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SOME NON-LINEAR EVOLUTION EQUATIONS ;

BY

Jacques-Louis LIONS
[Paris]

AND W. A. STRAUSS
[Stanford] (*).

Introduction.

In this paper we consider evolution equations of the form

(i) A(t)u(f) + u " ( { ) + ̂ (t; u(0, uf(t))=f(t), o^t^T

(u'= duldt, u" = d^-ii/di2), where each A(t) is an unbounded formally
self-adjoint (i) linear operator, which is in practice an elliptic partial
differential operator subject to appropriate boundary conditions. The
operator ^(t; u, u') depends non-linearly on u and u^ and is, in some sense,
close to a ( < monotonic " (or (< dissipative ") operator.

Various examples of equations of type (i) where p is a non-linear
operator arise in physics. For instance :

(a) If A(t) =—A, ^(t; u, u^ = u3— or, more generally, any positive
odd power (so that (3 depends only on u) — the equation arises in quantum
field theory : cf. JORGENS [7], SEGAL [18], [19]; systems of equations of
this type also occur in this connection;

(*) The second author was supported in part by a National Science Foundation
postdoctoral fellowship and in part by NSF GP 1883, and the first author in part
by AFOSR Contract 553-64, while visiting the Univ. of California at Berkeley.
0 We could slightly generalize by assuming that only the principal part of A

(0 is self-adjoint.
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(b) If A(f) =—A, p(^; u, u') == I u' \ u' (so that (3 depends only on u'),
the equation represents a classical vibrating membrane with the resis-
tance proportional to the velocity (2).

We shall give some sufficient conditions on A(t) and on ^(t; u, u')
so that (i), together with the initial conditions

(2) u(o) = Uo, u'(o) = Ui (Uo, "i given),

is a well-posed problem, i. e., so that there exists a unique solution in
the whole interval [o, T]; of course this implies corresponding results
on a half-line [o, oo). For some quite general local results, we refer
to LERAY [8], DIONNE [5] and SOBOLEVSKIJ [20].

We shall also briefly consider first-order evolution equations of the type

(3) A(Q u(t) + u'(t) + (3(/; u(0) = f(t\

where A(/) and ^(t; u) are as above, but A(/) need not be formally self-
adjoint.

In order to solve (i), (2), we begin by considering a sequence of equations
which approximate (i) and in which the non-linear terms are bounded
in an appropriate space. Generally, the most convenient approximate
equations are obtained by the standard method introduced, for non-linear
equations, by HOPF [6]. The difficulty is to pass to the limit; this can be
overcome in essentially two different ways.

In Part I, we find sufficiently many a priori estimates on the solutions
of the approximate equations to obtain — via compactness arguments —
strong convergence in appropriate spaces. The passage to the limit
in the non-linear terms is now possible, while simply weak convergence
would not have been enough.

This process is applied in sections 1.1 to 1.4 to the general equation (i)
in which A(f) is (roughly) (( elliptic " and the non-linear term is inde-
pendent of u and depends in a (< monotonic " way on n\ In section 1.5,
we apply this result to the equation

(4) —^u+u'f+h,(x,t)\u^ ^u^f (p>i) ,

where hi^o, by introducing L^-spaces with respect to the measure
hi (x, t) dx. In this connection, we could also consider much more general
non-linearities by using Orlicz spaces, but we simply refer to somewhat

(2) This example, which was at the origin of the present work, was mentioned
to us by L. AMERIO in Varenna, May 1968. A related equation with a somewhat
<( weaker " non-linearity was studied by PRODI [17]. Some similar equations were
considered by YAMAGUTI and MIZOHATA ([24], [25], [26]).
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related problems in VISIK [22]. Section 1.6 treats more general equations,
and in section 1.7, the boundary conditions may themselves be non-linear.

In section 1.8 we prove a partial regularity theorem for equation (4)
(with hi == constant). In sections 1.9 and 1.10, we give two examples
in which (3(u, u ' ) depends on both u and u''. In order to avoid making
the treatment too ponderous, we have not put the results of these last
sections into a general framework.

In Part II, we exploit more directly the monotonicity property of the
non-linearities, without proving strong convergence and using a minimum
of a priori estimates. This kind of argument was used recently for equa-
tions involving bounded operators, particularly non-linear integral
equations, by MINTY ([14], [15]). It was first applied to partial differential
operators of elliptic and parabolic type by BROWDER ([2], [3]). For equa-
tions of parabolic type, we give a result in section 2.7 which extends
that of BROWDER [4] in several respects (3). Our method [for equation (3)],
while technically different from Browder's, follows roughly the same
pattern. It can be applied directly to parabolic partial differential
equations. Compactness methods have also been used by VISIK [23]
to solve this kind of equation.

In the case of equations of type (i) with (3(^; u, u') = ^(t; u')
a < ( monotonic " function of u ' ' , there are certain non-trivial technical
difficulties in this kind of monotonicity argument which do not appear
in the parabolic case. Specifically, we have assumed, in Part II, the
annoying condition dA (t)ldt ^_ o (taken in the appropriate sense), a condi-
tion which was not necessary in Part I. On the other hand, this method
allows us to weaken the regularity hypotheses on the initial data and on
the coefficients appearing in the equation as well as on the right-hand side
of the equation. The general theory is given in sections 2.1 to 2.5,
new examples being given in the following section. A typical one is initial
boundary-value problems for the equation

—^u-{-uff+^(D^{\D^ury-lD^}==f,
a

(p > i) in the cylinder (o, T) x ^2, where the operators Da are arbitrary
linear differential operators in the ^-variables with smooth coefficients
and where (-Do)* denotes the formal adjoint of D^ The fact that the
Laplacian is strongly elliptic is not used in the argument.

Some of the results given here were announced in [13] or were presented
at the Stanford Colloquium [Ocotober 1968] or the College de France
[December ig63].

(3) T. KATO [27] has another kind of extension by a different method.
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PART I.

Compactness Method.

1.1. Hypotheses.

We are given two Hilbert spaces V and H such that VcH and the
inclusion mapping of V into H is continuous. In addition, we have
a Banach space W and a one-parameter family of Banach spaces W(t),
o^t^T, contained in H, such that, for each /, W is a dense subset
of W(t) and the inclusion mapping is continuous. We assume that V n W
is dense in H.

The scalar products in V and H shall be denoted by ((^i, ^)) and (Ai, 7^),
and the norms by |[ v \\ and [ h [, respectively. The spaces may be either
all real or all complex.

If X is a Banach space with norm [| ||,Y, we denote by L^(o, T; X)
the space of (classes of) functions (real, or complex) f which are LP
over (o, T) with values in X, provided with the usual norm (i^p <oc)

i
/ ,.T Y
\ IIAOIIS^ ,

Wo /

and the usual modification in case p == oo.

HYPOTHESIS I. — For every i e [o, T], we are given a bilinear (sesqui-
linear in the complex case) form on Vx V

u, u->a(t; u, u) (u ,yeV)

which is hermitian (a(t; u, v) = a(t; v, u)) and which satisfies :
(1) a(t;u,u)^c,[u]2 (ueV),
where [u] is a continuous pseudo-norm on V such that the norm on V

([vY+\v\^

is equivalent to the norm [ [ u |[.
(2) For every u, P€ V, the function t->a(t; u, v) is twice continuously

differentiable; we set
d d2
^ci(t; u, v) = a'(t\ u, u), -^ a(t; u, v) == a"(t\ u, v).

HYPOTHESIS II. — For fixed te[o, T], we are given a continuous
linear (conjugate-linear in the complex case) form on W(t)

u->b(t;w,u) (yeW(Q),
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where w is a fixed element of W(f) (the dependence on w being in general
non-linear) which satisfies

(1) Reb(t',u,u)^o (ceW(O);
Re b(t; w, w — v) — Re b(t; u, w — v) ̂  o (v, w e W(Q). (3 6")

(2) For u, u, we. VnW, we assume the existence of the limit

\im^[b(t; u+zu, w)—b(t; u, w)} = b^(t; u; u, w);

where b^(t; u; u, w) is a bilinear (sesquilinear) form in u and w and is
a continuous function of u when u is restricted to finite-dimensional
subspaces of VnW (4).

(3) For every u, weVnW, ^b(t; u, w) ==. b^t; u, w) exists and is

a jointly continuous function of t and v when o ̂  i^ T and u is restricted
to finite-dimensional subspaces of VnW. Moreover,

2 b^t; u, w)|^Re&^; u; w, w) +c.,{I{eb(t; u, u) + \u\2 + \w\2},

where €2 is a constant independent of f, u and w.
(4) If ^eL°°(o, T; V), ^(O€W(Q a. e., ̂ ; ^(Q, ^(0) is a measurable

function of t and

Re ^(^(0,^(0)^
^n

<^;

then for every y e Y n W , t-> b(t; g(t), u) is an integrable function
on (o, T).

HYPOTHESIS III. — Suppose we are given a sequence of functions g,n,
continuous with values in V n W, such that

g,n-> g in the weak-star topology of L^ (o, T; V) (°)

dg,n
and

—jr == 9m-> ̂  in the weak-star topology of L30 (o, T; H)
and

Re t b(t;gm(t),g^t))dt
^n

(3&") More generally, we may assume that
B.eb(t; w,w—P)—Re6(<; P, w—v) ^—A-1 w—y [2, y,w e W(Q,

where k is some constant.
(4) In case b (t; u, u) is independent of t, we can omit Hypothesis II (2) as well

as II (3), by a variant of the proof to be given below.
(5) That is, for all h e L1 (o, T; V),

r^SmW. h(t)))dt-> F{(g{t), h{t)}}dt.
<yo t/o
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remains bounded in m. Then g(t)e W(t) a. e., b(t\ g(t), g(t)) is a measu-
rable function of /,

Ref b(t', g(t)g(t))dt<^
^0

and a subsequence { ̂  ; of { g,n j can be extracted such that

b ( t ; g , ( t ) , v ) - > b ( t ' , g ( t ) , v )

in the sense of distributions over (o, T) for every ye YnW.
Before stating the last hypothesis, we define V to be the space of

continuous (conjugate-) linear forms on V; i. e., the (anti-) dual of V.
Since v-^a(t;u,v) is a continuous (conjugate-) linear form on V,
we may write :

a(t; u, v) = (A(/) u, v) for all ye V,

where A (/) u e V\ Then we define D(A (Q) as the set of all u in V such
that A(f )ueJL Alternatively, we could define D(A(t)) as the set
of those elements u in V such that the form is continuous on V when V is
provided with the topology of H. We provide D(A(f)) with the norm

| | " l !D(^ ) )= ! | u | • 2 + A(t)u\2}^
HYPOTHESIS IV.
(1) V n W is separable.
(2) D (A (o)) n W is dense in D (A (o)).

We also define W(// as the (anti-) dual of W(f). Since v-> b(t\ u, v)
is a continuous (conjugate-) linear form on W(/), we may write

b(t; u, u) = ((3(0 u, u) for all u e W(Q,

where ^(OueW^y. We define ^ as the set of all u in W(f) such
that (3(/)ue^.

1.2. An existence-uniqueness theorem.

THEOREM 1.1. — Let V, H, W, W(Q, a(t; u, u), b(t; u, u) be given,
satisfying the above hypotheses. Let f, Uo, Ui be given, satisfying

(1.1) f€U(o, T; H), f=^el/(o, T; H),

(1.2) UoCD(A(o)) C),
(1.3) UieVn^o.

(6) Hypothesis IV (2), is not necessary in case U y G D (A(o)) n W.
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Then there exists one and only one function u which satisfies

ueL^o.^V),
~ ~ - r oo / m T r\u'=-^eL"(o,r; V),

u"=^€L"(o,T;ff),
(1.4)

u'(OeW(Q a.e.,
6(f; u'(f), u'(t)) is a measurable function of t and

Ref b(i;u'({),u'({))dt<w;
^o

( (u"(t\ v) + a(t; u{t), v) + b(t; ^(0, u) == (f(t), u)
\ for all yeynW(0, for a. e. te (o, T);

(1.5)

(1.6) u(o) = Uo, u'(o) = Ui.

[Conditions (1.6) make sense because u^eL^o, T; Jf).]
In case Vn W is dense in V and in W, (1.5) may be replaced by the more

suggestive equation

(1.5)' ^ (0+A(Ou(0+p(Ou ' (0=f(0 a.e.,

where A^V-^V and (3(Q: W(0—W(0' are defined as above.

1.3. Proof of the uniqueness.

Note that Hypothesis I (2) implies the existence of a constant Ci such
that

(1.7) | a(t; u, u) | + a^; u, ;;) | + | a^; u, y) | ̂ c, |[ u ||. || u |[,

because of the uniform boundedness principle.
Now let Ui and u^ be two solutions of (1.4), (1.5), (1.6) and set

w (t) = u, (t) — u.2 (0. Then, for fixed t, for every u e V n W (Q,

a(t; w(t\ v) + (w"{t\ u) + b(t; u\ (0, u) —b(t; u, (Q, u) = o.

