
BULLETIN DE LA S. M. F.

NIELS VIGAND PEDERSEN
On the infinitesimal kernel of irreducible
representations of nilpotent Lie groups
Bulletin de la S. M. F., tome 112 (1984), p. 423-467
<http://www.numdam.org/item?id=BSMF_1984__112__423_0>

© Bulletin de la S. M. F., 1984, tous droits réservés.

L’accès aux archives de la revue « Bulletin de la S. M. F. » (http:
//smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/
conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de
ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=BSMF_1984__112__423_0
http://smf.emath.fr/Publications/Bulletin/Presentation.html
http://smf.emath.fr/Publications/Bulletin/Presentation.html
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Bull. Soc. math. France,
112. 1984. p. 423-467.

ON THE INFINITESIMAL KERNEL
OF IRREDUCIBLE REPRESENTATIONS

OF NILPOTENT LIE GROUPS

BY

NIELS VIGAND PEDERSEN (*)

RfesuMfe. - Soit G un groupc de Lie nilpotent, connexe et simplcment connexe d'algebre
de Lie 9. Pour unc representation irreductible n de G, on denote ker(dK) Ie noyau de la
differcnticllc dn de it consideree commc representation de Falgebrc universelle cnvcloppantc
l/(9c) de la complcxification 9c dc 9. Dans cet article nous donnons pour chaque representa-
tion irreductible n de G une formule explidte de kcr(Ai) en tcnncs de Forbite coadjointe
associcc par la theorie de Kirillov a n. Ensuite nous donnons un algorithme algebrique
permettant de trouvcr Forbite coadjointe assodee a une representation irreductible donnee.
Finalcmcnt, nous prouvons, que la C*-algcbrc C* (G) de G est de trace continue generalisee
par rapport a la *-sous algebre C;°(G) de C*(G) (cette notion cst definie dans Particle) et
que la suite de composition canonique correspondante est de longueur finie. ainsi ameliorant
un resultat de J. Dixmier.

ABSTRACT. — Let G be a connected, simply connected nilpotent Lie group with Lie
algebra 9. For an irreducible representation n of G denote by ker{dn) the kernel of the
differential dn of n considered as a representation of the universal enveloping algebra l/(9c)
of the complexification Qc of 9- ^n this paper we give first for each irreducible representation
TC of G an explicit formula for ker {dn) in terms of the coadjoint orbit associated by the
Kirillov theory with n. Next we give an algebraic algorithm for finding the orbit associated
with a given irreducible representation. Finally we show that the group C*-algcbra C* (G)
of G is with generalized continuous trace with respect to the *-subalgcbra C" (G) of C* (G)
(the meaning of this is defined in the paper), and that the corresponding canonical composi-
tion series is of finite length, thus sharping a result of J. Dixmier.

(•) Texte recu Ie 10 dcccmbrc 1983.
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424 N. V. PEDERSEN

Introduction

Let G be a connected, simply connected nilpotent Lie group with Lie
algebra 9, and let 9* denote the dual of the underlying vector space of
9. For a strongly continuous, unitary representation (=A<a representa-
tion") n of G, let dn denote the differential of n considered as a representa-
tion of l/(9c), the universal enveloping algebra of the complexification Qc
of 9. In [3] DDCMIER showed that if TI is an irreducible representation of
G, then the kernel ker (dn) of dn is SL self adjoint primitive ideal in U(9c)»
and that the map n -> ker (dn) from the set of equivalence classes of
irreducible representations of G to the space of selfadjoint primitive ideals
m ^(9c) ls a bijection. In particular the kernel of dn characterizes
TC. The first main result in this paper (Theorem 2.3.2) is an explicit
formula for this kernel of dn in terms of the coadjoint orbit associated by
the Kirillov theory [7] with n. This formula establishes in algebraic terms
a direct link between the coadjoint orbit space Q*/G, and the space 6 of
equivalence classes of irreducible representations of G, and thus it serves
a purpose analogous to the one of the Kirillov character formula ([7],
Theorem 7.4 or [9], § 8, Theoreme, p. 145). Probably our formula should
be viewed as an algebraic counterpart of the latter, and it can presumably
be used to establish the pairing between orbits and representations [or, if
one prefers, between orbits and primitive ideals for e. g. complex nilpotent
Lie algebras ([3], [5])] much like the way the Kirillov character formula
was used to set up this pairing in [9].

We shall briefly describe our formula: Fix a Jordan-Holder sequence

Q^m^ftn-i ̂  . . • =»9i ^90= {0}

in 9, and a basis X^ .. ,,-X^ with Xj€Qj\Qj^^ Let (i,.. .,!„ be the
basis in 9* dual to the basis X^ ..., X^, and denote by ^ the coordinate
of I€Q* with respect to the basis J ^ , . . .,I^:^= <I, ^>. From [7] or
[10], Lemma 1, p. 264 we extract the following. If 0 is a coadjoint orbit
there exists a subset e= {j \ < ... < j^} of { 1 , . . , ,w} and polynomial
functions Pi, ...,?„ on 9* uniquely determined by the following proper-
ties (identifying 9* with R'" via the chosen basis):
(fl)?^,....^^^...^;
(b) Pj (^i , . . . , ̂ ) depends only on the variables ^p ..., ̂ ,

where k is such thatjk<^</k+i;
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REPRESENTATIONS OF NILPOTENT LIE GROUPE 425

(c) 0= {(=(^.. . ̂ Ul^-P^i,.. .,U> l^m}.
Set then g, (Si, ..., U-^-^ (^i, ..., ^), let ^ be the element in

U(Qc) corresponding to the polynomial function l^Qj(-il) on 9* via
symmetrization (note that ^=0), and let n be the irreducible representa-
tion of G corresponding to the orbit 0. Our formula for the kernel of
djt then reads

ker(^)=S;^^.l/(9e);

in other words, ker (dn) is the right ideal generated by the elements (u,)^.
Our second main result (Section 3) is concerned with the problem

of determining algebraically the coadjoint orbit associated with a given
irreducible representation of G. In this connection, let us recall that
e. g. for compact semisimple Lie groups an irreducible representation is
completely determined by its infinitesimal character, but that this is far
from true for nilpotent Lie groups (although it is known, [7], that for
representations corresponding to orbits in general position (in some specific
sense) the infinitesimal characters do determine the representation). We
present here for nilpotent Lie groups an approach—not based on infinitesi-
mal characters, but on the results of Section 2 and certain parts of the
results of [8]—to the solution of the problem. Our method consists of
checking the differential of the given irreducible representation on a finite,
explicitly constructible family of elements in the universal enveloping
algebra of Qc. As a corollary we get an algebraic criterion for a representa-
tion n of G to be factorial (i. e. a multiple of an irreducible representation).

In the last part of the paper we consider a question concerning the
continuity of the trace. In [4] DIXMIER showed that the group C^-algebra
C*(G) of G is with generalized continuous trace (GCT), and that the
canonical composition series of C* (G) is of finite length (for definitions,
see Section 4.1, c/. [2]). Here we show—using in an essential way the
results of Section 3—that such a finite composition series can be found
even in the ^-algebra C" (G), the space of infinitely differentiable func-
tions on G with compact support, and not just in C* (G).

1. Preliminaries

Let G be a connected, simply connected nilpotent Lie group with
Lie algebra 9, and let g=9^ =) 9^ =? ... => ̂  => 9^= { 0 } be a Jordan-
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426 N. V. PEDERSEN

Holder sequence for 9, i. e. a decreasing sequence of ideals such that
dim 9^=/, ./=(),.. .,m.

We let G act in g* via the coadjoint representation. For g€Q* we have
the skewsymmetric bilinear form B^: 9 x 9 -» R given by

B , (Xy)=<^ tXY]> , XV69.

The radical of By is equal to the Lie algebra 9^ of the stabilizer Gy of g:

^{X€Q\B,(X, Y)=0 foralire9}.

1.1. For g€Q* we define Jy to be the set

^=={l</<w|9^9^l+9,}.

Let A^e9j\9^.i, j'=l,.. .,m. Then X^ .. ,,-X,, is a basis in 9, and
we have ./eJ^ o ^9^-i+flr

If g€Q* with J^0(^Q,^Q) and if ^= Ui < ... <^}, then
X^,..., X^ is a basis for 9 (mod 9,).

Set^= {J^|^€91(t},andsct,fo^e€/,

a^{^€9*|J,=e}.

We have 9= \Jes^^e as a (finite) disjoint union.
If a is an automorphism of 9 leaving invariant the Jordan-Holder

sequence 9=9^ => ... =^ 90= {0} , then clearly J ^ g ^ J y for all g€Q*, so
tl^ is a-invariant for all ^6<?. In particular, fl^ is G-invariant for all ^€^.

Let ee^. If e^0 with e= {j^ < ... <j^} we define the skewsymme-
tric d x d-matrix M^(g\ g€Q*, by

M,te)=[B,(X^^)h^..^

and let P^ (^) denote the Pfaffian of M^ (g). If e = 0 we set M<. (g) = 1 and
^te)=i.
The map g->P^(g) is a real valued polynomial function on 9*. Pe(g)
has the property that P^ (g)2 = det M^ (g).

TOME 112— 1984— ?4



REPRESENTATIONS OF NILPOTENT LIE GROUPE 427

Let a be an automorphism of 9 respecting the given Jordan-Holder
sequence, and let n, be the (non-zero) real number such that
a(^)=^X,(modg,.i),j=l,.. .,w. For eef, set He^rijee^-

LEMMA I .I .I . - Let eeS. If gefl^ then Pe(g)^0 and
PC (a^) = ̂  l p€ te)- Jn particular P (sg) = P (g) for all s 6 G.

