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ON THE COHOMOLOGY OF THE CLASSIFYING
SPACE OF THE GAUGE GROUP

OVER SOME 4-COMPLEXES

BY

GREGOR MASBAUM (*)

RESUME. — Nous etudions Palgebre de cohomologie de 1'espace classifiant du groupe
de jauge d'un SU(2)-fibre sur certains espaces de dimension 4. En particulier, nous
obtenons des renseignements sur les proprietes de divisibility et de non-divisibilite,
des classes obtenues par Papplication p. introduite par S. Donaldson. Ces resultats ont
ete annonces dans [M3].

ABSTRACT. — We study the cohomology algebra of the classifying space of the
gauge group of a SU(2)-bundle over some 4-dimensional spaces. In particular, we obtain
information on divisibility and indivisibility properties of classes obtained via the map p,
introduced by S. Donaldson. These results were announced in [M3],

1. Introduction

We consider pairs (X, [X]), where X is a space having the homotopy
type of a bouquet of a finite number of 2-spheres with one 4-cell at-
tached, and [X] is a generator of H^X\J.) w Z. For example, it is well
known (see for instance [MH]) that any oriented closed simply-connected
4-manifold X, with fundamental class [X], is of this type. The alge-
braic invariants of the pair (X, [X]) are (L,(^), where L = H^(X',J.) is
a free Z-module of finite rank, and (p e BS(L*) is the symmetric bilinear
form on L* = H2(X', Z) given by the cup product and evaluation on [X].
We call (f the "intersection form" of X, even though X in general cannot
be realized as a manifold.

Consider a principal SU(2)-bundle P —> X, with second Chern num-
ber k. Let Gk(X) be the gauge group of P, that is the group of automor-
phisms of the bundle inducing the identity on X. It is well known [D2]
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2 G. MASBAUM

that the classifying space BGk(X) has the (weak) homotopy type of the
function space C(X,BS3)k of continuous maps f : X —^ BS3 = BSU(2)
of degree k, i.e. such that (/*(c2),[X]} = k. We are interested in the
cohomology of this space.

As in [D2], consider the linear map

^ : ̂ (X;Z) -. H^^X.BS3)^!)

defined by the slant product /^(a) = ev*(c2)/a, where :

ey'.XxC^X.BS^k -^ BS3

is the evaluation map. As observed by DONALDSON, the map [i generates
all of the rational cohomology ofC(X,B5'3)^. More precisely, the rational
cohomology o{C(X,BS3)k is isomorphic to the polynomial algebra

Q[/^([base point]), /^(ai) , . . . ,^(0^)],

where a\,..., 0:5 is a basis of L.

To analyze the situation, and study integral cohomology, we can
proceed as follows. There is a natural isomorphism BS(L*) w 7T3(M(L, 2)),
where M(L, 2) denotes the 2-dimensional Moore space over L. Viewing y
as an element of 7rs(M(L, 2)) via this isomorphism, we can replace X, up
to (oriented) homotopy, by the cofibre of (p : X ~ M(L,2) U<^ D4. This
induces a fibration :

(1) ^B -^ C^X.BS^k ̂  C(M(L,2),B53).

Here r denotes restriction of maps, B is the 4-connective covering of BS3,
and n is the loop space functor.

Set A(L) = H^C(M{L, 2), BS3)', Z). This algebra is a covariant functor
of L, and was determined in [Ml].

THEOREM 1.1.

A(L)=(j)A,(L)
i>0

=Z[p][{^(a)|z>0, ae£}]/J.

TOME 119 —— 1991 —— N° 1



COHOMOLOGY OF SOME GAUGE GROUPS 3

Here p has degree 4, /^(a) has degree 2%, and the ideal I is given by
the following relations :

(i) ^o(a) = 1;

(ii) ^(a+a')= ^ ^(a)^-(a');
i+^==n

/ • • • \ / \ / \ v^ ^+J - 2A;\ /z+^'- A; - 1\ , „
(m) ^(0)^(0)=]^ z - f c A A; J^-2^)jA

Moreover, we have /-A ([base point] )=-r*(j?), and /^(a) = r*(/Ai(a)),
a e L == I^P^Z). Consider then Serre's spectral sequence of fibra-
tion (1) :

E^ = A(L)^H\^B',T) =^ jr^X.B^^Z).

Note that the i^-terms is independent of (p and k. Moreover, A(L) has no
torsion, whereas H*(^B', Z) is torsion since 7r,(Q4^) = 7r^(S3) is finite
for i > 1. Thus the restriction map r induces an inclusion

r^.A(L)^H^C(X,BS3)^)

whose cokernel is torsion. From now on, we will identify A(L) with its
image under r*.

Here is a brief outline of this paper.

In paragraph 2, we define and study some "natural" cohomology classes
on the space C(X,BS3)k. In particular, the intersection form (p defines
an integral class Q of degree 4, and as a corollary we show that the class
{kp+n^p71-1 e H^(C{X, BS3)^ 1) is divisible by 2n+l. This also shows
that in general A(L) is not a direct summand in the integral cohomology
of the space C^B^3)^.

In paragraph 3, we use some results on Dyer-Lashof-operations to
describe explicitely the homology of H4^, the fiber of fibration (1).

Paragraph 4 is devoted to studying a certain map j : ^B —^ BO
in homology, which will be used later. We also describe the mod 2
cohomology algebra of ̂ B as a quotient of AT* (BO; F2).

In paragraph 5, we put together the results of the previous sections
to obtain some divisibility properties in the cohomology of C(X,BS3)k
that depend heavily on the second Chern number k. For example, in

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



4 G. MASBAUM

PROPOSITION 5.4 we show that in the integral cohomology of the space
C(S4,BS3)k, for any odd prime i, the element p^-1)/2 is divisible by i if
and only if k ^ 0 (£). The results of this section allow to distinguish some
of the topological group extensions :

1 ̂  G. wC.(X,S3) -^ Gk{X) -^ S3 -^ 1,

where G. is the subgroup of gauge transformations that act as the identity
on one fibre (see REMARK 5.6).

In paragraph 6, we study integral cohomology modulo torsion in
the special case X = S'4, k = 1. The main result of this sec-
tion is stated in PROPOSITION 6.1, where we completely determine the
subring of -^(^(^B,?3)!; Z) /torsion generated by p and the natural
classes of paragraph 2. It is possible that this subring is actually equal
to ^((^(.S^BS^i^/torsion. We show this to be the case at least in low
degrees, and after inverting 2 (see COROLLARY 6.3).

Finally, the main result of paragraph 7 is THEOREM 7.1 where we show
that in the case of base-point-preserving maps, the analogue of fibra-
tion (1) is a product when localised at a prime > 5. This gives an upper
bound on divisibility of classes of the form ji^a)71 (see COROLLARY 7.2).

REMARK. — Gauge Theory has been used by DONALDSON to prove
striking results on smooth 4-manifolds (see [Dl] for an overview). These
results are obtained by studying moduli spaces of anti-self-dual connec-
tions, using non-linear analysis and algebraic geometry. The definition of
Donaldson's "polynomial invariants" [D3] makes use, at least formally,
of the cohomology of the moduli space of all (irreducible) connections
on a SU(2)-bundle over a compact smooth 4-manifold X. This space has
the (weak) homotopy type of the classifying space of the group G'^(X\
the quotient of the gauge group Gk(X) of the bundle by its center
{±1} (c/. [D2]). Hence this space is at odd primes the same as the
space BGk{X) w C(X,BS3)k studied in this paper. This relationship orig-
inally motivated our interest in divisibility properties in the cohomology
ringofB^(X).

2. Natural cohomology classes on C(X,B53)^

Suppose we can associate to each (X, [X]) a cohomology class ^(X)
on C(X,BS3)k such that for any degree one map / : X —> X' (i.e. such
that f^[X] = [X'}) we have F*(o;(X)) == uj[X'\ where

F-.CiX^BS^k^C^X^BS3^

TOME 119 — 1991 — ?1



COHOMOLOGY OF SOME GAUGE GROUPS 5

is composition with /. Then we will call uj[X) a natural cohomology class.
For example, p = fi ([base point]) is natural. The intersection form y? of
X defines another natural class ^t as follows.

Recall that the universal quadratic module r2(L) is defined as F I R ,
where F is the free Z-module generated by L, and R is the smallest
submodule such that the map 72 : L -> F^L) defined in the obvious
way satisfies :

1) 72(no) = n^^a) for n C Z;
2) the map (a, /?) ̂  72(0 -1- f3) - 72(0) - ̂ {/3) is bilinear.

