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ON ISOTYPE SUBGROUPS OF ABELIAN GROUPS ;

BY

J. M. IRWIN and E. A. WALKER.

In his book Abelian groups, L. Frcus asks the following question. Let &
be a p-group and / be a subgroup without elements of infinite height.
Under what conditions can # be embedded in a pure subgroup of the same
power and again without elements of infinite height? (See[2], p. 96.)
This question has been answered by Charles [1] and IrwiN[3]. Irwin’s solu-
tion was eflected by showing that any subgroup maximal with respect to dis-
jointness from the subgroup of elements of infinite height is pure. For
p-groups, the subgroups of element of infinite height is p®G. Now for any
Abelian group G, any prime p, and any ordinal o, one may define p* G, and
this suggests the following problem. Is any subgroup of ' maximal with
respect to disjointness from p*G pure in G? Or, more generally, does any
such subgroup H of G have the property that # n p# G = pBH forall ordinals 3?
That is to say, is H p-isotype in G? We will show that indeed any such //
is p-isotype, and we will give a partial solution to the problem of determi-
ning whether any two such H's are isomorphic. The foregoing considera-
tions will lead to the solution of a more general version of the above men-
tioned problem of L. Fucns.

All groups considered in this paper will be Abelian.

DerinitioN 1. — Let G be a group and p be a prime. Define p*G = G.
If p3 G is defined for all ordinals 3 < «, then define p* G—= n P3G when ais

pea
a limit ordinal. If & = 0 + 1 for some ordinal 9, let p*G=p (p°G).
Thus we have defined p* G for all ordinals o, and clearly the p*G’s form a
chain of fully invariant subgroups of G.
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DeriviTioN 2. — Let p be a prime and g€ G.  The p-height H,(g) of g is
the ordinal « such thatgep*G and g p*+1 G. If no such ordinal o exists,
then H,(g) =00, where the symbol « is considered larger than any ordi-
nal. Let o be an ordinal or oo. Then a subgroup # of G is p*pure in G
if and only if Hn pB G = pB H for all ordinals 3 < «; His a-purein G ifand
only if # is p*-pure in G for all primes p. A subgroup # is p-isotype in G
if and only if H is p®-pure in G. The subgroup H is isotype in G if and
only if H is p-isotype in G for all primes p.

It follows easily from the définitions that the properties of being isolype,
a-pure, or p%-pure are transitive. Moreover, the union of an ascending chain
of subgroups with one of these properties is a subgroup with that property.

It is easy to see that there are groups in which not every pure subgroup is
isotype. In fact, there exist reduced p-groups G such that [pBG|=¥,
and | 3| 2. (See[2],p. 131, Theorem 38.2for the existence of such a G.)
Embed p# G in a pure subgroup X of G with | K|=¥,. Clearly K is not
isotype since pf K —o and KNpP G =pB G Zo.

We now state and prove a few facts which will be useful in what follows,
and which illustrate the relation between the above definitions and the ordi-
nary notions of purity and height.

Lemma 1. — For a positive integer n, let n == Hp'["" be its prime decompo-

i=1
r

sition. Then for any group G, nG — npf"G.

i=1
Proor. — Let 7= n piiG. Clearly nGCT. Now let geT. For
n;=n/pj, there exist integers a; wich a;n;=1. Butge Tyields g=p/'g;,
{=1, ..., r. Hence

N . X -
g :za[ g :2‘ al-nipf'gtzzczingi: nz a;gi€nb.

Hence n G = T, and the proof is complete.

CorOLLARY 1. — A subgroup H of a group G is pure in G if and only
if His w-pure.

Proor. — Suppose # is pure in G. In particular, #/ np" G =—=p"H for
each prime p and non-negative integer m. Now

Hnp®G=Hn <n pka> - m (HAp*G)=—= m prH=p .

k< k< tn < tn
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Hence H is w-pure. Next suppose H is w-pure, and n is a positive integer.
Then

HAnG=Hn ((H_pf‘)G):Hn < ﬂ;»;iG)
— n (anfi G): npf"]]: nH

The following definition is standard.

by Lemma 1.

