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TEMPERED SUBGROUPS AND REPRESENTATIONS
WITH MINIMAL DECAY OF
MATRIX COEFFICIENTS
BY HEE OH (¥)

ABSTRACT. — We present a function F' for each simple real linear Lie group G
with real rank at least 2 such that F bounds from above all the K-matrix coefficients
of non-trivial irreducible spherical unitary representations of G where K is a maximal
compact subgroup of G. This enables us to determine when a closed subgroup H is
a (G, K)-tempered subgroup of G : for example, if the restriction F'|g of F to H lies
in L'=¢(H). We also prove that this function F is the best possible for G a real-split
group of type Ay, or Cp and as a consequence, we obtain that if H is semisimple,
then H is a (G, K)-tempered subgroup of G if and only if F|g lies in L1(H).

RESUME. — SOUS-GROUPES TEMPERES ET REPRESENTATIONS. — Nous associons
une fonction F' & chaque groupe de Lie G, linéaire, réel simple de rang réel au moins 2,
telle que F' donne une borne supérieure pour tous les coefficients matriciels K-finis des
représentations unitaires sphériques irréductibles de G, ou K un sous-groupe compact
maximal de G. Ceci nous permet de déterminer quand un sous-groupe fermé H de G est
(G, K)-tempéré; c’est le cas par exemple si la restriction de F a H est dans L1 ~¢(H).
Nous prouvons aussi que cette fonction F' est la meilleure possible pour un groupe
réel déployé G de type An ou Cp, et comme conséquence, nous obtenons que si H est
semi-simple, alors H est un sous-groupe (G, K)-tempéré de G si et seulement si F|g
est dans L!(H).

1. Introduction

Let G be a connected semisimple linear Lie group and K a maximal
compact subgroup of G. We say that a unitary representation of G is
spherical if it has a K-invariant vector. For a unitary spherical represen-
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356 H. OH

tation p, we will use the term “K-matrix coefficients of p” to refer to its
matrix coefficients with respect to K-invariant unit vectors.

In this paper we are interested in the asymptotic behavior of the
K-matrix coefficients of spherical unitary representations of G when
restricted to a closed subgroup H of G. One motivation comes from the
notion “(G, K)-tempered subgroups” of G defined by Margulis [10]. That
is, a closed subgroup H of G is called (G, K)-tempered if there exists a
(positive) function ¢ € L!(H) such that for any non-trivial irreducible
spherical unitary representation p of G,

[(p(R)v, w)| < q(R)]lv] - Jwl|

for all h € H and any K-fixed vectors v and w. Note that any compact
subgroup of G is a (G, K )-tempered subgroup for a trivial reason. Margulis
also showed in [10] that if a closed subgroup H is a (G, K)-tempered
subgroup, then for any non-compact subgroup F of H, the quotient G/F
does not allow a compact quotient by a discrete subgroup of G (see [6] for
a survey on the general problem).

We denote by G (resp. G k) the set of equivalence classes of non-trivial
irreducible unitary (resp. spherical) representations.

In this paper we first present a “good upper bound function” for K-
matrix coefficients for all representations in G for a simple real linear Lie
group G with real rank at least 2. Secondly we show that in simple real-
split linear Lie group of type A, or Cj, this function is in fact the best
possible by exhibiting a spherical representation of G in G whose K-
matrix coefficients are bounded below by this function. We now formulate
the main results.

The notation [z] denotes the largest integer which is not greater than z.

THEOREM A. — Let G be a connected simple real linear Lie group
with real rank n > 2, K a mazimal compact subgroup, B a minimal
parabolic subgroup, A C B a maximal R-split torus, AT C A the positive
Weyl chamber given by the choice of B. Denote by ®' the set of all non-
multipliable roots in the relative root system ®g(a,g) where a and g are
the Lie algebras of A and G respectively. Let a1, ..., a, be the basis of ®'
whose subscripts are determined by the highest weight given in section 2.1.

Then for any € > 0, there exists a constant C' (depending on €) such
that for any p € Gk and fo a K-invariant unit vector of p,

[(p(9) fo, fo)| < CF(9)'~¢  for any g€ G

where F' is the K -bi-invariant function defined on A* as follows according
to the type of @' :
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ol —log F’
%("—1) n
> lieg+ Y in—i+ Do
=1 i=4(n+1)
A, n>2 ) for n odd,
b — in n
sio; + § IO DY 1(n—i+ 1)y
=1 i= %n+2
for n even,
[2 n]
B,, n>2 Zza,+ Z nal,
i=[3n+1]
n—1 1
Cp, n>2 Ziai + §n0zn,
=1
[3n]
Dpn>4 Y ioi+ Z tna; + In(an-1 + an),
=1 i= [5n+1]
Eg o1 + 200 + 203 + 3oy + 205 + 0,
E7 2a1+%a2+4a3+60¢4+%a5+3a6+%a7,
Eg 201 + 4as + bas + 8ay + Tas + bag + 3ar + asg,
Fy 201 + 30 + 4as + 20y,
Go 201 + .
CoROLLARY B. — With the same notation as in Theorem A, let H be

357

a closed subgroup of G. If the restriction F|u of F to H is in L'~¢(H)
for some € > 0, then H is a (G, K)-tempered subgroup of G.

REMARKS

1) Suppose further that H is a connected semisimple Lie subgroup of G
such that AN H is a maximal R-split torus of H and BN H is a minimal
parabolic subgroup of H. Let 6y denote the modular function of BN H,
that is, the product of all positive roots including the multiplicity.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



358 H. OH

Let Ay,...,Am be the fundamental weights of the Lie algebra of H
corresponding to AN H and BN H.

