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THE ENDS OF DISCS
BY

JOSIP GLOBEVNIK ( l) and EDGAR LEE STOUT (2) (*)

RESUME. — On etudie Ie comportement au bord des applications holomorphes du disque
unite de C dans C". On demontre que, avec des hypotheses, si /est injective sur 17 ct si, de
plus, / est continue sur U, alors / est injective sur b U. Aussi, si /, g sont deux applications
propres et holomorphes de U dans B^, la boule unite de C", /, g continues sur C, alors,
encore avec des hypotheses, si f{bU} C\g(bU) est un ensemble de longueur non nulle, les
ensembles /(0) ct g(C) coincident.

ABSTRACT. - We study the boundary behavior of holomorphic maps/from the unit disc
U in C into C". We show that under some hypotheses, if/is injective on U and extends
continuously to C, then / is injective on b U. Also, if /. g arc proper holomorphic maps
from U into B,, the unit ball in C2, that arc continuous on (7, then, again with some
hypotheses, if f(bU) meets g(b U} in a set positive length, the sets/(C) and g(0) coincide.

I. Introduction

In this paper, we study the boundary behavior of maps from the unit
disc, [/, into C^ Our results are of three kinds. First, we show that if
/: U -»• C^ is a holomorphic map that is injective on (7, then / is injective
on b 17, granted that f(b U) is a smooth simple closed curve and that/is
smooth on b U. Some smoothness is necessary, for examples show that
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176 J. GLOBEVNIK AND E. L. STOUT

continuity by itself does not suffice for the conclusion. Our second set
of results has to do with the following question: If /: U ->• D is a proper
holomorphic map, D a bounded, strictly convex domain in C^, how do
the radial images 1^ (6) == {/ (re19): 0 < r < 1} approach fcD? If f ' e H 1 ,
then almost all of the Jy(9) approach bD nontangentially. Other results
of this general kind are obtained. Finally, we have some boundary
uniqueness theorems for discs: In particular iff.g: U -» 63 are continuous
maps holomorphic in 17 with/(fcl/) and g(bU) rectifiable simple closed
curves that lie in b B^ then either /(U) =g( U) or else/(fc U) C\g(b U) has
zero length.

Our methods are a mixture of elementary geometric considerations and
appeal to some sophisticated results from modem geometric function
theory.

II. On injective maps

Our first result if the following.

THEOREM 1. — I f f ' . U - ^ C ^ i s a continuous map that is holomorphic
and one-to-one on (7, if f \ b U is of bounded variation, and if f(bU) is
contained in a simple closed curve, then f(bU) is a rectifiable simple closed
curve, and f is one-to-one on b U.

Given a continuous map g : U ->• C^, we will denote by ^ ̂  (g) the
global cluster set ofg at b U, which is the set of all points peC^ for which
there is a sequence {yj°=i in U such that ^j-^bU and
g^j)-^P' According to the work of CHIRKA [Ch], i f / i s holomorphic
from U into C^, and if ^y (/) is contained in a totally real manifold M
of class ̂  k > 1, then /extends continuously to U and the extension is
of class (€k~o. It follows that Theorem 1 has the following consequence:

COROLLARY 2. — If f: U -^C^ is a holomorphic map that is one-to-one
on U, and if<^ ^ (/) is contained in a simple closed curve of class <^, k > 1,
then f (b U) is this simple closed curve, and f is one-to-one on b U.

Proof of Theorem 1. — Let f(b U) be contained in the simple closed
curve r. The set f(b U) is connected and is not a point, so it is either an
arc contained in r or else is all of r. Assume f(b U)=J is an arc. By
the maximum principle, /((/) is contained in J, the polynomially convex
hull of J . However, as / ] b U is of bounded variation, J is a rectifiable
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THE ENDS OF DISCS 177

arc, whence, by Alexander's theorem [Al], J=J, and we have a
contradiction. Thus, / (b U) = r, and, again, F must be rectifiable.

We shall need to consider orientation preserving and reversing maps
into r. To make these notions precise, we proceed as follows. Fix a
diffeomorphism ^ from T, the unit circle in C, onto F. Let exp denote
the map x^e" from R onto T. Given a continuous map g from an
interval J=[o, b] <= R into F, we shall say that g is orientation preserving
or orientation reversing if there is a continuous map g : I -»• R such that
\Kexpg)=g and ^ is monotonically increasing or monotonically
decreasing, respectively. Covering space theory assures the existence of
the maps g. The map g is not unique, but if one g is monotononically
increasing all are, and if one is monotonically decreasing all are, so our
notions are well defined.

Consider now the map /: b U -^ F. We shall show that / admits no
folding. To formulate this notion carefully, notice that by uniform conti-
nuity, there is a §o > 0 so small that if I and J are arcs in b U of length
no more than §o, then / (7) U / (^) ^ F.

