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TOROIDAL COMPACTIFICATIONS
OF INTEGRAL MODELS OF SHIMURA
VARIETIES OF HODGE TYPE

BY KEeerTHI MADAPUSI PERA

ABSTRACT. — We construct toroidal compactifications for integral models of Shimura varieties of
Hodge type. We also construct integral models of the minimal (Satake-Baily-Borel) compactification.
Our results essentially reduce the problem to understanding the integral models themselves. As such,
they cover all previously known cases of PEL type. At primes where the level is hyperspecial, we
show that our compactifications are canonical in a precise sense. We also provide a new proof of
Y. Morita’s conjecture on the everywhere good reduction of abelian varieties whose Mumford-Tate
group is anisotropic modulo center. Along the way, we demonstrate an interesting rationality property
of Hodge cycles on abelian varieties with respect to p-adic analytic uniformizations.

REsuME. — Nous construisons des compactifications toroidales pour les modéeles entiers de variétés
de Shimura de type de Hodge. Nous construisons également la compactification minimale (ou de
Satake-Baily-Borel) pour ces modéles entiers. Nos résultats réduisent le probléme a la compréhension
des modeles entiers eux-mémes. Donc ils recouvrent tous les cas déja connus de type PEL. Quand le
niveau est hyperspécial, nous montrons que nos compactifications sont canoniques dans un sens précis.
Nous fournissons une nouvelle preuve de la conjecture de Y. Morita sur la bonne réduction de variétés
abéliennes dont le groupe de Mumford-Tate est anisotrope modulo son centre. Sur le chemin, nous
démontrons une propriété de rationalité intéressante de cycles de Hodge sur les variétés abéliennes par
rapport aux uniformisations analytiques p-adiques.

Introduction

Shimura varieties of Hodge type. — This paper is concerned with constructing compacti-
fications for integral models of Shimura varieties of Hodge type. Essentially, these are the
Shimura varieties that can be viewed as parameter spaces for polarized abelian varieties
equipped with level structures and additional Hodge tensors.

More precisely, we will work with Shimura data (G, X) that admit embeddings into a
Siegel Shimura datum (GSp(V), ST(V)) attached to a symplectic space V over Q. Given
such an embedding and a small enough compact open K C G(Ar), we have the associated
Shimura variety Shg (G, X), which has the above moduli interpretation over C.
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394 K. MADAPUSI PERA

If we are in the more familiar PEL setting, the additional Hodge tensors parameterized
by Shg (G, X)(C) can be chosen to consist of endomorphisms and polarizations. One can
then define representable PEL type moduli problems over the reflex field £ = E(G, X), and
even over a suitable localization of its ring of integers, which recover the moduli interpreta-
tion for Shg (G, X) over C, and are thus canonical models for Shg (G, X) over E or even its
ring of integers; cf. [14] for the theory over E, and [34] for the integral theory (away from
primes where the level is not hyperspecial).

The theory of [14] applies more generally to show that Shimura varieties of Hodge type
admit canonical models over their reflex fields (D, and Milne has used Deligne’s results on
absolute Hodge cycles to give these canonical models a modular interpretation; cf. [47].

ExAMPLE. — An important class of Shimura data of Hodge type arises from quadratic
forms over Q of signature (n+, 2—). Suppose that we have a vector space U over Q equipped
with such a quadratic form. Then the group G = GSpin(U) acts naturally on the Clifford
algebra C attached to U. We can equip C with an appropriate symplectic form such that
we have an embedding GSpin(U) < GSp(C). Moreover, if we take X to be the space
of negative definite oriented 2-planes in Ug, then (G, X) is a Shimura datum, and we in
fact get an embedding (G, X) — (GSp(C), S*) of Shimura data. This is the Kuga-Satake
construction; cf. [15]. So (G, X) is of Hodge type, but is not of PEL type when n > 6.

The Shimura varieties attached to such data are important, for example, in the study of
the moduli of K3 surfaces (when n = 19). Moreover, the Shimura varieties attached to the
Spin group Shimura data play a significant role in S. Kudla’s program (cf. [35]) for relating
intersection numbers on Shimura varieties with Fourier coefficients of Eisenstein series. They
have also been used by the author to prove the Tate conjecture for K3 surfaces; cf. [42].

Integral models. — Unfortunately, since Hodge cycles are transcendentally defined, there
is no natural way to use them to obtain a modular interpretation over the ring of integers
of E. But an ad hoc construction of integral models can be given as follows: fix a prime p
and a place v|p of E. Suppose that we have an embedding (G, X) < (GSp, ST) into a Siegel
Shimura datum. For any level K+ C GSp(Ay), the Siegel Shimura variety Sh g+ (GSp, S*) has
a natural integral model & g+ over Z,y: this is Mumford’s construction.

We can now take the normalization of § g+ in Shg (G, X)@: This gives us a normal
integral model &' over O (), which is finite over &g .

When p > 2 and the level at p is hyperspecial, Kisin showed in [32] that &'k is a smooth
scheme OF (), and is canonical in a precise sense. ® In particular, it is independent of the
choice of symplectic embedding.

In general, however, one does not know if & g has any good properties. Moreover, it need
not be independent of the choice of symplectic embedding.

(1) We now know that every Shimura variety admits such a canonical model; cf. [46].

@ Here, and in the rest of the paper, given a normal, excellent Z,)-algebraic stack S, an open dense substack
j : U — S,anda finite map f : S’ — U, with S’ normal, the normalization of S in S’ will be the finite
S -algebraic stack, whose associated coherent sheaf of &g -algebras is the normalization of Os in j« f«Os:.

3 A related result due to Vasiu can be found in [60]. The result was also extended to the case p = 2 in [31].
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TOROIDAL COMPACTIFICATIONS 395

Compactifications. — In any case, since our interest lies mainly in the computation of the
zeta function of the Shimura variety, and hence its cohomology, we are led to consider the
question of compactifying §'gx. @

Another motivation to study compactifications of integral models is the role they play in
constructing regular proper models over Z for the orthogonal Shimura varieties mentioned
above. Such models are a crucial ingredient in carrying out Kudla’s program on the arith-
metic intersection theory of these spaces; cf. [43] for a description of these models over Z[1/2].

Over C, Mumford and his collaborators (cf. [3]) constructed good, toroidal compactifica-
tions in the general setting of arithmetic quotients of hermitian symmetric domains. In [24]
and [56] these compactifications are constructed for Shimura varieties in their natural adélic
setting. All these constructions depend on a choice of a certain cone decomposition X, called
a complete admissible rpcd (cf. §4 for the terminology). Given such a choice they produce a
compactification Sh,z( of the Shimura variety Shg := Shg (G, X) with good properties.

In the Siegel case, when the level K* is hyperspecial at p, Chai and Faltings [20] studied
degenerations of abelian varieties, and used this to construct smooth compactifications &’ IE(;
of &'t over Z(,) attached to smooth cone decompositions X’ for the symplectic group.
It was shown by K.-W. Lan [37] that this construction is compatible in characteristic 0
with the analytic construction of Mumford, ez. al. mentioned above. Lan’s proof uses a
careful comparison of the algebraic and analytic definitions of theta functions. We give an
independent proof of this fact here, using the compatibility of Mumford’s construction with
cohomological realizations; cf. (2.2.13).

For the general Hodge type case, there is a natural cone decomposition X attached
to (G, X) such that the normalization of Sh%E in Shg is canonically isomorphic to the
toroidal compactification ShIE(; cf. [24].

Now, assume that K is chosen to be hyperspecial at p (this can always be arranged using
Zarhin’s trick, and by replacing the Siegel Shimura data with one associated with a larger
symplectic space). If we take the normalization of & IE:; in Shg, we obtain a proper normal
algebraic space §'% over Ok (v)» whose generic fiber is Sh%, and which contains §'x as an
open sub-scheme.

The main result of this paper is:

THEOREM 1. — CS)IE( is a compactification of & g. More precisely, the complement of &g
in @S”IE( is a relative Cartier divisor over Og (y). Moreover, (SJIZ(: admits a stratification of
the expected shape, extending that of its generic fiber. After replacing ¥ by an appropriate
refinement if necessary, the singularities of & I% are no worse than those of & g : Every complete
local ring of QS»IX(: at a geometric point is isomorphic to a complete local ring of §'g. ©®

For the reader familiar with the general structure of toroidal compactifications, we
can unpack Theorem 1 a bit (cf. 4.1.5): & IE( is stratified by locally closed sub-schemes,
and each stratum in this stratification can be described as follows: There is a normal
integral model 'k, ,(Go.n, Do) over O (y) of a Shimura variety, a projective scheme

) We will see below that this question is largely independent of the properties of the integral model itself.
) The original version of this theorem imposed the further condition that the level subgroup at p satisfies
K, = K,}JF N G(Qp). We thank the referee for encouraging us to consider the situation at arbitrary level.
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396 K. MADAPUSI PERA

QS”KP (0p.Do) — QS”KW, (Go . Do) that is in many cases of interest a torsor under an
abelian group scheme over §'g,, , (Gon, Do y); a torus Ex(®) over Z; an Eg(®)-torsor
Ske(Qe. Do) — JSx,(Qs. Da); a rational polyhedral cone in R ® Bg(®) (where
B (®) is the co-character group of Ex (®)) determined by the cone decomposition ¥ with
corresponding twisted torus embedding

ke (00, Do) = Ske(Qe, Do, 0),

such that the stratum is isomorphic to the closed stratum Zx,(Q®, Do, 0) of the twisted
toric scheme §'g, (Qo, Do.0).

Moreover the formal completion of §'k, (Qe, De.0) along Zk,(Qe, Do, o) is canon-
ically isomorphic to that of & ,E( along the corresponding stratum.

In particular, over a fine enough étale neighborhood of any point in this stratum, the
open immersion g g <> & 12< is isomorphic to an étale neighborhood of §'x,, (Q. Do) —

O ke(Qa. Do, 0).

This allows us to deduce essentially all of Theorem 1. For the assertion about the singu-
larities of the integral models, observe that §'x,, (Qe. Do) is smooth over & Ko (Eq,, Ds),
and, after suitably refining ¥, sois §x, (Qe. Do, 0).

Therefore, the complete local ring at a geometric point of & IE( lying in the stratum corre-
sponding to (Qe, De, o) is isomorphic to a power series ring over a complete local ring
of &% ® (O 4. Ds). By the same token, one can also find a geometric point of §'x with the
same complete local ring.

From this, it is immediate that many étale local properties of &'k (and hence of
d ke (Qa. Do))—such as smoothness, reducedness, or being Cohen-Macaulay or a local
complete intersection—transfer over to 3k, (Qe. Do.0), and thence to & IE(

The unramified case. — To say more about the singularities requires stronger hypotheses. In
the case where &'k is an integral canonical model constructed by Kisin, & g o0 (Gaon Dop)is
also a smooth integral canonical model of its generic fiber. Moreover, one can show via a
simple argument that

S%s Qs Do) = Sky, (Gon Don)
is a torsor under an abelian group scheme, and is hence also smooth.

By choosing a smooth cone decomposition X, we then obtain (cf. 4.3):

THEOREM 2. — If K is hyperspecial at p, the integral canonical model §x over Og ()
admits smooth projective compactifications & IE( such that the boundary & IE(\ Sk Is anormal
crossings divisor. Moreover, these compactifications, as well as their stratifications, depend only
on the choice of cone decomposition 3, and not on the choice of symplectic embedding used to
construct them.

In the special case where (G, X) is of PEL type, the first assertion of the theorem is
originally due to K.-W. Lan [38].
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The ramified case. — The most striking and somewhat unexpected (at least, to the author)
point about Theorem 1 is that it is entirely agnostic to the nature of the special fiber of k.
Therefore, we can now construct compactifications at places where the group G is ramified.

As observed in the introduction to [20], in attempting to deal with such situations, one is
‘led to very hard new problems which require new methods...” Our method is to work locally,
using p-adic Hodge theory, and some notions from basic rigid analytic geometry. This is
explained in a bit more detail towards the end of this introduction.

The main benefit of the local method is that we never have to deal with problems
concerning the algebraizing and gluing of formal charts—processes that constitute some of
the trickier parts of [20, 38]. Indeed, we have an already constructed global space, and we
only have to show that it has the right properties.

In fact, this observation has been made independently by K.-W. Lan, who has proven
a version of Theorem 1 in the special case of PEL type Shimura varieties through more
direct means, also without any conditions on the level; cf. [39]. Even in this setting, the
group theoretic formulation of our results offers a different perspective, and the flexibility
it provides might be helpful in some applications.

In general, for any class of Shimura varieties of Hodge type, once one has a reasonable
theory of normal integral models, our results will immediately supply good compactifica-
tions. In particular, this paper subsumes the results of [38], [59] and [39].

We also note that the work of Kisin and Pappas shows that many Shimura varieties
of Hodge type with parahoric level have good, normal integral models [33], whose local
properties are governed by those of the local models of [54]. Our results will immediately
apply to give toroidal compactifications of these models, with stratifications that can be
described explicitly. With a bit more work, one can show that the Shimura varieties involved
in these stratifications are once again Kisin-Pappas integral models. We do not do this work
in this article, but hope to return to it in the future.

The minimal compactification. — The toroidal compactifications of Mumford, et. al. are
resolutions of the minimal or Baily-Borel-Satake compactification, which is important from
the automorphic perspective, since its L2 or intersection cohomology is intimately related
with the discrete automorphic spectrum of G; cf. [50]. Adopting the methods of [20, § V.2],
[38, 10, § 7.2], we can construct the integral model for the minimal compactification via the
Proj construction applied to a certain graded ring of automorphic forms on & ,E( This gives
us (cf. 5.2):

THEOREM 3. — The minimal compactification of Shg admits a projective, normal model
Sk over O () that is stratified by quotients by finite groups of integral models of Shimura
varieties of Hodge type. Moreover, the Hecke action of G(AJ’,’ ) on &'k extends naturally to an

actionon & ?in. Given a complete admissible rpcd X as in Theorem 1, there exists a unique map
ps: Sk — S® that extends the identity on g and is compatible with the stratifications
on domain and target.

When the level at p is hyperspecial, & '};in is canonically determined and is independent of
the choice of symplectic embedding.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



398 K. MADAPUSI PERA

A rationality property for Hodge cycles. — Implicit in the main theorem is a new rationality
property for Hodge cycles on abelian varieties with respect to p-adic uniformizations, closely
related to notions considered by André in [1]. To explain this in its simplest form, we will
put ourselves in the following situation: Let A be an abelian variety over a number field F,
whose reduction at a place v of F' is totally degenerate: that is, a torus with character group
X, = 78, where g = dim A. By a theorem of Raynaud [57], we can find a rigid analytic
uniformization over Fj:

11— X, i)Hﬂ(Xg,GfrﬁFv) — AR > 1

In particular, for any prime £, the £-adic Tate module V;(A4) acquires an extension structure
as a Gal(F,/F,)-module:

0— X; ® Qe(1) = Vy(A) — Hom(Xg,Q¢) — 0.

Let Uy € GL(V¢(A)) be the unipotent radical of the parabolic subgroup stabilizing this
extension structure. Its Lie algebra is now equipped with a natural integral structure:

Q¢(1) ® Hom(X,', X,) = Lie Uj.

Let G = MT(A) be the Mumford-Tate group of A; then Gg, has a natural action
on Vy(A) determined up to inner automorphisms. In particular, the image of the induced
representation Gg, — GL(V;(A)) is canonically determined. We can therefore consider the
intersection Lie Uy ¢ := Lie Uy N Lie Gg, within End(V(4)).

THEOREM 4. — The Z-module
Hom(X ), X,) N (Lie Gg,)(—1) C Hom(X,', Xg)
is independent of the choice of prime £. Denote it by Bg. Then, for any prime £, the natural map:
Qe(1) ® Bg — Lie Uy g

is an isomorphism.

Although we will extract it as an immediate consequence of the flatness of the boundary
divisor of the associated Shimura variety (cf. 4.2.12), we believe that the result warrants
emphasizing: The Mumford-Tate group G is a transcendental object defined using a complex
analytic uniformization for A. The theorem says that it also enjoys strong rationality proper-
ties with respect to the p-adic analytic uniformization. Of course, such behavior is predicted
by the Hodge conjecture, and it was our confidence in its validity that led to Theorem 1.

In fact, a significant input into the main Theorem 1 is the proof of a crystalline version of
Theorem 4; cf. 3.4.3.

Also, a priori knowledge of the result—for instance, in the PEL case, where the Hodge
cycles are generated by endomorphisms and polarizations, Theorem 4 follows directly from
the functoriality of p-adic uniformizations—would make the proof of Theorem 1 quite
straightforward. For more of an explanation of this, cf. (3.5.10).
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TOROIDAL COMPACTIFICATIONS 399

Morita’s conjecture. — Theorem 1 also has the following pleasant consequence:

THEOREM 5. — Suppose that A is an abelian variety defined over a number field F, and
suppose that its Mumford-Tate group is anisotropic modulo its center. Then A has potentially
good reduction.

The hypothesis on the Mumford-Tate group ensures that A does not ‘degenerate in charac-
teristic 0’. The theorem says that this is enough to keep it from degenerating in finite charac-
teristic as well. This result gives a different proof of Y. Morita’s conjecture (see [52]). Related
results can be found in [55, 61] and [36], with a proof of the full conjecture appearing in [40],
building on the previous results. Our proof is independent of all these efforts, and applies
uniformly, without any consideration of special cases.

The main difficulty. — We will now give a rough idea of the main difficulty that has to be
overcome in this paper. The most important situation is the one where K = K+ N G(Ar).In
this case, we can assume that K¥ has been chosen so that Shx <> Sh kit 1s a closed immersion.

Consider the case where we are working around a point of & IE; where the universal
abelian variety has totally degenerate multiplicative reduction: This corresponds to the situ-
ation where the point lies over a zero-dimensional stratum of the minimal compactification.
Here, the complete local ring of & IE;; is the completion of a toric scheme associated with
the torus over Z,) with cocharacter group B(Xg), the space of symmetric bilinear forms
on X, = Z%. One therefore expects the complete local ring of & Iz{: to then be identified with
that of a subtoric scheme corresponding to a cocharacter subgroup of B(X,z). Which one
should this be? It is of course the subgroup Bg guaranteed to us by Theorem 4! The theorem
tells us that it has the right dimension.

In the general case, the complete local ring of & ?{: is isomorphic to that of a smooth
twisted torus embedding

Sgt (Qot, Do) = S gt (Qot, Dgt,oh),
oF ot
where
eS”Kcibi (Qot, Dgt) — (g?ii (Oot. Dgt)
is a torsor under a certain torus whose cocharacter group is a subgroup of B(X).
Therefore, the complete local ring of & Iz{i at such a point is formally smooth over a
subring R%%®, which is a complete local ring of § X, (Ot Dg:).

Now, suppose that Rg is the complete local ring of &’ 1% at such a point, and let Rf;‘b C Rg be
the integral closure of the image of R%2°.

Theorem 4 gives us a torus Eg with cocharacter group Bg of the correct rank. The main
point now is to show that the E g (®¥)-torus torsor

cSnypi(Q@i, Dg:) — é%ii (O, Do)

admits a canonical reduction of structure group to an Eg-torsor over Spec Rg‘b.

In the PEL case such a reduction can be constructed directly, using the moduli description
of the spaces involved. This is essentially what is done in [39]. In our situation, we have to
show the existence of the reduction using more abstract and indirect arguments.
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400 K. MADAPUSI PERA

In more detail: Consider the induced Eg:(®%)/Eg-torsor 8¢ — Spec RsGab. Over the
fraction field Q(R¢), one has a canonical trivialization of £°. The reduction of structure
will follow once we know that this canonical trivialization is already defined over RSGab.

The proof of this takes up much of the technical material in § 3; cf. (3.5) and (3.6).

Once the reduction of structure is known in this particular way, it is quite easy to iden-
tify Rg with a complete local ring of a twisted torus embedding of the Eg-torsor we have
obtained. One consequence of this is that the intersection of & IE( with the boundary divisor
is flat over Zp). This is an important result, because it shows that points at the boundary
of & ,Z< in characteristic p admit lifts to characteristic O that are once again at the boundary
of the same Shimura variety. In the PEL case, this was shown by K.-W. Lan in [36] via a
direct argument using degeneration data. In the general Hodge type case, we do not see how
to show this without essentially understanding the full structure of the boundary.

Ingredients for the proof of Theorem 1. — As should be clear from the description above,
our proof is local. It makes essential use of the rigid analytic space attached to the formal

neighborhood of a closed point of & IE(: Specifically, we work with the rigid space @Lan
attached to the complete local ring of the corresponding point of & ?ﬁ

Now, Shg has an interpretation as the subspace of Shg: where certain Hodge cycles
propagate as parallel tensors on the de Rham cohomology of the universal family of abelian
varieties.

The essential point is that even though we do not know that these de Rham tensors
arise from algebraic cycles, we do have access to a shadow of their conjectural motivic
origins: namely, their good behavior with respect to the p-adic comparison isomorphisms.
It is precisely this that allows us to prove the requisite descent assertion for the trivialization
of EC.

To execute this plan, we need to develop the logarithmic Dieudonné theory of degener-
ating abelian varieties, and we also need some information about the p-adic comparison
isomorphisms for semi-stable abelian varieties, and their behavior in families. Section 1 is
devoted to the exposition of these results. A useful ingredient here is the interpretation of
the log crystalline realization of a semi-stable abelian variety as a space of ‘nearby unipotent
cycles’ in the terminology of [63]; cf. (1.4). This allows us to give a construction of the
semi-stable comparison isomorphism for abelian varieties using log Dieudonné theory: this
is a direct generalization of the construction for abelian varieties with good reduction given
in [19]; cf. (1.4.10). As a consequence, we also recover the following result due to Coleman
and lovita [12] (cf. (1.4.11)):

THEOREM 6. — Let K be a non-archimedean local field of characteristic 0, and let A be an
abelian variety over K with semi-abelian reduction. Then A has good reduction if and only if its
p-adic Tate module T, (A) is a crystalline representation of the absolute Galois group of K.

In §2, we summarize what we need of the existing theory of toroidal compactifications,
both the analytic theory in characteristic 0 and the arithmetic theory of Chai-Faltings over Z.
A good part of this amounts to setting up notation for what follows, and we expend some
effort to harmonize between the two theories in a resolutely adélic language.
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With this background in hand, the technical heart of the paper can be found in Subsec-
tions (3.2)—(3.7). The main result is Theorem (3.4.3), which gives the desired description of
the local structure at the boundary. This description is quite precise, and it seems likely that
it could be used to provide a complete theory of integral compactifications of Hodge type
without any reference to the characteristic 0 theory.

We do not pursue this line of reasoning in this article. Instead, in § 4, we use this local result
to reduce the proof of our main theorems to already known facts about compactifications in
characteristic 0. The reader interested only in the statements of results is encouraged to jump
directly to this section (though she should refer to the preceding sections for the notation
used), and then to its companion § 5, which deals with the minimal compactification,
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Conventions

1. All rings and monoids will be commutative, unless otherwise noted.

2. For any prime p, | - |, will denote the standard p-adic norm with |p|, = p~!, and v,
will be the p-adic valuation —log, | - [,.

3. For any prime p, we will write

7P = l_[ Zp CZ
{#p

for the pro-finite prime-to-p integers. We will also write
AP =Q®Z C Ay

for the prime-to-p finite adéles.

4. If L is a discrete valuation field, then &7 will denote its ring of integers and my C O,
its maximal ideal.

5. We will use the geometric notation for change of scalars. If f : R — S is a map of rings
and M is an R-module, then we will denote the induced S-module S @ g M by f*M.
If the map f is clear from context, then we will also write Mg for the same S-module.

6. If ¢ : R — R is an endomorphism of R, then a ¢-module over R is an R-module M
equipped with a map ¢*M — M of R-modules.
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7. Suppose that R is a ring and suppose that C is an R-linear tensor category that is a
faithful tensor sub-category of Modg, the category of R-modules. Suppose in addition
that C s closed under taking duals, symmetric and exterior powers in Modg. Then, for
any object D € Obj(C), we will denote by D® the direct sum of the tensor, symmetric
and exterior powers of D and its dual.

8. Many Shimura data and varieties, both pure and mixed, appear in this paper. We will
always use Sh to denote the canonical models of these varieties and & for their integral
models. In general, Roman characters will be used for spaces over Q, and calligraphic
characters will be used for their integral models.

1. Semi-stable abelian varieties

This section is meant to be used as a reference for Section 3. We review the theory of
degenerating abelian varieties due to Mumford and Chai-Faltings. Using ideas of Kato,
we employ this theory to study the corresponding degenerations of their cohomological
realizations, especially the de Rham and crystalline ones.

Another goal is to understand the behavior of the p-adic comparison isomorphisms in
families. Towards this, we give a construction for the semi-stable comparison isomorphism
for abelian varieties using logarithmic Dieudonné theory.

To avoid distracting from the main focus of the article, we only give the statements of the
relevant results here, and postpone the proofs to the appendix.

1.1. 1-motifs and their realizations

In this subsection, we will assume that the reader is familiar with the notion of a bi-
extension of a pair of group schemes; cf. [16, § 10.2], [23, § VII (2.1)] for details. For the theory
of 1-motifs, cf. [16, § 10] and [2].

1.1.1. — For any pair (H, G) of sheaves of groups over a scheme S, we will denote by 1gx¢
the trivial G,,-bi-extension of H x G.

A 1-motif Q over a scheme S isa tuple (B,Y, X, c,cV, 1), where:

— B is an abelian scheme over S, which we will denote Q2°.

— Y and X are étale sheaves of free abelian groups of finite rank over S, trivialized over

a finite étale cover of S. We will denote them as Q¢ and Q™"tC | respectively.

—c¢:Y - Bandc¢Y : X — BY are maps of sheaves of groups over S. We will denote
them by cg and ¢, respectively.

-7 :1lyxx 5 (¢ x ¢V)* Pp is a trivialization of G,,-bi-extensions of ¥ x X. We will
denote it by 7¢.
Here, Pp is the Poincaré G,,-bi-extension of B x BY.

Amap ¢ : Qi — QO of l-motifs is a tuple (p*°, ¢, ™ItC) for 2 = ab,ét,
¢?: 01 — 01 is a map of sheaves of groups over S and p™ItC . QmuItC _, gmultC
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The tuple satisfies: cg,¢® = ¢*cg,, g ™€ = ¢®Vef . and a certain compati-
bility between 7o, and 7o, [16, 10.2.12]. To explain this, observe that we have natural

isomorphisms of G,,-bi-extensions of QS x Qrznuh’cz
1 ~
(CQI % célwmu t,C)* eG/DQ%llb = (Cl x (pab,vcéz)* cG/DQ?b
= ab VoV = ét Voyk
— (¢p™co, x¢p,) j)ng — (c0,9% x¢g,) j)ng_
The compatibility condition is that these isomorphisms carry the trivialization
(1 x ™IEC)* 75 1o (¢° x 1)*1g,.

The dual QY of a 1-motif Q is the tuple ((Q*°)”, Q™IC Q% ¢V ¢ V), where ¢V is
the trivialization of the G,,-bi-extension (cé X cQ)*jD(Qab)v induced from t via the
symmetricity of the Poincaré bi-extension.

A polarization of a 1-motif Q isamap A : Q — O such that A?® : 0% — (Q)" s
a polarization of abelian schemes, such that A¢t : Q¢ — QmuItC ig injective, and such that
Amult,C — (Aét)v_

There is a canonical weight filtration Wo Q on any 1-motif Q with:

0, ifi < —2;
Wi = (0,0, 9™1€,0,0,1), ifi = —2;

(.0, Q™€ 0, ¢y, 1), ifi =—1;

0. ifi = 0.

1.1.2. — Write Q™! for the torus over S with character group Q™€ and let 02 be the
extension of 0 by Q™" classified by the map —cy; : Q™€ — (02)": This satisfies the

property that, for any section y € Q™WC | the G,,-extension induced by pushing Q2 along
the map y : Q™' — G,, corresponds to the point —cé(y) € (Qab)v.

Giving the trivialization 7 is now equivalent to giving a map Q¢ — Q2 that lifts cg.This
establishes an equivalence of categories between 1-motifs over S and two-term complexes of
the form [Y — H], where Y is an étale locally constant sheaf of finite free Z-modules over S
and H is an extension of an abelian scheme by a torus over S. ® For all this, cf. [16, § 10].

In particular, given a 1-motif Q and n € Z>; we can define its n-torsion Q[n]: this is the
flat group scheme H ! (cone(Q X 0)).

For any prime p, the system (Q[p"])nez., is a p-divisible group over §, which we will
denote by Q[p°°]; cf. [2, § 1.3].
The filtration W, Q induces a 3-step ascending weight filtration on Q[p°°]:

0= W_30[p™] C W_,0[p™] = 0™ [p™]
C W-1Q[p™] = Q¥*[p™®] C WoQ[p™] = Q[p™].

We have further identifications:

w b . w ¢
gy Q[p™] = 0™ [p™]: grg Q[p™] = 0 ® (Qp/Zp).
(®) For us, a torus is always split locally in the finite étale topology.
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There is a perfect pairing Q[p™] x QY [p*°] — upeo identifying QV[p°°] with the Cartier
dual of Q[p®°] defined precisely as in [16, 10.2.5]. The pairing is compatible with weight
filtrations: Here, we equip ppoc with the ascending weight filtration W, upoo with W_p ppoe =
Hpoo and W_sppoo = 0.

1.1.3. — We can also attach to Q its de Rham realization H (IIR(Q): This will be a vector
bundle over S of rank 2dim Q®° + rank Q¢ + rank Q™! equipped with two filtrations,
the descending Hodge filtration F*H )z (Q) and the ascending weight filtration We H cllR(Q).

It is defined using universal vector extensions; cf. [16, § 10.2] or [2, § 2.4]. Here is what we
will need for now: There is a canonical 2-term complex [Q¢' — E o] that is an extension
of [0% — Q%] by the vector group attached to the locally free sheaf Lie(Q%2). This is
the universal such vector extension, in the sense that given any extension of [Q¢' — E]
by a vector group attached to a locally free coherent sheaf H over S, there exists a unique
map of coherent sheaves f : Lie(Q%*") — H such that [Q®* — E] is the push-forward
of [0% — Eg] along f.

We set HIR(Q) = Lie(Q), and Hlx(Q0) = HIR(Q)'. We write F1H}, (Q) for the
annihilator of Lie(Q%®) ¢ H' ‘fR(Q): This is a direct summand, and it determines a two-step
descending filtration F*H 5 (Q) with FOH ! (Q) = H}x(Q) and F2Hz (Q) = 0.

Again, the weight filtration on Q induces an ascending 3-step weight filtration on H j (Q):

0 C WoH g (Q) = Hir(Q/WoQ) C WiH iz (Q) = Hir(Q/W-10) C Hir(Q).

Write 0s(—1) for the trivial vector bundle &g equipped with the descending Hodge
filtration F*Og(—1) satisfying F10s(—1) = Os(—1)and F?0s(—1) = 0, and the ascending
weight filtration W, 05 (—1) satisfying W, 0s(—1) = Os(—1) and W1 Os(—1) = 0. Then there
is a canonical perfect pairing of vector bundles respecting both Hodge and weight filtrations:
Hir(Q) x Hig(QY) - Os(-1).

H (llR(Q) has additional structure. Suppose that S is a separated scheme over a base Sj.
Let S be the first-order infinitesimal neighborhood of the diagonal embedding of S in § x g,
S It is equipped with two projections py, p» : S — S. There is a canonical isomorphism of
complexes of S-group schemes [2, 3.3.2]:

PiIO% — Eg] = p3[0% — Eql.
Applying the Lie algebra functor now gives us a canonical isomorphism pj H, CIIR(Q) %
piH iz (0Q). As usual, the map s = p}s — n(p}s) now defines an integrable connection:
Vsiso : Hir(Q) = Hig(0) ®os Q-

1.1.4. — Finally, in the case where a prime p is locally nilpotent in &5, we can functorially
attach a (contra-variant) Dieudonné crystal D(Q) to Q. This is simply the Dieudonné crystal
attached to the p-divisible group Q[p®°] by the theory of [4, §4]; cf. also [2]. As such, it is
actually a tuple (D(Q), ¢n(g). V(o). F*D(Q)(S)), where D(Q) is a crystal of locally free
coherent sheaves over the crystalline site (S/Zp)cris. To describe the remaining data, we first
need to note that the absolute Frobenius Frggr, on S ® I, canonically induces a pull-back
functor Fr* on crystals over (S/Zp)cris. Now, ¢p(g) and V() are maps:

¢() : Fr*D(Q) — D(Q) ; Vi(o) : D(Q) — Fr*D(Q)
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such that ¥n(Q) © V]D)(Q) =p- I]D(Q) and V]D)(Q) oYp) = P - L= D(Q)-
Write D(Q)(S) for the vector bundle over S obtained by restricting D(Q) to the Zariski
site of S: The crystalline nature of D(Q) equips this with an integrable connection:

D(Q)(S) — D(Q)(S) ® Qg -
There is now a canonical parallel isomorphism of vector bundles with integrable connections
D(O)(S) = ﬂ}iR(Q) [2, 4.3.1]. Via this isomorphism, the Hodge filtration on ﬂ}lR(Q)
induces a filtration F*ID(Q)(S) on D(Q)(S). It satisfies:
(1.1.4.1)
Fr*(F'D(Q)(S) ® Fp) = ker(¢n(g) ® 1 : Fr*D(Q)(S) ® F, — D(Q)(S) ® Fp).

As above, D(Q) is equipped with an ascending 3-step weight filtration W,D(Q) by sub-
Dieudonné crystals:

0=W.D(Q) C WoD(Q) = D(Q/WoQ) C MID(Q) = D(Q/W-10) C W>2D(Q) = D(Q).

We will write 1 for the trivial crystal over S; this is naturally a Dieudonné F-crystal when
equipped with ¢; = 1, and Vyy = p, with Hodge filtration F°1(S) = 1(S), F'1(S) = 0,
and weight filtration Wyl = 1, W_11 = 0. The Tate twist 1(—1) is the Dieudonné F-crystal
whose underlying crystal is still the trivial crystal, but ¢y—1) = p, Vi) = 1; the Hodge
filtration is given by F11(—=1)(S) = 1(=1)(S) and F21(—1)(S) = 0, and the weight filtration
by W,1(1) = 1(—1), W1(-1) = 0.

Cartier duality induces a canonical perfect pairing D(Q) x D(QY) — 1(—1) that is
compatible with both Hodge and weight filtrations; cf. [2, §3.4] and [4, § 5.3].

1.2. Degenerating abelian varieties

In this subsection, we will fix a complete local normal Noetherian ring R, and an effective
Cartier divisor D C S := Spec R with complement j : U < S.

1.2.1. — Given an irreducible effective divisor D’ C S and a line bundle Z over S, the order
of vanishing vp(a) along D’ of any section « € HO(U, Z) is well-defined: we choose a
trivialization ¢ : Eﬁ|V = Oy in an open sub-scheme V' C S containing the generic point
of D', and set vp/(a) = vp/(t(c)), where vps is the discrete valuation attached to D’.

With this prelude, let DDy, (S, U) be the category of polarized 1-motifs (Qy, Ay) over U
such that:

— The polarized abelian scheme (Q‘(‘}’,)L*[‘}’) extends (uniquely) to a polarized abelian
scheme (Q?°, A2%) over S.

— The maps cg,, and ¢y = extend to maps co : Q% — Q®and ¢f : Q™1C —
0V Here, we need the fact that the locally constant sheaves Q‘;;} and Q?}“lt’c extend
canonically to sheaves Q¢t and Q™":C over S, as do the maps between them.

— For any section y of Q¢, consider the section

(1, A% (y)) € HO(U. (c(y) x ¢V (A% (9)))* Pgav ).

We require that, for any irreducible divisor D’ with support in D, we have:

v (T (3, A%())) = 0.
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Let DD(S, U) be the full sub-category of the category of 1-motifs over U consisting of
those 1-motifs Q¢ that admit a polarization Ay such that (Qy, Ay) belongs to DDpoi(S, U).

1.2.2. — Let DEG(S, U) be the category of abelian schemes A over U such that A extends
(uniquely) to a smooth group scheme G over S with semi-abelian fibers. Then a construction
of Mumford and Chai-Faltings (cf. [20, Ch. III],[38, 4.4.16,4.5.5]) gives a canonical equiva-
lence of categories:
Ms.v) : DEG(S. U) = DD(S. U).

When R = Ok is the ring of integers of a p-adic local field, and D = Speck is its special
point, the result is due to Raynaud [57].

Fix A in DEG(S,U), and let Qy = Ms,v)(A4). We will need the following facts about
the relationship between 4 and Qy:

— There is a canonical duality isomorphism:

Ms,0)(4Y) = Qy.
This is shown in [20, Ch. I11,§ 6, pp. 73].

— For any n € Zs, there is a canonical isomorphism [20, III.7.3] of finite flat group
schemes over U, compatible with polarization pairings:

(1.2.2.1) Aln] = 0ulnl.
— There is a canonical isomorphism of filtered vector bundles over U with integrable
connection:
(1.2.2.2) Hg(4) = Hix(Qu).

It is compatible with polarization pairings. This amounts to seeing that the universal
vector extension of A can be constructed using that of Q¢ via Mumford’s construction.
This can be deduced from [20, Ch. II1,§ 9], especially the proof of Theorem 9.4.

1.3. Log F-crystals

Let (S,U) be as in (1.2). Given A in DEG(S, U), we will now use the equivalence of
categories from (1.2.2) to define a logarithmic crystalline realization ID(A) over S.

1.3.1. — We assume that the reader is conversant with the language of log schemes; that is,
of pairs (Z, M), where Z is a scheme and Mz is an étale sheaf of commutative monoids
over Z equipped with a map of monoids « : Mz — Oz such that a_l(ﬁé) maps
isomorphically onto €. We will assume that the stalks of Mz /&7 at all geometric points
of Z are cancellative, sharp and saturated. Here, a monoid M is cancellative if the map
M — M#®P to its group envelope is injective; it is sharp if it contains no non-trivial invertible
elements; and it is saturated if there is no x € M &P\ M such that x” € M, for somen € Z~;.

Our primary example will be the log scheme attached to the pair (S, U) as above with
Z =8,Mz = j«0Op N Oz and a : Mz — 07z the natural inclusion. It is easy to see that
the stalks of Mz /&7 are cancellative and sharp; one needs the normality of S to see that
the stalks are also saturated.

We will usually drop the monoid Mz from our notation and denote the log scheme by the
single letter Z.
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1.3.2. — Suppose that Z is a scheme over Z,. Recall from [28, § 6] the notion of a crystal
of vector bundles (or log crystal) over the logarithmic crystalline site of Z (with respect to
the canonical divided powers on pZ,). For our purposes it suffices to note that giving such
a crystal M is equivalent to the following data:

— Given a log scheme V' — Z in which p is nilpotent, and an exact nilpotent thick-
ening V — V of log schemes ? equipped with divided powers, a finite, locally free
O7-module M((V < V)).

— Given another log scheme V' — Z in which p is nilpotent, an exact nilpotent thick-
ening V' < v’ equipped with divided powers, and a map f : V>V carrying V'
into V, an isomorphism of &3, -modules:

M(f) : f*M((V = V)) S M((V' < V).

Furthermore, if g : (V”, V") — (V' V') is another such map, we have: g*M(f) o
M(g) = M(f o g).

1.3.3. — Just as in the classical crystalline case, the absolute Frobenius Frzgr, ® induces
an endofunctor Fr* on the category of log crystals. A log Dieudonné crystal over Z is a
tuple (M, ¢u, Vi, F*M(Z)) where M is a log crystal over Z, and ¢y : Fr*M — M,
Vu : M — Fr* M are morphisms of log crystals satisfying:

oM Vv = ply s Vmom = plpe e

To describe the final piece of data, let Z be the completion of Z along Z ® F,. Then
we obtain a finite, locally free module M(Z ) over the formal scheme Z attached to the
system (M(Z ® Z/ p"Z)),. Now, F*M(Z) is a 2-step descending Hodge filtration by direct
summands:

0= F>M(Z) C F'M(Z) c F'M(Z) = M(Z).
It satisfies:

(1.3.3.1) Fr*(F'M(Z) ® F,) = ker(pu ® 1 : Fr* MI(Z ® F,)) — M(Z ® F,)).

