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Introduction. — This work is a further development and application
of the Fourier series method for entire functions introduced by the first
author in [5]. The idea which was presented there and is exploited
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further here is the following : if fis a meromorphic function in the complex
plane, and if

c,(r, f) = ̂  f\log | /-(re-9) |) 6-^d9
«- —7t

is the /c-th Fourier coefficient of log | f(re^) |, then the behaviour of f(z)
is reflected in the behaviour of the sequence j c^(r, f)} and vice versa.
We prove a basic result in theorem 4.6, which characterizes the rate of
growth of f in terms of the rate of growth of the c^(r, f) and the density
of the poles of f, generalizing theorem 1 of [5]. We apply this theorem,
as in [5], to obtain estimates for some integrals involving | f (z) \ and to
obtain information about the distribution of the zeros of an entire function
from information about its rate of growth.

By these means, we make a study of certain general classes of mero-
morphic and entire functions that include many of the classically studied
classes as special cases. Let ^(r) be a positive, continuous, increasing,
and unbounded function defined for all positive r. We say that the mero-
morphic function f is of finite ^-type to mean that there exist positive
constants A and B with T(r, f)^A^(Br) for r > o, where T is the
Nevanlinna characteristic. An entire function f will be of finite ^-type
if and only if there exist positive constants A and B such that

f(z) | ̂  exp (A ̂  (B \ z ])) for all complex 2.

If we choose ^ (r) = rP, then the functions of finite 7-type are precisely
the functions of growth not exceeding order p, finite exponential type.
We obtain here complete answers to certain basic questions about func-
tions of finite ~>-type. For example, we characterize, in theorem 5.2,
the zero sets of entire functions of finite 7-type. This generalizes the
well-known theorem of Lindelof that corresponds to the classical
case ~h (r) == rP. We obtain, in theorem 5.3, a corresponding result
for meromorphic functions. Then, in theorem 5.4, we give necessary
and sufficient conditions on ^ that each meromorphic function of finite
^-type be the quotient of two entire function of finite ^-type.

Further, we obtain, in theorem 5.7, a ( < generalized Hadamard product"
for entire functions of finite ^-type. It serves many of the same purposes
as the Hadamard canonical product, and is considerably more general.
In particular, if X satisfies some additional conditions, and if fis an entire
function of finite ?i-type, then there will be an unbounded set ̂  of positive
numbers R, and corresponding entire functions fp of finite ?i-type, such
that the zeros of /p are the zeros of f in the disc { z : \ z \ ̂  R} and such
that /R—^ fnot only uniformly on compact sets, but also in a way consistent
with 7. We call the sequence ( /p } the generalized Hadamard product.
This result has been used in an essential way by the second author [6]
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in proving that spectral synthesis holds for mean-periodic functions in
certain general spaces of entire functions.

The body of the paper is divided into five parts, the last two of which
contain the main results. The first three sections are concerned with
various elementary, although sometimes complicated, results on sequences
of complex numbers. The first section discusses the distribution of these
sequences. The <( Fourier coefficients " associated with a sequence are
defined in the second section and several technical propositions involving
these coefficients are proved there. The third section is concerned with
the property of regularity of the function ^, which is closely connected
with the algebraic structure of the field of meromorphic functions of
finite ^-type. The fourth section contains the generalizations of the
results of [5]. Finally, in the fifth section, the results about the distri-
bution of zeros, and the generalized Hadamard product are proved.

We urge that on a first reading, the reader read § 4 first and then § 5,
referring to § 1, § 2, § 3 for the appropriate definitions and statements
of necessary preliminary results. After this, the complex sequence theory
of the first three chapters will seem much more natural.

We shall use, for a function 9(r), the notation 0(^(r)) to denote a func-
tion that is bounded in modulus by Acp(r) for some constant A, and the
notation 0(^(0(r))) to denote a function that is bounded in modulus
by A cp (Br) for some constants A and B.

It seems clear that through much of this paper, the assertions about
entire functions can be replaced by corresponding assertions about
subharmonic functions, and the assertions about meromorphic functions
can be replaced by corresponding assertions about the differences of
subharmonic functions, without requiring any real change in the proof.
It is by now a standard procedure to replace the logarithm of the modulus
of an entire function by a general subharmonic function, replacing the
zeros of the entire function by the masses that occur in the Riesz decompo-
sition of the subharmonic function. For numerous reasons, though,
we have preferred to keep this paper in the context of entire and mero-
morphic functions.

