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THE EXPLICIT RECIPROCITY LAW AND THE
COHOMOLOGY OF FONTAINE-MESSING
BY

Kazuya KATO (¥)

REsuME. — En utilisant la cohomologie de Fontaine-Messing, on prouve une loi de
réciprocité explicite pour des anneaux locaux réguliers de certain type. Ceci étend la
loi de réciprocité explicite classique pour le symbole de Hilbert (pour la caractéristique
résiduelle p # 2) et aussi les lois de réciprocité explicites de Briickner, Vostokov et
Kirillov sous une condition additionnelle faible sur p.

ABSTRACT. — By using the cohomology theory of Fontaine-Messing, we prove
an explicit reciprocity law for regular local rings of a certain type. This extends the
classical explicit reciprocity law for Hilbert symbols (for the residue characteristic
p # 2), and also the explicit reciprocity laws of Briickner, Vostokov and Kirillov under
an additional weak condition on p.

0. Introduction

0.1. — Recently J.-M. FONTAINE and W. MESSING defined a new
cohomology theory for schemes X of mixed characteristic (0,p), which
is closely related to the crystalline cohomology theory of X ® Z/pZ and
also to the p-adic etale cohomology theory of X ® Z[%]. In this paper, as
an application of their cohomology theory, we obtain “explicit reciprocity
laws” for various regular local rings.

The explicit reciprocity law is classically a mysterious relation between
Hilbert symbols and differential forms. In this paper, we regard it as the
mysterious relation between p-adic etale cohomology of X ® Z[%] and
the Fontaine-Messing cohomology of X, in which the latter is expressed
“explicitly” in terms of differential forms.

Under a certain weak assumption on p (the assumption p > r + s+ 1
in (0.3)), our result extends the generalized explicit reciprocity laws of

(*) Texte recu le 25 novembre 1986. (Cf. the note at the end of this paper.)
K. KATO, Department of Mathematics, Faculty of Science, University of Tokyo, Hongo,
Bunkyoku, Tokyo, 113, Japan.
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398 K. KATO

Vostokov in [V1], [V2], [V3], and also of Briickner [B1], [B2], Vostokov-
Kirillov [VK], and our method gives new proofs and new interpretations
to them.

0.2. — In this paper, our objective is a regular local ring A satisfying
the following conditions (0.2.1) and (0.2.2).

0.2.1. — The field of fractions of A is of characteristic zero, and the
residue field of A is of characteristic p > 0.

0.2.2. —Let p = uny' -+ - 7w (u € A%, eyq,...,es > 1) be a factorization
of p in (non-equivalent) irreducible elements of A, and let a be the
ideal (my,...,ms). Then, (m;)1<i<s forms a part of a regular system of
parameters of A, (A4, a) is a henselian couple ([R], chap. XI), and A/a has
a finite p-basis over F, ([Gr], chap. 0, § 21.1).

Note that the last condition on p-basis is not so restrictive. Indeed,
most regular local rings of characteristic p which appear in arithmetic or in
algebraic geometry have finite p-bases over F,. Note also that a henselian
discrete valuation ring of mixed characteristic (0, p) has properties (0.2.1),
(0.2.2) if the residue field k satisfies [k : kP] < oco.

Let 7 be the cardinal number of a p-basis of R over F,,. Fix n > 1 and
assume that :

0.2.3. — A contains a primitive p™-th root ¢ of 1.
Under these conditions, our explicit reciprocity law gives an explicit
description of the cohomological symbol map

7 s (A[2]) — H* Spec(A[]) 2/ 2(r + 5+ 1)

on the assumption p > r+ s+ 1. Here for a ring S and for ¢ > 0, we define
the ¢-th Milnor K-group of S by

KX(S)=(5®---®5%)/N

T times

where N is the subgroup of the tensor product generated by elements of
the form z; ® --- ® x4 such that x; + z; is 0 or 1 for some i # j. (An
element a; ® --- ®a, mod N of KM (S) is denoted by {as,...,a4}).

THEOREM 0.3. — Let A, r and s be as in (0.2.1)-(0.2.3) and let
H = Coker(F — 1: W,Qf — W,Q%/dW, Q%)

ToME 119 — 1991 — ~° 4



EXPLICIT RECIPROCITY LAW 399

where W,Q%, is the de Rham-Witt complez [I1]. Assume p >+ s+ 1.
Then :

(1) There is a canonical homomorphism
ra KM (ALR]) — H

having the “explicit” characterization (0.7.3) stated below.
(2) We have a commutative diagram

h

KMo (A[3]) ——— H™ ' (Spec(A[1]),,, Z/p"Z(r + 5 +1))

1
P
—TA 1A

H

where h is the cohomological symbol map and iy is the canonical homo-
morphism given in (5.3).

Here, the definition of ¢4 is rather simple. The definition of 74 by
using the cohomology of Fontaine-Messing, and by using differentials,
logarithms and residues, is the central point of this paper.

By this theorem and [BK], § 5, we have :

COROLLARY 0.4. — Assume further that A is a discrete valuation ring
(sos=1) and let K = A[%] be the field of fractions of A. Then we have
a commutative diagram of isomorphisms

KM ,(K)/p" KM, ——s H™+(Gal(K /K),2/p"2(r +2))

where the right sloping arrow is the isomorphism of [K3], th. 3.
In (0.4), if the residue field k of A is perfect, the map

T4 : Ko(K) — H = Wy (k)/(F — 1)W,(k)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



400 K. KATO

(F is the frobenius) is already given in [B1], [V2] by using differentials,
logarithms and residues. In this case, the above diagram becomes :

K3 (K)/p"K2(K) o Br(K)

SN

Wi (k)/(F = 1)Wn(k)

IR

(Br(K) is the Brauer group of K, ,»( ) means the kernel of p", the
horizontal arrow is the norm residue symbol, and the right sloping arrow is
the isomorphism of Witt), whose commutativity is proved in [B1], [V2]. If
the residue field k of A is a “(d — 1)-dimensional local field” so that K is a
“d-dimensional local field” in the sense of [V3], thenr =d—1, H = Z/p"Z
and the map 74 are given in [V3]. (In fact, since we assume p > r +s+1,
we can not cover the case p = 2 of [B1] and the case 2 < p < d+1 of [V3].
But cf. (5.12).)

0.5. — We explain how our results come from the theory of Fontaine-
Messing. The cohomology of Fontaine-Messing, which we denote
by H*(X,S,(r)), is defined for a scheme X satisfying a certain condi-
tion and has the following properties if r < p. It fits into the long exact
sequence

(05.1) -+ — HI(X,8,(r)) — M? =% N
N H”l(X,Sn(r)) Mt Tl e o

where .
M* = H*(Xn/(Z/D"L)crys, Ix, jz/pm2))

N*=H* (Xn/(z/pnz)crysa OXn/(Z/p"Z)) .
Here X, = X ®Z/p"Z, Ox, jz/p~z) is the structural sheaf on the crys-
talline site, JE:l/(Z/p"Z) is the r-th divided power of the ideal
Ix.2/prz) = Ker(Ox/z/pmz) — Ox, par)

and f, is a certain homomorphism, which is, roughly speaking, p~"
times the Frobenius. Furthermore, FONTAINE and MESSING related their
cohomology to the p-adic etale cohomology of X ®Z[%].
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. EXPLICIT RECIPROCITY LAW 401

For X = Spec(A) with A satisfying (0.2.1), (0.2.2), they can define a
canonical homomorphism for r <p—1

(0.5.2) ¢t H*(X,8,(r)) — H*((X ®Z[3])er, Z/p"L(r))

which makes the following diagram commutative.

KM(4) H(Spec(A[L])et, Z/p"Z(q))

(0.5.3) \’\ / (@<p-1)
H(X,5:(q))

Here h is the cohomological symbol map and A’ is the symbol map for the
cohomology of Fontaine-Messing (cf. § 2). We prove in §4 :

THEOREM 0.6. — Let A be as in Theorem (0.3) and assume p >
r+ s+ 1 and that A is complete with respect to the a-adic topology. Let
X = Spec(A). Then there ezists a canonical isomorphism

H™ (X, Sp(r+s+1)) = H.

This result with the following comments explains THEOREM (0.3).

1) The symbol map h’ for the cohomology of Fontaine-Messing is
described by using differentials and logarithms, and such map is already
constructed in special cases in the above mentioned works on explicit
reciprocity laws of course without the view point of a new cohomology
theory. In these works, residue maps play roles. In this paper, a residue
map appears in the definitions of the isomorphism (0.6) and of 74.

2) This symbol map h' on K}'(A) is extended to K}/ (A[1]) if we
slightly modify the target group HY(X,S,(q)) (cf. §3).

3) The definition of the map c¢ (0.5.2) seems to be an extremely
difficult one. In fact we do not use c in this paper, though we introduced
it in (0.5) to make our philosophy clear. In THEOREM (0.3) (2), its role is
played by a map ¢4 which has a simple “explicit” definition and is defined
also when ¢ =p — 1. ‘

0.7. — We give further explanation of the above point 1) together with
the characterization of the map 74 in (0.3).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



402 K. KATO

A fundamental property of the crystalline cohomology is that it is
related to differential forms. For example, let C' be a ring such that p
is a non-zero-divisor in C, and such that C/pC is reduced and has a p-
basis over F, ([Gr], chap. 0, § 21.1). Then the crystalline cohomology of
C, = C ®Z/p"Z coincides with the de Rham cohomology (cf. § 1). That
is, N* = HY(Qg, ,7) in (0.5.1) for X = Spec(C). If the cardinal number
of a p-basis of C/pC is ¢ < o0, (0.5.1) induces

HY(X,S,(¢+ 1)) =2 HY(QY, j7) = Qqc,./z/‘ch*:}l'
If g+ 1 < p, the composite map
B _
6c : KM, (C)———H™ (H,Sa(g+1)) 205, ,/d0%,

is the homomorphism having the following characterization (cf. § 2).