Completely analogously to the classical case, we can define the Cartier dual for any log
Dieudonné crystal M: Its underlying log crystal is just the dual MY and the additional
structure is given by gyv = Vy;, Vv = ¢y, and FIMY(Z)) = ann(F'M(Z)).

Any F-crystal over the scheme underlying Z can be naturally viewed as a log F-crystal
over Z. If the F-crystal has the structure of a Dieudonné crystal, then the associated log
F-crystal will have the structure of a log Dieudonné crystal. In particular, we always have
the log Dieudonné crystals 1 and 1(—1).

There is then a natural perfect pairing on Ml x MY with values in 1(—1).

(™ This means that the map M > /ﬁ‘;< — My /0y is an isomorphism.
® For log schemes, the absolute Frobenius induces the multiplication-by-p map on M z.
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1.3.4. — Let LDieu(Z) be the category of log Dieudonné crystals over Z, and let LDieuy(Z) be
the category of pairs (M, W,M) where M is a log Dieudonné crystal, and WeM is an ascending
3-step filtration of M by log Dieudonné sub-crystals:

0=W_McC WM cCc WiM C W,M = M.

The dual (M, W,M)" will be the pair (MY, WeM"), where M is the Cartier dual of M and
W;MY C MY is the annihilator of W;_; M.

If S'°¢ is the log scheme attached to a pair (S, U) as in (1.2), we will write LDieu(S, U)
and LDieuy,(S, U) for the associated categories. For any log crystal M over S'°¢, M($'°8) is
a finite free R-module, and we will denote it simply by M(S).

ProrosITION 1.3.5. — There is a natural functor:

D : DEG(S,U) — LDieuy.(S,U)
such that, for any A in DEG(S,U):

1. We have canonical isomorphisms in LDieu(S, U):

WoD(A) = Hom(Q%, 1); WiD(4) = D(Q*®); gr¥ D(4) = 1(—1) ® Q™€

2. There is a canonical duality isomorphism in LDieuy (S, U): D(AY) = D(A)".
3. There is a natural horizontal isomorphism of Oy-modules ﬂclm 4) — D(A)(S)|U
respecting both Hodge and weight filtrations.

Using (1.2.2), we see that it is enough to construct a functor
D : DD(S,U) — LDieuy(S,U)

such that, for any Qpy on the left-hand side, the assertions about duality and the weight
filtration hold, and such that there is a natural horizontal isomorphism

Hix(Qu) = D(Qu)(S)|,
respecting Hodge and weight filtrations. We will do this in (A.1).

1.4. Unipotent nearby cycles

This subsection is mostly a review of some material from [63, § 3]. We will develop the
language to construct the key comparison isomorphism (1.4.10).

1.4.1. — Letk = F, be an algebraic closure of F,, and set W = W (k) and Ko = W[p~!'].
Write ¢ : W — W for the canonical lift of the p-power Frobenius on k. Consider a
pair (S,U) as in (1.2) with S = Spec R, so that the divisor D = S\U C S is an effective
Cartier divisor. We will impose some conditions on this pair:
— R is a formally log smooth, topologically finitely generated W -algebra with residue
field k. Explicitly, there exists j € Zx¢, and a finitely generated, cancellative, saturated
monoid P with P* = {1} such that, as W-algebras:

RS W, ....;;1@8w W[ Pl

Here, W1|t1 ..., tx]|] is the power series ring over W in r variables, and W{|P|] is the
completion of the monoid ring W[P] along the ideal generated by P\{1}.

4¢ SERIE - TOME 52 —2019 — N° 2



TOROIDAL COMPACTIFICATIONS 409

— The divisor D C S is the vanishing locus of the elements of P\{1}.

Let S'°2 be the log scheme attached to (S,U) and fix a lift ¢ : S°2 — §'°¢ of the
absolute Frobenius on S'°¢ ® F,,. Concretely, this means ¢ is a Frobenius lift on S satisfying
an additional condition: There exists an isomorphism R = Willt1,....t [J@W][| P|] as above
such that, for allm € P, we have ¢(m) = m?.

Let Q}e’l/olf, be the module of continuous logarithmic differentials on R with poles along
the divisor D. Let a € R be an equation defining D. We have an exact sequence:

(1.4.1.1) Qryw = Qpfy = W ®z (Rla™']*/R*) -0,

where, under the map on the right, for any r € R[a~!]%, dlog(r) is carried to the image
[r] € Rla='1X/R* of r.

1.4.2. — Let S be the rigid analytic space attached to the formal scheme § = SpfR.©®
Let 0" be the sheaf of analytic functions on S". A log isocrystal over S*" is a locally free
coherent 5"-module M equipped with an integrable logarithmic connection:

N

Vi M — M@ Qg

A log F-isocrystal over S®" is a logisocrystal (M, V)s) equipped with a horizontal isomor-
phism @p @ @*M = M. Write LFI(S, U) for the category of such triples: it is naturally a
Qp-linear tensor category. The unit object 1 is simply the structure sheaf Osan equipped with
the obvious identification ¢* @gan = Ogan and the trivial connection.

Set
an,log ﬁgn[gr ‘re R[a_l]x]
S Uy — by — L, forall r, s € Rla™1]%:
£y, —log(u) : forallu € R
If we choose an isomorphism R = Wllti,....t [J@W]|P|] as above, then we obtain an

isomorphism of Og"-algebras:

(1.4.2.1) 0% @7 Sym(P*P) = ﬁ§n,10g;
1@me—{,,.

Here, Sym(P#P) is the symmetric algebra for the group envelope PP of P.

ﬁgn’log can naturally be equipped with the structure of an ind-object in LFI(S,U):

The connection is the unique ﬁ;n’log-derivation that satisfies V(£,,) = 1 ® dlog(m), and
the ¢-module structure is the algebra homomorphism induced by the map ¢,, — pl,.
Let D; ﬁgn’bg C O%™'°8 be the image of 3" ® Sym=' P under the isomorphism (1.4.2.1);
then D; ﬁgn’log is finite free over 03" and is stable under both V and ¢. We clearly have:
ﬁ:«;‘n,log — Ui Di ﬁ§n,log.

) We will be using the analytification functor of Berthelot, exposed in detail in [26, § 7].
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1.4.3. — Given a tuple (M, Vas, ¢ar) in LFI(S, U), we can equip M2™108 .= ﬁgn’k’g ®pm M
with the tensor product structure of an ind-object in LFI(S, U). In particular, it is equipped
with the connection V=V ® 1+ 1Q V. Set:

\Ijun(M) — (Man,log)v=0.

We have the following facts about this object [63, 3.7]:

— W.n(M)isa finite dimensional Kg-vector space, and the p-module structure on M 2™10g
equips it with a o-module structure ¢y, : 6* Wy, (M) — Wy (M).
— The map

Vel

ﬁgn,log ®ﬁf‘9“ M Man,log ®R le/ov% N Man,log ®7 (R[a—l]X/RX)

restricts toamap N : W, (M) — Wy (M) ® (Rla™']*/R>) satisfying

Ngun = p(¢un ® )N,
— The natural map
ﬁgn,log Ry Wun(M) — Mo
is an isomorphism of ind-objects in LFI(S, U). Here, the ¢-module structure on the

left is the diagonal one, and the restriction of the connection to Wy, (M) is trivial.

1.4.4. — Here is one way to formulate the above results. Set A := A(S,U) = R[a"']*/R*:
This s a free abelian group of finite rank. Let LFI(k, A) be the category of tuples (M, ¢o, No),
where M, is a finite dimensional Ky-vector space, ¢g : 0* My — My is a o-module structure,
and Ny : My — My ® A is a map satisfying Nopo = p(po ® 1)Np.

This category has a natural rigid tensor structure: The associated dual object to a tuple as
above is given by (M{’. () ™", —Ny'). Given another tuple (M. ¢;. N§), we have:
(Mo, 9o, No) ® (M{, vy, Ng) = (Mo ®k, M, 00 ® 95, No ® 1 +1 & N).
The unit object is the tuple 1 = (Ko, 0* Ko = Ko, 0).

Now we can summarize the discussion above as follows: The functor M — W, (M) is an
equivalence of Q,-linear tensor categories between LFI(S, U) and LFI(k, A).

The functor has a natural inverse: Let
Ntriv . ﬁ;‘n,log s ﬁgn,log QA

be the residue of the connection on ﬁgm’]og (1.4.1.1). Then, given (Mg, @9, No) in LFI(k, A),
the ind-object @3™'°® @k, My is equipped with the operator

N=Nuiv®1+1Q Ny : ﬁgn,log ®K0 My — (ﬁgn,log ®K() Mo) X7 A.

It can now be checked that (ﬁf;n’log QKo Mo) V=05 stable under both @ and V and is naturally
an object in LFI(S, U).

The inverse to Wy, is now given by M, +— (ﬁ;n’log Rk, MO)N=0
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1.4.5. — Suppose now that we have A in DEG(S, U). By (1.3.5), we can attach to it the
log F-crystal D(A) over S'°2. The O§"-module M*"(A) = OF" ®p5 D(A)(S) is naturally
equipped with the structure of an object in LFI(S, U). It is also equipped with Hodge and
weight filtrations: F*M?"(A) and W, M?*"(A). Its restriction to the complement U?" C §2"
of D" is, as a filtered vector bundle with integrable connection, canonically isomorphic to
the analytification of H 1 (A).

We set:
My(A) = Wy (M2 (A)) € LFI(k, A).

This will be the module of unipotent nearby cycles attached to A.

There is a canonical isomorphism of ind-objects in LFI(S, U):
(1.4.5.1) O @, Mo(A4) — M™E(A) == 05" @ pun MO(A).

1.4.6. — Fix an algebraic closure K of K. Let K /Ko be a finite extension within K. Fix
a uniformizer ¥ € K and let log, : K* — K be the branch of the p-adic logarithm
such that log, (7) = 0. Let E(u) € W]u] be the monic Eisenstein polynomial satisfying
E(x) = 0 € Ok. Then we can view Ok as the quotient W[u]/(E(u)). Let &, be the p-adic
completion of the divided power envelope of the surjection W[u] — Ok carrying u to &, and
set Fil' §, = ker(§, — Ok): by construction Fil' &, is equipped with divided powers
compatible with those on pS. Concretely, we have (cf. [8, 2.1.1]):

ut .
(1.4.6.1) On = {,Zaim € Kollul] :a; € W, ili)ngoai = 0}.

Here, (i) = L%J.

Spec &', is equipped with the log structure induced by the divisor u = 0, and the natural
log structure on Spec Ok is induced from this one via the surjection &, — Ok.

The Frobenius lift ¢ : W[u] — W[u] with ¢(u) = u? inducesoneon &'z : ¢ : S = Sx-
The induced endomorphism of Spec &, again denoted ¢, is an endomorphism of log
schemes.

Given any semi-stable abelian variety A over K, we can now evaluate the associated log
Dieudonné crystal ID(A) over Ok along the formal divided power thickening Spf O —
Spf &' This gives us a p-module M(A) over &, equipped with an integrable logarithmic
connection

Vouay : M(A) — M(A)dlog(u).

Let Y be the rigid analytic space over Ky attached to Spf W{|u|]: This is the rigid analytic
open disk of radius 1 around the Ky-valued point yo attached tou +> 0. Let ¢ : Y — Y be
the endomorphism induced by the endomorphism ¢ of W]u]. Let Y(e) C Y be the rigid
analytic open disk of radius p~1/¢(=1: it is preserved by the endomorphism ¢.

We have a natural p-equivariant map & , — ﬁi‘}‘(‘e); this follows for instance from (1.4.6.1).

Let ﬁ;?;l)og be the restriction of ﬁ;n’log to Y(e). Set

Mo(4) = (O3 ® 5, M(A)7=".
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Then, just as in (1.4.3), the logarithmic connection on ¢#(A) induces a residue map:
(1.4.6.2)
No(A) : Mo(4) — Mo(A) @ (W [lulJlu™" )/ W [[ul]* > Mo(4) ® (Ko /0%, )-

My (A) also has a natural o-module structure, making it an object in LFI(k, f; / ﬁ% ). We
0
will refer to an object in this category as a (¢, N)-module over K.
There is a canonical isomorphism of ind-log F-isocrystals over Y (e):

(1.4.6.3) ORNE @y Mo(A) > O3y @ 5, M(A).

The evaluation-at-w map f + f(rr) from O, can be extended to a map on ﬁ;?;l)og by

sending ¢, to log, (v (r)). Specializing (1.4.6.3) along this extension gives us an isomorphism:
(1.4.6.4)

Bux.ax : K ®ky Mo(A) = K @5, M(A) = K @y D(A)(Ok) — Hip(A/K).

1.4.7. — Now, we return to the situation of (1.4.5). Suppose that we have a K-valued point
x € S (K) not lying on the divisor D®". Then we can take the fiber 4, at x of the abelian
variety A, and the fiber of M?"(A4, ¥) at x is canonically identified with H (4,/K) as a
filtered K-vector space.

As above, the evaluation map f +— f(x) on OF" can now be extended to a map x
on ﬁ;n’log with x (£,) = log, (r(x)). Specializing (1.4.5.1) along x,, we obtain an isomor-
phism of K-vector spaces:

(1.4.7.1) Bikoxr : K ®k, Mo(A) = Hlx (Ac/K).

On the other hand, we also have the module My(A,) of unipotent nearby cycles for A,
and the isomorphism (1.4.6.4):

ﬁH—K,AX,n 'K QKo Mo(Ax) — H;R(Ax/K)
Evaluation at x induces a map x* : A = R[a™']*/R* — f:; / ﬁ%o. From this we obtain
an obvious functor x* : LFI(k, A) — LFI(k, K, / ﬁ’%o).

PROPOSITION 1.4.8. — There is a canonical isomorphism of (¢, N)-modules
x*My(A) 5 Mo (Ax) compatible with the isomorphisms Pux x,n and Pu-x, 4, above.

Proof. — We will view Ok as a quotient of W{[|u|] by the ideal (E(u)). Since R is log
smooth, the map x : R — Ok admits a lift X : R — W/|u|] that respects log structures.
Let Az be the corresponding abelian variety over W[|u|][u~']; then we have the associated
log Dieudonné crystal D(A3) over the log scheme (Spec W [|u[])'°¢. The log crystalline nature
of D(A) now gives us natural ¢-equivariant parallel isomorphisms:

S ®z.r D(A)(R) = &7 ®wipy D(Az)(W([ul]) — HM(A).
Tensoring everything with ﬁ;r(lél)og, and using (1.4.5.1) and (1.4.6.3), we get a parallel g-equi-
variant isomorphism:
Oy @k, Mo(A) = OFNE @k, Mo(Ay).

From this the proposition is immediate. O
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1.4.9. — Fix a finite extension K/K, as above. Let ['r be the absolute Galois group
Gal(Ky/K). Fix A in DEG(Spec Ok, Spec K), and let My(A) be the associated p-module
over Kj.

We refer to [22] for the period rings Bgr, Beris, Bst and their properties. We will only note
that By is naturally a Bgs-algebra, and that there is a canonical embedding
K ®k, Beis — Bar. The choice of uniformizer = now permits us to extend this to an
embedding K ®k, Bst = Bqr. We fix such a choice.

PROPOSITION 1.4.10. — There is a canonical isomorphism

IBSt,A : Bst ®Q}7 Hél (A?» Qp) — BSt ®KO MO(A)

compatible with all additional structures, and such that, after base-change along the embedding
K ®k, Bst — Bar attached to m, the following diagram commutes:

Bar ®q, Hy(Ax. Q) — 18Pt Bir @k (K Rk, Mo(A))

(1.4.10.1) >

= = 1®Bux, a,x

Bar ®k Hjz(4/K).

Here, the diagonal arrow is the canonical p-adic de Rham comparison isomorphism.

The proof will be given in (A.2).

1.4.11. — As a corollary, we obtain a proof of Theorem 6, a result that is originally due to
Coleman-Iovita [12]:

Proof of Theorem 6. — From (1.4.10), we find that the representation 7, (A) is crystalline
if and only if the monodromy operator No(A4) on My(A) is trivial.

Note that Ny(A) is, by construction (1.4.6.2), the residue at u = 0 of the logarithmic
connection on ¢M(A). This connection in turn was determined by the fact that ¢#(A4) was
the evaluation of D(A) along the formal divided power thickening Spf 0x < Spf &'. The
residue vanishes exactly when D(A) is in the image of the natural (fully faithful) functor from
the category of Dieudonné crystals over Ok to that of log Dieudonné crystals over Ok.

So we have shown: T, (A) is crystalline if and only if D(A) is a Dieudonné crystal (and not
just a log Dieudonné crystal).

Set S = Spec Ok, U = Spec K, and let Qy be the object in DD(S, U) associated with A.
Without loss of generality, we can replace K by an unramified extension, and assume that
Y = Q% and X := Q™" are constant. Associated with Qy is a trivialization T over U of the
bi-extension (cg X cé)* CC/)Qab of Y x X. The construction of D(A) in (A.1.10) now shows that
itis an F-crystal precisely when 7 extends to a trivialization over all of S. Equivalently, since
(y,x) = vz (t(y, x)) is non-degenerate, D(A) is an F-crystal exactly when Q¢ = Qmult = 0.
But this can happen if and only if 4 has good reduction. O
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2. Toroidal compactifications: background

In this section, we review essential background material: The first topic is the general
theory of toroidal compactifications of Shimura varieties in characteristic 0; this is essentially
due to Ash-Mumford-Rapoport-Tai [3], who constructed the compactifications over C, and
Pink [56], who constructed canonical models for these compactifications over their reflex
fields.

The second topic is the arithmetic construction of compactifications of Siegel modular
varieties, due to Chai and Faltings [20].

In both cases, we have preferred to use resolutely adélic constructions. This has the disad-
vantage that we have to re-do some of the presentation of the construction of boundary
charts from [20] and [38], but it also presents at least two advantages: The first of course is the
conceptual clarity it brings to the discussion of Hecke correspondences; but the second, and
more essential one, is that it allows for the construction of compactifications for Shimura
varieties of abelian type, following a natural extension of the strategy in [17]. We will present
this application in a future article.

2.1. Compactifications in characteristic 0

In this subsection, we will give a quick summary of the theory of toroidal compactifica-
tions of Shimura varieties in characteristic 0. Our treatment will be rather formal, but details
can be found in our main references, [3, 56].

2.1.1. — We will use Pink’s slightly more general definition of (pure) Shimura data from [56,
§2.1]. Therefore, a Shimura datum will be a triple (G, X, &), where X is a G(R)-homogeneous
space, and & 1 X — Hom(S, GR) is a G(R)-equivariant map with finite fibers such that
(G, h(X)) is a Shimura datum in the sense of Deligne [14, 1.5]. As usual, S = Resc/r Gy, is
the Deligne torus. In what follows, / will be clear from context, and we will consistently omit
it from our notation. We will write E(G, X) C C for the reflex field attached to (G, X).

.. . . .. hx
By the definition of Shimura data, it follows that the composition G, g — S — Gg,
for x € X, is independent of x and maps into the center of Gg: It is the weight co-character
attached to (G, X), and we will denote it by wy.

We will always assume that wy is defined over Q.

Let K C G(Ay) be a compact open subgroup of the adélic points of G. We will always
assume that K is of the form K? K, where K, C G(Q,) and K? C G(AF).

Attached to the triple (G, X, K), we have the Shimura variety Shg (G, X) over the reflex
field E(G, X): In general, it is an algebraic stack over E(G, X) equipped with a natural
isomorphism of complex orbifolds:

Shg (G, X)(C) = GQ\X x G(Ay)/K.
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2.1.2. — Our chief examples of Shimura data are Siegel Shimura data. These are associ-
ated with symplectic spaces (H, ) over Q. The relevant reductive group is the group of
symplectic similitudes GSp(H, ¥), and the symmetric domain is the space ST(H, ¥)) of
maps & : S — Gg such that:

1. & induces a Hodge structure of type (—1, 0), (0, —1) on H(Q), so that we have a corres-
ponding decomposition

HC)=H, " ®H)™"
2. the symmetric form (x, y) — ¥ (x, h(i)y) is (positive or negative) definite on Vi.

The reflex field of a Siegel Shimura datum is Q.

Following [56, 2.6], we can also make sense of a Siegel Shimura datum when H = 0.
We set GSp(0) = G,,, and we take ST(0) to be the two-element set of isomorphisms
of Z-Hodge structures Isom(Z,Z(1)) (equivalently, that of square roots of —1), with
the action of R* given by the sign character. We equip S*(0) with the constant map
h:SE0) — Hom(S, (Gm,R) carrying either isomorphism to the norm map z — zZ.

2.1.3. — Let (G, X) be a Shimura datum. Let G3 = []'_, G; be the decomposition into
simple factors of the adjoint group G*¢. We will say that a parabolic subgroup P C G is
admissible if, for 1 < i < r, the image P; of P in G; is either a proper maximal parabolic
subgroup, or all of G;. In the language of [3, Ch. III], such a subgroup corresponds to a
rational boundary component for (G, X). Observe that this definition allows for the possibility
that P = G.

Given a parabolic subgroup P C G, there is a canonical increasing filtration (Lie G).
on Lie G whose stabilizer in G is P, and such that (LieG)g = LieP. Let Up C P be
the unipotent radical; then (LieG)—; = LieUp. If P is in addition admissible, then the
filtration satisfies (Lie G); = 0, for j < —3, and the center Wp = Z(Up) of Up satisfies:
(Lie G)—, = Lie Wp.

2.1.4. — Fix an admissible parabolic subgroup P C G. Choose a co-character w : G, — P
that splits the filtration (Lie G). and is such that wwy ! factors through the derived group
G of G.

Given x € X and an algebraic representation M of G over Q, let F? M(C) be the Hodge
filtration on M(C) associated with the Hodge structure on M(Q) induced from /.. Also,
let Wo M be the unique increasing filtration on M that is split by w. Then, for an appropriate
choice of the cocharacter w, it follows from [56, §4] that, for all such representations M,
F?M(C) determines a canonical mixed Hodge structure on M (Q), for which W, M (Q) is the
weight filtration; cf. also [9, (4.1.2)]. Moreover, from [56, (4.6)], we find that there exists a
canonical homomorphism:

Wy . S(c = Gm,(C X Gm,(C —> P([j

splitting the mixed Hodge structure on M (Q), for every representation M, and whose restric-
tion to the diagonal embedding of G, ¢ in S¢ is conjugate under P(C) to w. 10

(10) Tn the notation of loc. cit., this is actually the map @ 0 Aoo.
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2.1.5. — Let Qp C P be the smallest normal subgroup such that the maps @y, for x € X,
factor through Qp . Then the group Qp(R)Wp(C) acts on the set 7o(X) of connected
components of X via the maps

7o(Qp (R)Wp(C)) — mo(Qp(R)) — mo(G(R)).

In [56, 4.11], Pink shows that, given x, x’ in the same connected component of X, wy
and @, are conjugate under an element of Q p (R) Wp (C). In particular, given any connected
component X+ C X and x € X%, the Qp (R)Wp(C)-orbit Fp x+ of (X T, @) in mo(X) x
Hom(Sc¢, Qa,c) does not depend on the choice of x € X T,

There is a unique complex structure on Fp x+ such that the natural map to Hom(Sc, Qo .c)
is holomorphic.

2.1.6. — Themap X+ — Fp x+ carrying x to (X T, w,) is an open immersion of complex
analytic spaces. It exhibits X+ as a tube domain.

To see this, we first note that there is a continuous map u : Fp x+ — Wp(R)(—1) that
assigns to a pair (X;5, @) € Fp x+ the unique element u(w) € We(R)(—1) such that
u(w)wu(w)™! is defined over R. Here, we are viewing Wp (R) as an R-vector space, and
as usual Wp (R)(—=1) = Qrv/—1)"'Wp(R) C Wp(C).

By [56, 4.15], we can now find a canonical open non-degenerate self-adjoint convex cone
(cf. [3, Ch. IL§ 1.1] for the terminology) Hp x+ C Wp(R)(—1), homogeneous under P(R),
such that

X+ = M_I(HP’X+) C FP,X+'
2.1.7. — A cusp label representative or clr for short is a triple
® = (Pp.X{.g0).
where P C G is an admissible parabolic, X; C X is a connected component, and
go € G(Ay).
Set Qo = Qp,Up = Up, W = Wp. Also, set Eq, = Q¢/Ws. Its unipotent radical

is Vo = Us/Wa, which is a commutative group over Q. Let Go, = Qao/Us be the Levi
quotient of Q&: The conjugation action of Q¢ on Wg and Vg factors through Gg 5.

Also, set
Do = Fpx+: Do = Wo(C)\Do ; Doj = Vo(R)\Do.
The map D¢ = Fp xy+ — Hom(Sc, Qo c) induces a map
Dgp — Hom(Sc, Gon,c).
which actually factors through Hom(S, G 5 r). This makes the pair (Go ., Do ) a (pure)

Shimura datum, whose reflex field is again E.

Moreover, the pairs (Q, Do) and (Q g, Do) are mixed Shimura data in the language of
[56, Ch. 2].

Given any compact open subgroup K C G(Ay), set Ko p = Pop(Ar) N gK g1,
Ko = Qa(Ar) N Ko p. Let Ko C §¢(Af) be the image of K¢ andlet Ko, C Go 1 (Ar) be
the image of K.
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We can now form the mixed Shimura varieties
Shg, (Qe, Do)(C) = Qa(Q)\(De x Qa(Ar))/Ke:
Shz, (0, Do)(C) = 06 (Q\(Do x 0o(Ar))/Ka;
Shkg , (Gan. Dop)(C) = Gon(Q\(Dop x Gon(Ar))/ Ko p.

We obtain a tower: Shg,, (Qe, De)(C) — Shg, (O, Da)(C) = Shk,,, (Gan, Don)(C).
Here, by construction, Shg,, ,(Gs,n. Do x)(C) is the space of C-valued points of the
Shimura variety Shg,, ,(Go,n, Do.n) = Shky ,(Gon Dop)-

2.1.8. — We will need some generalities about sheaves on Shg, (O, Da)(C). Let M be an
algebraic representation of Q¢ defined over Q. The co-character w : G,, — G factors
through Q¢ and so induces a filtration We M on M.

Now, D¢ x M(Q) (with M(Q) given the discrete topology) is a Q ¢(Q)-equivariant local
system of Q-vector spaces over Dg. It is equipped with a Q¢ (Q)-equivariant filtration
Do x WeM(Q). For every point y € Dg, the corresponding element @, : S¢ — Qo c splits
a canonical mixed Hodge structure on M(Q) with underlying weight filtration W, M(Q),
which is again Q¢ (Q)-equivariant.

Therefore, the quotient:

Mp(®) = Qo(Q\((De x M(Q) x Qa(Ar)/Ko)
is a local system of Q-vector spaces over Shx,, (O, Ds)(C), underlying a variation of mixed
Hodge structures:

Myisi(®) = (Mp(®), WeMp(®), F* (O3 (04.00)) ® MB(®))).

This construction is functorial in M.

If the representation on M factors through Q4 (resp. Go ) then My (®) is canonically
identified with the pull-back of a variation of mixed Hodge structures on Shg (0. D3)(C)
(resp. Shg, , (Go,n, De,in)(C)), which we will again denote by Myu (®).

2.1.9. — Set:

(2.1.9.1) Sh(Qe, De)(C) = lim Shg,, (Qe. De)(C),
K

where the projective limit is taken over the directed system of neat compact open subgroups
K C G(Ay).

We have a natural action of K¢ on Sh(Qe,De)(C) and an identification
Sh(Qe¢, De)(C)/Ke = Shg,,(Qs, Do).

Let Zo C Qg be the center, and let Z¢(Q)° C Z¢(Q) be the subgroup of elements acting
trivially on Fp y+.LetI'z C Z #(Q)° be any arithmetic subgroup, and let Tz C Oa(Ar) be
its closure. By [56, 3.7], we have:

(2.1.9.2) Sh(Qs. De)(C) = 0a(Q)\(De x Qa(Ar)/Tz).
For any Q ¢-representation M, we have a Q(Q) x T z-equivariant isomorphism:
(2.1.9.3) Dy x Qq;(Af) X M(Af) i) Dg x M(Af) X Qq;(Af)
(y.q.m) = (y.qm.q).
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Here, on the left, Q4 (Q) acts trivially on M(Ar), and on the right via the representation
of Qp on M.

Set My, () = Ay ® Mp(®). Then, quotienting (2.1.9.3) by Q¢ (Q) x Tz and using (2.1.9.2),

we obtain a canonical isomorphism of Ar-sheaves:

(2.1.94) M(Ar) — MA./'(q))|Sh(Q¢,D¢)((C)'

In particular, if M (Z) C M(Ar)isa Z-lattice stabilized by K¢, then its image under (2.1.9.4)
will be a Kg-equivariant Z-lattice in My, (<I>)|Sh( 00.D0)(©) and will thus descend to a

Z-lattice M5 (®) C My, (®). In turn this gives us a Z-lattice:
Mp(®)z = Mp(®) N M5(®) C Mp(®),

This refines Myy(®P) to a variation of mixed Z-Hodge structures Myy(®)z over
Shg, (Q®, Da)(C). Of course, this refinement depends on the choice of the Kg-stable
lattice M (Z).

2.1.10. — The variation of Hodge structures Vyu(®) over Shgg, , (Go,n, Do, n)(C) attached
to the representation Vp has weights (—1,0), (0, —1); that is, for every point w € Dy, the
corresponding Hodge structure on Vg (C) arises from a complex structure on Vg (R). By quite
general principles, this variation is in fact polarizable; cf. [56, 1.12].

As above, let Z¢(Q)° C Z(Q) be the subgroup of elements acting trivially on Dg, and
let Ko,y C Us(Ay) be the image of the sub-set:

{(z,u) € Zo(Q)° x Up(Ay) : 2 -u € Ko} C Zo(Q) x Usp(Ay)

under the projection map Z¢(Q) x Us(Ayr) — Us(Af). Let Koy C Vp(Ay) be the
image of K¢ : This is a Kg-stable /Z\—lattice, and therefore refines Vg (®) to a variation
of Z-Hodge structures Vyg(®)z.

Thus, we have a canonical smooth family of abelian varieties

Ak (®)(C) — Shgy, , (Gon: Don)(O),

whose relative integral homology is identified with Vyg(®)y.

The underlying vector bundle with integrable connection is the quotient of the
0 ¢(Q)-equivariant bundle:
Vo(R) x Do — Do,

where, for any point @ € Dg, Vo (R) x {w} is equipped with the complex structure attached
tow.

The natural action of Ve (R) on D¢ via conjugation descends to an action of the family
of abelian varieties Ax (®)(C) on Shg (04, D3)(C) over Shk.,(Go.n. Do,n)(C), making
Shz . (@4, Da)(C) an Ag(®)(C)-torsor over Shk, , (Go.n, Dop)(C).
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2.1.11. — The action of Gg, on Wo is via a character vo : Gop — Gp; cf. [56, 2.14].
Set Ko, w = Wa(Ar) N Ko,y. Then the variation of Z-Hodge structures associated with
the representation Wy, and the lattice K¢ w is the homology of a canonical family of alge-
braic tori over Shgg, , (Go i, Do,n)(C). Moreover, from [56, 3.12(b)], we see that the map
Shg, (Qe, De)(C) — Shg, (O, De)(C) is naturally a torsor under this family.

In fact, this family of tori is constant. To see this, first extend vg to a surjective map of
Shimura data:
2.1.11.1) Vo (Gap, Do j) = (G, SE(0)).
Such an extension is determined entirely by where it sends a point in X+ under the induced
composition

Xt > D¢ — Deoj — Si_(O).

This shows that there are exactly two possibilities for it.

Set Pp(0) = Wy x Gy, where G, acts on Wy = Lie Wy via scalar multiplication. Write
7 (0) : Pp(0) — Gy for the natural projection. Set

De(0) = {(w, 1) € Hom(Sc, Po(0)c) x S¥(0) = (7 o h)(x, y) = xy}.

Here, we are identifying S¢ with G, ¢ X G, ¢ in the usual way.

Set

Ko(0) = Ko,w ¥ vo(Kon) C Po(0)(Ay).

Then it follows from [56, 3.12(a)] that the projection of complex manifolds
(2.1.11.2) Py(0)(Q)\Da(0) x Po(0)(Ar)/Ke(0) > Q*\S*(0) x AT /ve(Kes)
is naturally a family of smooth commutative groups over the base, which is identified with

Shyg (K, (Gm. SF(0))(O).
In fact, we can be more precise. Set

(2.1.11.3) Bx (®) := (Wo(Q) N Ko,w)(—1) C Wo(Q)(-1),

and let Ex (®) be the torus over Z with cocharacter group Bx (®). Equivalently, it is the torus
with character group Sk (®) := Bx(®)".

Then by [56, 3.16], we find that there is a canonical isomorphism of families of complex
groups over Shyy, (k4 ) (Gm. ST(0))(C):

P3(0)(Q)\Da(0) x Po(0)(Ar)/Ka(0) = Ex(®)(C) X Shyg kg, ,)(Gm. SE(0))(C).

Moreover, the family of tori in question is simply the pullback over Shg,, , (G5, Do,n)(C)
under the map induced by (2.1.11.1) of the constant torus on the right hand side of the above
isomorphism.

Of course, this identification with the constant torus Ex (®)(C) x Shg, ,(Ge,n, Do) (C)
depends on the choice of the map (2.1.11.1). A different choice will change the identification
by a sign. We will assume such an identification in the sequel, and will ignore its lack of
canonicity from now on, since it does not play any essential role in this article.
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2.1.12. — The spaces Shg,(Qe, D#)(C), Shg, (04, De)(C) and Shg,, ,(Ge n. Da.n)(C)
admit canonical models Shg,,(Qe, Do), Shg (Q4. Do) and Shgg, ,(Go,n. Do p) over the
reflex field £ := E(G, X); cf. Ch. 11 of [56].

These models are characterized by the following properties:

— Shgg , (Go,n. Do p) is the canonical model over E;

— asthelevel K varies, the transition maps in the inverse limit (2.1.9.1) are defined over E,

giving us a descent Sh(Q g, Dg) over E for Sh(Q¢, Do) (C);

— the Hecke action of Qo (As) on Sh(Qe, Do)(C) by right translation via the uniformiza-

tion (2.1.9.2) descends to an action on Sh(Qg, Do).

The structures defined above also descend over the reflex field: Shg,(Qo. Do) —
Shg, (Op. Do) is an Eg(®)-torsor; the family of abelian varieties Ag(®)(C) —
Shgg ;, (Gon. Do) (C) descends canonically to an abelian scheme Ag (®) — Shkg, ,(Gon. Dop),
and the Ak (®)-torsor structure on Shg (0. D)(C) descends to one on Shg, (0p.Do)
over Shgg, , (Gon. Do p)-

2.1.13. — Fix a neat compact open subgroup K C G(Ay). For any subgroup H C G defined
over Q, let H( Q)4+ C H(Q) be the pre-image in H(Q) of the connected component of the
identity in the real Lie group G24(R).

Consider the open immersion (cf. [56, 6.10]):

(2.1.13.1)  Uke(Qe, Do) = Qa(Q)+\Xg x Qa(As)/Ke — Shx,(Qa, Da)(C)
[, ] = [(Xg, @, @)
Let Shxy = Shg (G, X); then we have a natural map:
(2.1.13.2) Uky(Qo, Do) — Shi(C)
[(x. )] = [(x.q9)].

On connected components, this map is isomorphic to I'g \ X ; — I'g\XZ,whereI'g C G(Q)4
and I'p C Q«(Q)4+ are arithmetic subgroups with I'g C I'g. Moreover, since K is neat,
the action of I'g on X g is free and properly discontinuous, so that (2.1.13.2) is a local
isomorphism of analytic spaces.

2.1.14. — Let Uk be the disjoint union of the spaces Uk, (Qa. D), as ® varies over the
clrs for (G, X). Then we obtain a surjective locally étale covering Ux — Shg (C). There is
now a Hausdorff equivalence relation ~ on Uk so that Shg (C) is identified with Ug /~.
Following [56, 6.11], we can describe this relation explicitly.

For this, it will be convenient to introduce some new notation: Given two admissible
parabolics Py, P, C G and y € G(Q), we will write P, N P, if the following equivalent
conditions hold (cf. [3, II1.4.8] for a proof of their equivalence):

- VWPl)’_l D WPZ;

- yQP])/_l C QP2-

Given two clrs ®; and ®,, y € G(Q) and g € Qa,(Ar), we will write % o, if
the following hold:

14
- Pq>1 — Pq;.z;
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-y- X;l € mo(X) is contained in the Q ¢(Q)-orbit of X;z;
- Y81 € 282K.

Suppose now that @, M ®,. Then we obtain a map

(2.1.14.1) p(v.42) : Uky, (Qo,, Do) = Uky, (Qa,. Do,)
[, @] = [(y - x, int(y)(q)q2)].

Here, we are using the identification
Uk, (Qa;. Do) = Q0 (Q\Xo, x Qa, (As)/Ka,.
where X ®; C X is the union of the connected components in the Qo(Q)-orbitof X§ € mo(X),
and the fact that y carries X¢, onto Xe,.
It follows from Lemma 6.12 of [56, 6.11] that the equivalence relation ~ on Uk is gener-

ated by the graphs of all maps of this form.

2.1.15. — In the case where y - P, = Pg,, we can make (2.1.14.1) even more explicit: In

fact, it will be the restriction of an isomorphism Sth>l (Q®,.Da,) 5 Sth)z (Qs,.Da,).
We can reduce to the following three cases:

-y =1,q, = 1and g, = ga,k, for k € K: In this case, K¢, = Ko,, and the
isomorphism is simply the identity.

-y =1¢ =q € 0¢,(Ay),and grgo, = go,: In this case, Ko, = qKo,¢~', and
right multiplication by ¢ on O, (Ar) induces an isomorphism

[q] : Shge (Qe,. Da;) — Shgg, (Qe,. Da,).
- ¢> = 1, and ®, = int(y)(Py): In this case, conjugation by y induces an isomorphism

[ll’lt()/)] : ShK(pl (Q<I>1 5 D<I>1) — Sth:.z(Q(I)za D<I>2)'

A priori, all these maps are only defined on the level of C-valued points. We obtain their
descent to the canonical models by the very characterizing properties of such models.

In all these cases, we actually obtain isomorphisms of mixed Shimura varieties:

ShKCDl (Q‘b] ) Dq)]) — Shf(bl (@@1 95‘131) — Sth:.l.h (Gq>1,h7 Dq)],h)

Shchz(Q‘Dz’ De,) — Shf(I>2 (gcbz’ﬁsz) — Sth)z.h (Goon, Doy ).

There is a natural isomorphism Eg (®;) = Ex (®,), giving Sth>2 (Qa,. Do,) the structure
of an Eg (®;)-torsor over ShEb2 (§¢2, 5q>2), and such that, if we view Shchl (Qo,, Do)
as a scheme over Sh;q}2 (Q,, Do,) via the middle isomorphism, then the isomorphism on
the left is one of Ex (®1)-torsors.
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2.1.16. — An even more particular case is where ®; = ®, = &, and y belongs to the
subgroup

(2.1.16.1) Po(Qo N (Qa(Ar)gakes').

Here, P5(Q)o C Po(Q) is the stabilizer in Pe(Q) of the Q¢ (R)-orbit of X in mo(X).

Now, there exists ¢ € Qo (Ay) such that M ®. It is easy to see that the associated

automorphism Shg, (Qe, Do) — Shg,(Qe. Do) does not depend on the choice of g.
Therefore, we obtain an action of the group

Po(Qo N (Qo(Ar)geKey')
0+(Q)
on the tower Shg, (Qe. Do) — Shg, (Q¢. Do) — Shx,, ,(Gon. Do.p).