Since w(/)eV nW(0 a.e., we may take v = w ' ( t ) in this equation;
Hypothesis II then implies that

Re{a(t; w(t), w ' ( t ) ) + (w"(t), w ' ( t ) ) }^o a. e.

This may be written as

d \ w'(f) [2 + a(t; w(t), w(t)) } — a^t; w(0, w(t)) ̂  o a. e.dt'
BULL. SOC. MATH. — T. 93, FASC. 1.
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Integrating from o to t and using Hypothesis I, we obtain

But

(0 I 2 + [^(OP^c, f {[w(a)Y + [ w^) |9-} d<7.I ̂ (0 I2 + [w(0]2^ c, f j [w{a)^- + [ w(a
^0^0

W(t)= C W'^dcr
^o

implies that

F | W(cr) 2 dcr^c, r | M/((7) 2 dcr.
v 0 ^ Q

Therefore

I^W+t^OP^^ f {[^(^[^[w^)]2)^ a.e.
•^0

This implies that | w' (t) ] == o a. e., so that w ' ( t ) == o a. e. and w(f) = o.
This completes the proof of the uniqueness assertion of Theorem 1.1.

Several hypotheses, including III and IV in their entirety, were not
used in the above proof. However, we refrain from enumerating them
since a much stronger uniqueness theorem (under somewhat different
hypotheses) will be given later.

1.4. Proof of the existence.

The first step is to construct finite-dimensional approximations to the
differential equation in a well-known manner. We construct a basis
(i. e., a linearly independent set whose finite linear combinations are
dense) of V n W as follows. The initial data Uo and Ui are given satis-
fying (1.2) and (1.3); U i e Y n W . Define y i = U i . Define y^==u^
in case Uo e W; if Uo ̂  W, Hypothesis IV implies the existence of a sequence
{y.2 , 1/3, . . . j contained in D(A(o))nW, hence in YnW, which converges
to Uo in the topology of £)(A(o)). Throw away from the
sequence j z/i, y^, . . . { all vectors which depend linearly on the preceding
ones. Complete the remaining sequence of vectors to a basis \ Wj, w.^ . . . }
of YnW, utilizing Hypothesis IV (1). Then Ui is an element of the basis
(unless iZi==o), and Uo is a limit in D(A(o)) of basis elements { U o / ^ j .

We also define
(1.8) u,^ == P,n[f(o) — P (o) u, — A (o) Uo/.]

where P,n is the orthogonal projection in H onto the subspace generated
by Wi, . . . , w,n. Since

\f(o)\^c,f\\f(t)\+\f/(t)\)dt,
^o

|A(o)Uom|^C;>.[| Uo||D(^(o)),
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we have

(1.9) \U-2m\^C,K(f, U,, «,),

where

K(/;^)Jf (|/l(0|+ rWD^'+II^IIL^+jl^lp+IPo^)
l ^ o

Now denote by u//,(f) the solution of the non-linear differential system

(1.10) ^ (um(f)9 wj) + a(t'9 Mo? wj) + b^ um^9 w^ == (f^ w^
{ (J ==I, 2, ..., 777),

(1 -10 u//,(Qe range of P,n for all /(=[o, T],
(1 • I2) Mo) = ̂ ."o, ^(o) = P/,u,.

This solution exists in some interval o^t^^,n [because of Hypo-
thesis II (2)]; the a priori estimates to be given below will show that the
interval of existence is in fact o ̂  / ̂  T.

The standard a priori (<( energy ") estimates are now obtained by
replacing Wj in equation (1.10) by u'^(t) [i. e., multiplying (1.10) by the
appropriate scalar function and summing on j']. We obtain

^ j t ! ! "- (0 I2 + a^ "-(0, "/.(O) { — ̂ a' (/; u/,(0, i7/,(0)
+ Reb(t', u;,(0, u',^t)) = Re(/-(0, u;,(Q).

Integrating this equation from o to t and using (1.7) gives :

r 1
\u\n(t) ^["/.(O]2^ 2Re \ 6(0-; i4(<7), u^^))d^

^0

O-^) < ^c, u^(o) -^["//.(o)]2

^.<
+/ [lA^I.I^^I+ll^^ll2]^}.

^o )

But, just as in the uniqueness proof, we have

/ j u,n (cr) |2 da- ̂  c, \ u,n (o) [2 + c, f u^ (o-) 1 - 2 do-.
^0 JQ

Therefore, the right-hand side of (1. i3) is bounded by

c, K(f, Uo, "i) + c, f {114(^) |^ + [i^(o-)p } d^;
'•^o



52 J.-L. LIONS AND W. A. STRAUSS.

so that

(l.i4) [^(OP+IMO]2

+ 2Re ^ ^(cr; i4(cr), i4(cr))do-^CsX(/; Uo, Ui).
^o

Each term on the left-hand side of (l .i4) must therefore be bounded.
The identity

'm(f)=U,n(o)+ ^ ^(O-)d.
^o

Um(t) = U,n(o Un, (0') ttO-

then implies that

(l.i5) Um(t)\^c^K(f, Uo, "i).

Further a priori estimates are obtained as follows. We differentiate
(l.io) with respect to t, and then replace Wj by u"^(t). This gives
(suppressing the f)

(i4, i4) + a(u^, u;̂ ) + a^iim, u"^)
+ b1^ i4) + b^u^ u"^ u'^ = (f, i4).

Taking real parts and integrating from o to t gives

\u^(f)^+a(t;u^(t),u^(t))

+ 2 Re f ̂ ; U^(cr), l4(cr), U;,(cr))dcr
^o

(1 .16) =| i4(o) |2 + a(f; i4(o), u^(o))

+f<Re{2(^,u;,)-2y(u„u:,)
^o

— a' (i4, i2^) — 2 cf(i^, ii^)} dcr.

The identity

a'(t, u^(t), u;,(0) = ̂ (t; u,.(Q, ̂ (0)

—^(f; u',,(0, u^—a^t; u^(0, u^(0)

then implies, by virtue of the hypotheses on a and b, that the right-hand
side of (l.i 6) is bounded by

c,oK(f, Uo, "i) + / Re^(cr; u^, 14, u"^)dv
^0

+ do I Re{ 6(^ ̂ , u;,) + || i4 ||2 + 114 2 + || u,n | | 2 } d^
^o

+C>o||u^(0||.||^(011.



SOME NON-LINEAR EVOLUTION EQUATIONS. 53

The last term is estimated by ^ || u'^(t) |[2 + Cu [| u,n(f) \\\ where ^ may be
chosen as small as we please. By using (1.14) and (1.15), (1.16) becomes :

K^OP+l^OP+Re /\(^; "7/^); t4(^ "^))^
^o

^c,, K(f, uo, uQ + c,, f {[u',^)]2 + 114(<7) I '-} ̂ .
^O

But Re^(cr; u^(o-); u^(cr), u^(o-))^o by Hypothesis 11(1) because
it is a limit of non-negative terms. It follows that

(I.I?) \U''rn(f)\2+[U',n(f)]^C^K(f, UQ, Ui).

Now we pass to the limit. The estimates (l.i4), (l.i5) and (1.17)
imply that a subsequence { U y } can be extracted from {u,n} such that:

u^-> u in the weak-star topology of L^ (o, T; V);
u'v—^ u' in the weak-star topology of L°°(o, T; Y);
u'^-> u" in the weak-star topology of L°°(o, T; H).

Hypothesis III therefore implies that u'(f)e.W(f) a. e. and

Ref b^u'^u'd^dK^
^0

and b(t; Uv(/), u)—^b(t; u' (t), v) as v->oo in the sense of distributions
over (o, T), for all ye YnW.

It remains to show (1.5), since (1.6) is immediate. In equation (1. lo),
we put m = v and let v —>- oo, thereby obtaining :

{u"(t\ w,) + a(t; u(t), w^ + b(t; u'{t), w,) = (f(f), w,) a. e.

The latter equation holds for all j, therefore for any finite linear combi-
nation of the w/s. Now u->b(t; u'(f), u) is a continuous functional
on W(Q by Hypothesis II (for fixed f); since YnWis dense in Vr\W(t),
a final passage to the limit yields (1.5). This completes the proof
of the theorem.

1.5. The prime example.

Let ^2 be any open set in E^ and let H = L2^). By ^(12) we mean
{u\DciueL2(^) for |a |^/c) . . and by J^(^) we mean the closure
in TF(^) of the smooth functions with compact support. We let V=Hio(Q)
and define

na(t•'u'v^a^v)-L^^dx ("'^v)-
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Let ho and hi be two given functions on [o, T]x^2 which are non-
negative, bounded and such that ohofol = h'^ and oh^t == h\ are conti-
nuous, h'o is bounded and h\ is bounded by a constant multiple of /ii.
For any /e[o, T], let W(t) be the space of all functions u defined on ^2,
measurable with respect to the measure /Zi (x, t) dx, such that the norm
(with p fixed > i)

= ( f \ u(x) \^h,(x, 0 dx\^ + ( f I u(x) [2 d^^7«)== ( j \u{X)\^-n,Wo 7 wo. ^

is finite; furnish W(t) with the above norm. Let W == LP^^^nL2^).
Let cp(^) === 12 [P~1 z (z === complex number) and define

b(t; u, y) = ^ Tii (.r, ^ cp(u(rc)) i7(^) dx + ( ho(x, t) u(x) ~u(x) dx
*Al ^Q

for u, ^eW(0.
Let us verify the hypotheses of paragraph 1.1. Hypothesis I is satisfied

if we define

r i. F V I ()u 2^lu}-== f >, — &."'•=/^ ^a;/
^^i

For Hypothesis II, we require the

LEMMA 1.1.— The function cp(z) == [ z |P-1 z satisfies :

(a) Re[cp(z)2]^Cio|^]P4-1;
(6) [9 (z) |^Ci r |2 P;

(c) Re^O^^lzIP-1^]2;
(rf) ^(Ol^c^lzIP-1 ]^,

where the Ci are positive constants and where <y's(0 denotes the derivative
of 9 at the point z in the direction ^.

Parts (a) and (b) are obvious (in fact Cio= Cn== i); (c) and (d) follow
easily from the identity

cp^) = [ z [P-^ + (p—i) | z |P-3 Re(^) ̂

in fact, we may take €12 == i, and €13 === p.
On the other hand, by the mean-value theorem,

pC^-^O^P^—O
where ^ lies on the line segment joining z and ^; hence (c) and (d) imply

(cy Re[9(^)-cpa)][z^]^^]^P-l|^-^|2^o,
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and
W I cp(^)—?(0 I ̂ c^[ [ 2 |P-i + I ̂ ] [ z — S I.

The only properties we shall use of the function cp are that it is once
continuously differentiable and that it satisfies (a), (b), (c), (d).

Hypothesis II (1) follows from (a) and (c)'. Verify now that

b^(t; u, u, w) == \ { hi(x, t) ̂ 'uw(p(x)) w(x) + ho(x, t)v(x) w(x) ] dx
^Q

and
„., . r ( / ^ i \ / x - , /^o\ - ) ,b'(t',u,v)= t \ [ . - ) ^ ( u ) u + [ — ) u u \ d x .

^Q( \ (71 / \ oi / )
reforeTherefore

2 ] ^^f; u, v) \ ̂  ci4 f { [ <p(u(^)) i /ii(^, 0 + I u(x) } | v(x) | d.r.
^Q

Lemma 1.1 (&), together with Schwarz's inequality, then yields

2 | b'(t, u,v)\^ f u(x) IP-1 ] v(x) ̂ h^x, t) dx
^Q

+ ci, f | u(rK) |P ̂ Ai^, 0 dx + Ci, f (| u(x) I2 + [ v(x) |2) d.r,
^Q ^Q

where ̂  may be chosen as small as we wish (cio depending on ^). An appli-
cation of Lemma 1.1 therefore yields Hypothesis II (3).

Hypothesis II (4) is satisfied because of the inequality
i i

| b (t; g(t), u) | ̂  cJ [ | g \^h, dx\^1 ( [ \v \^h, dx\^'
WQ ) VQ )

1 \a \2 / c \2
+Cu |^|2^) ( / l y l 2^) ,

\ } \^Q )
(g(f) € W(0 a. e.) and Lemma 1.1 (a).

