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HEIGHTS IN NUMBER FIELDS
BY

STEPHEN HOEL SCHANUEL (*)
[State University of New York, Buffalo]

RESUME. — Soit K un corps de nombres de degre N sur les rationnels, et H^ la hauteur
relative a K, des points de 1'espace projectif de dimension m — 1. Soit K (B) Ie nombre
de points dans cet espace projectif de hauteur ^ B. On demontre Ie comportement
asymptotique 'k(B) ~ CB"1 + OCB"'"1^) ou C est une constante qu'on determine
explicitement en fonction des invariants classiques de K (discriminant, nombre de classes
d'ideaux, regulateur, racines de 1'unite). Dans Ie cas m == 2, N = 1, il faut remplacer
Ie terme d'erreur par 0 CBlog B). La demonstration se fait en comptant les points entiers
dans 1'espace affine et en divisant par 1'action des unites, puis par 1'action des ideaux
principaux.

ABSTRACT. — Let K be a number field of degree N over Q, and H^ the height relative
to K of points in protective space of dimension m — 1. Let ̂  (J5) be the number of points
in this projective space of height ^ B. We prove the asymptotic behavior
K (B) ~ CB"1 + 0 (B"1-1^), where C is a constant depending on the classical invariants
of K (discriminant, class number, regulator, roots of unity). In the case m == 2, N = 1,
one must replace the error term by 0 (B log B). The proof is done by counting integral
points in affine space and by dividing by the action of units, followed by the action of
principal ideals.

Introduction

In Diophantine geometry [5], LANG raises the problem of estimating
the number of points in projective spaces, rational over a given number
field K, of height at most B. The main result of this is Theorem 3, which
asserts that the number of such points is C^+0 (^m-l/N) where m-1
is the dimension of the projective space, N the degree of K over Q, and C
is a constant (depending on K and m) expressed in terms of classical
invariants of K.

(*) Texte recu Ie 16 mai 1978.
Stephen H. SCHANUEL, Mathematics Department, State University of New York

Buffalo, N.Y. 14215 (Etats-Unis).
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434 S. H. SCHANUEL

The basic idea its to study points with integral coordinates in affine
w-space, and divide by the action of the units; then divide by the action
of the principal integral ideals.

One counts integral points modulo units by an extension of the
(DEDEKIND-WEBER) technique used to estimate the number of integral
ideals of norm ^ B. The problem reduces to a geometric one: estimate
the number of lattice points in t A, where A is a bounded domain in Euclidean
space, and t a large real number. The division by principal ideals is accom-
plished by an appropriate formulation of the Mobius inversion formula,
coupled with some elementary estimates of partial sums of Dirichlet
series.

This outline is oversimplified in two respects. One must count points
with coordinates in a fixed ideal, modulo units; this differs only trivially
from counting integral points modulo units. In the inversion, one inverts
over all ideals, rather than just principal ideals. This has the advantage
of rendering the inversion easier, and leading to a stronger result.
Points in projective space are counted one class at a time, the class of a point
being the ideal class of the ideal generated by the coordinates of the point.

I am indebted to Serge LANG, whose assistance and encouragement
have been invaluable.

1. Integral points modulo units

Let K be a number field, i. e. a finite extension of the field Q of rational
numbers, of degree N over Q. A divisor b on K is a pair b = (a, B),
where a is a non-zero fractional ideal of K, and B a positive real number.
The divisors form a group D under component-wise multiplication, and
are partially ordered by: (a, B) ^ (a', B ' ) means a c= a' and B ^ B ' .
The norm of b, written || b |[, is 2?Na~1, where Na denotes the ordinary
norm of the fractional ideal a. S^ denotes the set of archimedean absolute
values of K, normalized to extend the ordinary absolute value on Q. For
v e 5'oo? Ny is the degree of the completion Ky over R, and | x |y = v (x).
To avoid numerous exponents, || x ||y is used to abbreviate | x j^, for x
in K^.

Let m be a positive integer, and K"1 the cartesian product Kx . . . x K
To any point X in A^—O"* we associate a divisor

^=([X],H^X),
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HEIGHTS IN NUMBER FIELDS 435

where:
[X~\ is the ideal generated by the components of X, and

^oo^=rL^sup,i|z,ii,.
For m = 1, the map K * — > D by xi->b^ is a homomorphism, with

kernel U, the group of units of K, and image the principal divisors.
Principal divisors have norm 1, so that || b || depends only on the class
of b modulo principal divisors. The set of X in K"1—^"1 satisfying
b^y ^ b, for fixed b, is stable under componentwise multiplication by
units; we denote the orbit set mod U by Z/"(b), and the cardinality of
Z/^b) by ^(b). Then ^w (b) depends only on the class of b, since
multiplication by x e K^ induces a bijection L"1 (b) —> L"1 (b^ b).