By construction, Ag(®P) is an arithmetic subgroup of G ¢(Q), where Go ¢ = Po/Qs.
As mentioned in [56, 6.3], a finite index subgroup of Ak (®) admits a lift to the centralizer
of Go in the Levi quotient Le = Pg/Ug. Therefore, Ax(®P) acts on Shg,, ,(Gon. Do)
via a finite quotient A%“(QD). In particular, if L¢ — Go admits a section giving an
identification Ly = Goj X Gy, then Ag(®) will act trivially on Shg,, ,(Gon. Do p)-

(2.1.16.2) Ax(®) =

Since the action of Q¢ on Wy is via the cocharacter vg (cf. 2.1.11), the conjugation action

of Pg on Wg induces a map
Goy — PGL(Wo).

Let Gi,e be the G,-extension GL(We) XpgL(wg) Go,¢ of Go¢. Note that the group (2.1.16.1)
acts on Bg (®) C We(Q)(—1) via conjugation, and that this action factors through its image
ZK(Q) C wa (Q). Since K is neat, ZK(Q) maps isomorphically onto Ag(P) C Go ((Q).
Therefore, we find that Ag (P) has a natural action on We(R)(—1), which preserves Hp x+
as well as Bg ().

2.1.17. — We will need some standard terminology about torus embeddings; cf. [30]. Let V be
a finite dimensional Q-vector space. A rational polyhedral cone  C R ® V is a sub-set, for
which there exist finitely many linear functions f,..., f, € V¥ such that:

c={xeR®V: fi(x)>0, forl <i <rj}.
A face of o is asubset of the form{f; =0:i € I} C o,where I C {1,...,r}. The interior
0° C o is the complement of the proper faces of o.
We say that o is non-degenerate if it does not contain any non-zero linear subspaces of V.

Fix a Z-lattice X C V. We will say that o is smooth (with respect to X) if f1,..., f € VV
can be chosen to be a sub-set of a basis for XV.

For any rational polyhedral cone 0 C R ® X, set
Xy ={feX": f(x)>0, forall x € o}.

Let Tx be the torus over Z with co-character group X. To ¢, we can attach the affine torus
embedding:
Tx = Spec Z[X"] < Spec Z[X] = Tx(0).

Tx (o) is smooth over Z precisely when ¢ is smooth.
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There is a unique closed Tx-orbit Ox(0) C Tx (o). This is defined by the ideal I, C Z[XY]
which is generated by the set:

feXV: f(x)>O0forallx € 0°F.

Given an inclusion of polyhedral cones 7 C o, we get a Tx-equivariant map Tx(z) — Tx(0).
This is an open immersion precisely when t is a face of 0.

Suppose that we are given a scheme S and a Tx-torsor P — §. Then the twisted torus
embedding attached to the cone o is the open immersion of S-schemes:

P < P(0) = (PxTx(0))/ Tx .

Here, Tx acts diagonally on P x Tx. The stratification of Tx(c) by the orbits under the
Tx-action induces a stratification on P(¢). In particular, there is a unique closed stratum
in P(0) corresponding to the closed orbit Ox (o) C Tx(0).

2.1.18. — Fixaclr ® = (P,X™",g). Given a rational polyhedral cone 6 C Weg(R)(—1),
we can form the twisted torus embedding Shg,(Q¢, Do) < Shg,(OQs,Do.0) =
Shg, (Qa. Da)(0) over Shg, (Qg, Do). Let Zky (Qa, Do, 0) C Shiy(Qa, D, 0) be the
closed stratum. Write Ug,, (Q®, Do, 0) for the closure of Uk, (Q%, Do) in Shg,(Qs, Ds,0):
This is an open subspace of Shx, (Qe, Do, 0).

Set H(®) = Hp x+. It follows from the discussion in [56, 6.13] that Ug,,(Qe¢, Dg,0)
contains Zg4 (Qae. Do, o) precisely when 0° C H(®).

Suppose that we have &, M ®, as in (2.1.14). Then conjugation by y~! induces

an embedding int(y ') : Wo,(R)(~=1) < Ws, (R)(—1). Suppose that, for i = 1,2,
0i C Wa,(R)(—1) are rational polyhedral cones such that int(y~!)(02) is a face of oy. In

this situation we will write (P, 07) M (P53, 02).

Suppose that y - P; = P,; then the map (2.1.14.1) extends to a map [56, 6.15]:
(21181) ,0()/,(]) : UK<I>1 (Qq:.l , Dcpl ,0'1) — UK¢2(Q<I>2, Dq>2,(72).

Indeed, we can certainly assume that int(y~!)(02) = o7. In this case, our extension is
obtained from the isomorphism of twisted torus embeddings

Sth,l (Qq;l R D<I>1 N 01) i) ShK¢2 (Qcp2, Dq>2, 02)

extending the corresponding isomorphism of torus torsors over Sh?(I>2 (§¢2 , D). There-
fore, (2.1.18.1) is a strata preserving isomorphism. In particular, if o7 C H(®;), then,
for i = 1,2, the closed stratum ZKq)l_ (Qo,,Da,;,0;) is contained in UK(I>l- (Qo,.Ds;.0i),
and the isomorphism carries ZKg, (Qo,.Dy,,01) onto Zko, (Qo,.Do,,02).

2.1.19. — A particular case of the above situation is where (®;,0;) = (®,0), fori = 1,2.
Here, the construction gives us a strata preserving action on Shgx,(Qe, De,0) of the
subgroup

AK(q), 0) C AK((I))

consisting of elements that stabilize the cone o; see (2.1.16) for the notation.
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Now, the stabilizer of ¢ in Aut(Bg(®)) is a finite group; cf. [3, Corollary 11.4.9]. Since
K is neat, we see that Ag (®, o) is the kernel of the map Agx(P) — Aut(Bg(®P)), and so is
independent of 0. We will therefore denote it by A% (P).

LEmMMA 2.1.20. — Suppose that the connected center Zg, C G is isogenous to a product of
split and compact tori over Q. Then Ay (®) is trivial.

Proof. — A% (®) is a torsion-free arithmetic subgroup of the kernel of the map
Gos — PGL(Ws), which is contained in the image of Zg. But our hypothesis implies
that Zs(Q) has no non-trivial torsion-free arithmetic subgroups. O

2.1.21. — Fix an algebraic representation M of Q¢, and consider the associated complex
variation of mixed Hodge structures (cf. 2.1.8):

— an
MdR(q))|ShK¢(Q<p,Dq>)(C) - ﬁShKQ(Qq;,D@)((C) ® Mp(®)

over Shg, (O, Ds)(C). This is equipped with an integrable connection, and weight and
Hodge filtrations. We claim that this vector bundle has a canonical extension to a vector
bundle Mqr (P, 0)| Shiy (0. D,0)(C)’ which is equipped with an integrable connection with

log poles along the boundary Shg, (Qe, Do, 0)(C)\ Shg, (O, Ds)(C), and to which the
weight and Hodge filtrations also extend.
For this, set

Xk (@) == Wa(Q)\Do x Qa(Ar)/Kae ; Yk(®) = Do x Q(As)/Ko.
Then Xg (®) — Yx(®) is a Q ¢(Q)-equivariant Eg (®)(C)-torsor whose quotient by 0 ¢(Q)
is exactly Shi,,(Qe, De)(C) = Shg, (O, De)(C). In particular, Shg,, (Qa, Do, 0) is the

0 6 (Q)-quotient of the twisted torus embedding X (®, o) over Y (P).
The isomorphism

(2.1.21.1) M(C) x We(C) x Do — Wa(C) x Dg x M(C)
(m,w,w) — (w, w,w -m)
gives rise to an isomorphism of vector bundles over Ex (®)(C) x Xk (P):
(2.1.21.2) M(C) X Eg(®)(C) x Xg(P) — MdR(dD)|EK(¢)(C)XXK(¢).
Here, we are viewing Ex (®)(C) x Xk (®) as a space over Shg,, (O s, Do)(C) via the compo-
sition:
Ex(®)(C) x Xg(®P) - Xk (P) — Shge(Qa. D) (C),

where the first map is given by the Ex (®)(C)-action on X (®), and the second is the natural
projection.

The left hand side of (2.1.21.2) has an obvious extension to a trivial vector bundle
over Ex(®,0)(C) x Xg(®). The Hodge filtration depends only on the Xg (®)-factor and
so also extends. The induced connection on this extension has logarithmic poles along the

boundary. More precisely, the difference between this connection and the trivial one is (up
to sign) the linear map:

®p : M(C) — M(C) ® Q. ()(c)/c = Hom(Lie Wo, M(C)) ® O ()(c)-
induced by the natural map Lie We — End(M(Q)).
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The successive quotient of this extension by Ex (®) and then Q &(Q) gives us the desired
vector bundle Myg (P, U)|ShK®(Qq>,Dq>,U)(C)'

2.1.22. — Fixaclr ® = (P, X4, g). Let H*(®) C Wp(R)(—1) be the union of the images of

the cones int(y ~') (H(®")), for all &’ RN .

A rational polyhedral cone decomposition for H*(®) is a set X (®) of rational polyhedral
cones 0 C Wg(R)(—1) such that:

- 0 C H*(®), forall 0 € Z(P);
— if 0 € X(®) then every face of ¢ is also in X (D);
- for 01,05 € X(®), then o1 N o3 is a face of both o7 and o5.

We will say that X(®) is in addition complete if H*(®) = |J,ex 0°. It is smooth (with
respect to K) if each o € X (®) is smooth with respect to the lattice Bx (®) C We(Q)(—1).

Let X°(®) C X (D) be the subset of cones ¢ such that 6° C H(®),

Given two rational polyhedral decompositions X1 (®), 3, (®) for H*(®), we will say that
3, (®) is a refinement of X1 (®) if, given any o, € X,(P), there exists o7 € X1 (P) such that
oy C 07.

Given a decomposition X (®), we can construct a global twisted torus embedding that is
locally of finite type over Shg (0. Ds):

Shgy(Qe. Do) > Shgy(Qe, Do, X).

Here, Shg,, (0o, Do, E) is a union of (relatively) affine open sub-schemes Shx,, (O, Ds, 0),
for o € X°(®), where, for 01,0, € X°(®), Shgy(Qa, Do, 01) and Shx, (Qe, De, 02) are
glued along the common open sub-scheme Shg, (Qa. Do, 01 N 02).

Write Uk, (Qo, Do, X) for the closure of Uk, (Qa, Do) in Shg, (O, Do, X)(C): This
is a union of open subspaces of the form Ug, (Qa, Do, 0), for o € Z°(P).

If £,(®) is a refinement of X;(®), then we obtain a map Shg,(Qs. Do, Z1) —
Shg, (Qo, Do. 22) of twisted torus embeddings: It carries Ug,(Qs, Do, X2) to
Uky(Qo, Do, Z1).

2.1.23. — An admissible rational polyhedral cone decomposition, or admissible rpcd,
for (G, X, K) is an assignment & + X (®P) attaching to each clr & a rational polyhe-

dral cone decomposition X (®) for H*(P), and satisfying the following property: Suppose

that we have @, M) ®,, with the corresponding embedding int(y ') : We, (Q)(—1) —

Wa, (Q)(—1); then:
5(P2) = {0 C Wa,(@(-1) : int(y")(0) € Z(P1)}.

We will say that X is complete (resp. smooth) if, for any clr ®, X (®) is complete (resp.
smooth). An admissible rpcd X, is a refinement of another, X1, if, for each clr ®, ¥, (®) is
a refinement of X (P).

Given an admissible rpcd T for (G, X), givenaclr ® = (P, X, g), (®) is stable under
the conjugation action on We(Q)(—1) of the subgroup Ag (®) from (2.1.16.2). We will say
that X is finite if, for any clr ®, the orbit space Ag (P)\ X (D) is a finite set.

Observe that, in this case, using (2.1.18.1), we can extend the action of Ag(®) on
Uk (Qa. Do) to an action on Uk, (Qe, De, 2).
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We will only be using finite admissible rpcd’s in the sequel, so, from now on, admissible
rpcd will always mean ‘finite admissible rped’. In fact, we will also impose the following
additional ‘no self-intersections’ condition on our rped’s [38, 6.5.2.25], [56, 7.12]:

Suppose that we have (®, M ®;), and 0 € X(P;) and t € X(P;) such that

int(y~1)(0) is a face of 7. If € Ag(®P,) is such that int(y~'n~1)(0) is also a face of t,
then we must have int(n~!)(¢c) = o.

2.1.24. — Given an admissible rpcd X, we take Ug (X) to be the disjoint union of the spaces
Uke (O, Do, X) as ® varies over the clrs for (G, X). By construction, we have an open
immersion Ug < Ug(X). Let ~x be the closure in Ug(X) x Ug(X) of the equivalence
relation ~.

THEOREM 2.1.25 (Ash-Mumford-Rapoport-Tai). — Admissible (finite) rpcd’s exist. Any
admissible rpcd can be refined to be smooth. After replacing K by a subgroup of finite index, if
necessary, the admissible rpcd can be chosen to satisfy the no self-intersections condition.

Given an admissible rpcd X for (G, X), ~x defines an equivalence relation on Ug (X). Set
ShZ(C) = Ug(Z)/~x. Then:

1. Sh,% (C) is the set of C-valued points of a normal complex algebraic space ShIEQC of finite

type over C.

2. The natural map Shg(C) = Ug /~ — Sh,%((C) is induced by an open immersion of

algebraic spaces Shx c — ShIX{:,(C'

3. If X is complete (resp. smooth), then ShIE(’C is proper (resp. smooth) over C.

Proof. — This is essentially the main result of [3]. The existence of admissible rpcd’s is
shown in Ch. I1,§ 5.3-4 of loc. cit.; cf. also [56, Ch. 9]. That they can be chosen to satisfy the
no self-intersections condition by shrinking K is shown in [56, 7.13].

For the fact that ~y is an equivalence relation on Ug (X)), see [56, 6.17]. The same result
implies that the induced map Shg (C) — Sh,% (C) is an open immersion.

The remaining assertions—except for the one about smoothness, for which, cf. [56, 6.26]—
can be found in [56, 9.34]. O

2.1.26. — Fixaclr®ando € X°(®) sothat Ug, (Qs, Do, o) contains Zx, (Qe, Do, 0)(C).
Since K is neat, the stabilizer of o in Ag(®) is the torsion-free arithmetic group A% (®);
cf. (2.1.19). It now follows from [56, 7.15] that, for a sufficiently small neighborhood
Vke (0o, Do,0) C Uk (Qo. Do, 0) of Zk,(Qs, Do, 0), the composition:

Vks(Qa. Da.0) = Uky(Qa. Do.0) <> Uky (Qo. Do, T) <> Uk (E) — Shg(C)
induces an open immersion
A% (®)\ Vky (Qa. Do, 0) <> ShE(C).
The restriction of this open immersion produces a locally closed immersion
A% (P)\Zko(Qa. Da.0)(C) = ShE (C).
Let Cusp,E((G, X) be the set of equivalence classes of pairs (®, o), where @ is a clr and

o € X°(D): Here, we say that (®q, 07) is equivalent to (®,, o) if we have &, M o,
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with y - P = P,, and int(y)(01) = o2. This set has a natural poset structure <, where

[(@1.00)] < [(®2.02)] if (1. 01) L2225, (@5, 0,), for some y € G(Q) and g2 € Qa, (Ay).

By the definition of the equivalence relation ~x, we see that the locally closed immersion

A (®)\Zko(Qo. Do, 0)(C) = ShE(C),
up to canonical isomorphism, depends only on the equivalence class T = [(®,0)] €
Cusp,z( (G, X). Therefore, we can denote the corresponding locally closed subspace of Sh,% (©)
unambiguously as Zg(Y)(C). Observe that the complex analytic space

Zg(T)(C) is algebraic, and in fact has a canonical model Zg () over E: For any represen-
tative (0, o) of Y, we have

Zg (1) = Ag(P)\Zko, (Q0, Do, 0).
From [56, 12.4], we obtain:

THEOREM 2.1.27 (Pink). — There is a canonical model Sh for Sh}ic over E such that the
open immersion Shg — Shlz(: is also defined over E. Suppose in addition that ¥ is complete.
Then:

1. Forevery Y € Cusplz{: (G, X), the locally closed immersion Zg (Y)(C) — Shlz( (C) arises
fromamap Zg (1) — Sh,% of algebraic spaces over E.
2. There is a canonical stratification:
Shg = | | Zx (7).
RS
where Y ranges over CuspIE((G, X). For any fixed Y, the closure of Zx(Y) in Sh,% is
precisely the closed subspace:
Zr(0 = || Zx(0).
LY
3. GivenY = [(®,0)], let §I\1Kq> (Qa, Do, 0) be the formal completion of Shx . (O, Do, 0)
along Zg(Qe, Do, o). Then the isomorphism Ay (®P)\Zk,(Qo, Do, 0) = Zg(T)
extends to an isomorphism of formal algebraic spaces between A% (<I>)\§}\1K<I> (Qo,Do,0)
and the completion of Sh[E( along Zx (). This extension is characterized by the property

that, over C, it converges to the holomorphic open immersion Ay (®)\ Vi, (Qo, Do, 0)
< ShZ(C). O

2.1.28. — We will end this summary with some results on the functoriality of the toroidal
compactifications and their stratifications. For this, fix a closed immersion of Shimura data
L1 (G, X) = (G* X*) of Shimura data, as well as an element g* € G¥(As). Let E¥ be the
reflex field for (G*, X*). Then we get a map of Shimura varieties:

(t.g%) : Shg — Shgs g := E ®p+ Shg: (G, X).
On the level of C-points, this map carries [(x, g)] to [(t(x), t(g)g%)].
Given an admissible parabolic subgroup P C G, there is a unique minimal admissible

parabolic subgroup 1« P C G*¥ containing ¢(P); cf. [56, 4.16]. Moreover, we have ((Qp) C
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Given a clr @ for (G, X), we can now define a clr ¥ = (i, g*),® for (G*, X¥): We set
Pyt = txPa; X i;’ will be the unique connected component of X*¥ containing ¢ (X ;ﬁ ); and

gor = gaogt.

Tthe convex cone L(H(CD)) C Wg:(R)(—1) is contained in H(®*), and, since
Qo (R)Wo(R)) is contained in Q g1 (R) Wy (C), the map ¢ extends to a map of mixed
Shimura data

(Qo. Do) = (Qot. Do)
Let K C G(Af) and K% ¢ Gi(Af) be compact opens such that ((K) is contained
in g#~1K*g* Then((Kg) C Kg:,and we therefore obtain a map of mixed Shimura varieties

(2.1.28.1) ShK®(Qq>, Dcp) — F Qg ShK;ti(Qcpj;, Dd,:{:).
®

If =¥ is an admissible (finite) rped for (G¥, X*, K#), then the assignment:
LgH* =t o (oY) 1 ot e THOY); of Cu(Wa(R) (1))}
is an admissible (finite) rped for (G, X, K); cf. [24, §3.3].
Fix sucha X* and let ¥ be a refinement of (¢, g*)* X*. Suppose that we are given o € X (P);

then there is a unique 0¥ € X*(®*) such that (o) C o¥, and such that no proper face of o+
contains ¢(0). The map (2.1.28.1) extends to a strata respecting map

(2.1.28.2) ShK(I)(Qq;., Dg,0) > E QFt ShKii(Qq)i, D(bi,o’i).
@

If @, ®, are clrs for (G, X) with &, M ®,, then we have:

(0)(a2)) gt
3 K ot
of — 5, ol

Therefore, (®, o) — (®*, o) induces a map of posets:
(t,g%)s : CuspE(G, X) — CuspZy (G¥, xF).
Given Y = [(®, 0')] on theleft hand side, set Y+ = (1, g¥). T = [(®F, o%)]. Let (Sh?)’Z\K(T)
(resp. (Sh?;)gm: (Ti)) be the completion of Sh}é (resp. Shlzci) along Zg: (T%). Then,
using (3.) of (2.1.27), the map (2.1.28.2) gives us a canonical map:

(21283) (1.gh): ShR)%(r) = A% (®)\Shx(Qa. De.0)

° N = t
- AKi(CDi)\ShKii (Qgi. Dgi.0%) — (Shx; )gﬂ (1)

From [56, 6.25,12.4], we now obtain:

PROPOSITION 2.1.29 (Pink). — Suppose that ¥ and X* are complete. Then the map
(t,g) : Shg — Shgs g extends uniquely to a map (1, g) : ShIE( — Shg}:’E. For every
T € CuspIZ((G,X), (t.g) carries Zx(Y) to E ®g: Zg+(YF), and the corresponding
map between the formal completions along these locally closed sub-schemes is identified
with (2.1.28.3). O

One particular case of this functoriality is when (G*, X*) = (G, X), and ¢ is the identity;
then (2.1.29) gives us the action of Hecke correspondences on toroidal compactifications.
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2.2. Siegel modular varieties

We will now fix a symplectic space (H, ¥) over Q. In this subsection, we will show that the
mixed Shimura varieties attached to rational boundary components of the associated Siegel
Shimura variety are moduli spaces for 1-motifs with additional structures.

22.1. — Let (G,X) = (GSp(H,v),ST(H,y)) be the Siegel Shimura datum associated
with (H,¥). The first order of business is to describe the rational boundary components
for (G, X). This is given in [56, 4.25]. Here is the summary:

Every admissible parabolic P C G is obtained as the stabilizer of an isotropic subspace
I C H. Equivalently, it is the stabilizer of the filtration W, H, where:

0=W.i3HCW,,H=1CW_1H=I+CcWyH = H.

Suppose that we have a clr ® with Pg the stabilizer of a filtration as above. Then
Q¢ C Po is the largest subgroup acting trivially on H/I1; it must necessarily act on /
via the similitude character. Moreover, Wg C Qg is the largest subgroup acting trivially on
both H/I and I+.

The assignment f — v (-, —f-) identifies Lie Wg with the space of symmetric bilinear
forms on H/I+. Therefore, we can view Wo(R) = R ® Lie Wy as the space of symmetric
R-valued forms on H/I+.

The choice of a connected component X ; C X corresponds to a choice i = ~/—I;
equivalently, to a choice of isomorphism Q(—1) = Q or to an element in S*(0). This gives
us an isomorphism Wg(R)(—1) = Wa(R). The cone H(®) C We(R)(—1) is the pre-image
under this isomorphism of the space of positive definite bilinear forms on (H/I+)(R).

Since Q¢ (R) acts transitively on the connected components of X, the space D¢ does not
depend on the choice of the connected component X ; . It is the space of pairs (F*H(C), 1),
where A : Q = Q(1) is anisomorphism, and (F* H(C), W, H(Q)) is a mixed Hodge structure
on H(Q) of weights (—1,—1), (—1,0), (0, —1), (0, 0) that is polarized by Aoy. When I # I+,
A is determined uniquely by the Hodge filtration and this condition.

The Q¢(R)Ws(C)-equivariant open immersion X < Dg can be described as follows:
Given x € X with associated Hodge filtration F.? H(C), we attach to it the mixed Hodge
structure (H(Q), We H(Q), Fy H(C)), and the unique isomorphism A : Q — Q(1) such that
F?H(C) is polarized by A o .

2.2.2. — A polarized lattice in (H(Q), ) is a Z-lattice H(Z) C H(Q) on which y restricts
to a Z-valued. Let HY(Z) C H(Q) be the dual lattice with respect to the pairing ¥, and
let d € 7= be such that the order of the finite group H " (Z)/H(Z) is d?. We will call d the
discriminant of the polarized lattice H(Z).

Fix a compact open subgroup K C G(Ayr) and a polarized Z-lattice H(Z) C H such that
H(Z) = 7.® H(Z) C H(Ay) is stabilized by K. Extend (P, X T) toaclr ® = (P, X, g).

Set H8(Z) = g-H(Z) C H(Ay),and let H8 (Z) = H(Q)NH# (Z). Then H#(Z) inherits a
filtration W, H & (Z) from the filtration W, H. Let N(g) € Q- be the unique positive element
mapping to the image of v(g)~! under the surjection:

Q* — Q*/Z* > A}/,
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If we equip H with the symplectic form & = N(g) - ¥, then H8(Z) C H(Q) will be a
polarized lattice for y%.

Let HY (v) be the G-representation obtained by twisting the dual representation H" by
the similitude character v : G — G,,. The pairing ¥¥ on H induces an isomorphism
of G-representations 8 : H S H V(v). Equip HY (v) with the dual filtration We H" (v),
so that W; HY (v) C HY (v) is the annihilator of W_3_; H. Then f& preserves W,-filtrations.

Let H&Y(Z) C HY be lattice dual to H8(Z), and set H%-Y(Z)(v) = N(g)H&Y C HY =
HY (v). Then f8 carries H8(Z) into H&V(Z)(v).

2.2.3. — Given a 1-motif Q over Q-scheme S, let 7"\( Q) be the total Tate module:
T(Q) = L%n Qln].

Similarly, we have the total Tate module YA"( 0V). Both these sheaves are equipped with weight
filtrations, WoT'(Q) and W,T(Q"), induced from the weight filtrations on the 1-motifs
themselves. ,

Fix a polarization A : Q@ — QV. The induced map T(Q) — T(QY) = T(Q) (1)
produces a Weil pairing:

ey T(Q)xT(Q) — Z(1).
Suppose that we are given an S-scheme 7 and a pair of isomorphisms of étale sheaves over T':
0 HE (L) = T(Q)),: u:Z = Z(1).
We will say that such a pair is compatible with A if we have:
@ o(xm =uoyy: HS(Z) x HS(Z) — Z(1).

We will say that the pair is compatible with We-filtrations if n carries We H® (/Z\) onto

WoT(Q)|-
Suppose now that we are given isomorphisms of sheaves of Z-modules over S:

o grgV HE&(Z) i) Qét sV gr(I;V ﬂv’g(Z)(v) i) Qv,ét — Qmult,C'
Then we obtain isomorphisms of Z-sheaves:

~ ~ 1Qa ~ Z ~
Brgry H2) =L ®ery H*(Z)— Z® 0% = gry T(Q).

~ 1QaY ~ ~
BY:Z®gry H (Z)(v) — Z® Q™" = gy T(Q).

Let (n,u) be a pair as above compatible with A and W,-filtrations. We then obtain an
isomorphism:

() Y @) () T2 HgV(Z) T(Q) = TV(Q)(I) =T(Q).

We will say that the pair is compatible with a and " if grO n = B, and if gro V() =pBv.
Write ISﬂ(H g (Z), 7A"(Q)) for the sheaf over S that assigns to any S-scheme 7T the set of
pairs (n, u) as above that are compatible with A, W,-filtrations, & and a".
Observe that K¢ C Qo (Af), acts naturally on this sheaf via right composition: (n, u)-k =
(mok,uov(k)). A Kg-level structure on (Q, A, a,a") is a section:

s € HO(S, Isom(H®(Z),T(Q))/Ks).

(&)~
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Leth (®) be the stack of groupoids over QQ parameterizing, for each Q-scheme S, the cate-
gory of tuples (Q, A, a, ", ), where (Q, 1) and ', ™! are as above, and ¢ is a Ko-level
structure.

2.2.4. — There is a canonical tuple (. A, a, ", &) over Shg, (Qe. Da)c, and thus a canon-
ical map of C-varieties Shx,(Qo. Do)c — EK(Q)@, constructed as follows:

First, applying the construction of (2.1.8) to the representation H with the lattice
H8(Z) < H(Q), we obtain a variation of mixed Z-Hodge structures Hypg(®)z over
Shk (Qa, Da)(C) of weights (—1, —1), (—1,0), (0, —1), (0, 0).

Applying the same construction to the 1-dimensional representation associated with the
similitude character v : Q¢ — G,,, we obtain a variation of Hodge structures of rank 1,
which, arguing as in [56, 3.16], one can show to be canonically isomorphic to 1(1).

Here, given a smooth complex analytic space S, 1(n) is the variation of Q-Hodge struc-
tures on § whose underlying local system is Q and whose weight filtration is concentrated in
degree —2n. We will write 1 for 1(0). The obvious lattice Z C Q refines 1(n) to a variation
of Z-Hodge structures 17(n).

The Qg-equivariant pairing ¥ : H x H — Q(v) now gives rise to a polarization of
variations of mixed Hodge structures:

(2.2.4.1) Hyu(®)z x Hyu(P)z — 1z(1).

Thus, using the equivalence of categories between polarized 1-motifs over Shg, (Q o, Dao)c
and polarized variations of mixed Z-Hodge structures of weights (—1,—1), (—1,0), (0, —1),
(0,0) over Shk, (Qe. Do)(C) [16, 10.1.3], we obtain a canonical polarized 1-motif (§), 1)
over Shg, (O, Do)c, whose homology, as a polarized variation of Hodge structures, is
identified with Hyg(®)z. In particular, we have a canonical identification f(Q) = H5(®).

Since Q¢ acts trivially on grf’ H and gr)/ HV(v), we obtain canonical trivializations:

a: gl HE(Z) S gl Hyu(®)z = Q% o¥ - gV HY5(Z)(v) S erll Hyn(®)V(1) = Q¥

Moreover, by (2.1.9.4), we have a pair of canonical trivializations:
. g7\ — 7 . 7 =5
n: HH(Z) — T(Q)|Sh(QcI>,Dq>)C yuiL— Z(l)|Sh(Q<I>sD<I>)C
compatible with A, W,-filtrations, @ and «". The Kg-orbit of (1, u) now determines a canon-
ical Kg-level structure ¢ on (Q, A, o, ") over Shgy (Qe, Do)c.

2.2.5. — Standard methods now show that ?K(dD) is representable by a Q-variety, and
checking on C-points shows that the map Shg, (O, Do)c — EK(CD)C is an isomorphism.
See [56, Ch. 10] for an illustration of this in a related scenario, and also further below in this
subsection, where we consider integral models for Shx, (Qe. De) in the situation where
H (Z) has discriminant 1.

In fact, this isomorphism realizes EK(CD) as a canonical model for Shx,(Qe, Da)(C).
For this, note that, by [14, Théoréme 4.21] the canonical model Shg, ,(Gon, Do)
for Shg,, ,(Gon. Do y)(C) is the moduli space of triples (B, 220 g8y over Q-schemes S,
where (B, A??) is a polarized abelian scheme over S and

£ € HO(S, Isom(gr”, HE(Z), T(B))/Ka )
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is a Ko p-level structure on (B, A20) (the definition of such a level structure is essentially a
special case of the one given above for polarized 1-motifs).

There is a canonical map EK(CD) — Shg,, ,(Gon. Do) that takes a tuple (9, A, .V, ¢)
to the triple (9™, A%, %), where ¢2® = gr”, ¢ is the K¢ j-level structure on (™, A2b)
induced from e.

Therefore, given the characterization of canonical models described in (2.1.12), it is
enough to show that the system {E}d@)} as K varies is equivariant for the action of Qo (Af).
For the transition maps EKI (®) — E‘}Q (®) for K; C K>, thisis clear: Any K ¢-level struc-
ture on (¢, A, o, @) naturally also induces a K g-level structure. The remaining instances
of equivariance will be described in the next paragraph.

2.2.6. — Suppose that we have two clrs &; = (P, X1+, g1) and ®, = (P, X2+,g2); and
y € G(Q).q € 0o, (As) with®, L% &, andy-P, = P,.Then, from (2.1.15), we obtaina

natural isomorphism of mixed Shimura varieties ShK4>1 (Q,.Da,) = Sth)2 (Qo,.Do,).
This has the following analog for the moduli schemes considered above.

First, observe that we have yg; = ¢ggxk, for some k € K. Therefore, multiplication
by y !¢ produces isomorphisms:
= vl = = r~lq =
H#(Z) — H#'(Z) ; H&2Y(Z)(v) — HSVY (Z)(v).

This isomorphism has the property that it preserves W,-filtrations. Moreover, since ¢ acts
trivially on gr}¥ H and gr/ HV(v), the induced isomorphisms of the associated graded
objects restrict to isomorphisms of Z-modules:

—1 —1
erll HE2(2) = gl HO'(Z) 1 gy HE>Y(Z)(v) > grf HEWYV(Z)(v).

Let (Q,A,a1.ay,e1) be the tautological tuple over Sthn (Qo,.Da,). Then we obtain
isomorphisms:

o g HE(2) “5 e HONZ) > Q%
—1 aY
oy : gy HEY(Z)(v) = grlf HSY(2)(v) —> Q™.

Given an ?K(dh)-scheme T and a section (n,u) of Isom(Hgl (’2), /T\(Q)), the pair
(10 (y~'q). ) is a section of Isom (H#2(Z). T (). Therefore, from &, we obtain a canonical
Kg,-level structure &, on (4, A, oS, aY).

The tuplg (O, A, az, a0, &2) over EK((DI) is precisely the one corresponding to the isomor-
phism with &g (P5).

This completes the proof of Hecke equivariance and shows that we have a canonical
isomorphism of Q-schemes:

(2.2.6.1) Sh e (Qo. Do) — Ex(®).

From now on, we will freely use this isomorphism as an identification.
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2.2.7. — Recall that in (2.1.11), we defined the torus Eg (®) with cocharacter group
Bk (@) = (We(Q) N Ko,w)(—1).

We will now describe it explicitly. Let (Pg(0), De(0)) be as in loc. cit., so that
P3(0) = Wg x Gy, In our situation, we can describe this pair as a rational boundary
component for a particular Siegel Shimura datum. Namely, set H(0) = grl/ H & W_,H,
and equip it with the symplectic pairing ¥ (0) induced from . Let (G(0), X(0)) be the
Siegel Shimura datum associated with this symplectic space. Then (Pg(0), De(0)) is a
rational boundary component of (G(0), X(0)) associated with the Lagrangian subspace
W_,H C H(0).

There is a natural lattice:

H(0)(Z) = gt H8(Z) ® W_H&(Z) C H(0).

Let P(0) ¢ GSp(H(0),¥(0)) be the parabolic subgroup stabilizing W_, H. Set ®(0) =
(P(0), X(0)T, 1), where X(0)T C X(0) is the connected component determining the same
element of ST(0) as Xt (cf. 2.2.1). This is a clr for (G(0), X(0)). Let K(0) C G(0)(Ayr) be
any compact open whose intersection with Pe(0)(Ar) is Kow x v(K).

The variety Shg(0)g)., (Ga(0).h> Da(o),n) 1s the O-dimensional Shimura variety
Shv(K) (Gm, S:t(o))~

From the discussion in (2.1.11), we find that Ex (®) % Shg (04,5 (Ga(0).n> Do(0),n) can
be canonically identified with the mixed Shimura variety Shg(0)q,, (Q#(0), Pa(0))> to which
we can give a moduli interpretation via (2.2.6.1). Namely, it is the moduli space of tuples
(9(0), A(0). a, ¥, £(0)) over Q-schemes S, where ((0), A(0)) is a polarized 1-motif over S,
« and oV are exactly as in (2.2.3), and

£(0) € HO(S, Isom(H (0)(Z), T(Q(0)))/K(0))

is a K(0)-level structure on (§(0), A(0), o, ™).

The canonical section Shg (0) o) 4 (G@(0).> PD@(0),h) = ShK(0)g0) (Q@(0), Da(0)) iInducing
its trivialization as an Eg(®)-torsor is also easily described: It corresponds to the split
I-motif

(e HE (@) > Hom(W_, HE(Z). Gy).
equipped with the obvious trivialization of its Tate module.

2.2.8. — We can use the above description to give a moduli interpretation to the action
of Ex (®) on Shk,(Qa, De). This amounts to giving an action of Shk (o), (2 a(0), Da(0))
on Shg,, (Qe, Do) over Shg(0)g )., (Go(0).h: Da0).1)-

Suppose that we are given a Q-scheme S and a pair of tuples
((Q(0),2(0), 2(0), ¥ (0), £(0)), (@, A, v, ¥, &)
€ Shk(0)p0) (Q2(0)> Da(0))(S) X Shiy, (Qa, Da)(S).

The image of this tuple (@', X, &', ('), ¢') in Shx,, (Qe, De)(S) under the natural action
can be described explicitly.
The isomorphisms «(0) o ! and & (0) o (a¥)™! allow us to identify:

Qét — Q(O)ét; Qmult,C — Q(O)mult,c’
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in a manner compatible with the maps At and A(0)%'.

So the 1-motif ¢ is a tuple (Qab, Qét, Qmuh,c, ¢¥, 1), and the I-motif Q(0) is a tuple
(0, Qét, Q™",0,0,7(0)). Here, 7(0) is a trivialization of the trivial G,,-bi-extension of
Qét X Qmult’c. The 1-motif @' is now associated with the same tuple as ¢, except that the
trivialization 7’ is now t(0)z.

As for the remaining data, by construction, we have canonical identifications Q/’? = Q?,
for ? = ab, ét, mult. Therefore, the tuple (Aab,ké‘, )&mult’c) still defines a polarization A’
on ¢, and @ and & induce in an obvious way the isomorphisms o’ and V.

First, observe that both £(0) and ¢ determine a v(K)-orbit of isomorphisms Z = Z(l);
equivalently, they determine a point in Shg ()4, 4 (Go(0),n> Da(0),n)- Since our tuples, by
assumption, lie above the same point in Shg ()44 (G@(0).h> Da(0),1), it follows that they
determine the same v(K)-orbit. In particular, we can assume that £(0) and & admit lifts

(1(0),u(0)) € Isom(H (0)(Z). T(Q0))) ; (1.u) € Isom(H*(Z), T ()
with u(0) = u.
T\(Q(O)) is canonically an extension of grgV T(Q) by W_ZYA"( @), and its push-out along
the inclusion

J i WaT(Q) = WaT(Q
gives an extension j 7 ( Q(0)) of gryf T( Q) by Wi T( ). By construction, T( Q') is canon-
ically isomorphic to the Baer sum of 7'(¢) and ;.7 (Q(0)) in the category of extensions
of grff f(Q) by W_I?(Q).

Similarly,A HS (Z) is canc)\nically isomorphic to the Baer sum with the trivial extension
of gr(‘;V H&(Z) by W_1 H8(Z). Therefore, the Baer sum of n and j.7(0) now determines a
canonical isomorphism:

' H8Z) = T(Q).

The Kg-orbit of (1, u) now gives us the level structure ¢’.

2.29. — Let (§,A) be the tautological polarized 1-motif over Shk,(Qe.Ds). The
7Z-sheaf Hz(®) over Shg,(Qe. De)c, along with its weight filtration and polarization
pairing, has a canonical descent over Shg,, (Q @, Do) realized by the total Tate module f( Q):
We will sometimes denote this descent also by Hz(®).

Now, consider the analytic vector bundle ﬁ;‘}‘}]% (0e.De)c) © Hb (®) over
Shg 4 (O, Da)(C): It is equipped with an integrable connection, a parallel weight filtration,
a Hodge filtration, and a non-degenerate polarization pairing with values in the structure
sheaf. The de Rham realization of ¢ (or rather, its dual) gives a canonical descent Hyg (P)
over Shx, (O, Do) of this vector bundle, along with all its additional structures.

In the particular case where ® = (G, XT,1), Shg, (Qe, Do) = Shg is the Siegel
modular variety itself, and we obtain the usual moduli interpretation of Shg as the space
parameterizing triples (A4, A, &) over Q-schemes S, where (A4, A) is a polarized abelian scheme
over S and

e € H°(S, Isom(Hjz, T(A))

is a K-level structure on (4, A).
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In this case, we will omit the ® from our notation for the sheaves over Shg, and simply
write Hg, Hyn, Hz, Hyr, for the sheaves Hp(®), etc.

2.2.10. — We will identify We(R)(—1) with Wg(R) via the choice of connected compo-
nent X determined by ®: This also identifies H(®) with the cone of positive definite
symmetric bilinear forms on gr}¥’ H(R). Fix a rational polyhedral cone 0 C W (R), satis-
fying 6° C H(®). Then we have the associated twisted toric embedding Shg, (Q¢, Do) —
Sth)(Qcp, Dy, o) over Shﬂp(@@,ﬁq)). Let Zko(QOs, Do,0) C Sth)(Qq;., Dg,0) be the
closed stratum.