In order to verify the crucial Hypothesis III, we take a sequence of
function { g,n} satisfying :

gm->9 weakly-star in L°°(o, T; H^(^)),
9m-> g weakly-star in L00 (o, T; L2^)),

T

sup f [ h, (x, 0 | g.n (x, 0 y+i dx dt < oo.
m JQ JQ

Let L^((o, T) x ^; hi) denote the space of functions whose q^ powers
are integrable with weight function hi(x, t) (i^q <oo). Then { g , n } is
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bounded in LP4-1 ((o, T) x 12; h,), and [by Lemma 1.1(6)] {cp (^ ) i
is bounded in ^P-^/P^O, T) x ^2; Ai). Therefore we may extract
a subsequence { g ^ } such that

g^--> g weakly in LP-^ ((o, T) x ̂ ; Tii),
p+i

? (^v) -^ ̂  weakly in iT^o, T) x ̂ ; Tii),

and moreover such that

g^—^g strongly in L^^K)

for a given compact subset K of (o, T) x 12. The latter conclusion is
possible because H^(^) is compact in L2^). Now, extracting a further
subsequence if necessary, g^-> g a. e., in J-C, hence ?(^)-^(^) a. e.
in .K. This is enough to imply that ^ = cp (^). Hence

p+i
?(^)->?(^) weakly in L P ((o, T) x ^; hi).

This proves Hypothesis III.
As for Hypothesis IV, it is clear that 7^ (I^) n LF^ (t2) is separable,

being homeomorphic to a subspace of L2^) x LP4-1^). Finally, if
we assume the boundary T of ^ to be sufficiently smooth, we have
D (A (o)) = H2 (12) n H1, (^2), so that D (A (o)) n LP+1 (^) is dense in D (A (o)).

Theorem 1.1 may therefore be applied to yield the following result.
Given :

Uo e H2 (12) n H1, (^2) if r is sufficiently regular;
Uo eD(A (o)) n LP+1 (^2) otherwise [cf. footnote (2)];

Ui e J ;̂ (^2) anrf f hi (.r, o)21 Ui (.r) I2? & < oo ;
^Q

/.reL^o.T;!^)).

TAen ^erc ems^s one and only one function u which satisfies

u €L^O(o, T;7^(^2)),
u' eL^o, T; ̂ (^nLP^ao, T) x ^2; h,\
u / /eLOO(o,T;L2(^));

^ u / /—Au+AoU /+^l |" / |P- lu /=/,
( U\t=o=Uo, U'\t=Q=U^

1.6. A second example.

We take H == L2^), ^2 open in £71; V = any closed subspace of H^^)
which contains the smooth functions with compact support; W == the
closure in W^'P^^) of VnWP-'P-^), where ^ is a given integer less
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than m', W(f) =W for all t; m is any given positive integer. In general,
we define

Wk(f(^)={u\D3iuGL(f(^), | a | ^ / c j
and

H^^^W^2^)

with the usual norms. We take

a(t', u,u)= V fa^(x, t)D^u(x)DHu(x))dx,
. .'~. ^Q|al,|p|^

where a^(x, t) == a^(x, f), each Gap has two continuous derivatives
in t, both of which are bounded in (o, T) x ̂  together with flap itself.
Assume the (< coercivity " condition :

a(t; u, v)^Cn[u]2, ueV; Cn>o;
where

[uY= V f \Dy'u(x)\2dx.]2= > / \D^u(x)\2dx.
JQ.. ~ Jo.

Finally, we take (^ ̂  m — i) :

b(t; u, u) == y fcp^u^))^^)^,
^^ ^QI a I ̂  P-

where cp satisfies the hypotheses of Lemma 1.1.
Hypotheses I and II are easily verified. Let us consider Hypothesis III.

We are given a sequence of functions { g,n } satisfying :

9m->g weakly in L00 (o, T; V),
g ' m - ^ g ' weakly in L^o, T; L2^)),

{ g,n} is bounded in LP^O, T; W).

Hence there exists a subsequence { gy j such that

D^ ga -> D^ g weakly in L P^ i ((o, T) x 12),
p + i

cp (DS ̂ )̂ -> ^a weakly in L ^ ((o, T) x ^) for | a [ ̂  ̂ .,
D^gy-^D^g strongly in L^JC), K any compact set in (o, T) x ^2.

Hence ^a== ^(D^.g) and Hypothesis III is satisfied as in the preceding
example. Now V n W is separable, and Hypothesis IV (2) will be
discussed below.
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Theorem 1.1 therefore yields the following result. Given :

feL^o, T; L2^)), feL^o, T; L2^));
Uo€jD(A(o))n W^ P^^) [c/'. footnote (2)],

UieVn^o.

There erns^s a unique function u satisfying :

u eL^o, T; 7), u'€=I/°(o, T; V),
^eL^o.r;!^)),
^eELP-^o, T; W^P-"^));

'+A(t)u+ ^ (—I)[alDa([Da^]P- lDau/)=/•(0,
I a | ̂ p.

U [^o == U ,̂ "A |?==o == "i;

'and satisfying the (in general, non-linear) boundary conditions which,
in a purely formal way, follow from the fact that

(A(t)u(t),u)+ ^ (—i^s^d-D^^OIP-1^^^),^
[ a | ̂  [i

= a(t; u(,t), u) + ^ (I^U^OIP-'^U^O.-D^),

[ a | ̂  [i

=a(^;u(0,y)+ ^ (\D-u'(t)\^D-u
I a |^p.

/or eyeri/ y e V.
We mention that

ID^ilP-^UiC^^) for all | a | ^ f J L

is a sufficient condition that Uie^o.
If we assume that [Hypothesis IV (2)]

<l.i8) ^(A^nW^'P^^) is dense in D(A(o)),

then we may take Uo€D(A(o)). Now,

A(t)v(x)= ^ (—i^'D^aap^O^^^)]-
|a 1 , | P | ^ m

If the coefficients a^ and the boundary r of ^ are sufficiently smooth,
if ^ is bounded, and if V is defined by sufficiently ( < smooth " boundary
conditions, then D^A^cH2"1^) and the smooth functions in ^ are
dense in D(A(o)); hence (l.i8) is satisfied. For further discussion
of boundary conditions in certain cases, see [9].
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1.7. A non-linear boundary condition.

As a final example, we take H === L2^), V = H1^), and
W^W^—iwIwe^^nLP^ 1 ^) , wIreLP^r);,

pi and pa > i. We assume the boundary r of t2 to be sufficiently smooth
to define the ( < trace " w \r of an element w of ' H 1 (^2); T is furnished with
the usual surface measure do-.

We set (as in the prime example)

Ou ()~oa(t, u, v) =^ f^ ^dx, [.?= a(t; u, u);
_ Q ()Xi ()Xi 9

we define

b (t; u, u) = ki f | u |Fi-1 uu dx + k.z f [ u [P^-1 uy do",
JQ. ^Y

ki and ^ positive.
We note that

r __ ^ __
6^(u; w, v) = k^ (cpi)^) w(^) v(x) dx+h ^Yaw w(x) u(x) dcr'

^Q. -'r
where 91(2) = [ z P^z and cpsQ') == | ̂  IF2""^ and Op/)^) is the derivative
of cpy at the point z in the direction S(j = r ? 2)- Hypothesis 11(1)
follows from Lemma 1.1.. To verify Hypothesis 11(4), let
^eL^o, T;^(.Q)) and

Ret b ( t ; g ( t ) , g ( t ) ) d t < ^ .
^0

Then ^eLPi-^o, T) x ^2) and g [reLF^^o, T) x F).
In order to verify Hypothesis III, we consider a sequence of func-

tions { g , n } which satisfies :
g,n->^g weakly-star in U'(o, T; H1^)),
g^ g r weakly-star in LT (o, T; L2^)),
^ remains in a bounded set of LPi4-1^, T) x ^S),
^ |r remains in a bounded set of .LF^^O, T) x r).

We may then extract a subsequence { ̂  \ such that :
g^g strongly in L^o, T; JFP(K)),
^-^ ^ weakly in LPi^ ((o, T) x i^),

pi+i
cpi(^)->+i weakly in L ^ ((o, T) x ^2),

^v r-> g [r weakly in LP^1 ((o, T) X ^),
pa+l

?2 (^v) |r-> ^2 weakly in L~^~ ((o, T) x 1 )̂,
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where K is any compact subset of [o, T] x ^ with sufficiently smooth
boundary and s is a fixed number,

- < s < i.
2

(Here we have used the fact that H^K) is compact in H^K) if K is
compact). As in paragraph 1.5, it follows that ^i = cpi (g).

Now let M be a smooth compact piece of r, r assumed to be smooth.
There is then a compact set K c ̂  whose smooth boundary ()K contains M.
But the trace operator f->f\,)K is continuous from H^K} into
L^()K) (1/2 < s < i). Therefore,

9^\<)K->g \OK strongly in L2 (o, T; L2 (^JT)).

It follows that ^==^_(g) a. e. on M, hence on r. So Hypothesis III
is satisfied.

Finally note thatD(A(o))c^2(^)andD(A(o))cWisdenseinD(A(o))
provided again that r is sufficiently smooth. Also d3o 3 H1, (12) n L^i (12).
We therefore obtain the following result.

There exists a unique function u which satisfies :

u€L°°(o, T;^1^)),
^eL^o, T; ̂ (^nLP^o, T) x ^),

^[reLP^^o, T)xr),
u^eL^o.TsL2^));
^ / /— Au +k,\ur |Pi-1 u7 == /•;( l . iQ)

C^Uo"(o)==uoe^2^), =o on r;^n
"'(o) == uie^^nL2?!^);

/;re^(o, T;!̂ )),

wi7/i ^e boundary condition

^U|P.-1^^

5n
(1.20) -^ == o on (o, T) x r.+^2

<)t

This boundary condition can be interpreted in the following sense.
We assume that /eZ^((o, T) x ^2) for some p > i. It follows from the
equation (1.19) that ^u belongs to L^((o, T) x i2), where q > i, if ^ is

bounded. In that case ^ can be defined as an element of

L^(o, T; W'^^^r)), as in III [11]; hence (1.20) makes sense.
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1.8. A regularity theorem.

In this section, we shall prove some regularity for problem (1.21) below.

THEOREM 1.2. — Let ^ be an open set in E"- with smooth boundary.
Let f, Uo, Ui be given, satisfying

/•eL^o.T;!^)),

either feL^o, T; H^^)) or else feL^o, T; L2^)),

Uoe^^n^K^
U^HIW.

Then the solution u of the problem (7) :

U€L°°(O,T;^(^)),
^eL^o, T; L^^nLP^o, T) x ^),

u"—^u+k\u'^-lu'=f,
u(o) --= Uo, u'(o) = Ui

(1.21)

(where k > o, p > i) satisfies the conditions

(1.22) U €EL°°(o, r;lP(^)),
(1.23) ^eL^o.T;^^)),

(1.24) u' € L00 (o, T; L2 (^2)) + L~T~ ((o, r) + ̂ ).

Moreover, if we assume that Ui e LP-^1 (^2) and fe L2 ((o, T) x ^2) (8), ^en
^Ae solution satisfies

( "/ eL^Pfto, T) x ^nL^o, T; LP^(^)),
< } ( u"^U{(o, T)xI2).

JfUieL2?^) and feL^o, r; L2^)), ̂ en we may conclude that

(1.26) ^eL^o, T; L2?^)) and u^eL^o, r; L2^)).

PROOF. — We shall show, without using Part II, that there exists
a unique solution of problem (1.2i) with the stated properties. This
solution must then be the sarnie as the one given in Part II, section 2.6.

Let A denote the self-adjoint operator on -L2^) with domain
D(A) ̂ H^^nH^^) which is given by Av=—^v for yeD(A).

(7) The existence and uniqueness of the solution to this problem is proved in Part II,
section 2.6. (Existence could also be derived from the result in section 1.5.)

(8) This last hypothesis is redundant in case ^e-L^o, r; .L2^)).
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Let { E(S) I S == Bore} set on the line j be its spectral measure Let P
be the projection E((—m,m)), m = i, 2, . . . . We then define the
approximate solution u,n(t) as the solution of the equation

(^P) ";.(0 +P/.AP^(0+p,,pp^,(0 =P,,/-(0

with the initial conditions

Urn (o) = ?„, Uo, U;/, (o) = P//, Ui,

where ^v=k\v\^v. The operator P/^P,, is a bounded operator
on the range of P//, with bounded Frechet-derivative and P//,AP,, is
a bounded linear operator. By the method of successive approximations,
it is easy to see that this problem has a unique solution such that u,n (t) e P^
and 14 (/) <s ?„„ for all / in some interval o ̂  / ̂  s, s > o (cf. SEGAL [18]).
It will follow from the estimates below that the solution in fact exists
globally, i. e., in o ̂  t.^ T.

In case i2 is bounded, ?„ is a finite-dimensional projection, and u^(t)
is an approximate solution as defined in section 1.3 where the < ( basis "
! Wi, w.,, . . . j consists of the eigenfunctions of A. In case ^ = E'1,
the approximate equation (1.27) is a variant of that used by SEGAL [19]!

