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CHARACTERIZATION OF THE UNIQUE EXPANSIONS
1 = ESi q""* AND RELATED PROBLEMS

BY

PAL ERDOS, ISTVAN JOO and VILMOS KOMORNIK (*)

RESUME. — On caracterise les developpements uniques de 1 en bases non entieres.
On donne une estimation pour la longueur des chiffres 0 consecutifs dans les deve-
loppements gloutons. On etablit certains relations entre ces proprietes et les nombres
de Pisot.

ABSTRACT. — We characterize the unique expansions in non-integer bases. We
estimate the length of consecutive 0 digits in the greedy expansions. We obtain some
relations between these properties and the Pisot numbers.

0. Introduction
Consider a number 1 < q < 2. By an expansion of a real number x we

mean a representation of the form

x=^£iq~\ £ , e{0 , l } -
1=1

It is clear that x has an expansion if and only if 0 <: x < l / ( q — 1).
Let us introduce the lexicographic order < between the real sequences :

(£i) < (e^) if there is a positive integer m such that EI = e\ for all i < m
and Cm < ^m- ^ ls easv to verify that for every fixed 0 < x < l / ( q — 1)
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378 P. ERDOS, I. J06 AND V. KOMORNIK

in the set of all expansions of x there is a greatest and a smallest element
with respect to this order : the so-called greedy and lazy expansion, cf. [4].
(The greedy expansions were studied earlier in [1] where they were called
/3-expansions.) A number x has a unique expansion if and only if its greedy
and lazy expansions coincide.

Let us recall that the digits of these expansions may be defined
recursively as follows : if m > 1 and if the digits ̂  of the greedy expansion
of x are defined for all i < m, then we put

^ P ifE.on^+T"1^.
fo '^Ei<m^~i+q~m>x.

If m > 1 and if the digits e, of the lazy expansion of x are denned for all
i < m, then we put

^ f° ifE^^-'+E^nz'r^,
£m ll ^Ei<m^-i+Z^q-m<x.

In section 1 we characterize the unique expansions of 1. This improves
some earlier results in [5]. As a by-product we obtain a new proof for the
characterization of the greedy expansions, obtained earlier in [2].

In [4] it was proved that for almost every 1 < q < 2 the greedy
expansion of 1 contains arbitrarily long sequences of consecutive 0 digits.
In section 2 we improve this result by giving an explicit estimate on the
length of these sequences. An analogous result is obtained for the lazy
expansions, too.

In section 3 we generalize some other results obtained in [4]-[7].
At the end of this paper we formulate some open questions.

The authors wish to thank the referee for drawing their attention to
the papers [2], [3] and [9].

1. Characterization of the greedy and
the unique expansions of 1

Fix 1 < q < 2 arbitrarily and consider an expansion of 1 :

00

(1) l=Y^£,q-\ ^ € { 0 , 1 } -
2=1

THEOREM 1

TOME 118 —— 1990 —— N° 3



UNIQUE EXPANSIONS 379

a) (1) is the greedy expansion of 1 if and only if

(2) (sk-^-i) < (£i) whenever Ck = 0.

b) (1) is the unique expansion of 1 if and only if (2) and

(3) (1 - Ck-^i) < (£i) whenever £k == 1.

are satisfied. \]

Remark 1. — It is easy to deduce from this theorem that if (1) is
the greedy (resp. unique) expansion of 1, then (2) (resp. (2) and (3)) is
satisfied for all k > 1. []

The proof of this theorem is based on some lemmas concerning the
more general expansions

00

(4) x=^£,q-\ £, €{0 ,1}
i=l

for arbitrarily fixed 1 < q < 2 and 0 <: x < l / { q - 1).

LEMMA 1
a) (4) is the greedy expansion of x if and only if

00

(5) ^e^g"1 < 1 whenever £k = 0.
i=i

b) (4) is the lazy expansion of x if and only if

00

(6) y^(l — £k+i)q~'1 < 1 whenever Ek = 1.
2=1

Proof :
a) If (5) is not satisfied for some Ck = 0, then x has another expansion

00

(7) x=^e\q-\ ^£{0 ,1}
1=1

such that £i = e\ for all i < k and e'^ = 1. Then the expansion (4) is not
greedy.
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If the expansion (4) is not greedy, then there is another expansion (7)
of x and there is a positive integer k such that ^ = e\ for all i < k and
Ck = 0, e^ = 1. It follows that

E^>^
i>k

and therefore (5) is not satisfied.
b) The assertion follows at once from a) if we remark that the

expansion (4) is lazy if and only if the expansion

(8) i /^-i)_^^(i_^-
i=l

is greedy. []

LEMME 2
a) If x > 1 (me? if the expansion (4) z'5 greedy, then (2) %s satisfied.
b) Ifx>l and if the expansion (4) %s unique, then (2) one? (3) are

satisfied.

