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COMPLEXITY OF SEQUENCES DEFINED BY

BILLIARD IN THE CUBE

BY

PIERRE ARNOUX, CHRISTIAN MAUDUIT,

IEKATA SHIOKAWA and JUN-ICHI TAMURA (*)

RESUME. — Nous demontrons une conjecture de Gerard Rauzy relative a la
structure des trajectoires de billard dans un cube. A chaque trajectoire on associe
la suite a valeurs dans {1, 2, 3} obtenue en codant par un 1 (resp. 2, 3) chaque rebond
sur une paroi frontale (resp. laterale, horizontale). Nous montrons que si la direction
initiale est totalement irrationnelle, Ie nombre de sous-mots distincts apparaissant dans
cette suite est exactement n2 + n + 1.

ABSTRACT. — We prove a conjecture of Gerard Rauzy related to the structure of
billiard trajectories in the cube : let us associate to any such trajectory the sequence
with values in {1,2,3} given by coding 1 (resp. 2, 3) any time the particle rebounds
on a frontal (resp. lateral, horizontal) side of the cube. We show that, if the direction
is totally irrational, the number of distinct finite words of length n appearing in this
sequence is exactly n2 + n + 1.

1. Statement of the result

We consider billiard problems with elastic reflexion on the boundary;
the simplest of these problems is the billiard in the square. It is natural
to code an orbit for this billiard problem with initial direction (a, f3) by
the sequence of the sides it meets, coding 1 for vertical sides and 2 for
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horizontal sides; one can then show, if a and (3 are rationally independant,
that the number of words of length n appearing in this sequence is equal
to n+1; this is the minimal number of words for a non-periodic sequence,
and caracterizes so-called Sturmian sequences (cf. [HM]). This problem is
analogous to the study of the intersection of a line of slope / 3 / a in the
xy-plsiW with the net formed by the lines x = n and y = n (n € N).

An immediate generalization of this problem is the billiard in the 3-
dimensional cube. Let us denote by I3 the unit cube of R3,

I3 ={(x^X2,X3) | 0 ^ ^ ^ 1 , i= 1,2,3}.
The billiard flow in J3 is the geodesic flow with respect to the natural
euclidian metric on the unit tangent bundle, with elastic reflexions on
the boundary. This means that, on the face x\ = 0, we identify the two
points (0, ̂ 2^35 ̂  ̂ 25 ̂ 3) and (0, x ^ ^ x ^ , —ai, 03,03) of the unit tangent
bundle J3 x 5'3, and similarly for the other faces. It is clear that the set
J3 x (diai, ±03, ̂ o^) is invariant by the flow, and it is classical that, if ai,
02 and 03 are rationally independent (we say that the vector (01,02,03)
is totally irrational), the restriction of the flow to this set is minimal and
uniquely ergodic. In fact, it can then be reduced to a flow on the three-
dimensional torus; we will use this fact later.

We can code an orbit by a sequence (t4i)neN ^ {l i 2,3}^ Un = i if the
n-th face met by the orbit is x\ = 0 or x\ == 1.

DEFINITION. — Let u == (^n)neN be a sequence with values in a
finite set A. The language associated to u is the set L(u) of finite words
appearing in (i4i)neN5 i'^- the set of words UiUi-\-\ ... u^+/c, (z, k) € N2. The
complexity of the sequence u is the function :

p(n)=#L{u)nAn.
In this paper, we prove the following :
THEOREM. — The complexity of a sequence generated by the cubic

billiard with totally irrational initial direction is p(n) = n2 + n + 1.

This theorem (cf. [R2], [R3]) was first conjectured by Gerard RAUZY
in 1981, and proved independently some months ago by the french and
the Japanese authors of this paper.

To prove the theorem, we will first, in part 2 and 3, reduce the problem
to the following : given a certain partition of the torus T2 in three
parallelograms and a translation of T2, find the number of connected
components of the intersection of the partition with its first n images by
the translation; we finish the proof by a simple combinatorial argument in
part 4. In the last parts, we make a few remarks about possible extensions.
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2. Symbolic dynamics associated to the cubic billiard
Along the trajectory, the velocity will be (=bai, =Lo;2, ±03), the signs

being determined by the parity of the number of reflexions in the cor-
responding faces. Since we denote the two parallel faces in each pair by
the same symbol, the coding of a trajectory is not changed if we make
a symmetry with respect to one of the three planes Xi = - z == 1, 2,3.
So for each point with given direction, we can find by symmetry seven
other points with the same coding, and exactly one of these eight points
has a direction with all components positive; if we always choose this
point for representant, we get the flow with slope (01,02,03) on the
torus T3 = I^/Z3. This flow has the same coding as the billard, when
we code a trajectory by the crossing of the projections of the faces on
the torus.

