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A PROPERTY OF ^-SEQUENCES

ROBIN HARTSHORNE (*).

Let A be a noetherian local ring with maximal ideal m, containing
a field k (not necessarily its residue field). Recall ([1]; [7]) that an
A-sequence is a finite set Xi, . . . , Xr of elements of A, contained in the
maximal ideal m, such that Xi is not a zero-divisor in A, and for each
1=2 , . . . , r, Xi is not a zero-divisor in A/(rci, .. ., rc;_i). We will show
that for ma.ny purposes, the elements of an A-sequence behave just like
the variables in a polynomial ring over a field. In particular, the sum,
product, intersection and quotient of ideals generated by monomials
in a given A-sequence are just what one would expect (see Corollary 1
below for a precise statement).,

PROPOSITION 1. — Let A be a noetherian local ring containing a field k,
and let Xi, . . . , Xr be an A-sequence. Then the natural map

c p : T=:/c[Xi, ...,X,]-^A

of k-algebras, which sends X; into Xi for each i, is injective, and A is flat
as a T-module.

Proof. — We show 9 is injective by induction on r, the case r == o
being trivial. Let r > o be given. Then x^ . . . ,Xr is an (A/rciA)-
sequence, so by the induction hypothesis, we may assume that

© : k[X,, ...,Xr]->AIXiA

is injective. Now let f e T be given and write

t == ^^ X^ fn (Xs, ..., X/-),

(*) Junior Fellow, Harvard University.
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where each fn(X,, ..., X,:)^k[X,., ..., X,.]. Suppose that y(Q = o.
If t^ o, let /", be the first of the /"„ which is non-zero. Then

c?(.f)=X•l^Xrsfn(x,., ...,3-A

\n=s j

Since a-i is a non-zero-divisor in A, we have

^x^sfn(x„ ...,;r.)=o.
^==.y

Reducing modulo x,, we find /^, . . . , Xr) = o in A/r^A. Now since ^
is injective by the induction hypothesis, f,(X,, .. ., X,) = o, which is a
contradiction. Hence t == o and cp is injective.

Now to show A is Hat over T, we use the local criterion of flatness
([3], chap. Ill, § 5, no 2, theorem 1, (iii)) applied to the ring T, the
ideal J = (xi, . . . . Xr), and the T-module A. We must verify the four
following statements :

(a) T is noetherian (well-known).
(b) A is separated for the J-adic topology, i. e. F^ J ^ A = o. This

is true since JA is contained in the radical m of A, and F\ m^== o by
KrulFs theorem ([3], chap. Ill, § 3, n° 2).

(c) AfJA is flat over k = T/J. This is true since anything is flat
over a field.

(d) Tor^T/J, A) == o. To calculate this Tor, we use the Koszul
complex K.(X,, .... X,; T) ([4], EGA, III, 1.1) which is a resolution
of T/J since Xi, . . . . X/. is a T-sequence. Tor^T/J, A) is the Ith homo-
^gy group of the complex

K.(X,, . . . ,X,; T ) ^ ) T A = K . ( X , , . . . , . r , ; A ) .

But since Xi, - . . . , Xr is an A-sequence, this homology is zero in degrees i > o
([4], EGA, III, 1.1.4). In particular TorT(T/J, A) = o, which completes
the proof of the proposition.

COROLLARY 1. — With the notations of the proposition, let a and b
be any two ideals in T. For any ideal c in T, denote by cA its extension
to A. Then

(i) (a + b ) A = a A + b A ;
(ii) (a.b)A =(aA).(bA);

(iii) (anb)A =(aA)n(bA);
(iv) ( a : b ) A = ( a A ) : (bA).

(Recall that for any two ideals a, b in a ring R, a : b = { XG. R \ rr.b C a j .
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Proof. — (i) and (ii) are trivially true for any ring extension and are
repeated here for convenience, (iii) and (iv) are true for any flat ring
extension, (iii) is proved in ([3], chap. I, § 2, n° 6, Prop. 6).

To prove (iv), let z/i, . . . ,^ be a set of generators for b. Then

a : b = f \ (a : (yi)), and so using (iii) we are reduced to the case where b

is generated by a single element y. Now a : (y) is characterized by the
exact sequence of T-modules

o->a:(y)->T^TIa,

where the last map is multiplication by y. Tensoring with A we have
an exact sequence of A-modules

o-^(a: 0/))A-^A-^A/aA

from which we deduce that (a : (y)) A == a A : y A (Note that for any
ideal b in T, the natural map b (g)rA—^bA is an isomorphism, since A
is flat over T, so we identify the two).