For m = 1, we have a classical estimate for 'k. Namely 'k1 (a, B) is
the number of principal ideals contained in a with norm at most B, and the
Dedekind-Weber Theorem asserts that

).1W=KM+0(M1^N^
where x is a constant depending only on K (cf. [8], [3]). Our first object
is to extend this Theorem.

THEOREM 1:
^(b)==^||b||m+0(||b||m-<l?)

where the constant x^ is given by

mwv"^
^d w

The notations are classical:
r, is the number of v e Sy^ with N^ = /;
r = r^r^-l;
d = the absolute value of discriminant of K,
R = the regulator of K,
w = the order of the group of roots of unity in K,
N = degree of K over Q.
The 0 ( ) is to be interpreted for [ [ b |] —> oo. More explicitly, there

exists constants C1 = C1 „- such that for || b || > C1:&. f M 1 1 1 1

|^'"(b)-^||b||ffi|<C2||b||»-(l?.
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436 S. H. SCHANUEL

Let a^, . . . , a/, be a set of representatives for the ideal classes. Then
any divisor can be adjusted, by multiplication by a principal divisor, to
the form (a,, B) for some i. Since V (b) and [| b || depend only on the
class of b, we see that it will be enough to prove :

For a a fixed integral ideal

^(a, E) = ̂ (Bm-} +0(5W-<1W).
\Na/

We shall prove the Theorem in this form. First we reduce it to a problem
of counting lattice points in a certain bounded domain in the Euclidean
space R .̂ We estimate this by parametrizing implicitly the boundary
of the domain. Portions of the proof carry over almost verbatim from
the known case m = 1.

The following agreements will be in force for the remainder of this
section: K, m and a are fixed; (a)"* denotes w-tuples of elements in a. The
index v ranges over S^ the index ; over the set { 1, . . . , m }. Thus K^
is identifiable with R or C, with ambiguity only up to complex conjugation;
we fix an identification. Whenever convenient we identify C with the
Euclidean space R2 in the usual way. Uis the group of units, Wihe group
of roots of unity. R+ is the multiplicative group of positive real numbers;
R4- = R + U { 0 } .

Let A be a set, G an abelian group operating on A; H is a subgroup of (7.
We say G is effective mod H (on A) if ga = a implies g e H. A subset S
of A is fundamental mod H (in A) if:

1° S is 77-stable (hs e S for h e H, s e S),
2° GS = A,

3° g S n S is empty for g (/: H.
If G operates on both A and A ' , then a map 0 : A —> A is called a

G-map if it commutes with the action of G. The following Lemma is
immediate from the definitions.

LEMMA 1. - Let 0 : A —> A be a G-map, H a subgroup of G. If G
is effective mod H on A, then it is effective mod H on A, If A <= A if
fundamental mod H, then so is <D~1 A <= A.

In particular, if A is a commutative semigroup with unit, any homo-
morphism a : G —> A induces an operation of G on A by ga = a (g) a;
G is effective mod H if the kernel of a is contained in H. If 0 : A —> A
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HEIGHTS IN NUMBER FIELDS 437

is a semigroup homomorphism such that (Da = a', then it is a G-map.
In our applications, G will always be the group U of units of K, and H
will be the subgroup W of roots of unity.

Embed K in ]~[v e Soo K^ by x 1-> (x' . . . , ^); the image of a is a lattice
in R^ of determinant N a ̂ /d^2.

The diagonal embedding of U in Hi, ̂  is a semigroup homomorphism,
so U operates on ]~jy ̂ . We want to choose a fundamental set mod W
for the (7-stable subset rLW""0^- For this we need the ^^wing
Theorem.

UNIT THEOREM. - Map

U-^^^y^2 by u^(\og\\u\\,).

This is a homomorphism, with kernel W and image a lattice of maximal
rank r^ + r^ — 1 in the hyperplane H defined by ^ y^ = 0.

