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ON MEROMORPHIC FUNCTIONS DEFINED BY
A DIFFERENTIAL SYSTEM OF ORDER 1

BY TRISTAN TORRELLI

ABSTRACT. — Given a germ h of holomorphic function on (C™,0), we study the con-
dition: “the ideal Annp1/h is generated by operators of order 1”. We obtain here full
characterizations in the particular cases of Koszul-free germs and unreduced germs of
plane curves. Moreover, we prove that this condition holds for a special type of hyper-
plane arrangements. These results allow us to link this condition to the comparison of
de Rham complexes associated with h.

RESUME (Sur les germes de fonctions méromorphes définis par un systéme différentiel
d’ordre 1)

Etant donné un germe de fonction holomorphe h défini au voisinage de ’origine de
C™, nous étudions la condition : «’idéal Annpl/h est engendré par des opérateurs
d’ordre 1 ». Nous obtenons ici des caractérisations completes dans le cas des germes
Koszul-libres et dans celui des germes de courbes planes non réduits. De plus, nous
montrons que cette condition est vérifiée pour un type particulier d’arrangements d’hy-
perplans. Ces résultats nous permettent de relier cette condition & la comparaison de
complexes de de Rham associés a h.
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1. Introduction

Let h € O = C{x1,...,2z,} be a nonzero germ of holomorphic function such
that h(0) = 0. We denote by O[1/h] the ring O localized by the powers of h.
Let D = O(0/0z1,...,0/0xy,) be the ring of linear differential operators with
holomorphic coefficients and F,D its filtration by order. As usual, we identify
grfD with the polynomial ring O[¢] = O[¢1, ..., &,

Given a/h* € O[1/h] nonzero, we consider the following condition:

The left ideal Annp a/ht C D of operators annihilating a/h* is generated
by operators of order 1.

This condition appears when studying the elements of the holonomic
D-modules O[1/h] and O[1/h]/O (see [18]). Moreover, it is directly linked to
the so-called “Logarithmic Comparison Theorem” (see below). The aim of this
work is to explicit this condition. First we remark the following fact.

PropPOSITION 1.1. — Let a,h € O be germs of holomorphic functions without
common factor. If the ideal Annp a/h is generated by operators of order 1,
then a s a unit.

So, without loss of generality, we will suppose that a = 1. When h defines
a hypersurface with isolated singularity, we have obtained in [18] the following
characterization.

THEOREM 1.2. — Let h € O be a germ of a holomorphic function defining
an isolated singularity. Let £ € N* be a nonnegative integer. Then the ideal
Annp 1/h* is generated by operators of order 1 if and only if the following
conditions are verified:

(a) the germ h is weighted-homogeneous,
(b) the smallest integral root of the Bernstein polynomial of h is strictly
greater than —¢ — 1.

We recall that a nonzero germ h is weighted-homogeneous of weight d € QT
for a system a € (Q*")™ if there exists a system of coordinates in which h
is a linear combination of monomials z7* --- 27" with > | a;; = d. More-
over, the condition (b) means that 1/h* generates the D-module O[1/h] (see
[11, Prop.6.2] and [2, Prop.6.1.18, 6.3.15 & 6.3.16]; for the definition of the
Bernstein polynomial, see the beginning of part 2).

What does remain true without any assumption on h ? First of all, the
condition (b) is always necessary.

PROPOSITION 1.3. — Let h € O be a nonzero germ of holomorphic func-
tion with h(0) = 0. Let £ € N* be a nonnegative integer such that the ideal
Annp 1/h* is generated by operators of order 1. Then the smallest integral root
of the Bernstein polynomial of h is strictly greater than —¢ — 1.

TOME 132 — 2004 — N© 4



ON MEROMORPHIC FUNCTIONS 593

On the other hand, h is not always weighted-homogeneous (Example 1.5).
So, let us denote the condition:

(a’) h belongs to the ideal of its partial derivatives.

In other words, there exists a vector field v € D such that v(h) = h, and we
will say that h is Fuler-homogeneous. In the case of hypersurfaces with isolated
singularities, K. Saito has proved that these two conditions coincide (see [13]).
We conjecture the following fact.

CONJECTURE 1.4. — If there ewists a nonnegative integer £ € N* such
that Annp 1/h® is generated by some operators of order 1, then h is Euler-
homogeneous.