Given a point s of Zg,(Os, De,0), write R(®,0,s) for the complete local ring
of Shx,, (Qa. Do, o) ats. Set S := S(P, 0,5) = Spec R(P, 0, 5), and

V:=V(®,o0,s) = S(P,0,s) XShi g (O, Dap,0) Shg, (O, Do) C S(P,0,5).

Consider the polarized 1-motif (¢), /1)|V over V obtained from the restriction of the
tautological one over Shg, (O®, Do). The condition that o C H(®P) ensures that this object
satisfies the positivity condition in the definition from (1.2.1): Indeed, it implies that for any
divisor D’ C S with support in S\V, the symmetric bi-linear pairing (y, x) — vp/(z(y, x))
lies in the closure of H(®) within Wg(R), and thus is positive semi-definite.

Therefore, in the notation of (1.2), (&, A)|V is an object in DD61(S, V). In particular, by
the equivalence of categories in (1.2.2), there exists a canonical polarized abelian scheme
(cA(D,0,5), (D, 0,s)) over V with semi-abelian extension over S such that:

Ms,1) (P, 0.5). ¥(D,0.5))) = (Q. 1),

For simplicity, set ¢#, = #(®,0,s) and ¥’ = ¥ (®,0,s). Using (1.2.2.1), we have a
canonical isomorphism of total Tate modules over V:
(2.2.10.1) T(Q), = T(Hy).
This respects the Weil pairings on both sides induced by the respective polarizations.

Suppose now that we are given a section (1, u) € H°(S, Isom(HZg, ?(Q))); then we obtain
an isomorphism:

5 ~ ~ ~ (2.2.10.1) ~
i H(Z) = H* () = T(Q)|, —— T ().

The pair (7. u o (N(g)v(g))) is now a section of Isom(H (Z), T (Zy)).

From this, we deduce that the tautological K¢-level structure ¢’ on (), 1) produces in a
canonical way a K-level structure n’ on (#y,, ¥').

Therefore, using the moduli interpretation of Shg, we obtain a canonical map:
(2.2.10.2) i'"(®,0,5) : V — Shg

corresponding to the triple (Zy, ¥/, 7).
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2.2.11. — Now, suppose that we have an admissible rpcd X for (G, X, K) witho € (D). Set
T = [(®,0)] € Cuspz(G, X).

By (2.1.20), A% (®) is trivial, and so Zg () is canonically isomorphic to Zg, (Q ¢, Do, 0).
Under this isomorphism, the point s € Zg,(Qe, Do, 0) corresponds to a point s’ € Zg ()
C ShZ.

By (2.1.27), §}\1K¢(Q¢, Dg) is canonically isomorphic to the completion of Sh,% along
the stratum Zg (7). Here, @KQ(Q@ Dg) is the completion of Shg,(Os, De) along
Zke(Qao. Do, 0). Therefore, there is an identification of R(®, o, s) with the complete local
ring of Sh,z( at s’. This gives us a map S(®,0,s) — Sh,z(, whose restriction to V(®, o, s)
factors through Shg thus giving us:

(2.2.11.1) i(®,0,5):V — Shg .
This map corresponds to a triple (¢#Zy, ¥, n) over V.

2.2.12. — Consider the complex analytic open subspace Ug, (O, Do) C Shix,(Qe, Ds)(C),

2.1.13.2
equipped with its local isomorphism Uk, (Qe, Do) ; Shg (C).

Over it, we have the polarized variation of mixed Z-Hodge structures HMH(<I>)Z|UK (Oo.Da)"
»Qo,

By the description of the map X* — Fp y+ = Do in (2.2.1), we find that, if we forger the
weight filtration on this variation of mixed Hodge structures, the remaining data form a
polarized variation of pure Hodge structures of weights (—1,0), (0, —1). By construction,
this is simply the restriction of Hmu,z via the map (2.1.13.2). In particular, we obtain a
canonical isomorphism of Z-sheaves:

(2.2.12.1)
T(Q)|UK¢(Q<I>,D<I>) - Hz(q))lUch(QCD’D(D) - HZ|UK<D(Q<I>5D<I>) - T(C%)|UK¢(Q<I>,D<1>)'

Suppose now that s belongs to Zx, (Qe. Do, 0)(C). Then the field of rational functions
O (V) on V (which is also the fraction field of R(®, 0, s)) contains the field of meromorphic
functions on a small neighborhood of s in Ug 4, (Q®, Do, o). Therefore, (2.2.12.1) gives us a
canonical isomorphism of sheaves over V:

(2.2.12.2) T(Q), = T(y).

Combining (2.2.12.2) with (2.2.10.1) gives us a canonical isomorphism of total Tate
modules:

(2.2.12.3) T(Hy) — T(Ay).
ProPOSITION 2.2.13. — The isomorphism (2.2.12.3) arises from a unique isomorphism

(Hy ' 1) = (Hy.¥.1)
of triples over V. In particular, the maps (2.2.10.2) and (2.2.11.1) are identical.
Proof. — The existence of the isomorphism follows from the main technical result
of [37], and comes down to a comparison between the algebraic and analytic defini-

tions of theta functions; cf. in particular, Prop. 4.2.2 of loc. cit. However, we can sketch
a direct proof here. Set Y = gr!V H&(Z); then, restricting ¢ to Ug,(Qo, Do) gives us a
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1-motif [¥ EN Qsab

sab
of Q |UK¢,(Q<1>=D<I>)
tion over Uk, (Qa, Do, 0).

]|U1<q, (Oo.Da)" By construction, C%|UK¢ (0e.De) 1S the analytic quotient

by j(Y). It is easy to see that this quotient has semi-abelian degenera-

This immediately implies that ¢#; has a semi-abelian extension over S(®,o,s), and
that the formal completion of this semi-abelian extension is canonically isomorphic to that
of Qsab

i \4 : : V,sab . . .
Similarly, the dual 7 |U1<q, (Oe.De) 1S 2 quotient of ¢) , which is classified by the

projection of j onto Qab.

In particular, ¢7Zy is an object of DEG(S, V'), and by the equivalence in (1.2.2), corres-
ponds to an object in DD(S, V) of the form

J’ b
Q/ — [Y = Qsa |V]
The proposition amounts to the equality j = j'.
Now, the projection of j’ onto Qab|V must agree with that of j. Indeed, this projection

also classifies the semi-abelian scheme Qsab’V|V. Therefore, j and j’ must differ by a map

f:Y —> Qm“1‘|V, which determines a 1-motif Q(0) over V with Q(0)?® = 0. Note that f is
determined by a pairing 7o : ¥ x X — Gy, v, where X = gr(v,V H&Y(Z)(v). We have to show
that this pairing is trivial.

Putting together (2.2.10.1) and (2.2.12.2) gives us a canonical isomorphism
T\(@W 5 T( Q') as an extension of ¥ ® Zby T( Qsab). In turn, this implies that 7'( Q(0))
must be the split extension of ¥ ® Z by Hom(X, Z(l)) over V.

Now, the only global sections of ¢} admitting n''-roots in &} for alln € Z-q are
the constants. From this, and the explicit description of 7’:( ©(0)) in terms of the pairing 7o
(cf. (A.1.2)), we find that it can be a split extension if and only if 7¢ takes values in C*.

Therefore, to show that 7o is trivial, we can restrict to a small unit disk around s
in Ugy(Qa, Do.0), and so we can replace R with C[|¢]], and V' with SpecC((¢)). In
this case, by [20, Ch. 111, Prop. 8.1], there is a natural quotient map:

Q@ (C() = v (C(@)).
whose kernel is j’(Y). On the other hand, the analytic construction gives us another such
quotient map whose kernelis j(Y'). Arguing as in [38, 4.5.5.3], one checks that both quotient
maps are actually equal. In particular, j and j' = j + f have the same image in Qsab|V. This
immediately implies that we must have f = 0.

2.2.14. — Assume now that H(Z) has discriminant 1. Fix a prime p. We will now look at
moduli spaces over Z,) of polarized 1-motifs.

We will consider level subgroups of the form K = K, K?, where K¥ C G(A}’) is neat and
K, C G(Qp) is the stabilizer of H(Z,) C H(Q)). Fix a clr ®: then we obtain an induced
decomposition K¢ = Ko K5, where Ko, C Qao(Ay) is the stabilizer of H8(Z,) C
H(Qp).

We will now, using its moduli interpretation, produce an integral model §'x(Qe, Do)
over Z(P) for Sth>(Qq>, Dq>).
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Fix a Zp)-scheme S and a polarized 1-motif (Q, A), equipped with isomorphisms « and
oV exactly as in (2.2.3). We will require that the map Q¢ — QY- is identified along o and
oV with the map A%t : Y — y’/.(D

If 77 (Q) is the prime-to-p Tate module of Q, in complete analogy with the defini-
tions above, we can speak of the sheaf ISﬂ(H g (i”), ?P(Q)) of pairs of isomorphisms
n? . HE (/Z\P) = ?P(Q) and u? : ZP = Zp(l) that are compatible with A, the filtrations
W, and o and oV

A Kg-level structure ¢? on the tuple (Q, A, %, o™"t) will now be a global section
of Isom(H# (Z7), T?(Q))/ K},

Let &'k (Qo. Do) be the stack of groupoids over Z,) such that g, (Qe, De)(S) is the
category of tuples (Q, A, a,aY, ¢) as above. The restriction of this stack over Q is represented
by Shg o, (O, Do).

In fact, we will see below that §'k, (Qe. Do) is itself represented by a smooth quasi-
projective scheme over Zp).

If @ is a clr of the form (G, X T, 1), then the associated Z,)-scheme ke (Qs. Do) isan
integral model for Shg, and we will denote it by k.

2.2.15. = Let Skg,(Gon. Do) be the moduli space of triples (B, A%,e7%%) over
Z(p)y-schemes S, where (B, A%) is a principally polarized abelian scheme over S, and
gPisa K é ,-level structure on (3, A20)); that is, a section

7 e HO(S, Isom(gr”, H(ZP).T?(B))/K% ).

By [53, Theorem 7.9], Sk, , (Go.n, Do.n) is represented by a quasi-projective scheme
over Zp), which we denote by the same symbol; its smoothness amounts to the fact that
the deformation problem for principally polarized abelian varieties is formally smooth; for
instance, cf. [11, Corollary 2.12].

The generic fiber of Q?KcM (Go,p, Do) is Shgy, ,(Gap, Do ,p): This amounts to seeing
that, over a Q-scheme S, giving a Ko j-level structure is equivalent to giving a KJ ,-level
structure. This in turn follows from the fact that the p-primary part Ko , of K¢y is the
hyperspecial compact open subgroup:

Konp = GSp(er?y HE (Zp). gy ¥¥) € G(Qp).
2.2.16. — We will now see that we have a tower 3k, (09, Do) — JSx, (Qg. Do) —
Skop(Gon Don), where S, (Qo. Do) is a Zy)-model for Shg, (Qs, Do) mapping

smoothly onto §g,, , (Gen. Dop), and Sk, (Qa, Do) is an Ex (P)-torsor over $g, (Qg. Do)
To construct QS”KD (0. Do), consider, for any S ko, (Gon, Do p)-scheme S, a 1-motif

C
Q, = lerg H(Z) > B4
over S.
Let I(¢),) be the étale sheaf over S parameterizing pairs (7%2%P yP) of isomorphisms:

sab,p . ﬂg (/Z\p)

~ o~ ~Ap ~ AP
e = TQ);u?:Z SZ (1),
W_o HE (ZP) <

(D Tn characteristic 0, this condition was implied by the existence of level structures.
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satisfying the following conditions:

— %P preserves W,-filtrations;
— the composition
el HE @) ———— T/ () = el HE(@7)
grO nsab,l)
is the identity;
— the induced pair (gr™} 7, u?) is a section of Isom(gr”, H&(Z?), T?(B)).
There is a natural action of Ef; on I(¢),) via right composition, and a fg-level structure
on ), is a section:

P e H0(S,1(9,)/K5).

Note that every fé’,-level structure on ¢); induces (via the gr™| operation) a K g’ p-level
structure on (B, )L"‘b)|s.

o Ko (O . Do) will now be the moduli space over & Ko (Gon, Dop) parameterizing
pairs (&), %207 inducing the tautological K g, p-level structure on (B, /\ab)| s

We can also define a canonical abelian scheme ¢Zx(®) — Sk ,(Go.n, Do.n) extending
Ag(®) — Shgy, , (Go,n. Do ). This will be defined just as équ)(Qq,, D g) was, except that
I1(Q,) will be replaced with the sheaf Io(Q), ) parameterizing pairs (n%?, u?) with u? as usual,
and n%? an isomorphism:

0" e HE(ZP) @ gy HE(Z7) = T(Q,).
The pair (n%?,u?) is required to satisfy the same set of conditions as a section of 1(9)).
A (®) will now classify pairs (¢, , £-°), where e7- is a section of Io(9,) /(K gy X K ;).

As in (2.2.8), we can define natural actions of ¢Zg(®) on itself and on & Ko (0g. Do)

using Baer sums. The split 1-motif [gr(v,V HE(Z) 5 ABl, equipped with the natural trivial-
ization of its Tate module, provides us the identity section &g, on(Gon, Dop) — Ag (D).
This makes ¢#x(®) an abelian scheme over gy, , (Gon. Dop), and Sx (0p.Dg) —
S Ko (Gon, Do p) atorsor under o7k (P).

In particular, & Ko (Q 4. Do) is relatively representable and smooth over g o (Gon Do)

Using the methods of (2.2.4) and (2.2.5), it is not hard to see that the generic fibers
of §%,(Qs.Do) and Hx(®) are precisely Shg, (Qg. Do) and Ax(®), and that the
induced action of A (®) on Shg (0. Do) is the canonical one.
2.2.17. — Finally, we will describe the Eg (P)-action on §'k,, (Qe. Dg), and will leave it to
the reader to check that this makes it an Ex (®)-torsor over S, (Q ¢, D o).

In the notation of (2.2.7), one has the moduli schemes

Shi(©0)e) (Q@0)> Do) ; Shk©)p0).4 (Go©).h Do().h)-
From the discussion above, they both admit integral models
SK©O w0 (220): Do) i & K©O)aw0).. (To0),hs Dao),h)
over Zp). Infact, $'k(0)g (o)., (Co(0),h- Do), is the finite étale Z(,)-scheme parameterizing

v(KP)-orbits of isomorphisms 2° — 2" (1).
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The section ShK(o)(D(O).h (Gq;(o)’h, D<I>(0),h) — SK(O)@O) (Qq;(()), Dq>(0)), defined in (2.2.7)
using the split 1-motif, immediately extends to one over & x(0)q () 5 (Go(0).h Da(0).n)> and
so identifies

S KO a0 (Q20): Da©) = Ex(P) X §k(0)g 0.4 (G2(0).15 Do(0).1)-
The level structure £7+2° on (B, A2P) gives a morphism

Skon(Gon Don) = SK©O) o0 (Co0).h Do0).n);

and, as in (2.2.8), one easily checks that there is a natural action of the moduli scheme

S KO a0 (Qo0): Do) 0N ke (Qa. Do) 0Ver Sk(0)q ()., (Go(0),h: Dao),n), Which can be
described using Baer sums.

2.2.18. — Suppose that we have two clrs &; = (Pl,XlJ”,gl) and ®, = (P, X2+,g2); and

y € G(Q).q € 0a,(As) withd; Z2% @, and y- P, = P,. Then the moduli interpretation

of the induced isomorphism Shk, (O, De,) = Shgg, (Qe,. De,) from (2.2.6) shows
that it extends to an isomorphism

(22.18.1) P(.)  Sko, Q1. Do) = Sko, (Q. Do)
We leave the details to the reader.
2.2.19. — We now review the arithmetic theory of compactifications of &g developed by

Chai and Faltings in [20]. The only thing of (minor) note is that we present their results
entirely in the adélic language.

As in (2.2.10), for any rational polyhedral cone ¢ C Wy (R) satisfying 6° C H(®),
we can consider the twisted toric embedding Sk, (Qe. Do) — JSku(Qe.Do.0)
over 3, (Qs. Do). Let Zks(Qa. Do, 0) be the closed stratum in §x,(Qs. Do, 0).
Given a point sg of Zky(Qa, Do, 0), write R(®, 0, sg) for the complete local ring of
ke (Qa. Do, 0) at sg, and set:

S = S(P,0, sg) = Spec R(®, o, sg); Vv
= V(®,0,585) = S(0.0.5) X5, (00.Da.0) S Ke(Qa: D).
Exactly as in loc. cit. the polarized 1-motif (¢), 1) ly produces a canonical polarized abelian
scheme (A(®, o, sg), v (P, o, sg)) over V', and produces a map:
(2.2.19.1) i(®,0,50) : V(®.0,58) > Sk.

Using (2.2.18), we find that, if we have another cIr " and y € G(Q), ¢ € Qo(Ar) with

) L)k, @' and y - P = P’, then there exists an isomorphism

p(1.4) : Zko(Qs, Do, 0) — ZKe (Qar.Dar.0"),

where 0/ = y(0). In particular, the scheme Zk,(Q®, Do, 0) depends only on the class T
of (¥,0) in CuspIE((G, X). We will therefore denote it by Zg ().

The next theorem follows from [20, Ch. 1V], [38, 6.4.1.1] and (2.2.13).
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THEOREM 2.2.20 (Chai-Faltings). — Let ¥ be a smooth admissible rpcd for (G, X, K).
Then the open immersion Shg ShIE< over Q extends to an open immersion of smooth
Zpy-schemes S — & IE( with the following properties:

1. Forevery Y € Cusplrg (G, X), the immersion Zg(T) — Sh,% extends to a locally closed
immersion
Zx(Y) = .
2. The stratification (2.1.27)(2.) extends to an integral one:

% =] Zx .
T

For any fixed Y, the closure of Zx(Y) in & Iz{: is the closed subspace:
Zr(0) = || Zx(.

/<Y

3. Given Y = [(®,0)], let 3K¢(Q¢, De, o) be the formal completion of &'k, (Qa, De.0)
along Zko(Qo. Do, o). Then the isomorphism between Zgo(Qo, Do, o) and Zx(Y)
lifts to an isomorphism of formal algebraic spaces:

Ske(Qe. Ds.0) = ()7, (1)

restricting to the one from (2.1.27)(3.) in characteristic 0. This extension is characterized
by the following property: Given a point sg of Zko(Qa, Do, 0), with corresponding point
so of Zk (), consider the induced map:

Spec R(D, o, sg) = Spec ﬁSz%aS6 — 05”,2(

The restriction of this map to V(®, o, sg) factors through &g and is identified with
i(®.0,58). O

3. The local structure at the boundary of a Shimura variety of Hodge type

We will fix a prime number p for the entirety of this section. The goal is to prove the main
technical Theorem (3.4.3) on the local structure at the boundary of an integral model for a
Shimura variety of Hodge type over a p-adic place of its reflex field.

3.1. Shimura varieties and absolute Hodge cycles

This subsection is a direct generalization of the first part of [32, §2]: We are simply
transposing the results from the world of pure Shimura varieties (of Hodge type) and abelian
varieties to that of mixed Shimura varieties ! and 1-motifs.

We will fix a Shimura datum (G, X) of Hodge type. This means that it is equipped with
an embedding into a Siegel Shimura datum

11 (G, X) < (GSp(H),S*(H)),
which we will also fix.

(12) We will only be considering mixed Shimura varieties attached to rational boundary components of pure ones,
but our discussion should apply just as well to arbitrary mixed Shimura varieties of Hodge type.
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Set G¥ = GSp(H) and X* = ST(H). Let E = E(G, X) be the reflex field of (G, X).

Suppose that K* ¢ Gi(Af) and K C G(Ay) are neat compact open subgroups with
K C K%,

For the remainder of this section, we will always assume that H and K* have been chosen
so that H admits a self-dual lattice H(Z) such that H (Z) is stabilized by K and such that
K; C Gi(Qp) is exactly the stabilizer of H(Zp).

Itis not possible to arrange for the existence of such a lattice for every choice of symplectic
representation H; however, using Zarhin’s trick, one can always ensure it after replacing H
with H®8,

The main reason for this restriction is that we need to apply the theory of (2.2.19).

3.1.1. — Suppose that we are given a clr ® for (G, X), with ®¥ = 1, ® the corresponding clr
for (G*, X*). The notation here is as in (2.2.6).
We then obtain a map of mixed Shimura varieties: Shx,, (Qe, Do) = E @ Shyp: (Qgt, Dot).
for

In particular, restriction along this map gives us a 1-motif Q(®) over Shg,(Q®, Do). In
the language of [9, §2.2], this 1-motif is equipped with a certain family of absolute Hodge
cycles, which we will now describe.

Let {s4} C H(Q)® be a family of tensors such that G C GL(H) is their point-wise
stabilizer. For each index «, via the functor in (2.1.8), we then obtain a canonical map of
mixed Hodge structures sq,¢ : 1 — HSH(CI)). In particular, we obtain canonical sections:

Sa,®,B € HO(ShKCD(Qcp, Ds)(C), Wng(dD));
Su.d.ar € H(Shiy (Qo. Da)(C). FOHS (®) N WoHS ()"~
Sa,®,ét € HO(Sth)(Qq), Dg)(C), WOH@ (q)))

The latter two are identified with 1 ® s4,¢,5 via the canonical comparison isomorphisms
between the Betti and de Rham (resp. étale) realizations.

ProprosITION 3.1.2. — 1. For each a, sq,0,4r descends to a section of Hfl’{(cb) defined

over Shg, (Os, Do).
2. For each a, sy ¢ ¢ descends to a section of H@ () defined over Shx, (Qo, Do).

Proof. — When @ = (G, X%, 1), and Shg,, (Qe, Do) is a pure Shimura variety of Hodge
type, this is deduced in [32, (2.2)] from Deligne’s theorem that all Hodge classes on abelian
varieties over C are absolutely Hodge [18, Ch. I, Theorem 2.11]. The same proof applies
in our setting, except that we have to replace the use of Deligne’s theorem with the result
of Brylinski that all Hodge classes on 1-motifs over C are absolutely Hodge [9, Théoréme
(2.2.5)]. O

3.1.3. — We now specialize to the case where ® = (G, X *, 1). The 1-motif Q(®P) in this case
is simply an abelian scheme /7. As usual, in this case, we will omit ® from the notation for
all the cohomological cycles we have defined above.

Suppose that F is a finite extension of E,, where v|p is a finite place of E, and suppose
that x € Shg (F). Then we have the de Rham comparison isomorphism

Bar ®F Higr(Hx/F) = Bar ®q, Hélt(ﬂxj,(@p)
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PROPOSITION 3.1.4. — Under this isomorphism, Sq dr x is carried to Sy gt x-

Proof. — This is the main result of [5], which applies directly when ¢7, is in fact defined
over a number field. For the generality we need, as pointed out in [48, 5.6.3], we can either
appeal to a trick of Lieberman as in [60, 5.2.16], or we can directly use the fact that ¢/, arises
from the family ¢# defined over the number field E. O

3.1.5. — Theclr ® will again be arbitrary. Fixo C Wg(R)(—1) with 6° C H(®). Fix a point ¢
in Zx,(Qe. Do, 0), and let R(P, o, ¢) be the complete local ring of Shg, (Q, Do, o) at t.
Set

V=V (®,0,t) = Spec R(D,0,t) XShg g (Qa, Dp,0) ShK¢(Qq>, Dy).

There is a canonical 1-motif §) = Q(CI>)|V over V, equipped with additional tensors

Gawe) CHO(V.Ar @ T(Q)®): fswoar} € HO(V, HiR(9)®).

Via the isomorphism Zg, (Qs, Do, 0) 5 Zk (), we obtain a point ' € Zg(Y) (where
T = [(®.0)]) and an identification of R(®, ¢, ) with the complete local ring of Sh¥ at ¢’.
Through this, we obtain a map V(®, 0,t) — Shg, and thus an abelian scheme ¢7# over V,
equipped with additional tensors

{Sait) CHO(V.Ar @ T(A)®); (swa.ar) C HO(V, Hig (H)®).

We also have canonical isomorphisms

T(Q) = T(A): Hip(Q) = Hlx ().

PROPOSITION 3.1.6. — The two isomorphisms carry, for each o, sy @ st 10 5o 6t (Y€SP. Sa,@,dR
to Sot,dR)-

Proof. — We can assume that ¢ is C-valued. By (2.2.13), we can identify the isomorphism

T(Q) 5 7"\( o#) with the analytic one arising from (2.2.12.1). For the latter, the proposition
is clear by construction. A similar argument works for the de Rham realizations as well. [

3.2. The canonical log F-crystal and its properties

For the rest of the section, we will fix a clr ®* for (G*, X*). We will use the choice of

isomorphism of Hodge structures Q 5 Q(1) determined by X*7 to identify W (R)(—1)
with We: (R).
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32.1. — Let ¥ C Wg:(R) be a rational polyhedral cone with o+° < H(®*). Given

a point s;*; € Zi(dF, 0*)(@,,), let R(o*, sg) = R(®* o, sg) be the complete local ring

of &gt (Qot, Do, o) at sg, and let R*2° be the complete local ring of Sgt (Qgt. Dgt. o)
ok @F

at the image of sg. Set S(ai,sg) = Spec R(ai,sg) and let V(Ui,sg) C S(ai,sg) be the

complement of the boundary divisor.

Let Q(oi, sg) be the tautological object in DD(S (0%, sg), V(o#, sg)) determined by the
natural map V(o¥, sg) — E,and let Z(o*, sg) be the corresponding object of DEG(S (o, sg),
V(o*, sg)) associated with it via the equivalence in (1.2.2).

Set X = grgV H&(Z); then the perfect pairing

Ve H8(Z)x H8(Z) — Z
identifes gry/ HY*8 (v) with gry/ H8(Z) = X.
We have canonical identifications

Q(Ui,sg)ét — Q(oi’sg)mult,c - X.

Moreover, the abelian part 3 = Q(oi,sg)ab depends only on the image of sg in
o <t (Qot, Dgt,o%): It is equipped with a principal polarization A2®, which we can
oF
use to identify it with 3.
Over R we also have a canonical homomorphism ¢V : X — B = B, which classifies
the semi-abelian part ¢ := @**. This is an extension:

(3.2.1.1) 1 - Hom(X,Gy) —» ¢ — B — 1.

Set U(ot,s¥) = SpfR(ot,s%). Set Ko = W[p~1], and let U (0%, s¥) be the analytic
space over K associated with 0’Z\é(ai, sg) (cf. A.4). We will write @an’o(ai, sg) for the comple-
ment of the boundary divisor in 6Z\éan((fic, sg).

The goal of this subsection is to explicitly describe the log Dieudonné F-crystal
(Jl/l(oi,sg) over R(oi,sg) that is associated with Q(oi,sg). That is, we want to write
down in concrete terms a g-module over R(c*, sg‘ ), along with the logarithmic topologically
nilpotent connection on it.

Also, for later technical purposes, we will need to allow ourselves to change o+ in a way
that replaces R(o¥, sg‘ ) by complete local rings in a combination of blow-ups and blow-downs
of &+ . (Q o, Dgt,0¥). This necessitates a bit of notational and conceptual baggage that

D

the reader can ignore if she so chooses.
3.2.2. — In the notation of (2.1.11), set S = Sg: (®¥), B = Bg1(®¥), and E = E g4 ().
As observed in (2.2.17), we can identify Spec R%%® x E with the scheme over R that
parameterizes principally polarized 1-motifs (§)(0), A(0)) satisfying:
Q(O)ét — Q(O)mult,c =X : Q(O)ab — 0’
and equipped with additional level structures, which will not be essential here.

Equivalently, Spec R%2® x E parameterizes symmetric bilinear pairings:

70 : XXX = Gy
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with some additional structures. In particular, if Eq is the torus, with character group
So := Sym? X, then we have a natural finite étale map of tori:

Spec R%® x E — Spec R*?° x Eq

corresponding to an injective map of character groups Sp — S.

3.2.3. — Let E be the restriction of the E-torsor § .+ (Q g, Dgt) to Spec R _Since R%2b is
ot

strictly henselian, Z is trivializable. Fix an E-equivariant isomorphism:
sab . S sab =
% : Spec R**° xE — E.

In particular, by the discussion in (3.2.2), such a trivialization equips any E-scheme S with
a natural pairing 7o : X x X — Oy corresponding to the identity section of the trivial
Eo-torsor.

Let E — E(o%) be the torus embedding associated with o, and let S(c¥) C S be the
sub-monoid such that

E(o¥) = Spec Z[S(cH)].
Let E(o%) be the restriction of &'+ (Qgt. Dt 07) to Spec R%®.
ot

Then *2° allows us to identify Spec R?® x E(o%) with E(o%). In particular, given a

point sg as above, it gives us a point sy in the closed orbit of E(c%), and an isomorphism

of R%%_algebras:
(3.2.3.1) R®Qy B(ot.s)) = R(ot.sh).
Here, B(o#, s;) is the complete local ring of E(oF) at s;,.

3.2.4. — Suppose that 5+ C o is another rational polyhedral cone that is not contained in
a proper face of o*. Then we obtain a map of torus embeddings:

(3.2.4.1) EGY) — E(ob).

Moreover, under this map, the closed orbit of the target is contained within the image of the
closed orbit of the source.

Twisting (3.2.4.1) by the torsor  produces a birational map of R$2-schemes:
(3.2.4.2) EGH - E(h)

such that the closed stratum Z(c¥) C E(o*) is contained within the image of Z(5%).

If §§ € Z(6%)(F,) is a point lifting sg € Z(o%)(F,), then (3.2.4.2) induces a birational
map of R%*®-schemes

(3.2.4.3) S g1 S@H.50) = S(ot.5p),

carrying V(G%, Eg )into V(o*, sg). This map is compatible with the splittings (3.2.3.1) induced
by the section (%2,
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3.2.5. — Analytifying f.+ +, we obtain a map of analytic spaces
0°°0
~an,0 . _ ~ an,o
fsgsg 2 U (Gi,sg) — U (ai,sg).

This identifies % (5%, 5% with an open subspace of U™ (o1, 5e).

To see this, note that the decomposition (3.2.3.1) reduces us to considering the map
(Spf B(G,5())*™ — (Spf B(a¥, s{))a".

As above, we will use the superscript o to denote the complement of the boundary divisor.
Then every / € S can be viewed as a non-vanishing global function on (Spf B(c*, sg))an"’.

The point 5, determinei >z<1 map of monoids 58 : 8(6) — F,. Let B(h) € W* be the
Teichmiller lift of 55(h) € F,,. Then

(Spf B@*,50))™°  (Spf B(o¥,s8))™°
is the subspace defined by the conditions |k — S(h)| < 1, as h varies over elements in
S@EH* ¢ 8.
3.2.6. — More generally, consider the set
(3.2.6.1) {(ai,sg) . oF C Wgi(R)(~1) rational polyhedral cone
with o¥° C H(®%), and s} € Z(o¥)(F,)}.

We will equip it with the minimal equivalence relation ~ such that (61,55) ~ (oi,sg)
whenever 5% C o+ and §§ maps to sg under the map Z(6%) — Z(o%).

Concretely, this means that (6%, §§) is equivalent to (o*, sg) if two conditions hold: the
intersection 5° N o+° is non-empty; and, with 0/ C Wg: (R)(—1) the closure of 5%° N o ¥°,
there is a point s; € Z(o”)(F,) mapping to Eg and sg under the maps Z(0’) — Z(o*) and
Z(c") — Z(6%), respectively.

By (3.2.5), we can naturally view %/ (o, 5p) as an open subspace of both U 51, 5h

~ an,o . . . . .
and U (o, sg ). We will therefore suggestively denote it as an ‘intersection’:
~an,0 . _ ~ an,o ~ an,o
U (oi,sg) N U (oi,sg) = U (0',sp).

3.2.7. — Fix any Frobenius lift ¢ : R — R%% and equip B(o},s¢) with the Frobenius
lift ¢, : B(co*, sff) — B(o?, sg) induced by the p-power map on S. The completed tensor
product of the two lifts now determines a Frobenius lift ¢ = ¢Q®¢, on R(c¥, sg).
The section R%%® — E determining (*2° gives us a principally polarized 1-motif (QCI, Ah
over R%®. On the other hand, as observed in (3.2.2), 15?® also determines a map & — E, and
thus a pairing
. X X
70 : XXX —=> 0O — ﬁv(ai,sg).
Equivalently, it determines an object Q(0) in DD(S(c¥, s3), V(0% s8)) with
Q(O)ét — Q(O)mult =X : Q(O)ab =0.
The pair (QCI, Tp) is now an object in ﬁB(S(ai, sg‘), V(o#, sg)); cf. (A.1.8). In the notation
of loc. cit., we have a canonical isomorphism:

1 ~ 1
B(S(oi,sg)’v(gi’sg))((@,ro)) = Qo*, sd).
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Set M(o, 53) = D(H(ot.s5))(S(oF,s8)) and M (0%, 5§) = D(Q)(S(0*, 5¢)): these
are both finite free O (Gi’sg)-modules equipped with a g-module structure and compat-
ible integrable logarithmic connections. They are also equipped with Hodge filtrations

F* M (ot sd), F* oM (ot st); and weight filtrations W, oM (o, st), We oM (0F, s0).

We have canonical isomorphisms:
er Mot 55) = e M (0F.50) = O i) (D ®X:
(3.2.7.1) WoM(o*,55) = Wo k" (0%, 5) — Hom(X. O : s):

arlV W(oi,sg) 5 arl o/%d(cri,sg) 5 D(ﬁ)(S(Ui,sg)).

Let D(0) be the extension of WiD(QY) by 1(=1) ® X in LDieu(S(o%,s3), V(ot, si))
obtained by pushing ID((0)) out along the inclusion:

Hom(1,X) = WoD(Q") < WiD(Q).

From the construction of D(Z(o¥, sg)) in (A.1.10) from ]D)(QCI) and the pairing tp, we
see that D(Z(o*, sg)) is canonically isomorphic to the Baer sum of ]D)(QCI) and D(0) as
extensions of WI]D)(QCI) by 1(—1) ® X.

From the explicit description of D(0) in (A.1.5), we deduce that, as a ¢-module over
R(o#, sg), D(0)(S(c*, sg)) is naturally isomorphic to the split extension of ﬁS(oT- sk -HeX
20
by Hom(X, O).

Therefore, we have an isomorphism of g-modules ¥ (0%, s¥) = oM (0%, s¥) preserving
Hodge and weight filtrations and inducing the canonical isomorphisms from (3.2.7.1) on the
associated graded pieces of the weight filtrations.

Furthermore, let V<! : oM(ot,st) — oMot s)) @ Q;’(loi b be the integrable

0,80
connection induced via this isomorphism from that on WCl(cfi,sg). If V is the natural
connection on M (o*, Sé:), the difference

_ v _ vcl. i ¥ R & 1:log
(3.2.7.2) O =V -V Mot s5) > Mot 55) ® 8 R ot sy W

isan R(o%, sg)-linear map. It factors through:

A

w i 1,1 _ i A1l
grz W(Oivso) - ﬁS(G:{:’Sg)(_l) ® X — Hom(xv Qs(s_i’s(:{;)/W) - WO W(Giv S()) ® Qs(zi’sg)/wv

A

(-=1) ® X — Hom(X, Q2'-1°¢ ) is the one induced

where the map in the middle & -
S(o+,s5)/W

S(ot,s8)

by the pairing:

X x X — Qllos PR
R(o*,s5)/ W

(x1,x2) > —dlog(to(x1, x2)).
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3.2.8. — We will now apply the theory of (1.4), especially (1.4.5). Let a € B(o,sy) be an
equation for the boundary divisor S(c¥, sg)\V(cri, sg). Let M(c*, sg) = My(HA(c*, sg)) be
the module of unipotent nearby cycles.

Now,
R(o¥, spla™ 1"/ R(0*,55)* = B(ot,shla™1*/B(o¥,5)* = $/8(0)*.
Set A(o) = S/S(0)*. Then, in the notation of (1.4.4), M(a*, s{) is an object in LFI(F», A(0)).
Since the monodromy operator
N(oi,sg) : M(Oi,s(i,) — M(Ui,sg) ® A(o)

is just the residue of the connection V, it can be described explicitly using information from
(3.2.7): M(o*,st) is equipped with a weight filtration WoM(o¥,s%) with WoM(ct,s}) =
Hom(X, Ko) and gr¥¥ M(oF,s%) = Ko(—1) ® X. Then N(o*, st) is induced by a natural map
X — Hom(X, A(0)), or, equivalently, a natural pairing

X x X = A(o).

This is exactly the symmetric pairing induced from the map Sy — S — S/S(0)* = A(0).
329. - Let 6t c of c H(®Y) and 5} € Z(G%)(F,) be as in (3.2.4).

Then (3.2.4.3) produces a canonical identification in LDieuy, (S (5%,5%), V(5. 50)):

* i F =1 f

(3.2.9.1) fs('f ¥ M(o*,s5) = M(G*,55).

The map fgi E: also produces a functor

0°°0
[+ 1 LFI(Fp, A(o%)) — LFI(F,, AGY).
0°°0
Concretely, given a tuple (D, ¢p, Np) on the left hand side, we have % ,(D,¢p,Np) =
5050

(D,¢p, f% Np),where % . Np is the composition:
S0-50 5050

p 2 D& A(0) > D & AGH).

Now (3.2.9.1) gives us a canonical identification in LFI(F,, A(5)): f;.;r p Mot s}) =
M (GE,5)).

Given (0¥, sg) in the set (3.2.6.1), we find from above that the ¢-module over Ky under-
lying M (o*, sg) depends only on the equivalence class of (0%, sg).

Fix such an equivalence class. Write My for the associated g-module over Ky. Given a
particular representative (o¥, sg) in this equivalence class, there is a map
N(ot,s8) : My — My ® (o) giving My the structure of an object M(o*, s}) in LFI(F,. A(c%)).
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3.2.10. — Notice that the principal polarization on o%(o*,sg) induces a non-degenerate
alternating pairing:

v(ot sh) . Mot sh) x Mot s — Oty (D).
which in turn produces a symplectic pairing:
Yo : My x My — Ko(—1).
As above, it is easily checked that this pairing does not depend on the choice of (0%, sg ) in its
equivalence class.
Let Pyt C GSp(My, o) be the parabolic subgroup preserving the weight filtration, and

let Uyt C Py be the center of its unipotent radical. Then Lie Uy C End(Mj) consists of
endomorphisms that factor as:

My — gr¥¥ My = Ko(—1) ® X EN Hom(X, Ko) = WoMo < M,
where f : Ko(—1) ® X — Hom(X, Kj) is induced from a symmetric bilinear pairing
X x X — Ko(1).

In particular, (Lie Uy)(—1) = Ko(—1) ®k, Lie Uy admits a natural rational structure:
The space of symmetric bilinear pairings on X with values in Q. But this in turn is canonically
identified with the Lie algebra Lie Wg:.

Putting this all together, we find that we have a canonical isomorphism:

(3.2.10.1) Ko ®g Lie Wg: — (Lie Uy)(—1).
This identifies Q, ® Lie Wg: with the space of g-invariants on the right-hand side.

. log an . . .
3.2.11. — Let ﬁ@an(aiysg) be the ﬁ% (ot .s5) algebra defined in (1.4.2): It has the structure of

an ind-object over LFI(S(c, 53), V(0% 58)). There is a canonical isomorphism of (ind-)log
F-isocrystals (1.4.5.1):
(3.2.11.1)

. plog = i JFyanlog . plog an, 1 ¥
Sdi,s(ji ' ﬁ@(oi,s(’)t)a“ ©ko Mo = Mo 750) ' ﬁ@(o*,sg')a" ®ﬁ@an<oi,sg) oM (o 7S0).
~ an,o ~ an .. .
Let U o, sk C U (ric,s;t be the complement of the boundary divisor. There is
0 0 p y

~ an,o . .
a canonical horizontal isomorphism of vector bundles over %  (o¥, sg) with integrable
connections:

(3.2.11.2) M08 59) g g1 1) = Hir (A0 50)/V(OF 59)) | gpmo s -

This respects the Hodge filtrations on both sides.