Since u^(t), u^(t) lie in the range of ?„„ we may rewrite (1.27) as :

(1.28) ,4 (/) + A u,n (t) + ?„ p ,4 (/) = p^ f(t).

Taking inner products of this equation with u'^(t), we conclude, just
as in section 1.3, that

u,n \ is bounded in Z/° (o, T; H^(^)),
{i4 ! is bounded in ^(o, T; L2(^))nLF+l((o, T) x ^).

( 7, )
( Ll/" ^

Now, in case /•eL^o, T;^;(^)), we take inner products of (1 28)
with A u',, (0 = — Au;, (0. Setting

^,.)=V^-^
/ —— ()Xi ()Xi 9

i = 1

we obtain

(1 • 2Q) a(i4, i4) + (Au,,, Ai4) + a(P^, ̂ ) = a(f, 17;,),

because u;^ (Q e J^ (^) and (3 (u^) is also zero on the boundary of t2. But

Rea(^,,,4)=i;Re^^(^,)^,^,^ R e / —(@u',
<= i
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Therefore, taking real parts of (1.29) and integrating from o to t, we obtain

a(u;,,(0,u',,.(0)+|Au,,,(Or2

^ 2 Re f a(f(s), u(s)) ds + a(P,,,u,, P,,.u.) + ] AP,,.Uo |2.
^ 9

Using the fact that the projections P,n are uniformly bounded in JZ; (12),
as well as in L2 (^2), we conclude that

^ ^ ( { "'/. { is bounded in L30 (o, T; ̂  (12)),
^ f Au/,z j is bounded in L" (o, T; L2^)).

We must pass to the limit. We define

D(AN)={u\u^D(A),A^u€D(A) for j == o, . . . , N — i j ;

it is a Hilbert space when provided with the graph norm. By Sobolev's
inequality, there exists a positive integer N such that

D^CH^^CLP^) (p = p + i).

The operators P,n, which are uniformly bounded from Z^A^) to itself,
must therefore also be uniformly bounded from Z^A^) to L^(^). Hence,
by duality, their restrictions to L2 (^2) n L P ' ( ^ ) must be uniformly bounded
from LP'{^) to D^y [== dual or anti-dual of D(A^)]. It follows
from this remark that i4 = Prnf— Au^—P^(3u^ remains in a bounded
set of LP'(O, T; D(A^y) + ^'(o, T; L2^)). Hence

(1.3i) { i4 } remains bounded in I/^o, T; ^(A^)').

It follows from (l.io), (1.3i) and a compactness theorem of AUBIN [1]
that, for any given compact subset of K of i2, there exists a subsequence
of { u ' ^ } which converges strongly in L^o, T; L^(K)), for instance.
Therefore, a further subsequence converges almost everywhere
in (o, T)xK.

Now we may take weakly convergent subsequences. There exists
a subsequence { U y } such that :

Uv-^ u in the weak-star topology of L" (o, T; ?(12)),
u'^-> u' in the weak-star topology of L°° (o, T; H^)),
u^-> u' in the weak topology of L^ ((o, T) x ^2),

p + i
Uv |P-1 u^ ̂  i11 the weak topology of L P ((o, T) x i2).
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The almost-everywhere convergence implies just as in section 1.5
that ^ == [ u' JP^U' a. e. Therefore, as usual, u(t) is a solution of
problem (1.2i) and satisfies the additional conditions (1.22) and (1.23).
Therefore,

uff==f+^u—k\uf\P-lurGLW(o, T^^+L^o, T) x ^).

By the same method as in section 1.3, it is easy to prove the uniqueness
of the solution under these conditions.

The second case is to prove the same result under the assumption

reL^T;!^)).

In this case, we take the derivative with respect to t of equation (1.28)
and then take inner products with

MO- ̂  (0 + P^ iim(t) - Pm m—A Um(t).

We obtain :

04, Um)+ (AUm, U"m)+ (Allm, Pm^U'm) = (Pmf, Urn).

Taking real parts, integrating from o to t, and noting that Pm commutes
with A, we find that

\Um(t)\2+a(u'm(t), u'm(t)) + 2 Re f a(u'm, ^u'm)ds
^'0

= 2 Re f (f, Vm) ds + | Vm(o) |2 + a(PmU,, P^Ui).
^o

But once again Re a(u1,,,, (3 u'^) ̂  o, and Vn, (o) = Pm f(o) — AP^ Uo
is bounded in L2 (i2); so we may infer that:

j 14 } is bounded in L00 (o, T; H^ (i2));
{ V m \ hence { Au^ } also, is bounded in L00 (o, T; L2^)).

This is exactly the same result as in the previous case; hence we may
conclude the argument just as before.

Now we shall prove (1.25) under the additional assumption that
UieL^^^) and feL^o, T; L2^)). Since the union of the ranges
of the projections Pm is a dense subset ofZ^A^) andZ^A^) is itself
a dense subset of L^^), we may find a sequence ( u^} such that
Uik converges to Ui strongly in LP^ (i2) n H^ (^2) and each u^ is in the
range of the projection Pm for m sufficiently large. We may assume for
the sake of convenience that the sequence is so chosen that u^m is in
the range of Pm'
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Now redefine the approximate solution Um(f) as the solution
of equation (1.28) with the initial conditions u^(o)==P^Uo and
"m(o) = PmUim= Uiw. The previous a priori estimates are then
obtained without change. Next, we take inner products of equation (1.28)
with u",nk(f) to obtain

1 1 4 1 2 + a(u^ <4) + (P t4, ^4) = (/, ^4).

But a(u,n, i4) = ^a(Urn, t4)—a04, i4). Therefore,

- t

f 114 I2 ds+ I Rea(u/.(Q, MO)— f a(u'^ u'^ ds + I |] u,n(t) \\^^
^0 ^ Q P

== ReJ" (/; u;,) d5 + ^ Rea(uo, u^) + ^ [ [ u^ ||̂ .̂ .

But { u i ^ { is bounded in LP^ (^2) n H^ (^2), and u//, and i4 are both
bounded in L°°(o, T; H^^l)) by the previous estimates. We may there-
fore infer that :

{i4 } is bounded in I/^o, T) x t2),
{ u^ { is bounded in L00 (o, T; LP^^)).

Taking a weakly convergent subsequence, we conclude that

u" e L2 ((o, T) x ^) and u' e L°° (o, T; LP+1 (^2)).

Therefore,
A-II^ P- l^=/•+Au—u / /eL2((o, T)x^),

so that u' e L2? ((o, T) x ^2).
Finally, in case UieL2?^) and feL^o.T;!.2^)), the existence

results of section 1.5, together with uniqueness, show that
u" e L00 (o, T; L2 (^2)). Therefore,

Alu'lP-^^jr+Au—^eL^o, T;!.2^)),

so that u'eL00^, T; L2?^)).

1.9. Another type of equation (I).

In this section we shall prove :

THEOREM 1.3. — Let f be given in D (o, T; L2^)),

UoeJf^nL2?^) and UieL2^),
BULL. SOC. MATH. — T. 93, FASC. 1. g
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all of which are supposed to be real-valued. We assume that ^ is an open
set in E11 with smooth boundary. Let p > i, k > o. Then there exists
a unique function which satisfies :

(1.32)

u eL-(o, T; ̂ (^nL^o, T; L2?^)),
u'€L°°(o, T;L2^)),

u"—Au -\-k\ u^u'^f,
u(o) =Uo, u'(o) = Ui.

REMARK 1. — If p^2 , we have L'-P^nL^^cL2?-2^), so that
u€L-(o, T; L2?-2^)). Hence

| ulP-^eL^o, T; L2^)) and [ u [P-^eL^o, T; L1^)).

If, on the other hand, p ̂  2, similar reasoning shows that
| u |P-1 u' e L- (o, T; L2/? (^)). Therefore, u" = /• + Au — ^ | u \ P-1 ̂  is an
element of L^o, T; L^(t2) + H-1^)), so that i/(o) makes sense.

REMARK 2. — If the conditions on Uo and Ui are weakened to
2/lp

uo e I/̂ 2 n L2 (^2), u, € J^-1^),

then we can prove the existence and uniqueness of an extremely weak
solution u of the above initial boundary-value problem with

ueL^o, T; L^^nLP^o, T) x ^)

and f u(s)ds an element of L^(o, T; ̂ (^)). We omit the proof
^o

which is a variant of the one given below for Theorem 1.3 and uses
Theorem 2.1.

REMARK 3. — Formally, the term k \ u [ P-1 u' can be obtained by taking
the ^-derivative of k^-1 \ w' IP^M/ and then replacing w' by u in the
result. The study of (1.32) can therefore be formally reduced to the
study of the equation

w"— Aw + /cp-11 M/|P-1 w' = F,

which has already been solved. This approach was suggested to us
by J. LERAY.

PROOF. — Firstly, we note that the relation

(1.33) ^(^1^)= ^p-'^
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[taken in the sense of distributions in (o, T) x ^] is valid for all ^ e T,
where W is defined as follows : If p ̂  2, W is the class of all real-valued
functions ^ satisfying

^eL^o, T; L2?-2^)), •VeL^o, T; L2^));

if i < p < 2, T is defined as the class of all ^ satisfying

^eL^o, T; L2^)), ^€L°°(o, T; L2^)).

To prove (1.33), we write ^ as the limit of a sequence { ^ / } of smooth
functions in W, this limit being taken in the obvious topology for W.
Then, ^/ being smooth, we have

^GI^I^-)- ^-l^-

It suffices to show the convergence as j -^ oo of each side of the latter
equation in the sense of distributions. But, if p ̂  2,

^IP-^^I^IP-^ in L-(o,T;L' ^)),
I +/ ^-^ I ^ l^ in L^o, T; L2^)),

and
I +71^^/-^ I ^ l^^' in L^o, T; L1^)).

Similar statements hold if i < p < 2. This proves (1.33).
Secondly, we define Wo as the unique solution in H^ (Q) of the^equation

(1.34) (I——^)w,==——k\U,\^U,——Ll„

The right-hand side is an element if L2^); since the boundary of ^ is
smooth (" uniformly smooth " at infinity, in case i2 is unbounded),
we know that

w^H^^r^H2^).
Now we refer to Theorem 1.2 to obtain a solution w of the^equation

(1.35) wff—^w+k\wf\P-iwr^—w,+ftf(^d^
r ^0

subject to the conditions

/I 3g) ( w(o)=.roo, w'(o)=Uo;
( we-L-(o,T;^(a));

( w eL-(o,T;Hi(Si)),
(1.37) j w' eL-(o, T; ^(I2))nL"(o, T; L'-P(Si)),

w"eL°°(o, T; L'(a)).
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Therefore, we may take the ^-derivative of equation (1.35) and make
use of (1.33) to obtain

w"'—^w'^-k\w'^-lw" ==/•.

Furthermore, w" (o) = Ui by (1.35) and (1.34). Hence u = w' is the
required solution.

Conversely, let u be any function satisfying the conditions of the
theorem. We define w by

w(f) ==Wo+ \ u(cr)do-
^0

and we integrate both sides of equation (1.32) in t. As we saw in
Remark 1, u" is an element of L^o, T; H-1^) + L1^)) if p ^ 2 ;

C 1
so that, for each t in (o, T), ^ u"'(a) do- makes sense as an element

^0

ofJJ-^^+L^^andequalsu^O—u^o)^^'^)—"!. If Kp<2, we
simply replace L1^) by L2/?^) in the preceding argument. Similarly,

f A u(o-) do- makes sense in H~1 (^2) and equals A f u(a')d<7==^w(t)—Awo.
^o ^ o
Finally (c/'. Remark 1), ueW; so that (1.33) implies

f | u |P-1 u' dcr = I \ w^f) |P-1 w'(Q — I Uo |P-1 "o.
^o P r

Therefore we finally obtain

k , .,. .. , , .„. k .wff—^w+ k\w^^-lwr—Ul+^WQ—k\u^^-lu^== C f(v)d(7.
r P t^o

t

f(v)da.
0

Making use of (1.34), we conclude that w satisfies equation (1.35).
Therefore, referring to Theorem 1.1, w is the unique solution to the
problem (1.35), (1.36), (1.37). This shows that u is unique.