Reciprocally, conditions (a’) and (b) are not always enough to have
Annp 1/h? generated by operators of order 1 (see Example 1.9). Neverthe-
less, they are sufficient when the ideal Annp h® is generated by operators of
order 1 (this is true in the case of isolated singularities (see [12, p. 117], or [23,
Thm 2.19])). Indeed, if h is Euler-homogeneous, then we have a decomposition:

Annpy, h* = D[s](s — v) + D[s] Annp h*;

moreover, with the condition (b), Annp 1/h* is obtained by fixing s = —¢
in a system of generators of Annppgh® (see [18, Prop.3.1]). Finally, the fact
that Annp 1/h* is generated by operators of order 1 does not imply that so
is Annp h*.

EXAMPLE 1.5 (see [3], [4], [6]). — Let h = z1x2(21 + 22) (21 + z223). It is an
Euler-homogeneous polynomial which is not weighted-homogeneous. Indeed, if
there exists a change of coordinates p = (1, p2,3) — with ¢(0) = 0 — such
that h o ¢ is a weighted-homogeneous polynomial for a € (Q**)3, then its
factors are weighted-homogeneous too. Thus the polynomials ¢1, @2 and pap3
must have the same weight, and this is absurd.

The ideal Annp 1/h is generated by the operators:

0
S1 = (z1 + x2x3) 7— + 2,

83:3
So = xa(x +m)i—m($ —1)i—|—x + 3z
2 = (1 22) 1(zs3 By L 25
0 3}
2 et
Ss3 $18z1+$28z2+

The O-module Annp h® N F1D is generated by:
Ql = 451 — .Z'QSg, QQ = 452 - (171 + 3132)53
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and it defines an ideal I C D which does not coincide with Annp h°. Indeed,
one can verify that the following operator:
o 0 0? 0 0

=205 —— — 25— —2 3 —
zQ(’)xl 61‘2 zQal‘g (I1+ 932)353

P
83:1 61‘3

2

o 9 d
2z — 2 — — +8(1— —
+2(21 — 22 + 5xo3) 905 005 8(1 — x3)x3 .
9

0 0
e — 2o — 4225 + 1)—
e 81‘1 2 81‘2 ( 3 + )81'3
annihilates h*. But P does not belong to I because the ideal grf'I is generated
by the principal symbols o(Q1),0(Q2), and in particular grf'I C (21, 22)O[¢]
even if o(P) & (x1,22)O[¢].

In the two following parts, we try to extend to other situations the charac-
terization given by Theorem 1.2. We begin with the case of plane curves.

THEOREM 1.6. — Let h € C{x1,22} be nonzero with h(0) =0, and let £ € N*
be a nonnegative integer.

(i) The ideal Annp 1/ht is generated by operators of order 1 if and only if h
is weighted-homogeneous.

(i) Let N € N* be a nonnegative integer greater than or equal to 2. Let b(s) €
C[s] be the reduced Bernstein polynomial of h. Then the ideal Annp 1/(h+zi )
s generated by operators of order 1 if and only if the following conditions are
verified:

(a) the germ h is weighted-homogeneous,
(b) £>2, or £ =1 and —2 is not a root of a polynomial b(s +i/N), for
1<i<N-1.

If h is reduced, it is a very particular case of Theorem 1.2 (for another proof
of (i), see [6]). We use that the Euler-homogeneous germs of plane curves are
weighted-homogeneous (Proposition 3.4), which comes from K. Saito ([13]).

Another part is devoted to a variant of Theorem 1.2, where the assumption
on h is replaced by a condition on the graded ideal of Annp 1/A’.

THEOREM 1.7. — Let h € O be a nonzero germ such that h(0) = 0, and £ € N*.
Suppose that the O-module Annp1/h* N FyD is generated by operators
Q1,...,Qu such that: gr¥ D(Q1,...,Quw) = (O’(Ql), ce, O’(Qw)) grf'D. Then
the ideal Annp 1/ht is generated by a system of operators of order 1 if and
only if the following conditions are verified:

(a) the germ h belongs to the ideal of its partial derivatives,

(b) the smallest integral root of the Bernstein polynomial of h is strictly

greater than —0 — 1,
(c) the ideal Annp h® is generated by operators of order 1.
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Moreover, Annp h*® is also generated by Q;(1)Q; — Q:(1)Q;, 1 <i<w, i #j,
where j is such that Q;(1) is a unit.

It is not easy to find a family of germs which verify this assumption. Except
for the case of weighted-homogeneous isolated singularities (see [19, Prop. 4.3]),
one can prove that it is also verified for a particular type of free germs — in the
sense of K. Saito [14]: the so-called Koszul-free germs.