There is a well known natural isomorphism T^{L) w £?5(Z/*), given by
sending 72(0) to the bilinear form (4^2) 1-̂  ^1(0)^2(0). Next observe
that T^(L) is also the degree 4 part of the classical divided power algebra

W - Qr,(L) = Z[{7,(a) | i > 0, a C L}]/J,
i>0

where 7^(0;) has degree 2%, and the ideal J is given by relations (i), (ii)
and (iii) of THEOREM 1.1 with /^ replaced by 7,, and p = 0. (Note
that (iii) becomes simply 7, (0)7^ (a) = (^)7^(a).) The correspon-
dence /^(o) \-> 7n(o) defines a ring homomorphism A(L) —> r(L), whose
kernel is the ideal generated by p (cf. [Ml]). Moreover, the exact sequence

O ^ Z . p ^ A 2 ( L ) - . r 2 ( L ) ^ 0
is canonically split, upon lifting 72(0) to ^2(0). Here is then the promised
definition : the class fl e A^L) C ^(C^X^BS3)^ Z) is the canonical lift
of the intersection form ^ € £?5(L*), where the latter group is identified
with F^(L) as explained above.

Here is the main result of this section :
THEOREM 2.1

(i) There are natural classes pn(X) € ^(^(X.B^^Z^]), veri-
fying :

2(2n+l)^(pl(X),p2W,...)=(-l)7^+l(^+^)pn-l.
(ii) If the intersection form of X is even, there are natural classes

w,(X) e ̂ (X.B^3)^), verifying :

^(wi(X),W2(X),. . .)4 = (kp + nW1.
Moreover in this case the pn(X) are integral classes, and they verify the
relations given above in integral cohomology modulo an element oforder2.

Here Sn is the n-ih Newton polynomial, and "-?? means reduction mod 2.
Before defining these classes and proving their properties, let us point

out the following corollary :

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



6 G. MASBAUM

COROLLARY 2.2. — The class (kp + nfl)?71-1 C H^n(C{X,BS3)k^) is
divisible by 2n + 1.

Note that if (p C BS(L*) is indivisible (e.^. if (p is non-degenerate), and
if (k,n) = 1, then (fcp+TzO)^71"1 is indivisible in A^n(L). (Indeed, it is ob-
vious from the definition of the class fl, that kp-\-n^l is indivisible in A^(L)
if (A:,n) = 1. Moreover, it is not hard to see that A(-L) is isomorphic as a
J.\p]-module (but not as a ring, cf. [Ml]), to Z[p] (g) r(L). Hence multipli-
cation by p preserves indivisible elements, and the statement follows.)

Thus the corollary implies that the subalgebra

A^cir^X.B^^Z)

is not a direct summand in this case.

REMARK 2.3. — Note that JP^J^B^^ZVtorsion injects into
A(L) 0 Q. A calculation shows that modulo torsion, we have :

1 - Pi + P2 - ' ' '
,, , .-k/2 \ ( i ^V-i arctan^M= ( l + p ) ^exp|(A;-^)(l--^-)j

= 1 - ̂ (kp + Q) + —— [(18A; + 5A;2)?2 + {10k + 36)p^ + 5Q2] + • • •6 360

To define the classes appearing in THEOREM 2.1, we need the following
lemma, whose proof is left to the reader.

LEMMA 2.4. — The homology Chern character of X is injective.
Moreover, for all X of the considered type, we have

ch,(^oW)^^] ^jr,(x;z[j])c^(x;Q),

and if X has even intersection form, then

ch,(^oW) =^(X;Z)C^(X;Q).
We introduce the following notation. Let :

[X}K=W-l[X]eKo(X•,l[^).

Define rfx eK°(X x C^X.BS3)^^]) by the evaluation map

X x ^X.BS3)), -^ BS3 = BSU(2) ̂  BSU

TOME 119 —— 1991 —— N° 1



COHOMOLOGY OF SOME GAUGE GROUPS 7

and put ^x = r ] x / [ X ] K € K^^X.BS3)^ Z[^]) . We now define :

p,(X) = (-1)^(60 G ̂ (WB^^Z^]).

Note that, by LEMMA 2.4, we have [X\K € ^o(^) C ^o(^;Z[j])
if X has even intersection form. Hence f,x € ^(^(X.B^3)^) in this
case, and pn(X) e ^(CpC.B^^Z). Moreover, we can then de-
fine w,(X) = w,^x) € ^(X.B,?3)^).

It is not hard to see that ^x qualifies as natural in our sense, hence
the classes pn{X) and Wz{X) are natural. Moreover, after inverting 2,
a space X which is the cofiber of ^ C 7T3(M(L, 2)) has the same homotopy
type as a space X' which is the cofiber of 4(^ because there is an obvious
degree one map X —> X' induced by multiplication by 2 on L. Hence, to
prove THEOREM 2.1 we may suppose that X has even intersection form.

Consider Sg == M(Z2P,2) U^ D4, where (pg = EI^^L the standard
basis of I29 being (ei, e'i,..., eg, e'g). (Here, [a, /3] = 72(0 4- /3) - 72 (oQ -
72(/?) is the Whitehead product.) Note that Sg has the homotopy type
of a connected sum of g copies of S2 x S2. If X has even intersection
form (/?, then we can write ^ = ^[0^,0^] where o^,c^ C L. Clearly the
map / : I29 -> L, defined by f(e,) = a,, f{e\) = a[, extends to a degree
one map f : Sg —^ X. Since the classes p, n, pni ^i ^ve a^ natural, this
shows that it suffices to prove THEOREM 2.1 in the case X = S g .

From now one, we consider X = S g . The idea of proof is as follows. The
stabilisation map j : S3 = SU(2) —^ SU induces a commutative diagram :

SgXC^Sg^BS^k —————7———— B53

(2) ixj j
•• ' _ 'I'

SgXC(Sg,BS\J)k ————r1-———— BSU.

Here rj and rf are the evaluation maps. Let Cn e ^^(BSU; Z) be the n-th
Chern class. For n > 3 we have ^'*(cn) = 0, hence (1 x j^*^^)) = °-
Writing this equation explicitely will prove the theorem.

In order to calculate the total Chern class of rj, we will first decompose
the space C(5p,BSU)fc as a product. Let C.(Sg,BS\J)k be the subspace
formed by the base-point preserving maps. The restriction map

r : C. {Sg, BSU)^ ̂  C. (M(Z2^, 2), BSU)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



^ G. MASBAUM

admits a canonical section s defined as follows : thinking of M(Z'2^2) as
a bouquet of 2g copies of the 2-sphere, we have :

C.(M(12g,2),BSV) = (^BSV)29.

Let a, e\: S2 -^ M(Z^,2) ̂  Sg correspond to e,, e\ € I29, and define
retractions n, r\: Sg -^ S2 x S2 -^ S2 by first contracting to the base
point those parts of the 2-skeleton corresponding to an index different
from %, identifying the result in a standard way with S2 x S2, and then
projecting onto one of the two factors. Then the section s is defined by
the formula

^/iJL...JsJ;)^)=/i(ri(a;)).^(rUa;))---/<,(r<,(.c))./;(r,(a;)).

(Here we use the multiplication on BSU induced by Whitney sum of
bundles.) Next, define a map Q : C(Sg,BSV)k -^ C(Sg,BSV)k by the
formula

W)-^^^^)-1 '/)))"1/^)-1-/.
We may suppose that the multiplication on BSU has a strict identity. Then
the restriction of Q(f) to M(Z2^ 2) is the trivial map, hence Q factors in
the obvious way over a map Q : C(Sg,BSV)k -^ H^BSU. Moreover, the
following is a homotopy equivalence :

C(5,,BSU)fc ^BSUxC.(M(Z^,2),BSU) x^BSU

f^{f(pt).r(f(pt)-^f)^Q(f)).

Let F : S2 x BU -^ BSU, F : S4 x BU x k -^ BSU be adjoint to the
Bolt equivalences BU w n2 BSU, BU x k w ̂  BSU. Using the inverse of
the above homotopy equivalence, the evaluation map rj becomes :

Sg x BSU x(BU)^ x BU xk w Sg x C(Sg,BS\J)k ———— BSU

(x^Ay^yl^"^yg,ylg),y} ̂  z ' F ( r ^ ( x ) , y ^ ' F ( r [ ( x ) , y [ ) ' "
' " F ( r g ( x ) ^ y g ) .F(r,(rr),^) ' F([x]^y).

(Here, [x] means the image of x C Sg in 5p/M(L,2) w 54.) Let c be
the total Chern class. A standard calculation using the splitting principle
shows :

F"(c) =l+a^<SA, where A = En^-ir^ci^,...);

F*(c)=l+(74®5, wherefi^+E^-iy^-H^ci^,...).