Fix an algebraic closure K for K. For any finite extension L/Kj within K¢ and any
point x € @an’o(L), write 7, for the fiber of ¢Z(c¥, sg) at x.

A choice of uniformizer & € L allows us to define a specialization map x,, on ﬁg%n (ot sty
cf. (1.4.7). Specializing (3.2.11.1) along x, and using (3.2.11.2) gives us the Hyodo-Ke&o
isomorphism:

(3.2.11.3) Bikorx | L ®kg Mo — Hlg (T /L).
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Furthermore, from (1.4.10) and (1.4.8), we obtain a natural comparison isomorphism

(3.2.11.4) Bstx : B ®g, HA(T, %, Qp) — Bst ®k, Mo.

This isomorphism is compatible with the actions of Iy = Gal(K(/L) and ¢, where I'z
(resp. @) acts via its diagonal action on the left hand side (resp. right hand side) and via
its action on Bg on the right hand side (resp. left hand side). If we equip M, with the
monodromy operator
N(ot,s}) 1 _
Nyt My ——"5 Mo ® Ao¥) ~= Mo ® (Ky /0% ).

then (3.2.11.4) is also compatible with monodromy operators on both sides. Again, here, we
are equipping the right hand side with the operator N ® 1 + 1 ® N, and the left hand side
with the operator N ® 1, where N : By — Bg ® (E; / ﬁ%o) is the canonical monodromy
operator from [22, 3.2.2].

Using the embedding L ®k, Bsi — Bgr induced by the choice of uniformizer &, we obtain
the composition

(3.2.11.5)  Bar.x : Bar ®q, et(Oj?X,EO’Qp)
1®,Bstx 1®BH-K.x.7w 1
— Bar ®L (L ®k, Mo) ——— Bar ®1 Hyg(Ax/L),

which is just the canonical de Rham comparison isomorphism.

3.2.12. — Let QCI be the 1-motif over R*3® obtained from the splitting (3.2.3.1), and

P . . ~ sab, .
let M be the corresponding F-isocrystal over U Let M§ be the corresponding
module of unipotent nearby cycles over Ky. Then we have a canonical isomorphism
of F-isocrystals (1.4.5.1):

E ﬁ/\sab an ®K0 M(‘):l WCI an

Given any pair (o¥, sg ) in our fixed equivalence class, we now have a canonical identifica-
tion of ¢-modules:

(3.2.12.1) O o3 53 ®Ko M S (ot s

preserving Hodge and weight filtrations and inducing the canonical isomorphisms from (3.2.7.1)
on the associated graded pieces. The induced connection on the right hand side differs from
the natural one by the linear map ® defined in (3.2.7.2). Therefore, (3.2.12.1) gives us an
identification:

(3.2.12.2) M = {x € HO(U" (0%, s), M (0% 51)) : V(x) = O(x)}.

. Ly .
By construction, we have a map of groups R(c¥, s )[a_l]x i ﬁgfn (ot F) CAITYING
(o8 ,SO

any element of u € R(o*, s(i,)X to log(u). Consider the map

m—£ 1
So — S —5 i’%n
(oF 550)
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where we view S as a subgroup of B(o¥,st)[a™1]* C R(o%, sH)[a~']*. This gives us a
@-equivariant symmetric pairing

Xx X —> ﬁlfi,( ; T)( ),
and thus a g-equivariant map
‘i’%n( . i)(l)@X—)Hom(X ﬁE’%n( . i))
which we can view as a g-equivariant endomorphism A € ﬁ&"%.,( ) ®k, LieUyw:.
Comparing with the construction of ® in (3.2.7.2), we find
dA=-06¢ szil:gg(ai ko ® Lie U

From this, it is easy to see that the g-equivariant automorphism exp(A) of M8 (o, sé: )

induces a g-equivariant isomorphism Mgl — M. Tensoring with ﬁ@saban produces an
isomorphism:

(32123) eXp(A) N WCLan i) ﬁ@sab,an ®K0 Mgl i) ﬁ@sab,an ®K0 M().

The image of the Hodge filtration F* c}°"*" under this isomorphism produces a filtration
Fcol(ﬁ@sab,an ®k, Mo) on the target.

3.2.13. — For future use, it will be useful to have a different realization of the isomor-

phism (3.2.10.1). Let ¢, be the 1-motif over L obtained by pulling Q(ai,sg) along x: It

is equipped with a principal polarization A. Since x is also a point of & ¢+ (Qet, Det),
ot

(@, Ax) is equipped with a Kii -level structure. In particular, if 7,(¢), ) is the p-adic Tate
module of ¢ , this means that we can find an isomorphism:

np: HE(Zp) = Tp(Q,),

and a trivialization u, : Z, = Z,(1) over K (equivalently, a compatible family of p-power
roots of unity in f; ) with the following properties:

— np preserves W, filtrations;
— the map

W
o
Zp ®X—gr0 Hg(Zp)—>g0 Tp(Q,) = Zp ® X

is the identity;
— via 1,, the Weil pairing 3, on 7,(¢), ) pulls back to u, o y¢.

Using the canonical identifications

Hélt((’%x Ko’ ) T, (C’%x =T, (Q )

we now obtain an isomorphism:

o= :Bst x © (Tlp "By ® HV(Q) — By ®k, Mo,
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which preserves We-filtrations and polarization pairings (up to Z-multiples). Moreover,

let ug : Ko(—1) = Ky be the isomorphism obtained by applying the Dieudonné module
functor to the trivialization u. Then we have commuting diagrams:

By ® WoHY(Q) = Hom(X, By)  Bu®gry HY(Q) == B4 ®X
w
(3.2.13.1) Wo and g« S B
By ® WoMo == Hom(X, By) By ® gry My == By (1) ® X.

Here, all equalities are canonical identifications.

Since « preserves W,-filtrations and polarization pairings, it induces an isomorphism:

(3.2.13.2) By ®g Lie We; — By ®x, Lie Usy.

LEmMMA 3.2.14. — The embedding (3.2.13.2) restricts to an isomorphism
Ko ®q Lie Wz — (Lie Uyy)(—1),

which is precisely the one defined in (3.2.10.1).

Proof. — This is immediate from the commuting diagrams (3.2.13.1). Note that the inclu-
sion Ko(—1) C By is the natural one generated by Fontaine’s cyclotomic period ¢. O

3.2.15. — Consider the monodromy operator

Ny : Mo — My ® (?;/ﬁ%o).

Equip My ® (E; / ﬁ%o) with the p-module structure given by the Ky-semi-linear endo-
morphism:

me® awr> @o(m) ®a’.
Then we have a ¢-equivariant isomorphism:
—X x 1®v,

Vp ! My ® (Ko/ﬁ?o) T) M, ®K() K()(—l) = Mo(—l).

LEMMA 3.2.16. — The map v, o Nx : My — My(—1) is p-equivariant, and in fact belongs
to

(0F° N Lie Wgt) C Ko(—1) ®k, Lie Uys C End(Mo)(—1).

Proof. — Indeed, v, o Ny is associated with the symmetric pairing

t
Xx X = Ao%) 5 Ko /0% 0. O
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3.3. Canonical Tate tensors

Fix a place v|p of E. Let &'k be the normalization of & g+ in Shg. In this subsection, we
will investigate the intersection of &'k with the formal boundary charts constructed above.
In particular, we will show that every point in the special fiber of such an intersection carries
a canonical family of crystalline ‘Tate tensors’.

Away from the boundary, this follows quite readily from the argument used in the proof
of [32, (2.3.5)], using the fact that the Hodge tensors on the abelian scheme ¢# — Shg are
parallel for the Gauss-Manin connection. The same idea works at the boundary as well, but
its correct execution turns out to be a bit more intricate.

The main additional difficulty is that, by the theory of (1.4.3), elements of the space
of unipotent nearby cycles propagate to parallel tensors over Wan’log(oi,Eg), and not
over M (0F,50).

The key thing is to show that, for the tensors arising from the {s4} via the p-adic compar-
ison isomorphism, their restrictions over (7&“"’(01, to) are in fact sections of M*" (o, sg),
and that these sections can therefore be identified with the de Rham realizations of the {sy}
by checking at any one point of the space. The main technical input is (3.3.7).

3.3.1. — Assume that we are given (o, sg) in the set (3.2.6.1) such that

i
Sk Xe?’K_t,i(d),U,s(i)) V(ai,so) 7 0.

This fiber product is finite over V(ai,sg), and the normalization in this finite cover
of S(o¥,s¥) is of the form Spec Rg (0%, s}), where Rg (o, st) is finite over the semi-local
ring O (v) ®z,, R(ai,sg).

Choose a point ty € (Spec Rg (oi,sg))(Fp), and let Rg (0%, 1) be the corresponding
local quotient of Rc;(oi,sg). Then Rg(o*, ty) is normal and finite over the local ring
Or @w R(o*, sg), where F is a finite extension of K within K¢ appearing as a factor of the
algebra £ Rz, W-

3.3.2. — Let @21 (0%, to) be the rigid analytic space over F attached to the formal & -scheme
Ug(oF,t9) == SpfRg (0%, 19). Then we have a finite map of normal, irreducible analytic
spaces over F,

= an % ~ an 1

Ust 1o - Ug (0%, tg) = U (0%, 55)F.

Qe 5" . G/ ™ (ot ok
Let Ug (0%, 1) C Ug (0}, 1) be the pre-image of U~ (0%, 55)F.

Let Shx be the generic fiber of &g, and let ﬁ}n F be the associated rigid analytic space
over F: It contains the rigid analytic space Shi’ r as a dense open. Then @Zn(oi, fp) can
be identified with an open subspace in ﬁ;{n F», and @dGno (0%, 1) C @?(Gi, t9) is the

. . 5,40 . an
intersection of g (o, 19) with Shi¢' .
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3.3.3. — Justasin (3.2), for technical reasons, we must allow ourselves to vary the polyhedral
cone o'#,

Suppose now that we have another pair (57, 55) asin (3.2.6.1) that is equivalent to (o, sg )
in the sense of (3.2.6), and is such that the set
(3.3.3.1)

gt o (Ug (0%,10)(Ko)) N (U (0F, shyn @™

,0

e — ~ an,o —
E*.59)(Ko) € U (oF,58)(Ko)
is non-empty.

Then we have:

(3.3.3.2) Sk X5 4 ic@5h) Vet sh £ 0.

Once again, we can consider the ring of functions Rg (6%, §§) of the normalization
of S(5%,350) in this finite V(6%, §9)-scheme: It is a semi-local ring. For any closed point 7y
of Rg (6%, §§ ), we obtain a corresponding local normal quotient Rg (6%, 7y), and the analytic

spaces @Zﬂ (6%, %) and GAMZ] (6%, 7y), along with the finite map
50—t - 5 g -
usi g, @ Ug (6%,10) > U (G, 50).

We will now say that a triple (61,53, fo) with 7o a closed point of Spec Rg (5i,§§) is
S k-equivalent to (0%, s(j; ,tp) if the intersection from (3.3.3.1) is non-empty and contained
in the image of uz+ 7.

3.3.4. — Fix a finite extension L/F and a point x € @Zn’o(ai, t9)(L) C Shg(L). We then
have I'z -invariant tensors:
s} C HA(T, g, Qp)®.
Via the isomorphism (3.2.11.4), we now obtain tensors:
{Sastxf C M0®

such that, for each a, 1 ® Sgst,x = Bst,x(1 @ Spétx) € Bt ® M(;@. By construction, for
each o, Sq st,x 1S @-invariant, and satisfies Ny (s¢.st,x) = 0. In other words, if My x = x* M, is
the induced (¢, N)-module over Ko, we can view sq st,x as @ morphism of (¢, N)-modules
over Ky:

Sastx 11— M(%x.

3.3.5. — Note that, by (3.2.16), forany y € @an’o(ai, sg)(fo), the monodromy element v, o N,
lies in 0¥ N Lie Wg:. Let
(3.3.5.1) o6 = (vpo Ny ye Uy (0 10)(Ko)) C oF

be the rational polyhedral cone generated by the monodromy operators attached to points
lifting to gy (0%, to).

Since Rg (0%, to) is normal, there exists g € %(0@)(@,) such that the map @G (%, t0) —
@(ai,sg) lifts to a map @G(Oi, to) — @(og, 50). Let EOG,S(/] be asin (3.2.11.1), and set

P 06" / /\an,log,®
Sa,st,x = Eag,s(’)(l ® Sa,st,x) €EH (GM (oG, S())v W(UGy So) )
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ProOPOSITION 3.3.6. — The following statements are equivalent:
1. Foranyy € @aGn’o(ai, 10)(Ko), and any index o, we have:
Sast,y = Sa,st,x € M0®.
2. Foranyy € @Zn’o(oi, t0)(Ko), and any index o, we have:
Biilk yn Sadr,y) = 1 ® S50 € Ko ®ky M.
3. Forany y € @Zn’o(ai, 10)(Ko), and any index o, we have:

Ny(astx) =0 € ME ® (K, /0% ).
4. For any index o, the parallel tensor Sq s x belongs to H ( U (06, 55). M(og, 5)*™®).
5. Forany index «, the restriction of So st,x t0 @210 (o*, to) coincides with that of Sa.,dr under
the canonical isomorphism of filtered vector bundles with integrable connection (3.2.11.2):
Wan(ai’sgn@?’owi,to) = Hig () Shi)] gm0
Proof. — We will show:
1)< 2)=0C)c@d)=06)= ).

Lety € u" (Ko) be another point. After enlarging L if necessary, we can assume that
y is an L-valued point. Statement (1.) is equivalent to the assertion that, for any o, we have:

ﬂst,y(l by Sa,ét,y) =1® Sa,st,y € Bt XK, M(;g

This equality holds if and only if it is still true after a change of scalars along the embed-
ding L ®k, Bst = Bgr attached to the choice of a uniformizer = € L. Therefore, using
(3.2.11.5) and (3.1.4), (1.) is now equivalent to the assertion:

ﬂITI_IK’y,T[ (Sa,dr,y) = 1 ® Sast.x € L ®k, M(()X)

So we have shown (1.)<(2.).
Since sq,5t,y induces a map of (¢, N)-modules 1 — M(‘f?y, (3.) is implied by (1.).
Statement (4.) holds if and only if, for any «, the parallel tensor 5y &,x induces a morphism

in LFI(S(0g. 5p), V(06. 5p)):
Sastx i 1= M(og, s5)*™®.

By the equivalence of categories from (1.4.4), this holds if and only if, for any o, s¢ st,x € M(;@
induces a morphism in LFI(F,, A(o¢)):

Sastx i 1= M(og,sp)®.
In turn, this is equivalent to requiring that, for all maps v : A(og) — Q, and for any

index «, the composition

N(og,s,)
MO ——Gi)—> M() ® A(OG) &) Mo

carries So st,x t0 0.
Now, by the definition of oG, A(0g) is the smallest quotient of A (o) with the following
p— —~ a_n’O
property: Allmaps y* : A(o¥) — K;/ﬁ%o fory € Ug (0%, 10)(Ko) factor through A (o).
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In other words, the vector space Hom(A (o), Q) is generated by maps of the form v, o Ny,
fory e @21 (0%, t9). From this, the equivalence of (3.) and (4.) is immediate.

Assuming (4.), we find that both 5 ¢ x and S dR, A (0 10) are parallel tensors in

H (U " (04 10), M2 (04, 53)),
whose fibers at x coincide with s4,dr x-
Since @acno (0F, tp) is a smooth, irreducible analytic space, we find that they must coincide
everywhere on @Zn’o(ai, t9). This shows (4.)=(5.).
Now, if we assume (5.), then, for any y € @Zn’o(oi, t0)(Ko), the fiber of Sestx at'y

coincides with 54 gr,y. On the other hand, by the construction of Sq. s, this fiber is precisely
BHK,y,x (Sa,st,x). This shows that (5.) implies (2.). O

LEMMA 3.3.7. — Let (6%, 59, 1y) be a triple §k-equivalent to (o, 59, to) with 55° C ob°,
~ an,o —
Assume that o¥ (resp. 5+ ) is generated by elements of the form v, o Ny withy € Ug (%, 10)(Ko)
~an,0 _ - —
(resp.y € Ug (G%,10)(Ko)).
Then the natural map:

HO(@ZH,O(Ui’ f0), ﬁlb;;n(aijs(jj))V=0 — HO(@Z‘I’O((}T‘, fo), ﬁlgggn(éi,gg))v=o
is injective.

Proof. — Without loss of generality, we can assume that 6 has codimension 1 in o, and
that there exists a point yq € @Zn’o(ai, 10)(K o) such that By = v, o N, is contained in o+°,
but not in 5%°.

By (3.2.3), we have compatible splittings:

R(o¥,s}) = R*®B(ot,5)) ; R(G*,5)) = R°®B(GY,5)).

Using these splittings, we can view every i € S as a non-vanishing global function on both
~ an,o ~ an,o
U (ot spyand U (G 5D).

Suppose that 0¥ has rank k. We then have a surjection of free groups

Ao = 8/S(0)* — 8/S(GH* = A@6F)
of ranks k and k — 1, respectively. Let vx € A(o¥) be a generator for the kernel of this map,
and fix a splitting:
Ao = AGH) @ (v).

Note that vg belongs to S(6%)* but not to S(o¥)*. In particular, the value of the pairing
(Bo, vk ) must be non-zero.

Fix a basis {vy, ..., vk_1} for A(6%) and a splitting:

S =S(H* @ (vr,..., k).
This allows us to view vg as a function on U (o*,s:*;). Note that, for any point

™ (ot sE — p=(vpoNx.v)
x €U (0% s5), wehave |vg(x)]|, = p~**» .
We now obtain isomorphisms of sheaves of algebras:

. ¥ ¥ XLy, log 5 ¥ ¥ iy, ;'8
@an(di,sg)[ Tyevns k] - > @an(ai,sg) s @a“(gj;’g(i))[ J EI) k—l] ~ > @a"(éi’%)
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Here, the induced connection on the left-hand side carries X; to dlog(v;),i = 1,...,k.
Moreover, under these isomorphisms the restriction map o8, .t o8, PR
U (ot,s5) U (64,55
identified with:
(3371) ﬁ@an(oi,sg)[xl, ey Xk] — ﬁ@an(&ijg)[Xl’ ey Xk—l]

X;,ifj <k—1

Xj = .
log(vg), if j = k.

We will abbreviate a k-tuple (j1, ..., jr) € N¥ by J.Forl < j <k,lete; be the i-tuple
with 1 in the j ™ position and Os elsewhere. Suppose that we have an element
)V=0

- XL x i 0(qL (o log
a= Y a;X{"-X/"e H'(U; (o ,to),ﬁ@an(ai,sg)
JeNk

~ an,o .

Here, the coefficients a ; belong to H 0(%21 (c%.19), 0 & (ot s*))' One easily checks that the
A 5o

condition V(a) = 0 translates to:

k
daj == (jm+ 1) te, dlog(vm), forall j € N'.
m=1

In particular, if j € N is such that a j #0,butaji, =0,forl <s <k, then we must have
da i =0, and so a j must be a non-zero constant.
Suppose that a # 0, and choose an index j such that a; is a non-zero constant and such
thata;t., = 0. The lemma will follow if we can show that the image of a under (3.3.7.1) is
~an,0 ., .
non-zero when restricted over % (6%, 7).
Assume that this is untrue. Then we must have:
Jk o
] S=0e HY Uy (6F.7). 05
a(]],...,]k_l,s) Og(vk) - € ( G (G ) 0)» %an(ai’sg))
s=0
Indeed, this is simply the coefficient for the monomial X 1’ ! ---Xl.jffl in the image of a
under (3.3.7.1). Therefore, we find that log(vg) satisfies a non-zero monic polynomial

0,820 p
over H*(Ug (o ,lo),ﬁ@a“(gi,s(:)t))-

By (A.4.4), this implies that |vg(x)[, = 1, forall x € @dGn (0.50)(Ko). However, we have
[ve (x0)|p = p~¢Bo-vk) "and we have already seen that (Bo, vx) # 0. This gives us the desired
contradiction. O

ProOPOSITION 3.3.8. — The equivalent statements of (3.3.6) are true.

Proof. — Ttisenough to prove assertion (5.) of (3.3.6). For this, replacing o by g, we can
~ an,o —
assume that o is generated by elements of the form v, o Ny, for x € Ug (¥, 10)(Ko).
Via (3.2.11.1), we now obtain a canonical identifications:

005,/ ™% 1 anlog,® 1 F\V=0 _ o5 ¢ log V=0 ®
H(Ug (o%.19), M (o%.s9))  =H’(Ug (o ,zo),ﬁ@an(gi’%)) ®k, My -
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. . . e an7° .
In particular, for every «, the restriction of sy qr Over %Ug (0%, 1) can naturally be viewed
as an element

5 A0 V=0
Sot,dR,((r,sO) S HO(%G (Oi’lo), ﬁ]f\)%n( " i)) ®K0 M(;@
Assertion (5.) holds if and only if, for all «:
V=0
(338.1)  Sedriose) = | ® swstx € H(Ug (0%, 10), ﬁ‘i’én( : qt)) ®ko M.

Let 6 C o be the polyhedral cone generated by v, o Ny, and let § 0 € %(&)(FI,) be the
specialization of x. From (3.3.7) we find that the map:

(3382  H°(WUg (0*.10). 0% — HY(U"" (64, 1), ﬁw

V=0
Aan( :!; i))

V=0
@+, 0))
is injective.

Since 6 is 1-dimensional, the identity in assertion (3.) is trivially valid for
y € GUG (0fF f0)(Ko). Therefore, we find that, for every a, the restriction of sy 4r

over U . (G, 7o), viewed as an element
1 V=0 ®
0‘ dR, (0, ZO) € H ( (0 [()) ﬁ’?gn( _]_ i)) ®I<O MO ’

coincides with 1 ® s4,st,x. By the injectivity of (3.3.8.2), the identity (3.3.8.1) has to hold for
every «. This completes the proof. O

COROLLARY 3.3.9. — For any index o, there is a canonical tensor sq 5,0 € M(‘)8 with the
following properties:
— It is p-invariant: @o(Sq,st,0) = Sa,st,0-
- For any (61,53, fo) in the &x-equivalence class of (0%, sg, to), and any
y € @aGno (G,70)(Ko), we have: Ny (sqst.0) = 0. _
— If'y is an L-valued point for some finite extension L]/ Ky within K, for any uniformizer
w € L, we have:

ry
_ ®
:Bst,ly(l ® Sa,st,O) = Saét,y € (Hélt((%y,KO»Qp) ) 5

ﬂH-K,y,n(l ® Sa,st,O) = Sq,dR,y € FO(H(}R((’%y/L)(X))'

Proof. — By assertion (1.) of (3.3.6), we can take sSyst,0 = Sastx, fOr any
xe Uy (04 10)(Ko). O

REMARK 3.3.10. — Note that in the PEL case, where the tensors can be taken to be
realizations of polarizations or endomorphisms, the canonical tensor above is simply the
realization of the reduction of such a polarization or endomorphism. The compatibility with
the comparison isomorphisms simply amounts to the functoriality of these isomorphisms.

3.4. The structure of the boundary

In this subsection, we will set up the notation required to state the main technical
Theorem (3.4.3) on the structure of Spec Rg(o¥,1y). This theorem shows that it has
the expected shape: It is a completion of a twisted toric embedding over a finite normal
R%®_scheme.
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3.4.1. — Consider the scheme over K, that parameterizes, for any Ky-algebra B, the set of
isomorphisms
B ®q, HY(Qp) = B ®x, Mo

carrying {1 ® s} onto {1 ® Sq,st,5,)- By (3.3.9) and (3.2.11.4), this scheme has a By-valued
point, and is thus a G-torsor over K. By Steinberg’s theorem, it must have a K-valued point.
In particular, the point-wise stabilizer of {sq s, } Within GL(M,) is isomorphic to Gg,. In
a slight abuse of notation, we will identify this stabilizer with G,,.

Set

Uwt,c = Uwi N Gk, ; Bg = BN (Lie Uyy,g)(—1) C (Lie Uy)(—1).

Here, we are using (3.2.14) to view B C Wy (Q) as a subgroup of (Lie Uy)(—1).

Let Eg C E be the sub-torus with co-character group Bg; then E¢ := E/Eg is again a
torus, with co-character group B/Bg. The quotient

¢ /Eg

1]
]

is an EC-torsor over R%b.

3.4.2. — Given any R%-scheme Z and a section 8 : X — &€, the pre-image of this section
in E|Z is an Eg-torsor over Z, which we will denote by Eg (B).

Let RSGab be the normalization in Rg (0%, #9) of the image of R%®. It is not hard to see
that, if we chose a different pair (5%, 53) in the & x-equivalence class of (0¥, sg ,19), then the
normalization of Or ®w R%® in Rg (6%, fy) will coincide with RSGab.

If Z = E, then we have the tautological section € E(E), inducing a section:

6.8 >80,
Suppose that a, € R(o¥, sg) is an equation for the boundary divisor; then (¢ induces a
section over Spec Rg (0%, t9)[a '], which we denote by (% (o, 59).
THEOREM 3.4.3. — We have

1. The inclusion Bg C (Lie Uyt,g)(—1) induces an isomorphism:
Ko ® Bg = (Lie Uyi,6)(—1).
2. The section
19 (0,50) : Spec Rg (0¥, 10)[a;'] — EC
m)\ 0> 50) - Sp G »lo)ldgy =
is already defined over Spec Rilj‘b, and is independent of the choice of (o, sg, to) within its

o k-equivalence class. In particular, & |Spec RE admits a canonical reduction of structure
G

group to an Eg-torsor:

I

6 = E6(1%(0,%)).

3. There exist:
— A torus Eg equipped with an isogeny E¢, — Eg;
— An E-torsor Bg over Rilfb inducing Eg along the above isogeny;
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such that, for any (5%, §§, fo) in the & k-equivalence class of (0%, sg, to), the map
Spec Rg (6%, 79) — Spec R(5+,55) — 2(6)

lifts canonically to a map Spec R (6%,70) — E&(5g), and identifies U (6%, fo) with
the completion at a point of B (6g).

3.4.4. — Here are some remarks to clarify the assertions of the theorem:

1. Claim (1) should be viewed as a rationality property for Hodge cycles on abelian

varieties with respect to p-adic uniformizations, and is closely related to ideas from
[1]. Tt is the crystalline avatar of Theorem 4, and, as observed in the introduction, is a
significant result for our purposes. However, in the PEL case it admits a simple proof,
which is indicated in (3.5.10).

As explained in the introduction, claim (2) should be viewed as the key result of this
paper. It has a very concrete meaning: Choose a section (2® of & over Rz;‘b as in

0

(3.2.3) with associated element o € E(E) carrying (2 to .. We can think of « as a
homomorphism S — H%(E, G,,).

Use 1%2° to also denote the section of the E¢-torsor £¢ induced from %2°. Let @ €
EC (E) be the image of «. Then @ carries (*2° to (¢, Therefore we find that, if S¢ C S is
the character group of EC, then (2) is equivalent to:

For all 1 € S, the image of @(h) = «a(h) in Rg(cF, to)[a;1]* lies in the subgroup
RE>,

In fact, since R is integrally closed in Rg (0%, 79) by construction, it is enough to
show:

There exists an integer m > 1 such that, for all 7 € S%, the image of a(h)™
in Rg (0%, to)[a; '] lies in the subgroup RSGab’X

The independence from the choice of (0¥, sg‘, to) is easily checked.

Claim (3) gives the desired description of the local structure at the boundary of &§'x.
As the reader will note, its proof involves the theory of Chai-Faltings and p-adic
Hodge theory. In particular, it makes no use of the general characteristic 0 theory of
compactifications.

We still have to explain the notation in claim (3). We have:

66 =6 N (Bg ®R).
Though it is not a priori clear, it is a consequence of claim (3) that this definition agrees
with the one given in (3.3.5.1).
Given this cone and the EZ; -torsor E;, we can construct the twisted toric embedding

Ec — Eg(og) of schemes over R%‘;’b. This is the scheme that enters the statement
of (3).

The rest of the section is dedicated to the proof of (3.4.3). It will be completed in (3.7).

3.5. A rationality property of Hodge cycles

In this subsection, we will prove assertion (1) of (3.4.3). We already know by (3.3.9) that

the monodromy operators N, corresponding to the points x € @Zn’o(oi, t0)(Ko) all lie
in B N (Lie Uwt,g)(—1) = Bg. We have to show that they generate a large enough space.
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This is of course a numerical question. Namely, set dy; := dimg,, Uw,G; then we have to
show rank Bg = dy¢. This will follow from two bounds: (3.5.7) and (3.5.9). The first of these
is a consequence of the versality of the deformation ring R%*® and the second is a simple fact
about sub-schemes of completed torus embeddings.

3.5.1. — We will need a little preparation before we can prove the first bound. Recall that
the G(R)-homogeneous space X determines a canonical conjugacy class of co-characters []
of G defined over the reflex field E, defined in the following way: If we fix x € X, then a
representative u, for [u] over C is given by:

z>(z,1) ~ hy
Ux : Gme — Guc X Gypc = S¢ — Ge.

Let P,, C Gc be the parabolic subgroup whose Lie algebra consists of the non-negative
weight spaces of u,. By construction, the map carrying a point x € X to the Hodge filtration
on V¢ induced by A, exhibits X as a finite analytic space over an open subspace of the
Grassmannian Gc¢/ P, . We therefore have:

d := dimShg (G, X) = dimX =dim G —dim P, .
3.5.2. — Suppose now that we have a finite extension L/K, within K, and a point

y € @aGno (0%, 19)(L). Attached to this (and a uniformizer 7 € L) is the Hyodo-Kato
isomorphism:

Buk.yx : L ®ky Mo = Hig(Hy/L).
Via this isomorphism, we obtain a Hodge filtration on L ®g,, Mo:
Fy.(L QKo MO) = ﬂ}_I-IK,y,n (F.Hle(C’%y/L))-
LemMmA 3.5.3. —
1. The weight filtration We My is split by a co-character
W : G,k = Gky-

In particular, the stabilizer Py, C Gk, of We My is a parabolic subgroup.
2. The Hodge filtration Fy (L ®k, Mo) is split by a co-character

iy :Gmp — GL

such that ﬂy_l belongs to the conjugacy class [j1].
3. Let Qwt,c C Pwt,G be the largest subgroup acting trivially on Wo M. Then we can choose
Ly so that it factors through L ®k, Owt,G-

Proof. — Attached to y is the monodromy element
B =v,0N, € Q®Bg C LieUy,g(—1) C End(Mop)(—1).

Fix an isomorphism K¢ (—1) = Ky. Then we can view B as a nilpotent endomorphism
of Mol

Mo — grf¥ Mo = Ko(—1) ® X — Hom(X, Ko(~1)) = WoMo(~1) = Mo(~1) = Mo,

where the middle map is induced by the pairing B : X x X — Q — K. Since B belongs
to ¢°, it induces a positive definite pairing on X. In particular, we have ker B = W; M, and
imB = W()M().
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For any integer i, set U' My = W_; 1 My. Then U®M, is the filtration on M, attached
to the nilpotent endomorphism B via the recipe in (2.5.1) of [58, IV]. In particular, since
B e LieGk,, it follows from Prop. 2.5.3 of loc. cit. that U® M is split by a co-character
w' : Gm,x, = Gk,- Since Gk, contains the central subgroup G, x, C GL(My), (1) is now
immediate.

Choose an embedding L. — C, and view y as a point [(x,g)] € Shg(C). Then the
existence of the co-character ji, in (2) is immediate from Prop. 2.2.2 of loc. cit. and the
following: There exists an isomorphism

B:C®HY(Q) — Hir(y/0)
carrying {1 ® Sq} to {Sq,dr,y}, and such that the induced filtration
F}(C® HY(Q) = B~ (F* Hgr (Ax/C))

is split by the co-character ;.

It follows from [13, 4.2.17] that we can choose ji, to factor through L ®x, Pwi,G. But we
have

F}(L ®, Mo) N (L ®k, WoMo) = 0.
Therefore, fi,,(G,,) must act trivially on L ® x, Wo M), and so ji, must in fact factor through
Owt,G,L- This shows (3). -

3.54. — Write Grg,, for the Grassmannian over K, defined as follows: For any
Ko-algebra A, Grg ,)(A) is the set of decreasing filtrations F*(4 ®k, Mo), which, étale
locally on Spec A, can be split by a co-character G,;, 4 — G4 in the conjugacy class [u].

Let Ug [, C Grg,[,) be the open sub-variety such that, for any Ko-algebra A, we have:

Ug u)(A) = {F* (A ®k, Mo) € Grg ,1(A) : F'(A®k, Mo) N (4 ®x, WoM,) = 0}.
Choose x € X; then we have
dim Ug [, = dim Grg [, = dim G¢ /Py, =d.

Set Mgab = My/WoM,. Let Gr*®® be the Grassmannian over Ko such that, for all
Ko-algebras A, Gr**(A) is the set of decreasing filtrations F*(4 ® g, M) satisfying:

- Fi(A®k, M§®) = 0,ifi < 1,and F*(4 ®x, M§™®) = A @k, Ms*®;

- rank F1(4 ®k, M§™®) = g;

- FY A ®k, M§™®) + A @k, Wi M§™® = A @, Mg™.

Then we obtain a morphism:
(3.5.4.1) Ug,[ — Gr®®

F*(A ®k, Mo) = (F*(A ®k, Mo) + (A @k, WoMo))/(A &k, WoMy).

Note that Qyt,¢ acts naturally on Mgab. Let USGaRM] C Gr*® be the closed sub-scheme

such that, for any A as above, Ui’;‘}’[u] (A) consists of the filtrations F*(4 ®k, Mgab) that,
étale locally on Spec A, can be split by a co-character i : G4 — Owt,g.a C Gy lying
in the conjugacy class [i]. Then (3.5.4.1) clearly factors through a Qv g-equivariant map
b/ UG,[M] d USGa}’[M].
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LEMMA 3.5.5. — & exhibits Ug [, as a Uy, g-torsor over Uf;a}’[u]. In particular, UsGa}’[M] is

smooth and connected of dimension d — dy;.

Proof. — Since any filtration in US(?P[M] is étale locally split by a cocharacter of Qg in
the conjugacy class [u], it is clear that the fibers of 7 are all non-empty.

Now, Uyt,g acts trivially on Mgab and thus on US(*;}’[M]. So it suffices to show: Given a
Ky-algebra A, and two filtrations
F® (A ®k, Mo) € Ug[q(4). i =1,2
inducing the same filtration of 4 ®k, Mgab, there is a unique element of Uy, g (4) carrying
one to the other.
By étale descent, we can assume that there is a cocharacter ji : G,;, 4 — Owt,G,4 splitting
F? (A ®k, My):
A ®Ko My = Fll(A ®K0 MO) 2] MOv
where M 10 is the space on which fi(G,,,4) acts trivially. In particular, A ®x, WoMo C M 10.
Now, since

FT (A ®ky Mo) ® (4 ®k, WoMo) = F; (A ®k, Mo) ® (A ®k, WoMo),
there exists a homomorphism ® : F'(4 ®k, Mo) — (A ®k, WoMo) such that
F3 (A ®k, Mo) = (1 + ®)(F|' (4 ®, Mo)).
We can extend ® to a map on M, by setting it equal to 0 on M?, and so view it as an

endomorphism of My. Then ® is an element of A ®g,, Lie Uy.

Consider the map:

A ®k, Lie U — P4 ®k, M)
o

f = (f(l by SOt,St,O))Ot'

This map is equivariant of the action of [i(G,,,4), and since fi(z) acts on A @k, Lie Uy, via
z >z~ its image must land within the eigenspace of the target where ji(G,, 4) acts by the
same character.

On the other hand, since F; = (1 4+ ®)(F;) is also a G4-split filtration of A @k, My, we
find that, for all o, ®(1 ® s54,5,0) must lie in F?(4 ®k, M®), which is the sum of the non-
negative eigenspaces for ji(G,,, 4). This shows that we must have ®(1 ® sq5t,0) = 0, for all
indices «. In other words, ® € A ® g, Lie Uy,G, and 1 + & € Uy, (A) is the unique element
carrying I} to Fy. O

3.5.6. — Let § be the tautological semi-abelian extension of 3 over R (cf. 3.2.1.1). Set
M = D(0)(Spec R*2P): this is a Dieudonné F-crystal over Spec R2b.

L. ~ sab,an b . . sab.an ~ sab,an
Restricting to U = (Spf R%#)?2 we obtain an F-isocrystal oM™ """ over U
: e V=0 . . . .
There is a canonical identification M§®® = (QMsab’an) giving us an isomorphism

of F-isocrystals:

p ~ b,
%‘Sdb N ﬁgz\/sab,an ®KO Mgab — Wsa an'
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By construction, given any pair (o, sf;), there is a canonical isomorphism:
= b
(3.56.1) M0 56)/ Wo M0+ 56) = M| s ).

Under this isomorphism, the trivialization of (¥, sg) / Wo M(o#, sg) induced from
(3.2.11.1) agrees with £52b,

Let F* M be the Hodge filtration; then we obtain the filtration (£52°) =1 (F® o}52>4")
on 0 gpeb-an ®K, Mgab. If Gr*®®3" is the analytic space over Ky attached to Gr*®®, then this
filtration gives rise to a map of Ky-analytic spaces

~ sab,an

n:U — Greaban

. . . g paban b . sab,an
LEmMMA 3.5.7. — The map n is unramified, and carries U g = (Spf RG")*" into Uy, e
In particular, we have:
dim RE® < d — dyy + 1.

s

_ ~ sab
Proof. — Fix a finite extension L/K, within Ko and a point x € u* an(L). Let

Lle] = LIe]/(€?) be the ring of dual numbers over L, and let ¥ € @sab’an(L[e]) be a
point lifting x.

By the crystalline property of the de Rham cohomology of {, we obtain a canonical
isomorphism:

Jz t Llel ®r Hig (/L) = Hag(Gs/LIe]).
This gives us a filtration:
FE(LIE 01 il G/ 1) = 5 (P i G5/ L1E) ).
By basic deformation theory, the induced map:
(3.5.7.1)
~ sab,an
(Lifts e U (L[e)) ofx) — (Lifts F*(Lle] ®L H{x(G/L)) of F'Hle(Qx/L))
%> Ff(Ll€] ®1 Hir (/L))
is an injection.
On the other hand, by the very definition of Gr*®®, we have:
(3.5.7.2)

(Lifts n(x) € Gr®2"(L[e]) of n(x)) = (Lifts F*(L[e] ®k, M§™) of F (L ®k, Mgab)).
Specializing £ at x produces an isomorphism £ : L ®k, Mi® = H dR(Cr/L).
Specializing at X, we obtain the isomorphism:
6" Ll @k, Mg™ = Hig(G:/LI).
Composing jz with 1 ® £33 gives us another isomorphism:
Jio(1® &) : Lle] ®ky Mg™ — Hag G/ LIe)).

Using the arguments along the lines of those in (1.4.8), it is not hard to see that we have
jr o (1 ® £330 = E;ab. This implies that the right hand side of (3.5.7.1) is canonically
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identified with that of (3.5.7.2). Therefore, n induces injections of tangent spaces at all points
~ sab,
of U an, and is thus unramified.

P & Sab-an sab,an .
To see that the restriction of n to U factors through Ug "', choose a triple

(o¥, sg ,19) in our fixed & g-equivalence class, and consider the composition:

~ sab,an

(3573) @Zn(gi’ tO) — GUG l) Grsab,an .

~ sab,an

Since the map @?(ai,to) - Ug is dominant (cf. A.4.3), it is enough to show

that (3.5.7.3) factors through UsGab[:]n But this is clear from (3.5.3).