LEMMA 3. — Let I and F be disjoint arcs in b U each of length less than
§o. Let the end points of I be p and q, and let those ofF be p ' and q' where
the notation is chosen so that p^e^p, q^e1^ with 0^6p<2n,
Op < 9, < 6p+27i, and I^{eit: Qp ^ t < 9,} and similarly for p\ q\ and
F ' Vf ( P ' ) ̂  f W\ we cannot have

f(p)=fW) and f(q)^f(p^

Proof. - Assume the lemma false. By hypothesis, f ( p ' ) ¥:f(q/). We
may, therefore, define a point b ' e i as the first point we reach when
moving along /' from p ' toward q that is carried by fiof(q/). It may be
that b ' ^ q . Next, define a ' € F as the first point we reach when moving
from b' along // toward p ' that is carried by / to /(/?'). We may have
a = p ' . Perform a similar construction in / to find points a and b. We
have now that /(fl')=./V), f^^fW). and that the arc [a\ b'] c: b U is
carried to an arc y' in F whose endpoints are f(a) and f(V). Also, the
arc [a, b] c= b U is carried to an arc y in r whose endpoints are / (a) and
m

We have / (a) =/ (fc-) and / (b) =/ (a').
Also, ^Y'. This is so, for 7 and Y are arcs in F with the same

endpoints. If they are not coincident, then their union y U Y contains a
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178 J. GLOBEVNIK AND E. L. STOUT

simple closed curve, C, but then C must be F, and y [ J Y = r , contrary to
the choice of I and /' (as short arcs). Thus, as asserted, y=y'.

If a is a smooth one-form on CN, we may consider the integral a
Jy

where y is taken to be positively oriented in the sense described
above. This means that if we take a map h: [to, tj -+ y that is of bounded
variation and that satisfies the condition that an K: [to, rj ->• R with i|/
(e\pR)=h is necessarily monotonically increasing, then

fa= I A* a.
y •fto

Thus, if we take coordinates z^ ..., z^ on C^ with z^=^-HXjv+^ so that

then
a=E;:̂ ,dx,,

fa=^l{E;:,^^(oA;.(o}A.•I

^ -/<o•/Y «/<0

If, on the other hand, g: [so, sj — ^ Y is a map of bounded variation and
satisfies g=^f(expg) with g : [so, sj -^ R monotonically decreasing, then

fa=-^ l{^.og(r)^(0}A.
^Y Jso

Let 0=0'®°, fc=^i9<' and similarly for a' and fc', with

Qp ̂  0, < 6,^ 9, and 9^ ^ 9,. < 9,. ^ 9,.

We have two parameterizations of the arc 7, viz.,

<P^ [^^}^y and (p':[9.-,9J~.Y
given by

(p(9)=/(^) and ^(6)^f(ei9).

These parameterizations are of bounded variation, but we do not know
them to be injective. However, we have that for a smooth one-form a,
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THE ENDS OF DISCS 179

(1) fa^lP^a^iP'^a.
JT Jefl Je^'

We shall show that the second and third integrals in (1) differ by
sign. To do this, choose liftings <p and (p' of (p and (p' respectively so that
<p=^(exp<i>), (p'siKexpq/). As f(a) ==/(&') and/(&)=/(fl'), we have
<P(8fl)==<P'(8|>') and q^^cp^^). We may, therefore, choose $ and
q/ so that <p(9,,)==<p(9^). Having done so, we must necessarily have
$ (6,) = $' (6,0: We have <p (9,) = (p' (6,,), so $ (9? = $ (9^) (mod 2 7t). As
the intervals 7 and J' are short, this implies (p(9b)=(p'(9^). We have
therefore that (p([9,, 9,]) =$'([9^, 9^]).

Let x^ = (p (6^), ̂  = $ (9,,) whence x^ = $' (9^) and ̂  = (?' (9^). If r} = x|/
°exp so that r|: [x^ xj -^ y is a parameterization, we have

f^ f®^ f8* . f^
Ti*a== (p'llr^'lla= (^o(p)*a= (p*a

J^ Jea Jea Je<
and

fxfc re^^ pe^ ^ re^
Ti*a= ^^0= (Tio^p^a^- (p^a.

Jxa Job' Jeb Jea-

Thus, as claimed,

f«h f^.
(2) <p*a=- <p'*a.

J^ Je<-
Let now \ be an arc with endpoints a and b and otherwise lying in

17, and let ^/ be a similar arc with endpoints a' and b\ We suppose
XrU'==Q. Thus, /(^.)U/(^') is a simple closed curve. A, in
C^. Denote by A the simply connected domain in U the boundary of
which consists of \ together with the arc [a, b] in b U. Let A' be the
corresponding domain determined by V and [a\ b'}.