0.7.1. — For any ring homomorphism f : Cpy1 — Cp41 which lifts

Cy — Cr;z - 27, 0c({a1,...,aq+1}) is equal to
g+1
i—1(1 f(a;)\\ day da;_,
— g 1 — s — .. _—
;( 1) (p log( af )) ay A A ;1
1df(ait1) 1 df(ag+1)
AfZ2222 Y A oA (2 22
(P f(a'i+l)) (P fag+1) )
for any a1,...,a4+1 € C*. (The homomorphism f as above always exists).

Here log is the map 1 + pCp 1 — pCry1,

(=)t
log(1 + pz) = — 1z
Since Qg, | /7 is a free Cni1-module (see (1.8), (1)), and p~' df(a:)/ f(a:)
makes sense in Q¢ sz as df(ai) € pﬂé‘n“ /z- This map fc is defined in
special cases in the above mentioned works on explicit reciprocity laws
(cf. especially [V3], (6), (7)).

Now the characterization of the map 74 in (0.3) is stated as follows.
The map 74 in the general case is induced from the case A is a-adically
complete, via the map K'(A[1]) — K} (Aq[1]) where A, is the a-
adic completion of A. Assume now that A is a-agically complete. Take a
ring homomorphism P — A such that P is a ring in which p is a non-

zero-divisor satisfying P = lim P/p" P, and such that the induced map
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EXPLICIT RECIPROCITY LAW 403

P/pP — A/a is an isomorphism. (The existence of P and P — A will
be shown in §4 (see (4.13))). Let P[[T3,...,Ts]] — A be the surjective
homomorphism T; — m;, take a lifting £ € P[[Ty,...,Ts]] of ¢ such
that £ — 1 is contained in the ideal (T3,...,Ts) of P[[Ty,...,Ts]], and
let B=(&7" —1) — 1(&P" —1)%. Let

C = PITy, - Tl )

and let Res: Qg:)z — Qp /2 be the residue homomorphism

; . dT; dT.
Z Wi, ..y is/\Tfl"‘Tsz”T—ll/\"‘/\Ts"—’wo,...,o
. S

(wiy,...i., € Vp, /z and P, denotes P/p™P). We regard H as a quotient
of 0}, /7 via the canonical isomorphism (IR], chap. III, (1.5)

(0.7.2) WaQg — Qp 2/, 7,
= di dgr
wdlog(yl)---dlog(yT)»—+z;;’af - NP . L
i=0 n Yr
. | dgjr—1
d(wdlog(ys)--- dlog(yr—1)) — »_al ' da ; A-ee A .
i=0 1 r—1

(w = (ag,...,an-1) € Wyp(R) with a; € R, y; € R®, and "means a lifting
to P,). Then, 74 is characterized by the following (0.7.3).

0.7.3. — For any choices of P, P — A [15] , and £ as above, the following
diagram is commutative

oc

KM a(C) —— Qgts/z/dﬂrcts/il w
KM, (A[)) ————— H class (Res(81w)),

where the left vertical arrow is the surjection induced by C — A[];
. . X P
T; — m;. This map 74 depends by sign on the ordering on the set of

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



404 K. KATO

prime ideals {(m),...,(ns)}, but is independent of the choices of the
generators m; of (7;).

0.8. — The history of the explicit reciprocity law is long ([AH], [Iw],
[Sa], [Sh], [W]..., I am sorry that I can not list many excellent works)
and I have not yet well understood the relation between this work and
others. For example, there should be a close relation between the method
of COLEMAN [C] and that of this paper. Can one use the Lubin-Tate
groups in our setting?

I am much obliged to Professors J.-M. FONTAINE and W. MESSING
who explained their cohomology theory to me. I hope that this paper
serves as a good propaganda of the importance of their theory. I express
my sincere gratitude to Professor B. KAHN who introduced the paper [B1]
to me with valuable remarks.

Conventions. — In this paper, p denotes a fixed prime number and F,
denotes Z/pZ. Rings are assumed to be commutative and with unit. For a
ring S, S® denotes the group of all invertible elements of S. For a scheme or
aring S, S, denotes S ®z Z/p"Z and QY denotes the absolute differential
module Q% /7"

1. p-bases and crystalline cohomology

A fundamental fact in the crystalline cohomology theory is that, if X is
a scheme embedded in a smooth scheme Z, the crystalline cohomology of X
is computed by using differentials on Z and the divided power envelope
of X in Z ([BO]J, (7.2)). In later sections, we shall use schemes of the
type (for example) Spec(Z/p™Z[[T1,...,Ts]]) as the ambient space Z,
and so the smoothness of Z is a too strong assumption for us. The
purpose of this section is to explain that the above fundamental fact in
the crystalline cohomology theory holds if the ambient space has p-bases
locally (see definition (1.3) for our definition of p-bases).

Definition 1.1. — Let A — B be a homomorphism of rings over F,. We
say that B is relatively perfect over A if the map

AP) ®,B— BP:  z@yr— zyP

is an isomorphism, where A(P) denotes the ring over A with the underlying
ring A and with the structural map A — A®); 2 — z?, and B denotes
the ring over B defined similarly.

Definition 1.2. — Let n > 1 and let A — B a homomorphism of rings
over Z/p"Z. We say that B is relatively perfect over Aif B, (= B®,Z/pZ,

ToME 119 — 1991 — n° 4



EXPLICIT RECIPROCITY LAW 405

cf. conventions) is relatively perfect over A; and B is formally etale over A
(for the discrete topology) in the sense of [Gr], chap. 0, § 19.

Concerning homomorphisms between rings over F,, we have the fol-
lowing implications :

(etale) = (relatively perfect) = (formally etale)

(see [Gr], chap. 0, § 21 or [K4] (1.3)). So, for a ring over F, definition (1.2)
coincides with definition (1.1).

Definition 1.3. — Let n > 1 and let A — B be a homomorphism of
rings over Z/p"Z. A family (bx)xea of elements of B is said to be a p-basis
of B over A if the homomorphism from the polynomial ring

A[T\]xen — B;  Tx+—— by

is relatively perfect.

For rings over F,, this definition is slightly different from that of [Gr],
chap. 0, §21.1, when A and B are not assumed to be reduced.

The p-basis in the absolute sense is important for us. By our defini-
tion (1.3), for a ring B over F,, a family (by)aeca of elements of B is
a p-basis over F, if and only if each element of B is expressed in the form

leg . H bi()‘)’
S

AEA

for a unique family (z;) of elements of B, where s ranges over all functions
A - {0,1,...,p — 1} with finite supports. If B is reduced, this coincides
with the definition of [Gr], chap. 0, § 21.1. For a ring over Z/p"Z, we have :

PROPOSITION 1.4. — Let B be a ring over Z/p"Z, and let (by)xea be a
family of elements of B. Then the following two conditions are equivalent.
(i) (ba)rea forms a p-basis of B over Z/p"Z.

(ii) (bx mod pB)xea forms a p-basis of B/pB over Fp, and B is flat
over Z[p"Z.

Proof. — This proposition follows from the following two results (1.5)
and (1.6).

PROPOSITION 1.5 (O. GABBER). — Let A be a regular neetherian ring
over Fp, and let B be a ring over A having a p-basis (bx)rea over A.
Then B is flat over A. Furthermore, the homomorphism A[T)\]xea — B;
Ty — by is flat.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



406 K. KATO

Proof. — It suffices to see that B is flat over A[T)]xeca+ for any finite
subset A’ of A. Since A[T)]rea’ is regular ncetherian, we are reduced to
showing that B is flat over A. The proof of the flatness of B over A due to
O. GABBER is introduced in [K4], (5.2) in the case A = ), and the same
proof works in the general case.

LEMMA 1.6. — Let A — B be a homomorphism of rings over Z/p"Z,
and assume that By is flat over Ay. Then the following two conditions are
equivalent.

(i) B is relatively perfect over A.
(ii) B is relatively perfect over A; and B is flat over A.

For the proof, see [K2], Lemma 1.

For a scheme Z over Z/p™Z, we say that Z has p-bases over Z/p"Z
locally if there is an affine open covering {Uy} of Z such that the affine
ring O(Uy) of Uy has a p-basis over Z/p"Z for any .

In this paper, we shall consider only the crystalline cohomology with
base Z/p"Z (n > 1) where Z/p"Z is endowed with the canonical PD
(divided power) structure on the ideal p(Z/p"Z). The PD envelopes are
defined always with respect to this PD structure of the base Z/p"Z.

The theme of this section is the following

THEOREM 1.7. — Let Z be a scheme over Z/p"Z having p-bases
over Z/p"Z locally, let i : X —— Z be an immersion, and let v :
X/(Z/P"Z)crys — Xzar be the canonical morphism of sites. Let D be the
PD enveloppe of X in Z, and let Jg] (r € Z) be the r-th divided power of
the ideal Jp = Ker(Op zar — Ox zar). (Forr <0, Jg] denotes Op.) On
the other hand, let Ox(z/pnz) be the structural sheaf of the crystalline

site X/(Z/p"Z)crys, and let J/[;]/(z/pnz) be the r-th divided power of the

ideal JX/(Z/pnz) = Ker(OX/(z/pnz) - OX,zar)- Then, Ru*(Jg}(Z/p"Z)) 18
canonically isomorphic in the derived category to the complex

J[DT] J[Dr—ll D0, 0L a4, J[DT—Q] ®0, QL -

(deg. 0) (deg. q)

d
—

This theorem is proved in textbooks of the crystalline cohomology
theory in the case where Z is smooth over the case S (with Q9 /s instead
of N%), e.g. [BOJ, (7.2). However, one can check that all the points where
the smoothness of Z is used in the proof of (1.7) are the followings :
Z is locally formally smooth over the base, and smooth morphisms have
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EXPLICIT RECIPROCITY LAW 407

locally the properties in the LEMMA (1.8) below; but they are valid for
any morphisms having p-bases.

For aring S over Z/p™Z, let S(T)\)xeA be the PD polynomial ring over S
with variables (T))aca. For an ideal I of S, let Dg(I) be its PD envelope
(BOJ, §3).