1.10. Another type of equation (II).

THEOREM 1.4 A. — Let f be given in L^o, T; L2^)) such that
/''eL^o, T; L2^)). Let Uo, Ui be given, satisfying :

Uo^K^nL2^), AuoeL2^),

u,effK^)n^W
where

• 2.
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We assume that ^1 is an open set in E'1 and that either the boundary of ^2
is smooth or else UQ e LP^ (^2). Then there exists a function u which satisfies :

u eL^o, T; ̂ (^nL^o, T; L^1^)),
u' eL^o, T; ̂ (^nLP^o, T; LP )̂),
^eL^o.r;!^));

—Au+^+PW+TOO-^

w/iere ^(u') == ] u1 [P-1^ and v(u) == [ u l^-1 u;

u(o) == Uo, u'(o) = Ur

PROOF. — We choose a <( basis " Wi, w^ ... of JJi(^)nLP+l(^2) as
follows (cf. section 1.4). We let Wi === Ui (unless Ui=o); in case
UoeLP+l(I2), we let w^ == Uo (unless Uo depends linearly on Ui) and define
the remainder of the basis elements arbitrarily. In case Uo^-LP^1^),
we choose iv.^, w^ ... such that

wyeJ^^nLP^^nL2^),
A^-eL2^) (j^2)

and such that there exist finite linear combinations Uom fit the w/s
such that

Uo..—"o in ^(^nL2^),
Auo^->Auo in L2^).

The latter choice is possible if, for instance, we assume the boundary r
of ^l to be smooth enough that the space of twice continuously diffe-
rentiable functions in i2, with compact support in ^ and zero on r,
is dense in D(—A) 01^(12). In case UoeLP-1-1^) we define Uom == "o
for all m.

As in section 1.4, we denote by P,n the orthogonal projection in L2^)
onto the subspace generated by Wi, ..., Win. We define

U^n == Pm[f(o) + AUom—— ? ("l) —— T (Uo»0].

We denote by u.rn (0 the solution of

(1.38) (i4(0,^)+a(MO»^)
+ (P(u;,(Q), w,)+ (Y(U/,(O), Wk)=(f(t\ w,) (/c=i, .. .,m),

where
it

, . v-i r Ou ()u ,a(u, u) --== ^ . ( -3— -5— &,
v / ^J^OXi OXi
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subject to the initial conditions

Urn (o) = Uom, t4 (o) = Ui.

From (1.38) we easily deduce

\ ̂ (1 ^(t)\-+ a(u^(t), M0))+ ——— d f| u,̂ , 01^ dx
T. -t- i ai j^

+ Re(P04(Q), ,4(0) = Re(/-(0, ^4(0);
whence :

u,n remains in a bounded set of
(1 3^ , Lao (^ ̂  ^2 W) n -L00 (o, T; L- (^)),

u^ remains in a bounded set of
L°°(o, T; L^^nLP^o, T) x t2).

Now denote ^(z)==\z [P-^ and ^(z)==\z ̂ z (z complex number).
Denote by ^(z; ̂ ) the derivative of ^>(z) in the direction ;i and by
^//^; ?2, Si) the derivative of ^' (z; Si) as a function of z in the direc-
tion ^2; similarly for cp(z). We now take the ^-derivative of equa-
tion (1.38), obtaining

«(0, w,)+a(u^(t), w,)+ (cp'(u;.(0; ̂ (0), w,)
+ (^'("/n(0; ^(0), Wk) = (r(0, ̂ ).

Therefore,

(1 . 4o) | u;, (0 |2 + a (i4 (0, i4 (0) + 2 Re f (̂  (u'̂  (^); u^ (a)), u;, ((T)) ̂
^0

+ 2 Re f (V (î  (a); u',,. (a)), u;,. (a)) dff
^O

= 2 Re f (f(^), ^(^)) ̂  + | t4(o) [9- + a(u,, u,).
^0

But we deduce from (1.38) that i4(o) = u,^ remains in a bounded set
of L2^). Furthermore,

2 Re f (^'(u^(o-); i4(̂ ), u,^))^
^0

= Re^^u,,.̂ ); "'..(0), u;,,(0)—Re(+'(u.,»; u,), Ui)

—Ref (V(u,,,(a), U',,.(T), u',,,(ff)), u;,,(cr))dT.
^ O

But explicit calculation shows that

o^Re[^(2;^]^T|z|^|S[2
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and

(1.4l) |^;Sl^K3 ^T(T——l)|2|^-2 ^ . |^ | . |?3.

Hence

I Re(^/(uom; Ui), "i) | f^T f "om [T - 11 "i 2 cte.
^Q

Using Holder's inequality with exponents ——I and I ? we find this
T—— I 2

to be bounded because UieLP^^nL^^cL^1^) and { u ^ n } is
bounded in L^ (^) n L2 (i2) c L^1 (^). By (1.41), we have

f \W(U,n\ U^ U'J, U'JI

^0

^T(T— i) r r i u^ i1-2] u^ i3 & dcr
^o ^

^Cif fdu^l^+l^l^irf.rrfcr
^o ^Q

^"(u,n\ u^ u'J, u^)\d^

^o ^'Q

^ c, f f f I <, |2 + I "',. |P+1} dx da + c, sup f Um ̂  dx,
^o ^Q t ^Q.

, - . 1 ^ _ i 1 , 1 ^ + l ^ + 1where we have used T ̂  p and — + - == i, p == ——— 5 a == —^— •— l p q L T — 2 ' 3
The latter expression is bounded. Consequently, we conclude from (1. 4o)
that

\u",^t)\^+a(u^(t), u'^t))^c,+c, f \(r(a), u^(a))\d^
^ n

Therefore,

(1.42) {
u"^ remains in a bounded set of I/^o, T; L2^)),
u'^ remains in a bounded set of L^(o, T; Jf;(^2)).

The theorem now follows from (1.89) and (1.42) as in section 1.5.
We have the following partial uniqueness result for this equation.

THEOREM 1.4B. — The solution in Theorem 1.4 A is unique if : all
the functions are real-valued, T is an odd integer; and

(1.43) T —^ 3 -— I if 72^2,
v " / 2 n — — 2 ( T + l ) 2 ( p + l ) / ——

except that we exclude equality here if n == 2.
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PROOF. — Let Ui and u^ be two solutions and let w == Ui—u.z.
Substracting the corresponding differential equations, multiplying by w'
and integrating the result, yields :

(1.44) a(w(t), w(t)) + \ w^t) p + 2 f (p u\ — (3 u',, w ' ) dn
^n' o

,<

+ 2 ^ ^[^^—^(u^w'dxda^o.
^o ^Q

Now, we can write

^ (ui) — ̂  (u.,) = ̂  — u\ == uw,
where

T=l

u =^,u[u1r/^o.
7=0

Therefore the last term in (1.44) can be integrated by parts as follows :

2 j f vww' dx da- == I u(x, t) w(x, ty- dx— f f u'w1 dx dv
^o ^Q JQ JQ J^

^—C4 f f[\Ui^-2+\U,\x-2][\U\\+\U',\]w2dxdcr,
^o ^0^o •̂

where €4 is a positive constant. Letting q be defined by

2 I T — 2 i T _,
^ ' " T + 1 ^p+ I -I?

Holder's inequality implies that

f | ui [T-2 [ u\ | y;9 &^ || u, ||̂  [[ u, [jp^ II w 1 1 ^ ,
^Q

where |[ [|/, denotes the norm in L7^). Hence an application of Holder's
inequality to the ^integral with p = p + i, p'= (p + i)/p, gives

f f vww' dxda^—c, ( sup r|| u,[]^- + [| "211^1)
^o ^o ( ^ L J )

1 1

[ii"'iii?+ii"'2ii^^r( riiro^iir^r
) (^0 )

( c 1 ^
-Ce / 1|W(W<^ .

f ^o
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since Ui, UaeL^o, T; L^^)) and u\, ^€^((0, T)x^). But, by

hypothesis (1.43), - ̂  - — - , so that Sobolev's inequality gives :
O1 2 it

I ) ro(a)||^c, { a(u^), w(cr)) + | i^)|' j.

Putting these estimates into (1.44) yields

a(w(t), w(t)) + | w'(f) l^cJ f { a(ro^), w(<7)) + [ w^)^- }P'~Y ,
L^o J

which implies
{a(w)(f),w(t))+\w'(t)\'t}r'^c,f {a(w(<7), w(^) + | ro'^)|2 } " • dy

^0

Hence wf == w == o.
Finally, we present a case not included in the preceding results for

which we have both existence and uniqueness.
THEOREM 1.4 C. — In case

n == 3, T = 3, p> i,

there exists a unique solution which has the same properties as in
Theorem 1.4 A.

PROOF. — The existence proceeds along the same lines as before, the
crucial point being the estimation of

Re r\^(M^); ̂ )\ "- ((7)) ̂ -
^o

This term is bounded by

3 [ L f | u^n | 2 1 1 4 . 1 ";J dx d7^ 3 f |[ u^) \[i || i4(^) lie || "̂ ) ll-- ̂ .
•A) ^Q ^o

We now use Sobolev's anequality : || u \\^ Cio || u [|, where || || denotes.
the norm in ^;(^). Since { u,n} is bounded in L^o, T; ^;(^))» the

expression under consideration is bounded by:

^J\\\^W+\^)\^d^
^n

Once again this is enough to imply (1.42) and therefore existence.
To prove uniqueness, we note that

[^^—^(u^Wdxdfj ^3f f([ui 2 + | u 2 | 2 ) | w | . | M / dxdcr
^0 ^Q.

^Ci2 f ̂ \w(cr)\\2+\Wr(a)\2}d^,
^0
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using Sobolev's inequality again. Putting this into (1.44), we obtain

a(w{t\ w(f)) + | w ' ( t ) |̂  c [ { a(w(a), w(a)) + w ' ^ ) } da,
^ 0

which proves uniqueness.

PART II.

Monotonicity Method.

2.1. Hypotheses.

We are given Hilbert spaces V and H and a Banach space W which
satisfy

VcH, WcH,
where each space to the left of an inclusion sign is dense in the space
to its right and the corresponding inclusion map is continuous. Further-
more, we assume that Y n W is separable and that V n W is a dense
subset of V and of W and that W is reflexive.

If X is any Banach space dense in H, with the inclusion map of X
into H continuous, X' denotes the space of conjugate-linear (linear,
in the real case) functionals defined and continuous on the space X;
H is identified with its own dual H ' . Notations for inner products and
norms will be the same as in Part I. In particular, (Pi, ^2) denotes the
inner product between an element of such a space X and an element
of its dual X ' ; if v^ u^^H, this is the ordinary inner product in H. The
following inclusion relations hold :

VnWcVc^cV'(ynWy,
VnWcWcJfcW^VnWy.

Besides these spaces we are given a family of sesquilinear (bilinear,
in the real case) forms

u, v->a(t', u, u) (u, ye V)

defined on Vx V, te [o, T], which are assumed to satisfy :

(i) a(t, u, v) = a(t; u, u);
(ii) a(t; u, u) ̂  Ci[y]2, where ([v}2 + | u |2)1/2 is a norm on V which is

equivalent to [ ] u\\;
(iii) For each v e V, the function

t->a(t; v, u)

is once continuously differentiable;

(iv) a'(t, y, v) = ̂ a(t; v, v)^o (ue V, /e[o, T]).
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We note that Hypothesis (iii) implies that the function t^ a (t; u, v)
is once continuously difYerentiable for every u, ye V; hence there exists
a constant c^ such that

\a(t',u,v)\+\ar(t^,u,v)\^c^u\\.\\v\\ (u,veV).

We note also that since the map

v->a(t; u, u)

is continuous and conjugate-linear, there corresponds to each ue V
a unique element A (f) u e V such that

(A(t)u,v)==a(t;u,v) (yeV).

Finally, we are given a family of (non-linear) transformations (3(f)
which map W into W^ [almost every t € (o, T)] and satisfy the following
conditions.

(j) For almost every /, (3 (/) is weakly continuous from finite-
dimensional subsets of W into W^;

(JJ) If /'(.)eL^(o, T; W), then P (.)/*(.) is an element of
L^'(o, T; W); the mapping / '(.)->?(.)/ '(.) sends bounded
sets of LP(O, T; W) into bounded sets of L^(o, T; W) and its
restriction to lines in L^(o, T; W) is weakly continuous.
Throughout this part p is a fixed number greater than one;

(jjj) Re (|3 (0 u, u) + c, | v \P ̂  c, \\ u [|^, for v e W, almost every
fe(o, T); where €3 and €4 are positive constants;

(jv) Re (3 (0 u — (3 (0 v, u — u) ̂  o a. e. (u, y e W).

2.2. An existence-uniqueness theorem.

THEOREM 2.1. — Assume the existence of spaces, forms and transfor-
mations satisfying the above hypotheses. If we are given

Uo e V, Ui e H,
f=f,+f,, f^L^o, T ; H ) , AeL^(o, T; W^;

ZAcre msZs one and only one function u which satisfies :

ueL^o, T; V),

u'= ̂ ^(o, T; Jf)nL^(o. T; W);

I A(Q u(t) + u" { t ) + P(0 ̂ (0 = f(0 a. e.;
u(o) == Uo, u'(o) ==Ui.
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Moreover, the mapping (uo,Ui,f)->u sends bounded sets into bounded
sets; and the mapping (uo, u^fi)->u, for fixed f^ is continuous in the
appropriate topologies [cf. equation (2.n) below] (9).