Proof. — Write e^ {j\ < ... <j^} (the case e==0 is trivial). Since
X^,.. .,X^ is a basis for g(modg^) we have that M^(g) is a regular
matrix, hence P^ (g)2 = det M^ fe) ̂  0.

Next, write

^W=£;.^^+c,

where c^eg^, i?s= 1 , . . . , d. Then fl^==0 for u>v, a^v^1 and

B^(X^X^ <ag,[X^,XJ>

^^la-'Wa-^W
==SL•lfll~<^ ̂  ̂ ^^-CAM^)^),,

where A is the matrix [a.Ji <«. v^ This shows that M^ (ag) = 'AAf^ te) A,
and since det A = ̂  1 we find that

^(ag)=P/(M,(a^)=P/CAM,te)A)=detAP/(M,(g))=H;lP,te).

This ends the proof of the lemma.

Remark 1.1.2. - Our definitions agree with those given by PUKANSZKY
in [II], p. 525 ff., cf. also [10] and [8].

1.2. Recall the following facts (c/. [II], Proposition 1.1, p. 513 and
Proposition 4.1, p. 525, c/. also [9], [10]):

Let ee^ and write (for e^0) e= { j i < . . . <j^}. There exists func-
tions RJ: ft^ x IR*' -» R, 7= 1,. .., w, such that:

(a) the function x=(xi,. .., x^) -^ J(j(g, x): W -^ R is (for fixed ge(^)
a polynomial function depending only on the variables x^ .. ..x^, where
fe is such that7\^j<j\+^;

BULLETIN DE LA SOClfiTfe MATHfeMATlQUE DE FRANCE



428 N. V. PEDERSEN

W ^te x)»x» for^€Q^, k=l , . . .,d;
(c) for each gefl^ the coadjoint orbit G.g through g is given by

^-{zr.i^fc^i^^},
where l^ ...,/„ is the basis in g* dual to X^ .. .,JC,..

The functions JIJ: f2« x R^ -+ R arc characterised by the three properties
(a\ (b) and (c), and they have the following further properties:

(d) there exists an integer N such that the function
fe, x) -^ Pefe)^5fe» x) is the restriction to (1̂  x R^ of a polynomial func-
tion on g* x R^;

(e) R^sg, x)^R€j(g, x) for all gefly xeW and 56G.
For a=(ai, . . .,a^) a ^-multi-index of non-negative integers and

x=(xi,.. .^x^el^ we write x'ssx?1... xy. From the properties above
it then follows that we can write

^^EAfe)^

where aJ^:Q^ -+ R are G-invariant functions on (2, which are identically
zero, except for finitely many OL The function aj^, has the property that
there exists an integer N such that g^P^ig)"^^) is the restriction to
Q« of a polynomial function on g*.

1.3. In the following we shall make repeated use of the following
facts [5]: There exists an isomorphism G) (the symmetrization map)
between the complex vector space 5(ge) (the symmetric algebra of Qc).
and the complex vector space C/(9c) (the universal enveloping algebra of
gc), characterised by the following property: If Yi, . . . , Yp are elements
in gc, then the image of the element Y\ ... Yp in S (gc) by CD is the element

^r1^^!)---1^)
in (/(g^), where Sp is the group of permutations of p elements. Moreover
we have the following lemma (c/. [8], Lemma 1.2.1).

LEMMA 1.3.1. — If Z is a central element in g ,̂ then <o (Z u) = Z CD (u)
for all ueS(gc).
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REPRESENTATIONS OF NILPOTENT LIE GROUPE 429

1.4. Let eef with e^0 and write e== Ui < ... < j< }. For 1 ̂ ;^w
we let rj(g), ^eQ^, be the image in U(9c) by (o of the element

J?Jfe,-i^,...,~iX^)

in S (Qc) (what we have done here is that we have replaced the variable x^
in J??te,x)=J(Jfe,Xi,..,x<() by -i^). If <?=0 we set
r?te)=<^A,>.l(=<o(<;te,x)), since J^fe,jc)=<^X,». Note that
in particular r^ (g) = — i X^.

2. A formula for the infinitesimal kernel of the irreducible representations

2.1. Our first result shows the relevance of the elements rj(g)€l/(9c)
introduced in Section 1.4.

THEOREM 2.1.1. — Let gefl^ and let n be the irreducible representation
of G corresponding to the orbit G. g. Then

dn(X^idn{r^(g))

for l<7^m.
Remark 2.1.2. — Forj==/\ee the statement of the theorem is empty

since ̂ (g)^-iX^
Proof. — The proof is by induction on the dimension of 9. Sup-

pose first that dim g=l. Then e=0, R\ (g, x)== <g, X^ > and
r\{g)^ <g, X, > . L But dn(X,)^i(g, X^ >J=iAi(r5(^)) so this shows
the validity of the result in this case.

Suppose then that the result has been proved for all dimensions of the
group less than w> 1. Let 3 denote the center of 9, and set 30 =ker^| 3
which is an ideal in 9. We distinguish two cases: case (a): dim3o>0 and
case (b): dim 3o = 0.

Case (a). — Set 9==9/3o, and let c: 9 -»9 be the quotient map. We let
also c denote the quotient map c: G -* G = G/Zo, where Zo = exp 30. There
exists an irreducible representation n of G such that TC°C=TI, and the orbit
of n is determined by the functional g€Q* defined by g°c^g.

We set J== {K;<w|9^9^i+8o}» and write I3S1 {h < • • • < U
and (^'^^-t-Bo)/^- ^cn 9=cL=> ... = > 9 o = { 0 } is a Jordan-Holder

BULLETIN DE LA SOdfiTE MATHEMAT1QUE DE FRANCE



430 N. V. PEDERSEN

sequence in 9, and setting ^==c(X(.) we have ^eg^\(^-i. We next
note that 3oc 9» and ^lat 5;=8 /̂3o- Moreover, Jy <= / since j^J
=>X,e9^i+Bo ^^eg^i-h^ ̂ J^.

Writing <?=.^= {j\<... <^} and e=J;s= {Ji<...<Jrf} we have that
fj^ &=!,..., A

Let xelV1, and set T=^^f(i, x)^, where Ii,.. .,1, is the basis in g*
dual to 5i,..., 5,,. Then setting I=T<>c we have

^fe,x)=<r,^>=<i.^>;
in particular x^= < J, ^.j > = < J, X^ >, and this implies that

^£7.1^ x)^ so ^te^)=<(>^>'

j= 1,..., w. We conclude from this that

R^x^R^.x) for l<^n,

and therefore c(rf,(^))==rJ(^), 1 ̂ j^n, hence, by the induction hypothesis,

^(^)=<fii(^)=M(Tc(rJ(^)=^n(r^fe)) for l<^n.

Suppose then that j i L We can write ̂  = £"»i fljp -^ + Z^where Z^ e 3o>
since X^,.. . ,X^ is a basis in 9 (mod^o)- Let then X6R4', and set
^s^i^^ ^i- we have Re^ x)s= < f ' ̂ ^and since (€G-^an(i
therefore 1150 = 0» we have

R1^x)»^,a^R^x\

so that

W-E;̂ ^)-

But since Z^€3o we have that dii(Z^)==0, and therefore
dK(Xj)=^^a^dn(X^. It follows that <iit(J^)=idn(r^te)), since we

TOME 112 — 1984 — N° 4



REPRESENTATIONS OF NILPOTENT LIE GROUPE 431

have already shown that dn (X^ = idn (r^ (g)) for 1 ̂ j < n. This ends case
(a).

Case (fc). — In this case we have that dirndl and g\^0, so 3=81
and <^, A\ > 96 0. In particular [9, 92]=9i, and therefore 92 * 9r hence

leJy and ji=2. Note also that 9^ c: ̂ skeradj^ (since otherwise
9^+1) =9 and therefore

<g. 9 l > = = < ^ [9, W^^, ̂ -^^-O
which is a contradiction). We then claim that we can assume that
9^-i=l)=kerad^2.

Proof of claim. — Clearly l^keradJ^ is an ideal in 9 of
codimension 1. Set

p=min{l<7^w|J^9 }.

Then p is well-defined, p ̂  3 and 9 = ̂  © R j^. It is easily seen that ̂  e J^
(in fact, if /^J^, then ^69^+9^1 c 9^ +1) c= I) which is a
contradiction). We then define a new basis ^i,..., ̂  in 9 in the
following way: For 1</</?—1 we set X^Xp for p^j^m—1 we set
^=j^+i +c^+i -Yp, where the c^+i eR arc selected such that X^ (which
is possible since R Xp © 1) == 9), and finally we set ̂  = Xy. We then define
the linear subspaces Qp 7= 1,..., w, in 9 by

9,=R^C... ©R^.

We have

9j=9j for 1 </</?-!,
and

^^©R^p for ^-1^'^w-l,
implying that

9j ==9^+i Ob for ^-Kj^w-1.

This shows that 9^, .. ., 9^ is a Jordan-Holder sequence for 9. By cons-
truction 9^-i=b- We designate the objects associated with this new
Jordan-Holder sequence ̂ =e, etc. We write J^= {j\ < . . . <j^}.

For l^j^p—1 we clearly have that jeJyOjeJ^. Furthermore p e Jy
(see above) and we J y (in fact, ifm^Jy then Xp=X^€c^^^^^l)^-Qy^
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432 N. V. PEDERSEN

which is a contradiction). For p +1 </ ̂  m we have

jtJ, o X/69^+9, <> ^68^+RXp+g^
0 ^-l€8^+^+fl» ^ ^-l€^-2+fi»

(since 9,0= 10 o ;-1 .̂

Therefore, ifj.^p we have

J^Jr for Kr<a-l,
7^+1=^+1 for a^r^d-1

and 7rf=w.

Let then xeR^ and set /=S7-i ̂ ^ x)^ we have

R^(g.x)»aX^ and x,=<l,X^>.

Now we can also write ̂ ST-i ̂ fe» jc)> ^erc jc€ R^ and

^fe^-a^X JE»=<J,^>.

For Kk <a— 1 we have

jc,=a^>=u^>=jc»,
and for a<k^d—l we have

^= <f, ̂ > = <J, X^i+c;^i^>
:= ̂ ' ^k+l'^k-H^P^ ==xk+l+CA+lx«»

and
^= <'» ̂ > = <<' ̂ .> = <t, ̂ > =x..

So for 1 <7^— 1 we get

RJte, x)= <1. ̂ > = <t. ̂ > =^?te ̂

and therefore

RJte. -iX^,..., -iX^=^;fe, -iX^...., -iX^,0,.. .,0)

=Jljte, -iX;,,..., -î .,p0,.. .,0)=J(Jto -î ,.. „ -î ).
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REPRESENTATIONS OF NILTOTENT LIE GROUPE 433

and this implis that r^)s=rj(^) for 1 </<p— 1. For p^j^m— 1 we get

RJ(g.x^ .. .,̂ )= <f, X^ = 0 ̂ i+c^^>

=<J+ife, x^ .. .,x^)+c^ix^

and therefore

^?+ite>^i»- • ->^)+^+ix,
^fc^i,.. •^.-î .-n+c^x,,.. .,x^4-c^x^xJ,

so
^\i(g, -iX^,..., -i^)-ic^^

=^te,-i^,....-i^^,-^^
-ic^^^^,..., —iX^—ic^Xy -ijy

=^fe-i^,....~i^),

implying that r^+i te)—^+i^=rjte), and therefore

^l-^lte)=^--c^^^--i(^te)+ic^lX^=^-irffe)).

We have thus reduced to the case where 9^1 sskcrad^, and proved our
claim.

From now on we then assume that ft,«i=^==kcradX2, and set
^o=^| 9ii.-r Set H=exp .̂ The representation n can be realized as the
induced representation n=mdy ^ ^n^ on the space L^G, TCo)> where Wo is
the irreducible representation associated with the H-orbit through go- For
a differentiable vector (peL^G, Wo) and an clement M6l/(9c) we have
(dJc(M)<p)(s)=dlCo(Ad(5-l)u)<p(5).

We designate the objects associated with the Jordan-Holder sequence
b = 8 m - i = > . . . = > 9 o = { 0 } by J^=e°. etc. Since 9^^QRX^ we
have that

fr-h^ r=l....,d-2.

Let then l</^w-l, xeR^, write/=^.^(g, x)^and set fo=/|l). We
can write l^sg with

s=socxp(j^ So€H, teR,

BULLETIN DE LA SOClfiTfi MATHfeMATIQUE DE FRANCE



434 N. V. PEDERSEN

implying that lo is in the H-orbit of exp (X^go. Therefore

^ETJ^exptX^o^0)^

so
R^(g,x)^Rf(aptX^x°) for l<^m-l.

Now for 1 <r<d-2 we have

x?=u^>=ax^>=x^,
and
x,= <(, X,,> = <(,^> ̂ ^^^-^(cxptX^o^0)

=<exptX^o»^2>=<^o^2-^^^2]>»

and therefore t=«g, [X^ X2]»-l«^ X,> -xQ.
The conclusion is that for 1 </ ̂  m -1 we have:

R^x^ .. ̂ x^^x^Rftexp^y^X^x^ .. .,x,-i).
\ \^»lAll»>A2J/ /

We then write (c/: 1.3) for 1 <j<m -1:

^?° Oo. x0) =1^ fl̂  (lo) (x°) ao, (o e ̂ o,

and get

)̂-̂ <»(»P^J .̂)-'S' • •. ̂ .

Now a (̂io) has the form /'(lo .̂oOo)^ where P is a polynomial
function on b*, and since P,o is G-invariant (Lemma 1 . 1 . 1 ) we get that

e° (^<glxl>-Zxly e \^-.^exp^^X,^

is a polynomial function in x^ which we denote T^(x^). We set
p^^ssx^ ... xS3-/ and so we get

^ Î̂ 7.̂ !)̂ ^ • • .̂ -i).

TOME 112—1984— ?4



REPRESENTATIONS OF NILPOTENT LIE GROUPE 435

and therefore

R^(g, ̂ iX^ ..., -iX^^T^iX^P^iX^ ..., -iX^,\

and since X^ =^ is central in 1) we get that

W^E^-O-^

where t^ is the symmetrization of T^(-iX^) and ̂  is the symmctriza-
tion ofP.^-i^..... -iX^) (Lemma 1.3.1).

But then

^o^fe^-S^^o^^oCpj-S^^teo)^^).

and since

^ofeo)==£^fl?o«ofeo)^«o>

we have showed that

dn^(g))^dn^°(g^

and using the induction hypothesis we then get that AloCY^sidTCo^fe))-
Applying this to the functional sg, seG, we get

d(CTo) W = ̂  (CTo) (̂  (̂ » = ui (̂ o) (̂  fe)).

so that

d7Co(Ad(5-l))^)=ywo(Ad(5-l)rJte)),

and therefore finally Ai(X,)=iAc(rJte)). This ends the proof of the
theorem.

Remark 2.1.3. - Certain points in the reasoning above can be found
already in our previous publication [8]. However, for the convenience of
the reader we have repeated them here, since the present context is much
simpler than the one in [8].
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436 N. V. PEDERSEN

2.2. V g€Q* and if n is the irreducible representation of G associated
with the orbit 0=G^, we let I(g) denote the kernel of the differential dn
of n considered as a representation of C/(Qc)-

For eeS with e^0, let G^ denote the linear span in S(gc) of the
elements of the form X^[ ... Jfg, where e= {j'i < ... < j^}, and where
(Xi, .. .,o^ are non-negative integers, and set F« to be the image in C7(gc)
of G^ by the symmetrization map CD. Moreover, let E^ denote the linear
span in U (gc) of the elements of the form X^1... X^. If <?==0, set
G,=CI.F,=CI=O)(GJ,£,=CL

Set, for eeS, geft^ and l<;<w, vjte) to be equal to X^ir](g) (note
thatMJC^sEOif./ee).

The following theorem not only gives an explicit finite set of generators
for the ideal l{g\ but also an explicit (in fact two) supplementary subspace
(s)ofJfe)inl/(9c).

THEOREM 2.2.1. — If geSI^, then I ( g ) is generated by the elements
(^(g))^^ and

U(Qc)-I(g)9E^I(g)QF^

Remark 2.2.2. - M. Duflo has kindly made me aware of the paper [6]
of Godfrey, where it is proved, in the language of enveloping algebras,
that there exists, for a given coadjoint orbit 0, polynomial functions
P^, ...,?„ on Q* defining 0 such that the elements M i , . . .,«„ in l/(gc)
corresponding by symmetrization to the polynomial functions (-» P^(—i0,
7=1, . . .,n, generate ker (dn), where n is the irreducible representation
associated with 0.

Proof. - For simplicity we set Y^X^, \^r^d. We denote by £^
the linear span in l/(9c) of the elements of the form Y^ ... Y^, where
l^r^d (in other words, E^ is the subalgebra spanned by Yi , . . . , Y^
and set Jo to be the ideal generated by ̂ (g))^^ We already know that
Jo <=J(^) (Theorem 2.1.1).

LEMMA 2.2.3. - t/(9c)=^o+^e-
Ptoof. - We have u?te)=J!0-irJ(g), so ^=uJ(?)+irjte). Let then

u e U (Qc)- We can write

^E.^1---^
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where fl,==0 except for finitely many multi-indices a=(ai,..., a .̂
But then

^L^teH^fe))'1 • • • (^te)+^fe))o,=uo
+^ft+...^r;fe)«i ...r̂ )-".,

where UoeJo- Now r^(g)eE^ and we have thus shown that
u € /o + ̂ e- Thi8 ̂ d5 the proof of the lemma.

We next proove the following two lemmas:

LEMMA 2.2.4. - £, <= Jo+£<-OT^C*

LEMMA 2.2.5. - E^ <= Jo+^e-
For the proof of these two lemmas we need a little preparation: Let

A be the set of ^-multi-indices a=((Xi, ..., a^), a^, ..., a^ being non-
negative integers. We define a total ordering on A in the following way:
Let a==(ai , . . . , expand a'=(ai,.. .,04) belong to A with a^a'; then

a<a' <=> ap<(Xp,

where:

/?==max{ Kk^d|ak^o^}.

In this way A is well-ordered.
For a==(ai, . . .,a^), let G^ be the linear span in S(gc) °f elements of

the form Y ? i . . . y?", where P^a^ for l^j^d, and set J^=G)(G;).
Moreover, let £; be the linear span in U (gc) of elements of the form

y?i ... yS", where P^o, for 1 <7^A

Finally set E^ to be the linear span of elements of the form Y^ ... Y^,
where Yj^ appears at most o^ times in the product, i. e. such that

#{l^t^n|r,=k} ^a».

SUBLEMMA 2.2.6. — For y.€A we have

£;cJo+£;+^£S.
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Proof.—The proof is by transfinite induction. Write a=(ai, ...,a<).
If all dj are zero except possibly for one value of 7, then the lemma is
clearly valid. So suppose a is not of this type, and that the result has
been proved for all elements in A smaller than a, and let Y^ ... Y^eE^
be such that # {t\r,»j} ==o^j=l , . . ..A

Let k be such that a^>0 and aj=0 for j>k. Choose K«n such that
r^==k. We now claim that the element

y y y — y t Y Y1 T\ • - • J ft ' ' • ' »•„ A ri • • • ' ft • • • ' r« * r(

belongs to A)+£B<«^S- If ^=n this is clear, so suppose that t<n. We
can then write

V^-Y^ Y^[Y^ yj=V^ Y^^a,X^(a,eR)

-Y^ Y^^a^(g)+ir^(g))

-Y^ r^-E. îfl̂ fe)-!^0^?^)-
Now since uJ(g)eJo and since an element

^...^-^fe)^,...^

clearly belongs to Sp<,5? for all j<h we see that the element
u= y,,... y,, y,,,,... y,, is equal to y,,... y,,,, y,,... v^v+u^
where ve^^E^ and where MoeJo. Therefore, by moving Y^ one step
to the right in the expression Y^... Y^ . . . Y^ we have perturbed only
by an element in Jo+£p<«^S- Continuing like this in finitely many steps
we see that

y y y — y t y yJ^ . . . J^ . . . J^ J^ . . . Xy , . . . !,.„ 'r,

belongs to ^o+Zp<«% and this establishes the validity of our

claim. Now the element u'=V^ . . . ̂ ... Y^ belongs to £;', where
a'==(ai, . . .,^-1,0,.. .,0), and therefore, by the induction hypothesis,

u'eJo-h^'-hEp^-
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Moreover, if an element v belongs to E^', where P'=(Pi,...,
Pi, 0, . . . , 0) <a\ then v ¥„ belongs to £?, where P=(Pi, . . . ,
Pk +1,0 .... 0), and clearly P < a. But this shows that

u'y,€Jo+£:+l;^££,

since clearly E^. Y^ <= £;. This ends the proof of the sublemma.

SUBCOROLLARY 2.2.7. — For aeA we have

^^o+Z^.

Proof. — Again by transfinite induction. The result is trivial for the
minimal element. Suppose then that the corollary has been proved for
all elements in A smaller than a. Then by the sublemma

£;<=Jo+£;+Zp<.%

and the induction hypothesis gives that

^^o+E^pi7; for P<o,

and therefore S^ <= ^O+ZB<«^S- Thi8 ̂ ^ ̂ e proof of the subcorollary.
Now the validity of Lemma 2.2.4 follows immediately from

Subcorollary 2.2.7. To prove Lemma 2.2.5 we need the following.

SUBLEMMA 2.2.8. — // V . . . Yy belongs to E^ then

^
n\'

Y Y — — V y y1 ' * ' " ^t—1065" ro(l) ' * ' *'«<")

belongs to Jo+Zp<^S.

Proof. — The proof is by transfinite induction. The results is clearly
valid for the minimal element. Suppose we have proved the result for all
elements in A smaller than a, where a is not the minimal element. Let k
be the number such that a^==0 for j>k and a^l (so that r^=k). Set,
for !<^<n,S;= {o€S,|<J(^)=n}.
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Suppose that oeS;. Then

y y r v
y®(l) * ' • '9W '••(p-M- • ' • »'»(•)

s=y y y y-r.d) • • • ^re^+i) ^re^) • • • -r,^

—y ry y ' 1 y^0(1) • • • *-r,<^+i)» *r,(^)J • • • *r»W

Now we can write

I^^l^r.J-Ej^^^^Zj^^^^-Z^^^te)'

and since clearly an element of the form

•'••(D • • • "^{f-iy^f -re^+i) • • • •»•<»(*•)

foTj<j^ belongs to E^ with ($< a, we see that moving Yr,(p)= Y^= V^ one
step to the right in the expression

"•^ '^(l) • • • '••W • * ' ^W

only perturbs u, by an element from ^o+£»<«^S- Continuing like this
in finitely many steps we see that element

y y y —y t Y Y^(l) • • • * ̂ {f) • • • - r«,(«) - r,(i) • • • * r»(^) • • • ' »•„(„) * r,(y)

belongs to ^o+£p<«^S- We conclude from this that

ZoeS^ ̂ '•(D • • - r̂,̂ ) • • • ^r,(«)~L<»6S? -••.(i) • • • ^r,(p) • • • lr»{^ 'k

belongs to ^o+£^<«^£ for a11 K^^w.
Now clearly

2^e5^ Ted) • • • '^W • • • '^W^LweS^t *^(1) • • • -^Oi-l)'
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so we find that

—T Y Y --1—V y y v^[^ocS, ' a ( i ) - - - r,(.) ^_n»^cS«-i ^.(i)-• • ^(.-i)^

belongs to ^o^Zp^^S- So we just have to show that

r̂i • • • ^-i ̂ f , ,yL<»6S»-i -^(i) • • • 'r,^-!) 1 *

belongs to Jo+Ep<«^- But clearly Y^ ... r,̂  belongs to £;', where
a'^oii,.. .,a^i,at-l,0.. .,0) and a^o, and therefore, by the induc-
tions hypothesis,

V y V y y
-• » • ! • • • *r,»-i , ,^Z^ecS»-i '••(I) • • * '••odi-l)

belongs to ^o+Zft<«'^S- So to finish the proof we just have to note
that if ueE^ with (Pi,. . .,Pk,0,.. .,0)=P'<a', then uY^eE^ where
P=(Pi> • • • > P k - l ' P k - ^ l > o • • .,0),andp<a. This ends the proof of the
sublemma.

Using Sublemma 2.2.6 we get as an immediate corollary:

SUBCOROLLARY 2.2.9. — For Q.€A we have

£;cJo+^+Ep<«%

SUBCOROLLARY 2.2.10. — For y.eA we have

^^o+Zp^.

Proof. — We proceed by transfinite induction: The lemma is clearly
valid for the minimal element. So suppose we have proved the lemma
for all elements in A smaller than a. Then for P<a we have
E^ <= ^o+Z^p^ an(* therefore, using Subcorollary 2.2.9.

£; <= Jo^+£p<.£^^o+Zp^.
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This proves the subcorollary.
Lemma 2.2.5. now follows immediately from Subcorol-

lary 2.2.10. Combining Lemma 2.2.3, Lemma 2.2.4 and Lemma 2.2.5
we get (since E^ F. c E^: '•"'

LEMMA 2.2.11. - U(9c)s=/o+^=/o+£<=^-^^.

LEMMA 2.2.12. - The restriction ofdn to F^ is faithful
Proof. — The proof is by induction on the dimension of 9. The lemma

is clearly valid for dimg=l (in which case e=0 and
F^as£^=Cl). Assume then that the lemma has been proved for all
dimensions less than or equal to w — 1 and that dimg=w. The case
e=0 being trivial we can assume that e^0, and write e= {j\ < . . . <ja}.

Let 3 be the center of 9, and let geO. Set 30=1^^13- We consider
two cases: case (a): dim^o>0 and case (b): dim 80=0.

Case (a). - We use all the notation from the proof of
Theorem 2.1.1. Suppose ueF, and let i;=(o"1 (u). Write

^E.^---^-

We have

?=c(iO=E«fl.c(^) ... c(Xy,)^a^ ... ̂ ,

and
(0 (?)=(0 (C (l?))=C (CO (v))==C (u)=M.

If now Ac(u)=0, then dn(u)^0^ and therefore, by the induction hypothe-
sis, u=0, hence ?=0 and therefore a, =0 for all a. But this shows that
y=0 and therefore u=0. This settles case (a).

Case (&). — Again we use the notation from the proof of
Theorem 2.1.1. Since clearly G^=G; we have that F^^- We have
therefore reduced to the case where 9^ -1 = ker ad X^ = I). We assume that
this is the case from now on.

We write again

^L^---^
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and M==O)(I?). Suppose first that o,^0 implies that 0^=0, so that we can
write

^L^O)^...^.

Forp^Oweset

^-LO^.^O)^ • • • ̂ r^0-

We have v^^X^Vp, and setting i^=(o(i^) we also have M=^ A^u^
since A^ ls central in Q^-i. For zeC we set y,=^ ^^p€G^o, and
^ss<Q(v,)»^zpUp€F^

Setting p= <^, [X^ XJ > we get

d(exptX^) (M)=dno(Ad(cxp-(XJu)
^Ep^oCAdtexp-r^J^diCotAdtexp-rJICJ^)

-ZpC-^O^Cexpt^iCoX^-dCexpt^jio)^-,^).

Now for a differentiable vector (peL^G, Ho) we have

0==Ac(M)<p(exptXJ
=d7io (Ad (exp~r -YJ u) (p (exp ( X^) for all re R,

so

Ato (Ad (exp-t XJ u)=d (exp r ̂  ̂ o) (M)=O for all re R,

hence, from what we saw above

d(exptX^no) (M_,^)=O for all (eR.

Now M_.^€F^O, and the induction hypothesis applied to the representation
exptX^Uo then gives that u_,^=0 for all (. But this implies that Mp=0
for all p^O, and therefore that u=0. We have thus shown that dn is
faithful on elements u of the special form considered.

Suppose now that u is arbitrary, and define for p^Q the element

^E.,^-.-^:!1
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so that i?=E VpXi. Suppose that there exists p>0 such that i^O, and
let q be the maximal such p. Then (ad X^v^q\ v, and

q^^^fo^dX^v^&dX^u.

Since ^71 (u)=0 we also have that

^dnaisidX^yu^dn^)^
^

hence that u,=0, because », is of the special form considered above. But
this is a contradiction, so i?=»o» and therefore, again appealing to the
special case considered above, u=0. This ends the proof of the lemma.

LEMMA 2.2.13. - The restriction ofdn to E^ is faithful.

proof. - We prove by transfinite induction on aeA that the restriction
of dn to Ei is faithful. The result is clearly valid for the minimal
element. So suppose we have proved the lemma for all elements in A
smaller than a. For P€A, let Up denote the element X ^ } . . . X^f in l/(9c)>
let i?p be the element X ^ } . . . X^f in S(9c), and set iTp==a)(i?p). Let ueE^
and write ̂ Ep^.^p and suppose that Ac(u)=0. If fl«=0 there exists
a'<a such that U€E^\ so u==0 by the induction hypothesis. Assume
therefore that a^O. It follows from Sublemma 2.2.8 and
Subcorollary 2.2.10 that M«-u,eJo+Ep<«^- Therefore we can write
U=UO+M, where M=fl«M,4-Ep^,OpUp and where Uo€Jo*

Now dn (u) = 0, and ue F^ so u= 0 by Lemma 2.2.10. But then it follows
that a. = 0, since the system (up)? < ̂  is linearly independent in 17 (gc)- This
is a contradiction and ends the proof of the lemma.

We can now end the proof of the theorem: From Lemma 2.2.11 we
get that l/(9c)a=/o+^e=Jo+£•- Bnd actually the sums are direct by
Lemma 2.2.12 and 2.2.13. But since Jo <= l(g) we must have Io^I(g\
and the theorem is proved.

2.3. We set I^(g\ 1 <k<m, to be the kernel of the restriction of dn to
^((9»)c)> i- e- ^te)=^fe) H ^((9k)c)- Moreover, we set

e(k)^ Ui< ... <J4'} where ^=max{ l^r^d |j,<k}.
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Let G^(k), F^^), £<(k) have the obvious meaning (i?. the beginning of
Section 2.2). Then using Subcorollary 2.2.7 and 2.2.10 we can prove
the following result just like the way we proved Theorem 2.2.1:

PROPOSITION 2.3.1. — IfgeQy then Ii,(g) is generated by the elements
W)^i.^ ̂

y((9»)c)==^fe)®£ew=^fe)©^w•

We now claim that we have

^^-S^^.i^fe)^^)^ k=l,...,m.

We prove this by induction on k. First we note that by
Proposition 2.3.1 I^(g) is the set of Unite linear combinations of elements
uu']{g)v, where u, ve l/ftftjc) and 1 <7<*-

Now u\ (g)=X^ —i(g, X^ >, and X^ is central, so it follows immediately
that uu\ (g) v = u\ (g) uv so /i (g) = ̂  (g) U ((Qi)c).

Suppose then that we have proved the result for all inte-
gers ̂ k(<w). Since we clearly have that

i^i(s)^T^^(s)V((^^

it suffices to show that

Xuj(g)€^^^(g)U((^,)c)

forallAegk-n, Kj<k+l.

But XMJ^I^X-HX u^(g)] and u^{g)^X^(g\ so

[X uJte)]=[X. Xj-iad^(rjte)),

from which we see that [X, uj(g)] belongs to ^((g^c)- fiut obviously
dn ([X, uj te)] = 0, so by the induction hypothesis

[Xu;te)]6J,fe)=^..J-l^te)l/((9»)c).
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and therefore

^fe)=<<Jfe)^+KuJfe)]€E^l,.^fe)U((&^)c)•

This ends the proof of the claim.
In particular for fe =w we get:

THEOREM 2.3.2. — The ideal I(g) coincides with the right (or left) ideal
generated by («?fe))7«i.^o »• ^ we have the formula

W^i.^^^
This is the formula alluded to in the heading of Section 2.

2.4. We end Section 2 by showing how one in principle can find in
terms of a given irreducible representation n the element eeS such that
the orbit 0 associated with n is contained in Qy

PROPOSITION 2.4.1. — IfgeQ^ and if n is the irreducible representation
ofG associated with the orbit 0=G^, then

e»{l^j^m\dn(X^dn(U((Q^}.

Proof. - Suppose that dn(Xj) €dn(U ((fi^i)c))- Then ̂  (X^dn (u)
where ueE^^^ by Proposition 2.3.1. But then X^-u€l(g\ so Sjee
this implies that Xj - u = 0, since then also X^ — u 6 E^ (Theorem 2.2.1). It
follows that X^u, and this contradicts the fact that ue U ((9^-i)c)- we

have thus shown that j i e. Suppose conversely that j i e. Then

dn(X^idn(r^(g))€dn(U((Q^)^

This ends the proof of the proposition.

3. An algebraic method for finding the orbit associated with a given
irreducible representation

3.1. Given an irreducible representation n of G, how does one find the
orbit associated with TC? Using the results of Section 2 we shall in this
section give a solution to this problem in algebraic terms (analytically one
would, of course, use the Kirillov character formula).

We use all the notation from the Preliminaries (Section 1). In the
following we shall often identify g€Q* with its coordinates (^,.. .,^J
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with respect to the basis (i,.. .,(„ in g* dual to X^ .. ̂ X^g^^^^l^
We start by noting that the function g^R^(g, x):Q^R (for fixed

xeR^) only depends on the restriction of g to 9^ (in fact, the G-orbit in
Of through gj=g 19^ is given by

Gg^m^^^1?^^})'

Moreover, since [9, QJ c= 9 ,̂1, the function R^g, x) forjee actually has
the form

J^,x)=^+^te,x).

where ^5:I^xR<(-+R is such that the function g-^V^(g, x) (for fixed
xeR^) only depends on the restriction of g to 9^-1. We write this
symbolically:

^te.x)=J?J(^ .. .,^x)=^+F^,.. .,̂ ,x)

for j ie.
Forjie, let i?Jte)=t?J(^i,.. -,^-i) be the element in 17 (9c) correspon-

ding by symmetrization to the element V^(g, —i^p ..., "~1^) m S (9c)»
so that

W-^+W

and set forj^e

W^X^(g\

or

rj(^... .,^-,)=^^(^ .. .̂ -i).

With this notation we derive the following result from Theorem 2.1.1.

THEOREM 3.1.1. — Let ne6, and suppose that the corresponding
coadjoint orbit 0 is contained in (̂ . We can determine an element
g=(^,..., !;„) in 0 inductively as follows:

(1) i^I=dn(X^ 2) if we have determined ^... ̂ 0'<w), then, if
j+ lee we can make an arbitrary choice of ^+i (e. g. ^+i=0), and if
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j+l^e we have

i^J»Ac(^(^...,^)).

Now the problem of determining, for a given irreducible representation
TC, the element eef such that 0 c Q^ is solved by Proposition 2.4.1. The
answer given there is, however, not of the same algorithmic nature as the
one given in Theorem 3.1.1 and is therefore less satisfactory. In the
following we shall remedy this situation. Our final goal is
Theorem 3.4.6. First, however, a digression.

3.2. THE MAPS a, AND A,

In this section 9 denotes a Lie algebra over C. For ne N we define the
map o^: 9 x ... x g(2n factors) -^ S (9) by

a,(Xi,.. ',X^^)^-^—^^^siffia[Xy^Xy^... [Xy^.^Xy^

It is immediately seen that o^ is an alternating In-linear map from
Q X ... xg(2n factors) to S(g).

An element in S (9) corresponds to an element in the algebra Pol (9*)
of complex valued polynomial functions on g*. The polynomial function
P corresponding to a,(Xi,.. .,X^)eS(g) is

^(0=^Z,^signa<U^(l),^(2)]> X . . . X <U^(2-l).^(2j>,

(€9*, so we see that P(0=P/(M(Q), the Pfaffian of the skewsymmetric
matrix

M(0=[<i, [X^ XJ>h^..^ W.

In particular PCO^detM^.

Let C==[cJi^^^2^ be a 2n x 2n-matrix, and set X^^^^c^X^ Then
we have (the proof is immediate):

LEMMA 3.2.1. - o,W,.. .,J^)=detCa,(Xi,.. ..X^).
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LEMMA 3.2.2. — Suppose that X^ commutes with all
X^ .. .,X^»i-i* Then

a. (̂ . .... X^»[Xt, X^ a,.i (X,. ..., ̂ ,.i).

Proof. - The matrix M(Q, leg*, {v. above) has the form

0

0
•

6
-</,[^i,^j>

0...0

M°(0

————

<u î.^>

0

so

P/(M(O)= a 1^1, ^J>-P/(MO(O),
and therefore

a, (Xi, ..., X2»)=[Xi, ̂ J^-i (^2> • • • > ^2»»-i)-

COROLLARY 3.2.3. - If AI commutes with all X^ .. .,^2^ tten

o,(^,...,XJ=0.
For n € f^l we define the map A,: 9 x ... x 9 (n factors) -»U (g) by

A,(Xi,.. .,-X^=2^^signCT-X,(i)... Xy^y

It is immediately seen that A^ is an alternating n-linear map from
9 x ... x g(n factors) to 17 (g).

Let C==[CyJi^,^ be an nxn-matrix and set X^^^^c^X^ Then
we have

LEMMA 3.2.4. - A,W,.. .^^detC/UATi,.. .,J^).
The maps a^ and A^ are connected in the following way:

PROPOSITION 3.2.5. - For X^ .. .,X^€Q we have

(o(a.(^,.. .,^2.))ss-^.(^ .. .̂ 2J.n!
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Proof. - Writting, for aeS^^ r^K^-i), X,^^ we have

(o(a,(^,....^.))

=^^^S^<sl«sl8na<o(I<Y»(l)'x»(2J • • • K î.-D^diJ)

=^L^signcT(o(y?...y:).

Now

(Yl...y•)=l£p<s.rp(l)•••rpw(0 n!

and defining for pe5, the permutation

Op=(a (2p (!)-!), o (2p (1)), ..., o (2p 0)-!),

o (2p (0), .. • ̂  (2p (n)-1), ̂  (2p (n))),

we have that the map o-^Gp is a bijection of S^ onto itself with
sign Op = sign a, and

^(^=[^o(2pO)-l)»^ff(2pO))]=l^Cp(2^-l)>^Bp(2^1a!SY7p»

so

a)(y7...i7)=lSp.,.y?p...y;p.
n!-̂ ""

and therefore

<D(a.(^, ...,X^)

=y^Zp.s.£..^»gna^p...y;p

1
=y(,,.)iEp.s,2-.s^ignay?...Y;

^L.^swoyT.-.y;.
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We next note that

^7 =s K (2j-1>> ̂ ® (IjJ

=-Ao(2^-l)-^<»(2J)~^<r(2^^®(2^-l)

aB ̂  (2^-1) ̂  <2J) + Sig" ̂  -X, •^ (2j-1) ̂ o o ̂  (2j^

where T, is the transposition •/ . For each subset
. L 27 2j-lJ

e < = { l , . . .,2n} and permutation creS^i. define then the permutation a*
by ^^^"njce^ I11 ̂ i8 way cy-^^^S^a-^Sa^is a bijection, and

signoY? ... ^^^signc^X^i)^^ ... ^<(2i,-i)^(2ii)>
so

<o(a,(^,....^,))

=y„,£2£<»<S2.si8n<y<J^(l)• • • ^•W

= y^2L£a.S2,si8naAo(l) • • - ^od.)

== ^2^•S2.si8na-x<»(l) • • • ^W

= ~, ̂ 2i« C^l> • • • » -̂ 2«)*n!

This ends the proof of the proposition.
COROLLARY 3.2.6. — Suppose that X^ and [X^ J^J commute with all

X^ . . .^X^n-r Then

^2n(-^i» • • -9X^)^n[X^ X^A^^^(X^ .. .,A^.^).

Proof. — This follows from Lemma 3.2.2, Proposition 3.2.5 and
Lemma 1.3.1.

COROLLARY 3.2.7. — If X^ commutes with all X^...,X^ then
A^(Xi,...,XJ=0.

3.3. We now return to the situation described in the Preliminaries
(Section 1). If eeS with e^0 and if e= [j^ <... <j^} we define the
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element i^ in 17 (gc) by
(-i/72

^"W^^^""^

If e=0 we set i^=l. Note that according to Proposition 3.2.5 the
element v^ corresponds via symmetrization to the polynomial function
^(-0^(0 on 9*.

THEOREM 3.3.1. — IfgeQ^ and if n is the irreducible representation of
G corresponding to the orbit O^Gg, then

dn(v^P.(g)L

Remark 3 .3 .2 .— This was actually proved (in a slightly different form)
in [8] (Proposition 2.2.1) in a considerably greater generality. For the
convenience of the reader we give here the much simpler proof pertaining
to the present special case.

Proof. — The proof is by induction on the dimension of 9. The
theorem is clearly valid for dung=l (in which case e=0, ?<=! and
i^=l. Assume then that the theorem has been proved for all dimensions
less than or equal to m—\ and that dimg=w. The case e=0 being
trivial we can assume that e^0, and write e= [j^ <. . . <j^}.

Let 3 be the center of 9, and set 30 s ker^ 13. We distinguish two cases:
case (a): dim3o>0 and case (b): dim3o=0.

Case (a). — We use all the notation from the proof of Theorem 2.1.1,
and get

^^^^(^^^^'••"^^
r-iV72

=" ' A^(c{Xa\.. ^c(Xrr))
(d/2)\ h '
(-if11. ̂  f. ^

=-(^Adwl'•••'^)=^
and therefore also P^(Toc)=P^(7) for Teg*. By the induction hypothesis
we have dic(^=P^(i)J, and therefore

dn(v^dn(c(v^dn(v^P!(g)I^P,(g)I,

and this settles case (a).
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Case (b). — Again we use the notation from the proof of
Theorem 2.1.1. We have

^A^A for Kh^a-l,
^A^A+i+^+i^ for oKfc^-1, ^X^

so if we let C=[Cn]K,,,«j be the <( x d-matrix:

C=

"1

1

^+1 • • • ̂

1

1

1

where the empty entries arc zero, we have ̂ =^«ic^^ an(* A®^01"0

M^O^CM^OC. Now dctC=(-l)a. so

p, (0=P/(M, (Q)=dct C P/(M, (0) =(~1)« Pe (0,

and therefore ^==(-1)"^- The conclusion is then that we can assume
that 9^_i =1), and this assumption will be in effect from now on.

Now recalling that;\=2, andj^w, and that X^ is central in I) we get
using Lemma 3.2.2:

ttrf/i C î> • • •»^Qrf)= t^0i» ̂ OJ ̂ 2 -1 (̂ 2' • • •' ̂ -1)
=[X2,XJa^-iCX^,.. .,̂ .2),

and therefore P<(0= <J, [X,, XJ>P^o(to), where Jo^lb, and similarly
^s=—i[X2,XJ^o (Corollary 3.2.6). By the induction hypothesis we
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get that dno(v^)^P^(go)I, and therefore

^o(^)=-^o([^2^J)^o(^)»-'•'<^[^2^J>^ofeo)/=^te)/.

Now applying the above to the functional sg, seG, we have sge^ and
therefore

d(sKo)(v^P.(sg)I»P^)I (Lemma I . I . I ) ,

i. e. dno(Ad(s~l)v^P^(g)I for all S€G, and from this it follows that
dn (v^) = P^ (g) L This ends the proof of the theorem.

3.4. Let 3^3^ designate the set of all subsets of the set
{ l , . . . , w } . We define an irreflexive total ordering -< on 2 in the
following way:

(a) 0 is the maximal element
(b) if e, e'^0 and e= [j^<... <^}, e'= {/ i< /.. <A'}, then e^e' if

either
(1) d'<d andj,=j; for all r<d'
or
(2) there exists r<min{d, d'} such thatj,^ andjk<j», where

k=min{l<r<min{d,d'}|;^j;}.

We let Ŝ'®" denote the set of elements in 3^ containing an even number
of elements. For eeQ^^ with e^0 and <?= {j^ < . . . <j^ } we let M^(J)
designate the d x d-matrix

[<UX^jy>h^.^ l69*. t

and set P<, (0 = P/ (M^ (0) (cf. Section 1). We set

(-1)^
(d/2)!

v.=————Arf(X,,,.. .,XJ.e ^/^t B v Jl w

If e=0 we set Af^O^l, P<(0=1, ^=1. This is consistent with our
earlier notation (Section 1 and 3.3).
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LEMMA 3.4.1. - Let eeQ^^ and let geQ^ with e<e\ Then
P<fe)=0.

Proof. — Since e^e' we have e^0, so we can write
e= [j^ <. . . <^}. If^=0 we have that 9^ s=g, and therefore M^te)=0,
hence P»te)=0. Suppose that e'^0, and write ^== {j\ <.,. </^}. If
7y=jy for all r^min { d, d'} and d>d\ then X^ ..., X^ arc linearly depen-
dent (mod 9,), since A^p ..., Xy^. is a basis in 9 (mod 9,). But this implies
that M^(g) is singular, hence P<fe)=0. V h<ji for k$min{d, rf'} and
r<k ̂ jr^jr we have that X^eRX^^ ©. . . © RX^Qy so
X^,.. ., A^ are linearly dependent (mod 9,) and again we find that M^(g)
is singular. This proves the lemma.

COROLLARY 3.4.2. - For all eef we have:

"e=^69*
P.(g)^OandP^(g)»0^
for alle'efwithe'<e J

Proof. - ;This follows from Lemma I . I . I and 3.4.1.

Remark 3.4.3. — In [II], p. 525 was introcuced a total ordering < on
S* and this ordering was used also in [8]. The ordering introduced here
is different from the one from [11] (and [8]).

THEOREM 3.4.4. — Let eeQ^9^ and let n be an irreducible representa-
tion of G corresponding to a coadjoint orbit 0 contained in Q^, e ' eS . If
e<e\ then dn(v^0.

Pfoof. — The proof is by induction on the dimension of 9. If dim 9 = 1
there is nothing to prove, since e' = 0 and ®w•a ss { 0}.

Assume then that the theorem has been proved for all dimensions less
than or equal to w — 1 and that dim9=w(>3). Since e<ef^0 we have
that e^0 and we can write e= { j t < - ' . <^}- Suppose first that
^=0. Then n is a unitary character, and all dn(X^),.. .,dn(X^) com-
mute, so

^(^-—I^A,^^),.. ..Ai(^))=0
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(Corollary 3.2.7), and this settles the case ^'=0. We can then assume
that e'^0, and write <?'= [j\ <... <jy }.

Let 3 be the center of g, and let ge0. Set ̂ ieTg^ We consider
two cases: case (a): dim3o>0 and case (b): dim5o=0.

Case (a). - We use all the notation from the proof of
Theorem 2.1.1. We first reduce to the case where e c. I: We can write

x^^x^z^
where Z^e^ and where 0^=0 if ir>jk' Since the Z» are central in g we
have

(-O^2

»<= v—'—A^X^ ...,JU
(d/2)! 1 -

= - ,̂-£r\.l. . . ..r^l^ri 1 . . . ̂ ^W^ . • . . ̂ ).

Now a necessary condition for the non-vanishing of the term in this sum
corresponding to the multi-index (r^, . . . , r^) is: i^ <j\,...»i^^j^ and the
set { i ^ , . . . , i^} contains d elements. Suppose then that (r^ ..., r^) is
such a multi-index, and write { i^ , . . . , i^} = {7i<. . • <L] =^ It is
then immediate that e^e. The conclusion is that we can write v^ as a

linear combination of elements 07 where e'^e^e\ and where ecj. So
we just have to show that if e^e' and if e c J then dn (v<)==0. So assume
that e^e' and e c J, write e== {7*1 < ... <j^} = {ij^ < ... <ij^}, and set
?={7,<...<7,}€^r11. We have e'= { i y , < . . . <i^}. where
{7i<- • • <Jrf'} ̂ Jf^y, and clearly e- .̂ As in the proof of
Theorem 2.1.1 we see that c(v^)=v^ and therefore, using the induction
hypothesis, 0 = dn (v;) = dn (i?.). This settles case (a).

Case (b). — Again we use the notation from the proof of
Theorem 2.1.1. We have that/i=2, so, since e<e\ either 72==! or
7\ =2. Ifj\ s= 1, then i?<==0, since X^ is central. We can therefore assume
that7\=2.
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Set p = min { 1 </ < m | Xj i f)}. We then construct the Jordan-Holder
basis Xi,.. .,^, and we sec that pee\ so we can write p=j^ with
2^a/^/. We then distinguish two subcases: case (M): pee and case
(b2):pte.

Case (b 1). - Writep=j«, 2<a<A As in the proof of Theorem 3.3.1
we have ^.(-D"^. where < « ( ^ < - - - < J r f } » J * bring defined byj\=^ for
Kfc^a-1, A=/*-n—1 for a<fc<d-l and jrf=m. Setting
e'^J^ { / i< . . . <A'}» we see as in the proof of Theorem 3.3.1 that
j^j^ for l^fc^a'-l, Jk=jfc+i~l for a'^fc^d'-l and 7^=w. It is
easily seen that e<e\ (In fact, suppose first that d>d' and^=^ for all
r^d'; then a=a', and ̂ =^ for all r^d'-l, while

7^=j^i—l$w—l<m=^, so e^e'.

Suppose next that k^min{d, d'}, thatj\<jik and that r<fc=>^=j;. If
k<o, and if also k<a' we clearly have €'<€', and if k^a' we actually
have k = a', since k > a' implies that p =/«. =/,. </» </, =^ which is a contra-
diction so, r<a' =o^=j,=j;=j; whilej^=j..+i-1 ̂ 7«'==^=J«>J«' so again
e<e\ If k^o, then ji=/i,.. .J.-i^-i^P and p^jv.^ implying
thatj,==p, and therefore that k>o, and that a=a'. But then we clearly
havej;=j,. for r^k-^-i >Jk-i, so again e<e\) We have thus reduced
to the case where 9^-i==l) and^=w. We shall then assume that this is
the case from now on. We get as in the proof of Theorem 3.3.1 that
v^ = -1 [X^ XJ i^o, where

^={j?<...<J?^}={j2<...<J-l-l}.

Now clearly e°<e'°, where

^^O- Ul°<- • • <^-2) - 0*2<. . . <A'-l}

(u. proof of Theorem 3.3.1). (In fact we cannot have that d>d' and
jr^Jr f01" Bll y^^ since y^=w. Therefore there exists k such thatj\</k
and r<k => 7r=Jr Clearly 2<k^d /-l, and therefore j°=^° for all
r ̂  k — 1 and j?_ i <7k°-1, so e0^^'0.) By the induction hypothesis we then
get that AloO^0)^ and therefore that Alo^e)^.

Applying this to the functional sg, seG, we get similarly that
d(57to)0^)=0, i. e. that dTCo^d^"1)^)^ for all seG, and therefore,
as in the proof of Theorem 3.1.1, we get that Ai(i^)=0. This settles
case (61).
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Case (b2). - Here pie. Suppose that d>d' and that j;=^ for all
r^d\ This would imply that pee which is a contradiction. So there
exists k<min{d.<T} such that r<fe => Jr=JrandJk<A- Suppose that
t>a'. Then a'<min{d,d'} and j«'=;.'=^ which is again a con-
tradiction. So k ̂  a'. Therefore ;» < ji ̂  j^ = p. Set

a=min{Kr^l^b}.

Then7,.i<p<j^ and ^<OL

Define e^ {j\<... <^}, where JA=;\ for Kfc^a-1. jfc=A-l for
d^h^d.
Then

X^S^ for l^fc^a-1.
^=j^-c^J?« for a^h^d

(in fact, ̂ ^^ for 1^/^p-l and J^==^+i+c^+i X^ forp<;^w-l,
so ^j^Xj for l<j^—l and ^a=J^+i+c^i-Y^ for p</^w—l, so
Xj^Xj.i —c^^. for p+1 <7<w, and from this the relations follow), and
therefore

^(-Qrf/2

^W^^^1 '* ••'^•-^^•'•••>x^
f—iy72

=i W2V ^^^ ' * •'^-r^i"'^.^ • - •^A-^^-

For a^t^d, define the element e^eQ^ by

^= {j\<... <j.-i< . . . <]/.<... <^<m}

(== {^ < ... <;̂  }). Since A^ is alternating we then get

^TIlW^^ * * •'^•-1^ • • -'^)

^^^-"^^-^ f^i-^---f----fA)
i «-i « t rf

=«'.+L'-.(-l)t+lc^•.•
TOMEll2—1984—N°4



REPRESENTATIONS OF NILPOTENT LIE GROUPE 459

Now since e < = { l , . . , , m — l } and since 1l.^X^ is central in 1) we get
that i^=0 (Corollary 3.2.7). We then claim that e,-<e' for all
a<t<d. In fact, for r<k we have^ssjy (since k<a— l)=j,=j;=j; (since
&<a'), and^=jk (since k<a-l)==j»<A<A ("=" if *<a'> and if &=«',
then jk =p <7k +1 — 1 =j0. This shows our claim.

It now follows from case (61) that dn(v^)=Q, for all (X^T^, and
therefore we finally get that Ac(i^)=0. This settles case (fc2), and ends
the proof of the theorem.

COROLLARY 3.4.5. — Ifgefl^ if n is the irreducible representation of
G corresponding to the orbit O^Gg and if eeS^^ with e^e\ then
dn(v^P,(g)L

Proof. - This follows from Corollary 3.4.2, Theorem 3.3.1 and
3.4.4.

Let, for eef, S, denote the set of irreducible representations n of G
whose associated coadjoint orbit is contained in fl^ Using
Corollary 3.4.5 and 3.4.2 we get.

THEOREM 3.4.6. — For alleeS we have

n^
dn (v^) ̂  0 and dn (v^) = 0'
foralle'ef withe' -< e

We can now give a satisfactory answer to the question posed in the
beginning of this section: Given an irreducible representation n of G we
use Theorem 3.4.6 to find the eeS such that the coadjoint orbit 0
associated with n is contained in Sly and then proceed using
Theorem 3.1.1 to find the orbit 0 itself. In an obvious way we also get
an algebraic way of chechking whether a given representation of G is
factorial, and, if so, of finding the orbit associated with it.
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4. AD application concenung the coDtinuity of the trace

Let A be a C^-algebra.

4.1. First we recall what it means that A is with generalized continuous
trace: Set n=n(A) to be the set of elements x in A such that the
map 7i -» Tr(n(x* x)) is finite and continuous on A. n(A) is a selfadjoint
ideal in A. Furthermore set m=m(A)=n2. m is a heriditary ideal in A
contained in n, and it has the same closure in A as n. Set J(A)=
m(A)=n(A) which is a closed ideal in A (c/ [2], p. 240).

There exists an ordinal a=a(A) and an increasing family of closed
ideals (Jp)o^« such that (a)J^{0], J(A/J.)= {0}, (b) if P^a is
a limit ordinal, then Jp is the closure of Up'<p^p'» (c) if P<o, then
Jp+^/Jp=J(A/Jp)^ {0}. Furthermore a and the family (•/p)o<p<« arc
uniquely determined by these properties ([2], p. 242).

The C^-algebra A is said to be with generalized continuous trace (GCT)
if J.=A ([2], Definition 4, p. 243).

4.2. Suppose that B is a dense ^-subalgebra in A. We now define
what it means that A is GCT with respect to B: We set n^ (B)=n (A) 0 B,
and we set m^(B)=n^(B)2. Then n^(B) and m^(B) are twosided ^-
ideals in B. We set J^ (B) to be the closure of m^ (B) in A. Then J^ (B)
is a closed ideal in A.

Using transfinite induction we get a result analogous to the one
above: There exists an ordinal a==a^(B) and an increasing family
(Jp)o^p^, of closed ideals in A such that:

(a) Jo= {OL-^/J.^+^A^ { ° } » W tf P^ is a limit ordinal, then
Jp is the closure of Up'<p ^p', (c) if P<o, then

J^I/J^JAIJ,(B+W^{O}.

Furthermore a and the family (Jp)o<p^« are uniquely determined by these
properties.

We say that A is with generalized continuous trace with respect to B if
J,=A. Clearly, if A is with generalized continuous trace with respect to
B, then A is with generalized continuous trace, and a(A)s=a^(A)<a^(B).
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For 0<P<a not a limit ordinal we set /^(B) to be the inverse image
in A by the quotient map of m^_(B+Jp-/Jp-), where P- is the
immediate predecessor of P, and we set ^o(^)=0-

4.3. Let G be a connected, simply connected nilpotcnt Lie group with
Lie algebra 9, and set A^C*(G). In [4] DDCMIER showed ([4], 8.
Theoreme, p. 117):

THEOREM 4.3.1. (Dixmier). - A is GCT, and a=a(A) is finite.

Set B= C" (G) which is a dense ^-subalgebra of A. In the next section
we use the results of Section 3 to prove the following.

THEOREM 4.3.2. - A is GCT with respect to B, a==a^(B) is finite and
AW=B.

4.4. Let 9=9^ =3 9^-i =3 ... => 9i => 9o= {°} b® a Jordan-Holder
sequence for 9, and retain the notation from the Preliminaries
(Section 1). Write /= {<?i < ... <e,=0}, set «^o= {0} and set for
l^j^n

^Z^^ (G) * ̂  ̂  v^ ̂  CT (G).

Then ^p 0<^w, is a two-sided ^-ideal in C"(G), and since ^,=1 we
have a finite composition series

Q°(G)=.X, =D.X,^ ̂  ... =^ ̂ ^= {0}.

Set ̂  0$7^n, to be the norm closure of ̂  in C* (G). Each ̂  is a
closed ideal in C* (G) and gives rise to an open subset J^ of 6 (namely;
^= {n 6 G | n | ̂ ^ 0 }). Set J^= F .̂ We then have a finite composition
series

G^V^V^^... ̂ V^V^0,

into open subsets.
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Let us then note that the restriction of n to v^Cm(G) is zero if and
only if dn (v^) = 0. Therefore we get from theorem 3.4.6:

LEMMA 4.4.1:

S^= {ic6(5(ic|^0 and n\ ̂ ^Ofor allf<j}.

COROLLARY 4.4.2:

S.̂ A^-1 and V^U^S^

PpoposmoN 4.4.3. - // <p€^ l</^n» then TC^Tr(tc(<p)) is conti-
nuous on C ̂ -i = U^S^.

Proof. — Let ^ be a sequence in (l^-i such that n^-^ne6. We
have to prove that Tr(n,(<p))^Tr(ic(q))). We can clearly assume that
all the TC, belong to one E« for /^', and since each ( Vj is closed we
have that we 2^, for/>/. Now Sf>f>j we have that w(<p)==0 and
7^((p)=0 (Lemma 4.4.1) for all n, so this situation is trivial. Suppose
then that all n^ are in S, so that weS^ with /^'. It is no loss of
generality to assume that <p==<pi *v!^v^*^2 where <pi, q)^ € C" (G).
But w,(<p)=)P<.^^^((pi^cpa), where ̂  is a functional in the orbit
0, of TC, (Theorem 3.3.1), and similarly ic(<p)= IP^g)!2^^! *<P2)»
where g is a functional in the orbit 0 of n (Corollary 3.4.5). We can
assume that g^ and g have been selected such that g»-^g [1]. Suppose
first that />/. Then P^fe)=0, since geCl^ (Lemma 3.4.1), and we
therefore have to prove that Tr(n,(q))) -^0 for n -^ oo. Now using e. g.
the formula on p. 12 in [8] specialized to the nilpotent case we find

'^^'Li^ll^PT-^^0^0

^rtr^MOf+l)... M(2)f=——————)<+oo.
\ l.3...(tf—I)/
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where W^S^-il^^l2' l€^9 Po. is thc canonical measure of the
orbit On and where

-̂r.'oT?)"41 for t>(l-
Since (pi^q^oexp is a C^-function on 9 with compact support, its
Fourier transform

(<Pi*<P2°cxpr(0= \Vt*V2(^pX)el<lfx>dX
JQ

is a Schwartz function on 9*, hence there is a constant K such that

d+ p(|2^>/2|^ ̂ ocxpnoi ̂
for all (eg*. But then using the Kirfllov character formula and the result
from above we get

|Tr(^(<p))| = IP^fejnTr^q^q),))!

-IP^fe^lf (<Pl*<P2°CXp)'(O^Po.(0
Jo.

'̂̂ '̂'LI^III^^^^
$|P^fe^|K(2nrrf/2M(d+l)...M(2)^0

for n-^oo, since P^te^-^P^(j?)=0. This settles the case />/. The
case / =7 is handled by the following lemma:

LEMMA 4.4.4. - The function n -^ Tr (n (<p)), <p € C" (G),is continuous
on each of the subsets Sy ee^.

Proof. — First, find a constant K>0 such that

(l+||f||T+l)/2(<Poexp)'(0<A:fo^allJ69».
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Let g^ go^Sl^ with g^-^go and let n^ KQ be the associated irreducible
representations. Set

^(x)=(vocxp)'(S;.^?fe^x)y, X€R^ n^O.

Then ̂  is a Schwartz function on R^ and .̂ converges to ,̂ uniformly
on compact subsets. Now

|Tr(^(<p))-Tr(fc(<p))|

——— f (<p°cxp)'(^^J^x)ydx
•'e^ii^Jll^

-———f (<P°cxp)'(S;.t^feo,x)^<Ix^•teo)J«t'

= f f—1—^,.^)-—1—^^)^JR-VP.^ P.teo) /

f —;^<x)-—;*o(x) dxJl-c.cf ^«fe«) ^feo)

-I.I l o / ^"W-p———;*0^^'lii-\ (-c.ci'l/'.fe^ ^feo) 1

where C>0. But the last integral is smaller than

K f ^
^^J«-\ (-c.cr'O+Z^l^te^W"2

K r dx
'''P.teo)^P.teo)J^\ i-c.ci-(i+E;.J^te. x))2)^1'/2

iK r i
^P^LV I-c.^(l+^+...+^)<-+l>/2<ixl • • • dxi

K [ ______1______.''p^LM-c.^d+^+.-.+^r^ 'dx^ . . . dXf
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Now chosing for a given e>0 the number C>0 such that the last expres-
sion is smaller than e/2 for all n (which is clearly possible) we get that

|Tr(^(<p))-Tr(n(<p))|< f ———^(x)-———^oW dx^
Ji-c.^ ^fej ^teo) 2

for all n. But this shows that Tr(TC,(q>))^Tr(ic(<p)) since ̂  converges
to v^o uniformly on compact subsets.

COROLLARY 4.4.5. — Theorem 4.3.2 is true.

Proof. - Setting

Ri={<p6Q°(G)|w^Tr(TC(<p**<p)) is continuous}

we have that </i(B)==^f, and since v^ * C" (G) <= fti (Proposi-
tion 4.4.3) we have that ̂ i c: ̂  (B). But this shows that ̂  c J^ (B)^,
hence(Ji(B)^cCFi. Set

»2= {<peCW(G)|^c-^T^(TC(<p**9)) is continuous on ( ̂ (B)^}.

Then, since [ J i ( B ) " c [ V ^ we have by Proposition 4.4.3 that
v^^CW(G) and v^^Cm(G) are contained in ft,, hence
J^ c ftj=/2(B). Continuing like this we see that the sequence /i(B),
/ ^ (B),... stops at C" (G) in finitely many steps. This ends the proof
of the corollary.

Remark 4.4.6. — By Dixmier's result (Theorem 4.3.1) we have a
canonical composition series of A = C* (G):

C*(G)=J,^J..i=^ ... =>J,^J^{0}

by a finite sequence of closed two-sided ideals. By our result (Theorem
4.3.2) we have a canonical composition series of B=C" (G):

Q°(G)=^ =^p^ =3 . . . :D A ^O-{0}
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by a finite sequence of two-sided ^-ideals in Q°(G): In connexion with
these two composition series we would like to raise the following problems:

(1) is a=P (clearly a<P, c/. above)?

(2) if so, is ̂  dense in Jj (clearly f ^ c J^)?

Let Ij be the two-sided ^-ideal in 17 (9c) defined by

^={«el/(9c)|C,co(G)*u*C,flo(G)€^}.

We then have a canonical composition series of 17 (fie)"-

^(Sc)^ ̂  I^i => • • . => /i => /0s {0}

by finitely many two-sided -̂ideals.

(3) is CW(G)^I^CW(G) dense in ̂  (clearly

CW(G)^I^CW(G)c/^^

Of course the answer to the questions posed above will be affirmative
if it is true that whenever K is an irreducible representation of G such that
dn vanishes on I p then n [considered as a representation of C\(G)] vanishes
on Jj (it is clear that if n vanishes on Jj then dn vanishes on Jj).

(4) is there an algebraic characterisation of the ideals Jj?
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