Recall that a reduced germ h € O is free if the O-module Der(log h) C D of
vector fields v such that v(h) € hO is free (its rank is also equal to n). The
germ h is said to be Koszul-free if there exists a basis {01, ...,d,} of Der(log h)
such that the sequence of principal symbols (o(d1),...,0(8,)) is grf D-regular
(see [3]). For example, germs of reduced plane curves and locally weighted-
homogeneous free germs are Koszul-free (see [14, Cor. 1.7] and [4]).

COROLLARY 1.8. — Let h € O be a Koszul-free germ. Then the ideal
Annp 1/h is generated by operators of order 1 if and only if the following
conditions are verified:

(a) the germ h is Euler-homogeneous,
(b) —1 is the only integral oot of the Bernstein polynomial of h,
(c) the ideal Annp h® is generated by operators of order 1.

Suppose furthermore that h is Euler-homogeneous. Let {01,...,0,} be a basis
of Der(log h) such that 61(h) = h and 6;(h) =0, 2 <i < n. Then condition (c)

s equivalent to:

(c") the sequence (h,a(02),...,0(8,)) is gri" D-regular.

The following example shows that condition (¢) is neither a consequence of
the assumption of Theorem 1.7 on gr” Annp 1/h* nor a consequence of condi-
tions (a) and (b) for a Koszul-free germ.

EXAMPLE 1.9. — Let h = 25+ a5+ 23x3. Tt is a Koszul-free germ which is not
Euler-homogeneous. Let h = exp(z3)h. Using Saito criterion (see [14]), it is
easy to see that the Euler-homogeneous germ h is Koszul-free. Up to a unit, h
and h are equal ; so they have the same Bernstein polynomial. In particular,
—1 is the only integral root of the Bernstein polynomial of h. So h verifies
conditions (a) and (b), but not (c). Indeed, condition “Annp 1/h is generated
by operators of order 1” only depends on the hypersurface germ defined by h,
and it is not verified by & (see Theorem 1.6).

Let us remark that this characterization can not be extented to the case of
free germs (since the germ of Example 1.5 is free).

In the last part, we study the case of a hyperplane arrangement defined
by h =0 in C™. Indeed, A. Leykin has proved the following fact.
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PRrROPOSITION 1.10 ([21, Thm 5.1]). — The Bernstein polynomial of any ar-
rangement has only —1 as integral root.

Is the ideal Annp 1/h generated by operators of order 1 7 We prove here that
it is true for the union of a generic hyperplane arrangement with a hyperbolic ar-
rangement (Theorem 5.2). Moreover, our geometric proof gives an explicit sys-
tem of generators of Annp 1/h. In the particular case of a generic central hyper-
plane arrangement (Corollary 5.3), this answers a conjecture of U. Walther [21].

We end this introduction by linking these results to the Logarithmic Com-
parison Theorem. For any hypersurface D C C™, we denote by Q°*(xD) the
de Rham complex of differential meromorphic forms with poles along D and by
Q°*(log D) its subcomplex of logarithmic forms, introduced by K. Saito ([14]).
One says that the Logarithmic Comparison Theorem (LCT) holds for D if the
inclusion:

(1) ip: Q*(log D) — Q* (D)

is a quasi-isomorphism. Indeed, according to Grothendieck Comparison The-
orem (see [9]), the complex Q°(log D) computes also the cohomology of the
complementary of D C C™. So, it is natural to search for conditions on D
such that the LCT holds for D. For instance, F.J. Castro-Jiménez, D. Mond
and L. Narvdez-Macarro have proved that it is true for all locally weighted-
homogeneous free divisors (i.e. free and weighted-homogeneous at all their
points) (see [5]). We conjecture that the following fact is always true.

CONJECTURE 1.11. — Let hp € O be a reduced equation of (D,0). Then
the ideal Annpl/hp is generated by operators of order 1 if and only if the
Logarithmic Comparison Theorem holds for (D, 0).

