

3.1. Recollections on motivic sheaves

For a scheme S , we denote by SHM.S/ the category of motivic sheaves over S (for the
Nisnevich topology and with coefficients in M). This category appears in [3, Définition
4.5.21] under the name SHT

M.S/, where T stands for a projective replacement of the presheaf

Gm;S ˝ 1

1S ˝ 1
:

(The choice of T will not play any role in this article.) Also, for the construction of SHM.S/,
one has to choose the Nisnevich topology (instead of the étale topology) at the beginning of
[3, §4.5].

E 3.1. – 1. When M D Spect†
S1
.�op S et�/, it is customary to denote

by SH.S/ this category. This is the stable homotopy category of S -schemes of Morel-
Voevodsky (see [25, 31, 38]).

2. When M D Compl.ƒ/, it is customary to denote by DA.S;ƒ/ this category. This
is the ƒ-linear counterpart of the stable homotopy category of S -schemes of Morel-
Voevodsky.

R 3.2. – The theory developed in [2, 3] provides the categories SHM.�/ with the
Grothendieck six operations and the formalism of vanishing cycles.

Actually, in loc. cit., operations are only considered for quasi-projective morphisms as, by
definition, a stable homotopic 2-functor is only assumed to be defined over quasi-projective
schemes over a base-scheme S ; however, SHM.�/ makes sense for any scheme and the
operations f �, f� make sense for any morphism of schemes. The same holds true for the
functors ‰f : their construction makes sense for any morphism of schemes f W X ! A1

k
.

D 3.3. – Let p W X ! S be a morphism of finite type k-schemes. We define
the cohomological motive of the S -scheme X by (1)

M_S .X/ D p�p
�1S D p�1X :

(Here and later, 1S denotes the unit object of the monoidal category SHM.S/.) When p is
smooth, we may also consider the homological motive MS .X/ D p]1X , also given by the Tate
spectrum Sus0T .X˝1/. It is related to the cohomological motive by a canonical isomorphism
M_S .X/ ' Hom.MS .X/;1S /.

When the base-scheme S is understood, we write simply M_.X/ and M.X/ instead
of M_S .X/ and MS .X/.

It follows from [2, Scholie 2.2.34] that the motives introduced in Definition 3.3 are
constructible motives, i.e., objects of SHM;ct.S/. The latter is defined as the smallest trian-
gulated subcategory of SHM.S/ stable by direct factors, Tate twists and containing the
homological motives of smooth quasi-projective S -schemes.

(1) In [24] the motive M_S .X/ is denoted by MS .X/.
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3.2. Nearby motivic sheaves

Let X be a finite type R-scheme and denote by f W X ! Spec.R/ its structural
morphism. Using [3, §3.5] (see also [6, §A.1]), one has the nearby motivic sheaf functor
‰tıf W SHM.X�/ ! SHM.X� / associated with the morphism t ı f W X ! A1

k
. (Of course,

t W Spec.R/ ! A1
k

is the obvious morphism.) For convenience, we will (abusively) denote
this functor by

(4) ‰f W SHM.X�/! SHM.X� /:

When X varies in the category of quasi-projective R-schemes, the functors (4) form a
specialization system in the sense of [3, Définition 3.1.1]. Moreover all the results from [3,
§3.5] apply to them.

The object‰f .1X�/ 2 SHM.X� / will be called the nearby motivic sheaf (2) associated with
the morphism f (or with the R-scheme X ). For later use, we record the following result (see
[5, Théorème 10.6]):

P 3.4. – Let X be a finite type R-scheme and denote by f W X ! Spec.R/ its
structural morphism. We assume thatX is regular and thatD D .X� /red is a smooth k-scheme.
We also assume that D is a principal divisor and we fix g 2 O.X/ a generator of its ideal of
definition. Finally, we assume that there are u 2 O.X/� and m 2 N� such that t D ugm. (In
particular, the R-schemeX is semi-stable andX� is an irreducible divisor with multiplicitym.)

Now, consider the finite étale cover

rm W Dm D Spec. ODŒS�=.S
m
� u0//! D

where u0 is the restriction of u toD. Then, for every objectM 2 SHM.K/, there is a canonical
isomorphism

‰f f
�
� .M/ ' .rm/�.‰Id.em/

�
�M/jDm

where em W Spec.kŒŒt ��/! Spec.kŒŒt ��/ is the morphism given by t 7! tm. In particular, takingM
to be the unit object, one gets:

‰f .1X�/ ' .rm/�1Dm :

Proof. – We only give a sketch of the proof since it is very similar to the proof of [5,
Théorème 10.6].

We start by fixing some notation. Let fm W Xm D X ˝R;em R ! Spec.R/ be the base-
change of f along em and let eXm W Xm ! X be the projection to the first factor. By [3,
Proposition 3.5.9] we have a natural isomorphism

‰f ' ‰fm.e
X
m /
�
�:

Now, let QXm be the normalization of the scheme Xm D Spec. OX ŒT �=.T
m � t // and denote

by hm W QXm ! Xm the canonical morphism. Using that Tm D ugm in OX , one gets that

QXm D Spec. OX ŒS�=.S
m
� u//:

(2) This object was called nearby motive in [24].
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In particular, the R-scheme QXm, with structure morphism Qfm D fm ı hm, is smooth with
special fiber Dm. Using the second property of [3, Définition 3.1.1 (SPE2)], this shows that

‰ Qfm
. Qfm/

�
� ' .

Qfm/
�
�‰Id:

By putting these facts together, we obtain a sequence of isomorphisms

‰f f
�
� .M/ ' ‰fm.e

X
m /
�
�f
�
� .M/ ' ‰fm.fm/

�
�.em/

�
�.M/ ' .rm/�‰ Qfm

. Qfm/
�
�.em/

�
�.M/

' .rm/�.‰Id.em/
�
�.M//jDm

:

The third isomorphism above uses the fact that hm is finite, and hence projective, that .hm/� is
the identity and that .hm/� is equal to rm up to nilradicals.

Apart from Proposition 3.4, the computations with nearby cycles done in the present
paper only require the defining properties of a specialization system (see [3, Définition 3.1.1])
and the formalism of the six operations of [2, 3], and especially the base-change theorem
by a smooth morphism and the base-change theorem for a proper morphism [2, Corollaire
1.7.18].

3.3. Recollections on rigid motives

In this subsection, we overview some constructions from [6] around the notion of rigid
motives.

In [6] (see also [7, §2.2]), Ayoub developed a theory of motives in the context of
rigid analytic geometry. In particular, one has a triangulated category of rigid motives
RigSHM.K/. Its construction is parallel to the construction of the triangulated category of
motives SHM.K/ except that smooth varieties are replaced with rigid analytic varieties and
the affine line A1K D Spec.KŒT �/ is replaced with the unit ball B1K D Spm.KfT g/. More
precisely, one starts with the category PSh.SmRig=K;M/ of presheaves on smooth rigid
K-varieties with coefficients inM endowed with its projective Nisnevich local model struc-
ture (see [6, Définition 1.2.8] for the definition of the Nisnevich topology in the rigid analytic
context). A left Bousfield localisation with respect to the maps B1X ˝ Acst ! X ˝ Acst,
for X 2 SmRig=K and A 2 M, gives the projective .B1;Nis/-local model structure
on PSh.SmRig=K;M/ (see [6, Définition 1.3.2]). The category RigSHM.K/ is then the
homotopy category of the category Spt†T an.PSh.SmRig=K;M// of T an-symmetric spectra
endowed with its stable projective model structure obtained from the .B1;Nis/-local model
structure. Here T an is the image of T by the analytification functor. (See [6, Définition
1.3.19] and more generally [6, §1.3.1 and §1.3.3] for more details.)

E 3.5. – Again, if M D Spect†
S1
.�op S et�/, this category is simply denoted

by RigSH.K/. IfM D Compl.ƒ/, this category is denoted by RigDA.K;ƒ/.

D 3.6. – Let X be a smooth rigid variety over K. We denote by Mrig.X/ the
homological motive associated with X , i.e., the T an-spectrum Sus0T an.X ˝ 1/ considered as
an object of RigSHM.K/. We will denote by M_rig.X/ the cohomological motive associated
with X given by the dual of Mrig.X/. More precisely, we set

M_rig.X/ D Hom.Mrig.X/;1Spm.K//:

(Compare with Definition 3.3.)
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Recall that, given a K-scheme of finite type X , there is an associated rigid analytic
K-variety Xan. The functor X 7! Xan extends into a triangulated functor

Rig� W SHM.K/! RigSHM.K/

such that Rig�.M.X// DMrig.X
an/.

One of the main results of [6] gives an equivalence between the category of rigid motives
over K and the category of quasi-unipotent (algebraic) motives over a torus over the
residue field of K. More precisely, denote by QUSHM.k/ the triangulated subcategory
of SHM.Gm;k/ closed under infinite direct sums and generated by the objects of the form
SuspT .Q

gm
r .X; g/˝ 1/ where X is a smooth k-scheme, g 2 O.X/�, r 2 N� and Qgm

r .X; g/

is the smooth Gm;k-scheme

Qgm
r .X; g/ WD Spec. OX ŒT; T

�1; V �=.V r � gT //! Spec.kŒT; T �1�/ D Gm;k :

(See [6, Notation 1.3.24].) Then, the composition of the three functors

QUSHM.k/ ,! SHM.Gm;k/
t�

! SHM.K/
Rig�
�! RigSHM.K/

is an equivalence of categories (see [6, Scholie 1.3.26]).
We fix a quasi-inverse to the above composition

R W RigSHM.K/
�
! QUSHM.k/:

We will be interested in the composite functor

1� ıR W RigSHM.K/! SHM.k/

where 1 W Spec.k/! Gm;k is the unit section.

4. Rigid motives of generic fibers of formal schemes

The goal of this section is to establish Theorem 4.11, which is the particular case
Z D X� of our main theorem. Theorem 4.11 will be obtained as a formal consequence
of Theorem 4.1. We warn the reader that the main ingredients for proving Theorem 4.1 are
already contained in [6]. More precisely, the proof depends ultimately on the description of
the .B1;Nis/-localization given in [6, §1.3.4, Théorèmes 1.3.37, 1.3.38] and an important
part of the argument consists in recalling these results.

4.1. Statement of preliminary results

We start by introducing some notation. Let A be a smooth affinoid K-algebra. Consider
the commutative diagram with cartesian squares

Spec.A/
j
//

f�

��

�

Spec.Aı/

f

��

�

Spec. QA/

f�

��

ioo

Spec.K/
j
// Spec.R/ Spec.k/:

ioo

Here, as usual, Aı D fa 2 AI jaj1 6 1g, Aıı D fa 2 AI jaj1 < 1g and QA D Aı=Aıı, where
j � j1 is the infinity norm (aka spectral norm) on A. (Compare this with §1.6.)
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T 4.1. – Let M be an object of SHM.K/. Then, there is a canonical isomorphism
in SHM.k/:

(5) 1� ıR.Hom.Mrig.Spm.A//;Rig�.M/// ' .f� /�‰f f
�
� .M/:

Taking M to be the unit object of SHM.K/, one gets the following:

C 4.2. – There is a canonical isomorphism in SHM.k/:

1� ıR.M_rig.Spm.A/// ' .f� /�‰f .1Spec.A//:

R 4.3. – The statement of Theorem 4.1 makes use of the generalization of the
theory of nearby motivic sheaves explained in [6, Appendice 1.A]. See also [5, §10].

R 4.4. – The statement of Theorem 4.1 can be made functorial as follows. Let
.Spm.A /; I/ be a diagram of smoothK-affinoids. This means that I is a small category and
A is a contravariant functor from I to the category of smooth affinoidK-algebras. Consider
the following commutative diagram of diagrams of schemes

.Spec.A /; I/ //

.f�;pI /

��

�

.Spec.A ı
/; I/

.f;pI/

��

�

.Spec.fA /; I/

.f� ;pI/

��

oo

f�

''

.Spec.k/; I/

pI

ww

Spec.K/ // Spec.R/ Spec.k/:oo

Then, there is a canonical isomorphism in SHM.k; I/:

(6) 1� ıR.Hom.Mrig.Spm. A //;Rig�.M/// ' .f� /�‰.f;pI/.f�; pI/
�.M/:

The proof is an easy adaptation of the proof for a single smooth K-affinoid. We leave the
details to the reader.

Finally, we warn the reader that the “Hom” in (6) is not an “internal hom” in the cate-
gory of RigSHM.K; I/. It is rather an “external hom” in the sense of [37, §3] going from
RigSHM.K; I

op/ to RigSHM.K; I/. More precisely,

Hom.Mrig.Spm. A //;Rig�.M//

is the diagram of rigid motives given, for i 2 I, by Hom.Mrig.Spm.A .i///;Rig�.M//.

To prove Theorem 4.1, we first need to establish a variant where ‰f is replaced by the
specialization system �f D i

�j�.