1. An analysis of sequences of complex numbers.

We study here the distribution of sequences Z== { Zn}, n == i, 2, 3 , . . . ,
with multiplicity taken into account, of non-zero complex numbers z//,
such that Zn -> oo as n --> oo. Such sequences Z are studied in relation
to so-called growth functions ^. We denote by A and B generic positive
constants. The actual constants so represented may vary from one
occurrence to the next. In many of the results, there is an implicit
uniformity in the dependence of the constants in the conclusion on the
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constants in the hypotheses. For a more detailed explanation of this
uniformity, we refer the reader to the remak following proposition 1.11.

Let Z == { Zn { be a sequence of non-zero complex numbers such that
lim Zn == oo as n -> oo.

1.1. DEFINITION. — The counting function of Z is the function

n(r,Z)= ^ i.
I ^-n I ̂  r

1.2. DEFINITION. — We define
^nd, Z),,

N(r,Z)== -^di.
J Q

1.3. PROPOSITION. — We have

N(r,Z)= ^ ^g^T^™ I ̂  |

Proo/*. — Note that

2 log——=riog^)d[n(^Z)].
\^r [ z n { Jo v /

The proposition follows from an integration by parts.

1.4. PROPOSITION. — We have

n(r,Z)=r^N(r,Z).

Proof. — Trivial.

1.5. — DEFINITION. — We define, for k = i, 2, 3, . . . and r ̂  o,

^.^-4 2 (,1)'.
\^-n\-=r

1.6. DEFINITION. — We define, for k == i, 2, 3, . . . and fi, fs^o,

S(ri, r.2; k: Z) = 5(r.2; k : Z) — 5(fi; A:: Z).

When no confusion will result, we will drop the Z from the above
notation, and write n (r), S (r; k), etc.

1.7. DEFINITION. — A growth function ^(r) is a function, defined
for o < r < oo, that is positive, non-decreasing, continuous, and
unbounded.

Throughout this paper, A will always denote a growth function.
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1.8. DEFINITION. — We say that the sequence Z has finite ^-density
to mean that there exist constants A, B such that for all r > o,

N(r, Z)^A7(Br).

1.9. PROPOSITION. — If Z has finite ^-density, then there are
constants A, B such that

n(r, Z)^A^(Br).
Proof. — We have

n(r, Z) log2 ̂ r7 "^ d/^B (27-, Z).

1.10. DEFINITION. — We say that the sequence Z is ^-balanced to mean
that there exist constants A, B such that

( l . lO .z ) l^r.r^^^l^-A^+A^

for all r-i, r.2 > o and k := i, 2, 3, . . . . We say that Z is strongly ^-balanced
to mean that
(1 10 2^ S<r r ' k ' 7\ I ^ A ̂ ( î) , A ^(BrQH.iu.2^ A(ri., 7-2, /c.Z)[^ —^— + —^—

for all Fj, r.2 > o and k = i, 2, 3, . . . .

1.11. PROPOSITION. — If Z has finite ^-density and is ^-balanced,
then Z is strongly ^-balanced

Remark. — Using this result for illustrative purposes, we make explicit
here the uniformity that we leave implicit in the statements of similar
results. The assertion is that if Z has finite ^-density, with implied
constants A, B, and is ^-balanced with implied constants A', B ' , then Z is
strongly ^-balanced with implied constants A", B" that depend only
on A, B, A ' , B' and not on Z or ^.

Proof of 1.11. — We observe first that, if r > o, and if we let r ' ' = r^^
then

(l . l l . i ) S(r,r'; /Ol^3^?.

To prove this, we note that

S ( r , r ' ; k - ) ^-f'-dn(t),
v r

from which (l . l l . i) follows after an integration by parts. Now, for
7-1, r-2 > o, let r\ = r,^^ and ^ == 7*2 k1^. Then

| S(r,, r,; k) | ̂  5(r,, r,; A:) [ + | S(ri, r',; A-) + I 5(r2, ̂ ; /c)
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On combining this inequality with (l.ll.i), (1.9), and the fact that
]^/k^ ̂  ̂ Q have

S(r,, r,; k) [ ^1 S(r\, r.; /c) + ̂ A^r,) + ̂ A7(Br,).

But, by hypothesis,

| S(r\, r',; k) ̂  ̂  A ̂ (Br,) + ̂  A ̂ r,)

for k === i, 2, 3, ....