If we go to the universal cover, this gives a very simple definition of
the billiard sequences : take a line with direction v, and code the order in
which it meets the planes xi = n, n € Z.

REMARK. — Strictly speaking, we have defined the flow only if the
particle meets the interior of a face; we can define the flow when it meets
the edge intersection of the faces x^ = 77^, xj = Uj, (r^, nj) € {0,1}2 as a
succession of reflexions on the two faces; since these reflexions commute,
this is well defined. There is no natural way to define a unique coding
for this point, so we will accept the two sequences ij and ji on this edge.
This does not cause problems in the totally irrational case, because then
the orbit can meet at most once an edge of type ij, otherwise it should be
contained in a rational plane. In particular, the orbit starting from (0,0,0)
never meets an edge (In the rational case, things are more complicated; in
particular, if the direction is a multiple of an integer vector, each orbit is
periodic; if we allow arbitrary coding for meeting of the edges, we could
obtain a non-periodic sequence, and in this case, we have to choose a
consistent set of rules for the coding). We can extend the flow to the
vertices in the same way, accepting the six words ijk to code the vertices.

Let us recall that the shift a on the set of sequences with value in
{1,2,3} is defined by : cr((un)n^) = (^n)neN with Vn = ^n+i. The
coding we have defined is not inject! ve, because we are working with a
flow, and not with a map (two points on a segment of orbit that does not
meet the faces have same associated sequences); we can restrict to points
on the faces, and it is clear that the first return map of the flow on this
set is conjugate to the shift on the admissible sequences.

LEMMA. — Let v be a totally irrational direction^ and f^ be the set
of all admissible sequences for the billiard with initial direction v. The
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set fl,v is a closed subset of {1,2,3}^ invariant by a, and the dynamical
system (^ly^cr) is minimal (z.e., every orbit is dense).

Proof. — Let us consider the map (f) which associates to an admissible
sequence u the point x in the union of faces whose orbit has coding u.
This map is well defined, because, by minimality of an irrational flow on
the torus, no two points have the same coding; it is continuous, but not
injective, and it conjugates the shift to the first return map of the flow.

The inverse map 0~1, which associates to a point the set of coding
sequences (1,2,4 or 6 depending whether the orbit meets an edge or
a vertex) is injective, not continuous (this is impossible for topological
reasons), but it has the following property : if the points Xn converge to a;,
and if we have associated sequences u(xn) that converge to a sequence n,
then u is one of the coding sequences for x. Here, we must take care that
each points may have several coding sequences, and also that, if the orbit
of x goes through an edge or a vertex, we can find x^ converging to x such
that the associated coding sequences do not converge (but all convergent
subsequences will go to coding sequences for x).

This implies immediately that f^ is invariant by the shift, and closed :
if admissible sequences Un converge to a sequence n, we can suppose, by
compacity, that the points Xn = ^(^n) converge to a-, and by the above
property, u is one of the coding sequences associated to x. The minimality
of (fly, a) is an immediate consequence of the minimality of the first return
map. Q

This implies that, while the sequence depends on the initial position,
the set of finite words appearing in this sequence depends only on the
initial direction; in particular, all sequences with same initial direction
have the same complexity. Instead of counting the number of different
words in a given sequence, one can find the complexity by computing
the number of different initial segments of length n; more precisely, we
can restrict this to trajectories that do not meet an edge before the n-th
crossing. Our proof will be based on this fact.

3. Reduction to a translation on T2

We use the description of admissible sequences as generated by a line
in R3; we need some definitions. We note the canonical basis of ]R3

by ei, 62,63 ; we define the set of integral points of height n by :

Pn = {ae-i + 6e2 + €63 | (a, 6, c) C Z3, a + b + c = n}.

We call H the diagonal plane H = {{x, y , z), x+y+z = 0}, we denote by
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TT the projection of M3 onto H along the direction (01,02,03), and define
f^ = Tr(e^); remark that PQ is a lattice in H^ generated by fi— fj = Ci—ej.