T 4.5. – Let M be an object of SHM.K/. Then, there is a canonical isomorphism
in SHM.k/:

q� ıR.Hom.Mrig.Spm.A//;Rig�.M/// ' .f� /��f f
�
� .M/:
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4.2. Proof of Theorem 4.5

Before we state our first lemma, we need to recall some notation from [6]. Given a k-variety
X , we denote byQrig.X/ the generic fiber of the t -adic completion of theR-schemeX˝kR.
Note that, ifX is the spectrum of a k-algebraE, thenQrig.X/ D Spm.EŒŒt ��Œt�1�/. This gives
a functor

Qrig
W Sm=k ! SmRig=K

which is continuous for the Nisnevich topology.

Using standard constructions, the functor Qrig induces a pair of adjoint functors

..Qrig/�;Q
rig
� / W SHM.k/! RigSHM.K/:

The functor .Qrig/� takes the homological motive of a smooth k-schemeX to the homolog-
ical motive of the rigid analytic variety Qrig.X/.

We will be mainly interested in the functor Qrig
� . We have the following result which is a

variant of [7, Théorème 2.24]. However, the proof here is much easier as everything is derived.

L 4.6. – There is a canonical invertible natural transformation of functors from
RigSHM.K/ to SHM.k/

q� ıR ' Q
rig
� :

Proof. – Recall that R is a quasi-inverse to the following composition

(7) F W QUSHM.k/ ,! SHM.Gm;k/
t�

! SHM.K/
Rig�
�! RigSHM.K/

which is an equivalence of categories by [6, Scholie 1.3.26]. Therefore, to prove the lemma, it
is enough to construct an isomorphism

.Qrig/� ' F ı q�:

Now, let Qan W Sm=k ! SmRig=K be the functor that takes a k-variety X to the rigid
analytic variety .X ˝k K/an. It induces a functor

.Qan/� W SHM.k/! RigSHM.K/

which is nothing butFıq�. On the other hand, there is a natural transformationQrig ! Qan.
It induces a natural transformation .Qrig/� ! .Qan/� which is an isomorphism by [6,
Théorème 1.3.11].

Therefore, to prove Theorem 4.5, it is enough to establish the following proposition.

P 4.7. – Keep the notation as for Theorem 4.5. There is a canonical isomor-
phism

Q
rig
� Hom.Mrig.Spm.A//;Rig�.M// ' .f� /��f f

�
� .M/:

R 4.8. – The proof of this proposition uses similar ideas and techniques as those
exposed in [6, §1.3.4] and especially in the proof of [6, Scholie 1.3.26]. The reader who finds
our proof below a bit sketchy is advised to read [6, §1.3.4] where he can find enough material
to complete the arguments.
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To prove Proposition 4.7, we need to recall the construction of the .B1;Nis/-localization
of the T an-spectrum Rig�.M/ given in [6, §1.3.4, Théorèmes 1.3.37 et 1.3.38]. We start by
recalling the necessary notation. Let

D W SmAfnd=K ! Sch=R

be the functor from the category SmAfnd=K of smooth K-affinoids to the category Sch=R
of R-schemes (not necessarily of finite type) that takes a K-affinoid X to the R-scheme

D.X/ D Spec. O.X/ı/:

We will think about D as a diagram of R-schemes. There are two other related diagrams D�
and D� defined on SmAfnd=K, and with values in Sch=K and Sch=k respectively. These are
given by

D�.X/ D Spec. O.X// and D� .X/ D Spec. O.X/Q/:

Thus, we have a diagram of diagrams of schemes (see [6, (1.86)]):

D�
j

//

u�

��

�

D

u

��

�

D�
ioo

u�

��

Spec.K/
j
// Spec.R/ Spec.k/:

ioo

There is an obvious diagonal functor

diag W SmAfnd=K ! Sm=D :

(For the definition of “Sm=a diagram of schemes”, see the beginning of [3, §4.5.1].) It takes
an object Spm.B/ of SmAfnd=K to the couple

.Spm.B/; IdSpec.Bı//:

Composing with diag yields a functor

diag� W PreShv.Sm=D ;M/! PreShv.SmAfnd=K;M/:

This functor extends to T -spectra and can be derived into a functor

Rdiag� W SHM.D/! Ho.Spect†diag�.T /.PreShv.SmAfnd=K;M///:

(In fact, it is shown in [6, §1.3.4] that diag�.T / is weakly equivalent to T an.) With this
notation, we can state [6, Théorèmes 1.3.37 et 1.3.38] as follows:

T 4.9. – Let M be an object of SHM.K/. Then the symmetric diag�T -spectrum

diag�i�i�j�u��M

is a stably .B1;Nis/-local object of

Ho.Spect†diag�.T /.PreShv.SmAfnd=K;M///:

Moreover, there is a canonical .B1;Nis/-equivalence

r�Rig�.M/! diag�i�i�j�u��M:
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In the statement of Theorem 4.9, r W SmAfnd=K ,! SmRig=K is the inclusion of the
subcategory of smooth affinoid varieties overK and r� is the functor induced by composition
with r. Similarly, we denote by r W SmAf=k ,! Sm=k the inclusion of the subcategory
of smooth affine k-schemes and r� the functor induced by composition with r. (Below, we
use implicitly that the functors r induce equivalences of Nisnevich sites, and thus Quillen
equivalences with respect to the .B1;Nis/ and .A1;Nis/-local structures.)

Using Theorem 4.9 and going back to the construction of the different functors, we obtain
canonical isomorphisms

r�Q
rig
� Hom.Mrig.Spm.A//;Rig�.M// D Q

rig
� Hom.Mrig.Spm.A//; r�Rig�.M//

' Q
rig
� Hom.Mrig.Spm.A//; diag�i�i�j�u��M/ D ı�Ai�i

�j�u
�
�M

in HoA1�Nis.Spect†T .PreShv.SmAf=k;M/// ' SHM.k/. The second and third Qrig above
stand for the functor Qrig W SmAf=k ! SmAfnd=K; the functor

ıA W SmAf=k ! Sm=D

takes a smooth affine scheme U D Spec.E/ to the couple�
Spm.A/ O�KQ

rig.U / D Spm.A Ő KEŒŒt ��Œt
�1�/ ; IdSpec.Aı Ő REŒŒt��/

�
I

and ı�A is the functor induced by composition with ıA.

Consider now the diagram of schemes FA W SmAf=k ! Sch=R that takes a smooth affine
k-scheme Spec.E/ to Spec.Aı Ő REŒŒt ��/. Similarly, let FA;� W SmAf=k ! Sch=K and FA;� W

SmAf=k ! Sch=k be the diagrams of schemes that takes Spec.E/ to Spec.A Ő KEŒŒt ��/ and
Spec. QA˝k E/ respectively. One has a commutative diagram of diagrams of schemes:

FA;�

j
//

f�

��

�

FA

f

��

�

FA;�
ioo

f�

��

Spec.K/
j
// Spec.R/ Spec.k/:

ioo

Moreover, there is an obvious morphism of diagrams of schemes FA ! D induced
by the functor on the indexing categories SmAf=k ! SmAfnd=K that takes Spec.E/

to Spm.A Ő KEŒŒt ��Œt
�1�/.

Let diagA W SmAf=k ! Sm=FA be the diagonal functor given by diagA.Spec.E// D

.Spec.E/; IdSpec.Aı Ő REŒŒt��/
/. Using the following commutative triangle

SmAf=k
diagA //

ıA %%

Sm=FA

��

Sm=D ;

we get canonical isomorphisms

ı�Ai�i
�j�u

�
�M ' diag�Ai�i

�j�f
�
�M ' diag�A;� i

�j�f
�
�M

where diagA;� is the diagonal functor that takes Spec.E/ to .Spec.E/; IdSpec. QA˝kE/
/.
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Finally, one has a commutative diagram of diagrams of schemes:

FA;�

j
//

a�

��

�

FA

a

��

�

FA;�
ioo

a�

��

Spec.A/
j
// Spec.Aı/ Spec. QA/;

ioo

with regular vertical maps. By [6, Corollaire 1.A.4], this gives a canonical isomorphism

i�j�f
�
�M ' a

�
� i
�j�M jSpec.A/

:

Now, it is obvious that diag�A;� ı a
�
� D .f� /�. This finishes the proof of Proposition 4.7 and

hence of Theorem 4.5.

4.3. Proof of Theorem 4.1

We have to recall the definition of the nearby motivic sheaf functor. Let� be the category
of finite ordinals n D f0 < 1 < � � � < ng, for n 2 N, and let N� D N n f0g be ordered by
the opposite of the division relation. In [3, Définition 3.5.3], Ayoub introduced a diagram
of k-schemes .R; � � N�/ with a morphism

.�R; p��N�/ W .R; � � N�/! Gm;k :

Let .�R
f
; p��N�/ W .Rf ; p��N�/! Spec.A/ be the morphism of diagrams obtained by base-

change along the morphism Spec.A/! Gm;k (given by the composition of f W Spec.A/!

Spec.K/ and t W Spec.K/! Gm;k). The nearby motivic sheaf functor is then given by

‰f .�/ D .p��N�/] ı �f;p��N�
ı .�R

f
/� ı .�

R
f
/� ı .p��N�/

�.�/

' �f ı .p��N�/] ı .�
R
f
/� ı .�

R
f
/� ı .p��N�/

�.�/:

The isomorphism above is a consequence of the fact that inverse and direct images commute
with homotopy colimits in the case of SHM.�/. Moreover, after composing with f �� , one has
further isomorphisms as follows:

‰f f
�
� .�/ ' �f ı .p��N�/] ı .�

R
f
/� ı .�

R
f
/� ı .p��N�/

� ı f �� .�/

' �f ı f
�
� ı .p��N�/] ı .�

R
t /� ı .�

R
t /
� ı .p��N�/

�.�/

' �f ı f
�
� ..�/˝ t

�U /

where U D .p��N�/].�
R/�1.R;��N�/ and t W Spec.K/ ! Gm;k . Applying Theorem 4.5

with M ˝ t�U instead of M , we get an isomorphism

.f� /�‰f f
�
� M ' q� ıR.Hom.Mrig.Spm.A//;Rig�.M ˝ t�U //:

Therefore, it is enough to show that

q� ıR.Hom.Mrig.Spm.A//;Rig�.M ˝ t�U /// ' 1� ıR.Hom.Mrig.Spm.A//;Rig�.M///:

Let us recall the following lemma that is a consequence of results in [6]:

L 4.10. – Every compact object of RigSHM.K/ is strongly dualizable.
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Proof. – By [6, Théorème 1.3.22] and [2, Proposition 2.1.24], it is enough to show that,
for every smooth k-scheme X , every p 2 N, r 2 N n f0g and every g 2 O.X/�, the
objects SuspT an.Q

rig
r .X; g/ ˝ 1/ are strongly dualizable (see [6, Notation 1.3.10]). By [6,

Lemma 1.3.12], the map

SuspT an.Q
rig
r .X; g/˝ 1/! SuspT an.Q

an
r .X; g/˝ 1/ D Rig�.SuspT .Q

geo
r .X; g/˝ 1//

is an isomorphism in RigSHM.K/. As the functor Rig� is symmetric monoidal and unitary,
it suffices to check that SuspT .Q

geo
r .X; g/˝1/ is strongly dualizable in SHM.K/. This follows

from [35] (see also [6, Lemme 1.3.29]).

By [6, Proposition 1.2.34], Mrig.Spm.A// is a compact object in RigSHM.K/, hence
strongly dualizable by Lemma 4.10. Therefore, using that Rig� is monoidal, one has a
canonical isomorphism

Hom.Mrig.Spm.A//;Rig�.M ˝ t�U // ' Hom.Mrig.Spm.A//;Rig�.M//˝Rig�t�U :

Now, U is an object of QUSHM.k/ (see [6, Définition 1.3.25]). Therefore, we can write

Rig�t�U D F.U /:

By putting these facts together, we are left to show that

q� ıR.Hom.Mrig.Spm.A//;Rig�.M//˝ F.U // ' 1� ıR.Hom.Mrig.Spm.A//;Rig�.M///:

Now, as R is a monoidal equivalence of categories, one has a projection formula:

R..�/˝ F.U // ' R.�/˝ U :

In the end, we are left to construct an invertible natural transformation

q�.�˝ U / ' 1�.�/

between functors from QUSHM.k/ to SHM.k/. In [6, (1.112)], an isomorphism of functors

.p��N�/]q�
�
.p��N�/

�.�/˝ .�R/�1.R;��N�/
�
DW ‰qu ! 1�.�/

is constructed. Using that .p��N�/]q� ' q�.p��N�/] and projection formula, it is easy to
see that‰qu is canonically isomorphic to q�.�˝ U /. This finishes the proof of Theorem 4.1.

4.4. A particular case of the main theorem

Here we prove the case Z D X� of our main theorem. This is done using the functorial
version of Theorem 4.1 (see Remark 4.4).

Let X be a finite type R-scheme and let f W X ! Spec.R/ be its structural morphism.
Assume that X� is smooth over K and consider the t -adic completion X of X .

T 4.11. – LetM be an object of SHM.K/. Then, there is a canonical isomorphism
in SHM.k/:

(8) 1� ıR.Hom.Mrig.X�/;Rig�.M/// ' .f� /�‰f f
�
� .M/:
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When X D Spec.R/ (and f D Id), the above theorem simply states that 1� ıR ıRig�

is isomorphic to the nearby motive functor ‰Id, which we already know by [6, Scholie
1.3.26(2)]. Thus, in some sense, Theorem 4.11 can be considered as a generalization of [6,
Scholie 1.3.26(2)].