1.12. DEFINITION. — We say that the sequence Z is t-poised to mean
that there exists a sequence a of complex numbers a == } a/: }, A: == i, 2, 3,...
such that, for some constants A, B, we have, for /c == i, 2, 3, . . . and r > o,

A^CBr)
T k '(1.12.1) | a ,+^( r ;^ :Z)

If the following stronger inequality

(1.12.2) ^ + S ( r ' , k : Z ) ̂ ^^^k

holds, we say that Z is strongly '}-poised.

1.13. PROPOSITION. — If Z has finite ^-density and is ^-poised, then Z is
strongly ^-poised.

Proof. — The proof is quite analogous to the proof of 1.11, based on
the substitution r ' = r/c1^. We omit the details.

1.14. PROPOSITION. — A sequence Z is ^-balanced if and only if it
is ^-poised, and is strongly ^-balanced if and only if it is strongly ^-poised.

Proof. — We prove only the second assertion, since the proof of the
first assertion is virtually the same. If it is first supposed that Z is
strongly 7-poised, where { a / : } is the relevant sequence, then we have

| S(r,, r,-, k) | = S(r,; k) + ̂ —^—S(r,', k)
^\^+S(r;k)\+\^+S(r,;k)

so that Z is strongly ^-balanced.
Suppose now that Z is strongly 7-balanced, with A, B being the relevant

constants. Let

p(7) = inf \ p = i, 2, 3, . . . : lim inf ̂  = o I
( r>°° rf )

Naturally, we let p (^.) == oo in case lim inf )\ (^)|rp > o as r^ > oo for each
positive integer p. For i^k<.p(^), we have inf r-^ 7 (Br) > o
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for r > o. Thus, there exist positive numbers r/c such that

HBrk) A(Br)
n <2-^-

for r > o and i ̂ k < p(^). For k in this range, we define

(1.14.1) ^==—S(r,;k).

For those k, if there are any, for which k ^p(^), we choose a sequence
o < pi < 0.2 <... with p; ->ooasj-^oo, such that

T ^CBP/)/S-p-0-
For values of A-, then, such that k ̂  p (/), we define

(1.14.2) ^=lim—5(p/;A:) .
/-^ao

To show that the limit exists, we prove that the sequence i S ( o / ; k) ;,
j = i, 2, . . . , is a Cauchy sequence. Let

We have
^ = ̂ (P/; )̂ — 5(p,,; A-) == 5(p,,, p;; A:).

| A . i^-^^^P^) , A/(Bp;)I ^•y,/^ I := ——,—,—— + ——-—,——-
K^m A:?)

Since p^ p/^) for p ̂  i, it follows from the choice of the py that Ay.,,, -^ o
as j, m -> oo. We now claim that

I^+^A)!^3^^.— A:̂
For, if i ̂ k< p(/i), then

a.+ ^(r; A) | = | ̂ fa r; k) \ ̂  A^B^ + ̂ W ^ ̂ W
kr^ ^ — kr^

If k ̂  p (/), then

[a,+S(r;/c)|=lim 5(r, p,; ̂  | ̂ AA(Br) + lim sup AA(B^ = A^Br).
/-^- ^/l /-^oo " /cp) A•r^•

1.15. DEFINITION. — We say that the sequence Z is ^-admissible
to mean that Z has /zm7e ^-density and is ^-balanced.

In view of propositions 1.11 and 1.13, the following result is immediate.

1.16. PROPOSITION. — Suppose that Z has finite ^-density. Then the
following are equivalent :

(i) Z is ^-balanced;
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(ii) Z is strongly 7-balanced;
(iii) Z is t-poised;
(iv) Z is strongly 1-poised;
(v) Z is ^-admissible.

In proposition 3.3, we give a simple characterization of /-admissible
sequences in the special case A (r) == r?.

We next consider the effect that deleting from Z those finitely many
terms that lie in the disk { z : \ z | ̂  R} has on S(r,, r.,; k).

1.17. DEFINITION. — We define Z (R), for J? > o, to be the sequence
obtained by deleting from Z those terms of modulus not exceeding R.
That is,

Z{R)=Zr\[z:\z > jR; ,

and we call Z (R) the R-remainder of Z.

1.18. DEFINITION. — Let (^ be a non-empty set of positive real numbers.
The collection of remainders { Z (J?) : E e ̂  j is caZ/ed complete if ^ is
unbounded.