TOME 119 — 1991 — ?1



COHOMOLOGY OF SOME GAUGE GROUPS 9

(Here, o-i is the standard generator of ^(S^; Z).) Let (ai,^,... ,a?,a^)
be the basis of H^^Sg'^T) == (Z29)* dual to (e^e'i,... ,e^,e ' ) , and let a =
[5^]* e H^{Sg',T} be the standard generator of H^(Sg\1L). Since our
multiplication on BSU is induced by Whitney sum of bundles, the total
Chern class of rj is given by :

c(rj) = ( l (g)c)( l+ai (g)Ai)(l+a'i 0A'i) • • •

• • • (1 + dg (8) Ag) (1 + a'g (g) Ag) (1 + a 0 B)

= 1 0 c + ̂  ai <g) cA, + ̂  a\ 0 cA'i + o- 0 c(B + EA^AO •

(Here, the classes c, A,, A^ and 5 € I:r*(C(^,BSU)fe;Z) are meant
to correspond in the obvious way to the different components of
C(Sg,BSV)k w BSUx(BU)^x BU x k. We also used a,a^ = S^a
and Ciidj = 0 = a^.)

Now consider diagram (2). Clearly the total Chern class of rj is of the
form :

c(r]) = 1 0 (1 + p) + ̂  a^ (g) &, + ̂  ̂  0 ̂  + a 0 A;.

Since H * ( S g ' , Z) has no torsion, we deduce :

r(c)=i+p, r(cA,)=^, r^)^^, r(c(^+EA^))=^
Multiplying by En>o(-ri71 ^ 1/(1 +^). we deduce ^*(A^ = ^/(1 +^).
j* (AO=^/ ( l+r i . Hence

rw = ̂  - ̂ -^ = ̂  4- D-1)7^ + ̂ w-

where we used ^^^ == H. Thus, the following lemma immediately
implies THEOREM 2.1.

LEMMA 2.5. — We have :

(i) 2j*(£?) = 2(fc - 2 ̂ (2n + l)^(pi,p2,...))
n>l €jr(c(^,B^),;z);

(ii) J^B) = ̂ >,(wi(X),W2(X),...)4 e ̂ (C^.B^3),;?^).
n>l

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



^ G. MASBAUM

Proof. — The main point here is that r j / [ S g ] (= ^°(C(5'g,BSU)fe) is
represented by the map Q : C(Sg,BSV)k -^ ^BSU w BU. This can be
seen as follows. Put TT, = e, o r,, ̂  = e\ o r^, and let TT : 5g -̂ 3 be the
constant map to the base point. Then for / € C(Sn,BSV)k, Q(f) can be
written :

( ( / °^) - l • ( /07r l ) • ( /o7^)- l . ( /07^0•• .

(f ° ̂ -1 • (/ ° ̂ ) • (/ 0 7T)-1 . (/ 0 TT'),,)) -1. (/ 0 7T)-1 . /.

Define $ : Sg x C(Sg, BSV)k -^ BSU by the formula

^f)=Q(f)(x)=r)(x,Q(f)).

Since ij(x,f o TT,) = f^x)} = fj(7ri(x),f), we see that in AT-theory we
can write :

$ = (q x l)(fj) € K°(Sg x C(Sg,BSV)k),

where q = K°(Sg) ̂  K°(Sg) is given by q = 1-^ ̂  -^ 7r;*+(2^-l)7r*.

Clearly, 9 is a projector onto ^°(54) c AT°(5g). Applying the Chern
character, it is not hard to see that q corresponds to [Sg\K = c\i^([S })
under the canonical isomorphism :

Hom(K°(Sg),K°(S4)} « Hom(^°(^),2) » Ko(Sg).

It follows
<s>=e^^/[s^),

where 0 € K°(S4) c K°(Sg) denotes the canonical generator. Since <S> is
essentially the adjoint of Q, this shows Q = f ] / [ S g ] K as required.

Thus, we have from the very definition of B :

B = k + ̂ (-l)^\n + lMci(^/[^),c207/[^),...).
TO^l

Since ̂ , = ̂ /[5^ =.f(Wg]^) € K0^^3)^, it follows :

rw^+^-ir^n+i^^j.c^,...).
n>l

Now recall that we have defined pn = (_l)"c2^(^,,), w, = w^s ).
Of course, the reason for this definition is that ̂  is in the imaged

TOME 119 — 1991 — ?1



COHOMOLOGY OF SOME GAUGE GROUPS 11

the complexification K0° —> jFC°, since the stabilisation map 5'3 —>• SU
factors over Sp. Thus, it follows from the well known description of the
complexification map BO —> BU in integral cohomology that the odd
Chern classes of ^5' are torsion of order 2. This implies :

52n(ci(^),C2(^ ) , • • • , ) =2sn(pi,p2,'") + an element of order 2,

whence part (i) of the lemma. Part (ii) is proved similarly.

This completes the proof of THEOREM 2.1.

REMARK 2.6. — Let Mg a closed orientable (real) surface of genus g.
Note that Mg has the homotopy type of a bouquet of circles with one 2-
cell attached. The analogy of this with the homotopy type of Sg may
be used to apply the above method to study the cohomology algebra
of C(Mg,BS3) w BQ(Mg), the classifying space of the gauge group of a
(necessarily trivial) SU(2)-bundle over Mg. This generalizes [Ml]. Here we
only state the result; details may be found in [M2].

Let a i , . . . , Oig, a[ , . . . , a'g be a symplectic basis of ffi {Mg; Z). Define

p = ii{ [base point]), /3, = ^(a,), /^ =/^), t=^{[Mg}),

where ^ : Hi{Mg; Z) -^ H^-^C^Mg.BS3); Z) is defined as in paragraph 1.
Set $ = EA^ e ^(^(M^B^Z). Let r] e K°(Mg x C(Mg,BS2))
correspond to the evaluation map, set [M^]^ = ch^Mp], and define
x, = c,(r]l[Mg\K) € ^(^(M^B^Z). Note ̂  = t. Then

ir^M^B^^cjr^Q)
^Qb]^AQ(A,...,/?,,^,...,^)^QM

is the subalgebra generated p, /3i , . . . , f3g, / 3 [ , . . . , f3g, and the Xi. (This fact
was already shown in [AB].) Calculating as in [Ml], we find :

v^ r / ^ \ arctan Jp $ 1
i^=exp^-^)——^+^-^j.

(This power series can be written exp(tf{p) + ^/'(p)), where f(p) =
arctan(^/p)/(^/p).)

Here is a description of this algebra analoguous to THEOREM 1.1. As
an algebra over Z[p] 0 Az(/?i , . . . ,f3g) (which is the cohomology algebra
corresponding to the 1-skeleton of Mg), H*{C(Mg,BS3)-, Z) is isomorphic

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



12 G. MASBAUM

to the algebra generated by the a^, divided by an ideal of relations of the
form :

00 ,,/?

E A k^
X i X j = A,jk£ Xi^j-^k-UP -^'

k^=0

(Note that ^ is divisible by i\ in Az(/?i , . . . , /?-) . ) Here is a formula for
the numbers A^i ''

A V^ . , f i + j - k - s - 3 £ - l \A^=g(-l)^ ^ J x

^ /z + j - 2k - 2A ( i + j(5 - h) - 1\ ( i + \{s +h)-l\

-s~<s^^-k-^h A ^-/l) ^ ^(5+/l) ^
h.=smod2

Note that, as they must, the numbers A^o coincide with the A^
given in THEOREM 1.1. It also follows from this description that x^ e
^^(^(M^B,?3);!) is divisible precisely by the power of 2 contained
in n\. This generalizes Corollary 1 of [Ml].

3. The classifying space of the based gauge group on S4

The subgroup of the gauge group formed by those gauge transforma-
tions whose restriction to the fiber over the base point is the identity, is
called the based gauge group, and denoted by G»(X). It is well known
that for any ^-bundle, it is isomorphic to the group C.(X,S3) of base-
point preserving maps X —> S3. Hence the classifying space of the based
gauge group on S4 has the homotopy type of the space Q4^, the fiber of
fibration (1).

The space ^B is the zero component of ^BS3 w ^S3 w ^S3^0,
and it is well known how to describe the homology of the latter in
terms of Dyer-Lashof-operations acting on [1] € ilo^3*?3) (see for ex-
ample [CLM]). However, since we are ultimately interested in cohomol-
ogy, it is more convenient to restrict attention to the zero component.
We proceed as follows. From the definition of B, we deduce a fibration :

s1 w K{I, i) -^ ̂ B -^ n2 as2 w n^3.

An easy calculation with the Serre spectral sequence then shows :

H^B^^^P(z^^E(f3z^).
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COHOMOLOGY OF SOME GAUGE GROUPS 13

(Here, t is a prime, P means polynomial algebra, E means exterior
algebra, Zn is an element of degreee n, and (3 is the Bockstein oper-
ator in (mod £) homology.) Proceeding as in [CLM, p. 229], we see
that H^{^B\¥^ is the free graded commutative algebra on generators
obtained by certain Dyer-Lashof-operations acting on an element y^-2 ^
^(Q4!?;^) obtained from z^ by transgression. (Note however that if
t = 2, y^ is well denned only modulo (fSy^)2.) Here is the result :

PROPOSITION 3.1.
a) H^B'^) w P[(Qi)^ (QiY{Q2Vy2 ; i j > 0] ;
b) for t > 3, ^(f^-E^F^) is the free graded commutative algebra

on generators ^(O^-ip/^Qs^-i))^^ where i, j > 0, £, £ C {0,1},
e < j and (j > 1 =^ e = 1).