Taking M to be the unit object of SHM.K/ in Theorem 4.11, one gets the following:

C 4.12. – There is a canonical isomorphism in SHM.k/:

1� ıR.M_rig.X�// ' .f� /�‰f .1X�/:

Proof. – As we already said, the proof relies on the functorial version of Theorem 4.1
described in Remark 4.4.

Let .Ui /i2I be a finite covering of X by open affine subschemes. Let P
�
.I / be the set

of non-empty subsets of I ordered by reverse inclusion. We have a diagram of schemes
.U; P

�
.I // that takes J 2 P

�
.I / to UJ D

T
j2J Uj .

Let .u; p/ W .U; P
�
.I //! X be the canonical morphism. (We wrote p instead of pP

�
.I /

to ease the notation.) Using Zariski descent and the second property in [3, Définition 3.2.1
(SPE2)], we see that the canonical maps

‰f f
�
� .M/! .u� ; p/�.u� ; p/

�‰f f
�
� .M/! .u� ; p/�‰.f ıu;p/.f� ı u�; p/

�.M/

are isomorphisms in SHM.X� /. Applying .f� /�, we get a canonical isomorphism

.f� /�‰f f
�
� .M/ ' p�..f ı u/� /�‰.f ıu;p/..f ı u/�; p/

�.M/

in SHM.k/.
Now, consider the diagram of formal schemes .U ; P

�
.I // obtained as the completion

of U . As every UJ is affine, one can also form the diagram of schemes .V; P
�
.I // where

VJ D Spec. O.UJ //. Now, one has a regular morphism of diagrams of R-schemes

r W .V; P
�
.I //! .U; P

�
.I //

inducing the identity between the special fibers. It follows from [6, Proposition 1.A.6] that

‰.f ıu;p/..f ı u/�; p/
�.M/ ' ‰.f ıuır;p/..f ı u ı r/�; p/

�.M/

in SHM.U� ; P
�
.I //. On the other hand, the functorial version of Theorem 4.1 (see

Remark 4.4) provides an isomorphism

..f ı u/� /�‰.f ıuır;p/..f ı u ı r/�; p/
�.M/ ' 1� ıR.Hom.Mrig.U�/;Rig�.M///:

We therefore have an isomorphism

.f� /�‰f f
�
� .M/ ' p� ı 1

�
ıR.Hom.Mrig.U�/;Rig�.M///

and it remains to check that

p� ı 1
�
ıR.Hom.Mrig.U�/;Rig�.M/// ' 1� ıR.Hom.Mrig.X�/;Rig�.M///:

Using [8, Proposition 1.15], we get an isomorphism

p� ı 1
�
ıR ' 1� ıR ı p�:

Therefore, it is enough to check that one has an isomorphism

p�Hom.Mrig.U�/;Rig�.M// ' Hom.Mrig.X�/;Rig�.M//
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in RigSHM.K/. Now the left hand side is canonically isomorphic to

Hom.p]Mrig.U�/;Rig�.M//:

Thus, we are left to check that p]Mrig.U�/!Mrig.X�/ is an isomorphism. This follows by
Zariski descent.

5. Rigid motives of tubes in a semi-stable situation

The goal of this section is to prove some preparatory results about rigid motives of tubes
in a semi-stable situation. A striking consequence of these results is that the rigid motive of
a tube (in a quasi-compact rigid analytic variety) is always a compact motive.

5.1. Tubes in rigid analytic geometry

Let X be a formal R-scheme topologically of finite type. Let Z �X� be a locally closed
subset. The tube ofZ, denoted by �ZŒ, is the inverse image ofZ under the specialization map
spWX� !X� . This is an admissible open rigid analytic subvariety of X�, which is not quasi-
compact in general.

If U � X� is an open subset and U � X is the formal open subscheme such that
U� D U , then �U ŒD U�; in this case, the tube is quasi-compact. For more details concerning
tubes, see, for example, [12] or [26, §2.1.2].

5.2. Statement of the results

Assume that X is a semi-stable formalR-scheme. Let us denote by .Di /i2I the irreducible
components of .X� /red. Given a subset J � I , denote by DJ and D.J / the reduced closed
subschemes of X� given by

DJ D
\
i2J

Di and D.J / D
[
i2J

Di

with the convention that D; D .X� /red and D.;/ D ;.

Fix a subset J � I and let Z be a closed subscheme of D.J /. For I 0 � I n J , we set

ZıI 0 D Z nD.I
0/:

When I 0 D I n J , we simply write Zı for Zı
InJ

.

T 5.1. – Keep the notation as before. Assume that Z is a union of closed subsets
of the formDJ 0 , for some ; ¤ J 0 � J . Then, for I 0 � I 00 � I n J , the inclusion �ZıI 00 Œ,!�Z

ı
I 0 Œ

induces an isomorphism in RigSHM.K/:

Mrig.�Z
ı
I 00 Œ/ 'Mrig.�Z

ı
I 0 Œ/:

At the end, we are only concerned with the following particular case.

C 5.2. – Keep the notation as before. The inclusion �D.J /ıŒ,!�D.J /Œ induces
an isomorphism in RigSHM.K/:

Mrig.�D.J /
ıŒ/ 'Mrig.�D.J /Œ/:
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5.3. Reductions

We start the proof of Theorem 5.1 by proving the following lemma.

L 5.3. – It is enough to prove Theorem 5.1 when Z D DJ , J ¤ ;, I 0 D ; and
#.I 00/ D 1.

Proof. – Let us assume this particular case proven and suppose thatZ, I 0 and I 00 are as in
the statement of Theorem 5.1. WhenZ D ;, there is nothing to be proven; so we can assume
that Z ¤ ;. (This forces that J ¤ ;.) We can write

Z D DJ1 [ � � � [DJn

for some integer n > 1, with ; ¤ Ji � J for 1 6 i 6 n. We argue by induction on the
integer n.

First, let us assume that n D 1. This means that Z D DJ1 for some J1 � J . As I 0 and I 00

are also subsets of I n J1, we may actually assume that J1 D J . Also, by an easy induction
we may assume that #.I 00 n I 0/ D 1.

Now, consider the open formal subscheme X 0 � X given by X nD.I 0/. Then X 0 is a
semi-stable formal R-scheme and .X 0

� /red D
S
i2InI 0 D

0
i with D0i D Di nD.I

0/. Moreover,
letting Z0 D Z \X 0

� , one has (with the notation of §5.2):

Z0ı; D Z
ı
I 0 and Z0ıI 00nI 0 D Z

ı
I 00 :

Therefore, the map Mrig.�Z
ı
I 00 Œ/!Mrig.�Z

ı
I 0 Œ/ identifies with

Mrig.�Z
0ı
I 00nI 0 Œ/!Mrig.�Z

0ı
; Œ/

which is an isomorphism by the assumption of the lemma.

Next, assume that n > 2. We may then write Z D Z1 [Z2 where

Z1 D DJ1 [ � � � [DJn�1 and Z2 D DJn :

Set W D Z1 \Z2. We therefore have admissible open coverings:

�ZıI 0 Œ D �.Z1/
ı
I 0 Œ [ �.Z2/

ı
I 0 Œ and �ZıI 00 Œ D �.Z1/

ı
I 00 Œ [ �.Z2/

ı
I 00 Œ:

Moreover, we have:

�.Z1/
ı
I 0 Œ \ �.Z2/

ı
I 0 Œ D �W

ı
I 0 Œ and �.Z1/

ı
I 00 Œ \ �.Z2/

ı
I 00 Œ D �W

ı
I 00 Œ:

Using Mayer-Vietoris distinguished triangles, we are left to treat the cases ofZ1,Z2 andW .
These cases follow by induction.

We prove a further reduction.

L 5.4. – It is enough to prove Theorem 5.1 when #.J / D 1 (and hence Z is an
irreducible component of X�), I 0 D ; and #.I 00/ D 1.
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Proof. – By the previous lemma, we may assume thatZ D DJ (for J non-empty and not
necessarily a singleton) I 0 D ; and #.I 00/ D 1. Let h WX 0 !X be the admissible blow-up
of X at Z and E � X 0

� its exceptional divisor. Then the morphism Mrig.�Z n D.I
00/Œ/ !

Mrig.�ZŒ/ identifies with

Mrig.�E n h
�1.D.I 00//Œ/!Mrig.�EŒ/:

But, if I 00 D fig, then h�1.Di / is simply the strict transform ofDi and hence is an irreducible
divisor of X 0

� . This enables us to conclude.

By Lemmas 5.3 and 5.4, we may assume that I D f1; : : : ; ng, J D f1g, I 0 D ; and
I 00 D f2g. We are thus left to show that

Mrig.�D1 nD2Œ/ DMrig.�D1 nD1;2Œ/!Mrig.�D1Œ/

is an isomorphism in RigSHM.K/. (Recall that D1;2 D D1 \D2.) From now on, we argue
by induction on the integer n. We use this to obtain the following reduction.

L 5.5. – To prove Theorem 5.1, it is enough to show that

(9) Mrig.�D1 nDI Œ/!Mrig.�D1Œ/

is an isomorphism in RigSHM.K/.

Proof. – Assume that (9) is an isomorphism. Thus, by the previous discussion, we are left
to check that

Mrig.�D1 nD1;2Œ/!Mrig.�D1 nDI Œ/

is an isomorphism. Note that .X n Di /16i6n is an open covering of the formal scheme
X nDI . This induces admissible open coverings

.�D1 n .D1;2 [Di /Œ/26i6n and .�D1 nDi Œ/26i6n

of �D1 nD1;2Œ and �D1 nDI Œ respectively, where D1;2 D D1 \D2. Hence, thanks to Mayer-
Vietoris distinguished triangles, it is enough to show that, for every integer i , 2 6 i 6 n, the
morphism

Mrig.�D1 n .D1;2 [Di /Œ/!Mrig.�D1 nDi Œ/

is invertible in RigSHM.K/. As the special fiber of X nDi has n�1 irreducible components,
we may use induction to conclude when i > 3.

Before we give our final reduction, we note the following fact (where X is not necessarily
the semi-stable formal R-scheme of Theorem 5.1).

L 5.6. – Let X be a formal R-scheme topologically of finite type and assume that
X� is smooth. Let e W X 0 ! X be an étale morphism of formal R-schemes. Let H and Z be
closed subschemes of the special fiber X� . Assume that the induced morphism e�1.Z/! Z is
an isomorphism. Then, the following assertions are equivalent:

1. the morphism Mrig.�H nZŒ/!Mrig.�HŒ/ is an isomorphism;
2. the morphism Mrig.�e

�1.H nZ/Œ/!Mrig.�e
�1.H/Œ/ is an isomorphism.
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Proof. – Let U D X n Z and U 0 D X 0 n e�1.Z/. Consider the commutative cube of
rigid analytic varieties over K:

�e�1.H nZ/Œ //

��

''

�e�1.H/Œ

��

%%

U 0�
//

��

X 0
�

e�

��

�H nZŒ

''

// �H Œ
v

&&

U�
// X�:

All the faces of this cube are cartesian squares, and the frontal face is, by [6, Proposi-
tion 1.2.23], a distinguished Nisnevich square of quasi-compact rigid analytic varieties
over K (in the sense of [6, Définition 1.2.20]).

One has a morphism of distinguished triangles in RigSHM.X�/:

MX�;rig.U 0�/
//

��

MX�;rig.X 0
�/

//

��

MX�;rig.X 0
�=U

0
�/

C1
//

�

��

MX�;rig.U�/ // MX�;rig.X�/ // MX�;rig.X�=U�/
C1
//

where the third vertical arrow is an isomorphism thanks to [6, Corollaire 1.2.27].
Denote q W �H Œ ! Spm.K/ the structural morphism. Applying the functor q]v�, and

using [6, Lemme 1.4.32], we get a morphism of distinguished triangles in RigSHM.K/:

Mrig
�
�e�1.H nZ/Œ

�
//

��

Mrig
�
�e�1.H/Œ

�
//

��

Mrig
�
�e�1.H/Œ = �e�1.H nZ/Œ

� C1
//

�

��

Mrig .�H nZŒ/ // Mrig .�HŒ/ // Mrig .�HŒ = �H nZŒ/
C1

// :

That concludes the proof.

Now using Lemma 5.6 and [6, Proposition 1.1.62], which relates general semi-stable
formal R-schemes to standard semi-stable formal R-schemes (as in Example 2.7), we obtain
the following final reduction.

L 5.7. – To prove Theorem 5.1, we may assume that X D StvY ;a where Y is a smooth
formal R-scheme, v 2 t O.Y /� and a D .a1; : : : ; an/ 2 .N�/n. Moreover, it is enough to show,
in this case, that

Mrig.�D1 nDI Œ/!Mrig.�D1Œ/

is an isomorphism in RigSHM.K/. (Recall that I D f1; : : : ; ng.)