Let us give now three significant results at the origin of this assertion. First,
using F.J. Calderén-Moreno works on differential logarithmic operators rela-
tive to a free divisor (see [3]), F.J. Castro-Jiménez and J.M. Ucha-Enriquez
have proved that for a locally weighted-homogeneous free divisor, the de Rham
complex of the holonomic D-Module: Mg = D/ T log  where T8 is the left
ideal generated by Annp 1/hp N F1D, is quasi-isomorphic to £2°(log D) ([7]).
Moreover, using the de Rham functor, the morphism:

¢p: M5 —, OxD), P+I%+—— p. hi

D
is an isomorphism if and only if the morphism ip of (1) is a quasi-isomorphism.
The same result for a Koszul-free divisor is announced by L. Narvaez-Macarro.
But, from Proposition 1.3 and diagram M°¢ — D1/hp — O(xD), it is clear
that ¢p is an isomorphism if and only if Annp 1/hp is generated by operators
of order 1. In particular, Corollary 1.8 gives a characterization of the LCT in

the case of Koszul-free germs.
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ON MEROMORPHIC FUNCTIONS 597

Moreover, M. Holland and D.Mond have obtained some characterizations
of the LCT for weighted-homogeneous hypersurface with isolated singularity
(see [10]). In terms of weight of elements of a weighted-homogeneous co-basis
FE of the jacobian ideal of hp, they have obtained the following condition: there
is no vector e € E whose weight belongs to the set {ip — |a|;1 < i < n — 2}
(where a € (Q*T)™ is the weight system and ¢ € Q*t is the weight of hp).
Using the formula of Bernstein polynomial of a weighted-homogeneous isolated
singularity (see [23, §11]), it is also easy to check that this is equivalent to the
fact that —1 is the only integral root of the Bernstein polynomial of hp. So,
from Theorem 1.2, our conjecture is verified.

Finally, H. Terao and S. Yuzvinsky conjecture that the LCT holds for any
central hyperplane arrangements in C™. They have proved it when n <5, and
for special types of arrangement (see [22]). So, Theorem 5.2 agrees with our
assertion.

2. Two necessary conditions

In this part, we prove Propositions 1.1 and 1.3. First, we recall some ele-
mentary facts about Bernstein polynomials.

Given a nonzero germ of holomorphic function f € O, there exists functional
equations:

(2) b(s)f* = P(s)f**

in O[1/f,s]f®, where b(s) € C[s] and P(s) € D[s] = D ® C|[s] are nonzero
(see [11]). The Bernstein polynomial of f at the origin is the unitary polyno-
mial b(s) of smallest degree which verifies such an identity. When f is not a
unit, it is easy to remark that —1 is a root of b(s). So, we call the reduced
Bernstein polynomial, denoted by I;(s), the quotient of b(s) by s+ 1.

The proof of Proposition 1.1 uses the following fact.

PRrOPOSITION 2.1. — Let a € O be a nonzero germ. Then a is a unit if and
only if the annihilator in D of a, Annp a, is generated by operators of order 1.

Proof. — If a is a unit, it is obvious that Annp a is generated by the oper-
ators (0/0z;)a”t, 1 < i < n. Now, let us suppose that Annp a is generated
by Q1,...,Qw € F1D and that a is not a unit. Thus s + 1 is a factor of the
Bernstein polynomial of a, denoted by b(s).

Using a Bernstein equation of a, we get:

b(s)b(s + 1)a* = P(s)a**?
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where P(s) € D[s]. As —1 is a root of b(s), the operator P(—1) annihilates a.
So it may be written P(—1) = >"." ; A;Q; with A; € D. Thus, we have:

P(s) = (s + 1)P'(s) + > AiQs,
i=1
with P’(s) € D[s], and the previous identity becomes:
b(s)b(s + 1)a® = (s + 1) [P’(s)a +3°AQ a]] a* 1,
i=1

By division by s + 1, we deduce that b(s)b(s + 1) is a multiple of the Bernstein
polynomial of a. But this is absurd: the multiplicity of the root —1 in b(s)
is strictly greater than the one of b(s)b(s + 1) because b(0) # 0 (the roots of
the Bernstein polynomial of any germ are strictly negative, see [11]). Hence,
a must be a unit. O

Proof of Proposition 1.1. — If h is a unit, the assertion is a direct conse-
quence of the previous result. So, we will suppose that h(0) = 0. Let a, h
be holomorphic functions which define a, h on a neighborhood U C C™ of the
origin. Up to a restriction of U, we may assume that the zero set V(a, h) C U
has codimension 2, and that the annihilator of a/ h is generated by operators
on U of order 1. Then, at any point M € U such that B(M) # 0, the anni-
hilator of a verifies the same property, and from the previous proposition, we
have a(M) # 0. Thus, @ has no zero in the complementary of V(a,h) C U,
and then no zero at all in U. Hence, the germ a is a unit. O

Finally, let us give the proof of Proposition 1.3.