Proof :
a) Assume that (2) is not satisfied for some Ck = 0, then either

L
(ek+i) == (^) or (ek+i) > (£i). In the first case we have

00 00

^£A;+^~' = ̂ L^^"2 = X > 1 ;
z=l i=l

hence the condition (5) of LEMMA 1 is not satisfied and the expansion (4)
is not greedy. In the second case there is an integer m such that £k-\-i = £i
for all z < m and £k-^-m = 1, £m = 0. If the expansion (4) were greedy,
then by LEMMA 1 we would have

00

Y^ek^q" < l ^ x .
i=l

Therefore x would have another expansion (7) such that e\ = £1 for all
L

i < m and e'^ > £m; hence (^) > (^). But this is impossible because (4)
is the greedy expansion.
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UNIQUE EXPANSIONS 381

b) Assume that (3) is not satisfied for some Ck = 1, then either

(1 — Ck^ri) = (^2) or (1 — ek+i) > (£i)- In the first case we have
00 00

^(1 - e^)q-' = ̂  e,q-' = x > 1;
2=1 2=1

the condition (6) of LEMMA 1 is not satisfied and the expansion (4) is not
lazy.

In the second case there is an integer m such that 1 — Ck^i = £z tor all
i < m and 1 — Ck-^m = 1, ^m = 0. If the expansion (4) were unique, then
by LEMMA 1 we would have

00

^(I-^)(T<K^
2=1

Therefore x would have another expansion (7) such that e\ = £1 for all

i < m and Cm < £'m 5 hence (e,) < (e\). But this is impossible because (4)
is the unique expansion. Q

LEMMA 3. — Assume that x < 1 and that there is an expansion
00

(9) y=j^6,q-\ ^ € { 0 , 1 }
2=1

for some 0 < y < l/(q - 1) such that

(10) ((^+2) < (^2) whenever ^ = 0.

Assume that either the expansion (4) is infinite (i.e. it contains infinitely
many digits 1) or the expansion (9) is finite (i.e. it contains only finitely
many digits 1). Then (9) is the greedy expansion of y .

Proof: It is sufficient to verify the condition (5). Fix k such that 6k = 0.
We shall construct a sequence of positive integers k =: ko < ki < ' ' • such
that

k,+i

(11) ^ 6,q-3 <^ -9-^1, z = 0 , l , . . .
J=1+/C,

Furthermore, if the expansion (4) is infinite, then we will also have the
strict inequalities

fc.+i
(12) ^ 6,q-3 <q-k^-q-^, z = 0 , l , . . .

j=i+fc,
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The property (5) hence will follow easily. Indeed, if the expansion (4)
is infinite, then we conclude from (12) that

00 fci+1

E^-'-E E ^~3
j>k i=0 j=l-{-ki

oo

<^(q-k'-q-k^)=q-k

which implies (5). If the expansion (9) is finite, then choosing m such that
6j = 0 for all j > km^ we conclude from (11) that

m—l ^i+i

E^=E E ̂
j>k i=0 j=l-^-ki

m—l

<Y,(q-k'-q-kw)<q-k

i=0

and (5) follows again.

We define the sequence (A^) by induction. We set ko = k. If k is already
defined for some i > 0 and it 6k, = 0, then applying (10) there exists m > 1
such that Sj-^-ki = £j for j < m and 6m+ki < £m- Setting A^+i == ki + m
we have <^_^ = 0 and

ki-}-i m

^ S.q-^q-^^S^q-3

J=l+ki j=l
m

= ̂  (Ee^3 - ̂ r^ < ̂  ̂  - ̂ m)j=i
< q-^ (1 - g-771) = q-^ - g-^+1

i.e. (11) is satisfied. If the expansion (4) is infinite, then the first inequality
in this chain is strict and therefore (12) is also satisfied. Q

LEMMA 4
a) If x < 1 and if (2) is satisfied, then (4) is the greedy expansion.
b) If x < 1 and if (3) is satisfied, then (4) is the lazy expansion.