For any two weights a and 8 of the Lie algebra of H, we write
a<f if (a,A;) <(B8,A;) foralll<j<m.
Then the condition F|g € L'~¢(H) is equivalent to
—log FlatnH > logéy;

which is again equivalent to the condition F|y € L*(H).

2) If the restriction F|g is L*~¢(H)-integrable for some ¢ > 0 and
some posmve integer k then the diagonal embedding 6 (H ) of H into

the group H Giisa (H G, H K;)-tempered subgroup of H G; where
=1 =1
G =G and K K for all 1 < 1 < k. To see this, it is enough to note

that for any non-trivial irreducible spherical representation p of H G,

i=1
the restrictions of the K-matrix coefficients of p to 6x(H) are bounded
by (F|m)k1=).

For a unitary representation p of G, p is said to be strongly L4 if there
is a dense subset V in the Hilbert space attached to p such that the matrix
coefficients of p with respect to the vectors in V lie in LY(G). Let p(G) be
the smallest real number such that for any p € G , p is strongly L9 for any
q > p(G) (cf. [7]). Similarly let px(G) be the smallest real number such
that for any p € Gk, the K-matrix coefficients of p are L%(G)-integrable
for any ¢ > pk (G). The estimate of the Harish-Chandra function E of G
shows that px(G) is at least 2 (c¢f. [3]) and hence G cannot be a (G, K)-
tempered subgroup of itself. The method used in proving Theorem A
yields upper bounds for both p(G) and pk(G).

The following follows from Remark 1 after Corollary B.

CoroLLARY C. — With the same notation as in Theorem A, let 6¢ be
the modular function of B (cf. Table 3.7). Define

e x{ the coeﬁic'z'ent of o .in log b - 1’.'.,71}.
the coefficient of a; in — log F

Then p(G) < r(G) and pk(G) < r(G).
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If G is split over R, r(G) is as follows :

QZ‘I)IZAn Bn Cn Dn EG E7 Eg F4 G2
r(G@) :2n 2n 2n 2(n-1) 16 18 58 11 6.

For n > 3, Vogan’s classification of unitary duals for GL,, (D) yields that

e for G =SL,(D), D =R, Cor H, p(G) is2(n—1),2(n—1) and 2n—1
respectively and

o for Sp,, (R), it follows from Howe’s result in [3] that p(G) = 2n.

The number p(G) in other classical group cases was calculated by Li [7]
and was given an upper bound by Li and Zhu [8] in exceptional split
group cases. We remark that the numbers r(G) in Corollary C coincide
with p(G) calculated in [7] for all classical real split groups except B,
type. For a split group of type Eg, by obtaining r(G) = 16, we improve
the bound for p(G) in [8].

We state a theorem which yields a necessary and sufficient condition
for a closed semisimple subgroup to be a (G, K)-tempered subgroup in
a simple real split linear Lie group G of type A, or C,. Let G be
either SL,(R) or Sp,, (R). The group Sp,, (R) is defined by the bi-linear
form (_3:” %) where I, denotes the skew diagonal n x n-identity
matrix. Set

K =S0,(R) and Sp,,(R)NSOz,(R)

respectively. Define the parabolic subgroup P of G as follows :
o for G = SLn(R), P= {(g”) eqG I gi1=0if¢ 75 l},

o for G = szn(R), P= {(g”) €EG | gi1 = 0,ggnj =0ifs 75 1, j :,é 2n}

Note that P is the maximal parabolic subgroup which stabilizes the
line Re;. We fix an ordering in the root system of G so that the positive
Weyl chamber AT is as follows :

SL,(R), At = {diag(al,...,an) | TTa: =1,
a; > Qi1 foralllgign—l},

Spy,(R), At = {diag(al,...,an,agl,...,al‘l) la; > ai+1>1
foralllgign—l}.
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ExaMmpLE. — The function F defined in Theorem A is as follows :
o for G = SL,(R),

n

=

a; "t for n even,

Il
—

Fla)=1" , 2(n=1)
Ai(nt1) 2 il;llafl for n odd;

o for G = Sp,,, (R),

F(a) = Hafl where a € A*.
i=1

TuEOREM D. — Let G be SL,,(R) or Sp,,(R) and P, K and A be as
above.

(1) For any € > 0, there exist constants C1 and Co such that
C1F () < [(IndB(1)(a) fo, fo)| < C2F(a)'~*

for any a € AT and for any K -invariant unit vector fo in Ind,G,(I ).
(2) If a closed subgroup H of G is (G, K)-tempered, F|g is in L*(H).

(3) A closed semisimple subgroup H of G is (G, K)-tempered if and
only if F|y is in L'(H).

4) pk(G) = r(G) = p(G).

Acknowledgments. — I am very grateful to Professors Roger Howe and
Gregory Margulis for valuable suggestions and for their encouragement.
Most of this paper was written during my visit at Bielefeld University.
I would like to thank Professor Abels and the Mathematics Department
there for their warm hospitality. I am thankful to Professors Dave Witte,
T.N. Venkatarama, Alex Eskin and the referee for many useful comments.

2. A maximal system of strongly orthogonal roots in each
irreducible root system

2.1. — Let ® be an irreducible reduced root system with a fixed
ordering. Denote by ®* the set of positive roots and by A = {ay,...,a,}
the set of simple roots of ®. The subscripts of «;’s are determined by the
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TEMPERED SUBGROUPS AND REPRESENTATIONS 361
following choice of the highest root [2].

P the highest root

An ap+oag+ -+ ap,

B, a1 +2az + -+ + 20,

Ch 201 + 200+ -+ 201 + ay,

D, ay +2a0 + -+ 20,0 + a1 + Qy,

FEg ay + 2as + 2a3 + 3o + 205 + ag,

E; 201 + 2aip + 3as + 4oy + 3as + 2a6 + a7,

Eg 201 + 3ag + 4as + 6ay4 + bas + 4ag + 3ar + 2as,
Fy 2a1 + 3o + 4as + 20y,

Go 3ay + 20s.