1.19. THEOREM. — Each strongly ^-balanced sequence Z has a strongly
7-balanced supersequence Z' such that n (r, Z ' ) = 0 (n (r, Z)) and such
that Z' has a complete set of remainders that are uniformly strongly
A-balanced. In the special case in which lim inf r-° 7 (r) == 30 for each

f-^x
positive number p, we may take Z' == Z. Jn ^e special case in which
logA^) is convex, we may take Z'=Z, and we may take the collection
of remainders to be { Z(R) == R ̂  R,} for some number J?o.

Before proving theorem 1.19, we derive first some elementary facts
about the behaviour of the functions r~^^(r) when A has a particularly
nice form. In the following, we will denote by u (x) the function defined
for — oo < x < co by u(x) = log /(e^). We observe that u is a non-
decreasing function.

1.20. LEMMA. — Suppose that u(x) == log A e^) is convex and that (T is
a positive number. Then the function /—^(r) decreases to its infimum
as r increases, and increases thereafter. If for some positive o- we have
lim sup /'-^(r) < GO, then there exists a constant M such that

7->^

/(sr) f^M^(r). Further, there is a positive number Ro such that for
every R ̂ Ro, there exists a positive number 0-== o-(J?) such that

W -inf^)R^^ 7^
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Proof. — Since u is convex and increasing, we may write

(x)==u(o)+ rh(f)dt,
^n

U (X) == U (0

where h is a non-negative and non-decreasing function. If x == log r,
then

^) = exp ju(o) + F(h(t)-a) dt\,
{ ^0 ;

from which the first assertion follows immediately. To prove the second
7/r^

assertion, observe that if lim sup —v^/ << oo, then h(t) must be bounded-
say h (0 ̂  C. Then

-^—) = exp ; u(x + log 2)— u(:r) j^exp { C log 2 ;.

To prove the last assertion, let Xo==\ogR and a == h(xo). Since A is
non-negative, non-decreasing, and not identically zero, it follows that
<7 is positive if R is sufficiently large. Then

...X-

(u(x)—ax)—(u(x,)—crx,)= ^ (A(0—cr)d^o.
x

Hence,
^CR) / / . . . , , , . . p Ur)—— = exp j u(Xo)—axo} =mf exp j u(x)—ax==im —^-'

JL\ x /•>0 f

Proof of theorem 1.19. — By hypothesis, there exist constants A
and B such that

(1.19.,) |Sfr,,,,;t:Z)^^+A^.
'1 ^2

Let J? and o- be positive numbers for which

HBR)_ HBr)
R- >o ^ •

We claim that then

H 1Q ^ I Sfr r - k • Zf7?^ I ̂  ̂ ^^^ + 2A^Br2)^i. iy. 2; \ ̂  (Ti, r.2.., / c . L, {n)) \ ̂  —-j^— -t- —^—

If ri ^r.2 ̂ R, then S(r^ r.2; k : Z(R)) == o and there is nothing to prove.
If R ̂  Fi ̂  r,, then

5(ri, r,; /c : Z(jR)) = S(ri, r,; A : Z)
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and so (1.19.2) follows from the inequality (1.19.i). If r^R^r.^
then

| S(r,, r,; k : Z(R))\ = | S(R, r,; k : Z) [,

which, by (1.19. i) does not exceed

A^(BrQ A^(BR)
kr^ + ~TR~

However, if k ̂  o-, then

7,(BR) ̂  ^(BR) _i_ ^(Br,) i __ ^ (Br,)
^ — R^ R-^— r? r^~ rf

On the other hand, if k ^- a, then

HBR) ̂  -^(BR) _i_ HBr,) i ^ /(Br,)
^ — R^ J?/-(7— r? ri-^" ri

Thus,

^^^maxf7^0 ^^2^_^_^max^-^-,-^-^

and (1.19.2) follows.
Let us now consider the case in which, for each p > o, lim r~~P 7 (r) == oo

as r —^ oo. We define, for a~ >> o,

„ ( „ ^(BR) . ^(Br)}J?,=supjJ?: ̂ ^ =mf-^^

We have -Rcr > o since ?i is continuous. If ^ > o- and -R ̂  J?^, we have

(̂BJ?) ̂  ^(BJ?) i ^ 7(^J?^) i _ ^(BR^)
R^ ~ R^ R^— R^ ^/-(T~ J?5

It follows that Ry is a non-decreasing function of o". Further
if R^Ra, then ^(R)/^^ HR^IR^ so that

^R)^/^y
^(J?.)-YJ?J '

and it follows that R^ is an unbounded function of o". If we now let

. ̂  j^ > o: ̂ ) = inf 7(5r) for some a>o\,
( -n r>o r )

it follows from (1.19.2) that { Z ( J ? ) : - R € ^ J is a uniformly balanced,
complete set of remainders of Z. The last assertion of the theorem follows
from lemma 1.20 which states that ^^{ R: R^Ro} for some positive
number -Ro.
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We next consider the case in which
lim inf r~~i1 \ (r) == o as r -> oo for some p > o.