COROLLARY 2 (Theorem of Rees). — Let A be a noetherian local ring
containing a field, and let J be an ideal generated by an A-sequence Xi, .... re,..
Then the images Xi, . . . , Xr of the Xi in the graded ring

go(A)=^J-/J^
n=0

are algebraically independent, so that gr./(A) is isomorphic to the poly-
nomial ring A/J[Xi, . . . , Xr].

Proof (see also [7], Appendix 6, theorem 3). — It is sufficient to show
that for each n, Jn|Jn+i is a free A/J-module, with the images of the
monomials in Xi, . . . , Xr of degree n for basis. It is clear that these
monomials generate Jn|Jn+i. To show they are linearly independent,
let z be a monomial of degree n in Xi, .. ., Xr, and let J ' be the ideal gene-
rated by all the other monomials of degree n and by J7^1. Then we
must show that J r : z = J , which follows from Corollary 1.

COROLLARY 3. — Let A be a noetherian local ring containing a field k,
and let rci, . . . , Xr be an A-sequence. Then any ideal of A generated by
polynomials in the Xi, with coefficients in k, is of finite homological dimension
over A.

Proof. — Using the notations of the proposition, any such ideal can be
written as a A, where a is an ideal in the polynomial ring T == A'[Xi,.... X/.].
Over T, a has a finite projective resolution ([7], chap. VII, § 13,
theorem 43)

o-> Ln—^.. .—^Li—^Lo—>- a —> o.
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Tensoring with A gives an exact sequence
o-^L, , (g )A—^. . .—^Li(g)A—^Lo0A->aA->o

which is a finite projective resolution of a A.
Remark. — A refinement of the proof of proposition 1 due to D. QUILLEN

allows one to dispense with the hypothesis that A contains a field, provided
that one is interested only in ideals of A generated by monic monomials
in the Xi. In particular this is sufficient for the result of Corollary 2,
and of Proposition 2 below.

As an application we give the following :

PROPOSITION 2. — Let A be a noetherian local ring containing a field.
Let I be a radical ideal in A (i. e. an ideal which is a finite intersection
of prime ideals), and let J be any ideal generated by an A-sequence whose
radical is I . Then, to within isomorphism, the A/I-module

M = Hom^(A/J, A/J)
is independent of J.

Example. — An interesting case (already known [2]) is that of a local
Cohen-Macaulay ring A, with I == m the maximal ideal. Then there
are ideals J generated by an A-sequence with radical nx, so that M
is defined. Its dimension as an A/m-vector space is an invariant of A,
which is equal to i if and only if A is a Gorenstein ring. (See [2], where
if n is the dimension of M, then A is called a MCn-ring. This number is
also the (< vordere Loewysche Invariante " of A/J in [6], p. 28, and is the
number e of the exercises in [5], § 4, p. 67.)

Proof of Proposition. — Let J be generated by the A-sequence X[, ..., Xr.
Then r is the height of J, and so is independent of J. We consider
the r111 local cohomology group (see [5] for definition and methods of
calculation)

H == H'^A) = limExt7 (A/J<^, A),
—>/t

where J^ = (x^, . . . , x'f). Using the Koszul complex K . (x ' i , ..., x^\ A)
to calculate the Ext, we find an isomorphism

cp, : Ext^A/J^, A) ̂  A/J.^)

which transforms the maps of the direct system into the maps
fn: A/J^-^A/J^1)

which are defined by multiplication by x'i - ' • Xr.
I claim that the maps fn are all injective. Indeed, it is sufficient

to see that
J^' : (.Tr. .Xr)=J^.
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This follows from Corollary 1 and the fact that the analogous relation
holds in a polynomial ring. Therefore we can write H as an increasing
union

H=.\jEn,

where En is the isomorphic image of AfJW in H. Furthermore, I claim
that for each n, En is the set of elements of H annihilated by J^. Indeed,
we have only to observe that for each n, k > o,

J(n+k) ; JW=(x^"Xr)k

which follows from Corollary 1 and the analogous formula in a poly-
nomial ring. Now since JCJ, anything in H annihilated by I is annihi-
lated by J\ Hence

M = Hom^(A/J, A/J) == Hom^(A/J, E,) = Hom^(A/J, H).

But by definition, H depends only on the radical of J [5], so we are done.
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