In what follows, S (or P,P,...) will always be some object in R3,
S its projection on H\ this projection will be invariant by the lattice Po,
and S will be the quotient by Po, subset of the torus H / P Q (on some
occasions, S will also denote a set of representatives of S modulo Po, that
is a subset of H).

We call Ln the set of segments joining points of Pn to points of Pn+i
in the three directions :

Ln = [z + iei\ z C Pn, i = 1,2,3, t € ]0, ![}.

We call /ace o/ ^/j9e fc a face contained in a plane x/c = 0, and we note
Pn the set of faces of height n and type k :

pW = [z-\- lei + sej | z € Pn, %,j , A; all distinct, (s,t) G ]0,1[2}.

Finally, we call Pn the set of all faces of height n :

Fn= (J Fw

fc=l,2,3

Figure 1. We have represented a part of the stepped surface So;
points of PQ are seen as big dots, edges of LQ are continuous lines,
edges ofL\ are dashed lines, and the three types of faces of FQ are
shaded differently.
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The union of Fn and the adjacent edges, Z/n and Z/n+i? and vertices,
Pn, Pn+i and Pn+2 form a cellular complex that we will call the stepped
surface En of height n.

It is clear that every orbit crosses each En exactly once; if it does not
go through an edge or a vertex, it will cross En in Pn? and if we restrict
to orbits starting on Eo and crossing Pn? the coordinate of rank n of the
associated sequence will be the k such that the orbit crosses .Fn .

We can parametrize the orbits starting from Eo by the plane H. It is
clear that the restriction of TT to En is one-to-one, and the projection of
the cellular decomposition of En gives a cellular decomposition En of ft,
invariant by the lattice Po. Since we have En = Eo 4- ne\^ the cellular
decomposition of H obtained by projection of En can be deduced by a
translation ofnTr(ei) from Eo (it is also deduced by a translation o{n7r{e^)
or mr(e3), since 7r(e^ — ej) = €i — ej 6 Po).

We now quotient bv the lattice Po, and consider the irrational trans-
lation T on T2 = H/PQ of vector /i == /2 == /smodPo, and the cellular
complex Eo quotient of Eo, which is made of three parallelograms; from
the above remarks, the number of different words of length n is equal to
the number of sets intersection of a face of this complex with faces of
its (n — 1) first iterates by the translation. The following lemma allows us
to count only the number of connected components of these intersections :

LEMMA. — Each nonempty intersection of faces of the complexes
Eo, TEo = Ei,..., T^Eo = Efc is connected.

Proof. — Consider the three faces F^ of Eo with a vertex at the origin,
defined by :

F^ = { x i f i +X j f j | 0 < X i . X j < 1, i + k, j ^ k}.

They form a fundamental domain for the action of Po on H (up to a
set of measure 0 : edges and vertices); this domain is a convex hexagon
made of three parallelograms.

It is an immediate consequence that, for any two points a*, y in the same
face of Eo, there exists a unique segment joining them and contained in
that face : indeed, we can find k and two points x,y G F^\ uniquely
defined, that project to a-, y ; the face F^ being a parallelogram, hence
convex, there is a segment joining x to y and contained F^, and it
projects to a segment joining x to y in a face of Eo : this proves the
existence. On the other hand, a segment joining x to y without crossing
any ege or vertex can be lilted to a segment completely contained in
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some F^ which must be the unique segment from x to y , hence the
unicity.

Let us remark here that it is not always true that the intersection of
faces of Eo and Efc,A; > 1 is connected (we cannot use directly on the
torus convexity properties) : two points in this intersection can be joined
by a path contained in a face of Eo, and also by a path contained in a
face of Efe, but these path have no reason to be the same. Figure 2 shows
an exemple where this intersection is not connected.

Figure 2. We have represented a complex Eo, in full lines, with a
fundamental domain in thicker lines; Eo has three kinds of faces,
a big square and two smaller parallelograms. The translate T3^
is represented in dashed lines, and the dashed area shows the
intersection of a square face of Eo with the square faces of the
translate; this intersection is not connected.