Define
TI : FLa^-O") -> n.R. by 11 = (ii,),

where T[^ : K^-^->R is given r|,(Z) = log sup, || ̂  ||y. This is a
(/-map (but not a semigroup homomorphism because of the sup). Let
pr :Y\R^ —> H be the projection along the vector G/Vy), also a (7-map.
More explicitly

_ / 1 ^ \
y ( _~ ' Z^weSao Yw P\N )(p^y)v == ̂ - (-.S^esoo ̂ )^-

\N

(The reason for this particular projection will be apparent shortly.)

LEMMA 2. — Let F be a fundamental set mod W for H. Then
A = (prit)"1 F is a fundamental set mod W for f^W-0"*)- Als^
U is effective on ̂ (K"1-^).

proof. — The first assertion follows from Lemma 1, and the second
is clear.

The selection of the set F is standard. Let u^ . . . , u^ be a basis for the
image of U in H; it is an R-basis for H. Let T^, . . . , T,. be the dual basis;
i. e. T : H—>R is the linear functional satisfying T,(^) = 5^. Then F
is defined to be the set of y e H such that 0 ^ T, (y) < 1, ./ = 1, . . . , / " .

Let J? (5) c Y[ K^ be the subset defined by

n.supj|z,ji^B,
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE 28



438 S. H. SCHANUEL

and put A (B) == A R (B). Then R (B) is clearly ^/-stable, since

n.sup,iiMz,ii,=nj|M|i..n.sup,i|z,ji,=n.sup,i|z,ji,.
We want to count the number of orbits under U in ((d)m—Om)f^R(B).
Since A is fundamental mod W for ^[^(K^—O1"), its intersection with
any stable subset, in particular with ((a^—O^r^R^B), is fundamental
mod W. (Apply Lemma 1 to the inclusion map.) Hence we need only
count the number of ^-orbits in

((a)"* - (T) n R (B) n A = (a)"* n A (B).

Since W acts effectively, each ^-orbit contains w points.

PROPOSITION 1. — w^^B) is the number of points of the lattice
(aT in A (5).

The choice ofpr was made to ensure that A (B) depends homogeneously
on B.

LEMMA 3. - We have t A = A for t e R*, R (B) = B11 Jv^ (1), and
A (B) = B^ A (1) for B > 0.

Proof. - LetZen.W-^), ^eR*. We have

^Z)=logH(N,)+ii(Z).

Since pr is linear, and annihilates (TVy), pr T| (t Z) = pr T| (Z), hence
the first assertion. If p (Z) = ]"jy sup, || Z,y \\y, then

pOZ)=H^p(Z);

but ^y Ny = N, hence the second assertion. The third is immediate
from the first two.

The next Theorem will enable us to estimate the number of lattice points
in A (B). Let I 1 denote the closed cube (0, I)1 in R1. Call a subset of R^
Lipschitz-parametrizable if it is contained in a finite union of sets Oy (/k-l),
the 0 satisfying a Lipschitz condition: | ^jX—^jy | < C\ | x—y |, where
Ci is a constant independent of /, x, y. Let p, denote Lebesgue measure,
and r the closure of F.

THEOREM 2. — Let T be a bounded subset of Rk, with Lipschitz-parame-
trizable boundary. Let A be a lattice in Rk. Then the number of lattice
points in t T is given by

#(Ant^)=tk^^)-+0(tk~l) for t->oo.
detA

TOME 107 - 1979 - N° 4
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This Lemma is standard (cf. for instance LANG [6], Theorem 2 of
Chapter VI, § 2).

A subset of R^ is called C1-parametrizable (by (k—\)-cubes) if it is
contained in a finite union of sets O^Z^"1), the 0, having continuous
partials. Note that C^-parametrizations are Lipschitz by the mean value
Theorem.

PROPOSITION 2. — The set A (1) is bounded, with C^-parametrizable
boundary.

The proof is formulated as a sequence of Lemmas. For F c: R^, 9F
denotes the boundary of T in the usual topology on R^

LEMMA 4. — A (1) = A n R (1) is bounded.

Proof. - Let Y <= []„ R^ be the subset defined by ^ e Soo ̂  ^ °-
Then y^ is bounded above for y in Y r\ pr~1 F, y in 5^; since

3;=pr^+-y^u,(N,)
N

the first term having bounded components and the second negative compo-
nents. But A (1) == r|~1 (Vn pr~1 F), and the definition of T| shows
that if T| Z has components bounded above, then Z has bounded
components.