(See [CLM, p. 7] for a definition of the operations Qn- Compare
also [Mi].)

Note that |(Oi)W = 2^1 - 1, |(Oi)W^| = 2^'+2 -2^-1, and
that |/?£(0,-lp/3£(Q2(,-l))^^-2| = 2^'(r+1 - 1) - e - e.

For i > 3, y2£-2 is clearly primitive, hence it follows from the Cartan
formula that ^(f^B;^) is primitively generated. This implies that the
mod t cohomology algebra H"{^B\ F^) is simply a tensor product of an
exterior algebra (on odd-dimensional generators) with a divided power
algebra (on even-dimensional generators), the generators being the duals
of the homology generators given above. The analoguous statement is
not true for mod 2 cohomology. In the next section, we will obtain a
presentation of .H"*^4!?; Fs).

The relations between Dyer-Lashof-operations and the higher Bock-
stein operators can also be found in [CLM]. This allows to determine the
additive structure of H^B', Z) as follows. Set n(zj; £) = W(i1 -1) and
^(^(i+^-^Ai-r).

PROPOSITION 3.2. — For any prime ^, the Poincare series of

E^n4^), r>2,

is given by
frW = JJ^n(2,r-l;^)(^)-

i>l

We leave it to the reader to write down /i(^), i.e. the Poincare series
of E1^^4^^) = ̂ (n4!^), using PROPOSITION 3.1.
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14 G. MASBAUM

Now recall that H^B', Z) = ©^ H^B; Z^), since the space ̂ B
is rationally contractible. Moreover, if we write

^(n^z^^z/rT-,
r>l

then the dnr are given by

V- .n _ fr(t) - fr^lW^anrt -———^———•
n>l

This determines the additive structure of H^^B',1). For later use,
we record the following

COROLLARY 3.3. — Let i = 2m + 1 be an odd prime, and set
N(£) = P - ̂  +3) if t > 5, and N(3) = 536. Suppose 1 < n < N(£).
Ifn = 0 (m), thenH^^B','!^) has exponent ̂ +^/^). Ifn ̂  0 (m),
^^^(n^Z^))^.

Here ̂  : Q* —> Z is ^-adic valuation.

Sketch of proof. — The Bockstein spectral sequence of^^n4!?; F^) has
a direct summand of the form P(yu-2} ̂  E(/3y^-^), with /?r+i^-2 ==

y^Z^y2^-2 • The Z^)-cohomology corresponding to this direct summand
verifies the statement of the corollary for all n. Moreover, it turns out
that for n < N{t), the exponent of H^^B', Z^) stems from this direct
summand. Details are left to the reader.

4. The map j : ̂ B -^ BO
The stabilisation map S3 = SU(2) —^ SU factors over the inclusion

Sp C SU. Thus, the induced map C(X,BS3) -> C(X,BSU) factors
over C(X,BSp). Restricting to base-point preserving maps, and using
real Bolt periodicity, we have a map fl^BS3 -> ^BSp w BO xZ. In
this section, let us denote by j : ^B —>• BO the map obtained by
restricting to the zero degree component. Clearly, this is a morphism of
4-fold loop spaces.

PROPOSITION 4.1. — ̂  : ̂ (^^Fs) -^ ^(BO;F2) is injective.

Proof. — Recall ^(BO; Fs) = P(ai, 02 , . . . ) , where |a^| = z. Since the
inclusion S3 —> Sp is 6-connected, j^ is an isomorphism in degrees < 2. Re-
placing, if necessary, y^ by ^2+(/?2/2)2, it follows j^) = a^J^/Sy^) = ai.
From [K], THEOREM 36, we know that in H^(BO',P^), we have Qn(ctk) =
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COHOMOLOGY OF SOME GAUGE GROUPS 15

(7^+^-l)a^+2fc modulo decomposable elements. Since j^ commutes with
Qi and Q^, it follows that j^ sends the generators of H^{^B\F^) given
in PROPOSITION 3.1 to indecomposable elements. This implies the propo-
sition.

COROLLARY 4.2. — H^^B'.F^) » ^*(BO;F2)/(ker^*).

The Hopf algebra structure of JFf*(BO; Fs) is given by

Aa^ = ̂  a^ 0 an—i.

Since j^ is injective, it follows A^/2 =10 2/2 +/?y2 ̂  /^/2 +2/2 0 1- This and
the Cartan formula for Dyer-Lashof-operations completely determine the
Hopf algebra structure of H^(f}^B', Fs). Note that generators of the form
(Qi^/^/2 are primitive, whereas those of the form (QiY^Q^Yy^ are not.

For n a positive integer, let £o{n) be the number of zeros of n when
written in binary form. Note that H^{^B\¥^) has a generator precisely
in those degrees n such that £o(n) < 1. Recall that 7^*(BO;F2) is
a polynomial algebra on the Stiefel-Whitney-classes w^. The following
proposition will be proved in the appendix :

PROPOSITION 4.3
(i) For each n such that £o(n) > 2, the ideal ker(^'*) C ^(BO.'Fa)

contains an element Tn of degree n, such that ifn= 2^m where m is odd^
then Tn is indecomposable if £o(m) > 2, and Tn is the square (the fourth
power) of an indecomposable element if £o(m) == 1 (eQ(m) = 0).

(ii) The ideal ker(j'*) C -ff*(BO;F2) is freely generated by any system
of elements Tn verifying the indecompos ability properties of part (i).

Note that the proposition implies w^ 6 ker(j*) for all n. Here are
generators for ker(^'*) in degrees < 16 : w^, w^, 59, <9J, w^, w^. (s^ means
the Tz-th Newton polynomial of the Wi.) In the appendix, we will give an
algorithm to construct generators Tn in terms of Stiefel-Whitney-classes.

We now study the map j at an odd prime i. Recall that H^(^B\ F^)
is the free graded commutative algebra on certain elements of the
form /3£(^-lp/3£(Q2^-l))^^-2.

PROPOSITION 4.4. — The kernel of j ^ : H^^B'^i) -^ ^(BO;F^)
is the ideal generated by those of the above elements whose degree is not
divisible by 4.

Note that these are precisely the generators not of the form
(Q2(^-l))^-2, Z > 0.
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16 G. MASBAUM

Proof. — Clearly these elements are in the kernel of ^, since
^(BO;F^) is zero unless n is divisible by 4. To complete the proof,
it suffices to show that the subalgebra of H^{^B\¥() generated by the
classes (02(^-i))^2^-2 injects into ^(BO; F^). To see this, we proceed as
follows. Write

H^S^'^i} = H^B^i] ̂  F^Z],

H, (BO x Z; F^) = H, (BO; F^) 0 F^Z].

From [CLM] we know that in ^(f^3^), one has Qi(l (^ [1]) / 0.
Hence 2/2^-2 may be chosen such that Qi(l ̂  [1]) = 2/2^-2 ̂  [^]- From [K],
THEOREM 33, we know that in H^(BO xZ;F^), we have Qi(l 0 [1]) ==
•P^-i)^^^]- Here -p^ e ^4n(BO; F^) is the dual ofj^, the mod i reduction
of the n-th Pontryagin class. (The dual is taken with respect to the obvious
basis of ^^(BO^) given by monomials in the pj, j < n.) Since the
map n3^3 —^ BO xZ is a morphism of 3-fold loop spaces, and respects
components, it follows j*(^-2) = P(^-i)/2- From [K], THEOREM 25, it
follows :

J*((Q2(^-1)) 2/2^-2) = (^(^-l))1?^-!)^ = ̂ P^1-!)^-

It is well known that p^ is, up to scalar multiples, the unique primitive
element in ^(BO^). (Recall that ^(BO;F^) w P(an ; n > 1),
with |a^| = 4n, and Aa^ = ^a^ 0 an-i.) From the Newton formula,
we see that P(^-i)/2 ls indecomposable, since ^(^ — 1) is not divisible
by L Thus, Im(^) is freely generated b y { p y j y i = j ( ^ - l ) , z > l } . This
implies the proposition.

5. Divisibility properties depending on k

In this section, we study the fibration (1) in cohomology. First, we
study the situation at the prime 2.