We define the number N(®) as follows :

[3(n+1)] for @ = A,,
N(@) = 2[3n] for ® = D,
4 for ® = F,

rank(®) for ® = B, C, Fy,Gs, E7, Es.

2.2. Construction of some strongly orthogonal roots.

Two roots o and 3 are called strongly orthogonal if neither one of a+ 3
is a root. Consider the family S(®) of all subsets of &+ whose elements
are pairwise strongly orthogonal. We call an element O in S(®) a strongly
orthogonal system.

Let f be the function on S(®) given by

fO)=) o

acO

The aim of this section is to construct an element

Q(Q) = {717"'77N(CI>)}

in §(®) on which f attains its maximum. For simplicity, we set N(®) = N.

We define Q(®) as follows :

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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o o(®)
Yi=o045+ -+ an_i41 fori <N -1,
A, { an for n odd,
N =
an +any1 for n even;

Es

E;

Eg

F

Yoi-1 =03+ + Ui + 20n_iq1 + -+ 20,
Yoi =0+ + Qni for i < [3nl,

Yo = Qipi1) T On for n odd;

v =2a;+ - +2a,-1+a, fori<N-1,

T1=0a1+ -+ ap_2+ay,

Yo =01+ +Opy,

Voi—1 =0+ + Qi + 20m i1
+"'+2an—2+an—l+an>

Yoi =@+ F Qp; for3§i§[%n];

Y1 = a1 + ag + asz + 2a4 + 2a5 + o,

Yo = ay + ag + 203 + 204 + 05 +

Y3 = az + a3 + 204 + as,

Y4 = Qg;

Y1 = o1 + ag + a3 + 2a4 + 2a5 + ag + ar,

Yo = o1 + ag + 2a3 + 204 + a5 + 06 + a7,
Y3 = a1 + as + 2a3 + 2a4 + 205 + o,

Y4 = a1 + a2 + a3 + 204 + a5 + o,

V5 = Qg + a3 + 2a4 + as,

Y6 = a2 + a3 + 204 + 2a5 + 206 + 7,
Y7 = Q2;

Y1 = a1 + 2ae + 3as + 5oy + das + 3as + 207 + as,
Yo = a1 + 202 + 23 + 3a4 + 3as + 2a + a7 + as,
v3 = a1 + 20 + 203 + 3a4 + 205 + 206 + a7 + as,
=y + as + az + 2a4 + 2a5 + 206 + 207 + ag,
Y5 = a1 + a9 + 2a3 + 204 + a5 + as + a7 + ag,

N
[

Y6 = a1 + az + 2a3 + 204 + 205 + a6 + a7,
Y7 = a1 + az + az + 2a4 + as,

Y8 = 1 + a3 + aq + a5 + Qg;

v1 = o1 + 209 + 4as + 2ay4,

Yo = a1 + 209 + 203 + 204,
v3 = a1 + 209 + 203,
Y4 = O,

TOME 126 — 1998 — n° 3



TEMPERED SUBGROUPS AND REPRESENTATIONS 363

Gs {71 = 301 + 203,
Y2 = Q.

The following lemma can be easily checked.

LEMMA. — The set Q(®) is a strongly orthogonal system.

PROPOSITION 2.3. — One has f(Q(®)) = Om‘g(afl)) F(O), that is, for any
€

O € §(P), the coefficient of a; in f(Q(P)) is greater than or equal to the
coefficient of a; in f(O) for each 1 <i < n, where n is the rank of ®.

Proof. — Let O be any element in S(®). We prove this proposition
by induction. We can easily check that the proposition is true for n = 2.
Suppose that n > 3.

o For ® = A,,, take any element in O, say o = a;++ - -+ a1, < j—1.
Then a < 7 since 7 is the highest root. On the other hand O — {a} is
contained in {am, + -+ + ap—1 | m, £ ¢ {3,j}}, which is a root system of
type A,—_2. Note that

Q(An) N {am +- oy [ m,[ ¢ {Za]}} = Q(An—2)

Therefore by the induction assumption, f(O—{a}) < f(Q(An-2)). Hence
we have f(O) < v, + f(Q(An—2)) < f(Q(Ayn)), proving the claim.

e For ® = B,,, note that for any oo € ®*, we have that the coefficient
of @; in « is at most 1. Write O as O; U Oq so that 8 € Oy if and only if
the coefficient of a; in #is 1 and Op = Of. It is not difficult to check that
if three positive roots in B,, are mutually strongly orthogonal, then the
coefficient of a; in at least one of them is 0. Therefore |O;]| < 2. We can
easily see that for any two strongly orthogonal roots 31, 82 € ®* such that

n
the coefficient of a; in §; is 1 for both ¢ = 1,2, we have 51 + 32 < ¥ 20;

=1
n

hence Y B < 71472, because |01 <2and y1+72 = Y, 2. For 6 C A,

BEO, i=1
the notation [#] denotes the set of the roots in ® which can be expressed
as integral combinations of the roots in 6. Since Oy C [ag,---,an],

n
Y3+ 71 = Y. 20; and [ag,- -, @] is a root system of type B,_1, we
=2
can proceed by induction as before.
o The argument for D,, is exactly the same as the one for B, ; so we

omit it.
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o If ® is of type C,, write O = O; U O3 so that 8 € O; if and only
if the coefficient of a; in 8 is positive and Oy = O;°. It is easy to see

that |O1] < 1. Therefore Y, a < 7, for 74 is the highest root in ®.
a€0;
Since Oy C [ag, -+, ay], it remains to use induction process.

o For exceptional root system cases, we can prove the proposition by
checking each root system case by case. []

As a corollary of the above proposition, we obtain that Q(®) is a
maximal element in S(P) with respect to the inclusion ordering.