Proof — Let h € O benot a unit, and ¢ € N* such that Annp 1/h? is generated
by operators @1, ...,Q, of order 1. For 1 < ¢ < w, we denote by ¢; the germ
Q:(1) € O and by Q} € D the vector field Q; — ¢; ; thus we have £Q}(h) = ¢h,
1 < i < w. Let us suppose that the Bernstein polynomial of h, denoted b(s),
has an integral root strictly smaller than —¢. We denote by k € Z — N, the
greatest root of b(s) verifying this condition. Using a Bernstein equation which
gives b(s), we get:

b(s)---b(s — £ — k — 1)h* = P(s)h**~*

where P(s) € D[s]. Thus P(k) annihilates h~¢, and so, it may be written
Pk) =Y, AQ; with A; € D, 1 < i < w. If P'(s) € D[s] is the quotient
of P(s) by s — k, the previous equation becomes:

/A _ S — _ / 1 N P —l—k—1 s+1
b(s) - b(s = L=k = 1) h* = (s = k) P (s)+€2Azqz]h h
c(s) =
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where —¢ —k—1 > 0 and the multiplicity of k in ¢(s) is the same in b(s). Then,
by division by s — k, we get a functional equation of the form (2) such that the
polynomial in the left member is not a multiple of b(s). But this is not possible,
because b(s) is the Bernstein polynomial of h. Hence we have the result. O

3. The case of plane curves

The aim of this part is the proof of Theorem 1.6, which extends to the case
of non reduced planes curves the characterization given by Theorem 1.2. First,
we recall some results of K. Saito on the weakly weighted-homogeneous power
series and the formal differential operators of order 1 (see [13]).

3.1. Normal form of formal differential operators of order 1. — Let
0] 0
D=aj— 4+ a,—
“ o0z * ta oxy,
be a formal differential operator with a;(0) = 0, 1 < i < n. We denote
0D /0x the jacobian matrix of (ai,...,ay). The operator D is semi-simple in

the coordinates x1,...,x, if dD/0z is a diagonal matrix. The operator D is
nilpotent if the eigenvalues of (0D/dx), are zero.

PROPOSITION 3.1. — Let D = a1(9/0x1) + -+ + a,(0/0xy,) be a formal dif-
ferential operator with a;(0) =0, 1 <1i <mn. Then there exist coordinates such
that D is a sum D = Dg + Dy where Dg is a semi-simple operator, Dy is a
nilpotent operator and DgDyn = Dy Dg.

PROPOSITION 3.2. — Let D = a1(0/0z1) + -+ - + a,(0/0xy), be a formal dif-
ferential operator with a;(0) =0, 1 <i <n. Let D = Dg+ Dy be its normal
form in the coordinates x1,...,x,. Let f € C[[x1,...,2,]] and A € C. Then
Df =M\f if and only if Dsf = Af and Dy f = 0.

DEFINITION 3.3. — A formal power series f € C[[z1,...,2,]] is weakly
weighted-homogeneous of type (ag,ai,...,a,) € C* if we have:
a1’71+"'+an7n:a0

for all monomial x” which appears with a nonzero coefficient in the power
expansion of f.

In other words, f is an eigenfunction of the operator Y., o;z;(9/0z;) for
the eigenvalue «y.

From the previous propositions, we get the following result which is specific
to dimension 2.

PROPOSITION 3.4. — Let h € C{z1,x2} be a nonzero germ such that h(0) = 0.
The following conditions are equivalent:
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1) the germ h is weighted-homogeneous,

2) the germ h is Euler-homogeneous,

3) there exists a formal change of coordinates ¢ such that ho ¢ is a weakly
weighted-homogeneous power series.

Proof. — The implication 1) = 2) is clear. Let us prove 2) = 3). If h is Euler-
homogeneous, there exists D = a1(0/0x1) + a2(9/0x2) € D such that Dh = h.
If a; and a9 are not units, the previous proposition implies the result. Other-
wise, up to a change of coordinates, we may assume that a; = 1, ag = 0,
and then h = exp(z;)v with v € C{zs} i.e. h = uzh where u € O is a unit.
In particular, h is weakly weighted-homogeneous (and weighted-homogeneous
in fact).

