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GROWTH OF A PRIMITIVE OF A
DIFFERENTIAL FORM

by Jean-Claude Sikorav

Abstract. — For an exact differential form on a Riemannian manifold to have a
primitive bounded by a given function f , by Stokes it has to satisfy some weighted
isoperimetric inequality. We show the converse up to some constants if M has bounded
geometry. For a volume form, it suffices to have the inequality (|Ω| ≤

R
∂Ω

fdσ for
every compact domain Ω ⊂ M). This implies in particular the “well-known”result that
if M is the universal covering of a compact Riemannian manifold with non-amenable
fundamental group, then the volume form has a bounded primitive. Thanks to a recent
theorem of A. Żuk, we also obtain that if the fundamental group is infinite, the volume
form always has a primitive with linear growth.

Résumé (Croissance d’une primitive d’une forme différentiable)
Pour qu’une forme différentielle exacte sur une variété riemannienne M ait une pri-

mitive majorée par une fonction f donnée, il faut d’après Stokes satisfaire une certaine
inégalité isopérimétrique pondérée. Nous montrons une réciproque à des constantes
près si la variété est à géométrie bornée. Pour une forme volume, l’inégalité (|Ω| ≤R
∂Ω fdσ pour tout domaine compact Ω ⊂ M) suffit. Ceci implique en particulier le
résultat « bien connu » que si M est le revêtement universel d’une variété riemannienne
compacte à groupe fondamental non moyennable, la forme volume a une primitive
bornée. Grâce à un théorème récent d’A. Żuk, nous obtenons aussi que si le groupe
fondamental est infini, la forme volume a toujours une primitive à croisssance linéaire.
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1. Statement of the results and comments

Let M be a complete and non compact Riemannian manifold, ω ∈ Ωq(M)
be an exact differential form of degree q, and f : M → R+ be a continuous
function. We want to find sufficient conditions for the existence of a primitive
τ ∈ Ωq−1(M) such that |τ | ≤ f . Stokes’ formula gives as a necessary condition

the weighted isoperimetric inequality

(1)
∣∣∣ ∫

T

ω
∣∣∣ ≤ ∫

|∂T |
f for every T ∈ S1

q (M).

Here S1
q (M) denotes the vector space of singular q-chains T =

∑
λisi of class

C1, and ∫
|S|

f :=
∑

i

|λi|
∫
∆q

(f ◦ si) |Λqdσ|.

Examples. — If M is simply connected and has nonpositive curvature, then
any closed and bounded form has a primitive with at most linear growth, this
being clearly optimal by Stokes in the case M = R

2, ω = xdy. If the curvature
is ≤ −a2 < 0, then the primitive is even bounded if q ≥ 2.

On the other hand, there is an example of Gromov (see [G3], 3.K’3, 6.B1 (c))
for q = 2, M the universal covering of a compact X , and ω lifted from X , in
which the inequality (1) implies that no primitive of ω has recursive growth!

Here we investigate the following

Question. — Assume that (1) holds. Does ω have a primitive τ ∈ Ωq−1(M)
such that |τ | ≤ f ? Or at least, such that |τ |x ≤ C1maxB(x,C2) f ?

The existence of a primitive such that |τ | ≤ f follows from Hahn-Banach if
we allow τ to be flat in the sense of Whitney [W] (roughly, this means that τ has
measurable coefficients and dτ = ω holds in the sense of currents). To obtain
a result for smooth forms, we shall assume that M has bounded geometry in
the sense that it is complete, its sectional curvature is bounded in absolute
value and its injectivity radius is bounded below. Examples include coverings
of compact manifolds and leaves of foliations on compact manifolds. Such
a manifold admits a triangulation with bounded geometry, in a sense made
precise in section 2. Our main result is the

Theorem 1.1. — Let M be a Riemannian manifold, with a triangulation K of
bounded geometry. Let ω ∈ Ωq(M) be a closed q-form, and let f ∈ C0(M,R+)
be such that

(2)
∣∣∣ ∫

T

ω
∣∣∣ ≤ ∫

|∂T |
f for every simplicial chain T ∈ Cq(K).
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Then ω has a primitive τ such that, for some constants C1(M,K) and
C2(M,K), one has

|τ |x ≤ C1 max
B(x,C2)

(
|ω|+ f

)
.