PROPOSITION 5.1. — If X has even intersection form^ then the mod 2
cohomology spectral sequence of fibration (1) degenerates at the E^-level

Proof. — It suffices to prove this in the case X = S g ^ since
there is a degree one map Sg —> X {cf. the proof of THEOREM 2.1).
The stabilisation map 6'3 —>• Sp induces a morphism of fibrations
C(Sg^BS3)k—^ C(Sg^BSp)k whose restriction to the fiber is the map
j : ^B —» BO studied in paragraph 4. Proceeding as in the proof
of THEOREM 2.1, we can decompose C(5p,BSp)^ as a product BSp x
(nSp)2^ x BO. Hence the spectral sequence of this fibration degener-
ates at the E2-level. Since j* : I:T(BO;F2) -^ H^^B'^^) is surjective
by PROPOSITION 4.1, the result follows.
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COROLLARY 5.2. — If X has even intersection form, then

H^C(X^BS3)^)

is an extension of the algebra Jf*(BO; F2)/ker(j'*) determined in Propo-
sition 4.3 by A(L) 0 Fs.

Note that w4 = kp+ Q. by THEOREM 2.1, hence the above extension of
algebras is non-trivial if k is odd.

COROLLARY 5.3. — If X has even intersection form, then

H^C^X.BS3)^^}) »A(L)0Z(2) C torsion.

Here, Z(2) is Z localized at 2. Note that this is not true at odd
primes, cf. COROLLARY 2.2.

Now let i be an odd prime. Consider first the case X == 5'4.

PROPOSITION 5.4. — In H^C{S\BS^k'^), the element p^-^12 is
divisible by i if and only if k ^ 0 ((.).

Proof. — To simplify notation, set Ck = C(5'4, B^3)^ and m = |>(^-1).
From PROPOSITION 3.1, it follows H'^B'.Pe) = 0 for 1 < i < 4m - 2,
jy4m-i^4^(F^ ^ F^ ^^(f^ooi^F^) « F^. Moreover, the latter is
generated by i*(pm) where i : ̂ B —>• Ck is the inclusion of the fiber. This
follows from PROPOSITION 4.4 since %*(pm) == J*(pm) where j : ̂ B —>• BO
is the map studied in paragraph 4. Also, in the mod i cohomology
spectral sequence of the fibration ^B —^C^,—> B53, the first non-trivial
differential is :

d,m : ̂ 4m-l(045;F,) -. H^iBS3'^,).

Clearly, ̂  is divisible by t if and only if d^rn ^ 0-
If k ^ 0 (^), then it follows immediately from COROLLARY 2.2 that p171

is divisible by i. Now suppose k == ik ' . Consider :

= ^-l)m+lSm(pl.P2. . . .) - 2A;V71 € H^(C^ Z).

Since i*{z) = ±4:Sm(i^(pi),i*(p2), • • •) == =^4mz*(p^), we have z / 0 C
.^^(C^F^). On the other hand, THEOREM 2.1 implies iz = 0. It follows
that z is in the image of the mod i cohomology Bockstein operator. In
particular, we have JT4771''1^^) ^ 0. This implies d^rn = 0 in the
spectral sequence, hence p171 is not divisible by i.

This completes the proof of PROPOSITION 5.4.

For general X, we have :
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PROPOSITION 5.5. — Suppose C{X,BS3)k and C^X.BS3)^ have iso-
morphic cohomology algebras. Then for each prime i > 5, one has :

k = 0 (t) ^=^ k' = 0 (i).
Moreover, if the intersection form of X is even, or divisible by 3, then this
is also true for t = 2, or £ = 3, respectively.

As an example where the last condition is satisfied, one may take X = S4.
Proof. — Let (p e BS(L*) be the intersection form of X, and set

Ck = C(X,BS3)k' As before, set m = \{i— 1). We distinguish three cases.
Case 1 : £ = 2. Then (^ is even by hypothesis, hence by THEOREM 2.1,

we have :
wf = 52(wi,W2) = kp2.

PROPOSITION 5.1 implies p2 ^ 0. Hence we have w^ = 0 if and only if
k = 0 (2). Since wi generates Hl(Ck'^2) w ^2, the result follows.

Case 2 : £ an odd prime, and (/? = 0 (^). Then n, the mod ^ reduction
of n, is zero. In this case, we proceed as in the case X = 54 to see that p171

is divisible by i if and only if k ^ 0 (i). Actually the proof shows that
H^-^Ck; F^) = 0 if and only if k ̂  0 (^). The result follows.

Case 3 : ^ a prime > 5, and (p ^ 0 (^). We consider again the
fibration ^B -^ Cj, —> C(M(L,2),B5'3). In this proof, all cohomology
classes will be reduced modulo i. But here we will distinguish between p,
n as cohomology classes on C(M(L,2),B6'3), and their images r*(p),
r*(H) on Ck. THEOREM 2.1 implies r*((A;p + mH)^"1) = 0. Since
(^ ^ 0 (-f), it follows easily from the description of A(L) that for all A;,
the element (kp+mfl,)?171''1 is non-zero (compare the reasoning following
COROLLARY 2.2). Arguing as in the proof of PROPOSITION 5.4, we see
from the spectral sequence that in degree 4m, ker(r*) = Im(d4^) is one-
dimensional. Hence ker(r*) is generated by (kp+ mf^771"1.

Now let a* : Jf*(Cfc/;F^) w ff*(Cfc;F^) be a (graded) algebra isomor-
phism. Affect all objects concerning Ck' with a. Since i > 5, r* and r^
are isomorphisms in degree 4. Hence, there are elements q, A e A(L) of
degree 4 such that :

a^rf^p))=r^q), ^(^(H)) = r*(A).

Again, THEOREM 2.1 implies ^((A/p + mO)?771"1) = 0. Applying a*, it
follows {k'q-\-mA.)qm~l C kerr*. Since kerr* is one-dimensional, there
is A 1=- 0 such that {k'q + mA)^""1 = A (fcp+mH)^""1. It then follows
easily from the description of A(L) that k = 0 (f.) if and only if k ' = 0 (^).

This completes the proof.
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REMARK 5.6. — PROPOSITION 5.5 was motivated by the following
amusing application. Consider the family of topological group extensions

1 -. Q. ̂  C.(X,53) -^ Qk(X) -^ S3 -^ 1

depending on the second Chern number k. Here the map Gk(X) —> S3

is given by restriction to the fiber over the base point. One wants to
conjecture that these extensions are distinguished by k. Since BQk(X) w
C(X,B53)^, PROPOSITION 5.5 gives a partial answer. In the literature,
there seems to be only the following invariant : if X has even intersection
form, then the central element — 1 6 Gk(X) is homotopic to 1 if and only
if k is even [FU].

6. The classifying space B^i(54)

We now consider the special case

X=S\ k=l.

Set Ci = C(S^,BS3)! w B^i(6'4). THEOREM 2.1 implies that

ir(Ci;Z)/ torsion C H^C^ Q) = Qb]

contains classes pz such that :

._ pi x l 23 2 1493 3
l+^+^+-——exp(^^^^)= l^^4- 45360^+"-

We introduce the following notation. If i is a prime, set m = ̂ (£ — 1)
if I is odd, and m = 1 if i = 2. For n C N, set ^(n) = ^{[(t/m) ' n}!),
where va : Q* —> Z is ^-adic valuation, and [x] means the greatest
integer < x. The main result of this section is :

PROPOSITION 6.1. — The subring of H *(Ci;Z)/ torsion generated by p
and the pi is generated in degree 4n by j^/a^, where

a,=n^).
i

Before giving the proof, we point out that it is tempting to conjecture
that Jf*(Ci; Z)/ torsion is actually equal to this subring. Here is a proof for
this conjecture in low degrees, and after inverting 2. From fibration (1),
we have an exact sequence :

0 -, z •P71 -> H^(C^I) -^ Q^ -^ 0,
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where Q471 is torsion. Moreover, it follows easily from the spectral sequence
that the exponent of Q471 is less or equal than the product of the exponents
of H^^^B'.J.) for 1 < % < 7i. Now let i be an odd prime. An easy
calculation using COROLLARY 3.3 shows that for n < N{€), the exponent of
the ^-primary part of Q^ is less or equal than ̂ (n). (Recall N(3) = 536,
and N(i) = P - j(^ + 3) if i > 5.) On the other hand, PROPOSITION 6.1
implies that p71 is divisible by i^^ in H^^; Z)/ torsion. Putting things
together, one easily deduces the following corollary.

COROLLARY 6.2. — Let t be an odd prime, and n < N(£). Then pn C
ff471^!;!) is divisible by ^(n), and ^(Ci;^))/ torsion is generated
b y p ^ / t ^ W .

Note that the smallest N(£) is N(b) = 21. Since by PROPOSITION 5.1
pn ^ H^^T) is not divisible by 2, it follows :

COROLLARY 6.3. — For n < 21, p71 C H^^l) is divisible pre-
cisely by n^>3^^' Moreover, in degrees less than 4 x 21 = 84,
Jf*(Ci;Z[j])/ torsion coincides with the subring generated by p and the pi.