LEMMA 5. — ' V L — y v t t - isuniformly bounded for v^v" e S ^ , ye pr'1?.
N^ N^

Proof. - (pr^=^-((^eSco^)W^ and division by N, yields

(p^y)v ^ Yv _ "Lwes^yw
N, N, N *

The left side is bounded, and the difference of the values on the right for
v = v ' , v = v" is the number we wished to estimate.

LEMMA 6. - The closure in ]~[y R^ of (pr log) 1 F is contained ii in
. R ; ^ { o } -n
Proof. — Let x3 e (priog)"1 F such that ^—>0. We must show

^->o for all v " e S . Put y^iogx^ We see that ^->-oo.
Hence, by Lemma 5, y3^ —> - oo, so x^ —> 0.

Let
o: a^^

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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be defined by
(OZ),=sup,||Z,||,.

Then we have the following diagram of continuous maps:

(^•-(D^R^R.^i^R,,

^ o ^
K- ———. R;

where the vertical maps are inclusions, (Do ls ̂ e restriction of 0, and the
composite logOo = rj.

LEMMA 7. — The closure of A in ]~[̂  ^m f>y contained in

niW-o^u^}.
Proof. — We have

A^-^prlogr1^

Continuity of 0 gives

A c: (^((priogr1?) cz O-^n.^ u {0}) c O^-O^u {0},

the bar indicating closure in R^y ^w, n"^^' respectively.
For the next sequence of Lemmas, we borrow the letter "D" to use for

the derivative of a map from an open subset of J^ to R1. Differentiable
means having continuous partial derivatives.

LEMMA 8. — Any compact subset of 8R(\) is C^-parametrizable.

Proof. - Let p ̂ ^"-^ be given by p (Z) = n.^P.II ̂  ||..
If a is a map S^ —> { 1, 2, . . . , m }, let

p,: IL^^ by P.(Z) =011^11..

Then p and py are differentiable on p^1 (R"1'), with non-vanishing
derivative. We have R(l) = p~1 ([0, 1]), hence

^(i) <= p-^.ao, i)) = p^o) c= rLp^a).
Let A^ be the closed hypersurface p^"1 (1). Choose for each Z e Hy an
open neighborhood ^ ^ and a differentiable map ^ ^ . fmN-i_^jynN
satisfying

^,n^c^,(J^-1)

TOME 107 - 1979 - N° 4
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This is possible by the implicit function Theorem, since Dpy does not
vanish on Hy. Now if C compact, C c= OR (1), select for each (T a finite
set of Wy^ y covering C r\H^. Then

C == Uo(Cn^) <= Jo Ufinite(^Z,on^) C: Ufinite^a^"1).

The parametrization of subsets of 8 A is similar; but it requires more
care, since the hypersurfaces used are not closed. We borrow "5"' to
denote the unit (m N- l)-sphere in R^ == fl. K^'

LEMMA 9. — The intersection of ^A with S is C^-parametrizable by
(m N—2)-cubes.

Proof. — Taking our clue from the fact that A is defined by
0 ^ T,prr| (Z) < 1, we construct finitely many hypersurfaces whose
union contains OA— { 0 }. Define, for

a: S^{l , . . . ,m}, 11,: 7,->n.R. by Ti,(Z)=log(||Z^J|,),

where Vy <= ]~[y (K^ -(T) is the open subset

{Z;Z^^O for v e S ^ } .

Then T|, is differentiable, and D^ (Z) : R^—^]"^ Ry is surjective at
all Z. (This reduces immediately to the same assertion for K^ —> R
by Z^log]|Z|[,; since V^ == fL^"1 x^^^ and ^c. factors into:
projection on the second factor, followed by a componentwise map
n^^n^-) Now for

la=(j ,a ,5)( j=l , . . . , r ; a : ̂  ̂  { l , . . . , m}; 8e{0, l}),

define ^ : V^-^R by ^ (Z) = ^.prT|,(Z)-5. Let 7^ be the hyper-
surface defined by pa = 0. Since pa is continuous, 77^ is closed in Vy
(but not in R^). Furthermore pa (t Z) = pa (Z) for t e R*, by the
same computation that showed, t A = A, with r\ replaced by T|,. Since T^,
pr are linear and surjective, and Dr[y (Z) is surjective, Dpa (Z) is surjective.
This, together with the homogeneity of pa, insures that the functionals
Dpa (Z) and D^ (Z) are linearly independent (even orthogonal), where ^
is the momentary symbol for the Euclidean norm of a vector. Thus H^
and S intersect nicely; we apply the implicit function Theorem. For
any Z e Hy n S, there exist a neighborhood W^ ^ of Z, and a differentiable
function T^ : /m^-2 -> R mjv, such that (W^ ^ n H^ n 5) <= ̂ ^ (/mN-2).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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We want to get 8A n S inside a (finite) union of compact subsets
H^ (= H^ n ̂  then we can finish the proof as in Lemma 8. Let