LEMME 1.8. — Let h : A — B be a homomorphism of rings over Z [p"Z
and assume that B has a p-basis (by)xen over A. Then :

(1) The differential module Q% /4 15 a free B-module with basis

(dba)xen-
(2) Let I and J be ideals of A and B, respectively, such that
A/I = B/J via h. Then, if by € J for all A\, we have an isomorphism

Da(I){Ta)xer — Dp(J); T — bl
In particular, in the case I = (0), we have
A(T\)ren = Dp(J); TV — b,

(3) Let C = B®, B and let J be the kernel of C — B; z ®y +— xy.
Then we have an isomorphism

B(T\)xex — Do(J); T,[\i] — (bh®l-1 ®bk)m-

The condition by € J for all A € A in (2) is not so restrictive :
if (by)rea is a p-basis over A and (aj)rca are elements of A such
that ay = by mod J for all A\, then (by — ay)rea is a p-basis over A
satisfying by — ay € J for all A.

In the rest of this section, we prove (1.8). First, (1.8) (3) is a conse-
quence of the case I = (0) of (1.8) (2) applied to the homomorphism
B — C. Next, with C and J as in (1.8) (3), we have

Q}3/A =J/J?; zdyeyezr-zyol
So, if we can prove
(*) AT\ rena/(Ta; A € A)2 =5 B/J?; T\ — by,
under the assumption of (1.8) (2) with I = (0), instead of

(**) A(T\)rer — Dp(J); TF] — b[f]

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



408 K. KATO

then (1.8)(1) will follow from (*) just as (1.8)(3) followed from (**). Since
the proof of (*) is quite similar to that of (**), we leave the proof of (*)
to the reader.

Now we prove (1.8) (2). We show that we may assume A = § (i.e.
that B is relatively perfect over A). Let I' be the ideal of A[Ty]xea
generated by I and (Tx)xea- Then, Da(I){Tx)rea and D4(z,),c, (1) are
canonically isomorphic, as is seen easily by using the universal property
of the PD envelope. Since A[T)\|xea/I' = B/J, we may replace A[T)]rea
by A, and hence we may assume A = {.

LEMMA 1.9. — Let
A
R

be a commutative diagram of rings over Z/p™Z such that B is relatively
perfect over A. Assume that there is a number N > 1 such that vV = 0
for any x € I. Then there is a unique homomorphism t : B — R such
thattoh =a and cot =b.

h
_ B
J,,

¢ . R/I

Proof. — Note that the formally etale property is not directly applied,
for we do not assume that I itself is nilpotent. However, by the formally
etale property, we may assume that A is a ring over F,. Then, the proof
of [Gr], chap. 0, (21.2.7) in fact proves the above lemma for rings over F .

To prove the case A = () of (1.8) (2), we apply (1.9) to the diagram

h
A —— B

Da(I) —— A/I=B/J.

Since Ker(c) is a PD ideal, any element z of Ker(c) satisfies
aP" =pt!alPl =0,

So by (1.9), there is a homomorphism ¢ : B — D4(I) such that t-h =a
and c-t = b. This ¢t induces Dg(J) — D4(I) compatible with the PD
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EXPLICIT RECIPROCITY LAW 409

structures. We see that the composite maps D4(I) — Dg(J) — Da(1)
and Dp(J) — Da(I) — Dg(J) are the identity maps. Indeed, the former
is clear, and to see the latter, it suffices to show that the composite
B — Dy(I) — Dpg(J) coincides with the canonical map. This follows
from the uniqueness of the map ¢ in (1.9) applied to the diagram

A — B

]

Dp(J) ——— B/J.

2. Cohomology of Fontaine-Messing

In this section, we give reviews on the cohomology groups of Fontaine-
Messing, which we denote by H*(X,S,(r)) (in this paper we shall
assume r < p and X is a scheme satisfying the condition (2.4) below),
and on the symbol maps

Ky (F(X’ 0Xn+1)) - HT(Xv Sn("")) (0<r<p).

These cohomology groups were defined by Fontaine-Messing [FM] by using
a certain Grothendieck topology called “syntomic topology”. But in the
following we adopt a different form of the definition, which is explained
in [K5], chap. I, §§ 1-3, and which seems convenient for the use in this
paper. Since the details are already given in [K5], we shall sometimes omit
the proofs of lemmas. (In [K5], we worked on the etale site, but we work
here on the Zariski site for we do not consider etale local problems in this
paper. This does not make any essential change in the arguments for the
definitions.)

First, we consider the following condition F(X,Z,r) (r > 0) on an
immersion X — Z of schemes. For n > 1, let D, be the PD enveloppe
of X,, in Z,.

The sequences :

JB]’m-}-n pm Jg]1n+n pn ngm.-i-n - J[DZ]TI - 0

F(X,Z,r)
are exact for all m, n > 1 and for all 0 < 7 < 7,
where the notations are as in (1.7).
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LEMMA 2.1 (by FONTAINE-MESSING). — Let X and Z be as above
and assume Z is locally neetherian. Assume that for any x € X1, p is a
non-zero-divisor in Ox ; and Ker(Oz,, — Ox ;) is generated by an Oz ;-
regular sequence ([Gr], chap. 0, §15). Then the conditions F(X,Z,r) are
satisfied for all r.

For the proof, see [K5], chap. I, (1.3) (the assumption is slightly different
there, but the same proof works).

LEMMA 2.2. — Let X — Z and X — Z' be immersions with the same
source X, and assume that Z,, and Z,, have p-bases over Z/p"Z locally for
any n > 1. Let r > 0. Then, the condition F(X, Z,r) is satisfied if and
only if F(X,Z',r) is satisfied.

Proof. — By considering the immersion X — Z xz Z’, we may assume
that there is a morphism Z’ — Z compatible with the immersions such
that Z] has p-bases over Z,, locally for any n. We may work locally, so let
Z = Spec(A), Z' = Spec(B), let I (resp. J) be the ideal of A (resp. B)
defining X, and let I, = I A, (resp. J, = IB,). By (1.8) (2), if (bx)xea
is a p-basis of B,, over A, such that by € J, for all A € A, we have

Da,(In){Ta)xea - DB, (Jn);  Tnr— ba.

Let I, = Ker(Da, (I,) = A,/I,), and define J similarly. From the above
isomorphism, we see that for each ¢ > 0, there is an isomorphism of Z /p"Z-
modules '

@I =71, @) Yo, [
S 8

A€A

where s ranges over all functions A — {0,1,2,...} with finite supports
and |s| denotes ), .4 s(A). This proves (2.2).

Definition 2.3. — Let Z be a scheme. A morphism f : Z — Z is called
a frobenius of Z if f ®Z/pZ : Z; — Z; is the absolute frobenius of Z;
(induced by Oz, — Oz, ;x — zP).

Now consider the following condition (2.4) on a scheme X.

2.4. — There is an immersion X — Z satisfying the following (i), (ii)
and (iii).
(i) For any n > 1, Z, has p-bases over Z/p"Z locally.
(ii) Z has a frobenius.
(iii) The condition F(X, Z,p — 1) is satisfied.
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In the rest of this section, X always denotes a scheme satisfying the
condition (2.4). Let X — Z be any immersion such that Z satisfies (i)
of (2.4) and Z is endowed with a fixed frobenius f. Note that (2.4) (iii) is
then satisfied by (2.2). We denote the complex of sheaves on (X1 ),ar

J['I‘l :‘_, Jgn_l] ®Ozn len _(_:l_) e — Jgn_q] ®OZ" Qan _ e
(deg. 0) (deg. q)

by Jg:]x,z- Let Ep x,z = JE?,]X’ z- Then, the frobenius f induces Op, —
Op,, and satisfies

f(JZ}X,z) Cp Enx,z

for any n > 1 and for any 0 < r < p (cf. [K5], chap. I, (1.3)). By the
condition F(X,Z,p— 1) and by (1.8) (1), the sequence

" "
JE:-]H,x,z - J'Eﬂrr,x,z - J’E‘:‘-]FT,X,Z - JZ,]X,Z —0

is exact. So, for 0 < r < p, we obtain a homomorphism of complexes
fr: JE:,]X, 7 — En x,z as the composite

~ f p" ~
JE:,]X,Z = Jﬁr,x,z/Pn —— p " Enyrx,z = Enirx,z/P" 2 Enx,z.

Definition 2.5. — For 0 < r < p, we define the complex S,(r)x,z
on (X1)zar to be the “mapping fiber” of

fr—1: JE:,]X,Z — Enx,z-
Precisely, the degree ¢ part of S,(r)x,z is
(75,7 @0, 94.) @ (Op, ®p, 95"
and the boundary operator of S,(r)x,z is given by
(x,y) — (dxa (fT - 1)(1:) - dy)

(e b M0y, 9% ,y€ 0D, 8y, 0%

Definition 2.6. — We denote by H?(X,S,(r)) (¢ € Z) the g-th hyper-
cohomology of the complex S,,(r)x,z.
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To justify the notation H*(X,S,(r)), we show that in the derived
category, S,(r)x,z is independent of the choice of Z. Indeed, for two
embeddings X — Z and X < Z' as above, we have the third embedding
X — Z" = Z xz 7', where Z" is endowed with the frobenius which is
the product of the fixed frobeniuses of Z and Z'. We see that

Sn(r)x,z — Sn(r)x,z0 and  Sp(r)x,z2 — Sp(r)x,27

are quasi-isomorphisms by THEOREM (1.7).

Definition 2.7. — In the case where X and Z are affine schemes Spec(A)
and Spec(B), respectively, we denote by S,(r)a,p (where r < p) the
complex of abelian groups obtained from S, (r)x z by applying the global
section functor I'( X, -) to each component of S,,(r)x,z-

Since each component of S,(r)x, z is a quasi-coherent sheaf, the coho-
mology group H9(S,(r)a,p) in (2.7) coincides with H?(X,S,(r)) which
we denote also by HY(A, S,(1)).