TOME 118 —— 1990 —— N° 3



UNIQUE EXPANSIONS 383

Proof :
a) It is sufficient to apply LEMMA 3 with y := x and 6i := ̂ .
b) The assertion is trivial if x = 0 because the expansion of 0 is

unique.
If x > 0, then the expansion (4) cannot be finite. Indeed, if (4) were

a finite expansion, then there would exist a positive integer k such that
£k = 1 and EI = 0 for all i > k, contradicting (3). The assertion now
follows by applying LEMMA 3 with y :== l / ( q - 1) and 6i = 1 - d. []

THEOREM 1 now follows at once from LEMMAS 2 and 4.

2. Distribution of the digits

We recall from [4] that for every fixed 1 < q < 2 the greedy expansion
of 1 does not contain arbitrarily long sequences of consecutive 1 digits; on
the other hand, the set of those 1 < q < 2 for which the greedy expansion
of 1 contains arbitrarily long sequences of consecutive 0 digits, is residual
and has full measure in (1.2).

Similarly, for every fixed 1 < q < 2 the lazy expansion of 1 does not
contain arbitrarily long sequences of consecutive 0 digits; on the other
hand, the set of those 1 < q < 2 for which the greedy expansion of 1
contains arbitrarily long sequences of consecutive 1 digits, is residual and
has full measure in (1,2).

Now we prove the following stronger statements :

THEOREM 2
a) Let G denote the set of those 1 < q < 2 for which the greedy

expansion of 1 has the following property : there are arbitrarily large
integers m such that the sequence e\,..., e-m contains more than log^ m
consecutive 0 digits. Then G is residual and has full measure in (1,2).

b) Let L denote the set of those 1 < q < 2 for which the lazy expansion
of 1 has the following property : there are arbitrarily large integers m
such that the sequence £ 1 , . . . ,£rn contains more than log^m consecutive
1 digits. Then L is residual and has full measure in (1.2). []

We need two lemmas; the first of them was proved implicitly in [4].

LEMMA 5. — For every 0 < 6 < 1 there is a positive constant C{6) and
a positive integer N(6) having the following property : for any positive
integers n > m > N(6) and for any ^i,...,^ e {0,1}, if we denote
A (resp. by B) the interval of those 1 + 6 < q < 2 for which the greedy
expansion of 1 satisfies Ei = ̂ , i = 1 , . . . , m (resp. ^ = 7^, i = 1 , . . . , m
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384 P. ERDOS, I. J06 AND V. KOMORNIK

and Cm+i = ' " = On = 0), then the lengths |A|, \B\ of these intervals
satisfy the inequalities

\B\>C(6)2m-n\A\. Q

LEMMA 6. — There exists a sequence HI, 712 5 • • • of natural numbers such
that

(t3) rik >log2(?zi + - - - + n f c ) , k =1,2 , . . .

and

(14) ^2-^ =oo.
fc=i

Proof: Setting

^ = [^g J + ̂ g log j + log log log j], 7 = 4 , 5 , . . .

(we write for brevity log instead oflog2), for k —> oo we have the following
estimates (we apply the Stirling formula) :

log(a4 + • • • +OA;)
k

^ ̂  ̂  o0^ 3 + ̂ g ̂ g ̂ ' + ̂ g ̂ g ̂ g ̂ ')
J=4 fc

=log{(l+o(l))^logj}
J==4

<log(l+o(l))+loglog(A;!)
=o(l)+loglog{0(l)(fc/e)^1/2}
= o(l) +log{0(l) + (k + 1/2) log k - (k + 1/2) log e}
<o(l)+log(A;logA;)
= o(l) + log A; + log log A;.

It follows that log(a4 + • • • + dk) < dk if k is sufficiently large, say k > K
for some K > 3. Then

log(a^ + • • • + dk) < a,, for all k > K

and the lemma follows by taking n^ = a^+fc, k = 1 ,2 , . . . Q

TOME 118 —— 1990 —— N° 3
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Proof of THEOREM 2 : We restrict ourselves to the proof of assertion a);
the proof of assertion b) is analogous, by making the modifications of the
same type as in [4].