Finally we prove 3) = 1). Let D = a121(9/0x1) + aex2(0/0x2) be a semi-
simple operator such that Dh = dh with d € C. Without loss of generality, we
may assume that oy, as,d € Z are integers.

Observe that, up to a change of coordinates, h is a weighted-homogeneous
polynomial. Indeed, it is clear if a; and s are nonzero and have the same
sign. Otherwise, if a; = 0 then h = vz5? with v € C[x1]], t.e. h = uz{*z3?
with w unit. Finally, when «; - as < 0, the resolution of the Bezout identity
a -y =d gives h = 27v where v € C[[z7*z53%]], Y0 - o = d and a101 + agae =0
with a1, a2 € N*, ged(aq,aq) = 1.

Hence, according to a theorem of Artin ([1]), there exists a convergent change
of coordinates ¢ such that ko ¢ is a weighted-homogeneous polynomial. O

3.2. Results on the suspension of a germ of plane curve. — An im-
portant fact in the proof of Theorem 1.6 is the explicit knowledge of the anni-
hilators of h® and (h + z)*, N € N*, in the case of a germ h of a plane curve
(reduced or not).

LEMMA 3.5. — Let h € C{xy1, 22} be a nonzero germ with h(0) = 0. Let ay
(resp. az) denote the quotient of hl, (resp. hl,) by ged(hl, ,hl,).

(i) The ideal Annp h® is generated by a2(0/0x1) — a1(9/0x2).
(ii) For all N € N*, the ideal Annp(h + z3)* is generated by
Nz} =1(0/0z1) — hl, (0/0x3),
Nz =1(0/0zs) — h,,(9/0x3),
ag((’)/aml) — a1(8/8x2).
Proof. — As the first point is easier than the second one, we will only prove (ii).
Let us denote I C D, the ideal generated by the given operators Sy, S2,S3. The

inclusion I C Annp(h + z)* is obvious, so let us prove the reverse inclusion
by induction on the order of operators.
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Let P € Annp(h+ 2})* be nonzero, of order d. As d = 0 implies P = 0, we
will assume that d > 1. By division of P by S1, 55, we get R € FyD, d' < d,
with P — R € I and such that o(R) € O[¢] may be written:

d N-2
o(R) =vef +3 Y Ti(&, &)aded

i=1 j=0
with v € O and T; € C{x1,x2}[{1,&2] are zero or homogeneous in (£1,&2) of
degree i. Remark that R annihilates (h + 25)°. If d’ < d, then R belongs
to I by induction, and so does P. Otherwise, by an easy computation, we
get O’(R)(h;l,h;Q,NSCév_l) = 0. Thus, studying the coefficient of the pow-
ers of x3, we have v = 0 and the homogeneous polynomials T;(&1,&2) are
zero on (hl, ,hl ), i.e. on the regular sequence (a1,a2). Hence, the polyno-
mials T;(&1,&2) are multiples of 0(S3) and there exists a homogeneous polyno-
mial A € O[¢] such that o(R) = Ac(Ss). If A € Fy_1D is such that o(A) = A,

then R — AS; belongs to F;—1D and annihilates (h + 23)*. By induction,
it belongs to I, and so do R and P. o

Now we give a result on the Bernstein polynomial of the suspension of a
weighted-homogeneous plane curve.

LEMMA 3.6. — Let h € C{x1,z2} be a weighted-homogeneous germ and
N an integer greater than or equal to 2. Let us denote by B(s) (resp.
bn(s)) the reduced Bernstein polynomial of h (resp. h + xX).  Then
b (s) divides Hi\;l b(s + i/N), and by(s) is a multiple of the polynomi-
als b(s+i/N), 1 <i < N —1. In particular, Hf\;l b(s+i/N) and by(s) have
the same roots.

Proof. — Let x € D = C{ay, 22 }(8/dx1,/d25), be the Euler-vector field such
that x - h® = sh®. Using the results recalled in §2 and the previous lemma, it is
easy to check that the functional equations defining b(s) and by(s) may be
written:

_ ) ) -
/ / g 9N _
c(x) € D(hzl,hm,ag praa 8z2) I
and
r3 0 ’ / N-1 9 0
P D _ _— =
(3) C(X + N 81'3) € (hml,th’x3 42 81’1 a“ 81’2)

In particular, b(x) € I. Hence, in order to get the first point, we just have
to prove that P = Hi\;l b(x + (x3/N)(9/0x3) +i/N) belongs to I. Observe
that P may be written:

N—-1 . . 7
i g3+ 5) = (D0 g 3+ NS 5 )

i=1 =2 k>0
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using the Taylor formula. So, up to a multiple of l;(x), P may be rewritten:

7 (k) _ N72~ .
P NN CCSCE e o)

k>1

Tterating this process, we check that P belongs to D(b(x),zY ') c I.
Now we prove the last part. Multiplying identity (3) by x?l on the left,

1<i <N —1, we get:

b 8 I3 7 i

by (52— )ai e L

NX + 6.1‘3 N N 3 <

Thus, using Taylor’s formula, we have by (x — i/N)zi ' € I + Da}. Observe
that each element of I + Dx} may be written in a unique way:

J i1 ,
i 9 \J k
PJCB + ZZ (6—1‘3) Pj,kl'gn
7=0 k=0
where P € D, Py, ; € I, j € N. Hence the operator by (x —i/N) belongs to I,
i.e. the polynomials b(s +i/N), 1 <i < N — 1, divide by (s). O

3.3. Proof of Theorem 1.6. — Again we only prove (ii). Without loss of
generality, we will assume that h is singular (since the assertion is clear when
h + 2} is smooth).

We recall that roots of the Bernstein polynomial of a holomorphic function
on C™ are included in | — n,0[ (see [15], [20]). In particular, the condition (b)
means that the smallest integral root of the Bernstein polynomial of h + x4 is
strictly greater than —¢ — 1 (see Lemma 3.6). Moreover, as Annp(h+ z2)* is
generated by operators of order 1 (Lemma 3.5), the condition on 1/(h+ zi)*
is true when h is weighted-homogeneous (see the introduction).

Conversely, let us assume that Annp 1/(h + z5)¢ is generated by the op-
erators Q1,...,Qw € F1D. From Proposition 1.3, we have to prove that h is
weighted-homogeneous. Let ¢; be the germ Q;(1) € O and Q) € D the vector
field @Q; — ¢;. Then we have:

(4) —LQi(h+z3) + (h+23)q =0, 1<i<w.

On the other hand, from Lemma 3.3 of [18], there exists an operator R in
Annp(h + z})* such that R = 1+ )" | A;q;, with 4; € D. It comes from
the division by Q1,..., Q. of a good operator of Annp,(h + x)s (see [11,
Thm 6.3]), i.e. of the form sV + Zivzgl s'P; with P, € Fn_;D,0<i< N —1.
Considering the constant coefficient of R in the writting with coefficients on
the right, we get:

61‘1 61‘2

_ 0 o
1€(q17""qw’xév 1,(11,0,2, (a2> (al))o
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with the help of the determination of Annp(h + z4)* (Lemma 3.5). Thus, at
most one of the generators of this ideal is a unit. If ¢; is a unit, from (4), the
germ h + xd is Euler-homogeneous and so does h. We conclude with Proposi-
tion 3.4.

If a1 or as is a unit, the operator D = a(0/0x1) — a1(0/0x2) € Annp h is
regular. So, up to a change of coordinates, h belongs to C{x2}, and so it
is weighted-homogeneous.

Finally, let us suppose that D is singular with d(az)/0x1 — 0(a1)/0z2 a
unit. Thus, the formal operator D is not nilpotent. From Proposition 3.1,
there exists a formal change of coordinates such that D = Dg 4+ Dy with
Ds = a1%1(0/0%1)+aai2(0/0%2) # 0. Thus, as Dh = 0, h is weakly weighted-
homogeneous of type (0, a1, o) in the coordinates (Z1,%2) (Proposition 3.2).
In particular, h is weighted-homogeneous (Proposition 3.4). o

4. A companion piece to Theorem 1.2

In this part, we adapt the proof of Theorem 1.2 in order to characterize the
germs h € O such that Annp 1/ h is generated by operators of order 1 in some
cases where h has non isolated singularities. First we prove Theorem 1.7, where
we take good assumptions on grf’Annp 1/h¢ in order to have a division with
control of the orders (see §3.3). Then we get a full characterization in the case
of Koszul-free germs (Corollary 1.8).

4.1. Proof of Theorem 1.7. — According to the introduction, it is enough
to check the following result.

PROPOSITION 4.1. — Let h € O be a nonzero germ with h(0) = 0, and let
¢ € N* be a nonnegative integer. Let us suppose that Annp 1/h¢ is generated
by some operators Q1,...,Qw € D of order 1 such that:

grfAnnp 1/h° = (6(Q1), . ..,0(Quw)) grf D.
Then the following conditions are verified:

(a) the germ h belongs to the ideal of its partial derivatives,

(b) the smallest integral root of the Bernstein polynomial of h is strictly
greater than —0 — 1,

(c) the ideal Annp h® is generated by operators of order 1.