We next define the symbol map. Define the product structure

Sn(r)x,z X Sn(r")x,z2 — Sn(r +7")x,2, (r+71' <p),

by (z,y)(@',y") = (z2', (1) fr ()Y + ya'),

where (z,y) (resp. (z’,y')) belongs to the degree g part (resp. ¢’ part)
of S,(r)x,z (resp. Sp(r')x,z). This product structure induces a product

HI(X,8n(r)) @HY (X,8n(r")) — HI* (X, Sp(r +1'))
(r + 7' < p) which satisfies
ab=(-1)%ba, and (ab)c = a(bc), (a € Hi,be HY).
(See [K5], chap. I, § 2.) On the other hand, we define a canonical homo-
morphism
T(X,0%,,,) — H' (X, 80(1))

as follows. Denote by ¢ the inclusion map X — Z, let N be the kernel
of i71(0%,,,) — 0%,,,, and let C be the complex

N — g1 (O;M)

(deg. 0) (deg. 1)
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which is canonically quasi-isomorphic to 0% | [~1]. Let s : €' = Sn(r)x,z
be the following homomorphism of complexes. For z € Oy let £ be
the image of z in Op Then, the degree zero part of s is

n+1?

n+1

N — Jp,; xz+—log(Z),
and the degree one part of s is

i1 (0%,.,) — (Ob, ®o,. Q} )@ O0p,

(10 s (1)

Here log is the logarithm

gy (1) - 1)z — Dl

i>1

defined by the PD structure on Jp,,,. Since log (f(z)/z?) € pOp, .,
p~!log (f(x)/z?) makes sense. This map s induces

I'(X,0%,,,) = H(X,C) — H'(X,8,(1)).

By the product structure of S, (r)x,z defined above, we obtain a homo-
morphism

I(X,0%,,,)® & [(X,0%,,,) — H'(X,5.(r))

v

r times
(r < p). Of course, this map is independant of the choice of Z.
LEMMA 2.8. — The above map factors through KM (I'(X, Ox,,,,)).

See [K5], chap. I (3.2) for the proof. The key point of the proof is that,
by the functoriality of the above map, we may assume that

1
X = Spec(Z [T, m])’ Z = SpeC(Z[T]),
and that the frobenius of Z is Z[T| — Z[T]; T ~ TP".

If X = Z = Spec(B), the image of {ai,...,a,} under the symbol map
KM(B) — H™(B,S,(r)) coincides with the class of

(ﬂ/\.../\ da,

o o ’Hf(al,...,(lr)) €Np, @QTB—nl,
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where 0¢(a4,...,a,) denotes
: i—11 flai)y das da;_;
—1)"1Z 1o S AA—=
z:zl( ) p g( af ) a) a;—1
dait1 da,
Af]( Aj4+1 )/\ Afl( [17% )

COROLLARY 2.9. — For B as above, there is a unique homomorphism
KM(B) — Qg;l/dﬂgf i {a1,...,ar} — b5(aq,...,an).

If the cardinal number of the p-basis of By is equal to (r — 1), this
homomorphism is indenpendent of the choice of the frobenius f.

The last statement follows from the fact that the symbol map and the
isomorphism QTBZI / dQTJ,E-,.;2 >~ H"(B,S,(r)) are independent of f.

3. Modification
In this section, B denotes a ring endowed with a fixed frobenius f and
a fixed family (by)aea of elements satisfying the following conditions :

3.1.1. — In B, p is a non-zero divisor.

3.1.2. — B; has a p-basis over F, and (by mod pB,), forms a part
of a p-basis of B; over F.
3.1.3. — f(bx) € b} - B® for any X € A.

Let J be an ideal of B, let A = B/J, and assume that Spec(A)
satisfies the condition (2.4). (Note that by (1.4), Z = Spec(B) satisfies
the condition (2.4) (i).)

In this section, we shall define complexes S, (7)4,p (with 0 < r < p),
and on certain further assumptions (3.2.1)—(3.2.3), symbol maps

KM(A[r3'xea) — H"(S},(r)a,B),

where 7, denotes the image of by in A for each A. There will be a map
Sn(r)a,p — S)(r)a,B and a commutative diagram

EM(A) ————  H'(S(r)

| J

KM(Alnxea) ——— H"(S)(r)aB)-
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In the next section, we shall apply this construction to the case where
p € myt - -mwé A* for some eyg,...,es > 1. The symbol map

KM (A[3]) = H'(S,(r)a,5)

of this section will be important, for the cohomology of § 2 has no sense
for schemes such as Spec(A[7]) on which p is invertible.

Contrary to the case of S,(7)a,B, I can not relate S} (r)a,p to the
crystalline cohomology theory, and I do not know if the cohomology
H*(S'(r))a,p and the above symbol map depend functorially only on
A and the ideals (m1),..., (7).

Let B' = B[b;'; X € A], and A’ = A[r'; A € A]. We denote (B'),

as By, Let
93,) =P©s,)
g€z

be the By,-subalgebra of (1}, generated by Qp, and dby /by (with X € A).
Then (%) is a subcomplex of QF, .

Let E;, 4 p be the complex Dg, (J,) ®p, (2%,)" (Jn denotes JB, =
J/p"J) with the boundary operator

Dp,(Jn) ®p, (Q%,) — Db, (Ja) ®p, (U5)
a®@w+— a®@dw+ da A w.
For i € Z, let 7% be the i-th divided power of the PD ideal

Jn =Ker(Dp, (Jn) = An).
We denote by (JK]A’ p)' the subcomplex of E;, 4 p whose degree g part
is Jir=a ®p, (2%,). We define the map

fr: (Ja[:]A,B), — Enap

for 0 < r < p by the same argument as in §2, and define the complex

S}, (r)a,s as the “mapping fiber” of f, —1: (JE:]A,B)’ — E;, 4 p- We define
the product structure of S;,(r)4,p by the same way as in § 2.

Now we make the following assumptions (3.2.1)-(3.2.3).
3.2.1. — The maps
A @ 7 (Al)z : (.’1:, (m)‘)) —_ - Hﬂ.;’nx :
A

B*oI® — (B)*; (z,(m))) — =[] 65
A
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are bijective. Here Z(*) denotes the direct sum of copies of Z with the
index set A.

3.2.2. — The elements by and the ideal J are contained in the Jacobson
radical of B.

3.2.3. — For any r < 3 and for any injection j : {1,...,7} — A,
Tj(1),- -+ Tj(r) form an A-regular sequence.

On these assumptions, we define the homomorphism
h:(4)* — HI(S;I(I)A,B)

as follows. For a € (A’)*, take b € (B’)* having the image a in (A’)?, and
let h(a) € H'(S/(1)4,5) be the class of

(1e % 11—) log(igl)) € Dp,(Jx) ®5, (5.) ® D, (Jn).

The fact that h(a) does not depend on the choice of b is proved as follows.
Since Ker(B* — A®) = Ker((B')* — (4')%), it is sufficient to show
that the class of (1 ® db/b,p~!log(f(b)/bP)) in HY(S. (1), B) is zero if
b € Ker(B* — A®). But its class in H'(S,(1)4,p) is already zero as
in § 2.

For r < p, the product structure of S),(r)4,p defines a map

(A)°®-- @A) — H"(S,(r)a,B) ;
|
r times

a1 Q- Qar — h(ay)...h(a,).

PROPOSITION 3.3. — The above map factors through KM (A').

To prove this, we use :

LEMMA 3.4. — Let z,y € (A')* and assume © +y = 1. Then there are
elements & and § of (B')® having the images x and y in (A')%, respectively,
such that T +§ = 1.

The proof is straightforward by using the assumptions (3.2.1)—(3.2.3),
and so we omit it.
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By the commutative diagram

KM(B') - (BI):I:®”.®(BI)Z N (Al)z®”_®(Al).’l:

| | |

H"(Sn(r)prpr) «——— H"(S,(r)B,s) —— H"(S)(r)a,B)

and by (3.4), it is sufficient for the proof of (3.3) to show the injectivity
of H"(S}(r),8) = H"(S,(r)p: ). This is reduced to :

LEMMA 3.5. — The map (Q%n)’/d(ﬂ%_nl)’ — 0%, /dQ%" is injective
for any q. " "

I have only the following long proof. Take a p-basis (by)res of By
over Z/p™Z containing (by)xea, let S = Z[Tx\]rex and let S, — By, be the
map T — by (A € £). Define S}, = 9, [T} |rea and let (2%,)' C Q% be
the S,-subalgebra generated by Q?Sn and dT)/Tx, A € A. Then we have :

3.5.1. — The map (Q%ﬂ)’/d(ﬂ%:l)' — Q% /d0% " is injective.

The proof of (3.5.1) is as follows. Let M*® be the Z/p™Z-subalgebra
of Q% generated by Q3. 717,1,p_, and dT5/Tx (X € A). For each
function s : A — Z with finite support, let, for ¢ € Z,

Mi= ([ T5™) - M c g, .
AEA "

Then M; are subcomplexes of 2%, and €%, is the direct sum of these

n

subcomplexe. This proves (3.5.1), for (25,) = D, M;.
Now we consider the homomorphisms
n—1

Wa(81) — Sny Wa(B1) — By (o, ,2n_1) — Y p &7

)
i=0

n—1i

where Z; is any lifting of ;. Then by [K2], § 1, we have an isomorphism
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The action of Wy, (S1) (resp. Wy, (B1)) commutes with d on %, (resp. 0% ),
and we obtain isomorphisms of complexes

(3.5.2) Wa(B1) @y, (s, (28,) = (05,)';
(3.5.3) Whn(B1) Bw, (1) 5, = Q.

Furthermore, W,(S1) — W,(B;) is flat by [K2], Lemma 2, and by the
flatness of S; — B (1.5). Hence by (3.5.2) and (3.5.3), (3.5) is reduced
to (3.5.1).

4. The isomorphism theorem

In this section, we prove THEOREM (0.3) (1) and THEOREM (0.6).