DeriziTioN 3. — The subgroup G'— n n G is the subgroup of elements

n<w

of infinite height in G.
We are now in a position to prove the following useful

COROLLARY 2. — Let P be the set of all primes. Then G'—= m prG.

»
Proor. — Set "= n peG.  Then from p® G = m prG foreachpe P,

P n

it follows that p® G > n n G for each pe P, and hence 77> G'. Now for

each n we have nG = m PiG>T. Hence G'> T, whence G'=T.

This corollary shows that the subgroup G' of elements of infinite height
in G is the set of elements of infinite p-height for each prime p. The follo-
wing theorem and corollary are generalizations of Kaplansky's T.emma 7

([8], p. 20)

Tueorem 1. — Let H be a subgroup of a p-group G, and let a be a limit
ordinal or «w. Then H is p*pure in G if and only if whenever 3 < a,
h e H|pl, and the p-height in G of h is> (3, then the p-height in H
of his> .

Proor. — If H is p*-pure, then clearly the elements in H[p] have the
desired property. To prove the converse, it must be established
that Hnp® G = p® H forall § = «. Obviously Hnp®G>p>H. Let P(n) be
the statement : For 3 < «, the elements in // of exponent =Zn have
p-height > G in H if they have p-height > in G. We will prove P(n) is
true for all n by induction and consequently have that Hnp®GCp>H for
all 0 <<a. Now P (1) is true by hypothesis. Assume P(n) holds, and
let he H with o(h)=p"+!, and suppose the p-height of 2 is( in G.
Then ph has exponent n and p-height >~ 3 +1in G. Since 3+1 < a, our
induction hypothesis yields ph = phg withhge p? H.  Hence (h— hg)e H[p],
has p-height > B in G, and so p-height > (3 in H. Therefore Hnp°GCp* H
for all 0 << « and since « is a limit ordinal, this holds forall 6 = a. Thus H
is p*-pure in (.
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CororLarY 3. — Let H be a subgroup of a p-group G. Then H is iso-
type in G if and only if the elements in H [p] have the same p-height in H
as in G.

Proor. — Since G'is a p-group, we have g/ — H for all ¢ :# p, and hence H
is g-isotype for all ¢ = p. To get H p-isotype, let « be oo in Theorem 1.

We proceed now to our main results and begin with the following definition :

DeriNiTiON 4. — Let A and L be subgroups of G. Then H is L-high in K
if and only if # is a subgroup of A maximal with respect to the property
that Hn L =o. A high subgroup H of G is a subgroup maximal with res-
pect to the property HnG'=o0. (See[3].)

The principal result of this paper is the following theorem :

TueoreM 2. — Let G be a group, let p be a prime, let o be an ordinal,
let K be asubgroup of p* G, and let H be K-high in G. Then His p*+'-pure
in G, and p8 H is K-high in p8 G for all ordinals 3 = a.

Proor. — To show that /7 is p*+i-pure in G we need to establish
that HnpB G =pBH for all =« +1. We induct on 3, and if § = o, the
equality is trivial. Now suppose o << 3« +1, and suppose the equality
holds for all ordinals less than 3. If 8 is a limit ordinal, then

HophGi=In ( n,ﬁ(r'): M (Hnp?G) ="\t =pii.
6B

L o<B o<

Next suppose 3 is not a limit ordinal. Then there is an ordinal ¢ such
that 3 =19 +1. Then

PHCHANpSG=Hnp(p*G).
Let /v = pg; with e H and g3€ p°G. 1f gs€ H, then

seHNp'G=p°H,
and
h=pesep(p’ll)=ptH.
So suppose gz & //.  Since H is K-high in G and K & p*(r, we have
hy+ ngz=hk £ o,

where &, € H, k€ K, and n an integer. Clearly (1, p) =1, and k€p*G.
Since § - o. we have A, € p®G. The induction hypothesis yields 2, €p?H.
Now

phy+ npgi=ph,+ nh = pk =o.
Therefore

nh=—phep(p*H)=psH.
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Also phe pPH since he pBGC p’G, consequently i € p?H. There exist
integers & and b such that an + bp —=1. Thus

anh + bph =h e ps’3 H.

