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ODD VALUES
OF THE RAMANUJAN 1-FUNCTION

BY

M. Ram MURTY, V. Kumar MURTY and T. N. SHOREY (*)

RESUME. — Soit 1 la fonction de Ramanujan. Nous prouvons qu'il existe une effectivement
calculable constante ¢ >0 absolue. tel que s1 t(n) est impaire. alors |t(n);=(logn). Nous
utihsons les resultats sur les formes lineaires des loganthmes.

ABSTRACT — Let t denote Ramanujan’s function. We prove that there exists an effecti-
vely computable absolute constant ¢ >0 such that if t(n) s odd. then [t(n)|=(logn)y. We
use results on hinear forms in logarithms.

Ramanujan’s t-function is defined by the relation
all.., =g =3 g

1t is conjectured by ATKIN and SERRE [6, equation 4. 11 k] that for any
£>0.

9:2)-¢

[tp)|» p

In particular this implies that for any a. there are only finitely many
primes p such that 1(p)=a. In this note. we study a related. though
simpler. question. Our main result is the following.
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THEOREM. — There exists an effectively computable absolute constant
¢>0, such that for all positive integers n for which t(n) is odd, we have

| T(n)|=(logn).
It follows from the theorem that for an odd integer a, the equation
(1) t(n)=a

has only finitely many solutions.

As t(p) is even, all integers satisfying (1) are squarefull (i. e. every prime
divisor of n appears to at least the second power). We apply the theory
of linear forms in logarithms to obtain lower bounds for 1 (p™), p a prime
and m 22, which, in particular gives the theorem.

We require several lemmas.
LeMMA 1. — 1(p™)=0 if and only if m is odd and t(p)=0.
Proof. — Write t(p)=a,+4,, a,=p'''? ¢'%, 0<6,<n. Set

1, if miseven

Y"'(”)={:(p), it misodd

and {=exp(2ni/(m+1)). Then, as in Ramanujan [4],

(2) TN =(ap ot (@, — )
=Y @ [T (e, - L' @,) (2, — " )
=1 @ [L77 c(p)* = 4p"* cos? (mr/(m +1)).
If the r-th factor is zero,
dcos’(mr/(m+1)=0+L " +2=1(p)*/p"",

is both an algebraic integer and a rational number. Thus it is a rational
integer and so must be one of 1, 2 or 3. But none of t(p)—p'!,
1(p)?-2p'', t(p)*-3p'' can be zero, since 1(2)=—24# +2° and
1(3)=252# +3° Thus t(p™)=0if and only if y,, (p)=0.

The next three lemmas depend on the theory of linear forms in loga-
rithms. They are stronger than needed for the proof of the theorem.
They may be of independent interest.
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LemMA 2. — There is an effectively computable absolute constant C, >0
such that for all m =2, we have

lt(pm” > ‘Ym(p)lp(lll){m—(, Iogmi.

Proof. — Suppose that m is odd. If t1(p)=0. there is nothing to prove.
If T(p)#0, then we see from (2) that t(p™)#0. Then

-

[ Mm@ =25 =2 lag - 25

i..

> p(ll 2Hm—l)l(ap a_p)m*'] __ll

19| —

Zp(u,znm—c, log m

where in the final step. we used the fact that the height of a, %, is bounded
by a power of p and estimate of BAKER [1] on linear forms. If m is even,
the required estimate follows similarly.

The constant C, above is quite large and so the bound is non-trivial
only for large m. The next lemma gives a bound which is non-trivial for
bounded m.

LEMMA 3. — Let m>6. There is an effectively computable number C,>0
depending only on m such that either 1(p™)=0 or

lt(p™|>p.

Proof. — Let m=6 and t(p™)#0. Observe that t(p™)/y,,(p) is a binary
form in t(p?) and p'! with at least three distinct linear factors. We apply
an estimate of FELP'MAN [3] or BAKER [2] on the magnitude of integral
solutions of Thue's equation to obtain the assertion of the lemma.

Remark. — In fact. we could have applied a theorem of RotH [5] on the
approximations of algebraic numbers by rationals to obtain the following
stronger. but ineffective. version of Lemma 3: for every £€>0. 1(p™) =0 or
(11:2)im-41-¢

[TP™ > mp

LemMMA 4. — There is an effectively computable absolute constant C,>0
such that

[t™)|=dogp)s. m=2 4
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Further,

1 .
min( [t(p?)], |T(P5)|)>;P“"

whenever 1 (p) #0.
Proof. — Observe that
.r(p)l =pll +T(P2)
and

(2t(p)?=3p')2=5p* 2 +41(p*).

Now we apply an estimate of SPRINDzUK [7] on the magnitude of integral
solutions of hyperelliptic equations to obtain the first inequality of the
lemma. The second inequality follows immediately from the relations.

P)=1(p) (1) -2p'")
and
1) =1@)E)?-3p'") () —p').

Proof of theorem. — Let n be such that t(n) is odd. As remarked in
the beginning, we see that n is squarefull. Therefore, if p and m are such
that p™|| n, it follows from our lemmas that

|T(p™| > (logp™
where C,>0 is an effectively computable absolute constant. Hence,
[tm|=]1m, .t @™ |=(logm

which implies the assertion of the theorem.

The same method can be used to study the Fourier coefficients of other
modular forms. Indeed, let f be a cusp form of weight k>4 for I'y(N)
and write

f(:)=Z:= . a, 6’2 ®inz

for the Fourier expansion at i . Suppose that:

(i) f is @ normalized eigenform for all the Hecke operators T, for (p.
N)=L

(i1) f does not have complex multiplication:
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(iii) the a, are rational integers;
(iv) a, # +£2Y2 and a, # + 3"
Then, for n squarefull, a,=0 or

|a,|2(logn)®

for some effectively computable constant D >0 which depends only on f.
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