4.1. — In (4.1)—(4.11), we work in the following situation. Let B be a
noetherian ring endowed with a frobenius f, £ an element of B, and let
g be an integer such that 0 < ¢ < p — 1. Assume that p > 2 and the
following (4.1.1)—(4.1.3) are satisfied.

4.1.1. — B, has a finite p-basis over F, consisting just of ¢ elements.

4.1.2. — In B, p and £ — 1 are contained in the Jacobson radical of B
and form a B-regular sequence.

4.1.3. — The map f, —1: Q} — Qf is surjective.

A typical example is B = Z,[[T1,...,Tql], f(T;) = TF (1 <i < g), and
E=14+T" ...Tqi" for some 41,...,%4 > 1.

Fix n > 1, and let ®(T) € Z[T] be the cyclotomic polynomial
(T?" — 1)(T*" ™" = 1)~1. We define J = ®(¢)B and A = B/J. By the
assumption (4.1.2), ®(¢) is a non-zero-divisor of B and p is a non-zero-
divisor in A. So by (2.1), the groups H*(A,S,(r)) (0 < r < p) are

defined. (In the case of the above example, A is the regular local ring
Z,[¢)[[ Ty, .., T]) /(T{* ... Tq* — (¢ — 1)), where ¢ is a primitive p™-th
root of 1).

In this section, in (4.4)—(4.11) we prove the following THEOREM (4.3)
which gives a presentation of H9t1(A,S, (¢ + 1)), and then in the latter
half, we apply (4.3) to the proofs of (0.3) (1), (0.6) and a related
result (4.14). These results show

H*(A,80(g+ 1)) = H (A, 8] (¢ + 1)a,B) = Z/p"Z
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in the case of the above example.

4.2. — We fix some notations. We fix an integer ¢ such that 1 <e¢<p
and define a, 8,h € B by

< _1 -1 n— 3 < _1 -1 Wl 1
a=z( 3 ((p 1_1)1, IB=Z%(CP _1)’
i=1 i=1
h=pBa"t.
Note that o and 8 are non-zero-divisors of B by (4.1.2),
ae(E -1)-B° Be(E -1)-B7,

and hence h is a generator of J.

For the proof of THEOREM (0.8), it is sufficient to consider the case
¢ =1 (then h = ®(£)), but for the proof of THEOREM (0.4) (1), we will
need the case 2 < c < p.

THEOREM 4.3. — Let the assumptions and the notations be as above.
Then the canonical map Qf — HY(A,Sy(g + 1)) induces an isomor-
phism

HT (A, Sa(g+1)) 2 0% /(A4 + {fy(w) — hw; we Q% }).

The outline of the proof of (4.3) is as follows. The key point will be to
define the “inverse map”

H1(4,8,(g+1)) — Qan/(qule + {f,(w) - hw; we Qg }).

For this, we shall define a PD structure on the principal ideal (h)
of B, /B°B,. This will give

Dp,(Jn) — Bn/B°By
(Jr, =det JBn = J/p"J) and hence
Dp,(Jn) ®p N5, — Ba/6°Br®g Qf

where the last map induces the above “inverse map”.
The following lemma will be useful.
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LEMMA 4.4.
(1) h? = ph?~1 + 8P~ mod pB°B.
(2) f(a) =B+ p™y for some v € B, and for this v we have

f(R)=p+p°! —p"BP%y mod (pB°B +p"*'B).

(3) f(B) € BB + p"*'B.

Proof. — We use the congruence in Z(,)[T]
‘L (=1)1 —1)i— 1
Z ( z.) =p- Z ) )1,
i=1

+ (Xc: (——l.)i_—l(T - 1)i)p mod p(T — 1)°*'Z,)[T].

1

This congruence is proved modulo p and modulo ((T — 1)¢*!) easily, so it
holds modulo (p) N ((T — 1)¢+!) = (p(T — 1)°+1). By putting T = £P" "
we have

(4.5.1) B=pa+a? mod pa‘tlB.

By multiplying (4.5.1) by ?3~! and a1, respectively, we obtain (1) and
(4.5.2) h=p+a”P! mod pa‘B.

By applying the frobenius f to (4.5.2), we have

(4.5.3) f(h)=p+ f(e)’ ! mod pf(a)°B

The first assertion in (2) is verified easily and the second follows from the
first and from (4.5.3). Finally, multiplying (4.5.3) by f(a) and by using
the first assertion in (2), we obtain (3).

LEMMA 4.6. — Let m > 1.
(1) The ideal (h) of By, /B°B,, has a unique PD structure such that

hi
il
pi+1—P

—Z_T—hp_l ’lf 1 2 D.

if 0<i<p,
plil =
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(2) If m <n+1, f(B°B) C 8°B + p™B, and the induced homomor-
phism f : By /B°By — By /BB, preserves the PD structure in (1).

Proof. — Let S = B/B°B. Since p is a non-zero-divisor in S and
since h? = ph?~! in S by (4.4) (1), we see that for any z € hS and
for any 7 > 1, there is a unique element y of AS such that z* = 4!y. The
map

z mod p™S +—— gy mod p™S

defines a PD structure on the ideal hS,, of S,, having the property in (1).
Now let m < n+1. Then, the first assertion in (2) follows from (4.4) (3). To
show that the induced frobenius f : S,, — S, preserves the PD structure,
it suffices to prove f(hl) = f(h)! for any i. The case i < p is clear so
assume 7 > p. By (4.4)(2), we have in S,

f(h) =p+p"z for some x € Sp,.

Hence we have in S,,,

. 1+1 P z+1 P )
fF(rH) = ( h?~ ) (p+p"x)" ™" =pl,
F(R) = (p+pra)ld = pl (1 +p" tz)t = pll.
4.7. — Now we analyse HIt1(A,S, (¢ + 1)). By using the complex
Sn(q)a,B, we identify HI"1(A, S, (¢ + 1)) with the cokernel of
471)  (Jnog 9% )@ (Dp,(Jn) ®p 957)

(fq+l_1¢d) DB"(Jn) ®Bn Qan

where J,, = Ker(Dp, (J,) — Ay). Let S = B/3°B. The homomorphisms
DBn+1(Jn+l) — Spt1, Dp,(Jn) — Sy

defined by the PD structures in (4.6) preserve the frobenius, and hence
induce a homomorphism from the diagram (4.7.1) to the diagram

(472) S, ®p 0% ®5, @, OF ———— S, @, 0%

n

where f; : hS, — S, is the map

hz — (1=p" '8P 2y) f(z), (z € 5y),
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with 7 as in (4.4) (2). Thus we obtained a homomorphism

C(47.3) H™'(A,8n(¢+1) —
Q4 /(6% +dG + {(1—p '8P 2y) fo(w) — hw; w € Qf }).

On the other hand, we have
(4.7.4) B} C {fy(w) —hw; weQf },

which is proved as follows. Let w € Q} and write w = fy(w') — w’'
by (4.1.3). Then fw = fy(aw') —haw' (see the first assertion of (4.4) (2)).
Thus the homomorphism (4.7.3) defines

(47.5) HT(A,8p(q+1) — 0%, /(05" +{fy(w) —hw;w € Q% }).
The composite

0% /daLt = HPH(A,S,(g + 1))

AT, 0 /(405" + {fyw) - s we b, })

coincides with the natural projection, and hence for the proof of (4.3),
it remains to show that “can.” annihilates {f;(w) — hw; w € Q% } and
that “can.” is surjective. The former fact will be proved in (4.10), and the
latter will be proved in (4.11).

We need the following lemmas. Note that since € —1 ¢ J, we have
an element log(¢P") € J,.

LEMMA 4.8.

(1) For sufficiently large N > 1, the image of M ®p, Q% in
HI*Y (A, 8, (q+1)) is zero.

(2) The image of Dp,(J,)(log(¢P" ) ®g, N5, fori > 2, and the
images of log(&P") ®0%, and BRQY in H™(A,S,(q + 1)) are zero.

(3) In HI™1(A,S1(q + 1)), the image of .71[2] ®p, 0%, is zero.

Proof. — We see easily that fi(J 7[LN]) = 0 for sufficiently large N.
For such N and for ¢ € JI™ and w ¢ Q% , the class of z ® w in
H9*1(A,S,(q + 1)) coincides with that of

feri(z @w) = fi(z) @ fy(w) = 0.
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In the same way, we can deduce (3) from f;(J [2]) 0.

Now we prove (2). As is easily seen, we have in Dp _ (Jns1),
f(log(€7")) = plog(¢”") and hence f((log(¢”")) = p'(log(¢”"))lI. For
« € Dp,(J,) and w € Q} , and for 7 > 1, the class of z - (log(¢P" ) @w
coincides with that of

farr (z - (log(e?" ) @w) = p" £(z) (log(¢”")) ® £, (w).

In the case ¢ > 2, by iterating this argument, we see that the class
of z - (log(e”" )1 @w is Zero. Next, for w € Qf , by taking w’' € Q}
such that w = fy(v') — w' (4.1.3), we have

log(¢P") @w = fo41(log(€7") ®@w') — log(6”") @w’

Finally, to prove the assertion for B ® Qf in (2), it suffices to show for
any N > 1, the element 3 —log(¢?") of Dp, (J,,) is contained in the ideal

of Dp, (J,) generated by 71 and by log(¢?™)ld, > 2. But this fact
follows from the relation between the logarithm and the exponential

N-1 A
517“ 1= Z (log(gp"))“] (mod jf[LN])~

i=1

LEMMA 4.9.
The image of (fi(h) —1) ® O} is zero in HT'(A,Sp(q +1)).