Define a current T on C^\A by the condition that if a is a smooth,
compactly supported 2-form on CN\A, then

-I "IJf (A) Jf

(3) T(a)= a-h a.
J/ (A) Jf (A-)

That these integrals exist is seen as follows: a is a sum of terms of form
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180 J. GLOBEVNIK AND E. L. STOUT

Adzjdz^ BdZjd^ and Cdljdz^. Thus, what must be seen is that if G is a
smooth function on the plane that vanishes near ,̂ then the integral

(4) f G(z)f',(z)7,(z)dzdz,
JA

exists. (Here /i, ..., fy denote the components of the map /)
By hypothesis, /is of bounded variation on bU, so each fj belongs to

the Hardy space H1 on the unit disc ([Zy], p. 285) and ([Du], p. 42). (This
is a theorem of Privalov. See [Pr], Chapter I, §4.) It follows that

\fj\2 < °° (1)- Thus' the integrals (4) exist.
Ju

The current T is closed because of Stokes's theorem and the
result (2). It is of bidegree (1, 1) and positive. The support of T is the
set (/(&i) U /(&2))\A an(^ at each point of this support outside the set
Y, which has finite one-dimensional Hausdorff measure, the Leiong number
of T is one. Thus, a theorem of KING ([Ki], Th. 5.3.1) applies: There is
a one-dimensional variety W in C^^A such that

Ta= f a

for all 2-forms a. We have then that W =>/(A) U/(A') and, consequen-
tly, the closure of/(A)U/(A') in C^A necessarily coincides with the
variety W.

We shall defer the proof of the following fact for the moment.

LEMMA 4. — The intersection f(bU)nf(U)=rr\f(U) has zero one-
dimensional Hausdorff measure.

This is somewhat more than we need just now, but as ^ and V are
contained, except for their endpoints, in t7, it implies the existence of
an arc L contained in f{[a, fcDN^A^da', fc'])\A. But this leads to a
contradiction of the maximum principle.

(*) If y}=^fl,z", then l/^l^oo is equivalent to S"!0"!^00- Tne Riemann-

Lebesgue lemma yields "(/„-»(), and, as /, is of bounded variation, ^|fl«|<oo
([Zy], p. 286). Thus, ̂ n|oj2 < oo.
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We have that \V\W <= A, W denoting the closure of W in C^. As
A <=/([/), this implies that W is contained in the polynomially convex
hull of r. By the theory of the Shilov boundary [Ri] we know that the
polynomially convex hull of F is the same as the polynomially convex
hull of the subset TQ of F that consists of the closure of the set of peak
points for the algebra ^(F). The arc L is contained in the variety W, so
no point of L can be a peak point for the algebra ^(F). This means
that roC:(r\L)~. This is impossible though, for by the theorem of
ALEXANDER [A I], the rectifiable arc (P\L)~ is polynomially convex.

This contradiction completes the proof of Lemma 3.

Proof of Lemma 4. - Put E=f(bU) n/(C7). If A' (E) ̂  0~we denote
by Ar the r-dimensional Hausdorff measure on C^ — there are points ZQ of
metric density of the set E with respect to A1. Let ZQ =/(()). There is a
connected open set VQ in U containing 0 that is mapped by / injectively
onto a subvariety f(Vo) of a ball B(zo, r) of radius r centered at
ZQ. (Note, we cannot claim that /is biholomorphic on VQ; df{0) may
be 0.) For some choice of h^ ..., /i,€ 0 (B(Z(), r)).

/(Fo)={zeB(Zo, r): h , ( z ) = . . . =^(z)=0}.

As ZQ is a point of density for £, there is an arc L c bU such that
Zoe/(L)c:B(zo, r)^ind^l(E^\f(L))>Q. The map/: fcl/^F is abso-
lutely continuous and so sends null sets to null sets. This implies that
Al(Lnf~l(E))>0.

Let L' be an arc in 17, except for its endpoints, which are those of L,
and which, together with L, bounds a domain D in U that is disjoint from
VQ and that is carried by/into B(Z(), r). As h^ .... A, are holomorphic
on B (ZQ, r), the functions hj =/ are defined on D and vanish on the set
/"1 (E) 0 L. As this set has positive length, h^f vanishes on D whence

/(D)cn^;^=0}=/(^o).

By construction, D H VQ ^ 0, so we have a contradiction to the assumed
injectivity of/on U.

The lemma is proved.
To complete the proof of Theorem 1, we shall need to use part (ii) of

the following theorem which is of some independent interest.
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182 J. GLOBEVNIK AND E. L. STOUT

THEOREM 5. — Let f, g: U^C^ be continuous maps holomorphic on
U. Assume that both are of bounded variation on bU and that both are
injective on U and also on bU. Let Xy, ^ be open arcs in bU taken by f
and g, respectively, onto a rectifiable open arc A. Put

^tel^)"10^!^).

(0 // x|/ reverses orientation, then the set

E=[f(U)Ug(U) U \)\[f(bU\^) Ug(bU\\)],

is a variety in the domain

"^^[/(fciA^) Ug(bU\\)].

(ii) If \|/ preserves orientation, then there exist neighborhoods W^ of 'kj-
in ^U U and Wg of \ in \\JU such that f(Wy)=g(Wy) and /=^(p
for some biholomorphic map (p: Wy -»W.