Proof. – Note that the morphism Mrig.�D1 n DI Œ/ ! Mrig.�D1Œ/ is a direct summand
of the corresponding morphism for the formal R-scheme X fT; T �1g. Using [6, Proposition
1.1.62] and Mayer-Vietoris distinguished triangles, we may therefore assume that there exists
an étale morphism of formal R-schemes

e WX ! StUt
Spf.RfU;U�1g/;a

fS1; : : : ; Srg;
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where a D .a1; : : : ; an/ 2 .N�/n and U; S1; : : : ; Sr are independent variables. We denote
by S the target of the morphism e; recall (from Example 2.7) that this formal R-scheme is
given by

S D Spf
�
RfU;U�1; T1; : : : ; Tn; S1; : : : ; Srg=.T

a1
1 � � �T

an
n � Ut/

�
:

The formalR-scheme S is semi-stable and the irreducible components of S� are defined by
the equations Ti D 0, for 1 6 i 6 n. We denote by C their intersection, i.e., the subscheme
of S� given by the ideal .T1; : : : ; Tn/. Clearly, we have C D Spec.kŒU; U�1; S1; : : : ; Sr �/.

After reordering the irreducible components of X� , we may assume thatDi �X� is given
by the equation Ti ı e D 0. The morphism e induces an étale morphism e0 W DI ! C . In
fact, one has a cartesian square of formal R-schemes:

DI //

e0

��

�

X

e

��

C // S :

As in [6, Notation 1.2.35], we denote byQfor.C / the formalR-scheme given by the t -adic
completion of theR-scheme C ˝k R. Since the morphism e0 is étale, by Lemma 2.1 and [15,
Lemma 1.2], the morphism of formal R-schemes

Qfor.e0/ W Q
for.DI /! Qfor.C / D Spf.RfU;U�1; S1; : : : ; Srg/

is also étale and induces an étale morphism of standard schemes

e0 WX 0
D StUt

Qfor.DI /;a
! S D StUt

Spf.RfU;U�1;S1;:::;Sr g/;a
:

Moreover, by construction, one has a cartesian square of formal R-schemes:

DI //

e0

��

�

X 0

e0

��

C // S :

Now, consider the fiber product X O�S X 0. By construction, one has

.X O�S X 0/ �S C ' DI �C DI :

As e0 W DI ! C is étale, the diagonal embedding DI ,! DI �C DI is an open and closed
immersion and hence induces a decomposition DI �C DI ' DI t F . We set

X 00
D .X O�S X 0/ n F:

By construction, one has étale morphisms

f WX 00
!X and f 0 WX 00

!X 0

inducing isomorphisms f �1.DI /
�
! DI and f 0�1.DI /

�
! DI . Therefore, we can apply

Lemma 5.6 twice:

– for X 00 !X with H D D1 and Z D DI , and
– for X 00 !X 0 with H �X 0

� given by the equation T1 D 0 and Z D DI .

This shows that to prove the property stated in Lemma 5.5 for X , it is enough to prove it
for X 0. As the latter is a standard semi-stable formal R-scheme, we are done.
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5.4. The case of a standard semi-stable formal R-scheme

Here, we finish the proof of Theorem 5.1 by showing the property stated in Lemma 5.7.
This property is obtained as a consequence of the following statement which is slightly more
general than what is needed. Indeed, we are only concerned with the case where Y is smooth
over R and v 2 t O.Y /�. However, the extra generality in the following statement gives a
flexibility that we use in its proof.

P 5.8. – Let Y be a formal R-scheme topologically of finite type with smooth
generic fiber. Let v 2

p
t O.Y / dividing a power of t . Let a D .a1; : : : ; an/ be an n-tuple of

strictly positive integers. Let X D StvY ;a be the associated standard formal scheme. Let D be
a branch of X� and Dı the complement in D of the union of the remaining branches. Then the
canonical morphism

Mrig.�D
ıŒ/!Mrig.�DŒ/

is an isomorphism in RigSHM.K/.

We refer to Subsection 1.5, or originally to [6, §1.1.2, Exemple 1.1.14, Exemple 1.1.15], for
a definition of the notion of relative annulus which plays an important role in the proof of
Proposition 5.8.

Proof. – The condition that v divides a power of t ensures that X� is a smooth rigid
analytic variety over K. Therefore, the statement of the proposition makes sense.

We may assume that D D D1, i.e., the branch of X� defined by the equation T1 D 0 (see
Example 2.7). When n D 1, there is nothing to prove. Thus, we may assume that n > 2. We
split the proof in three parts.

Step 1. The case n D 2. – In this case, we have:

X D Spf
OY fT1; T2g

.T
a1
1 T

a2
2 � v/

' Spf
OY fw; T1; T2g

.we � v; T
a1=e
1 T

a2=e
2 � w/

with e the greatest common divisor of a1 and a2. Replacing Y by Spf.OY fwg=w
e � v/ and

v by w, we may assume that a1 and a2 are coprime.

We fix a Bézout relation

a1d1 C a2d2 D �1

where d1 > 0 and d2 < 0 are relative integers. The equation T a11 T
a2
2 D v in O.X�/ can be

written as

.T
�d2
1 T

d1
2 /a2 D T1v

d1 :

This shows in particular that

jT
�d2
1 T

d1
2 j1 6 jvjd1=a11 6 1:

(Here, j � j1 is the infinity norm computed on X�.) Using this, we may construct an isomor-
phism of rigid analytic varieties over Y�:

X�
�
! Spm

OY�fT;U; V g

.T a1U � v�d2 ; vd1V � T a2/
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given, on the structural sheaves of functions, by T 7! T
�d2
1 T

d1
2 , U 7! T2 and V 7! T1.

Composing this isomorphism with the obvious open immersion

Spm
OY�fT;U; V g

.T a1U � v�d2 ; vd1V � T a2/
,! Spm. OY�fT g/;

yields an open immersion
j WX� ,! B1Y�

which identifies X� with the relative annulus (aka., relative corona)

CrY�.o; jvj
�d2=a1 ; jvjd1=a2/

inside the relative ball B1Y� . (Here, we are using the notation as in [6, Exemple 1.1.14].)

Now, by definition, �D1Œ D fx 2X� I jT1.x/j1 < 1g. Using that T a2 D vd1T1, we get an
identification

�D1Œ D
[

R!1�

CrY�.o; jvj
�d2=a1 ; R � jvjd1=a2/:

On the other hand, we have �Dı1Œ D fx 2 X� I jT2.x/j1 D 1g. Using that T a1T2 D v�d2 ,
we get an identification

�Dı1Œ D @B1Y�.o; jvj
�d2=a1/:

Thus, it is enough to show that the inclusion

@B1Y�.o; jvj
�d2=a1/ ,! CrY�.o; jvj

�d2=a1 ; Rjvjd1=a2/

induces an isomorphism in RigSHM.K/ for R close enough to 1. This is done in [6, Propo-
sition 1.3.4].

Step 2. The case where a2 D � � � D an D d . – Here we treat the case of the standard scheme

X D StvY ;.a1;dn�1/
D Spf

OY fT1; : : : ; Tng

.T
a1
1 T d2 � � �T

d
n � v/

and its branch D1 defined by the equation T1 D 0. (Above, dn�1 denotes the constant
.n � 1/-tuple with value d 2 N�.)

We argue by induction on the integer n. By the previous step, we may assume that n > 3.
Consider the standard formal R-scheme

Z D StvY fTng;.a1;dn�2/ D Spf
OY fTngfT1; : : : ; Tn�1g

.T
a1
1 T d2 � � �T

d
n�1 � v/

and its admissible blow-up Z 0 at the ideal .Tn�1; Tn/. The formalR-scheme Z 0 has an open
covering given by the following two open formal subschemes:

Spf. OZ fSn�1g=.Tn�1Sn�1 � Tn// D Spf
OY fSn�1gfT1; : : : ; Tn�1g

.T
a1
1 T d2 � � �T

d
n�1 � v/

' Z

and

Spf. OZ fSng=.TnSn � Tn�1// D Spf
OY fT1; : : : ; Tn�2; Sn; Tng

.T
a1
1 T d2 � � �T

d
n�2S

d
n T

d
n � v/

'X :

Their intersection is given by

W D Spf
OY fSn�1; S

�1
n�1gfT1; : : : ; Tn�1g

.T
a1
1 T d2 � � �T

d
n�1 � v/

:
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Let’s denote by �D1ŒZ� (resp. �D1ŒX�
, etc) the tube, taken in Z� (resp. X�, etc), of the

branch D1 defined by the equation T1 D 0. We use similar notation with Dı1 instead of D1.
We then have

�D1ŒZ 0�D �D1ŒZ�[ �D1ŒX�
and �D1ŒW�D �D1ŒZ�\ �D1ŒX�

;

and similarly

�Dı1ŒZ 0�D �D
ı
1ŒZ�[ �D

ı
1ŒX�

and �Dı1ŒW�D �D
ı
1ŒZ�\ �D

ı
1ŒX�

:

Now, by the induction hypothesis, the conclusion of the proposition holds for the standard
formal schemes Z and W and their branchesD1. On the other hand, the blow-up morphism
Z 0 ! Z induces isomorphism �D1ŒZ 0�' �D1ŒZ� and �Dı1ŒZ 0�' �Dı1ŒZ� . Using Mayer-
Vietoris distinguished triangles, the conclusion of the proposition follows now for X and
its branch D1.

Step 3. The general case. – We will use the same trick as in the proof of [6, Lemme 1.2.38].
Namely, we blow-up intersections of two components to increase the multiplicities and
reduce the general case to the one treated in Step 2. We will argue by induction on the
n-tuple a.

By the previous step, we may assume that .a2; : : : ; an/ is not constant. Let i; j 2 f2; : : : ; ng
such that ai ¤ aj . We may assume that ai > aj . Let b D .b1; : : : ; bn/ be the n-tuple given
by br D ar for r ¤ i and bi D ai � aj . Also, let a0 be the n-tuple given by a0r D ar
for r 62 fi; j g, a0i D ai � aj and a0j D ai .

Consider the standard formal R-scheme

Z D StvY ;b D Spf
OY fT1; : : : ; Tng

.T
b1
1 � � �T

bn
n � v/

and its admissible blow-up Z 0 at the ideal .Ti ; Tj /. The formal R-scheme Z 0 has an open
covering given by the following two open formal subschemes:

Spf. OZ fSj g=.TiSj � Tj // ' StvY ;a and Spf. OZ fSig=.TjSi � Ti // ' StvY ;a0 :

We identify X with the first open formal subscheme and we denote by V the second one.
The intersection W DX \ V is given by

Spf
OY fSj ; S

�1
j gfT1; : : : ; Tj�1; TjC1; : : : ; Tng

.T
a1
1 � � �T

aj�1
j�1 T

ajC1
jC1 � � �T

an
n � vS

�aj
j /

:

Hence, W is a standard formal R-scheme of length n � 1.
Now, using the same notation as in Step 2, we have

�D1ŒZ 0�D �D1ŒX�
[ �D1ŒV� and �D1ŒW�D �D1ŒX�

\ �D1ŒV� ;

and similarly

�Dı1ŒZ 0�D �D
ı
1ŒX�
[ �Dı1ŒV� and �Dı1ŒW�D �D

ı
1ŒX�
\ �Dı1ŒV� :

Moreover, the blow-up morphism Z 0 ! Z induces isomorphisms �D1ŒZ 0�' �D1ŒZ� and
�Dı1ŒZ 0�' �D

ı
1ŒZ� . Using Mayer-Vietoris distinguished triangles and induction, one gets that

Mrig.�D
ı
1ŒX�

/˚Mrig.�D
ı
1ŒV�/!Mrig.�D1ŒX�

/˚Mrig.�D1ŒV�/

is an isomorphism. This finishes the proof.
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We finish this subsection by indicating how to deduce the property stated in Lemma 5.7
from Proposition 5.8.

Let Y be a smooth formal R-scheme, v 2 t O.Y /� and a D .a1; : : : ; an/ 2 .N�/n. Let
X D StvY ;a be the associated standard formal R-scheme. Let DI , with I D f1; : : : ; ng, be
the intersection of all branches in X and let D D D1 be the branch given by the equation
T1 D 0. We need to show that �D nDI Œ ,! �DŒ induces and isomorphism in RigSHM.K/.

By Proposition 5.8, one has an isomorphism in RigSHM.K/:

(10) Mrig.�D
ıŒ/
�
!Mrig.�DŒ/:

On the other hand, for every 2 6 i 6 n, the formal R-scheme X n Di is isomorphic to
standard formal R-scheme of length n � 1. Applying Proposition 5.8 to it and its branch
D1 nDi , yields an isomorphism in RigSHM.K/:

(11) Mrig.�D
ıŒ/
�
!Mrig.�D nDi Œ/:

Using induction and Mayer-Vietoris distinguished triangles, the isomorphisms (11) can be
“glued” to produce an isomorphism in RigSHM.K/:

Mrig.�D
ıŒ/
�
!Mrig.�D n

n\
iD2

Di Œ/ DMrig.�D nDI Œ/:

Combining this with isomorphism (10) gives the required isomorphism. This finishes the
proof of Theorem 5.1.

5.5. A consequence on motives of tube

We finish this section with the following application.