We note that equation (2.i) implies

u^L^o, T; H) + LP\O, T; W) + L-(o, T; V7),

so that u^.) is continuous with values in (Vn W) and u'(o) makes sense.

2.3. Proof of existence.

We take any basis (i. e., any linearly independent set whose finite
linear combinations are dense) { w / } [of YnW. We denote by u,n(t)
the unique solution of the ordinary differential system

(12;, (0, W,) + a(t; U,n(t), W,) + (P(Q l4(0, ̂ ) = m W,)

(2.2) (j== i, ...,m),
U,n (0) = P,n UQ, U',,, (0) == P,n U,,

where Pm is the projection onto the subspace spanned by Wj, . . . , w,n.
[Here we have used Hypothesis (j).] The solution is defined in some
interval o ̂  t ^_ Q,n, §m ̂  T.

In (2.2) we may replace w/ by u',^ (t) to obtain

(2.3) |l4(012+^; "-(0. M O + ^ R e f (pi4, u'^d^
J o

= I l4(o) I 2 + a(o; Um(o), U,n(o))

r' r 1
+ a'((7, u//z(cr), u^(cr)) dcr + 2 Re ^ (f, u^) dcr.

^n •^n^ O ^0

Hypotheses (ii), (iii) and (jjj) imply that (o ̂  t ̂  T) :

(2.3)' [ i4(012 + [MOP + 2 Re f ((3i4, "//.) ̂
•^o0

^(o^+c.liMo)!!2

+ c. f'l] u,,.(o) |^ da + 2 f'l (/-(a), u',,̂ )) | ̂ .
•^o •"o

(9) One can also treat by the same method non-linear terms where P =p i+Pa» P;
mapping J!LP .̂ (o, r;W^) into LP', (o, r, W^) (j == i, 2), where pi=p2 and W^ and W^ are
two Banach spaces of the above type.
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Now f==fi+ f.., where fieL^o, T; jH) and ^eL^(o, T; W^. We
have, for any 6 > o,

2 f | (/\, i4) | ̂  ̂ -1 < f | fi (̂  | ̂  j" + ^ sup | u;,(a) |9.
JQ Jo ) 0^(7^

On the other hand, we define

iiMK-rii/1.^)^/^.
*^o

Then, by Holder's inequality and Hypothesis (jjj),

z f KM.) I d^2 II f. II f II ̂ ^)||^ do2 f^^i^^iif.iii f'li^^i^^r
^o ( ^ o )

1 _1.
,< \p i ^ \p

»yo ' t/o
i

^ cs || /•. ||. f 'Re((3 u',,» i4) dff}/'+ ce [| /-, H j f 114 (̂  [/' d^ F.
^0 ) ( ^0 )

The first term on the right-hand side of the last inequality is estimated
using Young's inequality

ab^CoaP'+ ^bP (a, b^o, 8 > o);

in the second term we use Young's inequality for p = p ' == 2 together
with

j [ | ̂  (?) \P d^ (/ ̂  TP sup | (4 (?) I2 .
(Jo ) o^o^

We obtain, for any ^ > o,

2^1(^,^)1^
Jo

^ ^ i l l ^ l l ^ + H ^ l h + c ^ / Re(pu;, ,^)^+C8^ sup \u'^)\\
t/O 0 ̂  (7 ̂  <

where €7 (but not Cs) depends on ^. Finally, we use the identity

Un, (0 = Um (0) + ^ U^ (CT) dcr,
^0

which implies [by (ii)] that

||^(0112^^ sup n"^)|2+[M^]2)•LO
0^ CT^<
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Putting all these estimates into (2.3)', and defining

K( / \ , / - , ,Uo ,Ui )= ( [ \W\da\ + | ] /> , [ |^+| | / • , [ |^+|]uJp+|^ \
\^ 8 /

we conclude that

I ":. (012 + I I Um (01|2 + 2 f Re((3 i4, u'^ da
^0

^ Cic K(f,, f,, Uo, Ui) + Gio f { I U;. (cr) |2 + || Um^) ||2 ! rfcr
•^o

+ 6 Cn / Re((3 i4, i4) do- + ^ Cn sup | ?4 (o-) |2,
tYo 0 ̂  0- ̂  <

where Cio (but not di) depends on ^. Now choose ^ == (2 Cn)-1. It follows
that

(2.4) | ̂ 4(0 I2 + II "-(0 II2 + Re [ (P?4, i4)^^c,, K(f,, f,, uo, "0.
^0

This implies that ^m == T, that { u,n } is a bounded set in L^o, T; V)
and that { u'^ } is bounded in L'°(o, T; JZ). By (jjj), we have

T l T

f || 14 (o-) |]^ ̂  ̂  cu Re f ((314, ";.) ̂  + T sup | u',, (^) \P
Jo ( J o o^a^ r

which is bounded. So u'^ is also bounded in L^(o, T; W). Therefore
{ [ 3 ( u ^ ) { is bounded in L^(o, T; W). [Here we have used Hypo-
theses (jj) and (jjj).] We may therefore extract a subsequence { Uy {
from { Um } such that :

u^-> u in the weak-star topology of L^o, T; V),
Uv -> u' in the weak-star topology of I/°(o, T; JZ),
Uv -^ u^ in the weak topology of L^(o, T; W),

p (u^) -^ ̂  in the weak topology of Z^'(o, T; W).

(It is easy to show that the first three limits have the relationship stated.)
Letting m = v in equation (2.2) and v -> oo yields the following

equation for u(t) :

^(O, Wy) + a(t; U(Q, Wy) + (^(0, w,) = (/•(/), ^y) (J = i, 2, ...),

taken in the sense of distributions over (o, T). However, since
(f(t), Wj)—(^(f), Wj)—a(t', u(t), Wj) is a measurable function of / for
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eachj, so is {djdt) (u'(Q, w;), so that this equation is valid almost every-
where. Hence

(2.5) uff+A(.)u+^==f

and u" e L1 (o, T; (V n W/). It also follows that

(2.6) u (o) = Uo and u' (o) = Ui.

The former relation is true since Uy (o) -> u (o) weakly in H while u^ (o) -^ Uo
strongly in H. To prove the latter relation in (2.6), let

? ••= 2 ̂ ' 0 u^
/=!

where cpy€C^(o, T) and 9/(T) = o. We note that
.T ^T

f (u;, cp)A =— f (u,, cp') d/—(u,(o), 9(0)).
^o ^o

On the other hand,
T T

f (u'v, <f)dt= f [(f, q?)—a(f; u,, cp)—((3(0 Uv, cp)] d(,
^ O ^Oty 0 ^0

which converges to

r7 r 1
lr /-r

[( / ;9)—a(/;u,cp)—(^,(p)]^=/ (u-
^0 JQ
\ [(/»?)— a(/;u,cp)—(^,(p)]^= / (u^cp)^

^ O Jn

as v --> oo. Therefore

f (u\ 9) dt=—f {u\ 9') ̂  — (u,, cp(o)).
^O ^0

It follows that(ui, q>(o)) = (u'(o), 9(0)), where 9(0) is in fact an arbitrary
linear combination of Wi, ..., Wm. Hence Ui= u'(o).

It remains to show that ̂  = (3 u'. For the time being, let us assume the
LEMMA 2.1. — Let

weL^o, T; V),
i u/eL"(o, T; H)nLP(o, T; W);

/2 x A(f)w(t)+w"(t)^F(t) a.e.;
l w(o)=WoeV, w'(o)==w,eH,

FeLP'(o, T; W) +Ll(o, T; H).
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Then for a. e. t,

^; w(t), w(t)) + | M/(O \^a(o; Wo, Wo) +1 w, |2 + C a^a; w(a\ w(a)) da
JQ

+2Rer (F((7),M/(cr))dcr.
Jo

equality holds in case Wo = Wi == o (10).

We apply this lemma to the present situation with w === u, F = f— ^
to yield the inequality

<2.8) a(t; u{t),u'(t)) +\u\t) |9-
r 1

^a(o; «o, Uo) + I "i |2 + ^ a'(cr; U((T), u((r)) dcr
• ' o

+ 2 Re f (/(^)—^), u^^)) ̂
^o

almost everywhere. We choose a sequence of numbers { t / , } such
that (2.8) holds for t = fc and such that t/,-> T. By the familiar
<( diagonal " procedure, (2.4) implies that a subsequence { u^} can be
extracted from { U y ) such that

u^ (tk) -> u (tk) weakly in Y,
u'^ (t/,) -> u.' (tk) weakly in H

as ^ -> oo, for k = i, 2,, .... To show that these limits are as asserted,
we repeat the method used to prove (2.6).

Now in equation (2.3), we put m == ^ and take inferior limits as ^ -> oo;
this yields the inequality

1 u^t) [ 2 + a(t; u(Q, u(Q) + lim infs Re f (? u., u'n) da
l^- Jo

^ U, 2 + a(o; Uo, Uo) + ̂  Cl'(a; u(cr), u(cr)) rfcr + 2 Re f (/-(cr), u'(^)) dcr,
•"o *^o

for f = fc. Here we have used, in particular, Hypothesis (iv). Compa-
ring this inequality with (2.8), we conclude that

t ^
(^(cr), u^d^UminfRe / ((3(cr)^(^), u.(cr))dcr

o P-^00 Jo
Re f (^(cr), u^cr^^^UminfRe f ((3(cr)^(^), u.(^))d<

^o P-^00 Jo

for t = ^.

(10) Equality also holds more generally, but it is not necessary for present purposes.
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If cp is an arbitrary element of L^(o, T; W), we have

^ ^i
—Rej (^,u')da ==—limRe f (Rcp, u'^)da

Jo ^>^ Jo

and

—Re j (^, 9) do- = —lim Re f (pu^, cp) dcr.
Jo p. -^ o J./O P.-^c

We add the last three relationships and add the quantity

Re f (pep, cp) dcr
^o

to both sides of the result, obtaining :

Re I (^—|3cp, u '—^do-^liminfRe / ((3^—pep, u'n— cp) da-
Jo ^ > ̂  J^

for t == tk. But the right-hand side of this inequality is non-negative;
therefore, letting tk—^ T,

r27
Re ^ (^ — pep, u'— 9) do- ̂  o.

^0

Proceeding as in [14] (proof of Theorem 4, p. 344)» we now let ̂ =ur—^cpi,
where ^ > o and cpi<EL^(o, T; W) :

e f (^ — P ("'— ̂ ?i), ?i) ̂  ̂  o.R e < ^—@^
^o^o

Letting ^ -^ o [and using Hypothesis (jj)] gives :

r77
Rel (:^—pu',(?,)^o

^o

for all cpi eL^(o, T; W). This is absurd unless

^(0== (3(0^(0 a.e.

2.4. Proof of Lemma 2.1 .

Let o < s < t < T. Let Qn be identically one in [s, t], zero in

( —oo, s—- ) and in (14- - ? oo )„ and linear in the remaining two intervals
\ n/ \ n /

BULL. SOC. MATH. — T. 93, FASC. I. 6
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of the real line; n is a positive integer. Let T] be an infinitely difTerentiable
function on the line with compact support, r ] ( t ) = Y] (—t), and let

7?/, (/) == k Y] (kt), k positive integer;

then r^k converges to the delta function as k -> oc. We assume that k is
large enough that {^nW) * m * ̂  vanishes near T and near o.

Using a variant of a method of [12] (n), we take inner products of
both sides of equation (2.7) with

U(^0 * ̂  * ̂ ] == 94(9^) * ̂  * ̂ —(9» * ̂  * ̂ /c],

which is infinitely differentiable with values in V and W. We obtain :

^ T

(2.9) Rey {a(cr', 9/,w, (O^w)* ̂  ^^)—a(<7; 9^, (9»*^*^)

+ (W, ̂ nw') * ̂  * m)} da

= Re f 9,(F, (Q '̂) * m * ̂ ) ̂ .
•^0

[Note that w"^U(o, T; H) + LP\O, T;Wf)+ L^o, T; V), so that
the inner products make sense.]

We denote v == 9/zW, and write
c^; z^, v) = ((cl(0, u, y)) (u, ye V),

where eX(f) is a bounded operator in V. We can then write the first
term in (2.9) as Xi + X,, where

F 1
Xi = Re ^ a(cr; (u * 7î ) (cr), (y * YÎ .) (cr)) dcr

^n

.7'

(y*^, y^^lo71—^ / a'\(7\v-krik,v-kr]k)d7
2^0

y
=— I f a'(a; (v * ̂ ) (<7), (y ̂  ̂ ) (cr)) da,

^^o

== -a(v-k^ v-krik)\l
2 ^o

/,77

and
r77

X, = Re
^0

^T

\ f { ((0 V, V -k rik * rik)) — ((BL (v * ̂ ), V * ̂ )) ) rfcr
^o

=—Re f ff^[(^y) * ̂ —a(v * ̂ )], y * m}} dcr.
Jo v Y " 1 / /

A vector-valued Friedrichs' Lemma (c/'., for example, [9], p. 72) implies
that X^-> o as k -> oo.