We now prove PROPOSITION 6.1. Write pn = bnp71 € jr^C^Q). We
leave it to the reader to deduce PROPOSITION 6.1 from the following
lemma, using the easily verified inequality /^(^i) +^(^2) < /^(7l! +7^2)•

LEMMA 6.4. — For n > 1, one has ^(bn) > —jL^(n). Moreover, equality
holds if n = 0 (m).

To prove LEMMA 6.4, recall that by definition :
00 i 00

-(S )̂'!;̂ .
Differentiating this expression, we obtain :

-, oo ,
, ^ 1 v-^ bj
n+l- 2 (n+ l ) ^27 i -2z+3 'v i=0

Using the well known fact vn(x + y) = mm(^(x), ̂ (y)) when-
ever ^(x) / ^e(y)^ li is not hard to deduce ^2(^71) = —^2((2^)!)
and v^(bn) = —^3((3yi)!) by induction on n. This proves LEMMA 6.4
for ie {2,3}.

In the general case, we proceed as follows. We have the following
expression :

^-E E -.——'-———•
k "i+2"2+...+fcn,,=njj^,^^^n.

»=1
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Let En denote the set of sequences (^1,^2 5 • • •) such that ni+2?Z2+' " <n.
Define / : En —> 1 by the formula :

/ (nl ,n2, . . . )=^(^^ ! ( 2 ^ ( 2 ^+ l ) ) n ^ )•
i

Note that En contains the sequence (n^} n^\...) defined by n^ = [n/m],
nf' == 0 for i -^- m. Moreover,

f(n^\n^\...) = ̂ ([n/m]!) + [n/m] = ̂ (n).

Clearly, it follows from the expression for the bn given above that the
following LEMMA 6.5 implies LEMMA 6.4.

LEMMA 6.5. — For all sequences ( n i , ^ ? - - - ) € E^ one has the
inequality / (ni ,^---) < ^i(n). Moreover^ if n = 0 (m), then equality
holds if and only if:

(^i,^,...)-^^...).
We now prove LEMMA 6.5. Consider (ni, 712,...) C En. Set hi = [ini/m].

SUBLEMMA 1. — Ifm > 0, then vi(ui!) < hi unless hi = 0.
/ U i - 1 Hi mhi +m-l hi-\-l ,

Indeed, ^(n,!) < ——— < — < —————— < ——— < h,.
2m 2m 2mz 2 ~

SUBLEMMA 2. — If ni > 0 and i > m, then n^(2%(2? + 1)) < hi.

Since hi = [ini/m] > ni > 0, this is obvious unless i = 0 (£)
or 2% + 1 = 0 (£). First, suppose i = 0 (^). Then we have

m^(2i(2i + 1)) = ^^(z) < n.log^z) < mhi +m ~ 1 log^(z),

hence it sufBces to show {{mh -\-m — l)/i)\og^(i) < hi, which is equiva-
lent to

/*\ ^mhi-^-m—l ^ phi\ ) r \ L .

We will show this inequality by induction on /i^, keeping i fixed. Observe
that we may suppose hi > 2. Indeed, since i > £, we have

mhi + m — 1 mhi + m — 11 < ̂  < ———^——— < ———__ ,
r -C
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which is impossible if hi <: 1.

Letting hi = 2 in (*), we obtain :

(**) ^m-1 < (2i.

Observe that once we know (**), it follows ̂  < %(3m- l)/2 < ^ which
implies the induction. Thus, it only remains to show (**), which is
equivalent to :

^ ^ ^/(3m-l) ^ ^/(3^-5)^

Now this is obvious if i = ^, moreover, differentiating with respect to i
yields :

i < 4 logm^/^-5) = ^i-iogm^-3^5)/^-5)
3^-5 3^-5

which is true for i > i. This implies (**), hence SUBLEMMA 2 in the
case i = 0 (£).

The case 2z + 1 = 0 (^) is similar and left to the reader.

SUBLEMMA 3. — ^>i h, < [n/m], S,>^^z < [n/m\.

This is obvious since n = ̂ ^>i ̂ r

Applying these sublemmas, we have :

/(ni, 712, • •.) = ̂  (^(^ !) + n, ̂ (2z(2z + 1))) < ̂  ̂ (n,!) + ̂  ̂
i>l i>m i

< ^{{n/m}!) + [n/m} = ̂ (n) = f^n^...).

This implies the first part of LEMMA 6.5. Now suppose we have equality
here. Then it follows from sublemmas 1 and 2 that n^ = 0 for all i > m,
and hi = 0 for all i < m. But this implies :

/ (ni ,n2, . . . ) =nm +^(riyJ),

hence rim = [n/m\. If n = 0 (m), then this is impossible unless :

(7 i i ,7Z2, . . . ) = {n^\n^\...).

This completes the proof of LEMMA 6.5.
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7. The classifying space of the based gauge group

For (p e rs(L) = 7T3(M(L,2)), define F^ : C.(M(L,2),B53) -. ̂ BS3

by Fy(f) = f o (p. Clearly, the map :

F:W)^ [^(MGL.^B^.^B^3], ^^

is a homomorphism of abelian groups. (Here, the notation [A,B] means
based homotopy classes of based maps A —> B.) The main result of this
section is the following theorem.

THEOREM 7.1. — kerF = 12r^(L).

We apply this as follows. It is not hard to see that, up to homotopy,
C.(X,BS3) is the total space of the fibration induced by Fy from the
path fibration over f^B,?3. Thus THEOREM 7.1 implies that for any
prime i > 5, we have an ^-equivalence :

C.(X,BS3) ̂ ) C.(M(L,2),B53) x fl^BS3.

Moreover, this is still true for t = 3, or i = 2, if we suppose
(p = 0 (3), or (p = 0 (4), respectively. On the other hand, if y? ̂  0 (3),
then (^(X.BtS'3^) is not a product, as follows from THEOREM 2.1. Simi-
larly, if^is odd, then C,(X, B^3^) is not a product (see also REMARK 7.8).

Since H * ((;.(M(L,2),B5'3); Z) is the divided power algebra r(L), we
deduce:

COROLLARY 7.2. — Let a e L be indivisible. If

^areH^^X^BS3)^])

is divisible by N, then N divides n\. Moreover, if^p= 0 (3), then this is
true with coefficients in Z[j].

Note that if(^is even (as a bilinear form), then COROLLARY 5.3 together
with COROLLARY 1 of [Ml] imply that /A(a)71 C H^^C^X.BS3)^ ^(2)) is
divisible exactly by n!.

We now prove THEOREM 7.1. We start with two lemmas whose proof
is left to the reader.

LEMMA 7.3. — The suspension EC,(M(L,2),B53) has the homotopy
type of a bouquet of spheres.

LEMMA 7.4. — There is a natural filtration (induced by a Postnikov
decomposition ofBS3) :

[C^M^L^^BS^^^BS3] = ^ o 3 ^ i 3 ^ 2 ^ - - ,
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where Fn-il^n ̂  ̂ n(L) ̂  Tr^n^S3).

Using this filtration, the map F defines natural linear maps :

0i : T^L) —— ^o/^i ^ Fi(L) 0 7T4(53) = L 0 Z/2,

02:ker(0i) -^^i/^2^r2(L)07T6(53),

where ^(^) = Fy, mod ^. It is not hard to see that 0i corresponds
to the suspension I^L) = 7T3(M(L,2))-^7r4(SM(L,2)) = L 0 Z/2.
Alternatively, 0i is given by the formula 6^{^(x)) = x, (x e L). Thus,
ker(^i) consists exactly of the even forms.

The following two lemmas will imply THEOREM 7.1.

LEMMA 7.5. — Let w = [zi,^] C Tr^S2 V 52) = Î Z C Z) te the
Whitehead product of the obvious inclusions zi,z'2. If we localize at a
prime t > 5, then F^ becomes null homotopic.

LEMMA 7.6. —Lethe 7T3(5'2) = I^Z) 6e a generator. Then 6^{2h) is
the double of a generator ofr^(l) (g) ̂ (S3) w 1/12.

Granting these lemmas, here is a proof of the theorem.