The point is that either the discs/(I/) and g(U} abut along A so as to
form a variety or else they coincide near A. Of course, either case can
occur.

Proof. — As /and g are of bounded variation on bU, f(U) and g(U)
both have finite area.

Assume that v(/ reverses orientation. Define a current T on Q. by

Ta= a-h a,
Jf(U) Jg(U)

for all smooth, compactly supported two-forms a on ft. The structure
theorem ([Ha], p. 337) implies that T is a holomorphic chain: For some
locally finite family Vpj=\, 2, ..., of varieties Vj in Q and for some
integers m? which we may take to be nonzero,

T=WV,}.
We see that the only possible values for m^ are one and two.

The arc A is contained in a single one of the Vp say V^. It follows
that every global branch of / (U)\(f (bU) U g (bU)) whose closure (in C^)
meets A is necessarily contained in V^ and similarly, every global branch
°f g (^)\{f(bt^ U g (bU) whose closure meets A is contained in V^. In
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THE ENDS OF DISCS 183

each case, there is only one of these global branches: In the case of /, it is
the image, Ay under/of the component of l7\/~1 (f(bU) Ug(bU)) that
abuts \f, and in the case of g, it is the image. Ay under g of the component
of U\g~1 (f(bU) Ug(bU)) that abuts Xg, because/and g are both injec-
tive on bU.

We now have that V^ ~D (Af U Ay). The orientation hypothesis implies
that Af and Ay lie on opposite sides of A in V^. It follows then that the
variety V effects the continuation off(U)\Jg(U) through A.

It remains to deal with the case that \|/ preserves orientation. In this
case, define the current 5 on ft by

Sa== a~ a.
J/ (U} Jg(U}

Again by the structure theorem, 5 is a holomorphic chain: For some
locally finite family Vpj=\, ..., of distinct one-dimensional varieties in
ft and some choice of integers Wp m^ ...

5cx==^.m,[^].

We may suppose that each of the ^/s meets f(U)Ug(U) in an open
subset; with this assumption, we cannot suppose that all the w^s are
nonzero.

By virtue of the definition of 5, the only possible values of m^ are — 1,
0, and 1.

With Af and Bf as above, we again have Af \J By contained in a single
one of the V^s, say V\. The orientation hypothesis implies that Af and
Bf lie on the same side of A in V^. Thus, Af and Bf meet in an open
set, whence the integer m i is 0. This implies that Af and Bf coincide.

The theorem is proved.
We now complete the proof of Theorem 1. We know that the map/

is locally injective from b U to r, and thus, it is a covering map, say of [i
sheets. We must prove ^ to be one. If not, we can find disjoint arcs
^.i, and .̂2 in bU that are carried by / homeomorphically onto an arc
y c r. As /"' (F) r\ U has length zero, we can find rectifiable arcs X,
and \\ which, except for their endpoints, are contained in U and such
that ^ LAi bounds a domain D, and ^U^2 a domain ^2 wi^ f
one-to-one on D^ and on bD^ and also one-to-one on D^ and on fcD^. If
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184 J GLOBEVNIK AND E. L. STOUT

we denote by (p^, ;'= 1, 2, a conformal map from V to Dp and then apply
Theorem 5 to the maps /°(pi and /°q>2, we find that (p^ (17) and ^^(U)
meet, i. e., /(Di) r}f(D^) ̂  (ft. This contradicts the assumption that/is
injective on U.

Theorem 1 is proved.
In connection with Theorem 1, it may be useful to cite the map

g: C-^C2 given by g(0=K3, l — l ^ ] 2 ^ ) which is one-to-one on U but
which realizes bU as a three-sheeted covering of the simple closed curve
{(e16, O): QeR}. Theorem 1 depends in an essential way on the holomor-
phicity of the map.

We cannot say, in general, when the hypotheses of Theorem 1 are
satisfied, but there is the following situation in which they are.

THEOREM 6. — Let D be a bounded convex domain in C^, and let
f: U ->• D be a proper, holomorphic map that extends continuously to U. If
f(bU), a subset ofbD, is contained in a rectifiable simple closed curve, then
the map f\bU is of bounded variation and is locally injective. Iff is
injective on 17, then f is injective on bU and hence on U.

If we invoke the embedding theorem given by FORNAESS [Fo] and
HENKIN [HCh], we see that this theorem is true also when D is a strongly
pseudoconvex domain.

The proof of this result depends on a preliminary fact about polynomial
convexity.

LEMMA 7. — Let K c: B be a polynomially convex, compact set that
meets bD at a single point. If \ is a rectifiable arc in bD, then K U ^ is
polynomially convex.

We will defer the proof of this for the moment and proceed directly to
the proof of the Theorem. Denote by r a rectifiable simple closed curve
in bD that contains f(bU). Again, as rectifiable arcs are necessarily
polynomially convex, we must have r=f(bU).