F,={Zen.^ such that |(Zo.,J|.=sup,|(Z,J|, for all v},

and F^ == 8A n 5' n 7^. Then F^ is compact, since each of the three
sets is closed, and 5' compact. Further, F^ c V,, since the only point
of 8 A with some sup, |( Z^ [|, = 0 is the origin, by Lemma 7. Let
H^ = H^ n F^ for a = (y, CT, 6). Then H^ is compact. Namely H^
and F; are closed in V^ so ̂  n F^ is closed in F^. Finally, by Lemma 7,
8A n S is contained in the boundary relative to fjy (^"-0) of A. But
any point Z of the latter boundary satisfies T, pr T| (Z) ^ § for some y, 8;
choosing a to yield the sup at Z gives Z e ̂  ̂  5 n Fy. Thus

^An5c=J^nFJ,

and intersecting with 8 A n 5' on the right is harmless: 8 A n S c M ;̂,
yielding the Lemma.

LEMMA 10. - 77^ boundary of A (1) ^ pdrametrizable.
Proof. - We have A (1) = A n R (1), hence 8A (1) c: 8A u 8R (1).

Since A (1) is bounded, it suffices to parametrize compact subsets of
8A, 8R (1). But 8A = R-1- (^A n 5') u { 0 }, which gives an obvious
way to parametrize compact subsets of 8 A. Namely if 0 : /mN-2 —» R^
parametrize ^A n 5', then

y, : J^-1 -.R^ by ^(X, t) = Ct^(X)

will do to parametrize any bounded subset of 8 A— { 0 }.
In case 8 A n S is empty (r = 0), we have missed the point 0; parametrize

it separately.
The proof of Proposition 2 is complete, so that we may apply Theorem 2.

Since A (B) = £1^ A (1), we have

w^(a, B) = (^i/y^W)
detCa)"*

^ r2m / R \w+0(^(——)^2^^/^\ .̂ .-̂

so that the proof of Theorem 1 will be complete with the following
computation.

TOME 107 — 1979 — N° 4



HEIGHTS IN NUMBER FIELDS 443

PROPOSITION. - [i (A (1)) = Rnf (21'1 TfT.
Proof. — The computation closely parallels that for the case m = 1

(cf. HECKE [3]).
For Ny = 2, let p ,y , 9fy be polar coordinates in K^:

Pw== l7^ ^=argZ^.

For ̂  = 1, put p,y = | Zf,, |.
Then

u(A(i)) = 2^ fir pn,n^n' ̂
where the f] is over a11 / = 1' ' " , m , v e S ^ and n' over ? = 1, ..., m,
v complex (Ny = 2), and the integration over p^ ^ 0. 0 ^ 9,,, < 2 71,

rLsup.p^L
prlogsup(p^)eF.

Integrating with respect to the 6;y, we get

2-1(2 ̂ r-fn^cp^"1^).
The domain of integration is the union of domains Dy,

a : 5^—^ { 1, ..., m }
specified by

Ar = {(P^) such that ^PiPiv = P<ri;,t;}»

meeting only on lower dimensional linear subspaces p,y = pyy
There are m^^ of these, and by symmetry we get

m^^^r2 fn^(P^~1 d6i^

over the domain, piy ^ p»y ^ 0,

ILp^i,_
prlog(p^)eF.

Let r,, = p^, so ,̂, = ^p^~1 ^Pf.. Then we have

^ri+r^mr^ynr. f]-[,,/-^^ = m'^'^^ TC^ [n^^-

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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Integrate over all ^ with i ̂  1. We get

m^l^^^^dt^

Put

^=rL^
^=T,prlog(^),j=l, . . . , r .

The jacobian is ± 7?, and we get

m^l^n^R f^-^nA

with the integration over the cube 0 ^ u < 1, 0 ^ .̂ ^ 1, so the integral
equals 1/w, which gives the result.