Let us fix a sequence (n^) of natural numbers satisfying (13), (14) and
let us denote by Ck the set of those 1 < q < 2 for which the greedy
expansion of 1 does not satisfy

Ci=0

for all HI - + - • • • + rik-i < i < ni + • • • + Uk-, (k = 1,2,...). Since

Q n G , D ( l , 2 ) \ G ,
k=lj=k

it is sufficient to prove that for every k > 1 the set Bk := D^IA; ^3 ^as

measure 0 and that the closure Bk of this set has no interior points.
The first property easily follows from LEMMA 5 and from (14). Indeed,

applying LEMMA 5 we obtain that for every 0 < 6 < 1 the measure of
Bk H (1 + 6,2) is less than or equal to

00

n {1-C{6)2-^)
j=k'

with k ' := max{fc, N(6)}, and this product is equal to zero by (14). Taking
6 —>• 0 we conclude that Bk has measure zero.

Since Cj is the union of a finite number of intervals, its boundary is a
finite set. Hence Bk is the union of Bk and of a countable set. Therefore
Bk has also measure zero and hence it has no interior points. []

3. Miscellaneous Results
It follows from the results of [4] cited in the preceeding section that

the set of those 1 < q < 2 for which the expansion of 1 is unique,
has measure 0. On the other hand, it was shown in [5] that this set
has 2^0 elements. Finally, this set belongs to (A, 2) where we write
A := (1 4- V^)/^, because it was proved in [5] that for q == A there
are \Q different expansions of 1 and for every 1 < q < A there are 2XO

different expansions of 1.

First we show that this last result remains valid for the expansions of
every 0 < x < l / ( q - 1).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



386 P. ERDOS, I. J06 AND V. KOMORNIK

THEOREM 3. — If 1 < q < A and 0 < x < l / ( q - 1), then x has 2XO

different expansions.

Proof: Thanks to the choice of q there is a natural number k such that

(15) l<g-2-^-3+...+^

Let mi < yyi2 < • • • denote the sequence of the elements of N \ A;N,
then (15) implies that for i = 1,2,. . .

(16) q-^ < ̂  q-^.
j=^+i

If we choose k sufficiently large, then we have also

00 00
ki ^ x and V^ Q^ > x .(17) Y,q~k^<x and ^q-^ >

It follows from (16) and (17) that for every sequence (^) C {0,^
there exists an expansion (4) of x satisfying e^ = <^, i = 1,2, . . . []

Now fix 1 < q < 2 and let 0 =: yi < y^ < . . . be the increasing sequence
of those real numbers y which have at least one representation of the form

y = q^ + q^ + . . . + q^

with finitely many different nonnegative integers nj. It is clear that
Vn -1' oo. We study here the behavior of the difference sequence Vn^ri —Vn-

THEOREM 4
a) i/n+i - yn < 1 for all n > 1.
b) If q > A, then yn+i — Vn = 1 for infinitely many n.
c) If yn^ri — Vn —> 0, then 1 has an infinite expansion containing

arbitrarily long sequences of consecutive 0 digits.
d) There exists 1 < q < A for which y-n+i — Vn -^ 0. []

Remark 2. — In [6] the assertion c) was proved under the additional
assumption q < ̂ /2. We remark that the relation yn-^i -Vn —> 0 is satisfied
for example if q = ^/2 for some integer m > 2. As a consequence we
obtain that for q = \/2 1 has an expansion which contains arbitrarily long
sequences of consecutive 0 digits. This was proved by another method in
[7]. D
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Proof :
a) We apply induction by n. For n = 1 the assertion is true because

7 / i = 0 and 1 / 2 = 1 . Let n > 1 and assume that yk+i - yk < 1 for
fc = 1,. . . , n. We have to prove that yn-\-2 — Vn+i < 1-

Let yn+i = £o+£lq+"•-^-ekqk ( e o ? . . . ,£jfc € {0,1}) be a representation
ofi/n+i. Ifeo = 0, then

2/n+2 < 1 + eiq 4- • • • + ek^ = 1 + 2/n+i.

If £o = I? then let ^ > 0 be the largest integer such that £ 0 = ^ 1 =
• • • = EH = 1. It is sufficient to find SQ, ..., 6^ € {0,1} such that

(18) 1 + q + • • • + ̂  < So + S^q + • • • + W + ̂ +1

<2+g+. . .+^.

Indeed, (18) implies that

k

2/n+2 «?0 + • • • + W + ̂ +1 + ^ ^z^ < 1 + 2/n+l.
1=^+2

For the proof of (18) first we observe that ^+1 < 2+9+- • -+^ because

2 + ^ + . . . + ^ - ^ + i = ( 2 - 9 ) ( 1 + ^ + . . . + ^ ) >0.

If ^+1 > 1 + q + • • • + q^ then (18) hence follows by taking 60 = • ' ' =
^=0 .