Hence H np? G = p% H and 11 is p*+'-pure in G as stated.

It remains to show that pf H is K-high in p3G for 5 < a. Suppose this
is not the case. Then there exists gﬁepi'f G, 8y & pBH such that the subgroup
generated by p8H and gy is disjoint from K. 1f g'geH, then since H
is p*Hi-pure in G and (B Za, gBEIJBII contrary to the choice of Sge
Hence gBGEH. Since /1 is K-high in G, we have A+ ngpzk;é o,
where 1€ H and k€ KCp*G. From 5o we have that he p8G, and
hence % € p I by p*+1-purity of H in G. But this together with the equa-
tion /4 ngg= k= o contradicts the fact that the subgroup generated

by p® H and g, is disjoint from A. This concludes the proof.

As an easy consequence of Theorem 2 we obtain a generalization of [rwin’s
result mentioned above.

COROLLARY . — Let K be any subgroup of G' and H be K-high in G.
Then H is (v —+1)-pure (and hence pure) in G. In particular, if H is
high in G, then H is pure in G.

Proor.— Since K C p© (s for each prime p, H is p®+i-pure for each p.
Hence H is (o + 1)-pure.
Another result along these lines is

COROLLARY. 5. — Let H be p*G-high in G. Then H is p-isotype in G,
and pPH is p*G-hugh in pb G for all 5.

Proor. — Since H is p*G-high in G, then HNp8G = psH —o for
all 3> «, and Theorem 2 yields / is p-isotype. For ordinals 3> «, the
only p*G-high subgroup in p8 G is 0 and pB/f —= o for such 3. By Theorem 2,
P2 H is p*G-high in pBG for all f.

Lenyma 3. — For any group (+ and any ordinals e and 5, p* (p# G) = pb+*G.

Proor. — Induct on . The assertion is true for a—0. Now assume o> 0
and that the assertion is true for all ordinals d << . Suppose « is a limit
ordinal. Then

RV AGEY VAV

Ee

Zn (prie)= () ()= () (PG =pG

Gl BLh<B+2 B+
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since 3 + « is a limit ordinal. Suppose « =3 +1. Then

PHPRG)=p(p*(pPG)) =p(pP7G) = pd+041 G = pBionn G = pBragy,
As a simple application of Lemma 3 we have

CoRrOLLARY 6. — Let / be p* G-high in G. Then p? H is p-isotype in pb G
Jor all 5.

Proor. — By Corollary 3, p® H is p*G-high in pBG for all . If a <5,
then p8 H—o and hence is isotype. If 3 < a, then = f3 + & for some .
By Lemma 3 we have that pBH is p*G = pB+% G = p®( pB ()-high in pBG,
and Corollary 5 completes the proof.

Making certain provisions about G, we are able to say when p*G-high sub-
groups are g-isotype for any prime ¢. In this connection we have

Tueoren 3. — Let H be p*G-high in G, and suppose p* G has no elements
of order g, where q is a prime Then H is q-isotype in G.

Proor. — If ¢=p, the assertion follows from Corollary 5. Now
assume 7 = p.  We show that Hn¢® G = ¢B Hl for all ordinals 3. For this
purpose it suffices to verify that HnqgP GCq¢Bll. For 3 =o this is trivial.
Let 3 > o, and suppose the inequality holds for all ordinals 8 << 3. If 5 is a
limit ordinal, then

HAgdG—=Hn ( m (g% G) ), (" HngG) =" (dH) =q0 .
58

S . S .
/ <8 <3

Next suppose 5 =0 +1. Let helIngdG=Hnq(q*°G). Then h=qy;,
where g;€¢®(G;. By the induction hypothesis, if gs€H, then gz€q¢®H
and 2 = ggs€q(¢°H) = ¢BH. Now assume gz /. Then since H is p*G-
high in G, we have &, + ngs— 2,7 0, where hy € H, g, € p*G, and n is an
integer.  Thus ghy+ nggs= qhy+ nh —= qg,€ H. Therefore gg,— o, and
since p*G has no elements of order ¢, 2,=— 0. This contradiction establishes
the theorem.
The following two corollaries follow immediately from Theorem 3.