2. The inversion

We recall that || b || depends only on the class of b modulo principal
divisors, so that the map Km-Om-^R+ given by X-> (| b^ || induces a
map from the projecfcive space P"1-1 (K) to R+, associating to any point
K * X its height, || b;J|. Theorem 1 can be applied to gives an estimate
for the number of points in P m-1 (K) of height at most B. The technique
is parallel to that used to handle the case K = Q, m == 2 (cf. [2],
Chap. 16-18). We need only the most elementary facts about the zeta-
function of K, namely convergence of the Dirichlet series

^)=£—
No5

and the product formula:

ripd-Np-r1^^),
for real s > 1. (The sum extends over all integral ideals, the product over
all prime ideals.)

Let I be the multiplicative semigroup of non-zero integral ideals of
K, R (/) the set of functions I—> R. Then R (/) is a commutative ring with
unit, addition being pointwise and multiplication by convolution

(ZiX2)(a) = Za^=aXi(ai)X2(^).

TOME 107 — 1979 — N° 4
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Let R (D) be the set of functions D —> R, vanishing on divisors of norm < 1.
Then R (D) is a module over R (7), if we define, for % e R (7),/e R (D),

X/(a,iB)=SbX(b)/(ba,B),

the sum extending over all integral ideals b. (The sums in both convolutions
are finite.) Let p, e R (7) be the Mobius function:

^(p)=-l^(pv)=0 for v > l , n ( l ) = l and n(a)n(b) = ^(a6)

for a, b relatively prime. Let %o be the constant function %o (a) == 1, all a.
Then the Mobius inversion formula asserts that ^, ^o are inverses.

To estimate \if, for / in R (7)), we will need the following Lemmas.

LEMMA 11. — For real s > 1:

vH(<x) 1ENo5 W

the sum extending over all integral ideals a.
The Lemma is immediate from the fact that p and ^o are inverses.

LEMMA 12. - Let /, g e R (D). If /(b) = a || b ||5 /or ^ real > 1,
^ ||b|| ̂  1, rA6?»

^^^l^54'0^^^

7^ (b) = 0 ( || b HO m7/! ^ m?/ ^ 1, ̂

Hg(b) =0(1^110 /or t>l,

and
^g(b)=0(||b||log||b||) for t=l.

Proof. - Let b = (a, B). Then

H/(b) = ENa^o^(b)WNa6)5 = alibll5^^.

The sum is

r r.r1 Y ^(b)
SK V^ ~ ZjNb ̂ b .——5 ?
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with the latter term bounded by ̂ ^^n 1/N b5, which is 0 ( |[ b \\1^,
by an easy estimate, using the fact that the number of ideals of norm at
most B is 0 (B) ([4], Satz 203). On the other hand,

^)=^(l|b|rZN^<,,.n^)-

and the sum is bounded by ^ (Q, hence 0 (1), for t > 1. For t = 1,
Z N b ^ H b i i 1/N b i s 0(log| jb | | ) , again by [4] (Satz 203).

Let C / (a) denote the class of a modulo principal ideals. As before,
[Z] is the ideal generated by X^ . . . , X^ and

^oo^=rLsup,i|z,ii,
Let Z/" (b) = !> (a, B) be the set of points K^ X in P"1-1 (K) of class
C/[A"] = C/(a), height at most ||b|| = BNa~ 1 . Let ^(b) denote
the cardinality of L"1 (b).

Note that for ||b|| < 1, both ^(b) and ^(b) are zero, since b^ has
norm at least 1; hence ^OT, V are in R CD).

THEOREM 3:

^(^^iHr+ociibii-^),^jcw)
/or m = 2, 3, ... and N == 1, 2, . . . (^cc^ ^^, /or w = 2, ^ = 1,
the error term is to be replaced by 0 ( [ [ b |[ log [| b ||)).

Proof. - Let

L^a, 5) = { UXed^^lU such that [X] = a, H^ X ̂  B}.

Then
L^a.^Ub^ab,^),

the (disjoint) union extending over all integral ideals b. (For N b > ^/N a,
L (ab, £) is empty, so that the union is actually finite.) The map

L^B)->!/"(€, B) by UX-^ K* X,

is easily verified to be a bijection, hence

^(0,5) =1:^(^,5).
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Thus ^ = 5Co^ so ^m = ^Xo^ = ^m- By Theorem 1, ^w = / +g,
where

/W^IMI" and gW=0(Mm-l/N).