Proof. — Let = be an element of J,4o such that pr = #P~! whose
existence follows from (4.4) (1) and from h? = p!hl?l. Then, by (4.4) (2)
we have

(4.9.1) fi(h) =1 =%+ By forsome yE€ B,,

where Z denotes the image of z in Dg_(J,). By (4.8) (2), it suffices to
prove that the image of Z ® O} in HI9"(A,S,(q + 1)) is zero. Since
the class of Z®@ w (w € QF ) c01nc1des with that of f1(Z) ® f(w), it
suffices to prove that for any N > 1, f1(&) is contained in the ideal
of Dg (Jy) generated by T and (log(&P" )l with ¢ > 2. To see this,
since Dp, ,(Jnt2)/ T by +2 is a flat Z/p"t2Z-module, it is sufficient to show
that f(B~!) is contained in the ideal of Dp, ,,(Jn+2) generated by J ,[g_]z,
and p?(log(¢7"))[! with ¢ > 2. However this is deduced easily from the
facts that 3 is contained in the ideal generated by J 7[11112 and (log(&?" )1

with i > 1 and that f(log(¢7")) = plog(¢P”) in Dp, ., (Jnt1)-
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4.10. — Now we prove that for any w € QF , the class of
1@ (fo(w) —hw) in H(A4,8,(g+1))

is zero. The class of h @ w coincides with that of f;11(h ® w) =
fi(h) ® fq(w), and hence we are reduced to (4.9).

4.11. — Finally we prove that the canonical map
0%, — HO(4,5,(g+1))
is surjective. This is reduced to the surjectivity of
Q3 — H(A S (g +1)),

and to (4.8) (3).

This completes the proof of THEOREM (4.3).

4.12. — From now on, and until the end of this section, A denotes a
regular local ring satisfying the conditions (0.2.1)—(0.2.3). Let a, R = A/a,
m1,...,Ts and 7 be as in § 0. We assume further that A is complete with
respect to the a-adic topology.

To apply the results in (4.1)—(4.11), we construct the ring B by using :

LEMMA 4.13. — Let S be a ring over Fp, having a p-basis over F,. Then
there exists a ring P in which p is a non-zero-divisor such that P/pP = S
and P = lim P/p"P.

n

Proof. — The assertion is clear in the case S = F,[Tx]xca. The general

case follows from this case by [K2], Lemma 1.

Let A and R be as above and let P be a ring having the properties
in (4.13) with S = R. Since P, is formally smooth over Z/p"Z for

any n > 1 (1.4), we can lift the isomofphism P/pP = A/a (resp. the

absolute frobenius P/pP — P/pP; z +— zP) to a homomorphism
P — A (resp. f : P — P). By fixing such homomorphisms, let
B = P|[T1,...,Ts]], let B — A be the surjective homomorphism T} — m;,
and extend f to B — B by T; — TP (1 < i < s). Then, A, B, f
and T; satisfy all the assumptions in § 3 with A = {1,...,s} and by = T).
(For the fact Spec(A) satisfies (2.4), apply (2.1).) Let J = Ker(B — A),
Jyp=JB, (n>1).
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From now on, we assume that A contains a primitive p"-th root ¢ of 1.
Asin §0, let

H = Coker(F — 1: W,,Q% — W,Q%/dW, Q% ")
= Coker(f, —1:Qp — Qp /dO}),

where the last equality follows from the identification (0.7.2). We prove :

THEOREM 4.14. — Let A and B be as above and assume p > 1+ s+ 1.
(1) The canonical map

H™ A S, (r+5+1)) —» H S (r+s+1)aB)

is an isomorphism.

(2) The map
H=Qp /(A5 " + (fr —1)(9p,)) — H™*(S(r + s+ 1)a,B)
n dTy dT;
w > the class of log(§P )Q WA —— A--- A
T, T,

is an isomomorphism, where § denotes a lifting of ¢ to B.

As is easily seen, log(¢?") € Dp, (J,,) is independent of the choice of &.
Since f1(log(£?")) = log(¢P"), the map in (4.14) (2) is well defined.

LEMMA 4.15. — Let & be a lifting of ¢ to B. Then, the couple (B,§)
satisfies the assumptions (4.1.1)-(4.1.3) with ¢ =7 + s.

Proof. — The condition (4.1.1) is clear and (4.1.2) follows from
(4.16) (3) below. We consider (4.1.3). By using Fy(dT;) = TP~ 'dT;,
we see easily that for any w € Qg;s, the sequence {f, (w)}i>0 con-

verges to zero for the (T1,...,Ts)-adic topology on Qgts where f7, de-
notes the i-fold ietration of f4,. The sum w’ = =Y, fi, ,(w) satisfies

W= frys(w') — .
LEMMA 4.16. — Let p = uni'---7% (u € A%, e; > 1) be the prime
factorization of p.

(1) In A, ¢ — 1 has a factorization of the form Uﬂ'fll ~-7r§; such that
v € A® and e; = p"~(p — 1)€ for any i.

(2) The ideal J, = J/pJ of By is generated by TY* ---T¢* mod p.

(3) For any lifting € of ¢ to B, the ideal (£ — 1) of By is generated by
Tle/1 ~-ng mod p.
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Proof. — First, (1) follows from (¢ — 1)?" =D ¢ p. (Z[¢])*. Take a
lifting @ (resp. ¥) of u (resp. v) to B. Then p — aT7'...T¢= € J. Since
the family (T1,...,Ts,p — @Iy ... T¢) is a part of a minimal system of
generators of the maximal ideal of B, p— 477" ...T¢* is a prime element.
By dim(B) = dim(A4) + 1, J is generated by this prime element. Finally,
E-1= T)Tfll ~~-T:,’ mod J, and by (2), this proves (3).

LEMMA 4.17. — Let £ € B be a lifting of ( to B and let
®(T) = (T - )T -1t ez[T)
Then, ®(£) generates J.
Proof. — It suffices to prove that ®({) mod pJ generates J/pJ C Bj.
But this follows from
@ -1 -1) T = -1)7"" ) mod pB

and from (4.16) (2) and (3).

By (4.15) and (4.17), we can apply all the results in (4.1)—(4.11) to the
present couple (A, B) (with ¢ = r + s).

In the following, we fix a lifting £ of ¢ to B such that £ — 1 belongs to
the ideal (T1,...,Ts) of B. Such choice of £ is possible for we can take for
example, 1 + 'ETle'1 ...Tf/’ as £. Fix an integer ¢ such that 1 < ¢ < p, and
let a,3,h € B be as in (4.2).

Then, by using the fact that the element 7 in (4.4) (2) belongs to
T, - -+ TsB, which follows easily from £ — 1 € (T3,...,T;), we see :

1

LEMMA 4.18.
If 2 < ¢ < p, all the arguments and results in (4.7)-(4.11) hold when
we replace there

H™(A,Sn(g+1)) by H™(Sy(a+1as), O, by (23),
H™(A,81(q+1)) by H™'(S{(g+1)a,p) and Qf by (05)
except that we replace (4.7.4) and its proof by
BTy - Ts(Q% ) C {fy(w) —hw; we (2} )"}

(this inclusion follows from the original (4.7.4)), we do not change the
part of (4.8) (2) concerning log(¢”") ® 0% and B ® Q% , and we re-
place (4.9.1) by

fi(h) = 1=+ BTy ---Tsy for some y € B,.

Consequently, we have :
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PROPOSITION 4.19. — Let 2 < ¢ < p. Then there is an isomorphism
H™st1 (S (r+ s+ 1)a,B)
= (Q5) /(A 4 {frrs(w) = hws w € (Q5°)'}).
By using the relation
B (fris(w) — hw) = frys(@™'w) —aw (w € (%))

and dfB = 0, this isomorphisms (4.3) and (4.19) composed with

o

= — ~ — —
QTB{;S =, ﬂ IQrB-ts, (Qg:sy N ,8 I(Q‘I‘B—ts)/; W —> ,8 l,w

gives the following commutative diagram.

H P (A, S(r+5+1) ——— A5/ M

o |

Hr+s+1 (S;l(r + s+ l)A,B) _—T ﬂ_l(QE:S)'/Ml
with
M = BTN T+ (frys — D@ OE),
M =BG + (fris — 1) (@7 HQ5)) .
LEMMA 4.21. — Let
i Qp — BTG/ (B AOG T + (frps — D)(07 Q)

be the homomorphism w — wA dTy /Ty A--- A dTs /T, (note that we have
(Ty---Ts)™* C B71B). Then :
(1) The map ¢ factors through H = Q}"gn/(dﬂgl + (fr = 1D(95,))-
(2) The induced maps

H — 750 /(871 QG + (fres = D(@TO5))
H — B Q57°) /(871 d(Q5°7Y) + (frrs = D@ (QF))
are surjective.
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(3) The composite
H 5 57N /(87 A + (e = Do (R5))

——»HT+S+1 (S’ (r+s+1)4 B)
(4.20)

coincides with the homomorphism in (4.14) (2).

Proof. — The assertion (1) is clear. Since § — log(¢?") is contained
in the ideal of Dp, (J,) generated by J' and (log(¢?" )l (i > 2) for
any N, (3) follows from (4.8) (2) modified as indicated in (4.18). Finally,
to prove (2), it suffice to show that the induced maps :

;"1 — ﬁﬂlﬂgﬁs/(ﬂ_ldﬂgts_l + (fr+s - 1)(0‘_101;;8))7

b BB /(BT AQETTY + (s = D@ (QF°))),

Pt P
are surjective. Since 8 € T} * ---T,"* - BY in By, we are reduced to the
case m = 1 of the following (4.22).

LEMMA 4.22. — Fizm > 1. Fort € N and j = (j1,-..,Js) € Z°, let F}
be the subgroup (IT;-, T; )(,,)" of X, . Then we have :

(1) If j > 0 and pt j; for some i (1 < 1 < s), and if j' denotes
(Js---»Ji-1,Ji — 1, Jit1, -+, Js) for such i,

+s r+s—1 +
FiTe = dF]™ 7" + Fj™.

(2) If j >0 and if p | §i for all 1 (i < i < s), and if ' denotes

(p_ljh" 'ap_ljs)) then
Fjr+s — dF]r+s—1 +fr+s(F;':+s)-

(3) Fyt® = dFJ™*~! + F™t* where 0 and —1 denotes (0,...,0) and
(=1,...,=1), respectively.

(4) Fr1* = Q3 and FIT° C (fr4s — DFTTE.

The proofs of (1), (2), (3) are straightforwards, and assertion (4) follows
from (4.1.3).