REMARK. — I learned from E. Vinberg that this construction of a
strongly orthogonal system coincides with the so called Kostant’s cascade
construction (cf. [9]), if ® is one of the types A,, C,, or G5. But in all cases
the cardinalities of the sets in Kostant’s cascade construction coincide with
the numbers N (®), which are the cardinalities of Q(®) in our construction.
We note that not all maximal strongly orthogonal systems in ¢ have the
same cardinality. For example, {ag, a4, 200+3as+4a3+2a4} is a maximal
strongly orthogonal system in the root system of Fj.

We remark that if ® is none of A,,, C,, or Ga, the function f attains its
maximum in our construction but not in Kostant’s cascade construction.

3. An upper bound function for matrix coefficients in simple
non-compact linear Lie groups

3.1.—Let G be a connected semisimple non-compact linear Lie group,
B a minimal parabolic subgroup, A a maximal R-split torus contained
in B, A% the positive Weyl chamber and K a maximal compact subgroup.
Consider a Cartan decomposition of G : G = KAt K. Since the K-matrix
coefficients of a spherical unitary representation are K-bi-invariant, they
are determined by their restrictions to the AT-part. Denote by g the Lie
algebra of G and by a the Lie algebra of A. We denote by ®g(a,g) the
set of restricted roots of (g, a), which is endowed with the ordering given
by B. If G is split over R, then ®g(a, g) will be simply denoted by ®(a, g).
If we fix a Haar measure dg on G, then the modular function ég of B is
given as

bg = H exp a.

aE@;(a,g)

It is well known (cf. [3]) that the induced representation Ind$(I) of
the trivial representation of B is irreducible and has a unique (up to a
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sign) K-invariant unit vector, say fo. The matrix coefficient of Ind$(I)
defined by

g — (IndF(I)(g) fo, fo)

is called the Harish-Chandra function of G, which we will denote by Zg.
When there is no confusion, Z¢ will simply be denoted by =.

Harish-Chandra has shown the following :

ProposITION (c¢f. [3]). — For any € > 0, there exist constants c; and ca
such that, for alla € A*

016(—;1/2(a) <Z¢la) < C2651/2+€(a).

Moreover the value of Harish-Chandra function Z of SLy(R) or PSLy(R)

at (%0 a(_)l ) for ag > 1 is asymptotically (log ag)/ap up to some constant
0

multiple.

3.2. — We can write the Haar measure dg of G in terms of the Cartan
decomposition KA1 K as follows :

dg = A(a)dk; dadks
where A(a) is a positive function on A" satisfying
d1(t)bg(a) < A(a) < dabc(a)
for all a € {a € A" | |a(a)| > tforalla € ®;(a,g)} and for some

>
constants dy (t) and dg if ¢t > 1 (¢f. [3]).

For a K-matrix coefficient ¢(g) = (p(g)v,w) of p € Gk, it is well known
that ¢ € LP(G) if and only if [, [¢(a)|Péc(a)da < oo.

ProposITION 3.3. — Let H be SLy(R) or PSLa(R). Suppose that for
some k > 2, H acts on R* by a rational representation so that the only
H-invariant vector is the origin. Let H x R¥ be the associated semidirect
product. Let p be a unitary representation of H x R* without any R¥-
invariant vectors. Then we have

|(pl e (R)v, w)| < Egr(h) (dim(K - v) dim(K - w))"/?

where h € H, K = SO3(R) and v and w are K-finite unit vectors
of p. Moreover if p is spherical, then the K-matriz coefficients of plu

are bounded by =g .
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Proof. — By [12, Thm 7.3.9], the restriction p|a of p to H is weakly
contained in the infinite sum of the regular representation of H. It is
well known (¢f. [4, Ch. V, Thm 3.2 1]) that the K-finite (or K-fixed)
matrix coefficients of the regular representation of H satisfy the above
inequality. []

In the spirit of Howe’s strategy (see [7]) we state the following pro-
position. The notation u, for & € ®g(a,g) denotes the root space in g
corresponding to a.

ProrosiTioN 3.4. — Let G be a connected simple real split linear Lie
group. Let {B1,...,Bm} C ®1(a,g) be a strongly orthogonal system. Then
for any € > 0, there exists a constant C such that for any p € Gk and K -
fized unit vectors v and w of p, and for any a € AT

[(p(a)v, w)| < C T exp((-1 +€)8:) (a).

=1

Proof. — For each 1 < i < m, let H; be the connected closed subgroup
of G whose Lie algebra is generated by uyg,. Note that for each 1 <7 < m,

(1) H; is isomorphic to SLy(R) or PSLy(R);

(2) the subgroups H; N B, H; N A and H; N K are a minimal parabolic
subgroup, a maximal R-split torus and a maximal compact subgroup of H;
respectively ;

(3) the positive Weyl chamber A™(H;) of H; is contained in A™.

It is not difficult to see that

A+C ﬁ A+(H,)Cc(ﬁ H,)

where Cg( H H;) denotes the centralizer of H H;. Since {B1,...,Bm} is

a strongly orthogonal system, it follows that xzx] = z;x; for all ¢ # j,
z; € H; and z; € H;. By looking at the root system, it is not difficult to
see that for each Hi., there exists an abelian unipotent subgroup U; of G
of dimension at least 2 such that H; normalizes U; and Cg(H;) NU; is
trivial. It follows that for each 1 < ¢ < m, H; x R* can be considered
to be a subgroup of G where the semidirect product is as described
in Proposition 3.3 and k; = dim U;.