Let p (/) denote the smallest positive integer for which this holds. Let ^
be any unbounded set of positive real numbers such that

,. 'k(BR)
^7^-°
RC^

and such that for all R € cK,

^-in,;^-^!.

Since lim inf ^~P{/)^(B^) == o as r —^ oo, there is at least one such set dL
The hypothesis that log ^ (e^) is convex implies that we may take
<^.== { R: R > o }, since r-P^l^Br) must decrease to o at oo. We
construct Z' as follows. Let GL> be a primitive p(^)-th root of unity,
say GO == exp(27Ti7p(^)). Let GO-^'Z denote the sequence ! c^-^ z//;,
n = i, 2, 3, . . . , and then let

/?(/.)-!

Z ' = \J C '̂Z.

/=0

It is clear that n(r, Z') = p(7) n(r, Z). Further, we have

(^(A)- l \

S(fi, r,; k : Z') = ^ ̂  ) S(r,, r,; k : Z).
/=o /

Consequently, for k == i, 2,..., p(?i) — T , we have that 5'(fi, r.2; k: Z) = o
since the sum in parentheses is o for such values of /c. From the above
equation, it also follows that

\ S ^ r , ' , k : Z f ) \ ^ p W \ S ( ^ ^ , ; k : Z ) \

for all positive integers k. To prove, then, that { Z ' ( R ) : J?e^ } is a
complete set of uniformly ^-balanced remainders of Z', it is sufficient
to prove that (1.19.2) holds for k^p(V) and for every -Re^. As we
have seen above, (1.19.2) is trivial unless r^^R^r.^, in which case

|S(/•„r,;/c:Z(J^))i=lS(R,r.;/c:Z)|^A^)+A^rL)•

However, in this case k ̂  p(^) and ri^ R, so that
A(BR) __ KBR) i ^(Bn) i ^ ^(Br,)

J^ ""' '~RP^~ R^-PC^) —— ' ^(A) ' jr-^-^(A) '~ ^(A)

Hence (1.19.2) holds, and the proof is complete.
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2. The Fourier coefficients associated with a sequence.

We now present the sequence of so-called Fourier coefficients associated
with a sequence Z of complex numbers, and study its properties. We will
use it in § 5 to construct an entire function f whose zero set coincides
with Z, and to determine some properties of entire and meromorphic
functions whose growth is restricted. The reason for calling them
<( Fourier coefficients " will become apparent on comparing their defini-
tion with lemma 4.2 of section 4.

2.1. DEFINITION. — We define, for k = i, 2, 3, ...,

S ' ( r ; k : Z ) = ^ ̂  (I-)'
\^n\^r

S ' ( r ; k : Z ) = ^ ^ (^
\^n\^r

2.2. PROPOSITION. — We have

^(r;/c:Z) ^^N(er,Z).

Proof. — It is clear that \ S ' ( r ' , k : Z ) ^n(r)/A:, and we also have

^)^f n(ftdt=N(e^).
J,. L

2.3. DEFINITION. — Let a = = { a / : j , /c=i , 2, 3, ..., be a sequence
of complex numbers. The sequence { c^(r; Z : a) j , k = o, ± i, ± 2, ...,
defined by

(2.3.i) Co (r; Z : a) == Co (r; Z) = N(r, Z),

(2.3.2) c,(r; Z : a) = - i a,+ S(r; k : Z)f
2

—'^(r^iZ) for k=i, 2, 3, ...,

(2.3.3) c,(r;Z:a)=(c,(r;Z; a)/ for k == i, 2, 3, ...,

where * denotes complex conjugation, is said to be a sequence of Fourier
coefficients associated with Z.

2.4. DEFINITION. — A sequence {c/:(r; Z : a ) } of Fourier coefficients
associated with Z is called A-admissible if there exist constants A, B such
that

(2.4. i) [ c,(r : Z; a) | ̂  ̂ ^ (k = o, ± i, ± 2, ...).