Hence \Ji}m = n/ +|^» and Lemma 12 yields the Theorem.

COROLLARY. — The number of points in P " 1 ' 1 (K), of height at most B,
is

h-Km—Bm+0(Bm~(l/N)),
^(w)

where h is the number of ideal classes. (For m = 2, N = 1, replace the error
term by 0 (B log B).)

Proof. — If Of are representatives for the ideal classes (i = 1, . . . , k),
then the number of points of class C / (a), height at most B, is ^OT (a», i?N a,)
since this divisor has norm 2?., Summing over the ideal classes yields the
Corollary.

The inversion in Theorem 3 can be copied verbatim to yield a more
general result which interpolates between Theorems 1 and 3. Let 5' be
any set of primes containing 5^. Then any ideal a factors as a = as a^,
where (a^, p) = 1 for p ^ 5', and (a^, p) = 1 for p e S-Sy,. The group
of 5'-units, Kg, is the set of x e K * for which [;c]̂  =1. Put

L^(a, B) = ̂ KsXe^-^/Ks such that [̂  = c^,

CCT^CKa^N^]-1^^5-}
rs a^j

and let ^ (b) be the cardinality of L^ (b). For 5' = 5^, ̂  = ^w, and
for 5' the set of all primes, ^[ = ^m. Let ^s , ^5 e R (7) be multiplicative
on relatively prime ideals, with \ts (p") = l i f p e S — S ^ , v = l , and zero
otherwise: Xs(PV)= 1 ^ P ^ S — S ^ , zero otherwise. Then Us, Xs are
inverses, and just as before we can conclude ^w = ^s ^?? so Hs ^m = ^?-

The estimates go as before, with ̂  (s) replaced by

,/ ^ y/s(tt)^(5)=I:,_—,'No 5

since the series

^^ and E ,̂
- No5 No' '

are still termwise dominated by ^ 1/N (Is.
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In case S is finite, we can improve the estimates for the cases m == 1
or 2. Namely the Dirichlet series ^ \is (WN b terminates, hence
ZNb^i ibi l^sfW^ 5 is constant (equal to J^pes O^ P~1)) for ^^
IMI-

Thus we obtain the following Theorem.

THEOREM 4. — For m = 2, 3, . . . a^rf j?V = 1, 2, . . . , we have

^(b)=———||b||m+0(||b||m-< lW),

For m == 2, N •= 1, and S infinite, we have

^-^\W+o(W»sW.
^sW

If S is finite, we have also

^(b)=ae5(l-Np-s)xJ|b||+0(||b||l-l/N).

Let a be prime to S, and a^, . . . , a^ be representatives for the subgroup
of the ideal class group generated by the primes in S-S^, with a^ = (a^.
Then

U»I^(aa,, BNa,.) = ^ XsXe^-O^/ICs such that [X]s' <= a,

N^^^w^al,

eliminating the condition on the classes. Hence the cardinality of this
set is ̂ ii ̂  (aa;, £ N a;), which is just

kg Km (B/N af + 0 ((B/N a)" ~1/N),
^(w)

with the usual exception, since all the divisors in the sum have norm
J5/N a.

For m = 1, S finite, this estimates the number of principal 5-ideals
contained in a given S'-ideal, with bounded norm (cf. [6]). Namely,
the ^-integers are those xe K * with [;c]s, c: (1). Ideals in this ring are
in norm-preserving correspondence with integral ideals of K, prime to S,
and the units of the ring are just Kg.

Some possible extensions should be mentioned. For m = 1, LANDAU
has improved the error term in Theorem 1 to 0 ( [| b [j1-2^^1)^ by making
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use of the analytic continuation of, and functional equation for, ^ (s)
(see [4], Satz 210). A corresponding improvement for m -^ 1 would
be inherited by all subsequent estimates.

Finally, one might extend in another direction, replacing the condition

n.e5ooSUp,||^||^B,

in the definition of L"1 by a set of conditions

n^^sup,i|z,i[,<5,,
where S^ is the disjoint union of S j , and dividing by the appropriate unit
group. For Sj consisting of singletons, m = 1, this would include the
estimate of the number of points in parallelotopes. This should be followed
by a variation on the inversion, based on a partition of the set of primes.
So far I have been able to carry through only the first part of this program,
obtaining necessary and sufficient conditions on the partition of S^ to
yield finiteness, and yielding an estimate of the same type as in Theorem 1.
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