The situation is different in the case of two consecutive complex
E^ and Ei+i. For exemple, there is a convex fundamental domain for
the action of Po on H which consists of cells of Eo, and also of cells
of EI : consider the above fondamental domain made of three faces of Eo
having the origin as a vertex. There is a unique point in PS in this domain;
take the three faces of Ei having this point as a vertex, it is easy to check
that this defines the same fundamental domain (cf. figure 3; it is the
picture one gets when drawing a cube in projection, and this is exactly
what we do, since Eo and Ei are respectively the lower and upper faces
of a set of cubes). Now if two points are in the intersection of faces of EO
and Ei, we can lift them to this common fundamental domain, and we
see that there is a segment joining them in the intersection, since in the
plane the intersections of faces are convex sets.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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Figure 3

It is an immediate consequence that the intersection of faces of
So,Si , . . .Sfc is connected, when we take consecutive complexes; for
if x, y are two points in the intersection, they are joined by segments
7o; 7i? • • • 5 ̂ ki with 7^ contained in a face of S^; but we just proved that,
in that case, we have 7^ = 7z+i, so that all the segments are equal, and the
unique segment obtained is contained in the intersection of the faces. []

4. Proof of the theorem
We can still simplify a little more ̂ call^ the cellular decomposition of

the torus obtained by projection of Lyi, Pn and Pn+i on H and quotient
by Po; this is a very simple cellular complex, with just one face, three
edges and two vertices, and it is clear that S^ is just the intersection
of Cn and C^+i. If we note by Dn the complex given by the intersection of
the Q, 0 < i < n, what we must prove is that the number of faces of Dn
is n2 +^+1; we will call An this number of faces, En the number of edges
and Vn the number of vertices. The proof follows easily from two lemmas :

LEMMA 1. — The edges ofCz and Cj, i < j , meet in exactly two points,
except ifj = i-\-1, in which case they meet in their common extremity P j .

Proof. — Since all the partitions Cz are deduced from each other by the
translation T, it is enough to consider C\ and Cj-. The simplest way is to
consider the lifting of these partitions to the plane; consider the sets F^
above, which, up to a set of dimension 1, form a fundamental domain
for the lattice Po- The boundary of these sets project to the edges of CQ
and <7i, namely, the segments {tfi | 0 < t < 1} project to the edges of Co,
and the segments {fi + tfj \ 0 < t < 1, i -^ j} project to the edges of C\
(cf. figure 4).

This fundamental domain is an hexagon, with three vertices projecting
to the point Pi, and the three other vertices to ?2 ; it is then clear that the
edges of C\ and C^ meet only in ?2 (cf. figure 4); the complex represented
in figure 4 is just the intersection of So and Si.
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Pi ?2

Figure 4

Now, if i > 2, it is a consequence of the irrationality that the unique
representant of Pi in the fondamental domain is in the interior of one
of the F^. Suppose it is in F^\ then the point Pi + j\ is in the
fundamental domain, hence by convexity the corresponding edge of Q
does not intersect Gi, and the points Pi + /2? PI + /3 are in adjacent
domains, hence each of the corresponding edges meet C\ in exactly one
point (cf. figure 5). Q

Figure 5

LEMMA 2. — The number of vertices and edges is given by :

Vn = n2 + 2, En = 2n2 + n + 3.

Proof. — The vertices of Di are the points P^, extremities of the edges
of Ci, 0 < i <. n, and intersection points of edges of Ci and Cj in the
interior of the edges. Going from Dn to jDn+i? we add the point Pn+i, and
the intersection points of the edges of Cn+i with those of Q,0 < i < n;
all these points are distict, by the irrationality condition, so there are two
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of them for each i 7^ n and none for i = n, by the preceding lemma,
hence :

Vn+l=^n+2n+l.

Since VQ = 2 (it is reduced to points Po, Pi) we get the formula.
Now the edges consist of the segments of the edges of Ci between two

vertices; going from Dn to Dn+i? we add three new edges, and we must
consider also the intersection with old edges. Each of the 2n vertices given
by these intersections defines two new edges, hence :

E^i = En + 4n + 3

and we get the formula, for it is clear that EQ = 3. []

Proof of the theorem. — Since the Euler characteristic of the torus is 0,
we have the Euler formula

An - En + Vn = 0

from which we get :
An=n2 +n+l. D

5. Higher dimension cases

A natural continuation would be to find the complexity for the billiard
in the cube in higher dimensions. We can apply the same method in
dimension 4, but counting the vertices and the edges becomes very
difficult; in fact, it is not known whether the complexity is independant
from the initial direction, and whether it is polynomial. However, if we
call P(n, s) the complexity of the irrational s + 1-dimensional billiard
(assuming that this function is well defined), numerical computations by
Jun-ichi Tamura hint to interesting relations between these numbers : it
seems that, for n > 5, P(n^s) > P(s^n).