P 5.9. – Let X be a formal R-scheme topologically of finite type and let
Z �X� be a locally closed subset. Assume that X� is smooth over K. Then, the rigid motive
Mrig.�ZŒ/ is a compact object of RigSHM.K/.

Proof. – By resolution of singularities, we may find an admissible blow-up e WX 0 !X

with X 0 a semi-stable formalR-scheme and such thatZ0 D e�1.Z/ is a union of irreducible
components of .X 0

� /red. As e induces an isomorphism of rigid analytic varieties �Z0Œ ' �ZŒ,
we may assume from the beginning that X is a semi-stable formalR-scheme andZ is a union
of irreducible components of .X� /red.

Denote .Di /i2I the irreducible components of .X� /red and let J � I be the subset such
that Z D D.J / D

S
j2J Dj . By Corollary 5.2, the obvious inclusion D.J /ı ,! D.J /

induces an isomorphism in RigSHM.K/:

Mrig.�D.J /
ıŒ/
�
!Mrig.�D.J /Œ/:

Now,D.J /ı D .X� /red nD.I nJ / is an open subset of .X� /red and hence its tube �D.J /ıŒ is
quasi-compact. Therefore, the rigid motive of �D.J /ıŒ is a compact object by [6, Corollaire
1.3.21]. This finishes the proof.
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6. Nearby motivic sheaves in a semi-stable situation

The goal of this section is to prove Theorem 6.1 that is the analog of Theorem 5.1 for
nearby motivic sheaves. The proofs of both theorems share some similarities but differ at
a crucial point, namely, at the treatment of the case of a standard space of length 2. For
Theorem 6.1, this case will be treated using Theorem 4.1.

6.1. Statement of the results

Let X be a semi-stable R-scheme. We denote by .Di /i2I the irreducible components
of .X� /red. Given a subset J � I , denote by DJ and D.J / the reduced closed subschemes
of X� given by

DJ D
\
i2J

Di and D.J / D
[
i2J

Di

with the convention that D; D .X� /red and D.;/ D ;.

Fix a subset J � I and let Z be a closed subscheme of D.J /. For I 0 � I n J , we set

ZıI 0 D Z nD.I
0/

and denote by vZ;I 0 W ZıI 0 ,! Z the obvious inclusion. When I 0 D I nJ , we simply writeZı

and vZ instead of Zı
InJ

and vZ;InJ .

T 6.1. – Keep the notation as before. Assume that Z is a union of closed
subschemes of the form DJ 0 , for some ; ¤ J 0 � J . Let M be an object of SHM.K/.
Then, for I 0 � I n J , the canonical morphism

(12) .‰f f
�
� .M//jZ

! .vZ;I 0/�.vZ;I 0/
�.‰f f

�
� .M//jZ

is an isomorphism in SHM.Z/.

Later, we only need the following particular case of Theorem 6.1.

C 6.2. – Keep the notation as before. Let M be an object of SHM.K/. The
canonical morphism

.‰f f
�
� .M//jD.J/

! .vD.J//�.vD.J//
�.‰f f

�
� .M//jD.J/

is an isomorphism in SHM.D.J //.

The schemeD.J / being a union of irreducible components of the special fiber, it is rather
natural, so as to prove the corollary, to try to use the Mayer-Vietoris triangles associated with
this closed covering. However Corollary 6.2 is not the right statement to do so. This is exactly
where actually proving Theorem 6.1 instead becomes handy.

R 6.3. – Note that Theorem 6.1 is a generalization of [3, Théorème 3.3.44],
inspired by [8, Proposition 1.20]. Also, at least for the stable homotopical 2-functor SHM.�/
and the specialization system ‰, it shows that the hypothesis of Q-linearity and separated-
ness are not needed for the conclusion of [3, Théorème 3.3.44]. This answers affirmatively
the question raised in [3, Remarque 3.3.26], at least for SHM.�/ and ‰, and over some
special bases.
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6.2. Reductions

We start with the following simple reduction.

L 6.4. – If the conclusion of Theorem 6.1 holds for I n J , then it holds for every
I 0 � I n J .

Proof. – Let u W Zı D Zı
InJ

,! ZıI 0 be the obvious open immersion. Then, vZ D
vZ;InJ D vZ;I 0 ı u. We are assuming that there is an isomorphism

.‰f .M jX�
//jZ
' .vZ/�.vZ/

�.‰f .M jX�
//jZ

:

Therefore, to show that the canonical morphism

.‰f .M jX�
//jZ
! .vZ;I 0/�.vZ;I 0/

�.‰f .M jX�
//jZ

is invertible, it is enough to show that the natural transformation

.vZ/� ! .vZ;I 0/�.vZ;I 0/
�.vZ/�

is invertible. This is obvious since vZ D vZ;I 0 ı u and the counit .vZ;I 0/�.vZ;I 0/� ! Id is
invertible.

L 6.5. – It is enough to prove Theorem 6.1 when #.J / D 1 (and hence Z is an
irreducible component of X�) and I 0 D I n J .

Proof. – We assume that the case #.J / D 1 and I 0 D I nJ is settled and we explain how
to prove the general case of Theorem 6.1. This will be done in two steps. We first deal with
an intersection of components using a blow-up as in [24].

Step 1. – Assume Z D DJ and I 0 D I n J . We will prove the assertion by induction on the
cardinal of J . The case #.J / D 1 being settled by assumption, we may assume #.J / > 2.
Consider h W Y ! X the blow-up ofX with centerZ and letE be its exceptional divisor. The
reduced special fiber .Y� /red of the R-scheme Y is again a simple normal crossings divisor
in Y , whose irreducible components are the closed subscheme E and the strict transforms
of the Di ’s, for i 2 I (e.g., see [27, Lemma 8.1.2]). In accordance with the notation in §6.1,
we denote by Eı the open subscheme of E defined as the complement in E of all the strict
transforms of the Di ’s. We have the following commutative diagram

(13) Eı
v //

q

��

E
e //

p

��

�

Y�

h�

��

DıJ

vDJ // DJ
z // X� ;

with a cartesian square on the right (but not on the left).
By our assumption (applied to the R-scheme Y and the component E), the canonical

morphism

(14) e�‰f ıh.M jY�
/! v�v

�e�‰f ıh.M jY�
/

is an isomorphism in SHM.E/. By applying the third property of [3, Définition 3.1.1 (SPE2)]
to the projective morphism h, we see that the morphism

(15) ‰f .M jX�
/! .h� /�‰f ıh.M jY�

/
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is an isomorphism in SHM.X� /. Using these isomorphisms and the base-change theorem
for projective morphisms [2, Corollaire 1.7.18] applied to the cartesian square (i.e., the right
square) in (13), we obtain the following chain of canonical isomorphisms:

z�‰f .M jX�
/ ' z�.h� /�‰f ıh.M jY�

/ ' p�e
�‰f ıh.M jY�

/ ' p�v�v
�e�‰f ıh.M jY�

/

' .vDJ /�q�v
�e�‰f ıh.M jY�

/:

Therefore, to show our claim, it is enough to check that the canonical morphism

.vDJ /�M ! .vDJ /�.vDJ /
�.vDJ /�M

is invertible forM D q�v�e�‰f ıh.M jY�
/. But, this is obviously true for anyM 2 SHM.DıJ /.

Step 2. End of the proof. – We consider now the general case. If Z D ;, there is nothing to
be proven. Hence, we may assume that Z ¤ ; (which forces that J ¤ ;).

The closed subscheme Z is then of the form Z D DJ1 [ � � � [ DJn for some integer
n > 1 where ; ¤ Ji � J for 1 6 i 6 n. For n D 1, the result follows from the first
step and Lemma 6.4. Let us prove the result by induction on n. If n > 2, we may then write
Z D Z1 [Z2 where

Z1 D DJ1 [ � � � [DJn�1 and Z2 D DJn :

Let i1 W Z1 ,! Z, i2 W Z2 ,! Z be the obvious inclusions and denote by i W W ,! Z the
inclusion of the intersectionW D Z1\Z2. Using the Mayer-Vietoris distinguished triangle,
associated with the closed covering Z D Z1 [ Z2, we obtain a morphism of distinguished
triangles:

.‰f .M jX�
//jZ

(12)
//

��

.vZ;I 0/�.vZ;I 0/
�.‰f .M jX�

//jZ

��

.i1/�.i1/
�.‰f .M jX�

//jZ

˚

.i2/�.i2/
�.‰f .M jX�

//jZ

//

��

.vZ;I 0/�.vZ;I 0/
�.i1/�.i1/

�.‰f .M jX�
//jZ

˚

.vZ;I 0/�.vZ;I 0/
�.i2/�.i2/

�.‰f .M jX�
//jZ

��

i�i
�.‰f .M jX�

//jZ

C1

��

// .vZ;I 0/�.vZ;I 0/
�i�i

�.‰f .M jX�
//jZ

:

C1

��

Note that W is also a union of n � 1 subschemes of the form DJ 0 for some ; ¤ J 0 � J .
Therefore one sees that (12) is an isomorphism by induction on n using the following
remark.

R 6.6. – Let Z0 � Z be a closed subscheme and assume that the canonical
morphism

(16) .‰f .M jX�
//jZ0

! .vZ0;I 0/�.vZ0;I 0/
�.‰f .M jX�

//jZ0
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is an isomorphism in SHM.Z0/. Then the canonical morphism

(17) i�i
�.‰f .M jX�

//jZ
! .vZ;I 0/�.vZ;I 0/

�i�i
�.‰f .M jX�

//jZ

is also an isomorphism in SHM.Z/ with i W Z0 ,! Z is the obvious inclusion. This
follows immediately using the base-change theorem for projective morphisms (in fact closed
immersions) applied to the cartesian square

(18) .Z0/ıI 0

iı
I 0

��

vZ0;I 0
//

�

Z0

i

��

ZıI 0
vZ;I 0

// Z:

Now using [3, Proposition 3.3.39] that relates semi-stable R-schemes to standard semi-
stable R-schemes (as in Example 2.7), we obtain the following further reduction.

L 6.7. – To prove Theorem 6.1, we may assume that X is the standard semi-stable
R-scheme

StUt
RŒU;U�1�;a

D Spec
RŒU;U�1; T1; : : : ; Tn�

.T
a1
1 � � �T

an
n � Ut/

where a D .a1; : : : ; an/ 2 .N�/n. Moreover, in this case, it is enough to show that

(19) ‰f .M jX�
/jD1
! .vD1/�.vD1/

�‰f .M jX�
/jD1

is an isomorphism in SHM.D1/.

Proof. – The problem is local for the Zariski topology and we may replace X by the
R-schemeXŒT; T �1�. Using [3, Proposition 3.3.39], we can assume that there exists a smooth
morphism of R-schemes

h W X ! S D StUt
RŒU;U�1�;a

;

for some a D .a1; : : : ; an/ 2 .N�/n. Using the base-change theorem by a smooth morphism
and the second property of [3, Définition 3.1.1 (SPE2)], one sees easily that the morphism

‰f .M jX�
/jD1
! .vD1/�.vD1/

�‰f .M jX�
/jD1

identifies with the inverse image along h� of the corresponding morphism for the R-scheme
StUt
RŒU;U�1�;a

. This finishes the proof.

Our final reduction is the following.

L 6.8. – To prove Theorem 6.1 it is enough to show the case n D 2 of the property
stated in Lemma 6.7. More precisely, it suffices to show that (19) is an isomorphism for the
standard semi-stable R-scheme of length 2:

StUt
RŒU;U�1�;a1;a2

D Spec
RŒU;U�1; T1; T2�

.T
a1
1 T

a2
2 � Ut/

where a1; a2 2 N�.

Proof. – We need to prove the property stated in Lemma 6.7 assuming that it holds
for n D 2. We argue by induction on n > 3. We split the proof in two steps. (These steps
correspond to Step 2 and 3 of the proof of Proposition 5.8.)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1366 J. AYOUB, F. IVORRA AND J. SEBAG

Step 1. The case where a2 D � � � D an D d . – Using the same method as in the proof of [3,
Théorème 3.3.10], we will treat in this step the case of the standard semi-stable R-scheme

X D StUt
RŒU;U�1�;.a1;dn�1/

D Spec
RŒU;U�1; T1; : : : ; Tn�

.T
a1
1 T d2 � � �T

d
n � Ut/

:

(Above, dn�1 denotes the constant .n � 1/-tuple with value d 2 N�.) Recall that D1 is the
branch defined by the equation T1 D 0. We denote by f W X ! Spec.R/ the structural
morphism.