If ^+1 < 1 + q + • • • + ̂ , then, taking into account that 1/1 = 0 and
that

2 + ^ + • • • + q1 - q^1 < 1 + q + • • . + ̂  ^ ^+1,

we obtain by the induction hypothesis that

1 + q + • • • + q1 - q^ < 60 + S^q + • • • + 6^
< 2 + 9 + - - - + ^ - ̂ +1

for suitable S o , . . . ,<^ e {0,1}, which is equivalent to (18).
b) It is sufficient to prove that, for m = 0,1,. . . the open intervals

}q2 + q4- + • • • + ^2m, 1 + q2 + • • • + q2771 [ do not contain any element of the
sequence yn.

Assume on the contrary that there exist m > 0 and yn = £o + • • • +£kqk

such that

q2 + • • • + q2171 < £o + • • • + £^ < 1 + q2 + . • . + ^2m.
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If m > 1, then k < 2m because

^2m+l >l+^.. .^2m

and £2m = 1 because

l+^...+^2m-1^2^4^...^2^

finally e^m-i == 0 because

q2m-l ^ ^2m > ̂  ̂ 2 ̂  ^4 ̂  . . . ̂  ̂

Hence

^2 ̂  . . . + ̂ 2m-2 < ̂  + . . . + ̂ _^2m-2 < ^ + ̂ 2 ̂  . . . ̂  ^2m-2 ^

Repeating this reasoning (m — 1) times we obtain 0 < £o < 1 which is
impossible.

c) It is sufficient to construct two strictly increasing sequences of
integers, 0 = no < n^ < • • ' and 0 = %o < z! < • • • satisfying for all k > 0
the inequalities

(19) 0 < l-^q-^ ^q-^1^
i=l

Indeed, then ̂ ^ (l~ni is an expansion of 1 which has also the desired
property because ^1+4 > n^^ + k for all k > 1.

We construct these sequences by recursion. Taking no = ZQ = 0 (19) is
satisfied for k = 0.

Assume that (19) is valid for some k > 0 and consider for some integer
m ^ ^u. (to be chosen later) the number

u-
^h _ Y^ r.-n<\r(i-E^)-

1=1

It is equal to yn tor some n > 1. Write yn-i in the form

ik+l

Vn-1 =Qm ̂  (^nl ̂ n!^ < <
i=l+U.

TOME 118 —— 1990 —— N° 3
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It follows from (19) that yn-i < y-n < q^^^k and therefore ni+^ >
k + r^fc > T^fc.

Since m —> oo implies ?z —^ oo and hence also yn-^-i — Vn —^ 0, we may
choose m such that

0 < yn - Vn-1 < q-^

whence
tk+l

0< l-^q-^ <9-m-A;-l.
1=1

Since m > n^^ by construction, hence (19) follows for k -h 1 instead of k.
d) We recall from [8], [9] that if 1 < q < 2 is a Pisot number, then no

expansion of 1 contains arbitrarily long sequences of consecutive 0 digits
unless it is a finite expansion (i.e. only finitely many digits are different
from 0). It is easy to see that the real zero of the polynomial q3 — q2 — 1 is
a Pisot number satisfying 1 < q < A, cf. [8]. It follows that 1 has a finite
expansion, namely 1 = q~1 + g~3, but 1 has 2^° different expansions
(because q < A) and therefore 1 has infinite expansions, too. Applying
the assertion c) we conclude that y-n+i — Vn ~+^ 0. Q

Remark 3. — The example in the proof of assertion d) solves also
PROBLEM 8 in [5]. []

Finally we formulate some open problems.

Problem 1 : Characterize the lazy expansions of 1.

Problem 2 : Does there exist A < q < 2 for which 1 has a finite
expansion and also 2XO other expansions ?

Problem 3 : Is the value log2 m in THEOREM 2 optimal?

Problem 4 : Characterize the set of those 1 < q < 2 for which
yn-\-i ~ Vn —> 0. Is it true that every q which is sufficiently close to 1
has this property ?

Problem 5 : Is the following strenghtening of THEOREM 2 true : for
almost every 1 < q < 2 there exists an integer rriq such that for every
integer m > mq the sequence of the first m digits of the greedy expansion
contains more than log^ m consecutive 0 digits ?

Problem 6 : Is it true that if for some 1 < q < 2 1 has an expansion
which contains arbitrarily long sequences of consecutive 0 digits (resp. 1

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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digits), then the greedy (resp. the lazy) expansion also has this property?
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