For small n or 5, much more is true : if inf(n, s) < 3, then P(n, s) is well
defined, and P(n, s) = P(s, n). The number P(l, s) is just the number of
symbol used for coding the billiard in dimension s +1, that is the number
of pairs of parallel faces for the hypercube in dimension 5+1, which is
clearly 5+1.

P(2, s) is the number of admissible pairs of symbols for the billiard
with totally irrational initial direction ( a i , . . . , Og+i). Consider the coding
as given by the irrational flow on the torus, by the same analysis as in
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section 2. There are only (<5 + I)2 pairs of symbols; all the pairs ij, with
i 7^ j are admissible, because segments of trajectories passing near the
edge intersection of face number i and face number j will be coded by ij
on one side of the edge, and by ji on the other. But, by minimality of the
irrational flow, any trajectory will pass in a given neighborhood of such a
segment. The only pairs left are of the type ii. If we suppose that ai > a,,
for all i > 1, then it is easy to prove that the pair 11 is admissible, and
not the other ones : this amounts to prove that there are times t, i' such
that ta^ = k C N, t'a^ = k + 1, and ra^ ^ N for all j > 1 and all r <E]t, t'[
(it suffices to take t = 0), while it is impossible to have the same property
for aj. Hence there are exactly s2 + s + 1 pairs of admissible symbols, and
we see that P(2, s) = P(s, 2).

We can also remark that P(n, s) is bounded by (s + I)71; if, for fixed n,
P(n, s) is a polynomial in 5, the degree of this polynomial is at most n. In
fact, for n = 0,1, 2, it is a unitary polynomial with integral coefficients.

If we make the hypotheses that P(n, s) is defined for all integers n
and s, symmetric (P(n, s) = P(s,n)), and that, for fixed n, it is a
unitary polynomial in s of degree n, it is easy to see that it is uniquely
defined by this conditions : if we know P(n, s) for n > N , then, by
symmetry, we know N value of P(N,s), and we can determine the
coefficients of this polynomial. For example P(3, s) is equal to s^ 25+1 =
5(5-l)(5-2)+35(s-l)+3s+l, and if we note x^ = x(x-l) ... (.r-n+1), it
is easily proved that P(n, s) = ̂ ^o CD5"' giving the hypothetical general
formula :

-. ^"^ n!.!
v l / ^ (n-i)U\(s-i)l~

This formula is in quite good agreement with the numerical data found
up to now.

6. Additional remarks

It is possible to find the complexity also in the case where the vector
is not totally irrational; if the vector is completely rational, then the
sequence is periodic, and the complexity is bounded by a function of the
direction.

An open problem is to characterize exactly the set of sequences that
can be obtained from cubic billiards; in the case of the square, these are
exactly the sturmian sequences. In particular, it should be interesting to
know the recurrence function of these sequences, defined as the function
which, to any integer n, associates the smallest integer R(n) such that
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every word of length R{n) contains all words of length n. This function
is well denned, because the system is minimal, so every word appearing
in the sequence appears an infinite number of times, with bounded gaps.
In the case ofsturmian sequences, the recurrence function is related to the
development in continued fraction of the frequency of one of the symbols
(cf. [HM]). Finding the recurrence function for cubic billard could lead
to a 2-dimensional continued fraction expansion, and could also give an
algorithm for the multiplication of ordinary continued fractions.

The complexity depends, not only on the system, but also on the coding
chosen for this system; in some cases, it is possible to chose a coding for a
translation of the torus by sequences of the much lower complexity 2n +1
(cf. [AR], [Rl]). It should be interesting to know the minimal complexity
for an inject ive coding of a translation of the torus or a cubic billiards.
We can remark that this minimal complexity can only be an asymptotic
notion : chosing a partition in two atoms with an atom much bigger than
the other, we can, for any given integer TV, find an injective coding with
complexity p(n) = n + 1 for all n < N , which is the minimum possible
complexity for a nonperiodic sequence.
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