By uniform continuity, there is 6 > 0 small enough that if p, qebU are
distinct points that satisfy dist (p, q) < 8, then if L^ denotes the shorter
of the two arcs in bU determined by p and q, then f(Lp^} is a proper
subset of r and hence is an arc.

Suppose p, qebU to satisfy dist (p, q) < 8 and f(p)=f(q\ Let L^ be
as in the preceding paragraph, and let \ cz U U {p, q] be an arc joining p
to q. If J=/(^), then J is a closed curve, not necessarily simple, contained
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THE ENDS OF DISCS 185

in DU{f(p)}, and its polynomially convex hull, J, is contained in
D U {/ 00}. Denote by L the arc / (Lp,).

The lemma implies that L U ̂  is polynomially convex whence L\J is
open in (L\JJ)'=L\JJ. However, if ZoeL\J, say ZQ=f(po) with
pQ^Lpy and if ^o ls ^ort radial arc in U that terminates at po, then 2o
lies in the closure of the subset f(^o\{Po}) °^ ^-

This is impossible, however, for if A denotes the simply connected open
subset of U bounded by X U Lpy then ^o\{po} <= A, and the maximum
principle shows that / Q^o) <=(LU^)^=^U^. This contradiction implies
that/is locally injective on bU.

That/is of bounded variation is now essentially clear. As F is rectifia-
ble, there is a map \|/: R -»• F that is periodic with period one, that is of
bounded variation and that is injective on [0, 1). Let E: R-^bU be the
exponential map given by E^)^2"". By covering space theory, there is
a map J: IR -*• R with \|/ °7=/ ° E. As / is locally injective, J is injective,
i. e., monotonic. Locally we may write /= ̂  o/0 £~1. As x|/ is of boun-
ded variation, 7 monotonic and £~1 smooth, we recognize that /is of
bounded variation.

If now we assume that / is one-to-one on 17, we may apply Theorem 1
to conclude that/is one-to-one on bU and hence one-to-one on £7.

The Theorem is proved, except for the verification of the lemma.

Proof of the Lemma. - STOLZENBERG [St] proved that if the compact
set X is polynomially convex and if F is a finite union of <^1 curves
such that the map H1 (XUF, Z) -^ H1 (X, Z) induced by the inclusion
X -^ X U F is an isomorphism, then X \J F is polynomially
convex. ALEXANDER [Al] proved that rectifiable arcs are polynomially
convex, and as he remarked, only minor alterations of his proof are
required to obtain the more general version of Stolzenberg's theorem in
which F is replaced by a finite union of rectifiable arcs.

Having proved Theorem 6, we should remark that in this context,
further regularity theorems follow from the theory of boundary regularity
for minimal surfaces. See the papers of NITSCHE [Ni 1,2].

The proofs of Theorems 1 and 6 have made use of the assumed regularity
of r at several points. On the one hand, it is a moral certainty that our
regularity hypotheses are not optimal, but, on the other hand, some
regularity hypothesis is required as the following example shows.
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186 J. GLOBEVNIK AND E. L. STOUT

EXAMPLE 8. - There is a map <p: U -^ C^, for some N, that is continuous
on [7, holomorphic on U, that is one-to-one and regular on U and that
carries bU onto a simple closed curve F in C^ in such a way that every
point ofr is the image of exactly two points in bU.

To construct the example, let A be an arc in C of locally positive
area. Let s/\ be the algebra of continuous functions on the Riemann
sphere, C*, that are holomorphic off A. According to WERMER [We] and
RUDIN [Ru] finitely many functions, say f^ ...,/^ in ̂  separate points
on C*. Let the endpoints of A be ̂  and Ci^C. For f,j, f c = l , ..., r,
let

^ (0 = (fi (0 -fi Ko)) (fj (0 -/, Ki)) (A (0 -A (oo)).

For each choice of C,eC*\{^o, ̂ , 00} there are f , ; , fe so that
F,,, (0 ^ 0. Set F,, (0 = (/. (0 -y, (^)) (^. (0 -^ (^)), and let
^(0==^F,^(0. The 2r3-^r2 functions F,̂ , F,̂  and F ,̂ 1 < f,j, k ^ r
separate points on C* except that they identity the points C,o and ^i. To
the Fs we have constructed, we can adjoin a finite number of functions
GI, .... G^es/^ with the properties that for every i, G,(^o)=G;(^i) and
for every ^eC*, one of G's is holomorphic with nonvanishing derivative
at ^ Let r^r^-t-r2-^, and let g^ ..., g, be a relabelling of the F,̂ , the
F^, the F^ and the G,.

The Riemann map ^ from U to C*\A extends continuously to C;
without loss of generality we may suppose that v(/(l)==^,
v | / ( - l )=^i . Then \|/ carries b^U= bU n { z e C : Imr ^ 0} homeomorphi-
cally onto A and also carries b~ U=bU F} { z e C : Imz ^ 0} homeomorphi-
cally onto A.