Let p € G k, and v and w be K-fixed unit vectors. The restriction
P|II™ a7, €A1 be written as a direct integral |’ « Padu(a) where X is some

Borel measure space with measure p, @« € X and p, is an irreducible
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m
representation of [] H; for all & € X (cf. [3]). Without loss of generality,
=1
we may assume that all p,’s are non-trivial spherical representations.
Any element a € AT can be uniquely written as a = aj - - - a,,c Where

m
a; € AT(H;) and ¢ € Cg(]] H;). Write p(c)v and w as [vadu(e)
i=1

and [ wsdp(a) respectively where v, and wq, are vectors in p,. Since ¢
centralizes each H;, p(c)v is K N H;-fixed for all 1 < ¢ < m. Therefore
there is no loss of generality in assuming that for all a € X, v, and w,
are K N H;-fixed for all 1 <i < m. Fix a € X. Then

m m m
pa|H;’;lHi :®pai7 Vg :®vaia We :®waia
i=1 =1 =1

where p,; is a spherical irreducible representation of H; and v,; and wq;
are K N H;-fixed vectors for each 1 < ¢ < m. By Moore’s theorem (cf. [12,
Thm 2.1.9]), for each 1 < i < m, the representation p,; is non-trivial
and po; has no U;-invariant vector.

By Proposition 3.3, we obtain that for each 1 < i < m,
I(pai(ai)vai,wai)l < EH,-”'Uczi” : ”waz”

Hence

|(pa([] @)V wa)| du(ar)

i=1

[(p(a)v, w)]| <

|(Paxi (04) Vo Wai) | dpa(e)

-
Il
—

VAN

(Ea, (@) |vaill - lwasll) dp()

s

1

W

I
I s~ s~
s

(1]

a,(ai)||p(c)v]| - [lw]

.
Il
-

a,(aq) o]l - llw]| = [ En, (a:)-

1 =1

s
[n

<

-.
Il

Note that the modular function 5, of H; N B is equal to exp(/3;). Hence
by Proposition 3.1, for each i, there exists a constant C; (not depending
on a) such that

Ey,(a;) < C; exp(—% + €)Bi(a).

This proves the proposition. []
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3.5. Proof of Theorem A.— It is well known [1, Thm 7.2] that G
contains a connected simple closed subgroup Gy such that Gg is split
over R, rank Gy = R-rank G and @' is isomorphic to ®(go, goNa) where &’
is the set of all non-multipliable roots in ®g(g, a) and go is the Lie algebra
of Go. Recall the strongly orthogonal system Q(®') = {v1,..., 7~}
of @’ we constructed in section 2.2.

The notation u, for & € ® denotes the one-dimensional root subalge-
bra of go. Set N = N(®'). For each 1 < i < N, we define H; to be the
connected closed subgroup of Gy whose Lie algebra is generated by u..,.

o Case @' # D,_oryr1- — We note that the restriction F|a+ of the
function F' to A in Theorem A is equal to vazl 6x,”/? or equivalently,

N
Fla+ = Hexp(—%%).

=1

Then Theorem A follows from Proposition 3.4.
e Case ®' = Dp—okxt+1. — In this case, we define Hj to be the
connected closed subgroup of Gy whose Lie algebra is generated by

Uit (app1+2(aks2ttan—2)+an_1+an)s Uta, and Uiq, . Note that the Lie
algebra of H); is isomorphic to that of SO(3,3). We have that

n—2

Smy, = exp(4ak)( H exp(6ai)) exp(3a,—1) exp(3an).
i=k+1

By [7, Lemma 4.1], the restriction p| a7, is strongly L4*€ for any p € G.

This implies [3, Cor. 7.2] that the restrictions to H} of the K-finite

matrix coefficients (with respect to unit vectors) of p are bounded by :}{/,2.

It is not difficult to see from the proof of Proposition 3.4 that, when we
replace Hy by Hy', a statement similar to Proposition 3.4 holds, that
is, the K—matrix coefficients of p for any p € Gk are bounded above

by ( H 5_1/ 2)6—1/ % Therefore it remains to observe that the function F
in Theorem A is given by

n—2 n—2

Flar = (J] exo(=3%)) explaw) ( I] exp(as))

i=1 i=kt1
xexp( Qe 1)exp(%an),
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n—2

- —1/2y —1/4
which is equal to (I_Il by, )5 HY to complete the proof.

REMARK. — The results in section 2.2 show that the function F is
the best possible upper bound for K-matrix coefficients, which can be
obtained using Proposition 3.4 when ® # D,_o;.1. Note that when
®' = D,—2;.1, we improved F by replacing one SLy(R) by SO(3, 3).

COROLLARY 3.6.— With G, ® and ay, - - -, oy, as in section 3.5, suppose
that O = {B1,...,0B:} is a strongly orthogonal system of ® and that for
¢

some number r, the coefficient of aj in Y. 73; is strictly bigger than the
i=1

coefficient of oj in 2log(ég) for each 1 < j < n. Then
p(G) <r and pr(G)<r.

3.7. — In each simple real-split Lie group G, the modular function é¢
of B is given as below (¢f. [2]), from which the remark after Corollary C
follows.
P log é

n

An ) in—i+ Da,

=1

n—1

B, (Z (2ni — iz)ai) +na,,
=1

Cp (z": (2ni —i% + i)ai) + %n(n + Dan,
=1

n—2
D, (Z (2ni — % — i)ai) + %n(n — D(ap-1+ an),
i=1

FEg 161 + 225 + 30a3 + 424 + 30as + 160,
Eq 34 + 49as + 66az + 96y + Thas + 52a + 277,
Es 92a1 + 136 + 182a3 + 27004 + 2205 + 1680,

+ 11407 + 58as,
Fy 167 + 30 + 42a3 + 220,
Go 10y + 6as.
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4. Spherical unitary representations with minimal decay in
SLn(R) and Sp2n(R)

4.1. — In this section we will show that the upper bound function F
we obtained in Theorem A is the best possible when G = SL,(R)
or Sp,,(R). This will be proved by showing that there exists a spherical
unitary representation of G whose K-matrix coefficients are bounded
from below by a constant multiple of F. Those representations are the
induced representations IndIG: (I) of the trivial representation where P is
the maximal parabolic subgroup which stabilizes the line Re;.