Corovary 7. — Let H be p* G-high in G, and suppose p* G is torsion-fre
Then H is isotype in G, and in particular H is pure in (5.

CoroLLarY 8. — Let H be p* G-highin G, and suppose p* (+ is a p-group.
Then H is isotype in G. In particular, H is pure in (5.

If G is a p-group, then the subgroup G' of elements of infinite height in &
is p®G. Thus Corollary 8 implies that a high subgroup # of a p-group is
isotype, and consequently pure. The answer to Fuchs’' question is readily
obtained from the purity of /1. (See [3].) However, we proceed now to
derive more general results.
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Tueorem k. — Let A be a subgroup of G, and let S be « non-void set of
primes. Foreachpe€S,let ay be anordinal. Suppose that for eachae A,
a o, there exists p € S such that H,(a) < a,. Then A is contained in a
subgroup H of G such that H is p*+'-pure in G for each p€ S, and for
each he H, h £ o, there exists p& S such that H,(h) < a,.

Proor. — Since 4 n (/ ) 76 ): o, A is contained in a () p* G-high

.PES / PES

subgroup f/ of G. Now the proof follows immediatley from Theorem 2.
The following result generalizes a theorem of Erdélyi ([2], p. 81).

COROLLARY 9. — Let H be a subgroup of G, let p be a prime, and let «
be an ordinal. Suppose that for each nonzero hel,, H,(h)<<a.
Then H is contained in a p-isotype subgroup A of G such that for each
nonzero a€ A, H,(a) < a.

Proor. — This proof is analogous to the proof of Theorem k&, using
Corollary 5.

CoroLLARY 10. — Let G be a p-group, and let A be a subgroup of G such
that A has no nonzero elements of infinite height. Then A is contained
in an isotype subgroup H of G such that H has no nonzero elements of
infinite height.

Proor. — The proof is similar to the proof of Corollary 9, using
Corollary 8.

CoroLLary 11. — Let A be a subgroup of G with no elements of infinite
height; i. e., AnG'=o0. Then A is contained in a pure subgroup K of G
such that K has no elements of infinite height and such that | K| < %,| A|.

Proor. — The subgroup A4 is contained in a high subgronp H of G, and
is pure in & by Corollary k. Now A can be embedded in a pure subgroup A
of H such that | K| <Z¥N,|A|. (See[2], p. 78.) Clearly K has no elements
of infinite height and is pure in G.

We will now discuss the question of how isomorphic the p* G-high sub-
groups are. In particular we will show that if & is a countable p-group, then
any two p* G-high subgroups of G areisomorphic. When any two such sub-
groups of an arbitrary group G are isomorphic is not known. However, we
will state and prove an interesting theorem concerning the relationship of
the Ulm invariants of these subgroups to those of G when G is a p-group.

Lemma k. — Let L be a subgroup of a group G with A and A both L-high
subgroups of G. Then

(HPL)/L)[p]l=((KDL)/L)[p]

for each prime p.
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Proor. — For ~ € Hl we have that o (A + L) = p if and only if o(h) = p.
lfhe(HnK)[p],thenhi+Lisin ((KPL)/L)[p]. Supposehe H[p]\KNH.
Then there exists k€ K, x € L with A — k = x, whence o (k) =p. Thus

h+L=k+L e((K®L)/L)[p];
and since A was arbitrary, we have by symmetry that

(HDL)/L([pl=(KDL)/L)[p]

as stated.