The map (p=(^, v|/, ..., ̂  v|/): L/ -+ C' has the desired properties.
Notice that the degree of the map (p | bU -^ F is zero, as it must be

since (p factors through the contractible space A.

III. On the approach to the boundary

In this section we consider a holomorphic map / from the unit disc U
in C into a convex, smoothly bounded domain D in C^ and examine how
the radial images
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/ /(e)={/(r^):0<r<l},

approach the boundary under various hypotheses on /. The principal
result is the following:

THEOREM 9. — Let D be a bounded strictly convex domain in C^ with
boundary of class V2, and let f: U ->• D be a holomorphic map such that
/(l)=lim^^ i- f(r) exists and lies in bD:

(a) J/lim,.^ i- /'(r) exists, it is nonzero and transverse to bD at /(I).
(b) Iff(r) is bounded on (0, 1), thenf(r) approaches f(1) nontangentially

as r -^ 1 ~, i. e., there exists a constant K such that

|/(r)-/(l)|^Kdist(/(r),fcD).

(c) Iff1 \f(r)\2dr<ao,thenforr^\-,
Jo

|/(r)-/(l)|=o{dist(/(r),fcD)} l /2.

Remarks. — 1. The condition of strict convexity is understood in the
analytic sense that there be a defining function for the domain D with
positive definite Hessian along bD. This implies that for some fixed
R > 0, given a point pebD, the ball of radius R in C^ that meets D and
whose boundary passes through p and is tangent at p to bD in fact
contains the whole domain D. Thus, to prove the theorem, it suffices to
prove it in case that D is the ball Bjy. On the other hand, having the
result for general strictly convex domains shows, by way of the embedding
theorem of Fornaess and Henkin that the corresponding result for strongly
pseudoconvex domains is true. (In fact, as the question is entirely local,
it would suffice to use the fact that a strongly pseudoconvex domain is
strictly convex, in suitable local coordinates, near each of its boundary
points.)

2. Geometrically, the conclusion of (b) is that /(r) approaches /(I)
through a cone with vertex at the point /(I). The conclusion of (c) is
that/(r) approaches/(I) through every ball 0 contained in D and tangent
tobD at/(I).

Proof of Theorem 9. — As we have noted in Remark 1, it suffices to
consider the case that D is the ball B/y. Also, as the automorphisms of

BULLETIN DE LA SOCIETE MATHEMAT1QUE DE FRANCE



188 J. GLOBEVNIK AND E. L. STOUT

Bjy extend to biholomorphic maps of a neighborhood of Bjy, we may,
without loss of generality, suppose that/(0)==0.

Notice to begin with, that if/'(r) is bounded in (0, 1), then for some
c>0,

(1) l-|/(r)|^c|/(r)-/(l)|, 0 < r < l .

If (1) is false, then for some se sequence {r^}^i, r^ -»• 1 ~, we have

(2) l-|/(rj|=o(/(^)-/(D).

As/(0)=0, the Schwarz lemma yields

(3) l~|/(z)|^l- |4

whence (2) implies that as n -»• oo,

(4) —}:zrn—\^0.v / /• ^ i \ /* /• \ i/(D-/M

However, (4) is impossible: As/' is bounded, we have

|/(r.)-/(l)|=lf l//(r)^|^(l-r„)supo<,<J//(r)|,
^n

which precludes (4). Thus, (1) holds, and we have proved (b). Also, as

s^,.,]^^m'^M^.i,
it follows that lim^ -. i - // (r), if it exists, cannot be zero.

That / '( l)=lim^ ^ i/'(r), when it exists, is not transverse to bBj^ is
seen as follows. We have that / '(I) is not zero; assume it tangent to
fcB/^ at / (I) so that if < , > denotes the Hermitian inner product on C^,
then Re < /' (1), / (1) > = 0. We know that / (r) -. / (1) nontangentially,
so that for some K,

I/O)-/ (r)|^(l-|/(r)|).

This yields
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| /(l)~/(r) |^X^^^^^^_^^^^^
1—r 1 — r

^^/(i),^^)^^^),/^)
^X2Re</(l) , / ' ( l)>=0,

which is inconsistent with (3). Thus,/'(I) is not tangent to bB^, at/(l),
and we have (2).

It remains to prove (c). To this end, let 0 < r < r ' < 1. Then

pr ____ / rr \l/2

|/(r')-/(r)|=|j n^l^^rN \ff(^\2d^\ .

If we let r' -+ 1 ~, we find that

/(l)-/(r)=o(y^rr).

Then, by (3), we get

/(l)-/(r) _ /(l)-/(r)
{disi(f(r\bB^)}112 =0(1).

as we wished to prove.
This completes the proof of the theorem.

Notice that in step (c), if we assume instead that if \ff(r)\pdr < oo,
Jo

1 < p < oo, we find that

|/(r)-/(l)|=o{dist(/(r),W))} l/<^

where q is the index conjugate to p.
Another transversality result, in the general direction of (a), was given

in [GS1].
As a corollary of (a), we have the following fact.