Find that this (4.22) also proves the surjectivity of
O, — U/ (AU + (frars — D).
Now we consider the residue homomorphism.
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LEMMA 4.23. — The residue homomorphism
Res: Q3¢ — Of,
in § 0 is equal to the map
O = 5, @p W, — O
7 T wen — (Res [Tf’lﬁ,Tgs])”I

(w e QanéPn, Jis--5Js > 0, n € Qp ) where the notation is as in [H],

chap. II1, §9. By passing to the quotignts, it induces a map

Qg /(AT + (fras = DOGL)
— Qp /(A5 + (fr —1)Qp,) = H.

The proof is straightforward and we omit it.

These results show that all arrows in
H — B0t (87 AR5 + (s — Dl 25))
— BTHOE) /(871 (5T + (fras = D@ H( Q)
— Q0 (A + (fogs = D)) = H

are bijective. By (4.20) and (4.21) (3), this proves THEOREM (4.14).

Finally we prove THEOREM (0.3) (1) and THEOREM (0.6). The only
remained problem is that the composite maps

KMo (ALR]) — B (S, 54 Dap) — S H

H™H 4 (4,8, (r + s+ 1)) — H™ TS, (r+ 5+ 1) 45) (4;”14)» H
are independent of the choices of generators 7; of (7;) (1 < i < s) and

of the ring homomorphism P — A. If (7})1<i<s and P’ — A are other
choices, there exists an isomorphism

¢: P([Ty,...,T]] — P'[[T4,...,T.]]
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such that ¢(P) C P’, such that ¢ maps the ideal (7;) onto (T;) for each ¢,
and such that the dlagram

P(Ty,...,T,]] —— P[Ti,...,T.]

N\

commutes. (Use the formally smooth property.) By this fact, we are
reduced to proving the commutativity of the diagram

AT T/ Ty~ P

by WJ by pjv
Vol —— b

The commutativity of the left square follows from the properties of
the residue homomorphism in [H], chap. III, §9. The commutativity
of the right triangle follows from the functoriality of the identification
QTPn/dQ}:l = W, Q.

5. Cohomological symbols
In this section we prove THEOREM (0.3)(2).

5.1. — Let A be a regular local ring satisfying the conditions (0.2.1),
(0.2.2). Fix n > 1. The exact sequence of Kummer

0 — 2/p"Z(1) — G £ G — 0
on Spec(A[;l,;] )et induces an isomorphism

b ALY/ (A[E])7)" = HY (Spec(A[2)),,,2/5"2(1)).
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The cohomological symbol map is defined by
he : K2 (A[L)) /oK (A[3]) — HO (Spec(A[L]),,, 2/p"2(a)

{ai,...,aq} = h1(a1) U--- U hy(ag).
(U is the cup product.) On the other hand, for ¢ > 1, let

Ho (R) =qer Coker (F —1: W, 2" — W02 [AW,0%72).
Let i; be the composite map
H,.(R) = H' (Spec(R)et, Z/p")
>~ ft (Spec( Jet,Z/p"Z) — H* (Spec(A[ Det, Z/p" Z)

where the first isomorphism comes from the exact sequence of Artin—
Schreier—Witt

0 — Z/p"Z — W,(0) 25 Wo(O) — 0

on Spec(R)et, and the second is by the henselian property of (4, a).

LEMMA 5.2. — For q > 1, there exists a unique homomorphism
ig : H%(R) — HY (spec( (1), 2/9"2(q - 1))
such that
ig(w - dlog(br)- -+ dlog(bg—1)) = 1(w) U hgey ({b1,--,bg—1})
for any w € W,,(R), by,...,bs_1 € R, and for any lifting b; of b; to A%.

Proof. — The presentation of W, Q% given in [K1], § 2.2, Corollary 3
shows that it is sufficient to prove the following :

Letbe R®, b any lifting of b to A® and let w = (b,0,...,0) € W,(R).
Then i1 (w) U hy(b) =0

Let R, (resp. Ay,) be the cyclic etale extension of R (resp. A)
corresponding to the image of w in H'(Spec(R)et,Z/p"Z). Consider the
diagram

R*/N((Ry)®) ————— A%/N((Ay)?)
H?(Spec(A| % Jet, Z/p™(1))
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where the left and right vertical maps are respectively
z+— class(wdlog(z)), =+ i1(w)Uhi(z),

and where N denotes the norm maps. The left vertical arrow is injective
since it is the composite of

R®/N((Rw)®) = H*(G, (Ry)") < pn H?(Spec(R)et, Gm)
= H' (Spec(R)ei, Gm/(Gm)"") = Hy. (R)
(G = Gal(Ry/R), p»( ) means Ker(p™)) where the last isomorphism
follows from the exact sequence of etale sheaves
0— Gm/(Gm)pn - Wnﬂépec(R)

F-1 e
WnQépec(R)/dV IQépec(R) —0

([CSS], 1.4) and from d = F"~1dV"~!. By the diagram, this proves
i1 (w) U hy () = 0.

COROLLARY 5.3. — Let m1,...,m; and v be as in (0.2). Then there
exists a homomorphism

ia: H=H(R)— H™H (Spec(A[%])et,Z/p”Z(r + s))
such that
’LA(’I.Uleg(bl) e dlog(bT)) = il(w)h'r‘-l-s ({Bla v )Era M1y ,ﬂ's})

for w € W,(R), by,...,b. € R® and for any liftings b; of b;. This map
depends by sign on the ordering on the set of prime ideals {(m1),...,(7s)},
but is independent of the choices of generators m; of (m;).

Proof. — This follows from (5.2) and the fact W,Q% =0 for ¢ > r.

This homomorphism % 4 is bijective in the case A is a discrete valuation
ring (see [K3]). We conjecture that it is bijective in general.

In the following, A is as in (0.2.1)—(0.2.3). We fix prime elements
T1,...,Ts of Ain (0.2.2) and a primitive p"-th root ¢ of 1. We identify
the twists Z/p"Z(*) with Z/p"Z via Z/p"Z = Z/p"Z(1); 1 — (.

ToME 119 — 1991 — ~° 4



EXPLICIT RECIPROCITY LAW 433

LEMMA 5.4. — For w € W,(R), let y,, be any element ofA[%]z such
that )
yo mod (A[L]*)" =R odi(w).

Then for ui,...,u, € A®, the image of {Yw, U1, .., Up, T1,...,Ts} N

Hrst+l (SpeC(A[%])et, Z/p"L(r + s+ 1))

under hyysy1 and that under —iy - T4 coincide.

Proof. — 1t is sufficient to show that —74({yw,v1,..., U, T1,...,7s})
coincides with the class of wdlog(a)...dlog(@,) in H where @; =
u; mod a. Take B = P[T1,...,T5]] —» A; T, » m (1 > @ > s)
and a lifting ¢ E, B of ¢ as before. Write w = (ag,...,a,—1) and
o = Z? Olp'a " € P,, where & is a lifting of a; to P. Then, the
problem is reduced to showing that the image of y,, under the symbol
map

f(Gw)\ dfw 1
class( log( 7 ) - ) € H'(S,(1)4,8)
coincides with the class of

—(log(¢”")@,0) € D, (J») ® D, (Jn) @5 OV, .

The image of w in H'(Spec(R)e;, Z/p"Z) defines cyclic etale exten-
sions Ry, Ay, A, etc. of R, A, A’ = A[%], etc. respectively, and an
injection x : G — Z/p"Z of G = Gal(R,/R) = Gal(A,/A). There exists

€ (A!,)* such that z?" = y,,, and by the definition of the correspon-
dence w 2 y,,, = satisfies a(w)(x) L= ¢x(9) for ¢ € G. Let  be a lifting
of z to (B),)®. Then z = &P" (§,,)~! belong to Ker((B.,)* — (A.,)*). We
have in (Dg, (J))w :

g ,f,' pn n
(541)  o(log()) ~lo(2) = log((Z2)") = x(o)0(”"),
_ 1 f(fw)
(5.4.2)  fi(log(2)) — log(z) = > log(%—).
On the other hand, there exists v € W, (R,,) such that F(v) —v = w and
o(v) —v = x(0) for o € G. Define 9 € P, just as in the definition of @.

Then f(9)—9 = w and o () — 9 = x(o) for o € G. By (5.4.1), we see that
the element

C =def log(gpn )ﬁ - log(z) € Ker((DB" (Jn)'w - (An)w)
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is G-invariant and hence belongs to Ker(Dg, (J,) — A,). Furthermore

dC = —% = %
2 G
fi(e) — ¢ = log(6”" )@ + %log(f%w))

by (5.4.2). This shows that the classes of

(1/plog(f(§w)/#%), dfuw/iw and — (log(€%")w,0)

coincide in H(S,,(1)a,5). [

In the case of a discrete valuation ring, the elements

{ywaula"'au'r‘aﬂlrna"rs}

in (5.4) generates KM .| (K)/p"KM . (K) as is seen from the bijectiv-
ities of h,ys+1 and i4. So by (5.4), we have already completed the proof
of COROLLARY (0.4).

In the general case, THEOREM (0.3) (2) follows from (5.4) and the
following (5.5), by a standard norm argument for the reduction to the
infinite residue field case.

LEMMA 5.5. — If the residue field of A is an infinite field, the elements
{Yw, 1,y Up,T1,...,Ts} in (5.4) generate

K,,{l;f_s_}_] (A [%] )/an%-s+l (A[%])

For the proof of (5.5), we need :

LEMMA 5.6. — Let S be a regular local ring over F,, with infinite residue
field, and assume that S has a finite p-basis consisting of q elements. Then
KM(8)/pKM(S) = (0) fg<i<p.

Proof. — A proof is as follows. O. GABBER proved that the homomor-
phism

KM (S)/pKM(S) — Q% ; {zl,...,xi}»—>gxﬂ/\---/\d$i
1

T

is injective for any i. The lemma follows since Q% = (0) for i > ¢. (In the
case S is a field, the proof of this injectivity due to S. BLOCH is given
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in [BK], §2.) The proof of O. GABBER is not yet available to the author,
so we give another proof of (5.6) by using Quillen’s K-group K Q (S).