First, we show 12r2(L) C kerF. Suppose (p C 12r2(L). It follows from
LEMMA 7.3 that the abelian group [C.(M(L,2),B5'3), ̂ BS3} is (non-
naturally) isomorphic to rlje^71'^^53) for some integers n^ It clearly
suffices to show that the image of Fy in each of the TT^ (53) is zero.
Now it is well known [S] that the ^-primary part of 7r/(5'3) (%' > 4)
has exponent i, for t an odd prime, and exponent 4, for £ = 2. Thus,
the 2- and 3-primary parts of Fy are zero. To study the ^-primary part
for i > 5, we may as well localise at L The image of w = [zi, ^2] in Tr^S2)
under the obvious sum map S2 V S2 -^ S2 is 2/i, where h is a generator
of 7T3(5'2). Thus, LEMMA 7.5 implies that F^ is null-homotopic (after
localization at (,). But F^ is homotopic to 2 o F^, where 2 means the
self-map of f^B*?3^ induced by multiplication by 2 on S3. Since this
map is a homotopy equivalence, it follows that F^ is null-homotopic. By
naturality, this implies that (the ^-primary part of) Fy is null-homotopic
for any (p C l^L). This shows 12r2(L) C kerF.

Next, we show kerF C \2Y^{L). By naturality, LEMMA 7.6 implies that
there is a generator e € 7r6(5'3) such that 02^) = 2(p^)£ e ̂ ^(^^^{S3)
for any (p C ^^(L). Now, suppose we have (p e kerF. Then 2(p e kerF,
whence 2(p (^ £ = 6^(2^) = 0. Thus (p must be divisible by 6. In
particular, we have ^> = 2y/, thus we can repeat the argument to
find (p 0 e = 02(y) = 0. Thus (p must be divisible by 12.

TOME 119 —— 1991 —— N° 1



COHOMOLOGY OF SOME GAUGE GROUPS 25

It remains to prove LEMMAS 7.5 and 7.6.

Proof of Lemma 7.5. — Set G = S^y We must show that

F^ : C. (S2 V 52, BG) = ̂ BG x n2 BG -^ Q3 BG

is null-homotopic.

Recall that the join X *V of two spaces X, Y is defined as the quotient
of the product X x I x Y by the identifications (x,0,y) = (rr ' .O,^/),
(x,l,y) = {x,l,y'). Think of S3 as 6'1 * S1. Think of S2 as S1 A S1.
For t e I = [0,1], let [t] be its image in S1 = J/(0 = 1). Then the map
w : S3 = S1 * S1 -^ S2 V S2, defined by :

( ^ { [ 2 t ] ^ x ) ift< ̂
w(x,t,y) = ^

[ ^([2 -2t] /\y} i{t> ̂

represents the Whithehead product [^i,^]-

Similarly, define w : G * G -> S(5 = 5'1 A G by the formula :

( [ 2 t ] / \ a i{t<^
w(a,t,b) = <

[ [ 2 - 2 ^ ] A & i f ^ > j -

Let s : G —> ^SG be the canonical map, sending a; C G' to the loop
t }-> t/\x. Let i : EG -> BG be the map classifying the principal G-bundle
whose clutching function is the identity G —> G. Then it is well known
that the composition

G-^nEG-^^BG

is a homotopy equivalence.

The key observation is that the following diagram is homotopy com-
mutative :

flGx^G ^x^) ^EGx^EG -Q2!̂  ^BGx^BG

(3) * F.

^(G^G) ——^—— ^EG ————^———— ^BG
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Here, the map * is the join, that is *(/, g) = f * ̂ , where / * g{x, t, y ) =
(f(x),t,g(y)). Now i o w C [G * G.BG] w ^(BS3)^. But this group
is zero, since 7r7(B5'3) = 7T6(5'3) = Z/12, and t > 5. This implies
that F^ is null-homotopic, since (Hz) o s is a homotopy equivalence. This
proves LEMMA 7.5.

Prw/ of Lemma 7.6 : recall that the image of w = [^i,^] in 7T3(5'2)
under the obvious sum map S2 V S2 —^ S2 is 2h. Thus, diagram (3) gives
a homotopy commutative diagram :

n53 -^ n53 x n53 ——. fl^s3 * s'3)^ n3^7

^^^ow)

n2B6'3 ——————^——————. ^B5'3.

Here, A is the diagonal map, and * is the join. As in LEMMA 7.4, we have
a nitration :

[a?3,^7] =^o^=^2^—.
where ^'n-il^'n w ̂ (^ ^ ^2n^(S7). Since J^/^ = 0, the map * o A
defines an element

^C^/^^^(57) .
Moreover, identifying 7T6(53) = -^(B,?3), we have by naturality :

0^h)=(iowUrj).

As is well known [T], i o w is a generator of ^(B,?3). Thus, identifying
71-7 (57) = Z, we are reduced to prove the following :

Claim : r] = =L2.

To prove the claim, let A : E3^^3 —> S7 be the the map adjoint to *oA.
Note that the induced map ^(A; Z) is of the form Z —> Z, and it is not
hard to see that this is actually multiplication by 77.

I owe P. VOGEL the following argument. Represent a generator of
H^ (n53; Z) w Z by a map g : M4 —^ Q53, where M4 is a closed oriented
4-manifold. Call F the composition

F : S3 x M -^ Y^M -^ S3^3 -^ S7.
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Clearly T] is equal to d°(-F), where d°(F) means the degree of F as a
map between smooth compact oriented manifolds. Now let / be the map
S1 x M -^ EM -^ S3 adjoint to g. Identifying S3 = S1 * S\ S7 = S3 * 53,
we see that F is given by the formula

F((a,^,),a;) = (/(a^U/M).

We may suppose / is smooth. Then .F is also smooth, and has a regular
value of the form (z, to, z ' ) e S3 * S3, where 0 < to < 1. Thus

d°(^) = #{((a,^)^) | /(a,^) = ^ /(6,rr) = ^/}
= ±d°(F),

where F : 51 x S1 x M -> S3 x S3 is given by F(a, 6, a;) = (/(a, x), /(&, x)).

Finally, we can calculate d°(F) as follows. Let a G H^^S^^T) and
9 C ^(S1;!) be the standard generators. Then /*(cr) = Q ® ^*(a),
with a a generator of ^(O*?3; Z). Hence F* (o- 0 a) = ±0 ^ 6 (g) ^*(a)2,
and since ja2 generates H^^S2',!), we see d°(F) = ±2.

This proves LEMMA 7.6, and completes the proof of THEOREM 7.1.

COROLLARY 7.7. — Let y e F2(L). rAen Fy : C.(M(L,2),BS3) -^
n3 B6'3 is homotopy linear if and only if Fy is null-homotopic.

Proof. — Let zi, i^ : M(Z/, 2) —> M(L(BL, 2) be induced by the obvious
inclusions L —> L ® L. For <^ 6 F2(L), define

d(^) = (zi + ̂ 2) o ̂  - ii o ̂  - '̂2 ° ̂  e ^3 (M(L © L, 2)) = r2(i/ e L).
Then Fy is homotopy linear if and only if

^) € [^(M^eL^.B^^B^3]

is zero. But the linear map F2(L) —> F^(L © L), ^ >-> d((^) is injective.
This implies the corollary.

REMARK 7.8. — Consider the fibration

^B -^ C.(X,B53)^ ̂  C.(M(L,2),B53)

obtained from fibration (1) by restricting to base point preserving maps. It
is not hard to see that in the homology spectral sequence, the differential :

d^o : <o ^ H^C.(M(L^^BS3^!) ^ L*
——> E^ w H^ (^ B53; Z) w ̂ (S3) w 1/2
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corresponds to 6\ ((/?) via the natural isomorphism

Hom(L*,Z/2) «L(g)Z/2.

Recall that H^(C.{M(L, 2),B5'3);Z) is a polynomial algebra on 2-dimen-
sional generators. Thus, if the homology spectral sequence were multiplica-
tive, then the condition 0i((p) = 0 would imply that the whole spectral
sequence degenerates at the I^-level. However, the only geometric con-
dition to ensure multiplicativity of the spectral sequence we can think
of is that F^ be homotopy linear. Curiously enough, if 6\{^p) = 0, then
the mod 2 spectral sequence does degenerate by PROPOSITION 5.1, al-
though F^, even localised at 2, need not be homotopy linear as follows
from COROLLARY 7.7.

Appendix : proof of Proposition 4-S. — Write :

A, = ^(BO;F2) = P(a^i > 1), B, = Im(j,) = P{bn^eo(n) < 1).

Here bn is the image of the generator of degree n appearing in PROPOSI-
TION 3.1. Recall that the bn are indecomposable, and their expression in
terms of the 0,1 can be found in [K]. We will use the following notation.
When I = (ii.i^,-" ,is) is a partition of n, then a(J) = a^a^ . . .a^,
b{I) = b^bi^ ... bi^, and a(J)* is the dual of a(I) with respect to the basis
of A^ given by the monomials in the 0,1. We need the following lemma :

LEMMA. — Let I = (^ i ,%25 • • • ^s) ^ ^ partition of 2Am, where A > 1
and m is an odd integer. Suppose all iy = 0(m). Then a(J)* is indecom-
posable if and only if I = (m, m,..., m).