As n > 3, we may consider the standard semi-stable R-scheme

Z D StUt
RŒU;U�1;Tn�;.a1;dn�2/

D Spec
RŒU;U�1; T1; : : : ; Tn�

.T
a1
1 T d2 � � �T

d
n�1 � Ut/

and its admissible blow-upZ0 at the ideal .Tn�1; Tn/. TheR-schemeZ0 has an open covering
given by the following two open subschemes:

Spec. OZfSn�1g=.Tn�1Sn�1 � Tn// D Spec
RŒU;U�1; Sn�1; T1; : : : ; Tn�1�

.T
a1
1 T d2 � � �T

d
n�1 � Ut/

' Z

and

Spec. OZfSng=.TnSn � Tn�1// D Spec
RŒU;U�1; T1; : : : ; Tn�2; Sn; Tn�

.T
a1
1 T d2 � � �T

d
n�2S

d
n T

d
n � v/

' X:

In particular, one has an open immersion X ,! Z0.
Let E 01 � .Z0� /red be the irreducible component defined by the equation T1 D 0 and let

E 0ı1 be the complement in E 01 of the union of the remaining irreducible components. Denote
KZ0 the cone of the morphism

.‰g0.M jZ0�
//jE 0

1

! .vE 0
1
/�.vE 0

1
/�.‰g0.M jZ0�

//jE 0
1

(where g0 W Z0 ! Spec.R/ is the structural morphism). Also letKX be the similar cone where
g0, Z0 and E 01 are replaced by f , X and D1

We need to prove thatKX D 0. AsKX is isomorphic to the restriction ofKZ0 to the open
subset D1 � E 01, it is enough to show that KZ0 D 0.

Let C be the intersection of all branches in X , i.e., the closed subset of X� defined by the
ideal .T1; : : : ; Tn/. Denote also by C its image along the inclusion X ,! Z0. This is also a
closed subset ofZ0� . Moreover,Z0 nC can be covered by standard semi-stable R-schemes of
length at most n � 1. This shows that .KZ0/jE 0

1
nC
D 0, i.e., KZ 2 SHM.E 01/ is supported

on C .
Now, let h W Z0 ! Z be the blow-up morphism. We have a commutative diagram with

cartesian squares:

(20) E 0ı1

v
E0
1 //

hı
1

��

�

E 01
//

h1

��

�

Z0�
i //

h�

��

�

Z0

h

��

Eı1
vE1 // E1 // Z�

i // Z:

(Again, E1 is the irreducible component of Z� defined by the equation T1 D 0 and Eı1 is
complement in E1 of the union of the remaining irreducible components.) It is easy to see
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that h� induces an isomorphism C ' h� .C /. Therefore, as KZ0 is supported over C , it is
enough to show that .h1/�KZ0 D 0. Equivalently, we will show that

.h1/�.‰g0.M jZ0�
//jE 0

1

! .h1/�.vE 0
1
/�.vE 0

1
/�.‰g0.M jZ0�

//jE 0
1

is an isomorphism. Using the base-change theorem for projective morphisms [2, Corollaire
1.7.18] and the third property of [3, Définition 3.1.1 (SPE2)], one easily sees that the above
morphism identifies with

.‰g.M jZ�
//jE1

! .vE1/�.vE1/
�.‰g.M jZ�

//jE1
:

As Z is a standard semi-stable R-scheme with n � 1 branches, we may use induction to
conclude.

Step 2. The general case. – The argument below is based on a trick used in the proofs of
[3, Théorèmes 3.3.4 et 3.3.6]. It consists of blowing-up intersections of two components to
increase the multiplicities and reduce the general case to the one treated in Step 1. We will
argue by induction on jaj D a1 C � � � C an.

By the previous step, we may assume that .a2; : : : ; an/ is not constant. Let i; j 2 f2; : : : ; ng
such that ai ¤ aj . We may assume that ai > aj . Let b D .b1; : : : ; bn/ be the n-tuple given
by br D ar for r ¤ i and bi D ai � aj . Also, let a0 be the n-tuple given by a0r D ar
for r 62 fi; j g, a0i D ai � aj and a0j D ai .

Consider the standard semi-stable R-scheme

Z D StUt
RŒU;U�1�;b

D Spec

 
RŒU;U�1; T1; : : : ; Tn�

.T
b1
1 � � �T

bn
n � Ut/

!
:

As jbj < jaj, we may assume by induction that the result is known forZ. LetZ0 be the blow-
up of Z at the ideal .Ti ; Tj /. The R-scheme Z0 has an open covering given by the following
two open formal subschemes:

Spec. OZfSj g=.TiSj � Tj // ' StUt
RŒU;U�1�;a

and Spec. OZfSig=.TjSi � Ti // ' StUt
RŒU;U�1�;a0

:

We identify X with the first open subscheme and we denote by V the second one.

Let E 01, E 0ı1 and KZ0 be as in Step 1. Again, the restriction of KZ0 to D1 (viewed as an
open subscheme of E 01 thanks to the inclusion X ,! Z0) is isomorphic to KX . Therefore, it
is enough to show that KZ0 D 0.

LetCX � .X� /red (resp.CV � .V� /red) be the intersection of the n irreducible components
of .X� /red (resp. of .V� /red). Then the mapXtV ! Z0 identifiesC D CXtCV with a closed
subset ofZ0� . Moreover,ZnC can be covered by standard semi-stableR-schemes of length at
most n�1. Therefore, by induction on n, one gets that .KZ0/jE 0

1
nC
D 0, i.e.,KZ0 is supported

at C .

Now, the blow-up morphism h W Z0 ! Z induces isomorphisms CX ' h� .C / and
CV ' h� .C /. Therefore, it is enough to prove that .h1/�KZ0 D 0, with h1 W E 01 ! E1
the morphism induced by h. Finally, note that one also has a commutative diagram with
cartesian squares as in (20). Using this, one can conclude exactly as we did in the last part of
Step 1.
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6.3. The case of a standard semi-stable R-scheme of length 2

In this subsection we finish the proof of Theorem 6.1 by showing the property stated in
Lemma 6.8. We start with the following key observation.

L 6.9. – Let Y be a finite typeR-scheme with smooth generic fiber. Let v 2
p
t O.Y /

dividing a power of t . Let X D StvY;a1;a2 be the associated standard R-scheme of length 2.
Letf W X ! Spec.R/ and q1 W Dı1 ! Spec.k/ be the structural morphisms. Then the canonical
morphism

.f� /�‰f .M jX�
/! .q1/�.‰f .M jX�

/jDı
1

/

is an isomorphism in SHM.k/. (As usual, D1 is the branch given by the equation T1 D 0 and
Dı1 D D1 nD2 where D2 is the branch given by the equation T2 D 0.)

Proof. – The proof of this lemma makes use of Theorem 4.11.

As in Step 1 of the proof of Proposition 5.8, we may assume that a1 and a2 are coprime.
(This will be needed later in the proof.) Let X be the t -adic completion of X and U the
t -adic completion of X n D2. Then U is an open formal subscheme of X , and X� D X�
and U� D D

ı
1. Using Theorem 4.11, the morphism we are interested in can be written as

1� ıR.Hom.Mrig.X�/;Rig�.M///! 1� ıR.Hom.Mrig.U�/;Rig�.M///:

Therefore, it suffices to show that

Mrig.U�/!Mrig.X�/

is an isomorphism in RigSHM.K/.

Let Y be the t -adic completion of the R-scheme Y . Then X is the standard semi-stable
formal R-scheme StvY ;a1;a2

. Now, the rigid analytic varieties U� and X� were identified in
Step 1 of the proof of Proposition 5.8 with the following relative annulus and boundary of
relative ball:

CrY�.o; jvj
�d2=a1 ; jvjd1=a2/ and @B1Y�.o; jvj

�d2=a1/:

Thus, it is enough to show that the inclusion

@B1Y�.o; jvj
�d2=a1/ ,! CrY�.o; jvj

�d2=a1 ; jvjd1=a2/

induces an isomorphism in RigSHM.K/. This is done in [6, Proposition 1.3.4].

From Lemma 6.9, we deduce the following variant of what is needed.

C 6.10. – Let a1; a2 2 N� and v 2 R a uniformizing element (i.e., v 2 tR�).
Let X D StvR;a1;a2 and denote by f W X ! Spec.R/ the structural morphism. Then, the
morphism

.‰f .M jX�
//jD1

! .vD1/�.vD1/
�.‰f .M jX�

//jD1

is an isomorphism.

Proof. – We split the proof in two steps.
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Step 1. – For i 2 f1; 2g, denote by zDi W Di ,! X� the obvious inclusion. Consider the
following morphism of distinguished triangles in SHM.X� /:

N //

��

‰f .M jX�
/ // .zD1/�.zD1/

�‰f .M jX�
/

C1
//

��

N 0 // ‰f .M jX�
/ // .zD1/�.vD1/�.vD1/

�.zD1/
�‰f .M jX�

/
C1
//

where the objects N and N 0 are defined (up to isomorphism) as the homotopy fibers (aka.,
shifted cone) of the horizontal arrows in the middle.

It is enough to show thatN ! N 0 is an isomorphism. LetC D D1\D2. The third vertical
arrow in the previous diagram is an isomorphism after restriction to X� nC . Thus, it is also
the case forN ! N 0. In other words, Cone.N ! N 0/ is supported overC . AsC ' Spec.k/,
we see that it suffices to show that

.f� /�.N /! .f� /�.N
0/

is an isomorphism in SHM.k/. Now, by Lemma 6.9, we have .f� /�.N 0/ D 0. Hence, to finish
the proof, we are left to show that .f� /�.N / D 0. This will be done in the second step.

Step 2. – Using the localization triangle associated with the closed subset D1 � X� and its
complement Dı2, one gets that:

N ' .zD2/�.vD2/Š.‰f .M jX�
//jDı

2

where .�/jDı
2

D .zD2 ı vD2/
�. Therefore, one has:

.f� /�.N / ' .p2/�.vD2/Š.‰f .M jX�
//jDı

2

with p2 D f� ı zD2 W D2 ! Spec.k/ the structural morphism.

Now,‰f .M jX�
/jDı

2

can be computed explicitly using Proposition 3.4. To state the result,

we need some notation. Assume that v D ut , with u 2 R�. Note thatD2 D Spec.kŒT1�/ and
Dı2 D Spec.kŒT1; T

�1
1 �/. Consider the following finite étale cover of Dı2:

rı2 W E
ı
2 D Spec.kŒT1; T

�1
1 �ŒS�=.Sa2 � u0T

�a1
1 //! Dı2 D Spec.kŒT1; T

�1
1 �/

(where u0 is the residue class of u). With this notation, one has

‰f .M jX�
/jDı

2

' .rı2 /�.AjEı
2

/

with A D ‰Id..ea2/
�
�M/ where, for m 2 N�, em W Spec.kŒŒt ��/ ! Spec.kŒŒt ��/ is given

by t 7! tm.

Now, let E2 be the normal finite D2-scheme extending Eı2 . If e is the greatest common
divisor of a1 and a2, a1d1 C a2d2 D e a Bézout relation, and l D kŒw�=.we � u0/, then

E2 ' Spec.lŒT1; S
0�=.S 0a2=e � w�d1T1// ' A1l :
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(The first isomorphism above is induced by the substitution S 0 D S�d1T
d2
1 .) We have a

cartesian square

Eı2 ' Gm;l

vE2 //

rı
2

��

E2 ' A1
l

r2

��

Dı2
vD2 // D2:

Since rı2 , r2 are finite, we have .rı2 /Š D .r
ı
2 /� and .r2/Š D .r2/� by [2, Théorème 1.7.17]. This

gives canonical isomorphisms

.vD2/Š‰f .M jX�
/jDı

2

' .vD2/Š.r
ı
2 /�.AjEı

2

/ ' .r2/�.vE2/Š.AjEı
2

/:

Therefore, to finish the proof it remains to show that p�jŠq� ' 0 where j W Gm;l ,! A1
l
,

p W A1
l
! Spec.l/ and q W Gm;l ! Spec.l/ are the obvious morphisms. This is an easy

exercise. Indeed, by localization, one has a distinguished 2-triangle

p�jŠj
�p� ! p�p

�
! p�i�i

�p�
C1
�!

where i W Spec.l/ ! A1
l

is the zero section. Now, clearly, p�jŠj �p� ' p�jŠq
� and

p�i�i
�p� ' Id as p ı i D IdSpec.l/. Also, we have p�p� ' Id by homotopy invariance.

This finishes the proof.

We are now ready to prove the following statement, and thus complete the proof of
Theorem 6.1 (see Lemma 6.8).

P 6.11. – Let a1; a2 2 N� and let

X D StUt
RŒU;U�1�;a1;a2

D Spec
RŒU;U�1; T1; T2�

.T
a1
1 T

a2
2 � Ut/

:

Denote f W X ! Spec.R/ the structural morphism. Then, the morphism

(21) .‰f .M jX�
//jD1

! .vD1/�.vD1/
�.‰f .M jX�

//jD1

is an isomorphism.

Proof. – We start as in the proof of Corollary 6.10 from which we keep the notation. As
there, we must show that N ! N 0 is an isomorphism. The difficulty we need to overcome
here is caused by the fact that C D D1 \D2, on which L D Cone.N ! N 0/ is supported,
is now a 1-dimensional scheme (isomorphic to Spec.kŒU; U�1�/). Therefore, it is no longer
sufficient to check that .f� /�.L/ D 0.

However, it would suffice to check that .f� /�.L/ D 0 if we knew that L was supported on
a 0-dimensional closed subset of C . This is what we will prove in Step 1 below. In Step 2, we
complete the proof by checking that .f� /�.L/ D 0 using the same method as in the proof of
Corollary 6.10.

Before starting with Step 1, we note that we may assume that M is compact, i.e.,
M 2 SHM;ct.K/. Indeed, all the operations in (21) commute with infinite sums and are
triangulated. As SHM.K/ is a compactly generated triangulated category with infinite sums
(see [3, Théorème 4.5.67]), we may indeed assume that M is compact. The compactness
of M will be useful in Step 1.
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Step 1. – M is supported on a 0-dimensional subset of C . AsM is assumed to be compact,
it follows from [2, Scholie 2.2.34] and [3, Théorème 3.5.14] that L is a compact object
of SHM.X� /.

Let �C ' Spec.k.U // the generic point of C . We also denote by �C its inclusion in X� .
As L is compact and supported in C , [6, Corollaire 1.A.3] shows that L is supported on a
0-dimensional closed subset of C if and only if .�C /�.L/ D 0.

Now in order to prove that .�C /�.L/ D 0, we introduce some notation. Let Qk D k.U /,
QR D QkŒŒt �� and QK D QRŒt�1�. There is a morphism of R-scheme

s W Y D StUt
QR;a1;a2

! X D StUt
RŒU;U�1�;a1;a2

which is regular. Indeed, we have Y D X ˝kŒŒt��ŒU;U�1� k.U /ŒŒt �� and k.U /ŒŒt �� is a regular
kŒŒt ��ŒU; U�1�-algebra. Letg W Y ! Spec.R/ be the structural morphism. Using [6, Corollaire
1.A.4] and the definition of the nearby motivic sheaf functors, we deduce that the canonical
morphism

.s� /
�‰f .M jX�

/! ‰g.M jY�
/

is an isomorphism. Also, note that ‰g.M jY�
/ D ‰ Qg.M jY�

/ where Qg W Y ! Spec. QR/, i.e.,

the nearby motivic sheaf for Y can be computed equally using its structure of an R-scheme
or an QR-scheme.

The morphism s� W .Y� /red ! .X� /red is the pro-open immersion

Spec.k.U /ŒT1; T2�=.T1T2// ,! Spec.kŒU; U�1; T1; T2�=.T1T2//:

Let E1 � Y� be the irreducible component defined by the equation T1 D 0. We have
E1 D Spec.k.U /ŒT2�/ and the morphism E1 ! D1, induced by s� , is simply the pro-open
immersion Spec.k.U /ŒT2�/ ,! Spec.kŒU; U�1; T2�/.

The inverse image of (21) along the pro-open immersion E1 ,! D1 identifies with the
morphism

.‰g.M jY�
//jE1

! .vE1/�.vE1/
�.‰g.M jY�

//jE1
:

(Use [6, Corollaire 1.A.4].) The latter is an isomorphism by Corollary 6.10. Therefore, the
inverse image of N ! N 0 along the pro-open immersion s� W Y� ! X� is an isomorphism.
This shows that .s� /�.L/ D 0. Now, the inclusion of the point �C in X� factors through s� .
This gives that .�C /�.L/ D 0 as claimed.

Step 2. End of the proof. – Thanks to Step 1, it remains to show that .f� /�.L/ D 0. This is
equivalent to showing that

.f� /�.N /! .f� /�.N
0/

is an isomorphism in SHM.k/. Now, by Lemma 6.9, we have .f� /�.N 0/ D 0. Hence, to finish
the proof, we are left to show that .f� /�.N / D 0.

The rest of the proof is identical to Step 2 of the proof of Corollary 6.10. As there, we have:

.f� /�.N / ' .p2/�.vD2/Š.‰f .M jX�
//jDı

2

:

Here also, ‰f .M jX�
/jDı

2

can be computed explicitly using Proposition 3.4: Note that

D2 D Spec.kŒU; U�1; T1�/ and Dı2 D Spec.kŒU; U�1; T1; T
�1
1 �/:
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Consider the following finite étale cover of Dı2:

rı2 W E
ı
2 D Spec.kŒT1; T

�1
1 �ŒS�=.Sa2 � UT

�a1
1 //! Dı2 D Spec.kŒT1; T

�1
1 �/:

With this notation, we have

‰f .M jX�
/jDı

2

' .rı2 /�.AjEı
2

/

with A D ‰Id..ea2/
�
�M/ where, for m 2 N�, em W Spec.kŒŒt ��/ ! Spec.kŒŒt ��/ is given

by t 7! tm.

Now, let E2 be the normal finite D2-scheme extending Eı2 . If e is the greatest common
divisor of a1 and a2, a1d1 C a2d2 D e a Bézout relation, and P D Spec.kŒw�=.we � U//,
then

E2 ' Spec. OP ŒT1; S
0�=.S 0a2=e � w�d1T1// ' A1P :

(The first isomorphism above is induced by the substitution S 0 D S�d1T
d2
1 .) We have a

cartesian square

Eı2 ' Gm;P

vE2 //

rı
2

��

E2 ' A1P

r2

��

Dı2
vD2 // D2:

Since rı2 , r2 are finite, we have .rı2 /Š D .r
ı
2 /� and .r2/Š D .r2/� by [2, Théorème 1.7.17]. This

gives isomorphisms

.vD2/Š‰f .M jX�
/jDı

2

' .vD2/Š.r
ı
2 /�.AjEı

2

/ ' .r2/�.vE2/Š.AjEı
2

/:

We conclude using that p�jŠq� ' 0 for j W Gm;P ,! A1P , p W A1P ! P and q W Gm;P ! P

the obvious morphisms.

7. Nearby motivic sheaves and rigid motives of tubes

In this section, we prove the main result of this article (see Theorem 7.1) that extends
Theorem 4.11 to motives of tubes of locally closed subsets of the special fiber.

7.1. Statement of the main theorem

Let X be a finite type R-scheme and let f W X ! Spec.R/ be its structural morphism.
Assume that X� is smooth over K and consider the t -adic completion X of X .

The following statement is our main theorem.

T 7.1. – Let Z � X� be a locally closed subset and denote by z W Z ,! X� its
inclusion. Consider the tube �ZŒ ofZ in X�. LetM be an object of SHM.K/. Then, there exists
a canonical isomorphism in SHM.k/:

1� ıR.Hom.Mrig.�ZŒ/;Rig�.M/// ' .f� ı z/�.‰f .M jX�
/jZ
/:
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When X D Spec.R/, f D Id and Z D Spec.k/, the above theorem simply states that
1� ıR ıRig� is isomorphic to the nearby motive functor ‰Id, which we already know by [6,
Scholie 1.3.26(2)]. Thus, in some sense, Theorem 7.1 can be considered as a generalization
of [6, Scholie 1.3.26(2)].

Taking M to be the unit object of SHM.K/ in Theorem 7.1, one gets the following:

C 7.2. – With the notation of Theorem 7.1, there is a canonical isomorphism
in SHM.k/:

1� ıR.M_rig.�ZŒ// ' .f� ı z/�.‰f .1X�//jZ
:

7.2. The proof of Theorem 7.1

The proof consists in using Corollary 5.2 and Corollary 6.2 to deduce Theorem 7.1 from
its particular case obtained in Theorem 4.11. We split the proof in three steps.

Step 1. Reduction to the case whereZ is closed. – Let U � X be an open neighborhood ofZ
in which Z is closed. Let fU W U ! Spec.R/ be the structural morphism of U , U its t -adic
completion and zU W Z ,! U� the obvious inclusion. Clearly, the tube ofZ in X� is also the
tube of Z in U� (see [26, Proposition 2.2.2]). On the other hand, we have

.f� ı z/�.‰f .M jX�
//jZ
' ..fU /� ı zU /�.‰fU .M jU�

//jZ
:

Therefore, we may replace X by U and assume that Z is closed.

Step 2. Reduction to the case whereX is semi-stable andZ is a subdivisor. – Let hWX 0 ! X be
a projective morphism such that X 0 is a semi-stable R-scheme, h� is an isomorphism and
..h� /

�1.Z//red is a union of irreducible components of .X 0� /red. (Such a morphism exists by
Hironaka’s resolution of singularities.)

By [26, Corollary 2.2.7], we have �ZŒ D �h�1.Z/Œ as admissible open rigid subvarieties
of X� which we identifies with X 0

� . On the other hand, using the third property of [3, Défi-
nition 3.1.1 (SPE2)] and the base-change theorem for projective morphisms [2, Corollaire
1.7.18], we have canonical isomorphisms

.f� /�z�z
�‰f .M jX�

/ ' .f� /�z�z
�.h� /�‰f ıh.M jX 0�

/ ' .f� ı h� /�z
0
�z
0�‰f ıh.M jX 0�

/

where z0 W h�1.Z/ ,! X 0 is the obvious inclusion. Therefore, it is enough to show that there
is an isomorphism

1� ıR.Hom.Mrig.�h
�1.Z/Œ/;Rig�.M/// ' .f 0� ı z

0/�.‰f ıh.M jX 0�
/jh�1.Z/

/:

In other words, we may assume that the R-scheme X is semi-stable and that Z is a union of
irreducible components of .X� /red.
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Step 3. End of the proof. – Here, we assume that the R-scheme X is semi-stable and we
denote by .Di /i2I the irreducible components of .X� /red. We also assume thatZ D D.J / DS
j2J Dj for a subset J � I . Recall thatD.J /ı D D.J / n

S
i2InJ Di ; this is an open subset

of X� .
Now, by Corollary 5.2, we have a canonical isomorphism

1� ıR.Hom.Mrig.�D.J /Œ/;Rig�.M///
�
! 1� ıR.Hom.Mrig.�D.J /

ıŒ/;Rig�.M///:

On the other hand, by Corollary 6.2, we have canonical isomorphisms

.f� /�.zD.J//�.zD.J//
�‰f .M jX�

/
�
! .f� /�.zD.J//�.vD.J//�.vD.J//

�.zD.J//
�‰f .M jX�

/

' .f� /�.zD.J/ı/�.zD.J/ı/
�‰f .M jX�

/

where zD.J/ W D.J / ,! X� , zD.J/ı W D.J /ı ,! X� and vD.J/ W D.J /ı ,! D.J / are the
obvious inclusions. Therefore, it is enough to prove Theorem 7.1 for D.J /ı. As D.J /ı is an
open subset, we may apply Theorem 4.11 to the R-scheme X n

S
j2InJ Dj to get the result.

8. Applications and remarks

In this section, we use Theorem 7.1 and [24, Theorem 5.1] to establish a link between the
motivic Milnor fiber introduced by Denef-Loeser [16, Définition 4.2.1] and the rigid motive
of the analytic Milnor fiber introduced by Nicaise-Sebag [33].

8.1. Two definitions

LetX be a finite typeR-scheme and denote by f W X ! Spec.R/ its structural morphism.
Assume that X� is smooth.

R 8.1. – Although it is unnecessary, the reader may want to assume throughout
this section that the morphism f W X ! Spec.R/ is the base-change by Spec.R/ ! A1

k

of a morphism Qf W QX ! A1
k

with QX a smooth k-scheme of finite type; this assumption is
sometimes necessary to quote results from the existing literature, word for word.

For the reader who wants to keep the degree of generality that was adopted so far in this
article, we mention that the rationality of the motivic zeta function for finite typeR-schemes
with smooth generic fiber has been verified in [36] and [33, Corollary 7.7].

D 8.2. – Let x 2 X� .k/ be a rational point. Following Nicaise-Sebag [33], we
define the analytic Milnor fiber of f at x to be the tube �xŒ �X� of the closed point x. This
is a rigid analytic variety over K which is denoted by Fx . (3)

Given a base-scheme S , let K0.VarS / be the Grothendieck group of S -schemes. This
group is the quotient of the free abelian group on isomorphism classes of quasi-projective
S -schemes by the scissor relation ŒY � D ŒY nZ�CŒZ� (where Y is a quasi-projective S -scheme
and Z � Y is a closed subscheme). Fiber product over S endows K0.VarS / with a ring
structure. One sets

MS D K0.VarS /ŒL�1�

(3) In [33], the analytic Milnor fiber is considered as a Berkovich space. In this article, we prefer to consider it as a
rigid analytic variety in the sense of Tate.

4 e SÉRIE – TOME 50 – 2017 – No 6



MOTIVES OF RIGID ANALYTIC TUBES AND NEARBY MOTIVIC SHEAVES 1375

where L D ŒA1S �.
Going back to our setting, one has by Denef-Loeser [16] the motivic zeta function associ-

ated with the R-scheme X (or, more precisely, to the morphism Qf W QX ! A1
k

):

Zf .T / D
X
n>1

Z1nT
n
2 MX� ŒŒT ��;

with Z1n D L�nd Œf� 2 Ln.X/; f ı � D tn C O.tnC1/g� 2 MX� where Ln.X/ is the n-jets
space of X and d the dimension of X (that we may assume constant). For x 2 X� .k/, one
gets by applying the natural ring homomorphism x� W MX� ! Mk , ŒY � 7! ŒY �X� x�, the
local motivic zeta function at x denoted by Zf;x.T /.

By Denef-Loeser [16], one knows that Zf .T / is a rational function and that the limit

 f D �

�
lim
T!1

Zf .T /

�
exists in MX� .

D 8.3. – For x 2 X� .k/, the image of  f by x� W MX� ! Mk is called the
motivic Milnor fiber at x and is denoted by  f;x .