4.2. — For the rest of section 4, let G be either SL,(R) or Sp,, (R).

The group Sp,,, (R) is defined by the bi-linear form (_OI— Ié’“) where I,
denotes the skew diagonal (n x n)-identity matrix. Set
K =80,(R) and Sp,,(R)NSO.,(R)

respectively. Define the maximal parabolic subgroup P of G as follows :
o for G = SL,(R),

P={(9:j) €Glgn=0ifi#1};
o for G:SPQn(R)7
P={(g;) €C|gin =0, gany; =0ifi #1, j #2n}.

We fix an ordering in the root system of G so that the positive Weyl
chamber A* is as follows :

SL,(R), A%t = {diag(a1, -, an) | Hai =1,
1=1
a; > a;41 forall 1 <i<n-—1};

Sp2n(R)’ A+ = {dia'g(ala e )an7a1_7:1, T al_l) l a; 2 Q41 2 1
forall1 <i<mn-—1}.
4.3. — We recall the formula for the matrix coeflicients of the induced
representation Ind$(I) (cf. [5]). Consider the Langlands decomposition

of P: P = MApN. Denote by N the unipotent radical of the opposite
parabolic subgroup to P with the common Levi subgroup M Ap.

If g decomposes under the decomposition G = KM ApN, we denote by
exp H(g) the Ap-component of g. It is well known that the representation
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space of Ind$(I) of the trivial representation I of P can be realized as
L?(N,dz). If g decomposes under NMApN as

g = n(g)m(g)a(g)n(g),

then the action is given by

-1

Indg(I)(9)f(z) = e~ %82 f(7(g™ )

for any f € L?(N,dz) and = € N, where & is the half sum of positive
N-roots.

Define the vector fy of Ind$ (1) as follows :
folz) = e~ bo(H(z))

It is not difficult to see that fy is K-fixed and the matrix coefficient
of Indg(l ) with respect to fo is as follows :

(d$.(1)(g) fo, fo) = / e—bolloga(g™12)) g—80(H(a(g™12))) g=b0(H()) 4.
N

4.4. — Theorem D follows from the following proposition and Theo-
rem A.

PRroPOSITION. — There exists a constant C such that

CF(a) < [(Ind%([)(a)fo,foﬂ

where a € AT and F is as in Theorem A

Proof of Proposition 4.4.

e Case G =SL,(R), n > 3.

Denote by a the matrix diag(ai, - - -, an) € SL,(R) and by = the matrix
in N whose first column is (1, z2,- -, z,), that is, z.e; = (1,z2,...,Ty)-
To simplify notation, set z; = 1. B

The decomposition of @'z under NMApN is as follows :

-1 -1 -1/(n-1
“Un-)) o1y

a(@'z) = diag(a1,a

b

_ i~ ay ay
(@ tz) e = (1, — Ty —~a:n)
a2 n

Then expéo(a(@='z)) = a;™? and H(z) = ||z.e1]| = VY w2
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Therefore

(IndZ(1)(@) fo, fo) = /N 2@ 21| e | da

_ e T
L S (S

where dm is the standard measure in R* 1.
Set k = [$ (n+1)] and let T be the following set :
{(xz,---,:cn) [0<z;, <1for2<i<k—1,1<z, <2,

a; .
z; < — 1z fork+1§z§n}.
ag

Note that if (zg,...,x,) € T, then for each 1 < i < n, we have

T, T
;<2 and =< ZE.
a; ak
Thus for (z3,---,z,) € T, we have
—n/4 —n/4

(é(al)%’z)) (En:fvz) > Cop?

for some constant C > 0. Therefore

|(Ind$(1)(@) fo, fo)| > C /T ax™?dm > Cay™/? iz];L (g;) > CF(a).

o Case G = Sp,,(R), n > 2.

For a = diag(a1, -+, an,a; %, --,a7") € Sp,, (R), we have
n i\ 2 n -n/2
G ~ _ L )2
aagn@m = [ (2 () + > (o)
—n/2

X (zn::cf + iyf) dm
=1 =1

where z; = 1. Let T be the following set :
(20
{(xla"'axn»yn""7yl) | 1<y, <2, 9, < ;yn,
1

Ogmigl,ogyi§2f0r1§i§n}.
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Note that if (z1,...,Zn,Yn,-.-,¥1) € T, then
Z; < aianYn

since a; > 1 for all 1 < i < n. Therefore
| AndE(1) @ fo ol = € [ (@) " dm = CF(@)
T

where C is some positive constant, finishing the proof.

5. (G, K)-tempered subgroups and finite dimensional
representations

5.1.—Let H be a linear connected non-compact semisimple Lie group.
Let By be a minimal parabolic subgroup, Ay a maximal R-split torus
contained in By and Ky a maximal compact subgroup of H. Consider
a Cartan decomposition of H : H = K HA;;K . Let A be the torus
of SL,(R) consisting of all the diagonal elements and A" the positive
Weyl chamber of SL, (R) given by

AT = {diag(a1,...,an) | a; > a;41 forall 1 <i <n-—1}.