I do not know if (assuming the stronger isoperimetric inequality (1)) one can
dispense with the assumption of bounded geometry, or if one can drop |ω| in
the estimate.

In the case of volume forms, we get:

Corollary 1.2. — Let (M,K) be as above, with M oriented. Assume that

(3) |Ω| ≤
∫

∂Ω

f dσ for every simplicial domain Ω ⊂ M.

Then the volume form ν has a primitive τ such that

|τ |x ≤ C1 max
B(x,C2)

f.

Combining this with a recent result of A. Żuk [Z], we obtain:

Corollary 1.3. — Let X be a compact oriented Riemannian manifold with
infinite fundamental group. Then the volume form on the universal covering
M = X̃ has a primitive τ with at most linear growth.

Comment. — To my knowledge, the first mention of growth of primitives was
made by D. Sullivan in 1976 (see [Su]). He asked whether, on an oriented
manifold satisfying the inequality |Ω| ≤ Cst. vol(∂Ω) for every compact domain
Ω ⊂ M , the volume form has a bounded primitive (M is “open at infinity”).
He was especially interested in the case when M is a leaf of a foliation on a
compact manifold. In the case when M is the universal cover of a compact
manifold X , the isoperimetric inequality is equivalent to the Følner criterion
for the non-amenability of π1(X) (see [GLP], chap. 6).

A positive answer to the question of Sullivan has been asserted (without
any restrictions) by M. Gromov (see [G1], p. 197). R. Brooks (see [Br], pp. 61–
62), sketches a proof “conceptually simple but with some unpleasant technical
details”: one first finds, for a suitable triangulation [geometrically bounded
presumably], a bounded cochain such that dψ = vol. Then one smooths out ψ
after letting this triangulation get arbitrarily small.

Another proof (under the assumption of bounded geometry) has been given
by J. Block and S.Weinberger (see [Bl-W], remark after Theorem 3.1, cf. also
[A], Thm. 2.13), but it seems somewhat elliptic.

Another case which has had important applications in algebraic geometry
is the following [G2]: if M = X̃ where X is a compact manifold equipped
with a Kähler form ω, then (X,ω) is said to be Kähler-hyperbolic if ω has a
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bounded primitive. Note that in all known examples the growth of the primitive
is at most linear. In the symplectic case on the other hand, one can find an
exponential growth by taking X to be a T 2-bundle on T 2 with hyperbolic
monodromy.

Finally, in [G3], 5.B5, Gromov investigates the general problem of growth of
primitives of bounded forms, which he relates via Stokes to “cofilling inequali-
ties”. One can find there a wealth of related examples and questions, some of
which we plan to tackle in a forthcoming paper.

Acknowledgments. — I thank Rabah Souam for letting me use an unpublished
partial proof of the main result, and Christophe Pittet and Andrzej Żuk for
encouraging me in writing at last this paper! I also thank the referee for the
careful reading, and in particular for having spotted a significant error in my
first proof of Corollary 1.

2. Triangulations of bounded geometry

A suitable version of the Cairns-Whitehead triangulation theorem implies
that every Riemannian manifold with bounded geometry admits a smooth tri-
angulation with bounded geometry (cf. [A], theorem 1.14) in the following sense:

(BG1) the link of each simplex s contains at most S simplices, S
independent of s;

(BG2) each simplex is quasi-isometric to a standard simplex, i.e. there
exists a diffeomorphism ϕs : s → ∆dim s such that |dϕ±1

s | ≤ L,
L independent of s.

We shall assume a slightly stronger version of (BG2), easy to obtain by
subdividing:

(BG3) ϕs can be extended with the same property |dϕ±1
s | ≤ L to a

neighbourhood U(s) of s in M , sending it to a fixed neighbour-
hood of ∆dim s in R

n, n = dimM .

Note that if M covers a compact X , then any smooth triangulation lifted
from X has bounded geometry in this sense.

3. Proof of the theorem

Proceeding as in [So], we construct the primitive as F. Laudenbach in [L],
who in turns follows the constructive proof of De Rham’s theorem in [Sin-T],
pp. 162–173. The new point is the introduction of explicit estimates at each
step.
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First step. — We reduce the theorem to the case when
∫

s
ω = 0 for every

s ∈ K(q).

1) Consider the simplicial cochain Iq(ω) ∈ Cq(K), image of ω by the inte-
gration morphism Iq : Ωq(M) → Cq(K). The hypothesis implies∣∣Iq(ω)(T )

∣∣ ≤ Vq−1‖∂T ‖f , ∀T ∈ Cq(K),

where Vq−1 = maxs∈K(q) vol(s) and ‖
∑

λisi‖f =
∑

|λi|maxsi f , seminorm on
Cq−1(K). By Hahn-Banach, we can define a linear form tω ∈ Cq−1(K) which
satisfies

• tω(∂T ) = Iq(ω)(T ) for every T ∈ K(q), i.e. δtω = Iq(ω);

• |tω(S)| ≤ Vq−1‖S‖f for every S ∈ Cq−1(K).

In particular, we have∣∣tω(s)∣∣ ≤ Vq−1max
s

f ∀s ∈ K(q−1).

2) Since K has bounded geometry, there exists a partition of unity {gj}
subordinate to the covering {st(vj)} (where (vj) are the vertices of K), such
that the differentials |dgj| are bounded by a constant D. Here st(v) denotes
the star of the vertex v, i.e. the union of all simplices containing v. Note that
it is a neighbourhood of v which is sandwiched between two balls of fixed radii.

We can then construct a right inverse P ∗ : C∗(K) → Ω∗(M) to I∗, commut-
ing with the differentials (see [Sin-T], Step 2, p. 166):

P q(t) =
∑

s∈K(q)

t(s)P q(s∗),

where s∗ is the generator of Cq(K) dual to s (i.e. s∗(σ) = δs,σ) and

P q
(
〈vj0 , · · · , vjq 〉∗

)
= q !

q∑
i=0

gjidgj0 ∧ · · · ∧ d̂gji ∧ · · · ∧ dgjq .

It satisfies suppP q(s∗) ⊂ st(s) and ‖P q(s∗)‖L∞ ≤ (q + 1)!Dq. Thus, if stq(x)
is the set of q-simplices s such that x ∈ st(s), we get the estimate∣∣P q(t)

∣∣
x
≤ S(q + 1)!Dq max

s∈stq(x)

∣∣t(s)∣∣.
Each simplex in stq(x) is contained in B(x, 2d) where d = max diam s ≤ L

√
n.

Thus for t = tω and t = Iq(ω), we obtain∣∣P q−1(tω)
∣∣
x
≤ Sq !Dq−1Vq−1 max

B(x,2d)
f,∣∣P qIq(ω)

∣∣
x
≤ S(q + 1)!DqVq max

B(x,2d)
|ω|.
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Note that τ1 = P q−1(tω) is a primitive of P qIq(ω). Define ω̃ = ω − P qIq(ω),
so that Iq(ω̃) = 0 and |ω̃|x ≤ (Aq +1)maxB(x,2d) |ω|. Replacing ω by ω̃, we can
thus assume that Iq(ω) = 0, i.e. the integral of ω vanishes on every q-simplex.

Second step. — We prove a Poincaré lemma with vanishing conditions near
the boundary of a standard simplex (cf. [Sin-T], Lemma 3, p. 169, and [L],
Lemma 4).

If 0 ≤ k ≤ n, the standard simplex ∆k ⊂ R
n is the convex hull of e0, . . . , ek

where e0 = 0 and (e1, . . . , en) is the standard basis. It can be viewed as the
join ek ∗∆k−1.

Fix some k ∈ [0, n] and let U ⊂ R
n be a regular neighbourhood of ∆k.

Let U∂ ⊂ U be a collar neighbourhood of ∂U , which is a regular neighbourhood
of ∂∆k. Let Fq(U,U∂) be the space of q-forms on U which vanish on U∂ ,
and Bq(U,U∂) be the subspace of closed forms such that

(4)
∫
∆k

ω = 0 if k = q.

Lemma. — The operator d : Fq−1(U,U∂) → Bq(U,U∂) has a linear right in-
verse Rq, which is bounded in the L∞ norm.

Proof. — We proceed by induction on q. For q = 1, one defines R1(ω) as the
primitive of ω on U vanishing at 0, so that ‖R1(ω)‖ ≤ ‖ω‖ · diamU . The
vanishing of R1(ω) on U∂ follows from the connectedness of ∂∆k if k > 1, and
from the hypothesis

∫
∆1 ω = 0 if k = 1.

Assume now that Rq−1 has been constructed (for all k !). We can find
a regular neighbourhood U of ∆k−1 and a regular neighbourhood V of the
join ek ∗ ∂∆, such that U ′ ∪ V = U∂ and (U ′, U ′

∂ := U ′ ∩ V ) satisfy the
same hypotheses as (U,U∂) with k replaced by k − 1. Since V ⊂ U are both
regular neighbourhoods of ek ∗∂∆ there exists a smooth deformation retraction
H : U × [0, 1]→ U from U onto V .

Let ω be an element of Bq(U,U∂). Integrating along the fibers of H , one
obtains

P (ω) =
∫ 1

0

H∗
t (ι∂H/∂tω)dt ∈ Ωq−1(U).

This is a primitive of ω vanishing on V , moreover P is bounded in the L∞

norm.

Let ϕ = P (ω)|U ′ . Then ϕ vanishes on U ′
∂ , moreover if q = k the equality∫

∆k−1
ϕ = 0

follows from (4) and Stokes. Thus ϕ belongs to Bq−1(U ′, U ′
∂). By the induction

hypothesis, one has ϕ = d(Rq−1ϕ) with Rq−1 bounded in L∞. Since Rq−1ϕ = 0
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on U ′
∂ , we can extendRq−1(ϕ) by zero to an element ψ of Ωq−1(U ′∪V ) = Ω(U∂).

By construction, dψ = P (ω) on U ′ and 0 on V . Since P (ω) = 0 on V , we
have dψ = P (ω) on U ′ ∪ V = U∂ .

We then extend ψ to U , using an operator E : Ωq(U∂) → Ωq(U) which is
bounded for the norm

‖ω‖1 := max
x

(
|ω|x + |dω|x

)
.

Such an E can be easily constructed using the extension operator of Seeley [Se]

C∞(Rn−1 × R+) −→ C∞(Rn),

as well as obvious generalisations C∞(Rn−k × (R+)k) → C∞(Rn). We can now
define

Rq(ω) = P (ω)− d
(
E(ψ)

)
.

It is a primitive of ω on U , which vanishes on U∂ . Finally, since P and Rq−1

are bounded in L∞ and E is bounded for ‖ · ‖1, Rq is bounded in L∞, which
proves the induction statement and thus finishes the proof of the lemma.

End of the proof of the theorem. — By the first step we can assume
∫

s ω = 0
for each s ∈ K(q).

By property (BG3), we have diffeomorphisms ϕs : U(s) → Udim s ⊂ R
n for

every simplex s. We can replace Uk, k ∈ [0, n] with any smaller neighbourhood
of ∆k in R

n. Choosing suitably (Uk, Uk
∂ ) satisfying the hypothesis of the lemma

and setting U(∂s) = ϕ−1
s (Udim s

∂ ), we can achieve the following properties:

(5) U(∂s) ⊂
⋃

t⊂∂s

U(t),

(6) U(s) ∩ U(s′) ⊂ U(∂s) if s, s′ are distinct elements of K(k).

We shall construct by induction on k a form τk ∈ Ωq−1(M) such that

dτk = ω on Uk :=
⋃

s∈K(k)

U(s)

τk|x + |dτk|x ≤ Ck max
B(x,(k+2)d)

(
|ω|+ f

)
Then τn will give the required primitive of ω.

We define τ−1 = 0. Assume now that τk−1 has been constructed for some
k ≥ 0, and let s ∈ K(k). Then

ωs =: (ω − dτk−1)|U(s)

vanishes on U(∂s) by (5). Moreover, if q = k we have
∫

s ωs = 0. Thus ωs

belongs to Bq(U(s), U(∂s)) (with obvious notations). Also, setting

Mr(s) = max
x,d(x,s)≤r

(
|ω|+ f

)
,
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we have
‖ωs‖∞ ≤ (1 + Ck−1)M(k+1)d(s).

The second step and the property (BG3) give an operator

Rq
s : Bq

(
U(s), U(∂s)

)
−→ Fq−1

(
U(s), U(∂s)

)
which is a right inverse for d and is uniformly bounded in the L∞ norm. Then

γs := Rq
s(ωs) ∈ Ωq−1(U(s))

is a primitive of ωs which vanishes on U(∂s) and satisfies ‖γs‖1 ≤ C′
kM(k+1)d(s).

By property (6), the γs can be glued together to give γ ∈ Ωq−1(Uk) which
vanishes near ∂Uk and satisfies

• dγ = (ω − dτk−1)|Uk
;

• |γ|x + |dγ|x ≤ C′
k maxB(x,(k+2)d)(f + |ω|).

Finally, we extend γ by 0 to γ ∈ Ωq−1(M), and we set τk = τk−1 + γ.
Then ω − dτk vanishes on Uk and |τ |x + |dτ |x satisfies the announced bound.
This proves the induction statement and thus finishes the proof of the theorem.

4. The case of volume forms

We first prove Corollary 1. Note first that inequality (3) implies that the
maximum of f over any n-simplex s is at least vol(s)/vol(∂s), thus a bound
by 1 +max f is equivalent to a bound by max f . Thus it suffices to prove that
we can apply the theorem.

Working with oriented simplices, we write each element T ∈ K(n) as a sum
T =

∑N
i=1 λisi with distinct si. The theorem will apply if we show for any

choice of (λi) the inequality

(7)
∣∣In(ν)(T )

∣∣ ≤ ‖∂T ‖f .

Here as above, ‖
∑

µjtj‖f =
∑

|µj |maxtj f . By hypothesis, (7) holds if the λi

are equal.
We prove the result by induction on N , starting with N = 0 which is trivial.
1) Assume first that the λi are all of the same sign, say positive. Let λ1 be

the smallest, then we decompose T = T1 + T2 where

T1 = λ1

N∑
i=1

si, T2 =
N∑

i=2

(λi − λ1)si.

Consider any t ∈ K(n−1) such that [∂T1 : t] and [∂T2 : t] are both nonzero.
Then exactly one of the two adjacent n-simplices appears among the si. Since
the coefficients of T1 and T2 are nonnegative, [∂T1 : t] and [∂T2 : t] have the
same sign. Thus there is no cancellation between ∂T1 and ∂T2, i.e.

‖∂T ‖f = ‖∂T1‖f + ‖∂T2‖f .
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We have |In(ν)(T1)| ≤ ‖∂T1‖f by assumption, and the induction hypothesis
implies |In(T2)| ≤ ‖∂T2‖f , whence |In(T )| ≤ ‖∂T ‖f as desired.

2) If T has coefficients of both signs, we decompose it into T1 + T2 where
T1 has positive coefficients et T2 has negative coefficients. Again there is no
cancellation between ∂T1 and ∂T2: indeed, for any t ∈ K(n−1), such that
[∂T1 : t] and [∂T2 : t] are both nonzero, they have opposite signs and are
affected with coefficients of opposite signs. We conclude as in 1).

This concludes the proof of Corollary 1.

To prove Corollary 2, let us state the result of Żuk mentioned in the first
section: if Γ is an infinite group, finitely generated by S = S−1, and A a finite
subset of Γ, then

|A| ≤
∑

γ∈∂A

dist(e, γ)

where dist is the distance in the word metric and

∂A =
{
γ /∈ A | (∃s ∈ S) sγ ∈ A

}
.

If M = X̃ as in Corollary 2, we equip it with a smooth triangulation lifted
from X . Then the result of Żuk implies the isoperimetric inequality (3) with
f = Cst. d( ·, x0) (cf. [8], chap. 6). Thus Corollary 1 applies and proves Corol-
lary 2.
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