2.5. PROPOSITION.— A sequence Z is ^-admissible if and only if there
exists a ^-admissible sequence of Fourier coefficients associated with Z.
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Proof. — Suppose that Z is ^-admissible. Then by 1.16, Z is strongly
/-poised. Let a = (^-), k== i, 2, 3, ..., be the relevant constants, and
form { Ck(r; Z : a) j from them by means of (2.3. i)-(2.3.3). Now (2.4. i)
holds for k = o and some constants A, B since Z has finite 7-density.
For k = ± i, ± 2, ±: 3, ..., we have

[ c,(r; Z : oc) | ̂  ̂  [ a,+ S(r; k) | + ^ [ ^(r; A) ].

Then an inequality of the form (2.4. i) holds by proposition 2.2 since Z has
finite ^-density, and because Z is strongly ^i-poised with respect to the
constants { o ^ j .

On the other hand, suppose that (2.4.i) holds. Then

N(r)==c,(r)^At(Br\

so that Z has finite ^-density. Moreover,

^ (^ + S(r; )̂) = c,(r; Z : a) + ̂  S1 (r; k)

.AUBr) N(er) ^A^(eBr)^-p^ri+-27r^—k—?

so that Z is strongly ^-poised. By proposition 1.16, it follows that Z is
/-admissible.

2.6. PROPOSITION. — Suppose that Z and a={^} are such that
Ck(r\ Z: a) \^A^(Br). Then { c^(r; Z : a) } is 7-admissible. In parti-

cular, there exist constants A', jB', depending only on A, B, such that

[c^Z:^^^)
|^|+i

Proof. — For k = i, 2, ..., we have

(2.6. i) | c,(r) ] ̂  ̂  [ a, + 5(r; )̂ I + ^ | ̂ (r; /c) ]

and

(2.6.2) ^ ] a,+ S(r; )̂ | ̂ [ c,(r) [ + ^ | ̂ (r; /c) [.

Since Co(r)=N(r)^A?i(Br), Z has finite 7-density. Then by (2.2),
\ S ' ( r ; k)\ ̂ ( i/A:) 0(^(0 (r))) uniformly for k==i, 2, 3, . . . , by which we
mean that there are constants A / /, B" for which | S ' (r, k) \ ̂  (i fk) A " ) (B" r).
From our hypothesis and (2.6.2), it then follows that

rk\^k+ S(r; k) \ = 0(^(0(r))) uniformly for k > o.
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Then by proposition 1.13, we have that

r^^+S^; k)\^^00.{0(r))) uniformly f o r A - = i , 2 , 3 , ....
K.

Then, using (2.6. i), we have

^(r) | ̂  - 0(^(0(r))) uniformly for k = i, 2, 3, ....

Since c_^(r) = (Ck(r))\ and since Z has finite upper /-density, the propo-
sition follows immediately.

2.7. DEFINITION. — The quadratic semi-norm of a sequence
[ Ck(r; Z : a )} of Fourier coefficients associated with Z is given by

£,(r;Z:oO=j ^ Ic^Z:^^.
(^=-00 )

2.8. PROPOSITION. — The Fourier coefficients { c/c(r; Z : a)} are
A-admissible if and only if E.z (r; Z : a) ̂  A t (Br) for some constants A, B.

Proof. — First, if
, / „ ., A^(B,r)]c,(r;Z:a)[^-^A

then £.2 (r; Z : a) ̂  A / (Br), where B == Bi and
A=A- 2 (^y

V k := — oo

On the other hand, suppose there are constants A, B for which
E^(r\ Z: a)^A/(J3r). Then it is clear that i c/,(r; Z : a) ] ̂ At(Br)
so that by proposition 2.6, { C k ( r ; Z : a)) is ^-admissible.

The next result will be used in § 5 to help develop the so-called genera-
lized Hadamard product.

2.9. THEOREM. — Suppose that Z is ^-admissible. Then there exist
a ^-admissible supersequence Z'^Z and a complete, uniformly ^-balanced
set of remainders of Z1, { Z ' (R) = Re ̂  }, and a family {a(R) j,
a(J?) == { ak(R) }, k == i, 2, 3, . . . , -Re cR, of sequences of complex numbers
such that
(2.9.1) \c,(r;Zf(R):^R))\^A^I^ (k= o, ± i, ± 2, . . . )

for some constants A, B, and further that
(2.9.2) lim Ck(r; Z1 (R) : a (R)) == o

7?>00

^€^1