Let 7 be a representation of H to SL,(R) such that m(Ag) C A. For
each 1 <i < n, we define a weight §; of dr by

Bi(X) = (4,4)-entry of the matrix dm(X) for X € log Ay,
where drm denotes the differential of w. Denote by W the Weyl group
of SL,(R). Using the well known isomorphism of W with the symmetric
group on n letters, we can consider the action of W on {f1,...,06,} by
w(Bi) = Buw(i for each 1 < i < n.
For each w € W, set

a4, = {X €log(Af}) | w(B:)(X) > w(Bi41)(X) forall 1 <i<n—1}.
Note that since
ay = {X €log(A};) | dr(X) € w ' (log At)w},

we have that log(A4;) = Uyew 9w It is not difficult to see that we can
choose a subset Wy C W (not unique) so that log(A};) = Uwew, 0w the
interior of a,, is non-empty for each w € W)y, and the interiors of a,,’s,
w € Wy are disjoint. For example, if F(AE) C AT, then we can choose W
to consist of only the identity element of W.

We keep the above notation, such as H, A", m, B1,...,Bn, Wo, aw,
etc., for the rest of Chapter 5. Recall also that 65 denotes the modular
function of By.
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The following is an application of Theorem D when G = SL,(R).

CoroLLARY. — The subgroup w(H) is an (SL,(R), SO, (R))-tempered
subgroup if and only if the following holds : for each w € Wy and
al X € ay,

e if n is even

w(B1)(X) + -+ w(Bny2)(X) > log(8u)(X);
e if n is odd

w(B1)(X) + - 4+ w(Bn-1)/2)(X) + %w(ﬂ(n+1)/2)(x) > log(6)(X).

Proof. — Note that

Z / (F om)byda.

/ (Fom)égda=
A’I"_, wEW, ¥ €XP tu

On the other hand, on each a,,, the restriction of —log F' o 7 to log A;}
is equal to the function in the left in the above inequality (see Example
before Theorem D). This proves the claim by Theorem D. []

ExampLE. — If H is simple and Ad is the adjoint representation
of H, we can consider Ad(H) to be a subgroup of SL,(R) where n =
dim(Lie(H)). Since the restriction of —log F o Ad to log A}, is equal
to log 8y, we have that Ad(H) is not an (SL,(R),SO,(R))-tempered
subgroup by the above corollary.

5.2. —Let Aj,..., A\x the fundamental weights of the Lie algebra of H
corresponding to A}}. For any weights v; and 7, of the Lie algebra of H,
we define a partial order > so that y; > ~; if and only if (71, A;) > (72, Aj)
for all 1 < j < k. This is equivalent to saying that the coefficient of each
simple root in 1 — 72 is positive, or y1(X) > 72(X) for all X € log A};.

If X\ is the highest weight of an irreducible representation, then the
lowest weight, which we will denote by A()\), is given by

(A(N),X;) = =(\,i();)) for each 1 < j <k,
where i is the opposition involution of the root system of Lie(H) (cf. [11]).
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CoROLLARY. — Let H be a linear connected semisimple Lie group and
m an irreducible representation with the highest weight A. Suppose that

A—AN) > 2logbp.

Then w(H) is an (SL,(R), SO, (R))-tempered subgroup.

Proof. — Let w € Wy. Since A and A()) are the highest weight and the
lowest weight of 7 respectively, it follows from the definition of a,, that

w(B1) =X and w(B,) = A(N).

Let X be any element in a,,. Since w(G;)(X) > w(Bi+1)(X) for each
1 <i<n-1, we have that if n is even,

n/2
2) w(B)(X) = 2w(6:)(X) + Z w(B:)(X
i=1 =2
and if n is odd
(n-1)/2
D w(B)(X) + w(Bnsy/2)(X) > 2w(B1)(X) + Z w(B:) (X
i=1
On the other hand, since i B =0,
=1
n—1
2uw(f1) + > w(Bi) =w(Br) — w(Bh),
i=2

which is equal to A — A()). Therefore the assumption that A — A(A\) >
2log 85 implies the inequalities in Corollary 5.1, finishing the proof. []

REMARK. — By the remark prior to Corollary 5.2 and the fact that
(log s, A;) = (log6y,i();)) for each 1 < j <k,
we have that if A > log 6, then A — A(\) > 2log ég ; so the hypothesis of
the above corollary is satisfied.
ExampLE. — If H = SLi41(R) in Corollary 5.2, then
A=A\ > 2log by
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is equivalent to the following :

¢+ chy1—; > 2j(k+1—j)for 1 <j<k
where ¢; = (A, Aj).

ExampPLE 5.3. — The following examples are applications of Corol-
lary 5.1.

1) If 7 is an irreducible representation of SLz(R) into SL,(R), then it is
well known that (A, A1) = %(n —1); whereas (logép, A1) = 1. Therefore
7(SL2(R)) is an (SL, (R), SO, (R))-tempered subgroup if and only if n > 4.

2) The embedding of SLi(R) as the first k£ by k diagonal block matrix
in SL, (R) is not an (SL,,(R), SO, (R))-tempered subgroup for any positive
integers k and n.

3) For matrices A of order m and B of order k, the Kronecker product
A ® B of A and B is the matrix of order mk such that the (ij)-matrix
block of A® B is a;; B where a;; is the (ij)-entry of A.

The group SL,,(R) ® I, is an (SLyuk(R), SOk (R))-tempered subgroup
if and only if k > 2(m — 1).

5.4. — In this section we consider the case when 7 is symplectic or
orthogonal. It is worthwhile to state the following fact, which enables us
to tell when an irreducible representation 7 with the highest weight X\ has
such a property.

THEOREM (cf. [11, Ch. 3, Thm 2.15)). — The representation 7 is self-
dual if and only if A = —A(X). In such cases, ® is orthogonal (resp.

k
symplectic) if Y (logém, Aj)(X, A;) is even (resp. odd).
Jj=1

We remark that all finite dimensional irreducible representations of H
are self-dual unless H is of type A,, Dars1 or Eg.