Proof. — Recall H"(BO;F^ = P(w,; i > 1), where w, is the mod 2
reduction of the 1th symmetric polynomial (TI in formal indeterminates
^ i , ^ ? - - - In terms of symmetric polynomials, the element a(J)* can be
written

aW=^,...^=^11...^

(c/. [MS] for this notation). We will also use the notation

Q(^) — o — (n^ Y°m ~ bm,...,m — ^m) '

Observe that s^ = (T,(^,^, ...). Finally, recall the Newton formula :

Sn - (T^Sn-1 + • • • + (-I)71"10-n-l^i + (-1)^(7^ = 0.
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Consider a partition of ^m of the form I = (hm,.. . ,jy,m). First,
suppose r < 2\ Define an algebra homomorphism <1> : JT(BO) -^ Fs
by setting ^(^) = 1 for 1 < v < 2\ ^(ty) = 0 for v > 2\
Then ^(wj) = (2^), hence $(w^) = 0 for j < 2\ and ^(w^x) = 1.

Similarly, ^(^...jj = (2A) = 0, since r < 2\ Hence 5^...^ is a
polynomial in w i , . . . , z^A-i. This implies that s^rn,...,j^m is a polynomial

/n\ /^\ _1 \

in 5^, 5m , . . . , Sm . Thus a(J)* = s^rn,...jr-m is decomposable.

Now suppose r = 2\ that is a(J)* == (a^)* = ^A). We must
show that this is indecomposable. To see this, we work in the ring of
symmetric polynomials with integral coefficients. By the Newton formula,
s^x^ + 2^7710-2^771 is decomposable. Applying the Newton formula with
the formal variables ^ replaced by t7^ shows that s^x^ +2^5^ ^ is also

/oA \

decomposable. Hence Sm = ma^x^ modulo decomposable elements.
Since m is odd, the result follows.

This completes the proof of our lemma.

We now prove PROPOSITION 4.3. For each n such that £o(n) > 2, we
define Tn €= ker(j'*) as follows. Write n = ^m where TTI is odd. Also,
write n = 2^ where ^ = 4m if £o(m) = 0, ^ = 2m if £o(m) = 1, and
/z = m if eo(m) > 2. Set r^ = (a^)*. Define inductively

^)=^-l)+E<r^l)^(J^))a(J^)*
where the sum is over all partitions I = ( z i , % 2 ? • • • ^s) of n such that
s > ̂  - i and all iy = 0 (/^). Then set ry, = r^.

We now show Tn e ker(^'*). It suffices to show that (rn,b(I)) = 0
for all possible monomials b(I) of degree n. By the very definition
of r^, it is clear that we only have to consider those monomials b(I)
where the partition I = (zi,^ • • • ^s) is such that all iy = 0 (^). Call
these partitions admissible^ and call s the length of such a partition.
Observe that since £o(f.i) > 2, there is no generator b^. Hence there is
no admissible partition of length 2\ It then follows from the definition
of r^ that (r^\ b(I)) = 0 for all admissible partitions of length > 2^ - 1.
Similarly, since (a(J)*,&(J')) = 0 whenever the length of I ' is greater
than the length of J, we see by induction on i that {r^\b(I)) = 0 for all
admissible partitions of length >_2X — i. This shows r^ € ker(^'*).

Next we show that the Tn verify the indecomposability properties
claimed in PROPOSITION 4.3. First suppose £o(m) > 2. Then [i = m is
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odd, and the above lemma implies that r^ is indecomposable. Second,
suppose eo(m) == 1. Then ^ == 2m, hence r^ admits a unique square
root x ^ / 2 - (Indeed, Tn is a sum of terms of the form «Sji^,...j^? an(^ we

have <Sji^...,^ = (^im,...,^^)2)- Moreover, the lemma implies that x ^ / 2
is indecomposable. Similarly, if eo(m) = 0, then [L = 4m, and Tn is the
fourth power of an indecomposable element X ^ / A . '

This completes the proof of part (i) of PROPOSITION 4.3. For part (ii),
suppose given a system of elements Tn e ker(j*) with the above inde-
composability properties. For n = 2^m where m is odd, define Xn = Tn
if eo(m) > 2, Xn = (r^n}112 if £o(m) = 1, and Xn = (^n)174 it £o(m) = 0.
Since all Xn are indecomposable, we have Jf*(BO;F2) = P(xn',n > 1).
This shows that no Tn is in the ideal generated by the ri with i < n. Us-
ing this, an easy calculation shows that that the Poincare series of ker(j*)
coincides with the Poincare series of the ideal freely generated by the r^-
This proves part (ii) of PROPOSITION 4.3.

Remarks :
1) If £o(m) = 0, then Tn is a fourth power, and we may re-

place Tn by w^^.

2) If £o(m) < 1, then Tn = r^ = (a^)*. This is obvious
if £o(m) = 0, since in this case fi = 0 (4), and there are no genera-
tors bn in degrees divisible by 4. If £o(m) = 1, the argument is as fol-
lows. We must show ((a2 )*,&(J)) = 0 for all possible monomials b(I)
of degree n = 2^m = 2£~l^. Suppose I = ( j i , . . . ,jr) is a partition of n
such that there is a monomial b(I). Then ^j^ = n, and all £o0^) < 1-
If ((a2 )*,&(J)) = 1, then all jv must be divisible by fi = 2m. But we
will show that this is impossible. Indeed, suppose that all jy are divisi-
ble by [i = 2m. Set ky = \jy. Then ^k^ = -n = 2^771. Moreover, we
have CQ^kv) = 0, hence we can write ky = 2^ — 1. Let to denote the
order of 2 in (Z/m)*. Since each ky is divisible by m, each iy is divisi-
ble by to. This implies that each ky is divisible by 2^° — 1, hence so is
^ ky = ^n = 2Am. It follows that m is divisible by 2^° — 1. On the other
hand, m divides 2^° — 1 by definition. Thus m = 2^° — 1. But this implies
^o(m) = 0, thus contradicting our hypothesis.

3) It turns out that the smallest n such that r^ / (a2 )*, is n = 144.
In this case, the algorithm yields ri44 = (c^6)* -I- (ftj^aes)*-

TOME 119 —— 1991 —— N° 1



COHOMOLOGY OF SOME GAUGE GROUPS 31

Acknowledgements. — The author wishes to thank his advisor, Profes-
sor Pierre VOGEL, for many helpful discussions.

BIBLIOGRAPHY

[AB] ATIYAH (M.F.), BOTT (R.). — The Yang-Mills equations over Riemann
surfaces, Philos. Trans. Roy. Soc. London Ser. A, t. 303, 1982,
p. 523-615.

[Dl] DONALDSON (S.K.). — The Geometry of 4-Manifolds, Proceedings of
the International Congress of Mathematicians, Berkeley, 1986, p. 43-
54.

[D2] DONALDSON (S.K.). — Connections, cohomology and the intersection
forms of 4-manifolds, J. Differential Geom., t. 24, 1986, p. 275-341.

[D3] DONALDSON (S.K.). — Polynomial invariants for smooth 4-manifolds,
Topology, (In press).

[FU] FREED (D.) and UHLENBECK (K.). — Instantons and 4-manifolds,
Math. Sci. Res. Inst. Publ., Vol. 1, Springer, New York, 1984.

[CLM] COHEN (F.), LADA (T.) and MAY (J.P.). — The Homology of Iterated
Loop Spaces, Lecture Notes in Mathematics, Vol. 533, Springer, 1976.

[K] KOCHMAN (S.). — Homology of the Classical Groups over the Dyer-
Lashof-Algebra, Trans. Amer. Math. Soc., t. 185, 1973, p. 83-136.

[Ml] MASBAUM (G.). — Sur Palgebre de cohomologie entiere du classifiant
du groupe dejauge, C. R. Acad. Sci. Paris, t. 307,1,1988, p. 339-342.

[M2] MASBAUM (G.). — Thesis, Nantes, 1989 .
[M3] MASBAUM (G.). — Sur la cohomologie du classifiant du groupe de

jauge sur certains 4-complexes, C. R. Acad. Sci. Paris, i. 310, I,
1990, p. 115-118.

[Mi] MILGRAM (R. J.). — Iterated Loop Spaces, Ann. of Math., t. 84,1966,
p. 386-403.

[MH] MILNOR (J.) and HUSEMOLLER (D.). — Symmetric bilinear forms,
Ergebnisse der Mathematik 73, Springer, 1973.

[MS] MILNOR (J.) and STASHEFF (J.). — Lectures on characteristic classes,
Ann. of Math. Studies 197, Princeton University Press, 1974.

[S] SELICK (P.). — Odd Primary Torsion in 7Tfc(5'3), Topology, 1.17,1978,
p. 407-412.

[T] TODA (H.). — Generalized Whitehead products and homotopy groups
of spheres, J. Inst. Polytechn. Osaka City Univ., t. 3,1952, p. 43-82.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE


