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ON THE SEMISIMPLE DEGREE OF SYMMETRY

BY

DAN BURGHELEA and REINHARD SCHULTZ (1)
[Bucuresti], [Lafayette, Ind.]

ABSTRACT. - One defines the semisimple degree of symetry Ss (M) for a compact
manifolds M", as the heighest dimension of all compact semisimple Lie groups acting
effectively on M"; one recognise the manifolds M" with small 5', (M") in terms of the cup-
length.

RESUME. — On introduit Ie degre semisimple de symetrie Ss (M) d'une variete compacte
M, comme la plus grande dimension des groupes de Lie compacts et semisimples qui
agissent effectivement sur M"; on donne des conditions en termes de longueur des cup-
produits permettant de majorer Ss (M).

For any compact topological (differentiable) manifold one defines the
topological (differentiable) degree of symmetry as in [3] to be
S (M) = sup { dim G', G compact Lie group acting topologically and effec-
tively on M"} (resp. 5^ (M)), and the semisimple degree of symmetry is
similarly defined: 8s (M) = sup { dim G; G compact semi simple Lie group
acting topologically and effectively on M ] (resp., S^ (M)).

If AT is differentiable, then S^ (M") ̂  S8 (M") and ̂  (M") ̂  S (M"). By
[7] (p. 243), (^^(M^^M^^+l)/! These numbers are
further related as follows:

PROPOSITION 1. - S (M") - 3s (M") ̂  n (resp. ̂  (M") - S^ (M") ̂  n\
and if S^M^-S^M") = n then M" is homeomorphic (dijfeomorphic) to
the torus T".

0 This paper was writen while the first named author was visiting at University
of Chicago and Universite de Paris-VII; and the second named author was partially
supported by National Science Foundation Grants GP-19530A2 and MPS74-03609.
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434 D. BURGHELEA AND R. SCHULTZ

This is a consequence of the following three observations:

1° Every compact connected Lie group has a finite cover of the form
Sx T^ with S semisimple.

2° If a group acts almost effectively, so does every subgroup.

3° It 7^ acts almost effectively on a connected manifold M, the principal
orbit theorem implies that almost all orbits are ^-dimensional and (hence)
dim M ̂  k.

The following facts suggest some differential-geometric interest in the
computation of S8 (AT):

(a) If M" is a differentiable manifold with S^ (M") = 0 then for any
riemannian metric on M" two infinitesimal isometries X, Vhave [X, Y] = 0
(for the connected component of the isometry group is a torus).

(b) If S^ (M") ^ 0, M" admits a riemannian metric with positive scalar
curvature.

Part (a) is obvious, and Part (b) is due to Lawson and Yau [5]. The
purpose of this note is to give simple criteria in terms of rational (or real)
cup length to estimate 8s (M"), and in particular recognize manifolds
with S8 (M") = 0. These criteria are furnished by proposition 2. The
cup length criteria parallel those of [3] (theorem 2), but the results obtained
here are somewhat different.

DEFINITION. - We say M" has abelian symmetry if S55 (M") = 0, and
AT has strong abelian symmetry if 8s (M") = 0 and for any effective action
of a compact Lie group the isotropy groups are finite.

THEOREM A. — Let Mn be a compact connected manifold and suppose
there exist W^, ..., W^ e H1 (M; R) with W^ u . . . u W^ ^ 0. Then
S8 (M") = 0; moreover M" has strong abelian symmetry.

Theorem A generalizes some results of S.-T. Yau [9], who proved the
result for smooth actions (using harmonic forms) and for topological S1

actions having fixed points (using the Gysin-Smith sequence [2]). Proofs
of Theorem A have also been independently obtained by J.-P. BOURGUI-
GNON and F. RAYMOND.

Example. - T" # M" (M" any orientable manifold) has strong abelian
symmetry. Thus n even and ^ (M # T") ^ 0 imply S (M # T") = 0.
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THEOREM B. — Let M" be a compact connected manifold and suppose
there exist W^, . . . , W^^ e H1 (M; R) and C e H2 (M; R) with W^
W1 u . . . u M^_2 u C ̂  0 and
(*) ^*(M; R) ̂  Jf*(51; 2^) ®B, f = 2,3,
H^/? 2? a Poincare duality cohomology algebra. Then S " (M") = 0.

In the differentiable category we can replace (*) by
(**) At least one rational characteristic number is nonzero.
This also true for locally smooth actions [2], but we shall not prove this
generalization.

Example. - T n ~ 2 x S 2 # M n with Mn an oriented manifold and
H * (Mn;R) ̂  H^ {Sn;R) obviously satifies the hypotheses and has abelian
symmetry but not necessarily strong abelian symmetry. For example
T n ~ 2 x S 2 # T""2 x 5'2 carries an effective S ^action with nonempty fixed
point set. To construct this action, let S1 act on T n ~ 2 x S 2 via I x u ,
where ^ is the standard linear action of S1 = SO^ on S2; since the fixed
point set of this actions is T"~2 x { ± N ] , where N is the north pole of
S2, we can form the equi variant connected sum of two copies of this action
at (1, N). This gives a smooth ^-action on T"~2 x S2 # T"~2 x S2 which
has fixed points.

THEOREM C. — Let -M" be a compact connected manifold. Furthermore,
assume % (M") is odd and there exists W^y .. .,Wn-3 e H1 (M; R) and
C e H3 (M; R) with W^ u . . . u ^.3 u C ^ 0. Then 8s (M) = 0.

Proofs. — The proofs of A, B, and C, are pleasant consequences of the
following :

PROPOSITION 2 : [(^) Let [i : S1 x M" -> M" be a nontrivial action on a
connected manifold and suppose that for any x e M",

a, .•^-^(^^c:^

induces the trivial homomorphism H1 (M; R) —> H1 (S1; R). Then for
any W^, . . . , W^ e H1 (M; R), we have W^ u . . . u W^ = 0.

(V) Let G be a compact semisimple Lie group and [i: Gx M" -> M"
be an action on the connected manifold M". Let k = dim G/HQ where HQ
is the minimal isotropy group. Assume that, for any point x e M",
o^ : G/G^ -> M induces the trivial homomorphism H^ (M; R) -> H^ (G/G^; R)
then, for any W^, .... W^ e H1 (M; R) and C e H1' (M; R), we have

W^u . . . u T ^ _ f e U C = 0 .
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436 D. BURGHELEA AND R. SCHULTZ

COROLLARY 3. - The conclusions of proposition 2 hold if, for one x, the
map ^ : G/G^ -> \i (G, x) c M induces the trivial homomorphism
a; '.H^M; R)-.Hk(G|G,; R). In particular, this is true if ^ has
orbits of different dimensions.

The corollary follows immediately using the connectedness of M, the
principal orbit theorem, and the existence of slices (see [I], [2]).

We shall first derive theorems A-C from proposition 2 and corollary 3,
after which we shall prove proposition 2.

Proof of theorem A. — If G is a compact semisimple Lie group, and
[i: GxM" -^ M" is sin action, then p, restricted to any S1 x M" -> M" (S1 is a
subgroup in G) is trivial by proposition 2; for the homomorphism
^'.H^M; R^H1^1; R) factors through H1 (G; R), which is zero.
Furthermore, if G is a torus then all orbits have the same dimension by
corollary 3, and hence all isotropy subgroups must be finite if G is effective.

Proof of theorem B. - Because any compact semisimple Lie group
contains a 3-dimensional compact semisimple Lie subgroup, it is enough
to prove that any [i: S3xMn -> M" is trivial provided Mn satisfies the
hypotheses of theorem B.

If the action has at least two orbits of different dimension, then by pro-
position 2 the action has to be trivial. So assume that all the orbits of
the action p : S3 xM" -» M" are 2-dimensional. If o^ : S 3 / S 3 -> M"
induces the trivial homomorphism o^ : H2 (M"; R) -> H2 (S3/S3,; R) the
action is trivial by proposition 2. If not a^ : H* (M"; R) -> H * ( S 3 ^ S 3 ' , R)
is surjective for all x, and every isotropy subgroup is conjugate to S1. In
this case, M -> M/S3 is a sphere bundle whose fiber is totally nonhomolo-
gous to zero. Therefore

^*(M; R) = (53/^3 ; R) ®^*(M/53; R) == H^(S2; R) ®^(M/53; R).

which by (*) is not possible. Also, M bounds MX go D3, which contra-
dicts (**). In the case when all orbits have dimension 3, a similar ana-
lysis (2) shows

Jf*(M; R) = H3^3; R) ®^*(M/53; R)

contradicting (*). If M is differentiable, since M/S3 is suitably triangu-

(2) Although M WMIS3 is not a fiber bundle, it behaves in real cohomology as if
it were one since the orbits are all real cohomology spheres.
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lable it follows that the mapping cydinder of/: M -> M/S3 is a triangu-
lated rationnal cohomology manifold with boundary M. Hence all ra-
tionnal characteristic numbers of M must vanish; but thiscont radicts (**).
Hence [i must be trivial.

Proof of theorem C. — Let [i : S3 xM" -> M" be an action. If [i has
a 3-dimensional orbit, then by the cup product hypothesis proposition
2 and corollary 3 all orbits must be 3-dimensional. But in this case, the
Leray spectral sequence implies % (M) = ^ (M/S3) % (^3) = 0 as before;
since ^ (M) is odd, p, has no 3-dimensional orbits.

Since all orbits have dimension 0 or 2, the classification of subgroups
of 5'3 implies that the S3 action reduces to an SO^ action, each orbit of
which is either a fixed point, RP2, or 5'2. If [i is nontrivial, the orienta-
bility of M" implies that S2 is the principal orbit type. On the other hand,
if [i is nontrivial there must also be nonprincipal orbits; for otherwise,
M would be an S 2 bundle over M/SO^, so that / (M) = % (M/SO^) ̂  (S2)
would be even.

Let F be the fixed point set of SO^, and let E be the union of the RP2

orbits. We claim that

^(E',Z,)=^F;Z,)=O,
and F contains no limit points of E (assuming ^ is nontrivial). If this is
true, then of course

/(M) = x(M; Z,) = x(M, £uF; Z,);

on the other hand, (M, (E u F)) is a relative S2 bundle and hence
% (M, E u F; Z2) is even, a contradiction since % (M) is odd. Hence
[i is trivial if the above claim is true.

If H is a smooth action, we may prove the claim as follows: By the prin-
cipal orbit theorem the local representations of SO^ at points of F all have
SO^ as their principal isotropy subgroup. Since the only such repre-
sentation (up to equivalence) is the usual one on R3, it follows that every
component of F has codimension 3 and F contains no limit points ofE. Sin-
ce x (At") is nonzero, n must be even and n — 3 must be odd; hence % (F) = 0.
On the other hand, by the differentiable slice theorem, an RP2 orbit has an
invariant tubular neighborhood of the form ^x^ V for some Z^-repre-
sentation V\ let VQ be its fixed point set. Since RP2 is nonorientable but
M" is orientable, dim F-dim VQ must be odd. It follows that E is also a
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union of closed submanifolds each having odd codimension (hence odd
dimension), so that % (E) = 0.

A similar sort of argument applies to topological actions. The local
analog of some results due to W.-Y. HSIANG ([4], p. 346-349) shows that
F is a union of closed Z-cohomology (^-3)-manifolds, so that

X {F) = x (F; Z,) = 0

still holds. In addition, the proof of [4] (Proposition 3, p. 348) shows
that F contains no limit points of E. The topological slice theorem implies
that every RP2 orbit has a neighborhood of the form S2x^V for some
Z-cohomology manifold V\ let VQ be its fixed point set. The cohomolo-
gical characterization of orientability, and P.A. Smith theory again
imply VQ is a Z^ — cohomology manifold and coh dim F-coh dim VQ is
odd. Thus E is again a union of closed odd-dimensional Z^-cohomology
manifolds, so that % (E; Z^) is still zero. This completes the proof of
theorem C.

Proof of proposition 2:

(a) Looking at the Leray spectral sequence E^ => H * (M; R) associa-
ted to/; M -^ M/S1 it is easy to see that any 1-class has filtration ^ 1
since H1 (M; R) -. H1 (S^S^; R) is trivial (because the edge map
H1' -. E^ c Ey = r(Rkf^ R) sends a class w into the section
S(x) = w\Hk (Gx)). Thus the long cup product has filtration ^ n. Since
E^^ = 0 for p ^ n-1 +1 = n, the cup product clearly vanishes (See [8],
XIII, for the relevant multiplicative properties).

(b) If G is compact semisimple, the Leray spectral sequence E^ has the
line q = 1 consisting of trivial groups because H1 (G/G^; R) = 0. Hence
1-dimensional classes in H1 (M; R) have Leray spectral sequence filtration
^ 1. On the other hand, because H^ (M; R) -. H^ (G\G^; R) is
zero every /^-dimensional class also has filtration ^ 1 (look again
at the edge map Hk -> E0^ <= E^ = T(Rk(f^ R)). Thus the cup
product has filtration ^n-k+l(n= dim M). Since E^^ = 0 for
p ^ dim M/G+1 == n—k+1, the cup product under consideration clearly
vanishes.

Addendum on Massey products. - In [9], YAU points out the following
strengthening of proposition 2 (i): If 7^ acts effectively on M", and

H1 (M"; R) -> H1 (T^- R)
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is trivial, then all higher order Massey products involving monomials in
H1 (M"; R) are trivial provided the degrees of any two successive ones are
^ n -k+1. Our methods also yield this. For the strengthened hypo-
thesis implies that E^1 = 0 in the Leray spectral sequence for AT -> Mn/Tk,
and hence the edge map H1 (M"/! ;̂ R) -, H1 (M"; R) is onto; but
the corresponding Massey products in H * (M"/^/.^) are all defined and
trivial since the latter cohomology vanishes above degree n — k = dim Mn/Tk.

Of course, all Massey products in H " (M"; R) are trivial since the inde-
terminacy is total by Poincare duality. However, it does not seem that
further triviality conditions for Massey products are obtainable, even when
such products are always defined. For example, Poincare duality and pro-
position 2(i) imply that every product W^, . . . , W^-^ is zero, and hence
the Massey product

<T^, W^ ..., W^ ^Oejr-^M";^)

is always defined. However, one can construct M" with a free S1 action
and a nontrivial Massey product of the above sort as follows: Let n ^ 4,
and choose generators ^i, . . . , ̂ -i,/i, .. .,/„-! of H1 (T"-1 #Tn~l; R)
so that the e ' s come from the first T""1 summand, the/'s come from the
second, and

o^n^-n^-iV.
Take M" to be the principal S1 bundle with Euler class/i/^, and let

n :M" -^ T""1 # T""1

be the projection. Then the Massey product

<7l*^, 7T*(^, . . ., ^_,), 7l*/, ̂ iT-^M"; R)

is nontrivial; this follows easily from the fact that suitable Massey products
in (£2, d^) of the Serre spectral sequence pass to Massey products in
H * (M"; R) (the argument of [6] (Theorem 4.1) is applicable).
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