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ABOUT STEFAJNPS DEFINITION OF A FOLIATION WITH
SINGULARITIES : A REDUCTION OF THE AXIOMS

BY

JAN KUBARSKI (*)

RESUME. — L'article present concerne la definition d'un feuilletage de Stefan. Le
resultat principal de cet article est le fait qu'un axiome de la definition d'un feuilletage
de Stefan [4, chap. 1] est une consequence des autres.

ABSTRACT. — The aim of this paper is to give an accurate proof of the fact
formulated in [3, p. 45] that one of the axioms of Stefan's foliations [4, chap. 1] follows
from the remaining ones.

The following definitions of a foliation with singularities comes from
the work by P. STEFAN [4].

Suppose V is a connected Hausdorff C°° and paracompact (equivalently
and with a countable basis) manifold of dimension n. By a foliation of V
with singularities we mean a partition F of V into sets such that :

(1) for each element L e T, there exists a structure of differentiable
manifold a on L such that

(i) (L,a) is a connected immersed submanifold of V,
(ii) (L, a) is a leaf of V with respect to all locally connected topological

spaces, i.e. if X is an arbitrary locally connected topological space
and / : X —^ V is a continuous function such that f[X} C L, then
/ : X —> (L, a) is continuous;

(2) for each x C V, there exists a local chart (p on V around x with
the following properties :

(a) ip is a surjection Dy —^ Uy x Wy where Uy, Wy are open
neighbourhoods of 0 in R^ and IR71"^, respectively, and k is the
dimension of the leaf through x (denoted by L^);

(b) ^)=(0,0);

(*) Texte recu le 19 mai 1988, revise le 26 septembre 1990.
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(c) if L C T, then (p[L H Dy] =U^x ̂  where

^L = { w ( E W y : ^(O.w) (E L}-

A chart ^p which fulfils the above condition is called distinguished around x.

THEOREM. — Let T be a partition of V into connected immersed
submanifolds ofV, fulfilling (2). Then F is a foliation with singularities.

REMARK. — This theorem is formulated in [3, p. 45] without an
accurate proof. The author say that it easily follows in the same way
as in the case without singularities, indicating [1]. It turns out that this
theorem needs a subtler proof. The reasoning as in [1] gives the proof
provided some added assumption

n

(1) —- e Ty(Lx) for i < k and all y C L^ H D^, k == diml/a;,

is satisfied, which is exactly the body of Stefan's lemma [4, Lemma 3.1].
That this added condition follows from the remaining ones is the aim of
our paper.

Proof of the Theorem : according to STEFAN ([4, Lemma 3.1]), it is
sufficient to show that each distinguished chart ip = ( (^ 1 , . . . , y?71) around x
has the property (1).

Assume to the contrary that, for a distinguished chart (p around re, this
property does not hold at a point VQ e L^ H Dy. Then, of course, there
exists a vector v G Ty^Lx) such that

(2) ^(^^co)^^})

where (yo.co) = (p(yo), yo e Uy, CQ e Wy.

Take any smooth curve

c : (-£,£) —> Lx, e > 0,

such that c(0) = yo, c(0) = v and Imc C Dy. Consider the curve
(p o c : (-£,£) —> ^n. Let pr-2 : Uy x Wy —^ Wy denotes the projection
onto the second factor. By (2) :

(^2)*((^OC)-(0))^0.
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Diminishing e > 0, if necessary, we may assume that

p r ^ o i p o c : (-5, e) ——> Wy

is an embedding. Denote the set lm{pr^ o (p o c) by J. Of course,

Uy x I C Uy x ̂  ̂

(because I C pr^ o (p[D(p D Lx\ = ty,L^) and Uy x I is a k + 1-dimensional
hypersurface of H71, thus a locally compact space. Put — for brevity —

M := L^ H Dy,

understanding it as an open submanifold of La;, and consider the injective
immersion

(p : M ——> R71, x i—> (p(x).

By the above f>[M} D Uy x I .
For each point x e M, we choose a neighbourhood U(x) C M of x such

that
f\u{x)''u(x)—r1

is an embedding. By the assumption of the second axiom of countability
of y, each connected immersed submanifold of V fulfils this axiom
(see Appendix). Then M, as an open submanifold of the manifold L^,
has a countable basis. Choose a countable open covering [Ui; i C N}
of M such that each U\ is compact and contained in some U{xi). We
prove that

^]n(^xJ)
— as a subset of the space Uy x I — has no interior. We have a little
more, namely that the set (p[U(xi)} H (Uy x I ) has no interior. If it were
not, then by taking an nonempty and open subset U C Uy x I such
that X C (p[U{xi)}, we would obtain the mapping

(^l^))-1^:^^)

from a (k + l)-dimensional manifold to a /^-dimensional one, being an
immersion, which is not possible. Thus Uy x I is an union of a countable
sequence of nowhere dense sets

~h} H(^ xJ) ; i(EN\.

which leads to a contradiction with Baire's theorem for locally compact
spaces. The theorem is proved. []
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Appendix : The following theorem is well known; here we give a simple
proof of it.

THEOREM. — Each connected immersed submanifold L of a C°° Haus-
dorff paracompact manifold V has a countable basis.

Proof. — Let / : L —> V be an immersion. The assumptions imply the
existence of a Riemann tensor G on V. Its pullback f*G is a Riemann
tensor on L. A connected manifold which possesses a Riemann tensor is
separable [2], therefore it has a countable basis. Q
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