(n) Another variant of the same method is used for linear problems by
G. TORELLI [21].



SOME NON-LINEAR EVOLUTION EQUATIONS. 83

The third term on the left-hand side of (2.9) equals X,, + X<, where

r1'x,= f ({^w'y
^o

= \ ((Qn w')' -k m, (9« ro') •* ̂ ) du == o
^0

and
-.T

X,==— f ((O.M/) * m, (O,M/) * m) da.
^o

Therefore, letting k -> oo, we obtain from (2. g)
T T

— f M. { a(w, w) + | w' | 2 ; da = I- [ 9^ a'{w, w) + (F, w')} do-.
^o 2 ^o

But if heL^o, T), then the integrals

T -n

hda= n l [i—n(cr—f)]h(a)da
i

—f 9n9'nhd<r= nf [i—n(cr—0]/i(c7)d<
^ O v t

-.nf5 [i+n(a—s)]h(ff)d<7
J i

converge as n -> oo to I (h(t)—h(s)) for almost every s, t. Therefore

(2.io) a(f;w(0,w(0)+[^(0|2

== a(s; w(s), w(s)) + | W(s) |2 + ^ a'(<7; w(o-), w(cr)) do-
^A'

+2Ref (F(o-), w'(cr))do-
*7.?

almost everywhere.
Now choose any Sq--> o and t such that (2.10) holds for t and s = Sy.

Then
a(Sy; W(Sy), W(Sy)) + | W'(5y) |2

is a bounded function of q. Also, the inequality

\w(s)\^ Wo [ + T.ess sup| w' \[o, n

shows that [ w(Sq) \ is bounded. Hence { w ( S q ) } is bounded in V
and { w' (Sq) \ is bounded in H, so that we can extract a subsequence { S r }
of { Sy } such that

w (Sr) -> Wo weakly in V,
W (s,) -> w, weakly in H
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as r—^oc. [To show the limits are as stated, note that w is continuous
with values in H and w' is continuous with values in (VnW/.] The
desired inequality therefore follows by letting s = Sr-> o in (2.io).

If Wo=Wi=o, define w(o-), A (a-) and .F(o-) to be identically zero
for (T < o. Then (2.io) holds also if s < o. This reduces to the desired
equality.

2.5. Proof of uniqueness and of continuity with respect to the
data.

Let u and v be two solutions of the respective equations
u"-}- Au + (312'== f, v " + Av + |3i/ = g,

where f, g^L^o, T; H) + L^(o, T; W7).
For uniqueness, let f = g and u(o) = u(o), 1^(0) = ^(o). We apply

Lemma 2. i to w = a — u. Wo == o, F == [3 ((/) — (3 (u^) to obtain the
equality :

^;w(0,w(0)+|«/(0 2

= f ^(cr; w(cr), w(cr))dcr—2Re F ((3u'—(3y', Odcr^o.
•^O ^0

So w^Q |2^ o, y/(0 == o, w == o.
Now assume only that

f—geL^o, T ; H ) .

We shall show that, if w denotes u — u, we have
(2.n) | w ' { t ) |9- + || w(f) |]2 ̂  c^ K(w(o), ^'(o), f— )̂,
where

( r77 )2
K(Wo, Wi, h) =\\W,\\2+\W,\2+< | A((7) | dcr .

f ^0 )

Let u,n be defined by the differential system (2.2), where iio == u (o),
Ui == u' (o), and let Vrn be defined by the corresponding system with Uo,
Ui and f replaced by v(o), p'(o) and g, respectively. Define
Wm. = u/Ti — y/n. We substract the defining equations for u^ and v,n
and then replace w/ by w'^(t), thus obtaining

/^^(^^^(^^(O.^^+^Re f (pu^—p^, 0&
^0

= I ̂ n(o) 2 + a(o; Wm(o), W^(0)) + ^ a'(o-; W,n(o-), Wm (o-)) rfc7
^O

+ 2 Re ^ (/'— ^, w^) do- a. e.
•^0

1 2 .| w^W^+a^w^Wm^+^^e 1 (Pu,.—py;., w;,
^0 ^^
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Using Hypotheses (iv) and (jv), it follows that

\w^(t)^+a(t;w^(t),w^f))
^ I ^m (0) 2 + Cl(o; Wm(o), W,n(o)) + 2 Re f (f——g, W'^) da

^0

Taking, for fixed /, weakly convergent subsequences as before (and using
the uniqueness result), we conclude that

\w'(t)^+a(tMv{t\w(t))

^ | w'(o) |2 + a(o; w(o), w(o)) + 2 Re f (f— g, w') d^
^0

for almost every i This implies (2.11) by the usual procedure.
This completes the proof of Theorem 2.1.

2.6. Application to non-linear partial differential equations.

Let ^ be any open set in £". Let H === L2^). Let

a(t; u, v) = a(u, v) = ^ C a^{x)D^ u(x)D^u(x) dx,
| a | ̂  m
| Y | ̂  77Z

where aaye-L00^), a^(x) = a^(x) a. e. Let V be any linear submani-
fold of the space co(^), which consists of all C^-f unctions defined in ^2
with compact support in i2. We assume that

a(u, u)^o for ye V.
If we now define

|| u\\ = { a(u, u)+\u\2 p, [y] = { a(v, v)}^ (^ V)

and define V as the completion of V with respect to the norm || v ||,
then V is a Hilbert space under this norm and (i)-(iv) of section 2. i are
obviously satisfied.

The unbounded operator A (f) = A does not depend on t in the present
case. It is the partial differential operator in Q. defined by

A,f=Af= ^ (-iy^DUa^(x)D-f);
\ a | ̂  m
| "f 1 :̂ m

its domain (as an operator on H) is defined by boundary conditions which
themselves depend on the choice of V (and, of course, of the coeffi-
cients fla-f).



^ J.-L. LIONS AND W. A. STRAUSS.

We now introduce the space W. For each cr in a finite set J, let Da
be any linear differential operator with smooth coefficients and let (Do)*
denote its formal adjoint. Let p > i and p == p + i. For each o-eJ,
let a non-negative function ka, A^ e L00 (i2), be given. We define the
space W as the collection of all functions v in L2^) such that

/ | D^ u(x)\Pka(x) dx < oo
^o

for all o-eJ; this space is provided with the obvious norm. Let Wo be
the closure in W of the subspace <^(i2) of C°°-functions with compact
support in t2. Finally, W is any closed subspace of W such that

WoCWcw.

The intersection Y n W is separable. Indeed, it is contained in
J^ (^2) n W with continuous inclusion mapping. Since the latter space
is isometric to a direct sum of L^-spaces with various separable measures,
it is separable and therefore so is VnW.

We assume that Y n W is dense in V and in W. Here are three cases
when this assumption is valid.

EXAMPLE 1. — V = d)(^2) (i. e., the C'-functions with compact support
in the open set 12) and W = Wo. Then a)(^2) is contained in both V
and W and is dense in each of them (by definition).

EXAMPLE 2. — V =-- H171^) and W = W = W^(i2), where Wk P(^)
denotes the Sobolev space and the boundary r of ^2 is sufficiently smooth.
Under the last condition, the smooth functions in ^2 with compact support
in ^2 are contained in V n W and are dense in both V and W.

EXAMPLE 3. — V == H^(^) and W is the closure in W == W^(t2)
ofJF^(t2)nW^(^2), where k > m. In this case, V n W contains dD(i2),
so that it is dense in V.. On the other hand, if ^2 has a smooth boundary,
Vr\W contains all the smooth functions in W (c/*. NIKOLSKI : [16]),
and it is therefore dense in W.

Note that the space V can be the same in Examples 1 and 3, although
the space W is different. It should not, however, be concluded that V
and W can be chosen independently of one another. For instance,
we cannot take V == H^(^) and W == W if 12 ̂  En, m > o, and, for
some o-eJ, Da has positive order and ka is not identically zero a. e.
For, in that case, V n W is not dense in W. The choices of V (i. e., V)
and of W determine the boundary conditions of the differential equation.
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Now, for each o- e J , let ha be a positive, bounded, measurable function
defined on the cylinder (o, T) x ^2, and bounded away from zero

o < c,^ha(x, O^c.2 a. e. (12).

Finally, (3 (t) is defined as follows. Let cp (z) = \ z |̂ -1 z and let

6(^ u, y) =V I ^(D^u(x))D^~u(x)ha(x, f)ha(x) dx,
~^Q.
TeJ

for u, peW. Since u-> b (t; u, v) is a conjugate-linear map and

(2.12) \b(t; u, p)]^Cio|M|^|M|^,

it follows that j3 (f) u is uniquely determined as an element of W by
the equation

b(t;u,u)=^(t)u,u) (ueW).

Now Hypotheses (j) and (jj) follows easily from the definition of j3(0
and from estimate (2.12). Indeed, if u, U€LP(O, T; W),

II P" 11^(0, T^W')^010 II "11^(0, r ;TF) -

Hypotheses (jjj) and (jv) follow from the corresponding properties
(c/*. Lemma 1.1) of the numerical function cp(z) = | z |̂ -1 z.

The general theory can therefore be applied to the present situation.
Let Uo(E V, u^H = L2^), /•== f, + f,,

/\ e L1 (o, T; L2 (^)), /•. e L^(o, T; W).

Then ^ere e^is^s one and only one function u such that

ueL^o, r; V),

(2.i3)
u^^eL^o.T;^^)),

iz'eL^o, r; W);
i^+Au+p^u^f in (o, T)x^;

u(x, o) == Uo(^), "'(^ o) == Ui(.r) in ^ (13).

(12) If we weaken this assumption to : o< c^ (s) ^h^{x, t} ̂ c^ in (e, T—s) x ^
a. e. for all s > o, then we can still prove the corresponding results by exactly the same
method if we introduce spaces W (t) with weight functions k^x) hy(x, t) (cf. Part I).

(13) Assume Ay-^A in ^(o, r; L\Q)), f^—f, in LP' (o, T', W) (strongly); if .̂ is
the solution of (2.13) with f =/i +/2 and Uo= "i = o» then one can prove that there is
a subsequence such that
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Equation (2.i3) is taken in the sense of distributions in /e(o, T) with
values in (VnW/ [because (VnW)' is not necessarily a space of distri-
butions on i2].

Some of the boundary conditions are contained in equation (2.i3).
More precisely, let us write (2.i3) in its (< weak " form : if v is any
element of YnW, then

(2. i4) ^ (u(0, v) + a(u(t\ v) + b(t; u'(t\ v) = (f(t), u).

Now set

^(t)f=^(D^(^D^f)h^t)k^
a^j

all the derivatives being taken in the sense of distributions in 12 (which
we indicate by the subscript(< d "). Since, in particular, (2. i4) is valid
for every v e (^ (^2), we have

(2.i5) u^+A^u+^^u^f

in the sense of distributions in (o, T) x ̂  assuming that the coefficients
flap are C°° (^2) or that a (u, u) is coercive.

Therefore, A^u + p^(0 ̂  = f—u" is the sum of elements of
L1 (o, T; H), LP\O, T; W) and of (— u"), which is a distribution on (o, T)
with values in H (even in V); consequently, for every y e Y n W ,
(Aciu(f) + (3^(0 ^(O? y) makes sense as a distribution over (o, T) and

d2
equals (f(t), u)—-^(u(t),u). Comparing this to (2.i4), we obtain

(2.i6)
{AdU(t) + ̂ (0 ̂ (0, u) = a(u(t), v) + b(t; u^t), u)

for every v e V n W.

CONCLUSION. — u satisfies (2.i5), subject to the initial conditions
u(x, o) == Uo(x), u ' ( x , o) == Ui(x) and subject to the boundary conditions :

(I) u eL^o.T; V);
(II) i/eL^(o, T; W);

(III) u satisfies (2.i6).

EXAMPLE 1 : V === H^ (t2). — Then the boundary condition implied
by (I) is

D^u(x, t) =o for | a [ ^ m — i [a^r, ^e(o, T)]

(taken in a generalized sense, of course). In this case, (2.i6) reduces to :

f(^(t)u")udx== b(t; u'(0, u) (ue VnW).
^Q.
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Moreover, if we take W = Wo, then (2.i6) is automatically satisfied
and (II) means that certain space-derivatives (depending on the A/s)
of u' are zero on (o, T) x r, in a generalized sense.

EXAMPLE 2 : V ^H1"^), and the space W involves no derivatives;
i. e., the operators Dy are just multiplications by functions of a*. Then (I)
and (II) involve no condition at the boundary and the remaining
boundary condition (III) reduces to :

r{AdU)vdx^a{u(t\ v) (peVnW).
^Q

This means that u satisfies Neumann-type boundary conditions.