COROLLARY 10. — Let D be a bounded strictly convex domain in C^ with
bD of class (€l. Iff: U -»D (5 a proper holomorphic map that extends
continuously to D and that satisfies the condition that f(bU) is a rectifiable
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simple closed curve, then for almost all 6, the radial image I r (9) approaches
f(eiQ) nontangentially.

Again, the result extends immediately to strongly pseudoconvex domain.

Proof. - By Theorem 6, /[ bU is of bounded variation, whence by
invoking Privalov's theorem again, we find that lim.. „ i /' (re19) exists for
almost all 9. This implies the result, by Theorem 9.

COROLLARY 11. — Let D be a bounded strictly convex domain in CN with
bD of class (€^. Iff'. U -> D is a proper holomorphic map such that f(U)
has finite area, then for almost all 9, the radial image 1^ (9) approaches
f (e19) = lim,. _ i - / (re19) through every ball contained in D and tangent to
bD atf(eiB).

Proof. — The condition that/((7) have finite area is the condition that

f [\^(rei9)\lrdrdQ<^ (2).

Thus, for almost all 9, \f/(reiQ)\2dr < oo, and the result follows from
Jo

(c) of Theorem 9.

IV. Supplementary remarks

The matters we take up here fall under the rubric of boundary uni-
queness theory. As in Theorem 5, the general idea is that i f /and g are
continuous maps from U to C^, holomorphic in C7, and if / and g
satisfy some additional condition at fcl7, then from the hypothesis that
f(bU)r\g(bU) be large follows the conclusion that f(U)=g(U) or else
that f(U) \Jg(U) continues across f(bU) r}g(bU) to give a variety. Of
course, hypotheses are necessary, but there are some nontrivial conclusions
of this sort to be drawn on the basis of what we have done above. We
have the following simply stated result.

(2) The integral gives the area, counted with multiplicity, of f(U}. As /is proper, the
multiplicity is uniformly bounded off a countable set.
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THEOREM 12. — Let f and g be proper holomorphic maps from U to 83
that extend continuously to U. Iff(bU)=r^ and g(bU)=^r^ mth F^ F^
rectifiable simple closed curves, and if r\ 0 F^ has positive length, then
fW-gW

Here, of course, length is in the sense of the one-dimensional Hausdorff
measure with respect to the standard metric on C2.

proof. — By Theorem 6,/1 bU and g | bU are both of bounded variation,
and so //, g' e H1 (U). It follows - recall footnote ( l ) - that / and g both
have finite Dirichlet integral, so the varieties/(17) and g(U) have finite
area.

By the result of BERNDTSSON [Be], there is a bounded holomorphic
function F on B2 with/(L/)= Vp^{zeB^ F(z)=0}.

Let I.==f(bU)(^g(bU) so that £ is a set of positive length. The map
g\bU is of bounded variation and so is absolutely continuous. This
implies that the set g ~ 1 (S)=£^ is a subset of bU of positive length. As
geH^U), gf(eiQ)=\m^^-gf(reiQ) exists and is finite for almost every
e19 6 £„. Theorem 9 b implies that the radial image Ig (9) approaches g (e19)
nontangentially.

Also, if S^/'^S), then £^ has positive length and for almost every
^ely., Jy(6) approaches/^*9) nontangentially. It follows from Cirka's
generalization of the Lindelof theorem ([Ru2], p. 171) that the function
F g has radial limits zero a.e. on the set 2 .̂ Thus, F ^ g vanishes
identically whence g(U)<^ Vp=f(U). By symmetry, f(U)^g(U). and
the theorem is proved.

The preceding argument is not long, though it is based on several earlier
results. The assumed boundary regularity was used explicitly in the proof,
as it must be: Recall that in [GS2] proper holomorphic maps (p: U -+ B^
are constructed with the property that (6^{^)}=hB^ Of course, it is not
clear what the minimal smoothness hypothesis is that will ensure the
validity of the conclusion.

We know that to obtain a result like Theorem 5, some element of
smoothness is required. By the examples of RUDIN [Rul] and
WERMER [We], disjoint analytic discs can abut along arcs (of large Haus-
dorff dimension) and yet neither coincide nor be analytic continuations of
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each other (3). It is not clear how much smoothness is required. We
have the following result that relaxes the smoothness requirement, but
imposes a supplementary geometric condition.

THEOREM 13. — Let f and g be continuous mappings from U to D, D a
domain in C^, / and g holomorphic in U. Suppose there to be an open ball
ft in C^ centered at a point ofbD such that f(bU) 0^=^(517)0 ti= A is
an arc that projects homeomorphically into the z^plane onto an arc of class
(€v+t for some e > 0. J/A consists entirely of peak points for the algebra
A(D)(^thenf(U)=g(U).

Remark. — An arc in bD that projects homeomorphically onto a smooth
arc certainly need not itself be smooth.