5.5. — We have the following corollary of Theorem D when G =
Sp,,(R), which is analogous to Corollaries 5.1 and 5.2.

We use the same realization of Sp,, (R) as in section 4.2 so that a positive
Weyl chamber of Sp,,(R) is the following :

Spn(R) N A* = {diag(ar, -+, an/2, 0,75, a7") |

aiZaiHZlforaHlSig%n—l}.
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COROLLARY. — Let H be a linear connected semisimple Lie group and
7 a representation such that m(H) C Sp,(R).

(1) The subgroup w(H) is an (Sp,(R),Sp,(R) N SO, (R))-tempered
subgroup if and only if for each w € Wy,

w(B1)(X) + -+ w(Bn/2)(X) >log by (X) for all X € ay,.

(2) Furthermore assume that 7 is irreducible with the highest weight X.
Suppose that
A > logédy.

Then w(H) is an (Sp,(R), Sp,, (R) N SO, (R))-tempered subgroup.

Proof. — The proof of the first claim is similar to that of Corollary 5.1;
so we will omit it. Since A is the highest weight, w(8;) = A for each
w € Wy. Since w(3;)(X) > 0 for any X € a,, and each 1 < ¢ < %n, we
n/2

have > w(6;)(X) > A(X). Now the second claim follows from the first
=1

one. []

5.6. — We consider a realization of SO(m,n —m), m = [%n] so that
a positive Weyl chamber of SO(m,n —m) is given by SO(m,n—m)N A,
that is, if n is even,

{diag(a1, -, am,apt, - ,a7") | a; > a1 > 1forall 1 <i<m— 1}
and if n is odd,

{diag(al,-'-,am,l,a,_nl,w‘,al_l) [ai>aiy1 >1forall<i<m-—1}.

CoROLLARY. — Let H be a linear connected semisimple Lie group and
m an n-dimensional irreducible representation with the highest weight A
such that w(H) C SO(m,n —m) where m = [4n]. Suppose that

A > logéy.

Then w(H) is an (SO(m,n — m),SO(m,n — m) N SO, (R))-tempered
subgroup.

Proof. — Consider the case when n is even. Let p = [%n] Then for
any w € Wy and any X € a,, the function F' in Theorem A is such that

—log Fom(X) = w(B1)(X) + - - + w(Bp)(X).
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Therefore by the same argument as in the previous corollary, it is
enough to show that

w(B)(X) + -+ w(Bp)(X) > log b (X).

This is true since w(G;)(X) > 0 for all 1 <3 < p and w(f1) = A. The
proof in the case when n is odd is similar. []

ExaMPLE. — If H = SLx41(R) and ¢; = (A, )j) for 1 < j < k, then 7
is self-dual if and only if ¢; = cx41—; for 1 < j < k, and the condition A >
log 8 is equivalent to the condition ¢; > 2j(k+1— j) foreachj=1,---,k.

Therefore with these two conditions satisfied, if Z i(k + 1 —1)c; is even,
then 7(SLi41(R)) is an (SO(m, n— m) SO(m,n— m)ﬂSO (R))-tempered
subgroup where m = [2 n|, and if Z i(k+ 1 —1i)c; is odd, then w(H) is

an (Sp,(R), Sp,,(R) NSO, (R))- tempered subgroup.

Moreover in the case when H = SLy(R) and 7 is an n-dimensional
irreducible representation with n > 4 (¢f. Example 5.3), the subgroup
7w(SL2(R)) is (Sp,(R), Sp,,(R) NSO, (R))-tempered if n is even; otherwise
it is (SO(m,n — m), SO(m,n — m) N SO, (R))-tempered.

5.7. Unipotent tempered subgroups. — Lastly we give examples
of some unipotent tempered subgroups of G = SL,,(R). In order to apply
Theorem D when H is not semisimple, we need to know how each element
of H decomposes under the Cartan decomposition of G.

(1) i) as klakz

under the Cartan decomposition of SLy(R) with K = SO2(R) and A the
torus consisting of all the diagonal elements. Since v,(vs)? = kya® kT ! the
eigenvalues of a? coincide with those of vs(vs)!. If a = diag(b,b~1), then

b:\/%(2+32+5\/sz+4).

Consider the one parameter unipotent subgroup U;; of SLy,(R) consis-
ting of the elements u;;(s) = I + sE;;, s € R, where i # j and E;; is the
elementary matrix whose non-zero entry is 1 only at (¢,7). We keep the
same notation as in section 5.1. Then the A*-component of u;;(s) under
the Cartan decomposition of SLy,(R) is diag(b,1,---,1,b7!) where

1
b= \/5(2+32+3\/s2+4)
by the previous argument.
Therefore F(u;;(s)) is equal to (\/% (2+ 82 +svs2 + 4))

Consider the decomposition of the element vs = (

-1
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PROPOSITION. — Letn > 2 and i # j.

(1) For any € > 0, the restriction F|u,; is L'*¢(U;;)-integrable;
hence U;; is not an (SL,(R), SO, (R))-tempered subgroup.

(2) The diagonal embedding

6(Uij) = {(9,9) € SLn(R) x SL,(R) | g € Uy; }

is an (SL,(R) X SL,(R), SO, (R) x SO, (R))-tempered subgroup.

Proof. — The part (1) is clear. For the second claim, see the remark
following Corollary B. []

Now consider the unipotent one-parameter subgroup U of SL4(R)
consisting of the elements

U(s) = , s€R.

SO O
SO = o
o= OO
- n OO

It is easy to see that the following proposition holds.

ProOPOSITION 5.8. — The subgroup U is an (SL4(R), SO4(R))-tempered
subgroup.
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