We may assume that S contains an infinite field. Indeed, if S denotes
the local ring of |J,5, S[T? '] at the prime ideal generated by the maximal

ideal of S, S satisfies the assumption of (5_.6) with the same ¢, and
the map KM(S)/pK}M(S) — KM(5)/pK} () is injective as is seen by

the specialization argument. Furthermore, S contains the infinite field
U, ().

Now we use the fact that for any local ring S containing an infinite field,
there is a homomorphism KiQ (S) — KM(S) such that the composite
KM(S) — KZ2(S) — KM(S) is the multiplication by (i — 1)!. This
was proved by SUSLIN [S1], [S2] in the case where S is a field, and
as in SOULE [So] and in GUIN [Gu], the result of Suslin is extended
to such local rings. By this fact, it is sufficient to show that the map
KM(S)/pKM(S) — K2(S)/pKZ2(S) is zero for § in (5.6) and for i > g.

Let k be the residue field of S and let [k : kP] = p' (so t < q).
By (5.7) below, it is sufficient to prove that for ¢ > ¢ and for elements
ay,...,a; of S* such that the images of a;1,...,a; in k form a p-basis
of k and such that a;+1,...,aq form a system of regular parameters of .,
the image of {a1,...,a;} in KiQ(S)/pKiQ(S) is zero. For 0 < j < g, let
SU) = S[ay’?,...,a}/?]. Then, §@ = S'/7 (cf. (5.7) (2)). By using the
norm homomorphism

NSI/p/S = NS(U/S(O) O« ONS(Q)/S(q—n : K?(Sl/p) E— KE(S),
we have in K2(S)

{al,...,ai} = Nsl/p/s({ai/p,...,a;/p,aqﬂ,...,ai})

= pi—qNsl/P/S({a'i/p’ e ’a’zl'/p}) € pKlQ(S) |:|

In the above proof, we used :

LEMMA 5.7. — Let S be a regular local ring of characteristic p having
a finite p-basis over F, consisting of q elements. Let mg be the mazimal
ideal of S, k = S/mg, and let t be the integer such that [k : kP] = p’.
Then :

(1) ¢ =dim(S) +¢.

(2) If ay,...,a: are elements of S whose images in k form a p-basis
of k over Fy, and if (a;)i+1<i<q 5 a regular system of parameters of S,
then ay,...,aq form a p-basis of S over F,.
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3) Ké”(S)/pKé”(S) is generated by elements of the form {a,...,a,}
such that a1, ...,aq satisfy the hypothesis of (2).

We omit the proofs of (1) and (2). In KM (k)/pKM (k) (i > 0), a symbol
{z1,...,2;} (with z1,...,2; € k*) vanishes unless

[k(xi/p,...,w!/p):k] =p

(2

([K1], §1, Lemma 7). By this and by the fact that the kernel of the
surjection KM,(S) — KM, (k) is generated by elements of the form
{1+z,91,..., %} (z € ms, y1,...,y: € S%), we see that KM (S)/pK}M(S)
is generated by elements of the form {a1,...,a,} such that a; mod mg
(1 <i<t)form ap-basisof k and a; —1 € mg for t+1 < ¢ < q. It is easy
to express an element of this form as the sum of elements of the form in
the hypothesis of (2).

Proof of (5.5). — We denote KﬁsH(A[%]) by V. For j = (j1,...,js) €
N* and for a subset E of {1,...,s}, let Vé be the subgroup of V' generated
by elements of the form {a,by,...,b.+s} such that

a€ Ker{Ax — (A /(ljﬂf)A)z}

and bi,...,br4s € (A[7ri_1; i € E])*. In the case E = {1,...,s}, we
denote V7 by V. Since a subset of V/p"V generates V/p"V if its image
generates V/pV, the proof of (5.5) is reduced to the case n = 1. In the
following we assume n = 1.

LEMMA 5.8. — Ifa =1 mod (¢ — 1)P4, a =y, mod (A[%]x)p for
somew. Ifa=1 mod (¢ —1)PaA, thena € (A[%]z)p.

Proof. — The equation (1 + ({ — 1)T')? = a can be rewritten as
TP —T+g(T)=(a—1)(¢—1)"? for some ¢g(T) € R[T]a.

By the henselian property of (A, a), this equation (and hence the equa-
tion TP = a) has a solution in A (resp. in a cyclic etale finite extension
of A of degree p) if the class of (a — 1)(¢ —1)™? in R is contained (resp.
not contained) in {z? —z; z € R}.

LEMMA 5.9. — Let ¢ > 0, S a local ring, I # S an ideal of S, x € I,
and let N be the subgroup of KM, (S[%]) generated by elements of the
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form {1+ az,by,...,b;} such thata € I, by,...,b; € S[%]m Then there
is a homomorphism

p: Qfs*/l - Kz!\-l{l (S[%])/N

such that p(apdai/ay A --- A da;/a;) = {1 + aoz,a1,...,a4;} mod N for
any ag € S, ay,...,a; € S® and their liftings aq,...,d; to A.

Cf. [BK], § 4 for the proof.

By applying (5.9) to the case S = A, I = a, z = (¢ — 1)? and by
using the fact that Q% = (0) for i > 7, we see VI C pV if j > ep/(p— 1)
(e = (e1,...,e5) € N%) and that Vef’/(p‘l)/zj>ep/(p_l) V7 is generated
by elements of the form {1 + a({ — 1)?,uy,...,%,,71,...,7s} such that
a € A and uy,...,u, € A%. Hence by (5.8), for the proof of (5.5), it is
sufficient to show V' C V¢?/(P=1) £ 5V We prove this in the following three
steps. Denote (0,...,0), (1,...,1) € N® simply by 0 and 1, respectively.

(5.10.1) V.C > V] +pV.

3>0
(5.10.2) > Vi CV'+pV.
7>0
(5.10.3) Let j e N®, j > 1,i € {1,...,s}, and let

j’:(jl""7ji—1aji+1vji+1»---7js)ENS-
Then if p t j; (resp. if j1 =+ =j; =0 mod pand if j <ep/(p—1)
and j; < epp/(p—1)), VI C VI +pV.

LEMMA 5.11. — For any distinct integers cy,...,c; (t > 1) taken from
{1,...,8}, A/(meys...,mc,) has a p-basis over Fp, consisting of r + s —t
elements.

This follows from (5.7) (2) applied to A/(m;) (1 < i < 8).

Proof of (5.10.1). — Note V.= V§, . Let E = {c1,...,¢} (with
t = Card(E)) be any subset of {1,...,s}. Then, as is checked easily, the
map

KX a1-4(4) — Vg/( > Ve + Zvdf) ;

E'GE 7>0
T — {Z,Tey, ..., e, }
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is surjective and factors through KM . ,_,(4/(%c,,...,m,)). Since the
last group is p-divisible by (5.6) and (5.11), we have

VBC > VR4 Vi+pV.

E'GE §>0

This prove (5.10.1).

Proof of (5.10.2). — Let j € N®*, j > 0,0 <7 < s, and assume j; = 0.
Let E = {c1,...,¢t} (t = Card(E)) be any subset of the support of j, and
let 5/ = (J1,---,Ji-1, 1, Jit1,---,Js)- We can check easily that for a € A,
the homomorphism

KM, (A — (Vi+ VEU{z} /( D Vi + Vélu{i}) ;
E'GE

J1 j
z— {l+ar] - -wl,z,mcp,..., 7, }

factors through the p-divisible group K,{\is_t(A/(Wcl yevsTe,,Ts)), and the
images of these homomorphisms for varying a generate the target group.

Hence we have _ y
5C Y Vi + Vi +oV
E'GE
which proves (5.10.2).
Proof of (5.10.83). — The proofs for the two cases in (5.10.3) are similar,
so we give here only the proof for the case where j; = --- = j; =
0 mod p, j < ep/(p—1) and j; < e;p/(p —1). Let E = {cy,...,¢}

(t = Card(E)) be any subset of {1,...,s}. Then we can check easily that
the homomorphism

et — (B +v) (3 v+ V)
E'CE

agﬁ/\.../\ dbrs—¢

J1 j
; n — {1+ar] .7l by, b, Moy, T, )
1 r+s—1

(a € A, b1,...,brps—+ € A®) is surjective and factors through
Q;\J;fw: omey) (e (5.9)). 1f 4 ¢ E, it factors through Q;;;f;fv o) = (0).
Assume i € E and let § = Af(Teys- o Te,)- We show that the image of
Ot in (V2 + VI 4 pV)/( eVt Vi’ 4 pV) is zero. Since S
has a p-basis over F, consisting of r + s — ¢ elements, Q5" is gene-
rated by elements of the form aPdb; /by A --- A dbr+s_t/b,+s_t (a € S,
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biy. - brys—t € S%) and by dQ5H*7'"!. The images of the former ele-
ments vanish by

1+4aPrft - nde = (1+ax /P xd+/P)’ mod m;(nf*-- i) A
(a € A). The image of dQ5T*~*! is zero by

{1-anf - -7d 0} = {1 —an] - ale, 7]t - 1} EpKzM(A[%])

(a € A). This completes the proof of (5.5) and hence of (0.3) (2).

Remark 5.12. — In our explicit reciprocity law (0.3), we assumed
p > r + s+ 1. After the author wrote up this paper, he found that
this assumption can be weakened to p # 2 by the following method.
Let Sn(q)i?gl be the degree > q— 1 part of Sp,(q)a,5. Then this complex
Sn(q)i'fgl is defined even in the case p < ¢q. If p # 2, we obtain symbol
maps, independence from the choice of B for H q(Sn(q)i?gl), and this
group (instead of H?(S,(g)a,p) is used to extend our results to the
case p # 2. In the case p = 2, we have an essential difficulty. In fact,
the explicit reciprocity law for p = 2 given in [B1] is essentially different
from the case p # 2.
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