Proof of the Theorem. - Let/=(/i, .. .,/^), g=(gi. • " . ^v)» and •et

^/-^ftUM)), ^^(ftnfcZ)),

so that 'kj- and ^ are unions of arcs in bU. According to Cirka's work
[Ch] {cf. [BG]), the functions f^ and gi are of class <^1 on ,̂y and ^
respectively. If we denote by A^ the projection of A into the Zi -plane,
then it follows that at for some ^o^Ai, we can find points ZyeXy and
Zg € \ such that

f(Zf)=^=g(^) and /, (Zf) ̂  0, g\ (z,) ̂  0.

Consequently, there are closed Jordan domains Ay and \ in U U ̂ / and
U U \. respectively. Ay a neighborhood of Zy in U U ̂ /. \ a
neighborhood of Zg in U \J \, such that Ay n bU and \ 0 bU are arcs
and such that /i is one-to-one on Ay, g^ is one-to-one on A^. If we
choose Ay and A,, properly, we shall have that/i (Ay 0 bU)=g^ (\ H bU),
a certain subarc of Ap say ^i.

Two cases are possible.
First, it may be that /i (Ay) and g i (A^) abut ^i from opposite

sides. Define <Dy : Ay -> C^ and 0^ : \ -^ C^ by

(3) It seems to be an open question whether it is possible to realize such an arc in the
boundary of the ball (or a strictly convex domain).

(A) As usual, A(D) denotes the algebra of functions continuous on D. holomorphic in D.
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^(O-/0/!"1^) and ^(O^o^1^).

Then <l)y and <S>g are analytic continuations of each other across ,̂1. If
<1>=^ in Ay, ̂  in A^, then <1> is holomorphic from a neighborhood of tgo
into D with <D(i,o)efoZ). As each point of bD is a peak point for A(D\
this entails a contradiction to the maximum principle.

Thus, /(Ay) and g(A^) abut ^ from the same side. This implies that
the maps Oy and <^y which agree along the arc ̂  agree near ?ii, and so
the varieties/(IT) and g(U) share a common open subset. As both are
irreducible subvarieties of D, we must have equality, whence the result we
seek.

One might wonder, on the basis of Theorem 12, whether there is a
version of Theorem 5 in which the arc A is replaced by a set of positive
length. The following example suggests that there is no such conclusion
to be drawn under any reasonably general hypotheses.

EXAMPLE 14. — Let J ' and J " be infinitely differentiable simple closed
curves in the plane that bound mutually disjoint domains ft' and ft" but
that meet in the set E - = J ' C ^ J " , which is a perfect, totally disconnected
set of positive length.

The construction of the example depends on the following fact:

LEMMA 15. — Let J be a simple closed infinitely differentiable curve in
the plane. Let {^}^=i be a sequence in the unbounded component ofC\J
that has a proper closed subset S of J as Us cluster set. If the sequence
{cjj^ i is chosen properly, the function

G(0=Z:.——,
^-^k

will be of class A^ on D, the bounded component ofC\J and will continue
analytically across no point of S.

Proof. — If we merely assume ̂ ^ |cjj < oc, then the series defining
G will converge uniformly on compacta in C\(5 U Kp ̂  • • •}). so ^e
sum function, G, will be holomorphic there. Moreover, under the assump-
tion that none of the c^s be zero, each of the ^'s is a pole for G, so every
point of S is a limit point of poles for G. Thus, G will continue analyti-
cally across no point of S. To be certain that GeA^(D\ we need only
remark that each of the fractions 1/(^—^), qua function of ,̂ lies in
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AV)(D), and then note that given an arbitrary Frechet space S and an
arbitrary sequence {^}j= i in <?, if the sequence {ajj°= i of nonzero numbers
converges rapidly enough to zero, then the series ̂ . o^. converges in S.

The lemma is proved.
Denote by \|/' and \|/" conformal maps from U onto 0' and ft",

respectively. Since the curves J ' and J " are infinitely differentiable, the
maps ̂ ' and v)/" are of class A^ (17).

Let fti, ft2, ... be an enumeration of the bounded components of
C\(J' U J " ) other than ft' and ft", and for each ;, let ^ be a point of
ft,. The set E is perfect and totally disconnected, so each point of £ is a
limit point of the sequence {^},°^i, and these are its only limits points.

By the lemma, if {cjj°=i is chosen correctly, then the function F given
by

rfn-y00 c j^)-L^_^

will be of class A^ on both ft' and ft" but will continue analytically across
no point of £.

Defined, ^//: EJ-^by

^ (z) = (^ (z), F^ (z))), ^// (z) = (vT 00, ̂ // (^))).
Thus,

lP/(l7)UlF"W={K, F(Q): ^eJ-U^Uft'Uft"}.

These smoothly bounded analytic discs abut along the set £={(^, F
(Q: ^e £} which has positive length. However, no one-dimensional analy-
tic variety contains 4^ ((7) U^W, tor such a variety would provide an
analytic continuation of F through the set £. As we have constructed F
so as to admit no such continuation, the assertion follows.
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