The bound on dim R now follows from (3.5.5). O

3.5.8. — We now turn our attention to the second bound. The notation from here to the end
of the proof of (3.5.9) will be strictly local, and has no connection to that used anywhere else in
this section.

We will put ourselves in the following situation: Let Y be a free abelian group of finite rank
and let T C R ® YY be a non-degenerate rational polyhedral cone of maximal dimension.
Then the monoid Y, = Y N =V has no non-trivial invertible elements.

Fix a finite extension L/K, within Ko. Let R = Op[|Y,|] be the completion of the
monoid ring 07, [Y.] along the ideal generated by the non-invertible elements of Y. Let T be
a quotient domain of R, flat over W. Write U (resp. @) for the formal schemes Spf R (resp.
SpfT). Let @an’o C U™ be the complement of the boundary divisor, that is, the vanishing

~ an,o ~an

locus of elements in Y, \{1}. Set P = q
For each point x € U (K o), we obtain a homomorphism of groups:

B __x v
X X Vp
vy Y — K, — Q.

Set:
d(T) = dimg(vs : x€ U (Ko)) C Hom(Y, Q).

~.an,o

LEMMA 3.5.9. — Suppose that UV is non-empty. Then we have:
d(T)>dimT — 1.

Proof. — Tt is clear from the definition that d(R) = rank Y = dim R — 1.

We will prove the lemma by induction on the rank r of Y. If » = 0, we must have R = T,
and so we are done. If r = 1 and R # T, then dim7 = 1, and the assertion is vacuous.
Therefore, we can assume that r > 2.

Set

¥ ={D Cc Hom(Y,Q) : D ahyperplane; D N t° # @} C P(YY)(Q).
Forany D € X,set Yp = DY and 7p = 7 N (R ® D). Observe that tp is again maximal
dimensional in R® D, and so we can form the completed monoid ring Rp = O [|Yp Nt]].
The corresponding map
Spec Rp — Spec R
is the normalization of a closed immersion, and its image is an irreducible Weil divisor
Sp C Spec R.
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Set Up = Spf Rp and

~ an,o ~ an ~an,0  ~an,o ~an ~ an,o

Up = Up X g0 U Up v X gn U
Fix x € 6\Uan’c’(fo) and set:
Sx={DeX: vy ¢ D}

We claim that there exists D € X, such that E\U;)n’o # . Assume that this is not true.
Let &) C Spec R be the boundary divisor. Then our hypothesis says that, for every D € X,
the intersection Ep = Spec T'NSp is containedin &) := Spec(F,® R)U ) (as a topological
subspace).

However, the irreducible components of both Ep and (SpecT) N &) are divisors
in Spec T'. Therefore, the union | pex Ep contains only finitely many irreducible compo-
nents (since this is certainly true for (Spec 7) N &)).

Let {E; : 1 <i < n} be the irreducible components of this union. Then we can partition
3. into finitely many sub-sets: ¥, = |_|f-‘=1 >;, such that, for each index i, we have:

(| Sp D Ei #0.
Dex;
But this can only happen if, for each i, the intersection K(i) := Npex,; D is a non-zero
subspace of Hom(Y, Q). Moreover, it would also imply that, for every hyperplane D € ¥,
there exists an index i such that K(i) C D. Therefore, Xy is a finite union of Zariski closed
subspaces of P(YV)(Q); but, by definition, it is also a Zariski open subspace. This gives us a
contradiction. .

Fix D € X, such that EZ\)ZH’ # 0. Let Spec Tp be an irreducible component of Spec(Rp ®g T)

such that (Spf7p)?" N @Zn’o is non-empty. Then we have:

dimT — 1 = dim Tp < d(Tp) + 1 < d(T).

Here, the inequality in the middle holds by our inductive hypothesis and the last inequality
holds because vy ¢ D. O

Proof of claim (1) of (3.4.3). — It is enough to show: dimg(Q ® Bg) = dw:.

By choosing (0%, sg ,to) appropriately in its & x-equivalence class, we can assume that
ot ¢ R®B has maximal dimension. We have a splitting R(o¥, s{) = R @ B(o¥, s}), where
B(o*, sg) = W[|S(c¥)]] is simply the completed monoid ring attached to the monoid S(o)
(cf. 3.2.3).

_sab ~ sab
Set U = Spf RSGab and U = Spf R, Suppose that we are given a finite exten-

~ sab
sion L/Kg, and y € & (O1) corresponding to a map y# : R — ;. Then we can
identify R(o#, sg) ® gsab ¢ O, with the completed monoid ring OL[IS(eH)]].

Choose any point x € 0/Z\JaGn’o(Ui,to)(L) with associated map x* : Rg(o¥t,10) — 0.
~ sab ~ sab
Lety e u* (Op) C u* (O1) be the restriction of x. Let
Spec A C Spec(Rg (o}, to) ®RsGab’yﬁ 0r)
be the irreducible component such that x belongs to (Spf A)*(L). Then we have a finite map:
OLlIS(6H)]] = R(0*, 58) ® geav s O — A.
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Let A C A be the image of this map. We can now apply (3.5.9) with Y = S, ¢ = oF and
T = A. This gives us the inequality:

(3.59.1) d(A) > dim(A4) — 1.
Here, d(A) is the dimension of the vector space:
(vpo Nyt x' € (SpfA)™ (Ko) N U (Ko)) € Q@ B.
By (3.3.9), for all x’ € @an’o(fo), we have:
vp o Ny € (Lie G, )(-1) N (Q®B) = Q ® Bg.
Therefore, (3.5.9.1) shows:

(3.5.9.2) dimg(Q ® Bg) > dim(4) — 1.
It follows from (3.5.7) that
(3.5.9.3) dim RE® < d — dyy + 1.

Let P C Rg(o*, o) be the kernel of the map Rg(o%,79) — A. Then 9B is minimal
over py, Rg (0¥, 19). Therefore, using [45, Theorem 15.1], we find:

(3.5.9.4) dim(Rg (0%, 1)) < dim((RE®),, ) < dim(REP[p™"]) = d — .
Using the fact that Rg (0¥, 1) is catenary [45, Theorem 29.4], we get:
dim(4) = dim(Rg (6%, 10)/P) = dim(Rg (o*. 1)) — dim((Rg (6F. 10))3p)

(3.5.9.5) =d + 1 —dim((Rg (%, 10))p) = d + 1~ (d — dw) = dwe + 1.

Combining this with (3.5.9.2) shows:

dwt > dlm@(@ & BG) > dyt.

This finishes the proof. O

REMARK 3.5.10. — In the PEL case, the above proof can be simplified considerably, and
in fact will not require any p-adic Hodge theory beyond the functoriality of logarithmic
Dieudonné theory.

Note that B can be identified with a subspace of the space B(X) of symmetric bilinear
forms on X, which in turn can be identified with the space of symmetric maps X — XV. The

identification of this space with a subspace of Lie Uy proceeds by identifying the latter with
the space of maps My — M, that factor through a symmetric homomorphism

gr¥ My = X ® Ko — Hom(X, Ko) = WoMp.
Suppose that {s,} C End(V) C V® can be taken to be a collection of endomorphisms.
Then the corresponding Tate tensors
{Sa,st,O} C End(My) C M(;®

are simply the log crystalline realizations of the endomorphisms of the universal log 1-motif
that are induced from the {s4}.

The subspace Lie Uy, C Lie Uy consists of those elements that anti-commute with
the collection {sq st,0}. Therefore, the desired rationality statement amounts to showing that
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each endomorphism sy st,0 of My respects the weight filtration W, My, and that the induced
endomorphism of
WoMy = Hom(X, K()) ; gI’gV My =X® Ky
respects the integral structures
XY ¢ Hom(X, Ky) ; X C X ® K.

But this can easily be deduced from the fact that s, «t0 1s the realization of an endomorphism
of a log 1-motif whose log Dieudonné realization is My, and whose étale and multiplicative
parts are identified with X in a way compatible with the realization.

3.6. Reduction of structure group
3.6.1. — Fix a trivialization (2 as in (3.2.3), with the corresponding splitting:
(3.6.1.1) R(oF,s}) = R ®B(ot, s).

Let e« : S — Gpz be the homomorphism attached to the trivialization sab et
Q(Rg (0%, 19)) be the fraction field of Rg (o, ty). Via the restriction H(E, G,,) — Q(Rg(0F, 19))%,
we can view « as amap S — Q(Rg (0%, 19))*. As mentioned in Remark (2) of (3.4.4), to
prove assertion (2) of the theorem, we have to show that there exists m € Z- such that, for
all h € 8Y, we have a(h)” € RE>* ¢ Q(Rg(oF,19))*.

We will do this in stages.

LEMMA 3.6.2. — Forany h € S, a(h) lies in Rg(c%,19)* € O(Rg (0%, 19))*.
Proof. — Given x € @Zn’o(oi,to)(fo), the homomorphism « specializes to a map
—X .
ax : S — K. The induced map:
(3.6.2.1) S K, —> f;/ﬁ%o
is precisely the one corresponding to the monodromy operator Ny : My — My® (f; / 6’%0);
cf. (3.2.8). By (3.3.9), it follows that (3.6.2.1) factors through S¢g := S/S°.

In particular, we find that, for any point x € @aGno (0%, 10)(Ko), a(h)(x) = ax(h) € K,
belongs to ﬁ%o. The lemma now follows from (A.4.2). O

3.6.3. — Consider the logarithm homomorphism:
log : G2 — G2»
00 . 1 i
X = Z(_l)ﬂrlu_
i=1 !
It induces a map of analytic groups:
(3.6.3.1)
5 G,an G Fan) 198 G an : : an
¢ :E”* = Hom(S®,G}') — Hom(S”,G5") = (Lie Uwi/ Lie Uwi,c)(—1) ® G3".

Here, the last identity follows from assertion (1) of (3.4.3).
If we think of « as a map « : E — E, it follows from (3.6.2) that the composition:

Spec Q(Rg (0%,19)) > E > E — E¢
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arises from a map @ : Spec Rg(c%,19) — EC. Moreover, since F; is torsion, for a
sufficiently divisible m € Z>1, @™ will give rise to a map of formal schemes @G (¥, 19) =
Spf Rg (0%, t9) — E©, which we denote again by a™.

PROPOSITION 3.6.4. — There exists a (unique) map

~ sab,a

: Ug — (Lie Uyt/ Lie Uyt,g)(—1) ® G"
such that the following dlagram commutes:
~ | =m ~
U ang (o*, to) “ EC-2n
| |
~ sab,an U

Ug — —"— (Lie Uy/ Lie Uy.6)(—1) ® G2,

Proof. — Let F, (ﬁ»«sab an ®k, Mp) be the filtration on O pav.an ®Ky Mo constructed
in (3.2.12). The 1nduced ﬁltratlon on

b,
Wsa an == ﬁ/\sab an ®K0 Msab

is the canonical Hodge filtration considered in (3.5.6). Therefore, by (3.5.7), the associated
~ sab,
map %sa L Gr

Moreover, by (the proof of) (3.5.5), there is a unique Uy g-orbit of endomorphisms
B e ﬁAsab an ® Lie Uy such that exp(B)(Fy) is split by a cocharacter u : Gy — Qwi,G

sab,an maps into Usab:]“

in the conjugacy class [u]. Let

~ sab,an . .
lg: GMG — (Lie Uyt / Lie Uyt,g) ® G2"
be the map associated with this orbit. It can now be checked that {g ,, := —m{g is the map
whose existence is being asserted by the proposition. O

The following corollary completes the proof of (2) and shows that E| Spec RS admits a
G

canonical reduction of structure group to an Eg-torsor Eg.

COROLLARY 3.6.5. — Assertion (2) of (3.4.3) holds. More precisely: there exists m € Z>q
such that, for all h € SC | we have:

a(h)™ € RE>™.
Proof. — This is now immediate from (A.4.4). O

3.7. The end of the proof

We are almost there. The only remaining point is to find the torus EZ, and the Eg; -torsor E¢
over Rsab promised by claim (3) of (3.4.3). The purpose of this subsection is to resolve this,
and thereby complete the proof. The main additional observation required is (3.7.2). Essen-
tially, what we have shown above covers the case where K, = K, ; N G(Qp). The main
observation here shows that the desired result is true when G = G¥ and K, = K 5’0 is an
arbitrary compact open subgroup of Kg. Combining the two situations gives the result for
general G and K.
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3.7.1. — Choose a compact open subgroup K#° C K*. Then, Shg+.c — Shg: is a finite
% . .
étale cover. Let & IE(:[:,O - & Iz(:i be the normalization of &g in Shgso.
We also have the tower of mixed Shimura varieties

(3.7.1.1) Shyi.e (Qoi: Dat) = Shyto (Qor. Do),

which is a torsor under the torus Eg+.. (®%).
This tower is finite étale over the E = Eg(®¥)-torsor

ShKii(Qcpi, Dgi) — Shf-:;i (Ot Do1).

which admits the canonical integral model

(3.7.1.2) Sxt (Qot. Do) > Spt (O, Dot).
F3s ot
We can now consider the normalization
(3.7.1.3) Sgto(Qot. Do) = Spto(Qogt. Dot)
ot ¥

of (3.7.1.2) in (3.7.1.1).
LeMMA 3.7.2. — The map in (3.7.1.3) is an Eg+.o (®F)-torsor.

Proof. — For any integer n > 1, set
K*(n) = ker(GSp(H(Z)) — GSp(H(Z/nZ))).
Choose an integer n > 3 such that
K*(n) c K*+°,

so that we have
(3.7.2.1) n-B(X) = BK:;(,,)(dbi) C Bgi.o(®F) € B(X) = BKi(l)(dbi).
Here, as in (3.5.10), B(X) is the space of symmetric bilinear forms on X which can be
identified with Bg+(y) (D).

Let Qab be the universal principally polarized abelian scheme over & K (Gt p> Dot )
Then the scheme

Hom(X. ) = & (G- Dot )

b with principally polarized abelian part Q** and

parameterizes semi-abelian schemes ¢)
multiplicative part X.

There now exists a sequence of finite flat morphisms of smooth & .+ (Gt s, Dot j)-schemes
: : ;

Hom(X. @) > &g (Qar. Dae) — Hom(X, )

Indeed, the second morphism is tautological from the moduli description, since it parameter-
izes certain prime-to- p level structures on Qsab lifting those on Qab. The first morphism arises
from the following fact: giving a map rlLX — Qab extending the classifying map of the semi-
abelian scheme Q**® is equivalent to giving a splitting of the surjection @***[n] — ©*[n]
of finite flat group schemes. In particular, one can use this splitting to give the desired level
structures on Qsab that the scheme in the middle is supposed to parameterize.
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Now, consider the scheme
1 1
(3.7.2.2) Hom®™™ (=X, §***) - Hom(—X, §**)
. n — n

parameterizing lifts ¢, : }LX — Qsab of the universal morphism ¢, : %X — Qab that
are symmetric in the following sense: In the notation of (1.1), the restriction of ¢, to X
corresponds to a trivialization 7 of the universal biextension of X x X obtained by pulling
the Poincaré bundle on §** x Q" along the morphism

X X X cxkabc Qab X Qab,\/

Here, A% : Qab = Qab’v is the tautological principal polarization. Then the scheme
in (3.7.2.2) parameterizes homomorphisms such that the corresponding trivialization 7 is
symmetric.

It is easy to check that (3.7.2.2) is a torsor under the torus

1 1
Egct(ny (®F) = Hom(=B(X), Gn) = Hom™™™ (~X, Hom(X, Gyn))
n n

that parameterizes pairings %X x X = Gy, that are symmetric on X x X.

Therefore, one can push it forward along the isogeny E Ki(,,)(@i) — Egi.0 (®F) obtained
via the inclusion of cocharacter groups in (3.7.2.1), and obtain a canonical E g+.. (®¥)-torsor
over Hom(1X, ™).

We now claim that the obtained Eg+.. (®%)-torsor over the finite flat cover

I b S — S —
M(;X» Q )Xcs'?ii@q,i,fq,i) éy?ii}(Qcpi’ Dg:) — oSvfi.;(Qcpiquﬁ)

descends to an Eg+.. (®F)-torsor over the base that is identified with the morphism (3.7.1.3).
This is a statement that can be checked over the generic fiber, where it can be deduced from
the moduli description of the spaces involved. O

3.7.3. — Assume now that K*° has been chosen so that K = K+° N G(Ar), and such that
the map
ShK e ShK;t,o
is a closed immersion. This is always possible by [14, Prop. 1.15].
From (3.7.2), we obtain a finite map
(3.7.3.1) QS”K;;;(Q@,DW&*) - OS»K;TI-)T(Q@»chia&i)

of normal twisted toric varieties.
Since §'x — Sk lifts toamap §x — & g0, one finds that the composition

Spec Rg (6%, 79) — Spec R(6+.55) — & s ,(Qat. Dot Fid)
o
lifts to a map
Spec Rg (6%, 7o) — Sgte(Qat Dot 57).
o

Let
%K:L,{? (chi N Dq;:!: ) 6’1) C QSVK:{:,TO (Qq;:l: N Dq;:{: N 5'1)
D+ D+
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be the closed stratum, and let 53’0 € Zy1o(Qot, Dot 5%)(F,) be the image of 7.
ot

Let R(6%, §§’°) be the complete local ring of § +.0 (Qgt. Dot &%) at §§’°, so that we have
ot
a finite map of complete local rings
R(G*.58°) — Ro (64, 10).

The fact that Shxy — Shg+.o is a closed immersion now implies that Rg(6%,7) is the

normalization of the image of the above map. Moreover, Rgb is also identified with the

normalization of a quotient of the complete local ring of & 2ho (0. Do) at the image
(03]

of Eo’o.
3.7.4. — The restriction of & xto (Q g1, Dgt) over Spec Rg‘b isan Egs .o (®*)-torsor, which
ot

we denote by E°.
Let EZ, be the torus with co-character group

B NBgi.o (CDI) C Bg.

Itis a sub-torus of Eg ,(®°) equipped with an isogeny E¢;, — Eg.
We can now complete the proof of our main result:

Proof of (3.4.3). — Assertions (1) and (2) have already been shown, so we only have to
prove (3).

Since Spec Rg (6%, #9) is a scheme over the twisted torus embedding E° (%), we obtain a
tautological section

(3.7.4.1) Spec Q(Rg (5%, 1p)) — E°/ES.
By the results of (3.6), the composition of this section with the finite map
E°/Eg — E/Eg

is defined over Spec RsGab. Since Rg‘b is integrally closed in Q(Rg(6%,17)), this implies
that (3.7.4.1) is also defined over Ri;‘b. In other words, E° has a canonical reduction of
structure group E¢ to an E¢,-torsor over Rs(?b, given by the pre-image of this section.

Suppose that 56 = 6¥N(Bg ®R), an B (6¢) is the associated twisted torus embedding
over Rsc‘;‘b.

From the definition of &g, we find that the natural map Spec Q (R¢g (6%,7)) — E factors
through E¢. Therefore, the composition of finite maps

(3.7.4.2) Spec Rg (5%, 7p) — Spec R(6F,5%) — E(oF)

must lift to a map Spec Rg (6F, 7)) — E&(56).
The discussion in (3.7.3) shows that Rg (6%, 7) is the normalization of a quotient of a
complete local ring of EZ (6 ). But, on the other hand, we have:

dim E = dim(RE®) + rank Bg < d — dyt + 1 + dye = d + 1 = dim(Rg (5%, 7).
Here, the inequality in the middle follows from (3.5.7). Therefore, under (3.7.4.2),
Spec Rg (6%, 7y) must map finitely and dominantly onto the completion of the normal
scheme E¢; (6¢) at an Fp-valued point.

This completes the proof of the theorem. O
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4. Compactifications of Hodge type and their stratifications

In this section, we will deduce the main theorems of the paper from the results of § 3. We
preserve the notation specified in (3.1).

4.1. Toroidal compactifications of Hodge type

4.1.1. — Fixaclr @ for (G, X), and let ®* be the induced clr for (G¥, X¥).

Fix aneat level K = K,K? C G(Ay), as well as a neat subgroup K = KgKi’P C O(Ay)
containing K such that the map Shx — Shg is a closed immersion.

We then obtain a finite map of mixed Shimura varieties over E (2.1.28.1):
Shg(Qe, Do) > E® ShKii (Qgt. Dogt).
P

This respects the natural tower structures on each side.

Let & Ki (Qgt, Dgp:) be the natural integral model for ShKi (Q g1, Dgpr) defined

in (2.2.14). It has a tower structure:

4.1.1.1) St (Qor. Dot) = St (Qgt. Dot) > &1 (Got . Dot )
¥ of ot

Let §kq(Qa, Do) — Sk, (0p.Do) — Sken(Gan Do) be the tower obtained
by taking the normalization of (4.1.1.1) in the corresponding tower for Shg,(Qs, Do);
cf. (3.3) for the definition. We will soon see that the first map in the tower is an Eg (®)-torsor,
and that the second, under certain conditions, is a torsor under an abelian scheme ¢#g (P)
over §x o1 (Gons Do ). In particular, the singularities of the tower are all concentrated

in §gq, (Gaon, Dop)-

4.1.2. - For any rational polyhedral cone 0¥ C R ® Bg:(®¥), we obtain the twisted
torus embedding §K¢ (Qpt, Do) — @?Ki (Q 1, Dcpi,ai). Within the target of this
oF fxs

embedding, we have the closed stratum %K:[: (Qot, Dot 01).
o

Set 0 = of N Wa(R)(—1), and let Jke(Qa.Do,0) be the normalization of
(S’Ki (Qot, Do, o¥)in Shg 4 (O, Do): It does not depend on the choice of o¥ intersecting
%

D
We(R)(—1) ino. By alemma of Harris [24, Lemma 3.1], the generic fiber of §'x,, (Qe. Do.0)is
precisely the twisted toric variety Shx,(Qa., Ds,0). Let Zg,(Qs, Do,o) be the closed
stratum in Shg,(Qe, De,0), and let Zg,(Qs.De,0) be the normalization of
ZKii (Qgt. Dgt.0o¥)in Zko(Qa, Do, o). Then we obtain a finite map Zk4, (Qe, Do, 0) —

d ke (0Qs. Do, 0) extending the closed immersion

Zch(Q‘I’* Dq;.,d) —> ShK(P(Qcp, Dc]),(f).
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4.1.3. — Suppose that we are given two clrs ®;, ®, for (G, X) with @, s, ,,

fory € G(Q),q € Qa,(Ar), and with y- Po, = Po,. This gives us an isomorphism (2.1.15):

p(y.q) : Shge (Qa,. Do) — Shky, (Q,. Da,).

)t (@)) gt . . . .
Now, we also have <I>‘1E —5 CDg, and so an isomorphism of mixed Shimura

varieties p(y.q) : Shyz (Qgt. Dy?) = Shys (Qgs- Dg3)- By (22.18), this extends to an
@5 @3

isomorphism QS’K% (Q‘ff’ Dqﬁ) = é”Kii (Qcpg, D<I>§)'
2
We therefore find that p(y, ¢) also extends to an isomorphism p(y, g) : @S”K¢l (Qo,, Do)

— Ok ® (Qa,. Do,). By construction, it preserves the tower structures on either side.

If, further, we choose a rational polyhedral cone o0y C Wsg, (R)(—1) and set 0, =
int(y)(02) € Wa, (R)(—1), then p(y, g) induces isomorphisms:

51{@1 (Q4>19Dq>1701) — CSqu>2(Q<I>2s Dq)2702) )
%Kq:.l (Q<I>1 s D<I>1 70'1) — %chz(QCsz D<I>2’ 62)~

4.1.4. — Fix an admissible rpcd =* for (G*, X*, K*) and let = be the induced admissible

rped for (G, X, K). Associated with this is a map of toroidal compactifications (cf. 2.1.29)

ShY — Sh?;. By [24, 3.4], this map identifies Sh¥ with the normalization of ShZ; in Sh.

Now, assume that =¥ is smooth. Let § 12(1 be the Chai-Faltings compactification of & g+
(cf. 2.2.20). Let §'Z be the normalization of §Z in Shg

Choose Y = [(®,0)] in Cuspg (G, X); and set Y = 1, ¥ = [(®F,0%)]. We obtain a
diagram:

Zke(Qo. Do, 0) — ZKii(Qqﬁ, Dg:.0¥) — zKii(Qqﬁ,Dcpi,Ui)
D D

~ ~ Nj/

Zk(T) Zii(TH) > Zpa (TH),

where the vertical maps are canonical isomorphisms. Here, we are using the following: for
any h € X, twisting by (i) is a Cartan involution on G/Gy,. Therefore, Z¢, is isogenous to a
product of G,, and a compact torus. By (2.1.20), we then conclude that the group A% (®) is
trivial, and so Zg, (Qa. D&, 0) does indeed map isomorphically onto Zg ().

Let Zg(Y) be the normalization of Zg+(Y¥) in Zg(Y). Then we see that there is a
canonical isomorphism Zx,(Qe. De,0) — Zk(Y). Moreover, the map
%
Zx(0) > Zg: (TH = §%s

lifts to a map Zg(Y) - & I)i, extending the locally closed immersion Zg (Y) < Sh,%.

Also, for anintegern > 1, let K*(n) ¢ G¥(A ) be the full level-n compact open subgroup
defined as in (3.7.2).

. >
We can now state our main result on the structure of §'%:
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THEOREM 4.1.5. — 1. Suppose that K, = Ki(n)p N G(Qp), for somen > 1. Then, for
any clr @ for (G, X), the abelian scheme Ax(®) — Shgg, ,(Gon, Do) extends to an
abelian scheme Ak (P) — Skg ,(Gon Don), and the A (®P)-torsor structure on

Shz (@4, D) — Shkg, (Gon, Don)

extends to an A g (®)-torsor structure on
5%y (e Do) > Sky, (Gon Do)

2. Forany Y € Cusp,%(G, X), the map Zx(Y) — Sﬁ is a locally closed immersion. We
have a stratification:

Sk =] Zx(0).
T

where Y ranges over CuspIE((G, X).
3. For any fixed Y, the closure of Zx(Y) in & 1% is precisely the closed subspace:

Zek(0) = | | Zk(0).
T'YT

4. Foranyclr ®, §'g,(Qe. Do) has the structure of an Ex (®)-torsor over QS”qu (0. Do),
extending that of Shky,(Qe, Do) over Shg (0. Do). In particular, for any rational
polyhedral cone o C We(R)(—1), Sky(Qa. Do, 0) is a twisted torus embedding for the
torus Ex (®), and Zk(Qo, Do, 0) is its closed stratum.

5. Suppose that Y = [(®,0)]. Let qu)(Qcp, Dg,0) be the formal completion of
ke (Qo, Do, o) along the closed stratum Zk,(Qe,De,0). Then the canonical
isomorphism

Zko(Qo. Do.0) — Zx(Y)

lifts to an isomorphism of formal schemes.

qu)(Qq)» D<I>70) i) (CSvIE{)%K(T)

This isomorphism restricts to the one from (2.1.27)(3.) over the generic fiber.

REMARK 4.1.6. — It follows from (5.) and (A.3.4) that the integral model QS”I%
for Sh¥ does not depend on the choice of * such that & = * 3%,

— Suppose that ¥’ is an admissible rpcd for (G, X, K) that refines X; then the methods
of [30, Ch. II] allow us to construct an open embedding §g <> & IE(, over O (v), and
a birational map & IE(/ - & I%, which is an integral model over Ok () for Shlz(/ — ShZ,
and which has a stratification satisfying, mutatis mutandum, the conclusions of (4.1.5).
Alternatively, one can also argue as in [25, Theorem (2.4.12)], and show that we can
arrange the choice of X¥ so that X is smooth.

In any case, we can and will assume that there exist good integral models as above

for compactifications associated with smooth complete rpeds.

We postpone the proof of the theorem to (4.2); in brief, it amounts to putting together
(2.1.27) and (3.4.3). For now, we can quickly deduce Theorems 1 and 5 of the introduction.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



476 K. MADAPUSI PERA

Proof of Theorem 1. — Fix T = [(®,0)] in CuspIZ((G, X). Combining assertion (5.)
of (4.1.5) with Artin approximation, we find that there is an étale neighborhood V' —
o IE of Zk(Y) such that the open immersion V| e = V is again étale over the open
immersion §g,(Q¢. Do) = Sk,(Qa. De,0). By assertion (4.), this is a twisted toric
embedding, and so the complement of 'k, (Qs.De¢) in Sk, (0, De,0) is a relative
effective Cartier divisor over O, (y). Hence, the complement of V| Sk in V is a relative Cartier

divisor over O (). Now, using assertion (2.), we see that the complement of & in & IE( must
be a relative Cartier divisor.

By (4.1.6), we can replace ¥ by a smooth refinement.

Then both §'x4,(Qa, Do) and 'k, (Qa, Do, o) are smooth over §g, (O . Do). Since
Sk = OS”IE( is étale locally isomorphic to 'k, (Qa, Do) = & ke (Qe. Do, 0), we find that
the singularities of & I% can be no worse than those of §g. O

COROLLARY 4.1.7. — S is projective over O (y if and only if G* is anisotropic, equi-
valently, if and only if G*(Q) contains no non-trivial unipotent elements.

Proof. — Indeed, it is clear from the theorem and the description of the stratification that
o g 1s projective if and only if G does not admit any proper parabolic subgroups defined
over Q. O

4.1.8. — Before we prove Theorem 5, let us first recall the Mumford-Tate group MT4 asso-
ciated with an abelian variety 4 over C: One way to define it is as the fundamental group of
the Tannakian category of polarizable rational Hodge structures generated by the rational
Hodge structure H ' (A(C), Q) (cf. [18, Ch. II]). In particular, it is a connected reductive group
and there is a canonical map hy : S — MT4 r that gives rise to the Hodge decomposition
of H'(A(C),C). The pair (MTy4, X4), where X4 is the MT4(R)-conjugacy class of s, is a
Shimura datum of Hodge type.

Suppose now that A4 is defined over a number field F. The Mumford-Tate group MT4
of A is MTg+ 4, for any embedding o : F <> C. The main result of [18, Ch. I] shows that
MT4 does not depend on the choice of embedding. We can now restate Theorem 5 as follows:

THEOREM 4.1.9. — Suppose that MTy is an anisotropic modulo center. Then A has poten-
tially good reduction at all finite places of F.

Proof. — Using Zarhin’s trick [64, § 6], we can replace A by an abelian variety isogenous
to A%, and assume that A is principally polarized over F. Extending F if necessary, we
can assume that it contains the reflex field £ = E(MTy, Xy4). Fixo : F — C, and
set H = H'((c*A)(C), Q) equipped with a pairing attached to the principal polarization
on 0*A. We then have a natural embedding of Shimura data:

(G, X) = (MT4, X4) = (G¥, X¥) := (GSp(H), S* (H)).
Fix a prime p and a place v|p for E, and a neat level subgroup K+ C Gi(Af), so that K;,t is
the stabilizer of H'(A,Z,). Set K = K n G(Ar). Let §x — & s+ be the corresponding

finite map of integral models of Shimura varieties over Of ). By (4.1.7), 5’k is proper
over Og (v).
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Let ¢# — &g+ be the universal abelian scheme. By construction, there is a finite
extension F'/F and a point x € &g (F’) such that o7, is isomorphic to A. Since 'k is
proper, for any place v’|v of F’, x extends to an - (,)-valued point of &g, implying that
A has potentially good reduction over v.

Since v was arbitrary, this proves the theorem. O

4.1.10. — For any scheme S, write 7o(S) for its set of connected components. The following
easy corollary to (4.1.5) is often useful. For instance, it implies the geometric irreducibility
of the moduli space of polarized K3 surfaces of degree 2d over F, when p { d? (cf. [42]).

COROLLARY 4.1.11. — Suppose that the special fiber k(v) ® & g is geometrically reduced.
Then, for any finite extension F/E and any place w|v of F, the natural maps.

mo(F ®E Shg) < 70(OF,w) ®65. oy Sk) = To(k(W) ®sy () Sk)

are both isomorphisms.

Proof. — By Theorem 1, the hypothesis implies that k(v) ® & ,zé is also geometrically
reduced. Since ¢k is fiber-wise dense in & ,E<, we reduce to showing the following general
statement.

Suppose that S is a flat, proper algebraic space over Ok () with geometrically reduced
special fiber. Then the natural maps:

7o (F ®F S) < m0(OF,w) ®ep , S) = mo(k(w) ®op S)
are isomorphisms. Indeed, by replacing S with Spec H%(S, Os), we are reduced to the case

where S is finite and étale over O (,), where the statement is obvious. O

4.1.12. — We can also extend Hecke actions to the compactifications. More generally,
suppose that we have an embedding of Shimura data:
n: (G, X) = (G, X).

Fix a compact open subgroup K’ C G'(As), and g € G(As) such that gn(K')g~! C K.
Let X/ be an admissible rpcd for (G’, X”) refining (n, g)* .

Let E' = E(G’, X’) be the reflex field, and let v’|v be a place of E’ above v’. Consider the
open immersion of algebraic spaces over E':

Shgs = Shg/(G', X') <> ShE,(G’, X') = Shg, .

Using the symplectic embedding ¢ o n of (G', X’), (4.1.5) and (4.1.6), we obtain a normal
integral model §'xr — & IE// over U () for this immersion.

By construction, the map (1, g) : Shgs — E’ ® g Shg extends to a finite map of normal
schemes S — OE/ ) ®6p (o, Sk More generally, for any clr & for (G', X’) with
(1, £)+® = @, the map ShKLD/ (Qo, Do) > E' ®E Shgy, (Qo, Do) (cf. 2.1.28.1) extends to
a finite map:

(4.1.12.1) QYKQD,(Q@, Do) = Op/ (v) ®65.) O ke(Qas D).

Given ¢’ € ¥'(®’) and o € X(®) such that n(o’) is contained in o and intersects o° non-
trivially, (4.1.12.1) extends to a map:

Sk, (Qe. Do, 0') > O, ) ®0 ) Sko(Qe. Do.0).
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This carries ZK:D/(Q@, Dy 0') into O vy @6y Zke(Qa, Do, 0).

Therefore, for any Y/ = [(®’,07)] in Cusp,zé(G’, XYwith ¥ = (9, 2)« Y = [(®,0)], we
obtain a map:

(4.1.12.2)
1.2): (S%) vy — Sy, (Qar. Do 0)) > Sky(Qw. Do 0) = (), vy
From (2.1.29) and (A.3.4), we now obtain:

PROPOSITION 4.1.13. — Suppose that X is complete. Then themap Sk — Opr (v)® 6 (o
o k extends uniquely to a map

3z bl
(m.8): Sk = Ok ) Q0. w) Sk

satisfying the following property: For every cusp label X' with ¥ = (n,2):Y’, (n,2)
carries Zg(Y') into O ) R (v Zk (), and the corresponding map between the
formal completions along these locally closed sub-schemes is identified with the one obtained
from (4.1.12.2). O

4.2. Stratifications of the integral model
The notation will be as above.

4.2.1. — Let ® be a clr for (G, X, K) and let ®* be the induced clr for (G*, X*, K*). By the
analytic description of Ag(®P) and AK;;:(QDi)|ShK (GonDon) in (2.1.10), we find that the
®.h D,

former is associated with the G j-representation Ve with the lattice Koy C Vo(Ays) and
the latter is associated with the representation Vg: and the lattice K;i’v C Vgi(Ar). The
homomorphism of abelian schemes

4.2.1.1) Ag(®) > Ak (CI)ZIC)|ShK<I> 2 (Ga.nDa.n)

is associated with the natural inclusion Ve < Vgr.

PROPOSITION 4.2.2. — Suppose that Koy, = Ki(n)qﬂ:’y’p N Vo (Qp), for some n > 1.
Then the normalization of Q%K:]:(@i)loy
Ko,

Ak (P) = Ske,(Gaon, Dop).

GaonDaon) in Ag(®) is an abelian scheme

Proof. — First, assume that n = 1. In this case, the homomorphism (4.2.1.1) is a prime-
to-p isogeny onto its image.
Let Wo H C H be the filtration determined by the parabolic subgroup P*. Then
Vs = Hom(grgV H, ngVl H)
is equipped with a symplectic form arising from that on gr”¥, H. This induces a polarization
on A s (®%) of prime-to-p degree.
Let V! C Vgt be the orthogonal complement to Vg. Then, just as in (2.1.10), to the

G o p-representation V' and the lattice V' (Afs) N K ii > We can attach an abelian subscheme
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/ . i . . . . .
A" C Agi (DY) Shig , (GoDas) equipped with a canonical polarization. Moreover, the

product homomorphism:
(4.2.2.1) B 1 Ag(®) Xshg, , GonDaw A = Agt (¢1)|sm<¢,h GanDaon

is an isogeny of abelian schemes.
The proposition in the case n = 1 is now immediate from (A.3.8). In particular, if
K" = K?(K} N G(Qp)), then
Agr () — Sth)h(ch,h, Do p)

is an abelian scheme.

If n>2, then there exists a compact open subgroup K*° C G*(As) such that
K}°® = K¥(n), and such that K = K*° N G(As).

One can show as in the proof of (3.7.2) that
Ai(uy(®F) = Shyiy , (Got . Dot )

can be identified with the abelian scheme Hom(1X, Qab), where Qab is the universal prin-
cipally polarized abelian scheme over the base Shimura variety. From this, one can deduce
that

Ao (D) > chi; (Got ps Dot )
is a abelian scheme.

By abuse of notation, write ¢Zgs(®), A+ (PF), Hg+t.o (OF) for the base change of these
abelian schemes over §'kx,, ,(Go,n, Do) along the obvious morphisms.

We can then consider the fiber product
O%Kb (P) x Ay (DF) C%Ki.o (cpi),

which is a disjoint union of abelian schemes finite over ¢#Zg»(®P). Now, as can be checked
over the generic fiber, o#Zg (®) is identified with one of these abelian schemes. O

COROLLARY 4.2.3. — Assertion (1.) of (4.1.5) holds.

Proof. — It only remains to show that §% (@, Do) — Jky,(Gen Den) is an
A (®)-torsor over Sk, , (Go.n, Do p)- Itis easy to see that this morphism is projective and
A (P)-equivariant.

To show that it is an ¢#Zg(P)-torsor, we can work étale locally on the base, and
assume that we have a surjective €tale morphism % — &'k, ,(Gons Do) such that
Shg, (64”5‘1’”%@*1] is a trivializable Ag(®)-torsor over %[p~!], and that

Ky & (@cbi , Do) |, 18 a trivializable 77 g+ (®%)-torsor over 9.

F1x a section U[p~!] — Shg, (O . Do); it induces a section of sh—T (Q<I> Dgi),

which, by the valuative criterion for properness and Weil’s extension theorem [6, §4.4,
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Theorem 1], extends to a section of &’ < (Q gt Dg:) over 9.3 Here, we are using the
_ - ot
fact that & =t (Q ¢, D g1) 1s isomorphic to an abelian scheme over /.
ot

This section now allows us to identify the map of %/-schemes Shg,, (§¢,5¢)|%

This implies that it must also identify 3% (§¢,5¢)|% with Q%K(CID)W as schemes
over 9, and so finishes the proof. O

PROPOSITION 4.2.4. — For any Y% in Cusplz{i (G*, X%, the reduced locally closed sub-
scheme

) by
(5% szt Zaer () ea = Sk
is normal and flat over Zp).

Proof. — This is a local statement. Choose a closed point s¢ € ¢ [E(Fl,) mapping
to sg € Zgr(YH(F,). Suppose that T = [(®F, 6¥)], so that we can identify the complete
local ring of é”ii at sg with R := R(®%, oF so) the complete local ring of QS”K1 (Qq); ,Dgr,0 )

at a closed point sg‘ of ZK;; (Qot. Dgt.0%).
oF

Let Rg be the complete local ring of & 12)( at so, let R%2® be the complete local ring
of OS” ; (Qcpi D g:) at the image of so, and let RSab be the normalization in Rg of the image

of RS“lb
According to (3.4.3)(2), the Egy(®¥)-torsor & xt (Qgi, Dpr) admits a canonical
[

reduction of structure group to an Eg-torsor Eg over Spec Rg‘b. Here, Eg is a sub-torus
of E g+ (®%) with co-character group Bg.

Moreover, by assertion (3) of the same theorem, there exists an isogeny E;, — Eg
of tori, and an E&-torsor Eg over R{® that induces Eg with the following property: if

o6 =0fN(R® BG) with correspondmg torus embedding E;, — Eg(0g) and twisted
torus embedding
E¢ — Eg(06).

then Rg is identified with a complete local ring at a closed point in the closed stratum
of E¢ (0G).

Fix a trivialization

Spec RE® x ES ) Eg-

Using this, we find compatible isomorphisms of R$**-algebras:
RsabAWB(O’i,Si) i Rsab ®Rsab R;
RE*®w B°(0G.10) < Rg.

Here, B(o*, i) is the complete local ring of E g+ (®¥, o¥) at a point sg in its closed stratum,

and B°(0g. to) is the complete local ring of E¢; (o) at a point 7o mapping to sg

(13) Note that this is precisely what fails if we worked instead with Ex (®)-torsors: There can be plenty of sections
that are not integral, and so one has to work to show integrality.
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Let I C R be the ideal so that R/ is the complete local ring of Zg:(Y¥) at szot.
Let 1(5%, sg) C B(o?, s(jj) be the ideal defining the closed stratum in Spec B(c*, sg). Then,
using the explicit description of Rgb-algebras above, we find that:

RG ®& (R/1) = RG ® g ok (RE” @ pws (R/1)
= RE®w(B°(06.10)/1(0*.53) B* (0. 10)).
So, to finish the proof, it is enough to show that the maximal reduced quotient of the ring
B°(0g.10)/1(0*,53) B° (06 to)

is formally smooth over W. In fact, let I1°(og,t) C B°(0og,to) be the ideal defining the
closed stratum in Spec B°(0¢, to). Then some finite power of this ideal is contained in the
image of [ (oi,sg). So it is enough to show that the closed stratum in Eg (o) is smooth
over Z. But this stratum is isomorphic to the torus with co-character group B¢, / (o), where
(0G) is the subgroup of B generated by o N By C By; cf. [30, p. 16]. O

COROLLARY 4.2.5. — Assertions (2.) and (3.) of (4.1.5) hold.

Proof. — Using (2.2.20)(2.), we see that we have a decomposition into locally closed
subspaces:

51% = Ll(évl)? Xé»]z(iT %Ki(Ti))red’

T

where Y* runs over Cusplzétk (G*, X*%). So to prove assertion (2.), we have to show that, for
each such T#, the natural map
|_| ZK(T) - (évlz(: XCS-Z:F ZK:L' (Ti))red
TiY="F K*
is an isomorphism. But, by construction, (2.1.27)(2.), (2.1.29), and (4.2.4), this is a finite,
birational map of normal schemes and is thus an isomorphism.

Assertion (3.) is proven similarly, using the analog in characteristic 0 (2.1.27)(2.), and that
for the Chai-Faltings compactification (2.2.20)(2.). O

4.2.6. — Suppose that we have T = [(®,0)] in CuspIE((G, X). Fix a point 59 € %K(T)(Fp),
and let R(T, sg) be the complete local ring of & IE< at s9. Set

V == V(Y,s0) = Spec R(Y, s¢) X gz Ok
We have a canonical abelian scheme ¢# over V, equipped with canonical tensors:
tSas) C HO(VIPT' Ay ® T(D)®).
Suppose that ®* = (,®. By construction, we have a map V — OS“Kii (Qot, Do)

corresponding to a 1-motif ¢ over V such that, for any integer n, ¢#[n] <Ii>s canonically
isomorphic over V to Q[n]. In particular, over V[p~!] we can identify /T\( Q) with f( oA). In
particular, we can view s, ¢ as a section of ?( L.

Now, let 1(Y,s9) C m(Hg(Z), T\(Q)) (cf. 2.2.3) be the étale sub-sheaf over V[p~!]
consisting of sections (1, u) such that, for every a, 1 carries s4 € H(Af)® to sq¢. The
stabilizer Ko, of H® (Z) in O (Ay) acts on I(Y, s9) via pre-composition.
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LeMMA 4.2.7. — This action makes 1(Y, so) a torsor under Ko, .

Proof. — 1t is easy to see that any two sections of (Y, s¢) differ by a unique element
of Ko,&. So we only have to show that (Y, s¢) is non-empty. For this, choose any t € Zg(Y)
specializing to sg. Let R(Y, t) be the complete local ring of Sh,% at ¢, and set

V(Y,t) = Spec R(T, 1) XShE Shg .

Then we have a formally étale map V(Y,t) — V[p~'].

Now, we can identify R(Y, #) with the complete local ring R(®, 7, ¢) of Shg, (Qs, Do, 0)
at 7. By (3.1.6), for each «, the restriction of s, ¢ to V(7 ?) is identified with s, g1 ¢. So we
can use the complex analytic uniformization of Shx, (Q. Ds)(C) to deduce that I(Y, s¢) is
non-empty over V(7,t), and thus over V[p~!]. O

PROPOSITION 4.2.8. — Assertion (4.) of (4.1.5) holds.
Before presenting the proof, we make a couple of remarks.

REMARK 4.2.9. — Note that there is genuine content to (4.2.8). In general, if X — S is
a torsor under a torus 7' over a flat, normal Z,)-scheme S, and if Y < X[p~!] is a torsor
under a sub-torus 7/ C T, then the normalization of the Zariski closure of Y in X need not
be a T'-torsor.

For an example, take S = Spec Z,), and X = G2, viewed as a trivial torsor over G2,,
and Y = Spec Q[T*!,U*!]/(TU~! — p~'), which is a torsor under the diagonal subtorus
G, C T. The Zariski closure of Y in X is

Spec Zp) [T U/ (pTU™ = 1),

which has an empty special fiber! In particular, it is not faithfully flat (though it is normal),
and so is no longer a torsor under the diagonal sub-torus.

REMARK 4.2.10. — Suppose that one were able to prove (4.2.8) directly somehow. This
would give us good integral models for the mixed Shimura varieties appearing at the
boundary. However, this would not be sufficient to prove the main Theorem 4.1.5. One has
to still show that every point of the boundary is accessible through one of these rational
boundary components; equivalently, one would have to know that the boundary divisor is
flat over Z,). The only way I know to see this is to use (3.4.3).

Proof of (4.2.8). — Let ®* be the clr for (G*, X*) induced from ®. Set & == $x, (Qo. Do)
and

Bt = oﬁvf@(@q;,ﬁcb) Xé"fi (@oi-Dgp) éyKii(qut,Dq;;t).
of

Also, set E = Eg(®) and E* = Eg+(®%), so that we have a homomorphism E — E* of
tori that is an isogeny onto its image.

Then Z* is an E*-torsor over &' Ko (0 4. Do), while E[p~!] is an E-torsor over its generic

fiber. There is an E-equivariant map Z[p~!] — %, and so the E-action on E[p~!] lifts to an
action on E.
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We need to show that E is an E-torsor over &’ Ko (O . Do). For this, it is sufficient to work
over a complete local ring of the base. Fix a point#g € & Ko (Qo. Do) (Fp) andlet R(D, 7o) be
the complete local ring of §f¢ (Qg. Do) at 1.

Choose a rational polyhedral cone 0 € X(®), and a point 5o € Zk4(Qa, Do.0) (FI,)
mapping to 7). If ¥ = [(P, 0)], we can view sg as a point of Zx (Y), and thus of QS”IE( Suppose
thato¥ € Z*(Cbi) contains o ° in its interior and sg is the image of s in %K* , (Qot, Do, oi).

e

Then the complete local ring R(o, 59) of & I)‘;‘ at s is a finite algebra over the complete local
ring R(o ¥, sg) of @S”?;_- This algebra is described explicitly in (3.4.3).

By construction, the sub-ring R(®, #9) C R(o, so) is identified with the ring denoted RSGab
in (3.4.3). Let E; be the torus defined there, equipped with a finite homomorphism
ES — EF(9),

Let B, C B¥ be the co-character group of Eg,. We claim that Bg = B. We will prove this
claimin (4.2.11) below. It implies that the homomorphism Eg, — E* is canonically identified
with E — E*.

Now it follows from assertion (3) of (3.4.3) that & |spec R(®.10)
be verified from the construction that this E-torsor structure is compatible with that on its
generic fiber. O

isan EZ, = E-torsor. It can

LeEMMA 4.2.11. — In the notation of the proof above, we have BS, = B.

Proof. — We have to recall the construction of the subgroup By, C B*. First, we have
the canonical p-module My over Ko = W[p~!] associated with the point sg of Zgs(®*,65);
cf. (3.2.9). It is equipped with a weight filtration W, M, and a symplectic pairing v with
values in Ko(—1). Let Uy C GSp(My, ¥o) be the center of the unipotent radical of the
parabolic subgroup stabilizing W, M.

We have a canonical family of g-invariant tensors {sqst,0f C MO® whose stabilizer
in GL(M)) is isomorphic to Gk, .

We have a canonical isomorphism (3.2.10.1):

Ko ® Lie Wy: — Ko(—1) ® Lie Uyt

Choose any point x € (Spec R(0,s0))(Ko) that does not lie on the boundary divisor.
In (3.2.14), we showed that (3.2.10.1) is obtained as the descent of an isomorphism arising
from a composition

1®(’7;)_1 1 ﬁst.x
Bt ®@ H(Q) —T__) Byt ® Hét(C%x,fo’ Qp) —;_) Bt ®K0 M.

Here, Bst,x is the semistable comparison isomorphism and 7, is the p-primary part of any
section of Isom(H $(Z), 7’\( Q)) over K.

By (3.3.9), for every index o, B x carries 1 @ s, g, t0 1 ® Sa,st,0. Therefore, if we choose 7
to be a section of I(7Y, sg) (which is always possible by (4.2.7)), then, for every «, the above

(14 Note that what we have denoted by E¥ here is denoted E in (3.4.3).
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composition will carry 1 ® sq to 1 ® sq1,0. In particular, if Uy, = Uwe N Gk, this
composition will induce an isomorphism

By ®q Lie Wo — By ®x, Lie Uyi.q.
which will descend to an isomorphism
Ko ®q Lie We = Ko(—1) ®, Lie Uy

that is compatible with (3.2.10.1).
Now, by definition, B ® Q C B* ® Qs the intersection of the pre-image of Lie Uy.g (—1)
under (3.2.10.1) with a compact open subgroup Ki’; C Qg:(Ar) such that

Ki’f n Q@(Af) = Kp.

By what we have seen before this is also the intersection of this compact open subgroup with
Lie Wy, and this is precisely B. O

REMARK 4.2.12. — The above result has the following étale analog, which implies
Theorem 4: set I//\( Ax) =Ar® ?( /), and observe that this is equipped with the canonical
Weil pairing v/, induced from the polarization on ¢#,. Let Uy, C GSp(V (HAy), V<) be the
center of the unipotent radical preserving the weight filtration.

Then as above, we have a canonical isomorphism of Galois modules:

As(1) ® Lie Wer — Lie Us, .
The stabilizer of the tensors {sy¢x} C 17(05%) gives us a canonical copy Gp, C
GSp(f/\(ﬂx), Y¥). The non-emptiness of the torsor /(Y,sg) now shows that the canon-

ical isomorphism above must map As(1) ® Lie We isomorphically onto LieUg,a, =
Lie GAf N Lie UAf .

The next result completes the proof of (4.1.5).
PROPOSITION 4.2.13. — Assertion (5.) of (4.1.5) holds.

Proof. — Set (®F, o) = 1,(®, ), and let T+ be its class in Cusp?i (G*, X*). We obtain
a commutative diagram:

Shke (0. Do.0) = Sky(00. Do.0) —> &'gi (Qgi. Dot oF)
D+

. l

(Sh2)7,c 0 = (%)) (8%) % pcry
The horizontal maps on the right-hand side are finite. So, applying (A.3.2), we only
have to show the following: suppose that we are given a point s € Zk,(Qe. Do, 0)(Fp)
with image sg in ZKiT(QN,Dq,i,Ji). Let R(®,0,s0) (resp. R(T,so), R(@i,ai,sg)) be

the complete local ring of §'x,(Qe, De,0) (resp. QS”IE(, resp. QSvKi (Qp:, Dq):}:,oi)) at sf;
ot

(resp. so, sg). Then R(®, 0, 50) and R(Y, so) are isomorphic as R(®*, oF, sg)-algebras. This
can be readily deduced from the proof of (4.2.8) and (3.4.3)(3). O
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4.3. The case of hyperspecial level

4.3.1. — The relative first de Rham homology of the universal abelian scheme ¢# — &g+
provides us with an extension of the filtered vector bundle (Hgr, F° H4r) over & g+. We will
continue to use the same symbol to refer to this extension as well.
More generally, given a clr ®* for (G*, X¥), the (covariant) de Rham realization of the
universal 1-motif over §+ (Qgt. Dgt) gives us an extension (Har (), We Har (F),
ot

FOHgr (®%)) of the doubly filtered vector bundle over Shps (Qgt, Dgt), which we had
:
denoted by the same symbol. °
Given any of € T*(®%), and any point s} € Zt Qo Do ot), write as usual

R = R(CIDi, ) for the complete local ring of QS”KT (Qgt, Dot 0 ) at so, and let
V C Spec R be the intersection with &'+ (Qq;i Dgs). Then the evaluation over Spec R

of the log Dieudonné crystal associated w1th the tautological 1-motif Q| (or rather the
degenerating abelian scheme associated with this 1-motif) gives us a canomcal extension
over Spec R of the restriction of Hyqgr (%) to V, along with its two filtrations.

From this, faithfully flat descent, and [21, Prop. 4.2], we see that there exists a canon-
ical extension Hgr(®*,o%) over QY + (Qgt.Dgi.o%) of Hyr(®F) as a doubly filtered

vector bundle. It is equipped with an nﬁegrable connection with logarithmic poles along the
boundary divisor.

It can be checked from the explicit description of the log Dieudonné crystal in (3.2.7) that
this construction agrees with the analytic one given in (2.1.21) over Shg, (Qs, Do, 0)(C).

There is now a canonical extension (Hgr(Z¥), FOHyr(Z¥)) of (Hgr, FOHgr) to a
filtered vector bundle over & ?} equipped with an integrable connection with logarithmic
poles along the boundary, and characterized by the following property: For any cusp label
T# = [(®*, o#)], the restriction of this extension to

((S )/\ T*) évKii(Q¢i,D¢;p,Oi)

is isomorphic, as a filtered vector bundle with integrable connection, to the restriction
of Har (®*, 0%).

4.3.2. — We will now make some further assumptions: First, the prime p will be such that
the group G admits a reductive model Gz, over Z,). Second, we will assume that the prin-
cipally polarized lattice H(Z) C H(Q) has been chosen such that the symplectic embed-
ding:: G — GSp(H) arises from a closed immersion of Z,)-groups Gz, < GL(HZ(F)).
It is always possible to choose such a lattice; cf. [32, 2.3.1]. 1> Finally, we will assume that
K, = Gy, (Zp) is hyperspecial. We will call such an embedding p-integral.

The notation and hypotheses from the previous sections will continue to hold. The main
result now is the following [32, 2.3.5], which is augmented for the case p = 2 by [31]:

THEOREM 4.3.3 (Kisin). — &k is smooth over O ). O

(15) There is an additional hypothesis in the statement of the cited lemma, namely that the group G does not have
factors of type B when p = 2. However, this is not necessary, cf. [31, Lemma 4.7].
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434. — Fix a clr ® for (G, X, K). The parabolic subgroup Pg extends to a parabolic
subgroup Pe 7z, C Gz, . Also, it follows from [25, 1.6.9] that the normal subgroup Q¢ C
Pg extends to a normal subgroup Qez, C Paez,, With reductive image in the Levi
quotient Pz, /Us z,,; this image gives us a reductive model Go.n,z7,, for the group Go .

Now, the level at p Ko 5,p C Go,n(Qp) is a conjugate of Go .7, ,,(Zp), and is thus hyper-
special. Therefore, it follows from (4.3.3) that $k,, ,(Gon, Do) is smooth over O ().
Since &'k, (Q@, Do) is smooth over QS”K(M (Go,n, Do) (it is a torus torsor over a torsor
under an abelian scheme over §'x,, ,(Gon. Do), We see that it must also be smooth
over OF (). Of course, we can also deduce this from the fact that it is étale locally isomor-
phic to §'k.

We will consider the projective limit:

3p(Qe. Do) = 1im g, gxr(Qe Do)
KI’CG(A}’)

Since the transition maps in this system are finite étale, this is a scheme over O () that is
locally of finite type. From the previous paragraph, we also find that it is regular and formally
smooth over O (). We will denote the generic fiber of this scheme by Sh,(Qs, Do).

PROPOSITION 4.3.5. — The scheme & ,(Qe. Do) is a canonical model for Sh,(Qe. De)
over Og ). That is, given any regular, formally smooth scheme S over Of (), any map
E®S — Shy(Qe. Do) extends toamap S — & ,(Qe. Do).

In particular, §,(Qe,Ds), as well as its Q¢(Ajf)—equivariant structure is canonically
determined by the Shimura datum (G, X) and the reductive model Gz, ,,,. It does not depend
on the choice of symplectic embedding.

Proof. — This is shown as in [32, 2.3.8], except that, instead of extension theorems for
abelian schemes, we need to use ones for 1-motifs; cf. (A.3.5) and (A.3.6). O

Proof of Theorem 2. — The immersion §x < & IE( is étale locally isomorphic to
ke (0. Do) = dky(Qa, Do, o), for some cIr @ and 0 € X(P). If we choose X to
be smooth and complete, then it follows that & IE( is again smooth, and that the boundary is
a normal crossing divisor.

The claim that & IE( depends only on ¥ and not on the choice of symplectic embedding is
a consequence of (4.1.5), (4.3.5) and (A.3.4) O

4.3.6. — Suppose that the tensors {so} C H(Q)® actually lie in H(Z(,))®, and that Gz, 18
their point-wise stabilizer in GL(HZ( p)). By [32, 1.3.2], this can always be arranged. It is

shown in [32, 2.3.9] that the associated sections {sq,qr } of H, cﬁd Shy extend over k.

Define the functor P4r(t) on & g-schemes, so that, for any & g-scheme T, Pgr (1)(T)
consists of isomorphisms of vector bundles

£:0r BZ(p H(Zpy) — HdR|T

such that, forall o, £ (1®sq) = Se.ar € H(T, Hcﬁz)- Then Pgr (1) isa Gz, -torsor over §'g.
This follows from the proof of [32, 2.3.9], and is explained in detail for a special case in [43,

§4].
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ProrosiTioN4.3.7. — 1. Forall a, sq4r extends (necessarily uniquely) to a section
Se,dR,Z € Ho(évlzo HE (D).

2. Consider the functor @?R(L) on & I)'g—schemes assigning to every T the set of isomor-
phisms.

£§:0r BZ( H(Zpy) — HdR(E)|T»

suchthat, foralla, € (1®s4) = Sa.ar.,x € HO(T, H&%(E)): thisis a Gy, -torsor over QS”I%
extending Pqr (1).

Proof. — LetU C & IE( be the complement of the special fiber of the boundary divisor DI%:
The complement of U has codimension 2 in the normal scheme & ,E( Therefore, the restric-
tion functor from vector bundles on & ,Z( to those on U is fully faithful.

So it suffices to show that, given an index «, s¢,qr €xtends over U and that (@ER (v) admits
a section over an étale cover of U. For this, it is sufficient to know that its restriction to Shg
extends over Sh%, and that (@?R (1) has a section over an étale cover of ShE.

From (3.1.6) and (3.1.2), (1.) will follow if we can show that, for each «, sq,4,4r €xtends to
a section of Hyr (®, 0)® over Shg,, (Qe, Do, 0)(C). This is a consequence of the discussion
in (2.1.21). In particular, the functor CC/DSJR(L) is now well-defined over all of & IE, and the
same discussion implies that it has étale local sections over a neighborhood of the boundary
as well. O

4.3.8. — Asin (3.5.1), let [] be the conjugacy class of co-characters of G associated with X.
We can find a finite extension F/E and a place w|v of F such that [u«] has a representative
i Gmop o = Gopa- Let Py C Goy ,,, be the parabolic subgroup whose Lie algebra
consists of the non-negative weight spaces for p, and let U,, C P,, be its unipotent radical.

The co-character ™! splits a decreasing filtration on H g yRP-
1 0 -1
0=F Hop ., CF Hop , CF "Hop = Hop -
The subgroup P, is precisely the stabilizer of this filtration.

We will consider the sub-functor (@fR,M(L) of OF w) Ry ) c?)ER(L) parameterizing
isomorphisms £ that also satisfy:

§(0r ®6r ) FOH@’F.(M) = FOHC‘R(E)|T'

ProPOSITION 4.3.9. — @?R,M(L) is a canonical reduction of structure group of

o by
OF,(w) ®61 oy Par(t) 10 a Py-torsor over OF (y) R OK-

Proof. — It suffices to show that @?R,M(l) admits étale local sections over &g and
over Sh,z(((C). Over J'k, this again follows from the proof of [32, (2.3.9)]; cf. [43, (4.17)]
for an explication in a special case. Over Sh};‘ (©), it can be deduced from the explicit local
description in (2.1.21) O
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PrOPOSITION 4.3.10. — Let ' : Gz, < GL(Hé(p)) be another p-integral embedding
underlying an embedding of Shimura data:

° (G, X) = (G°, X°) = (GSp(H®),S*(H®)).

Then there is a canonical isomorphism f/DfR 1) = CG/DER (t°) of Gy, -torsors over & IE< as well

as a canonical isomorphism JDER’M(L) — (@fR’M(ﬁ) of Py-torsors over Op () ® S'x-

Proof. — Set Hé(p) = Hz,, @Hi’(m , and equip it with the direct sum symplectic structure.
We then obtain a third p-integral embedding:

Lji . GZ(p) — GL(HZ(p)) X GL(HZQ(,,)) — GL(H%(#))’

where the first map is the diagonal embedding. This gives us a third Gz, -torsor @?R ()
parameterizing certain trivializations

. T
& 0r ®, HY = — Hip (D)),

We claim that the restriction of £* to Or ®z,,, Hz,,, mapsisomorphically onto Hyr (%) I

and gives a section of JD(?R (v). It suffices to check this over the generic fiber, and hence over C,
where it is clear.

Therefore, we obtain a canonical isomorphism of Gz, -torsors:

b =~ %
Par () = Par 0.
A similar assertion holds with ¢ replaced by (. This proves the assertion about Gz, -torsors.

To prove the assertion about P, -torsors, it suffices to check that the canonical isomor-
phism of Gz, -torsors respects the reductions of structure group to Py, -torsors. This can be
checked over Shg (C), where it is clear from the analytic uniformization. O

5. The minimal compactification

We will now construct integral models for the minimal or Baily-Borel-Satake compacti-
fication of the integral model &'k above. We will follow the strategy in [20, § V.2], which is
extended to the PEL (good reduction) case in [38, § 7.2]. Since the method here is not very
different from that used in /oc. cit., our treatment will be somewhat compressed.

The notation will be as in the previous section. We will only consider complete rpcds, so
E
that the spaces & ii and & 1)? are proper over Og (y).

5.1. The Hodge bundle and Fourier-Jacobi expansions
DEFINITION 5.1.1. — The Hodge bundle w g+ (X¥) over é”,’i is:

w (1) = det(Har (54)/ FO Har (9)) ®
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5.1.2. — Write wg(X) for the restriction of wg+(Z¥) to QS”,E(: It is easy to see that this
invertible sheaf does not depend on the choice of K* containing K or on the choice of rped =+
compatible with X.

If X/ is a refinement of ¥, induced from an admissible rpcd S for (Gi, Xt K *), then
wg (X') is canonically isomorphic to the pull-back of wg (X) along the map & ,E( - & ,E(

Therefore, given any refinement X’ of X, we can without qualms denote the pull-back
of wg () to §IE< by wg (X').

ProPOSITION 5.1.3. — 1. A suitable power of wk (X) is generated by its global sections
over k.
2. If X' is a refinement of T, for any n € Zsy, the natural map
HO(Sk 0" (5) — H(SF 0" (2))

is an isomorphism.
3. The graded O (y)-algebra

P 1o (Sk. 0" ()
n
is finitely generated.

Proof. — Assertion (1.) is shown as in [20, V.2.1], using a result of Moret-Bailly [51,
IX.2.1].

Assertion (2.) is immediate from the projection formula, and the following facts about the
map / : 5§ — S¥:
- f*_ Osy = Os%
- R f*ﬁé,y =0, fori > 0.
K
This can be deduced as in [20, V.1.2(b)] from the étale local structure of the map f (cf. 4.1.13).
Finally, (3.) follows from [38, 7.2.2.6]. O

5.1.4. — Fix a pair (®, o) for (G, X), and let (®*, 6%) be the pair induced for (G*, X*). Write
Hgr (®, 0) for the restriction of Hyqgr (®F, oF) over ke (Qa. Do, 0).

We then have:
(5.1.4.1)

det(Hr (9.0)/ F® Har (®,0)) "

= @0 ,det(grl Hap(®.0)/FO g Hep(®.0))®"

S 0f(®) ®z 0P(P).

We need to explain the symbols in the last row. Here, a)?(b(@) is the Hodge bundle associ-
ated with the universal abelian scheme B — Sk 0., (Gans Do p); we denote its pull-back
to $ks(Qa, Do, o) by the same symbol. Also, w®'(®) = det(gr” HE(Z))® ! is a free
Z-module of rank 1.

In particular, the line bundle defined in (5.1.4.1) does not depend on ¢, and so we denote
it by wg (®). Note that wg () is actually already defined over Sk, , (Go.n, Do,p)-
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5.1.5. — As a scheme over §%, (Qg, Do), we have:

Sko(Qa. Do) = Spec( P VP (@),

LeSk (P)

where, for each £ € Sg (D), \I/g) (®) is a line bundle over & Ko (0. Do). Therefore, we have:

—

(5.1.5.1) Sko(Qe. Do.0) = Spi(ED v (@)).

(eSk(d,0) K

Here, @EES « (0.0) \Ilg) (@) is the completion of Pes . (0.0) \IJg) (@) along the ideal generated
by U (®), with £ € Sk (®,0)\Sk (®,0)*.

Consider themap 7 : §%,(Qo. Do) = Sk ,(Gonr Da,p): itisa projective morphism,
and so, for each £ € Sg(P), we obtain a coherent sheaf

FI19 (@) = 7,99 (0)

over Skg ,(Gon, Do)
If ¥ = [(®,0)], for any n € Z>(, we now obtain an evaluation map:
(5.1.5.2)

Pl  H(5F02 () = #((SF)), o 02 ()

(5.1.4.1) -~
——— H($ky(Q0. Do, 0), wg" (P))

> JI H(Ske, Gon Don). FIQ (@) ® 02" (®)).
LeSk (D)

Here, the last map is obtained from (5.1.5.1) and the projection formula.

5.1.6. — Suppose that we have another clr @' for (G, K),and that y € G(Q) andg € Qo (Ay)

are such that ® M @ and y - Pg = Pg . Then, as explained in (4.1.3), we have an asso-

ciated tower-structure preserving isomorphism:

p(7.9) : Sko(00. Do) = Sk, (Qer. D).

Let Q(®) (resp. Y(@')) be the canonical 1-motif over §x,,(Q o, Do) (resp. g, (Qa, Do)
By the construction of p(y,q) (cf. 2.2.18), there is a canonical isomorphism
(v, q)* (@) — Q(®). This induces an isomorphism of line bundles
(5.1.6.1) p(r, ) ok (®) = wi (P).
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Let ¥’ be another admissible rped for (G, X, K), and suppose that we have o/ € X/(d’).
Then we get a diagram:

(5.1.6.2)
HO(SF. 02" (2)) i Lo HO(SE, 02"(%))

J/FJ((D/'OJ)

[T H(Sxks ,Gon Dos) FIC (@) @ 0f" (@)
eSSk (D)
le(%q)*

[T H(Sko,(Gon Don).FIQ (@) ® 0" (@)).
ZGSK (CI))

Here, the vertical isomorphism p(y, ¢)* is induced via (5.1.6.1).
LemMA 5.1.7. — The above diagram commutes.

Proof. — This is immediately reduced to the case where X is a refinement of X/, and
int(y)(c°) is contained in (¢”)°. Let Y/ = [(®’, 0’)] be the image of (&', ¢’) in Cusp?(G, X).
Then we have a map QS”,E(/ — QS”,E( carrying Zg (Y’) to Zx (). We also have a map of formal
schemes:

10()/7 q) : CSchp(Q':I)’ Dq)» O) - CS»KQ/ (Q‘:I)/a DCP/? G/)
. . . . . S\A SINA .
com.patlble with the isomorphisms with (§ K)?ZK (r)> and (é” % )ZK (x> Tespectively, and
pulling wg (®') back to wg (®). Therefore, it is clear that the diagram commutes. O

COROLLARY 5.1.8. — Let Ag(®) be as in (2.1.16.2). Let Pg(®) C Sk (D) be the sub-
monoid of elements that pair non-negatively with H(®). Then Fle = FJ(¢,q) does not depend
on the choice of 0 € X(®), and its image lands in the sub-algebra:

© Ak ()
[ 1_[ H(Sky,(Gon Dop). FI (®) ® w?n(q’))]
LePk (@)

5.2. Construction of the minimal compactification

5.2.1. — Set

0 = Proj(@. H'(S 7, 02" ().
This is a projective O (»)-scheme, and using (5.1.3), we find that, for any sufficiently fine
complete rped X’ for (G, X, K), we have a canonical map (cf. [38, 7.2.3]):

¢ L §% — Proj(@, H(SF , 02" () = SE".

This map can be described as follows: Choose N € Zs; sufficiently large so that
a)?N (X') is generated by global sections. Then we have a proper map

SE > P(HU(SE, 02V (2))),
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’
and gSE appears in the Stein factorization of this map:
Z/

(5.2.1.1) St — ST L PHASE 0BV (T))).

From this, we obtain:

PROPOSITION 5.2.2. — gSE’ is a surjective map of normal algebraic spaces over U () with
geometrically connected fibers.

1t is characterized by the following property: given any OE (v)-scheme T, a very ample line
bundle f over T, aninteger N € Z>1, andamap f : S= x — T equipped with an lsomorphzsm

f* 5 a)f?N (), there exists a (unique) map f™® : §®™ — T such that f = f™in ogﬁ

5.2.3. - Fix a pair (®,0) for (G, X) with 0 € T'(®). Given any section f € H'(S%, 02"(T)),
it follows from (5.1.8) that its restriction to Zx,(Q®, D, 0) is determined by the section:

FIO(f) € H(Skq, (Gon Do) 02" (@)@,

This implies that the composition

5 o
Zko(Qa, Do, 0) > §E '
factors through a map (1)

(5.23.1) ARR(®)\ Sy, (Gon Don) > SE".
5.2.4. — Let Cuspg (G, X) be the set of equivalence classes of clrs for (G, X) for the relation

. .9) . ..
®; ~ ¥, whenever there exists @, UK, &, withy- Po, = Po,. We can give it the structure

of a poset with [®,] < [®;] whenever there exists an arrow &, M D,.

Then, we deduce from (5.1.7) that:

— The scheme A‘Ii(“(cb)\ S Ko (Gao.n, Do) depends only on the class [®] in Cuspg (G, X).
We will therefore denote it by Zx ([D]).

— The map Zk ([®]) - $&" induced from (5.2.3.1) depends only on the class [®], and
not on a choice of representative @, or of the cone o € X/(®).

LEMMA 5.2.5. — 1. Suppose that ® = (G, X7T,g); then the map ke (0. Do) —
Zk ([®)) is an isomorphism.

2. Suppose that o € X(®) is a 1-dimensional cone, so that Zk,(Qa, Do, o) has co-
dimension 1 in §g,(Qe, Do, o). Then the map Zk4(Qs. Do,0) — Zk([P)]) is an
isomorphism if and only if the unipotent radical Uy C Pg has dimension at most 1.

Proof. — For(1l.),since P = G,wehave §'g,, (Qe. Do) = C’Squm (Gon, Do,p). We claim
that the group Ag (®) is actually trivial in this case. Indeed, since Wg = 1, it coincides with
the group A% (®), which we know to be trivial by (2.1.20). This implies that 'k, (Q ¢, Do)
maps isomorphically onto Zg ([®]).

Now, suppose that Ug has dimension 1. Then we have We = Ug, so that 5% ® (§q>, Dg) =

Skon(Gon Dop), and Sk, (Qo, Do) is a Gy-torsor over SKQh(Gq,,h,Dcp,h), with
Zks(Qa, Do, 0) the zero section of the corresponding line bundle over Skon(Gon Dop).

(16) Recall from (2.1.15) that A g (P) acts on QS”KQJZ (Go.hs Do p) via a finite quotient Af}(“(CD).
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Therefore, the map Zk,(Qe, Do,0) — QS”K(M (Go,n, Do) is an isomorphism. Further-
more, since Wg is 1-dimensional, PGL(Wg) is trivial, which implies again that
Ag(P) = A% (®) is trivial. Therefore, & Ko (Gon, Do) maps isomorphically onto
Zx (1)) -
Conversely, if this map is an isomorphism, then we must have g (Q¢. Do) =
Skon(Gon Dop), and Sk, (Qo, Do) must be a Gy-torsor over &g@(gq,,ﬁq,), with
Zko(Qa, D, 0) the zero section of the associated line bundle. This can happen exactly
when We = Ug has rank 1. O

REMARK 5.2.6. — G admits an admissible parabolic P with Wp = Up of dimension 1,
exactly when it admits PGL, as a quotient, and in this case P is the pre-image of a Borel
subgroup of PGL,.

PROPOSITION 5.2.7. — Given clrs ®y and @, for (G, X), the images of Zk([®1]) and
Zk([®2]) in S are disjoint unless [®1] = [D,].

Proof. — Suppose that we have a point x in the intersection of the two images. Consider
the fiber Fy of & ,% over x. This fiber is geometrically irreducible, and we can assume that it
is positive dimensional.

We can find, fori = 1,2, 0; € X/(®;), and points y; € Zx([(®;,0;)] N Fyx connected
by a geometrically integral curve C C Fy. Let n be the generic point of C, and suppose
Y = [(®,0)]issuch that n € Zg(Y). Then by (4.1.5)(3.), we must have [(®;, 0;)] < [(D,0)].
In particular, this implies:

(5.2.7.1) [®:] < [@],

fori =1,2.
On the other hand, it follows from the argument in [38, 7.2.3.6] that we have:

(5.2.7.2) L[®1] = t[®] = 14[P2] € Cuspgs(GF, XH).
The proposition now follows from the conjunction of (5.2.7.1) and (5.2.7.2). O
The proof of the next result proceeds exactly as that of [38, 7.2.3.13].

COROLLARY 5.2.8. — Let x be a geometric point of §'&™ lifting to a point y of Zx ([®]).

—
Let FJE()(CD)y be the completion of the stalk of FJ%)(CD) at y. Then we have a canonical
isomorphism of complete local rings:

—(0)
5mm [ [ Flx @),

:|A1<(<1>)
LePk (D)

COROLLARY 5.2.9. — The map Zg([®]) — %" is a locally closed immersion.

Proof. — Call thismap f; then (5.2.8) shows that f is unramified. Moreover, by construc-
tion, it is proper onto its image and must therefore in fact be finite over its image. Since f is
unramified, its image is also normal. 17 By Zariski’s main theorem, it is therefore enough

(17) The notion of ‘image’ here has to be understood appropriately: For a closed stratum, this is just the schematic
image. For a general stratum Z g ([®]), this is defined inductively by removing from &’ '}}m the images of the strata

in the closure of Zx ([®]), and then taking the schematic image of Zg ([®]) in this complement.
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to know that f is birational onto its image. We can check this over the generic fiber, or even
over C. Here, it follows from [56, 6.3]. Note that we are using the fact that Stein factorization
is compatible with flat base change to identify the complex fiber of & ?m with the construc-
tion in Joc. cit. O

REMARK 5.2.10. — There seems to be some inconsistency between [56, 6.3] (and hence
between the above statement) and [38, 7.2.3.15], where the action of the finite quotient
of Ag(®) does not intervene. It appears to us that the gap lies in [38, 7.2.3.5], which, in our
notation, claims that the map &g on(Gon Dop) — ?“ is injective on geometric points.
Although, as shown on pp. 8 of [49], this is certainly true in the Siegel case, it is not so clear

to us that it should hold in general.

THEOREM 5.2.11. — The scheme §¢™ is a normal, projective OE (v) scheme, which enjoys
the following properties.

$* in . . . . . in .
1. Themap Sx — Sz —> S is an open immersion and its complement in §'&™ is flat
over UE (v).

min

2. The Hodge bundle wg on &'k extends to an ample line bundle g™ on st?in. There is a
canonical isomorphism (gSE)*a)I‘?i“ = wg (X) extending the identity over §'k.
3. We have a stratification:
=] Zx (@D,
[®]
where [®] ranges over Cuspg (G, X). In this stratification, Zx([®']) is in the closure
of Zk([®)) if and only if [@'] < [®].
4. The map gSE is compatible with stratifications: For any [®], we have

)
@ ) (@) =] Ze ).
e

where Y ranges over classes of the form [(®, 0)] with o € (D).
Moreover, the map Zx ([(®,0)]) — Zx([®]) is canonically isomorphic to the natural
map Zxo(Qa, Do, 0) = AP (®)\ Sy, (Gons Dop)-

5. Let (»5”}( C (5”1)2 be the pre-image of the complement in é”rKnin of the union of the strata of
co-dimension at least 2. Then & }( maps isomorphically into ‘}21". Moreover, the natural
map

H(Sk 0" (D) — H (k. 0f" (D))
is an isomorphism. In particular, when G does not admit PGL, as a factor, the natural
map
HY (S, 0R" (%) > HO(S k. 0f")

is an isomorphism.

Proof. — That §™ is normal and projective over &g () is immediate from its construc-
tion and [6, § 6.7, Lemma 2].

Assertions (3.) and (4.) are immediate from (5.2.7), the properness of gﬁz, and the corre-
sponding assertions about the stratification of &’ ,Z(
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Since this shows that the strata are all flat over Ok (y), it also implies assertion (1.) (one
also needs (5.2.5) (1.)).

(5.) 1s standard, except for the last statement, which follows from (5.2.5) (2.) and (5.2.6).

It only remains to prove (2.). In fact, we can take

z
min __ )
*

It is enough to show that this is an ample line bundle over & ',‘(lin. The proof of this proceeds
exactly as that of [38, 7.2.4.1]. O

5.2.12. — We can now extend the Hecke correspondences. Let the notation be as in (4.1.12).
The assignment [®'] + [®] = [1xD'] is a well-defined map from Cuspg/(G’, X') to
Cuspg (G, X). The map (4.1.12.1) induces a finite map:

(5.2.12.1)

Zr ([ = AB(ONS Kkl ,(Gorns Do) — AR (PN Sk, (Gan Dop)) = Zr (D).
ProrosiTION 5.2.13. — The map
1.8): Sk = Op/,w) ®6k.) Sk

extends uniquely to a map §B" — Op/ vy ®6p v S characterized by the following
property: It carries the stratum Zg ([®']) to the stratum O ¢y @ Zx ([P]) via (5.2.12.1).

Proof. — Immediate from (5.2.2) and (4.1.13). O

5.3. The case of hyperspecial level

Here, we will assume that we are in the situation of (4.3). The assumptions and notation
will be as in that subsection. The following result shows that the integral model of the
minimal compactification is also canonical.

THEOREM 5.3.1. — The minimal compactification & ’};in and its stratification are, up to
unique isomorphism, independent of the choice of p-integral symplectic embedding 1. Moreover,
for any admissible rpcd X for (G, X, K), any clr ®, and any o € X (®), the map 091% — QS”}?“
induces a smooth morphism.

Zr (@, 0)]) = Zk (D).

Proof. — Let V' be another p-integral embedding satisfying the conditions of (4.3), and
let $%" (/') be the minimal compactification of &'k constructed using ¢'. Fix an admissible
rped X for (G, X, K), so that the identity morphism on &g extends to morphisms

9§1 ST g 9% L ST ST

of algebraic spaces, where & IE< is the canonical compactification of & g given by Theorem 2.
Let & be the normalization of the image of the product morphism

951 xﬁ L SE - SE X SENW).

It contains the diagonal embedding of &'k as an open subscheme.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



496 K. MADAPUSI PERA

It is now enough to show that the natural projections of §’ onto §F" and §E™()
are both isomorphisms. Since the generic fiber Shg'™ of the minimal compactification is a

canonical object in characteristic 0, the morphisms ¢ and ¢, are canonically isomorphic
over E, we see that the restrictions of the projections over the open subscheme &'x U Sh}?i“
are isomorphisms. We now conclude by observing that this subscheme has complement of
codimension at least 2 in both §™ and " (¢').

To finish, it is enough to show that the quotient map

(5.3.1.1) Skon(Gon Don) = AP\ Sky, (Gon. Do)

is étale. The best way to show this would be to use Kisin’s theory of twisting abelian vari-
eties [32, § 3] to explicitly describe the action of A%n(d)). This method has the advantage of
working also without any hypotheses on the level.

However, we will give a quicker proof here, in the case of hyperspecial level. Let
®* = 1, ® be the induced clr for (G*, X*, K¥). Then, as explained in (5.2.10), Af}‘(“i o) is
trivial. Therefore, the natural map nkr : Skq,(Gon Don) = Sgt  (Gorp, Dot p)

, ot ; ,

factors through (5.3.1.1). So it is enough to show that nx» is unramified.

This follows from the proof of [32, 2.3.9], which shows that all complete local rings
of §ky ,(Gon. Do) are quotients of those of QS”K¢ (Got p» Dot p)- O
’ ok, n ’ ’

Appendix

A.1. Logarithmic Dieudonné theory for degenerating abelian varieties

The notation will be as in (1.3). The goal is to prove (1.3.5). The construction we give
here is essentially given in [27], but that reference only covers the case of complete discrete
valuation rings, and so we have chosen to give some more details for our more general
situation.

A.1.1. — We will begin by considering objects in the full sub-category DD™Y(S,U)
of DD(S, U) consisting of objects with Qab|U = 0.

Any such object is determined by a bilinear pairing 7 : Yy x Xy — Gp,y. We will
write (Q¢, A%Y) for the corresponding object in DD'(S, U). It corresponds to a complex

Yy L5 Ty, where £,(3)(x) = —(y. x).

The dual object Qy; is attached to the pairing ¥ : Xy x Yy — G,y obtained by flipping
the order of Y and X in the product. It corresponds to the dual map:

fev 1 Xy —» Ty = Hom(Yy, Gpv)

x> (y = —17(x,y)).
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A.1.2. — Let O(z,n) — Y|U be the pull-back of the multiplication-by-n map T AT along
fr. Itis an extension:
0 — Ty[n] - C(xr,n) - Yy — 0.

Then, as an extension of Yy ® Z/nZ by Ty [n]|U, Qu|n] is canonically identified with
C(z,n) ® Z/nZ.
The pairing Qu [n] x Qy;[n] = pn,v is (up to sign) the one obtained from the pairing:
Gr.n) x G(x¥ n) — pny
(v, 1) x (x, 1Y) > x(D)y (V)7
This makes sense, since x ()" y(tV)™" = x(fO)y(fYx) ™' =t(y,x)r(y,x)"! = 1.
A.1.3. — Any vector extension of Ty can be trivialized. Therefore, the universal vector

extension [Yy — Eg,, ] of [Yu ﬁ) Ty] can be identified with

v e e e Ty,
We then have canonical isomorphisms of filtered vector bundles:
(A13.1) Hir(Qu) = Hom(Y, 6y) @ (X ® Oy(-1)),
(A.13.2) Hix(07) = (Y ® Oy(—1)) ® Hom(X, Oy).

Moreover, the Oy (—1)-valued pairing on H jz (Qu) x Hjx(Qy)) translates to the obvious
one under these identifications.

A.1.4. — Now, assume that S is a scheme over So. We can also describe the connection

V:Hig(Qu) = Hir(Qu) ® Q5.
in terms of the isomorphism (A.1.3.1).
Let UV C U xg U be the first-order neighborhood of the diagonal embedding of U.
Let p1.p, : UM — U be the two projections. Then there is a canonical isomorphism of
complexes:

(A.1.4.1) pilYu = Eg,] = p3[Yu — Eg, .

Since the categories of étale locally constant sheaves, and hence the categories of étale
locally trivial tori, over U™ and U are canonically isomorphic, we can identify both p} Eg,,
and p3 Eg,, with (Y ® G, y1)) ® Ty, where Ty is the canonical lift over UM ofU.

The map y — p3 f(y)p5 f(»)~! defines a homomorphism from Yy to ker(Tya) — Ty).
Since

Q%J/So = ker(Oyay — Ou),
this last group can be canonically identified with Hom(Xy, 1+ Qb/SO) = Hom(Xy, Q}]/SO),
and the resulting map
Yy — Hom(Xy, Qb/so)
is simply y — —dlog(z(y,-)).
We therefore see that (A.1.4.1) is identified with:

18p7 f ~ 18p3 f
Yo —— Yu @G, ym) & Tyw] — [Yv —— (Yu @ G, ym) & Tyw],
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where the underlying automorphism of Yy is the identity, and that of (Y ®Ga’ v)®Tya is
given by:
O®a)dt— (y®a)® (1+adlog(z(y,-)))-t.
From this, we find that, via the identification (A.1.3.1), the connection on H 3z (Qy) has
the following description: For any section ¢ of M(Yu, Z), we have: V((¢,0)) = (¢ ®1,0).
For any section x of Xy, we have:

Vix®1) = (—dlog(z(-, x)),x ® 1).

A.1.5. — We now come to the crystalline realization D(Q). We will first construct the restric-
tion of D to the full sub-category DD (S, U) of DD(S, U).

Let S'°2 be the log scheme attached to (S, U). Given a log scheme Z over S'°2 in which p is
nilpotent and an exact nilpotent thickening of log schemes Z > Z equipped with divided
powers, we need to construct a canonical z-module D(Q.)(Z — Z ). We can view f; asa
homomorphism

fr Y — Hom(X, 0p) = Hom(X, M{},,).

In particular, for any log scheme Z over S'°%, we obtain a homomorphism f;
Hom(X, M%).

Since Z < Z is an exact nilpotent thickening, if JJ = ker(0z — 0z), we also have:

_ gp gp
1+ J= ker(MZ — M%).
We therefore obtain a short exact sequence of étale sheaves over Z:

(A.1.5.1) 1 — Hom(X|,.1+ /) — Hom(X|,. M%) — Hom(X| ,.M¥) — 1.

lz Yz =

Set Ty = ker(T7 — Tz); we then have the short exact sequence of Z -group schemes:
(A.1.5.2) 1>Tg—>T; > Tz — 1.

Pulling (A.1.5.1) back along f; | ;> We obtain another short exact sequence:
(A.1.5.3) 1>Tg—> E@Z—>2Z2)>Y|, 1

Write G, 7 for ker(Gm,Z — Gyp,z). Then the divided powers on ./ give us a map of
groups:

{: Gm,ﬂ —> ﬁz
x> Y (=) = DI = pL

neZzl
We therefore obtain a map:
(A.1.5.4) £®1:Ty®; 07 =Hom(X|,.Gp,9) ®2 Z — Hom(X | . 7).

Let #(r,Z — Z) be the push-forward along themap £ ® 1 : Ty ®z 07 — 03
of E(1,Z — Z) ®z 0. We set:

D(Q:)(Z < Z) = Hom( (v, Z < Z), O7).

If Z is also a log scheme over S'°¢, then (A.1.5.3) has a canonical splitting, and so we
obtain a canonical splitting:

(A.1.5.5) D(Q:)(Z < Z) = Hom(Y |, 67) & (X ® O7).
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In particular, we obtain a canonical direct summand F'D(Q;)(S) = X ® Os C D(Q-)(S):
This induces the Hodge filtration F°*ID(Q.)(S).
There is a canonical 2-step weight filtration W,ID(Q.) on D(Q) with W,D(Q;) = D(Q.),
W_1D(Q;) = 0 and
WoD(Q:) = MiD(Q:) = Hom(Y, 1) ; gry D(Qr) = X ® 1(~1).
A.1.6. — We still need to describe the F-crystal structure on D(Q); that is, the maps

¢n(o) : Fr*D(Q) — D(Q):
Vo) : D(Q) — Fr* D(Q).
For this, we note that we can canonically identify Fr* D(Q) with D(Q®), where Q?) is

attached to the pairing 77 : Y ly XXy — Gm,u- So, in the notation of the construction
above, we only have to construct canonical maps

WZ>2): 80, Z—>Z)—> EGP,Z— Z);
V(Z—>2):EGP.Z—>Z)— Ex, Z — Z),
whose composition in either direction is just multiplication by p.

This is easy: They are induced, respectively, by the endomorphisms (y,?) — (y,?) and
(y,t) = (y?,1) on|Z x Tz.

A.1.7. — We also have to describe the canonical pairing D(Q) x D(Q"Y) — 1(—1). This is
induced from the pairing:
(Hom(X, 0z) ® E(x, Z — Z)) x (Hom(Y,0z) & E(xV,Z — Z)) — 05
(@, 2. 0) x (Y, x,1Y) = 9(x) = Y (y) = Lx @)y 7).

Observe that x(¢¥)y(r)~! liesin 1 + o7, since its image in M% is t(x, y)t(x,y)~' = 1.

Finally, it can be checked from the definitions and the splitting (A.1.5.5) that there is a
canonical isomorphism of &y -modules with integrable connections:

Hg (Qwv) = D(Q)(S)),

respecting Hodge and weight filtrations and polarization pairings.
A.1.8. — Let ]/)\]3(5, U) be the category of pairs (Q, tp), where:

- Q is a l-motif over S;

— 70: QF x QP — G,y is a pairing associated with an object of DD"!(S, U).

A map of two such pairs ¢ : (Q1,71,0) = (Q2.72,0) is a map of I-motifs ¢ : Q1 — 0>
such that the pair (¢!, g™tC) determines a map

QTI,O - QTZ,O

in DD''(S, U).

There is a natural notion of duality in this category: Given a pair (Q, 7o) its dual is the
object (QV, 7y).

There is a canonical fully faithful functor

DD'(S,U) — DD(S,U)
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defined as follows: Given Q. on the left-hand side, we attach to it the pair (Q, 7), where Q

corresponds to the complex [Q‘it 9 ernult,C].
We can now extend the functor D : DD'*'(S, U) — LDieuy(S, U) to a functor

D : DD(S, U) — LDieuy (S, U).
Indeed, given (Q, 19) on the left hand side, we obtain:
— The Dieudonné crystal D(Q) over S attached to Q equipped with its weight filtration;
cf. (1.1.4). This can be viewed as an extension:
(A.1.8.1) 0 — Hom(Q%, 1) — D(Q) — D(Q**®) — 0.
— The object D(Q,) in LDieuy.(S, U). This is an extension:
0 — Hom(Q%, 1) — D(Qq) — D(Q™") — 0.

If we pull the latter extension back along the natural map D(Q%°) — D(Q™ ), we obtain
another extension:

(A.1.8.2) 0 — Hom(Q%, 1) — D(Qy,) Xp(gmucy D(Q*®) — D(Q*®) — 0.

The underlying log Dicudonné crystal of ﬁ(Q) will now be the Baer sum of (A.1.8.1) and
(A.1.8.2). We can naturally equip it with a weight filtration, and it can be checked that
D respects duality. This completes the construction of D.

A.1.9. — Given (Q, 19) in ]/)\]_)/(S ,U), we can view 1 as a trivialization of the trivial G,,-bi-
extension of Qf} x Qﬁ““’c. Therefore, we obtain a natural functor
B(s.v) : DDpoi(S, U) — DDpoi(S, U)

defined as follows on objects: Given a pair (Q, tp) on the left-hand side, we assign to it the
object of DDy, (S, U) attached to the tuple

(Qab» Qét, Qmult’C,C,Cv, _L,|U i TO)-

A morphism ¢ : (Q1.71,0) — (Q2.72,) is given by a tuple (2, ¢, ™16C)_ which also
determines a map in DD(S, U):

B(s,v)(9) : Bis,v) ((Q1,71,0)) — Bs,v)((Q2. 72,0))-
It follows from the definitions that B(s, ¢ is a faithful functor.

A.1.10. — Given (Q?°, Q¢, Qmult:C ¢ (V) after perhaps a finite étale base change S — S,
we can find a trivialization 7 of the bi-extension (¢ x ¢")* Pgab that completes the given
tuple to a 1-motif over S’. Therefore, for any object (Qu,Ay) in DD(S, U), there is a
finite étale cover S’ — S such that, with U’ = S’ xg U, the base-change of (Qu, Ay)
toDD((S’, U’)) belongs to the essential image of B¢ss y+y. It isnow not hard to see that (1.3.5)
is a consequence of the following assertion:

Given (Q1, t1,0) and (Q2, 12,0) in DD(S, U) and an isomorphism in DD(S, U):

¢ : B,y ((Q1.71,0)) = Bs,v) ((Q2. 12,0)).
there is a canonically associated isomorphism in LDieuy (S, U):

Dg) : B((Q1.71.0) > B((Q2. 720)).
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To see this, first note that the existence of ¢ implies that we can assume Q‘lib = 0%, and
o5t = 0§, gmult = @mult Furthermore, under these identifications, we can assume that
co, =cg,andcy =cp .

For convenience, we now drop the superfluous numerals in the subscript of these objects.
We can view both 79, and 7g, as trivializations of the bi-extension (co x c¢)* P oab
of Qét X Qmultﬁc; and both 11,0 and 130 as pairings on Q?} X Q’;}“lt’c. They satisfy:

‘[Q1|U *T1,0 = ‘L’Q2|U *12,0-

SetTg = 72,077, (1); the formula above shows that 7y extends to a pairing Qét X Qm“l"c —
Gm,s, which we again denote by 7, and that it satisfies:

(A1101) 70, '?0 =170, ; ?0|UTI’O = 12,0

Let Qz, be the I-motif over S attached to To. Then, as extensions of D(Q™u!t) by
Hom(Q*%, 1), the Baer sum of D(Qx,) and D(Q¢, ,) is canonically isomorphic to D(Q«, ).
To see this, one must show that the construction of (A.1.5), when applied to the pairing 7o
in the natural way, gives us the Dieudonné crystal D(Q=,). This can be deduced using finite
¢tale descent and [26, (4.3.5)].

Also, as extensions of D(Q%2*) by Hom(Q¢, 1), the Baer sum of D(Q0=,) XD(Qmult)D(Qsab)
and D(Q>) is canonically isomorphic to D(Q1).

The assertion we required is immediate from these facts and the construction of the
functor D in (A.1.8).

A.2. Comparison isomorphisms for semi-stable abelian varieties

Fix an algebraic closure k for Fp, and let W = W(k), Ko = W|[p~!]. Set S = Spec Ok
for a finite extension K/Ko and let U = Spec K C S be the generic point. Let K be an
algebraic closure of K, and let &% be its ring of integers. Let I'x be the absolute Galois
group Gal(K/K). As above, we will fix a uniformizer # € K with corresponding formal
divided power thickening &, — Ok.

Set S = Spec O and U = Spec K; then S has a natural log structure associated with the

divisor S\U. Write Elog for the associated log scheme.

A2.1. — Fix (4,¥) in DEG0i(S, U). Write D(Ag) for the induced log Dieudonné crystal
in LDieu(S, U). For any 1-motif H over K, write T,(H) for the p-adic Tate module

T,(H) = lim H([p")(K).

n

This is naturally a continuous Z,-representation of I'g.

PROPOSITION A.2.2. — There is a canonical map of T x-modules.

Tp(A) — Homy 517 (D(4%). 1).
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Proof. — The T'k-action on the right-hand side is via its action on ]D)(Af) through
‘transport-of-structure’.

Suppose that (4, ¥) corresponds to (Qu, Ay ) in DDy (S, U). Write D(Q) (resp. D(Q%))
for the log Dieudonné crystal ID(A) (resp. D(A%)). Then, by (1.2.2.1), the proposition
amounts to showing that there is a canonical map

Tp(Qu) — Homppieu(S, U)(D(Q%). 1).

Let (Q', 1, 19) be a tuple in ﬁpol(S, U) mapping to (Qu,Ay) under the functor in
(A.1.9). Then, in the category of extensions of Q¢! ®Zp by T,(Q%%), T,(Qu) is the Baer sum
of T,(Q") = T,(Q'[p™]) and the push-forward of T,,(Q,) along T,(Q™"!) — T,(Q%®).

Now, there is a natural map:

D
T,(Q') = Homy  (Qp/Zy, Q'[p™]) = Homy peus 7y (D(Q%). 1).
So, given the construction of D(Q) in (A.1.10), it now suffices to construct a natural map:

(A.2.2.1) Tp(Q<) — Homy pion 5.5 (P(Q %), D).
By the construction of (A.1.2), we have

O [p"] = §(0.n) ® Z/ p"Z.
Therefore, each section of Q,[p™] is the image of a section (yy, t,,) of {(zo, n), which satisfies
Jro(yn) = tr{n~

Suppose that we are now given a log scheme Z over 5% in which p is nilpotent, and
an exact nilpotent thickening of log schemes Z <> Z equipped with divided powers. To
construct the map (A.2.2.1) it suffices, in the notation of (A.1.6), to construct a canonical
section of £(tg, Z — Z) ®z U5 associated with an element («,) € T,(Q+,).

For this, let .J = ker(07 — 07z), and let r € Zx, be such that J"™1 = 0. Then, given
any section u of Q?““, we will have u” = 1; cf. [29, 1.1.1]. This in turn implies that, given any
section 7 of Hom(Q™'-¢|_, M%) and any lift 7 of it to a section of Hom(Q™'-¢|_, M%),
the section 7" is a canonically determined lift of #”.

Choose m such that p™ > r and such that p™ &7 = 0. Choose a lift (y,,,tm) €
((z9.m)(K) of a. Then the image of fr(ym) = t# in Hom(Q™C| M) has a
canonical lift 7,, € Hom(Q™vt-C = M’?ZP ). The pair (ym, 7m) is a section of (19, Z < Z).
It is easily checked that its image in (7o, Z <> 7)® 0’z does not depend on the choice of m
or the lift (y,, tm), and so is our desired canonical section. O

12>

A.2.3. — We will now prove (1.4.10). For this, we will need a certain larger ring Est
containing By, whose construction we now recall. For details, cf. [7, §2].

Let Ac.is be the p-adically complete W-algebra defined in [22, §2.3]: it is equipped with
a I'g-action and a compatible surjection 8 : A.qs — O, whose kernel is equipped
with divided powers. There is a canonical Frobenius lift ¢ : Agjs — Acris- Moreover, if
R = limy, x» O/ p is the perfect envelope of 0%/ p, there is a canonical I'k-equivariant
Teichmiiller lift [-] : R\{0} = Acris\{0}.

Any coherent sequence ({n)nez., Of p-power roots of unity determines an element
¢ € R and thus an element [¢] € Al Similarly, a coherent sequence (/P = (Tn)nez
of p-power roots of 7 determines an element [] € Aeyis.
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Let Ay, be the p-adic completion of the divided power algebra A..is{X), so that we have:
~ X!
= {Z ai—r € Aaislp 11X ai = 0 p-adically}.
- !

There is a natural log structure M i Ay, where M . C Ay is the monoid generated
by A ¢ and the image of 2\ {0} under the Teichmiiller lift. The action of 'k extends to Ay via
the formula g(1+X) = [e(2)](1 + X). Here, e(g) € R arises from the coherent sequence
of p-power roots of unity (g ()7, !),. The Frobenius lift ¢ on Acyis extends to ¢ : Ay — Ay
satisfying ¢(1 + X) = (1 + X)?. Both these additional structures respect log structures.

The surjection 0 : Acis — O extends to a map 6 : Ay — U satisfying 0(X) = 0;
clearly, ker6 C ;1\“ admits divided powers. We view //1\“ as an o -algebra via the map
u +— [z](1 + X)~!. All maps involved are compatible with log structures. Moreover,
0: A\St — O'% is an exact thickening, in the sense that the induced map:

gp s xx 5 ¥
MZst /Aq— K /0%
is an isomorphism.

Ay is equipped with a natural Agis-linear derivation N satisfying N(1 + X) = (1 + X).
It is easily checked that we have pp/N = N¢ as endomorphisms of Ag;.

Now, f%: = szst [p~!], and Est = §ST [t7'], where t = log[g] € Agis is Fontaine’s
cyclotomic period, associated with a coherent sequence (&), of primitive n-th roots of unity.
There is a natural map By — By compatible with additional structures.

A24 — Let §'° = §.[p~"][€,] be the polynomial algebra over §,[p~"] in the variable
£,. Tt is equipped with a natural integrable connection V : & ?g o) ?g dlog(u) satisfying
V(¢,) = dlog(u), as well as a Frobenius lift ¢ : é’l"g — &, extending that on &, and
satisfying ¢(¢y) = ply. The natural map §, — O3}, extends to amap &’y log _, ﬁ’;‘zel)"g in
the obvious way: ¢, is carried to £,,. This map is compatible with the ¢-module structures,
as well as the logarithmic connections.

From [7, 6.2.1.1], we now obtain:

ProproOSITION A.2.5. — The isomorphism (1.4.6.3) restricts to an isomorphism of
S 198 _odules:

S @, Mo(A) = S @5 M(A).

A.2.6. — The map &, — ;fst extends to a g-equivariant map o ;Og — §;{ carrying £,
to the element log(%) —log(1 4+ X), where both logarithms are developed using the usual
power series 13, If we equip & fg

compatible with derivations.

with the derivation N = —V(u f—u), then this map is also

(18) Note: log(u) log(1 + (% —1)).
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We again fix (4, ) in DEGp01(S, U). We can evaluate D(Ag) along the formal divided
power thickening Spf 0% — Spf Ay to obtain an Ay-module that is canonically isomorphic
to Ay ®g, cM(A). Therefore, from (A.2.2), we obtain canonical maps of Q,-vector spaces

T,(A)[p~"] — Homg, (cM(A). By)
N Homéylj?g(é”lfg R, M(A), §St) — Homg, (Mo(A), B\St).

Here, the final map is obtained via (A.2.5).

Tensoring the maps with l?s‘f and dualizing, we now obtain a map of §;{ -modules:
By @k, Mo(4) > By ®q, Hi\(Ag, Qp).

By construction, it is compatible with all additional structures. We claim that it is an isomor-
phism. To see this, we note that the map is compatible with weight filtrations on both sides,
and we only have to check that it induces isomorphisms on the associated gradeds for the
weight filtration. But this follows from [19, Theorem 7].

The proof of (1.4.10) will be completed by:

ProrosiTiON A.2.7. — 1. The isomorphism above restricts to an isomorphism
/35t,A : Bst ®K0 MO(A) - Bst ®Qp Hélt(Afa Qp)

2. The diagram (1.4.10.1) commutes.

Proof. — Assertion (1.) follows from [7, Théoréme 3.3].

For (2.), we observe that the obstruction is an automorphism u of Byqr ®q, H, where
H = Hélt(Af, Qp), that respects the Hodge filtration (arising from that on Bgr), the
weight filtration (arising from that on H), as well as the diagonal ['g-action. Moreover,
the induced automorphism on the associated graded pieces of the weight filtration is the
identity. In weights 0, 2, this is clear, and in weight 1, this follows from the discussion in [19,
§6]; see pp.132-133 of loc. cit. In fact, this discussion shows more: since our comparison
isomorphism agrees with the classical crystalline comparison isomorphism for p-divisible
groups, the automorphism induced by u on Bgr ®q, W1 H and Bar ®q, (H/WoH) is the
identity.

Therefore, u—1 factors through a I'g-equivariant map Byr ®q, grg’ H — B4qr®q, WoH,
which respects Hodge filtrations. Giving such a map is equivalent to giving a map

ety Hlx(A/K) — WoHI: (A/K)

that respects Hodge filtrations. But any such map must be identically zero. O

A.3. Extension lemmas

Unless otherwise specified, all schemes and algebraic spaces in this subsection will be normal,
noetherian and flat over Zp).
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A.3.1. — Let Z be a scheme admitting locally closed immersions Z — X;, fori = 1,2,
where X; and X, are algebraic spaces.

Suppose that there exists another scheme Z’, which also admits locally closed immersions

Z' — X satisfying the following property: For i = 1,2, there exists a finite map X; — X/
such that

Z = (X xx; Z)red-

Assume that we have a commutative diagram of formal algebraic spaces:
A

(XI[P_I]);[p—l] - (Xl); — (X1)z

fr1 s

A

—1IN\A A
(X2[p ])Z[p—l] — (X2), — (X3) 2.
where the two vertical isomorphisms lift the identity on Z[p~!] (resp. Z’).

For every point z € Z(F,), with image z’ in Z’, let R;(z’) (resp. R;(z)) be the complete
local ring of X/ (resp. X;) at z (resp. z').

LeEMMA A.3.2. — Suppose that, for every z, the finite map R,(z’) = Ry(z") — Ry(2)

lifts to an isomorphism Ry (z) = Ry(2). Then f[p~'] extends to an isomorphism of formal
algebraic spaces

A= AN
f(X1)z = (X2) 5.
Proof. — We can work formal affine locally on (X 1 ) ;,, and so we can assume that we have:

A

(X1)3, = Spf(A, 1) >(X3)5,

and
(X:),, = Spf(B:. Ig,).

—

fori = 1,2. Furthermore, if B;[p~1] is the /5, -adic completion of B;[p~!], f[p~!'] induces
an isomorphism of adic rings:

o — — ~

(A3.2.1) (Bilp~11. Is, Ba[p~']) = (Balp~']. I3, Ba[p—1)).

We have to show that the finite map A — B, lifts to a map B; — B,. By the Z,)-flatness

and noetherianity of B;, and Krull’s intersection theorem, the map B; — B;[p~—!]is injective.

Choose an element b € B,; via the isomorphism of (A.3.2.1), we can view b as an element
of Bl/[p\—l]. We have to show that it actually lies in B;. Since both By and B, are finite over A,
the sub-algebra B[b] C Bl/[p\—l] generated by b is also finite over B;. We have to show that
the map B; — B;[b] is an isomorphism. It suffices to check this after completing B; at any
maximal ideal, and here it follows from the hypothesis of the lemma. O
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A.3.3. — We will consider the category C; of pairs (S, {Zc }cec), where:

- § is a normal, noetherian algebraic space, flat and locally of finite type over Z,);

— (C, xX) is a partially ordered finite set;

- {Z.} is a collection of locally closed subspaces of S that are also normal and flat
over Z(p), and that form a stratification for §. That is, we have a decomposition:

S=|_|ZC

ceC

and, for every ¢ € C, the subspace | |, <c Z¢r 1s the Zariski closure of Z in S.

A map (S,{Z:}cec) = (T, {Wy}laep) of such tuples is a pair (f, ¢), where f : S — T is
a map of algebraic spaces, and ¢ : C — D is a map of partially ordered sets such that, for
every d € D, we have:
(f_l(Wd))red = I_l Z.

p(c)=d

Let C, be the category whose objects are the same as those of 1, but in which a morphism
between (S, {Z.}cec) and (T, {W;}aep) is instead a pair (f[p~'], ¢), where:

= (fIp7'] ) : S[p™1AZelp™ Teec) = (TIp~ '], AWalp™ ' jaep) is amap in Cy;
— forevery ¢ € C withd = ¢(c), there exists a map of formal algebraic spaces
Sz, — Tw, extending the map

S~ D511~ T~ Dy, 111
induced by f[p~].

LEMMA A.3.4. — The natural functor C1 — C, is an equivalence of categories.

Proof. — Let
(fIp7']9) : (8. {Zc}eec) = (T.{Wa}aep)

be a map in C,. We have to show that f[p~!] extends to amap f : S — T. Using a simple
induction, this reduces to the situation where C is a two-element set {co, c1} with ¢g < ¢;.
Set d() = (p(C()) and d] = g[)((,']).

Let S’ be the normalization of the Zariski closure in S x T of the graph of f[p~!].
Our hypothesis implies that the open immersion Z.,[p~'] < S[p~'] extends to an open
immersion Z., < S, and, similarly, the closed immersion Z.,[p~!] < S[p~!] extends to a
closed immersion Z., < S’. Therefore, S’ = Z.,UZ,,, and the natural projection S — S is
a bijection on points. Moreover, the completion of S” along Z., maps isomorphically onto
that of S. This implies that S’ maps isomorphically to S, and so f[p~!] extends to all
of S. O

LEMMA A.3.5. — Let O, be a complete discrete valuation ring of mixed character-
istic (0, p). Suppose that Q is a 1-motif over L such that, for some £ # p, the {-adic
Tate module Ty(Q) is unramified as a representation of Gal(L/L). Then Q extends (uniquely)
to a 1-motif over Op,.
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Proof. — We can assume that &7 has algebraically closed residue field. Suppose that
0 = (B.Y, X,c,cY,1). By the usual good reduction criterion for abelian varieties, we see
that B extends to an abelian scheme over & . By the properness of B and BY, the maps ¢ and
c¢" also extend over &y . Let J be the extension of B by T = Hom(X, G,,) determined by ¢V.
For every x € X, viewed as a character of 7', we obtain via push-forward an extension J
of B by G,,. We have to show that, for any y € Y, the section t(y,x) € Jy(L) extends
over O7p..

For each n € Zs1, consider the connecting map 9, : Jx(L) — H(L, J[£"]) in the
Kummer long exact sequence. Our hypothesis implies that d,(z(y, x)) is trivial, for all n.
Therefore, 7(y, x) is in the image of [£"] : Jy(L) — Jx(L). To finish, it is enough to show
that the inclusion

J2(01) € [(\im([E"] : Je(L) — Jx(L))
n

is bijective.

Choose an element j of the right-hand side with image » € B(L) = B(0L); choose also
j' € J(Op) lifting b. Then j = tj’, for a unique t € L*. For any n > 1, choose j, € J(L)
such that [¢"]j, = j.Let b, € B(OL) be its image. Then we can find j, € J(0L) with image
b, € B(Op) and satisfying [¢"], = j’. In particular, for all n > 1, there exists #, € L* such
that j, = t,j, and tf” = t. This implies that t € 0}, and hence j € J(OL). O

LEMMA A.3.6. — Suppose that S is aregular, formally smooth scheme over Zpy. Let U C S be
an open sub-scheme containing S[p~'], whose complement has co-dimension at least 2 in S.
Then any 1-motif over U extends uniquely to one over S.

Proof. — Let (B,Y, X, c,cY, ) bea l-motif over U. By [62, Corollary 5], B extends to an
abelian scheme over S. The rest of the data also extends by Weil’s extension theorem [6, §4.4,
Theorem 1]: Given a smooth group scheme H over S, any section of H over U extends to
one over S. O

A.3.7. — Suppose that S is a flat normal Z,)-scheme, and that (4;,1;) fori = 1,2,3 are
three polarized abelian schemes over S[p~!]. Suppose that there exist finite homomorphisms
fi + A; —> Ay, fori = 1,2 thatare compatible with polarizations, and whose kernels are finite
flat group schemes over S[p~!] of prime-to-p order.

Suppose also that the product homomorphism

ﬁ:AzX/h%Al

is an isogeny, and that A; extends to an abelian scheme ¢#; over S.

LEMMA A.3.8. — In the above situation, suppose that A1 has prime-to-p degree. Then both
Ao and Az also extend to abelian schemes o/, and o5 over S, and the homomorphisms fa, f3
extend to finite homomorphisms o#; — oA, fori = 2,3.

Proof. — We can assume that S is connected. This implies that the degrees of the polar-
izations A; are constant. Let d; be the degree of the polarization A; on 4;, fori = 1,2, 3.

Our hypothesis on the degree of A and its compatibility with A, and A3 along the finite
homomorphisms f; and f3 imply that the integers d; are prime-to-p fori = 1,2, 3.
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Moreover, since f respects polarizations, the p-primary part ker [ p°°] of ker § must map
isomorphically onto a subgroup scheme of both ker A; and ker A, via the natural projections.
Write A for the quotient (4, x A3)/ ker B[p°°]: thisis a finite cover of A; of prime-to-p degree.
Let d be the degree of the induced polarization on A.

Let g1 (resp. g2, g3) be the dimension of the fibers of Ay (resp. A,, A3z). Let Ag g be the
moduli stack over Z,) of polarized abelian varieties of dimension g and degree d.

Let B be the moduli stack over Z,) that, for each Z,)-scheme T, parameterizes tuples
((B2,v2), (B3, v¥3),¢), where, fori = 2,3, (B;, ¥;) is a polarized abelian scheme over T of
dimension g; and degree d;, and

e : ker Y [p™] = Ker V3[p™]

is an isomorphism of 7-group schemes such that the product polarization v, X ¥3 on By X1 B3
descends to a polarization ¢ on B = (B X7 B3)/L, where L = (1 x &)(ker ¥»[p°°]), which
will necessarily have degree d. This is again an algebraic stack over Z,).

By definition, we now have a map of Z,)-stacks
(A.3.8.1) B — Ag,J
((B2.v2). (B3.¥3).€) > (B, V).
Note that both B, and B; are abelian subschemes of B.

We claim that this map is finite. Since it is of finite type, it suffices to show that the map
is quasi-finite and satisfies the valuative criterion for properness. The first property follows
from the argument in [41], and the second follows from the Neron-Ogg-Shafarevich criterion
for good reduction.

The polarized abelian scheme A—>S [p~!] is associated with a map
fiSlp—A, 4
The discussion above shows that f lifts to a map S[p~!] — B.

The hypothesis that A; extends to an abelian scheme over S, combined with the fact that
the isogeny B : A — A; has prime-to-p degree implies that A extends to a polarized abelian
scheme over S, and hence that f extends to a map S — Ag i

So, to prove the proposition, it is enough to show that this extension also admits a
lift S — B. But this follows from the finiteness of (A.3.8.1) and the normality of S. O

A.4. Rigid analytic lemmas

The purpose of this part of the appendix is to collect some results about rigid analytic
spaces obtained via Berthelot’s analytification functor.
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A.4.1. — Let R be a complete local normal ring, topologically of finite type over W. Set
U = Spf R. We have the attached analytic space U™ over Ky as defined in [26, §7.1]19:
Letm C R be the maximal ideal, and let R[m”/ p] be the R-sub-algebra of R[ p~!] generated
by the elements a/p, for a € m”". Let B, be the m-adic completion of R[m”/p] and set
Cn = B,[p!']. Then C, is an affinoid algebra over Ko. If X, = Sp(C,) is the affinoid
space over Ky associated with C,, the natural map X,, — X,+; induced by the inclusion
R[m"*1/p] — R[m"/ p] exhibits X, as an affinoid open in X, 1. We now have:

Aan UX

There is a natural map of W-algebras: R — HO(@an, ﬁ@an). By [26, 7.3.6], this map
produces an identification:

(A4.1.1) R={feH U 0:m):|f(x)lp <1, forallx € U (Ko)}.

LEMMA A.4.2. — Let Q(R) be the fraction field of R, and suppose that f € Q(R) is such
~ an
that there exists a non-empty Zariski open subspace V..C U with | f(x)|, = 1, for all
x € V(Ky). Then f belongs to R*.

Proof. — Write f = by/b,, for non-zero b1,b, € R. Letp C R be a height 1 prime
with p ¢ p, and suppose that ord, (b;) > ord,(b2). Let V(p) C " be the Zariski closed
subspace associated with p. Then f = b, /b, is defined on a non-empty open of V(p). For any
point in this open, | f(x)|, = 1, which implies that ord, (b1) = ord,(b2). Arguing similarly
with b, /by, we see that ord, (/) = 1, for all such height 1 primes.

Since R is normal, this implies that f belongs to R[p~!]*, with | f(x)|, = 1 everywhere.
Combining with (A.4.1.1) shows that f must in fact belong to R*. O

From the definitions, we obtain:

LEMMA A.4.3. — Suppose that we have an injective map R — R’ of complete local normal
~1/
W -algebras, topologically of finite type over W. Set U = Spf R’. Then the induced map
0 0
H (GU ﬁ@an)—)H (% ,ﬁ@/_an)
is again injective.
LEMMA A.4.4. — Let R — R’ be as above, and let m" C R’ be the maximal ideal.

1. Suppose that f € 1 +w' is such that the logarithm:

log(/f) = Z(—l)"“(fl;.“i UL

i=1
isintegral over H ( @an, % @an). Suppose that there exist a finitely generated R-algebra S,
a maximal ideal mg C S, an element g € S, and an isomorphism of local R-algebras
§ms — R’ carrying g to f. Then f is integral over R.

. . & re . .
(19 This space is denoted by %/ ~ in loc. cit.
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2. If'log( f) belongs to HO(@an, Ospm), then there exists r € ZLsq such that f” belongs
tol+mCR.
3. If f belongs to the quotient field Q(R) of R, then it lies in 1 + m.

Proof. — For all these statements, we can, without loss of generality, replace S by the
normalization of the image in R’ of the map of R-algebras:

R[T]— S
T—g—1,

and R’ by the complete local ring of this normalization at the pre-image of mg.

Now, (1.) amounts to the assertion that R’ is finite over R. This can be rephrased as
follows: Let R; be the integral closure of R in S. Since it is a domain, finite over the complete
local ring R, it has to be local as well. We have to show that the map of local R-algebras
Ri — Smy is an isomorphism; or, equivalently, that g belongs to R;.

/\/

By hypothesis, U @™ factors through a finite map V — U of rigid spaces
such that log(f) lies in H°(V, Oy). For anyn > 1, let X, C ™" be the affinoid open
defined in (A.4.1). The pre-image Y, C V of X, is again affinoid. Since g = log(f) is an
analytic function on Y,,, it is necessarily bounded, and so there exists r € Z-¢ such that
|p"glp < p_ﬁ everywhere on Y,,. In particular, the power series

oo r ]
fr=eppre) =Y L Jf,’)

J=0

converges to a function on Y, satisfying | f, — 1|, everywhere, and log(f,) = p” log(f).
For s € Zs sufficiently large, we will now have f,” * = f P over the pre-image in "

of Y,,. Therefore, the pre-image in W of X » 1s finite over X,.

Using [26, 7.1.9] and the noetherianity of R, we now find that the localization of R'[p~!]
at any maximal ideal p C R[p~!] is finite over R[p~'], = R,. Therefore, (§m s)p> and hence
its sub-algebra (Sms)p, has to be finite over R,. This implies that the map of R-algebras
Ri[p7'] = Swmg[p~']is an isomorphism, since it is one after localizing at every maximal
ideal of R[p~!]. So we find that the element g € S liesin Ri[p™!] N S

~ an ~/,an ~ an
Let %/, be the rigid analytic space associated with Ry. The map %/  — %/ factors
~ an ~ an ~/,an
through 9/, . Now, g is a bounded analytic function on 9/, that restricts to f* over %

But, by what we have just seen, the map YA @?n is surjective on K o-points. Therefore,
since | f — 1|, < 1 holds everywhere on @an(fo), we must have |g — 1|, < 1 everywhere
on @alm (Ko). By (A.4.1.1), it now follows that g must belong to RY.

Assertion (3.) is now immediate. It remains to prove (2.). Let Ry C R’ be the R-sub-
algebra generated by f. By (1.), it is finite over R. Moreover, the argument above with the
p-adic exponential shows that, for all maximal ideals p C R[p~!], there exists s € Zs such
that the image of f7° in (R2)p lies in Ry. This shows that if s is sufficiently divisible, then we
will have f?° € R[p~'], and hence in R. O
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