EXAMPLE 3. — Let us now take V = H1^) Aa ==— A,
nv r ^u du -^"•^IJ^^

let J consist of a single element o- and let Da = OI^Xi, hy = h, ky == k and
finally let W = W. Once again, the only boundary condition is (III),
which can be written in this case as :

C(—^u)udx— f -^(hk^(-F-\\udxJ v / JQ^A ' ^ x ^ t j jI \——— LAHI I/ tt**/ ——— I ^ 1 I"*. -< I -i -»»

Q^ / JQ^I\ 1 \^X^t

v-^ r ()u Ou , , r,, / ^u \ <)u= > ( —- — dx + I hk^ -,—
^ j ^ X i ( ) X i ' J ^ ' \ ( )X ,

v-i r ()u Ou , , r,, f ^u \ <)u ,= > ( — —- da; 4- < 7iA:cp -,—-T, . -3— dx.
^ j^ ()Xi ()Xi ' J c . \ ̂ i ̂  i î

If v denotes the unit outer normal to r and ^i denotes its first component
(i. e., with respect to the variable :Ci), this boundary condition can be
written as

<^+^{S)hk=o ^^x^

Thus the boundary conditions are, in general, non-linear.

REMARK. — We could also consider cases when p (or p = p — i )
depends on o" e J .

2.7. A remark on first-order equations.

We are given a pair of Hilbert spaces H and V and a reflexive Banach
space W with the following properties : both Y and W are contained in H
with each inclusion mapping continuous, Vn W is separable and is dense
in V and in W.
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Secondly, we have a family of sesquilinear forms

u, v—> a(t; u, u)

defined on V X V for almost every te. (o, T). We assume that :
(i) t->a(t; u, v) is measurable, for each u, ve. V;

(ii) there is a constant Ci such that
[ a(t; u, u) \ ̂  c, |[ u ||. || v || [ u, v € V, te (o, T)];

(iii) there are constants Ai, c^ (c2> o) such that

Rea(t; v,v)+\\v ^c,\\v\\1 [ueV,t(E(o, T)].

If we define A(f) as usual by (A(/) u, u) == a(t; u, u) for all u, ye V,
then A (f) is a linear mapping of V into V7, and (i) and (ii) imply that the
mapping u(.)—^A(.)u(.) is continuous from L^o, T; V) into
^(o, T; V).

Thirdly, we are given a family of maps (3 (/): W -> W, defined for
almost every t e (o, T), which satisfy :

(j) (3(0 is continuous from finite-dimensional subspaces of W
to the weak topology of W ' ;

(]]) there exists a constant ^2 such that
Re(j3 (/) u — ̂  (t) v, u — v) + .̂ | u — v ]2^ o

for all u, yeW;
(jjj) there exist constants ^3, Cs and €4 (c4> o) such that (p^i) :

Re((3(Q y — P ( Q o, i;) + ^ 3 1 ^ I 2 + c, \ u [^ c, || y ||̂

for all ye VnW;
(jv) the map u( . )—^(3( . ) sends bounded sequences ofL^(o, T; W)

into bounded sets of LP'(O, T; W), and it is weakly conti-
nuous when restricted to lines of L^(o, T; W).

THEOREM 2.2. — Giuen Uo^H and

feL^o, T; H) +L9-(o, T; y-) +L^(o, T; W7).

Under the above hypotheses, there exists a unique function u such that

(2.17) u eL^o, T; ̂ nL^o, T; V)nL^(o, T; W),
(2.18) u' eL1 (o, T; 7 )̂ + ̂ (o, T; V) + ̂ '(o, r; W),
(2.19) u(o)=Uo;

(2.20) u' (0 + A (0 u (0 + P (0 " (0 == m a. e.
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REMARKS:

(i) We could just as well consider a finite sum of operators like [3,
with different p's and different Ws. More generally, we could consider
an abstract space F, FcL°° (o, T; H) such that (3 maps F into its dual F '
and is <( coercive " relative to the norm of F.

(ii) This theorem is formulated in such a way that it can be easily
applied to partial differential equations in a fashion analogous to that
of section 2.6.

(iii) We may assume, in the proof of the theorem, that p (/) o = o.
For, in the contrary case, we may simply replace (3 (t) u by (3 (f) v — (3 (Q o
and/-(0 byf(0-P(Oo.

(iv) We may also assume, in he proof, that ^.i == ^2 =^3=0.
Otherwise, we could just as well consider the analogous problem with u(t)

replaced by exp (kt) u (t) == w (Q, A(Q replaced by A(t)+k. ^(f)v

replaced by 6-^P(Q (eklv)-{-kv, and f(t) replaced by exp (— kt) f(t\
Then we would choose k sufficiently large, and the solution of the latter
problem would immediately imply the solution of the original one.
Therefore, we assume from now on that
(2.21) Read', u, uy=,c, |[ p||2 (ue V);
(2.22) Re((3(0u—(3(0y, u—u):^o (u, yeW);
(2.28) Re(p(Qy, u)+c,\u P^C^\U\\^' (^eVnW).

(v) We show as in LIONS [10] that if u is any function satis-
fying (2.17) and (2.18), then it is equal a. e. to a continuous function
from [o, T] to H [so that, in particular, condition (2.19) makes sense]
and that the integration by parts formula (o ̂  a ̂  b ̂ _ T) :

f {(u', v) + (u, v')\ dt = (u(b), u(b))—(u(d), u(d))
^ a

is valid for all functions v satisfying the same conditions as u.

PROOF OF UNIQUENESS. — Let u and v be solutions of the respective
equations

u' + A(Q u + (3(0 u := f, v' + A(Q u + (3(0 v = g,

where u and f satisfy the conditions of Theorem 2.2 and v and g satisfy
the corresponding conditions. Let w = u — u. Subtracting the equa-
tions for u and for u, and taking scalar products with w(f), we obtain

(n;-(0, w(t)) + (A(Q w{t), w(t)) + (P(Q u(t) -P(Q v(t\ w(f))
=(m-9(t),w(t)) a.e.
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By (2.21) and (2.22), this implies that

(2.24) ^ 1 w(f) |9- + c, || w(t) 11̂  2 Re(/-(0 — g(t), w(t)) a. e.

If f== g and u(o) = y<o), [ w(Q |2 is then a non-increasing function of'/;
since w(o) = o, w == o. This proves uniqueness.

If f— g e L1 (o, T; ^Q + L2 (o, T; V), then (2. 2/1) implies the following
continuity of the solution with respect to the data (cf. section 2.5) :

(OP+fl l^.|w(0|9+ W(a)\\^d(7
^o

^Jiw(o)p+|f i/'-yidaT+^ii/-^^!,>7' I2 r7 }-9\da\ + || f-g^d^.
v L^o J ^o )

PROOF OF EXISTENCE. — Let { w , , w,, ... } be a " basis " of VnW.
We define u^ as a finite linear combination of Wi, ..., Wm such that
"om-^Uo in H (strongly). We define the " approximate solution "
u,n{f) =7,gim(f)iVu as the solution of

(l4 ((), Wy) + (A (0 U,n (t), Wj) + ((3 (0 U,n (f), W,) = (f(t), W,)

O'=i, ..., m),(2.25)
Um(o) = UD,,,.

As usual, we obtain :

(2.26) | u,n (0 |2 + 2 Re f (A (a) u,,, (a), u,n (cr)) da
^0

+ 2 Re f (p(^) u,,(̂ ), u,,(̂ )) ̂
^o

= | ̂ o/. 2 + 2 Re r (f((7), u,,(<7)) da.
^0

Let us write /*= ̂  + p + ̂  where

AeL^o, T; H), AeL^o, T; V), f^Lp'(o, T; W1);

and write [[^| | for the norm of f/, in the space to which it belongs
(A: =1,2, 3). Then, in analogy wuth the procedure in section 2.3,
we see that there exists, for any ^ > o, a constant Cy (depending on ^)
such that

/ (fi,u,n)da ̂  sup [ u,n(a) |2 + c7 [ [ f, [[2,
^'0 o^a^t

r' r 1
\ (f^u^)da ̂  \\Urn^)\\H^+c,\\f.\\\

^o Jo
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and
I r 1 r 1
r (f.3, u/n)do- ^3 Re ^ (P((T)U^((T), Um(a))da

^ o •̂  n

/ (f 3, Um) da- ̂  R e / (p (<T) Um (o-}, u/n ((7)

+3 sup iM^+c^ii^r+ii^ii2}.
0^(T^<

[In the last estimate, we have used (2.23).] These estimates with ^ chosen
sufficiently small, together with (2.21), yield the inequality :

"m(012 + f || u,n(a) ||'p dc7 + Re f ((S(o-) u,»(o-), u,»(cr)) da,(0 |2 + f || u^(o-) IF? da + Re f (P(o-) u^(a), u,n(a)) da
t/Q v 0)0 ^0

112 _L I I f^ 112 .^csnuo/.p+i i / i ip+i iAip+i i^ ip+i i^ i i^} .
Using (2.23), we conclude that :

Urn remains in a bounded set of
(2.27)

L°°(o, T; H)(^U(o, T; V)nL^(o, T; W).

Therefore, we can extract from { U m } a subsequence { u ^ }
such that :

Uy—^ u in the weak topology of L^o, T; V), and of
L^(o, T; W) and in the weak-star topology of L°° (o, T; H);

^ * 2 ) ^ pUv-^ g in the weak topology of LP'(O, T; W);
Uv(T) -> x in the weak topology of H.

By the same technique as in section 2.3, we show that

(2.29) ur+A(t)u+g=f,

that u1 €L1 (o, T ' , H ) + L^o, T; Y^) + 2>'(o, T; W), and that u(o) = Uo,
u(T) = x. By remark (iv), we may assume that u is continuous on [o, T]
with values in H. It remains to prove that g = (3 (u).

The technique is as before, but with some simplifications. Taking
m == v and t == T in (2.26) and taking the limit inferior as ^ ->oo of both
sides, we get

r77
(2. 3o) | u (T) |2 + 2 Re ( (A (cr) u (cr), u (d(7))cr

^o

/^+ Um inf 2 Re < ((3 (o-) Uy (cr), u^ (o-)) do-
P>00 ,70

r7'^aRef (/-(o-),u(cr))d<7.
•^o
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On the other hand, by remark (v),
T

aRe^ (u'(a),u(7))dff=|u('r)p—|uo|2.
^0

Therefore, if we take inner products of equation (2.29) with u and inte-
grate, we obtain

r 7 1 ^T

\u(T)\2—\u,\2+^I{e (A((7)u^),u(^))d(7+2Re/ (g(a), u^))da
^0 Jy

r 1
- 2 R e < (f^),u^))d^

^0

Comparing this with (2.3o), we get
/-77 .T

Re / (9(^ u (7)) da- ̂  lim inf Re / ((3 (cr) u, (a), u, (^)) dcr.
^o •^^ Jo

Letting cp be an arbitrary element of L^(o, T; W), we deduce using (2.28)
as in section 2.3, that

r77
Re < (^)—^)?(cr), U(cr)—cp(^))do-^o (f = /,).

^o

By the same device as before, this implies that g == (3 u. This completes
the proof of Theorem 2.2.

Added in Proof.

i° The end of the existence Proofs of Theorems 2.i and 2.2 consists
in showing that if g^-^g weakly in LP(O, t; W) and (3^->d; weakly
in LP\O, t; W), and

(0 Re < ̂ , g > ̂  lim inf Re < |3 ̂ , ̂  >.
„ <

[where < ^, (/ > = / < ^(cr), ^(cr) > dcr, o ̂  ^ ̂  T], then ^ = ̂ g a. e.
^o

in (o, 0.
As shown to us by E. de Giorgi, in case for instance

(2) ^g=\g\9-lg
we have

(3) < PM> = II ^g ll^(o, /; w'} II g ll^(o, /; w}
and then

Re <4s^>^ || ̂ ||^(o..;^) I I ^ll^(o,^).
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Therefore these are all equalities and either liminf [ [ (3^v|| =|| ̂  \\= o
[norms in L^(o, t; W\ in which case g = o, either lim inf || ^v ||=|| g ||
[norms in L^(o, /; W)] and then, thanks to the uniform convexity
of L^(o, t; W), </v-> g strongly and the result follows.

2° For the equations

(4) —Au+i^-l-P(u')=f.

a generalization of our hypotheses on (3 is made in G. Andreassi, G. Torelli
(to appear).

3° For (4), with (3 given by (2), the existence of periodic solutions is
proved, by G. Prodi (to appear).

4° For (4), with (3 given by (2), p = 2, the existence of almost periodic,
solutions is proved, if n ̂  5, by G. Prouse (to appear).
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