Lemma 3. — Let H and A be p#G-high in a reduced p-group 6.
Then | H|=|K]|.

Proor.— If p8G=o0, H—= K, When 5 isfinite, then H >~ K. (See[2],
p- 99 and 104). When 8 is infinite and p8 G £ o, embed G in a divisible
hull £ of G. (A divisible hull of G is a minimal divisible group contai-
ning G.) Then r(H)=r(E/D)=r(K), where D is a divisible hull
of p8G in E. That |H|=|K| follows now from easy set theoretic
considerations.

Lemma 6. — Let // be pf G-high in G. Then for each ordinal o we have
(p*H @ p? G)[p? G = p*((H @ p? G)/p? G).

Proor. — If a3, then both sides are zero. We prove the assertion
for « << 3 by induction on a. So assume the equation holds for all ordi-
nals 6 < a. (If o =o, then the equality is trivial.) If o =9 +-1, then

(p*H@p? G)/p? G=(p(p"H) D pAG)/pP G
=p((P°HDpBG)/pB G)
= p(PP (H® pP G)/pB G)) = p*(H®D pB G) / p3 G).

Now assume « is a limit ordinal. Set

L:<< mpay>@pm>/p.6(; and  B= (") PP (HSpPG/pPG).

S a<a

Since a is limit ordinal it suffices to prove L = R. Clearly LCR. Now
let A+ pBGe R. Then there exists i3 € p®H such that A+ pB G = ks + pB G
for each 6 << a. This means that for each 0 << « we have A = A5+ ggs for
some ggs € pPG. Thus since o << 3 and H is isotype, we have hepH for

each § < a. Ilence he m p°H, and h+ p8GeL. This concludes the

S

proof.
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CoroLLarY 12. — Let H and K be pBG-high in G. Then for each
ordinal a we have

(P ((HPPPG)/pPG) [ pl=(p*(KDptG)/pPG)[p].

Proor. — This follows from Lemma 6, the fact that p*H and p* K are pii (7
high in p* G, and Lemma k.

TaeoreM 3. — Let H and K be p8 G-high in a p-group G.  Then H and K
have.the same Ulm invariants (as defined by KarLansky in [5]). Moreover
Sor all a < 3, the a-th Ulm invariant of H is the same as the a-th Ulm in¢o-
riant of G.

Proor. — First observe that H ~ (H@ pb G/pBG) = M, and simi-

larly K ~ K. We will show that 7 and K have the same Ulm invariants.
From Corollary 12 we have for each ordinal « that

(P*((HDpRG)/pPG)) [pl=(p* (KD p3&)/pG))|p]

so that
(p=i) [p)/(pr H) [ p)=((p*K) [p])/)(p* K) | p].

This shows that /' and K have the same Ulm invariants. To prove the
second part of the theorem notice that for « << 3 we have

(p*G) [p))/(p* &) [ pl= ((p*H) [p 1B (PP G) [ p)/(p>+ H) [ p 1B (p? ()| p)
=~ (p*H) [p]/(p*~ H)[p].

The equality follows from Corollary 5 and the fact that « << 3. 'The isomor-
phism is the natural one.

As an easy application of Theorem 5 we have

Tueorem 6. Let H and K be pB G-high in G, and let G be a p-group.
If H is countable, then H>~ K. Moreover if H and K are both direct
sums of countable groups, then H >~ K.

Proor. — Clearly // and Karereduced. Forthefirstpart, | /| =|K| =R,
by Lemma 5. Hence by Theorem 5 and Ulm’s theorem, H~ K. If H
and K are both direct sums of countable groups, we have by a theorem of
Kolettis (see [6]) that H >~ K.

We conclude with a corollary to Theorem 5.

Turorem 7. — Let G be a group of type 3. (G is a p-group.) Then
for each ordinal a = 3, there exists an isotype subgroup I of G such that
the first a Ulm invariants of G coincide with the Ulm invariants of H.

Proor. — Let # be p*G-high in G and apply Theorem 3
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