R 8.4. – Thanks to a motivic analog of the Thom-Sebastiani formula established
by Guibert, Loeser and Merle in [20], Lunts and Schnürer explain in [29] how the motivic
vanishing cycles of Denef-Loeser give rise to a motivic measure on K0.VarA1

k
/. In the last part

of loc. cit., they also compare their construction to another motivic measure of categorical
nature, based on the associated category of matrix factorizations. Since we strongly believe
that a Thom-Sebastiani formula exists in the world of motives, analogs of these measures
should exist at the level of the corresponding Grothendieck ring of motives. The comparison
of the categorical and non-archimedean points of vue should illuminate each other. We thank
the referee for having pointed out this reference to us.

8.2. Recollection from Ivorra-Sebag [24]

Here we recall the main results of [24] and explain how to obtain variants which are
more suitable for our purposes. Roughly speaking, we claim that everything in [24] still hold
when DAKet.�;Q/, the category of étale motivic sheaves with rational coefficients, is replaced
by SHM.�/. This is rendered possible primarily thanks to Theorem 6.1 showing that the
conclusion of [3, Théorème 3.3.44] holds for SHM.�/ even though the latter is not Q-linear
nor separated (cf. Remark 6.3).

First, note the following:

L 8.5 ([24], Lemma 2.1). – Let S be a base-scheme. Then, there exists a ring homo-
morphism

�S;c WMS ! K0.SHM;ct.S//;

which is uniquely determined by the formula

�S;c.ŒY �/ D ŒMS;c.Y /�

where Y is a quasi-projective S -scheme and MS;c.Y / is its motive with compact support defined
to be .pY /Š.pY /�1S with pY W Y ! S the structural morphism.
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Proof. – The proof given in [24] extends word for word to the case of SHM.�/. (4) Note
that .pY /Š.pY /�1S is a compact object of SHM.S/ by [3, Scholie 2.2.34 B].

T 8.6 ([24], Theorem 3.1). – LetX be a semi-stableR-scheme and recall the nota-
tion from §6.1. For ; ¤ J � I , let �J W QDıJ ! DıJ be the étale finite cover defined as in [24,
§3.1.3]. Then, one has the formula

Œ‰f .1X�/� D
X
;¤J�I

.�1/jJ j�1
h
MX� ;c.

QDıJ �k GjJ j�1
m;k

/
i

in K0.SHM;ct.X� //.

Proof. – The proof given [24, §4] extends with very few modifications: there are only two
points where new ingredients are needed. More precisely, in the proof of [24, Proposition 4.4],
the reference to [3, Théorème 3.3.44] is no longer sufficient for SHM.�/which is not Q-linear
nor separated. Happily, we now can use Theorem 6.1 to overcome this difficulty. Also, the
reference to [5, Théorème 10.6] needs to be changed: one can use Proposition 3.4 instead.

The rest of the proof, i.e., [24, Lemmas 4.1, 4.2 and 4.3], [24, Proposition 4.5] and [24, §4.3],
extend with no modification. Note also that the extension of the argument in [24, §4.3] (which
is based on Verdier duality and its compatibility with the nearby motivic sheaf functors) is
indeed possible because we are working over a field of characteristic zero (5).

Finally, note that due to the lack of orientability in SHM.�/, Thom equivalences are not
always trivial, i.e., if M is a locally free OS -module of rank r on a schemeS , then Th.M /.�/

can be different from the Tate twist .�/.r/Œ2r�. However, these two equivalences induce the
same action in the Grothendieck ring of motives.

Indeed, recall that by definition, the Tate twist .�/.r/Œ2r� is defined as the Thom equiv-
alence associated with the free OS -module OrS of rank r . (see [2, §1.5.3]). Let U1; : : : ; Un be
a covering of S by open subschemes such that M jUi

is isomorphic to OrUi . Denote by

uI W UI ,! S the open immersion of UI WD
T
i2I Ui . Using Mayer-Vietoris triangles and [3,

Proposition 1.5.2], one gets, for A 2 SHM;ct.S/, the equalities

ŒTh.M /.A/� D
X

;¤I�f1;:::;ng

.�1/jI j�1Œ.uI /�.uI /
�Th.M /.A/�

D

X
;¤I�f1;:::;ng

.�1/jI j�1Œ.uI /�Th.M jUI
/..uI /

�A/�

D

X
;¤I�f1;:::;ng

.�1/jI j�1Œ.uI /�Th. OrS jUI
/..uI /

�A/�

D

X
;¤I�f1;:::;ng

.�1/jI j�1Œ.uI /�.uI /
�Th. OrS /.A/� D ŒA.r/Œ2r��

in K0.SHM;ct.S//.

(4) We warn the reader that there is a misprint in the proof of [24, Lemma 2.1]: the image of L by �S;c is Œ1S .�1/�
instead of Œ1S .1/�.
(5) For Verdier duality and its compatibility with nearby cycles, see [3, Théorème 3.5.20]. Note that all results of [3,
§3.5.3] hold in characteristic zero.
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As in [24] one gets the following statement as a consequence of Theorem 8.6 and known
formulas for  f in a semi-stable situation.

C 8.7 ([24], Theorem 5.1). – Let X be a finite type R-scheme with smooth
generic fiber and denote by f W X ! Spec.R/ its structural morphism. We have the equality

Œ‰f .1X�/� D �X� ;c. f /

in K0.SHM;ct.X� //. Also, for every x 2 X� .k/, we have the equality

Œx�‰f .1X�/� D �k;c. f;x/

in K0.SHM;ct.k//.

8.3. An application

We are now ready to give our application. Let X be a finite type R-scheme with smooth
generic fiber and denote by f W X ! Spec.R/ its structural morphism. Also, fix a rational
point x 2 X� .k/.

T 8.8. – There is a canonical isomorphism in SHM.k/:

1� ıR.M_rig.Fx// ' x
�‰.1X�/:

Proof. – This is a particular case of Theorem 7.1.

C 8.9. – The following equality holds in K0.SHM;ct.k//:

(22) Œ1� ıR.M_rig.Fx//� D �k;c. f;x/:

Proof. – This result follows directly from Theorem 8.8 and Corollary 8.7.

R 8.10. – Corollary 8.9 shows that the motivic Milnor fiber of Denef-Loeser,
viewed as a class in K0.SHM;ct.k// via the morphism �k;c , depends only on the rigid motive
of the analytic Milnor fiber.

8.4. Some remarks

We gather here some remarks that a reader familiar with the literature on “motivic inte-
gration” might find useful.

Let X be a finite type R-scheme with smooth generic fiber and denote by f W X ! Spec.R/

its structural morphism.

R 8.11. – Theorem 7.1 and Corollary 8.7 give a positive answer to the question
asked in [33, page 163]. Indeed, by [33, Theorem 9.13], the motivic volumeS.X�I bKs/ is equal
to  f up to a twist by a power of L.
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R 8.12. – Assume that k contains all roots of unity. The trace formula of Denef-
Loeser [17, Theorem 1.1] links the Lefschetz numbers of the monodromy action on the
Milnor fiber with the Euler characteristic of the coefficients of the local zeta function. In
[33, Theorem 5.4] and [32, Theorem 6.4] this trace formula has been extended in different
directions. In particular, given a locally closed subset Z � X� , one has for all d 2 N�

(23) Tr.'d j Hét.�ZŒ;Q`// D �`;c.SZ.Xd //:

In this formula, ' is a topological generator of the Galois group O� of the extensionS
d2N� k..t

1=d // of K D k..t//, SZ.Xd / is the motivic Serre invariant with support in Z
associated with the t1=d -adic completion of Xd D X

N
kŒŒt�� kŒŒt

1=d ��, and �`;c W Mk ! Z is
the `-adic Euler characteristic with compact supports.

Using Corollary 7.2, one can formulate this trace formula in a more motivic way.
Indeed, the group O� acts by natural transformations on the functor 1� W QUSHM.k/ !
SHM.k/. In particular, one has an action of O� on 1� ı R.M_rig.�ZŒ//. Moreover, after
semi-simplification, the action of O� on the étale realization of 1� ı R.M_rig.�ZŒ// agrees

with its action on Hét.�ZŒ;Q`/. In particular, the left hand side of (23) can be written
as Tr.'d j 1� ıR.M_rig.�ZŒ///. (Note that the object 1� ıR.M_rig.�ZŒ// is strongly dualizable
thanks to Lemma 4.10 and Proposition 5.9. Hence, the trace of an endomorphism of this
object makes sense.) Therefore, we may reformulate the trace formula as follows:

Tr.'d j 1� ıR.M_rig.�ZŒ/// D �`;c.SZ.Xd //:

This shows that the monodromy zeta function of A’Campo only depends on the motive of
the analytic Milnor fiber.

R 8.13. – Keep the notation as in Remarks 8.11 and 8.12. As explained in §8.1, a
motivic zeta function Zf .T / D

P
n�1Z

1
nT

n 2MX� ŒŒT �� is associated with a flat morphism
f WX ! A1

k
of k-varieties such that X is smooth. As proved by Denef and Loeser in [16],

this zeta function gives rise to motivic nearby cycles at the level of the Grothendieck rings
of varieties by taking a limit as T goes to1 (assuming that the characteristic of k is zero).
By Corollary 8.7 or [24, Theorem 5.1], one knows that these motivic nearby cycles can be
compared to the motivic nearby sheaves of [3], and, in this way, can be directly linked to the
classical sheaves of nearby cycles.

It would be very interesting to provide a categorical interpretation of the motivic zeta
function and the limiting process, as T goes to1, in the world of motives. For instance, by
[33], one knows that the coefficients of the motivic zeta function can be realized as the motivic
integrals of well-chosen gauge forms on the generic fiber X� of the t -adic completion X

of X . (The relevant theory of motivic integration has been introduced in [28].) Also, the
n-th coefficient of Zf .T / coincides with the motivic Serre invariant S.Xn/ in the quotient
of MX� by the class of Gm;X� . On the other hand, in [18], Drinfeld conjectures the existence
of a “refined” theory of motivic integration which takes values in the derived category
Db

c .Spec.k/;Z`/ of constructible `-adic sheaves on Spec.k/. The basic idea in loc. cit. is to
consider an alternative version of integrals of top-degree differential forms on rigid analytic
spaces. All these considerations suggest that these various theories are connected and that it
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would be interesting to develop further relations between the motivic zeta function of Denef-
Loeser and the theory of motives (rigid or classical), as it has been already emphasized in [16,
Remarks, page 12].

R 8.14. – In [21, 22], Hrushovski and Kazhdan introduced Grothendieck
rings associated with the theory ACVF.0; 0/ of algebraically closed valued fields of equi-
characteristic zero. From loc. cit. and [23], one has the following ring homomorphisms:

K0.volVFK/
Q‚ı‡ı

R
// K O�0 .Vark/ŒŒA1k �

�1�
f // K0.Vark/ŒŒA1k �

�1� DMk :

The group K0.volVFK/ is the Grothendieck group of definable subsets of VFn over K with
volume form. The group K O�0 .Vark/ is the Grothendieck ring of k-schemes endowed with
a continuous action of the profinite group O� D limn2N� �n.k/ (k is assumed to have all
roots of unity). The morphism f is induced by the forgetful functor. For the definitions of
the morphisms Q‚, ‡ and

R
, we refer the reader to [23].

The analytic Milnor fiber Fx is a definable subset in ACVF.0; 0/ and hence admits a
class ŒFx � in the ring K0.volVFK/. With the previous notation, [23, Corollary 8.4.2] gives
the following formula:

(24)  f;x D f ı Q‚ ı ‡ ı
Z
.ŒFx �/ :

In the same spirit as Corollary 8.9, this formula shows that the motivic Milnor fiber of Denef-
Loeser depends only on the class of the analytic Milnor fiber in K0.volVFK/.

R 8.15. – We keep the notation as in the previous remark. Combining the
Formula (24) with the Formula (22) of Corollary 8.9 gives an equality in K0.SHM;ct.k//:

�k;c ı f ı Q‚ ı ‡ ı
Z
.ŒFx �/ D Œ1

�
ıR.M_rig.Fx//�:

It is therefore tempting to speculate the existence of a morphism of rings (6)

� W K0.volVFK/! K0.SHM;ct.k//

sending the class ŒV � 2 K0.volVFK/ of a definable smooth rigid analytic variety V to the
class ŒM_rig.V /� 2 K0.SHM;ct.k// of its associated cohomological rigid motive M_rig.V /.
Moreover, there should exist a morphism of rings

�
O�

k;c
W K O�0 .Vark/ŒŒA

1
k �
�1�! K0.QUSHM;ct.k//;

analogous to the morphism �k;c obtained in Lemma 8.5 (see also [24, Lemma 2.1]), which
makes the following diagram commutative

K0.volVFK/
Q�ı‡ı

R
//

�

��

K O�0 .Vark/ŒŒA1k �
�1�

f //

�
O�

k;c

��

K0.Vark/ŒŒA1k �
�1�

�k;c

��

K0.RigSHM;ct.K//
R

�
// K0.QUSHM;ct.k//

1� // K0.SHM;ct.k//:

(6) To the best of our knowledge, there is no result in that direction.
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If such a morphism � exists, our Formula (22) would then follows from the formula of
Hrushovski-Loeser [23, Corollary 8.4.2].
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