Moreover, Annp h*® is also generated by Q;(1)Q; — Q:(1)Q;, 1 <i<w, i #j,
where j is such that Q;(1) is a unit.

Proof. — First, it is easy to check that the assumption on grAnnp 1/h* means:
every P € Annp 1/h’ of order d may be written P = Yol AiQi where A4;Q;
belongs to FyD.
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The first part of the proof uses the main idea of Lemma 3 of [18]. For
1 <4 < w, let us denote by ¢; the germ Q;(1) € O and by Q) € D the vector
field @Q; — ¢;. Thus we have:

(5) CQI(h) —qh =0, 1<i<uw.
Let Py(s) € Dls] be a good operator in s of order N such that Py(s)-h®* =0
(see [11]). By division, it may be written:

Po(s) = (s +£)Ro(s) + Fo(—0),
where Ry(s) is a good operator of order N — 1 and Py(—/) annihilates 1/h*.
So Py(—¥) is equal to Zle A;Q; with A; € Fy_1D, 1 <1 < w. Hence:

(s +O)Ro(s)h® + (s+6) iA' h’ =0
0 y; pat iqi — Y.
So Pi(s) = Ro(s) + (1/0) >, Aiq; is a good operator in s of order N — 1
such that Pj(s) - h® = 0. Iterating this process, we may assume N = 1. So
there exists a; € O such that 1 + Ziw:l a;q; = 0 ; in particular, at most one of
the ¢; is a unit. From (5), we deduce that h belongs to the ideal of its partial
derivatives. Without loss of generality, we will assume that ¢; = 1.

Now, we will prove the assertion about Annp h®. As the given operators
clearly annihilate h®, it is enough to prove that every P € Annp h® belongs to
the ideal generated by @Q; — ¢;@Q1, 2 < i < w. We do it by induction on the
order d € N of P.

If d = 0, then P = 0 and the assertion is true. Otherwise, as P annihi-
lates 1/g%, we have:

P = i Az('O)Qi = iAEO) (Qi — ¢iQ1) + (ASO) + iAEO)Qi)Ql
i1 i—2

1=2

P/
with P, A", . A € F;_,D. Remark that P’€ Annp h* (since Q1 (h*) = sh®).
Iterating this process, we get:
w d—1

pP= Z Z AM(Q; — 4:01)QF +pQf

1=2 k=0

P
with Agk) € Fy_x—1D and p € O. But p must be zero because P, P € Annp h°.
Thus:

w d—1 w d—1
P=3"3"AMQNQi — Q) + 3. AM[Q: — 61, QY)
i=2 k=0 i=2 k=0
R
with R € Annp h®* N Fy_1D. We conclude by induction. O
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REMARK 4.2. — In fact, we have proved that grfAnnp h® is generated by the
principal symbols of the given operators.

4.2. The case of Koszul-free germs. — First we prove that the Koszul-
free germs verify the assumption of Theorem 1.7.

LEMMA 4.3. — Let h € O be a Koszul-free germ.  Then there exists
Q1,...,Qn € 1D generating Aunp 1/h N F1D, such that:

gr'D(Q1,...,Q,) = (O‘(Ql), . ,O‘(Qn)) grf'D.

Proof. — Let {61,...,0,} be a basis of Der(log h) such that {c(61),...,0(0,)}
is a grfD-regular sequence. For 1 < i < n, let a; € O be the germ defined
by d;(h) = a;h and let @Q; € Annp 1/h N F1D be the operator d; + a;. Using
that d1,...,0, generate Der(logh), it is easy to check that Q1,...,Q, gen-
erate Annp 1/h N FyD. On the other hand, grfD(Q1,...,Q,) is generated
by 0(Q;) = 0(d;), 1 < i < n, because this family defines a regular sequence
(see [3, Prop.4.1.2] and [17, Lemma 2]). O

Let us recall some facts about logarithmic operators (see [3, §1.2]). Given
a nonzero germ h € O such that h(0) = 0, a differential operator P € D is
logarithmic with respect to h if P-h*O C h*O for all k € Z. Let us denote
by V&(D) C D the subring of differential logarithmic operators. When h is
free, VI (D) is a coherent sheaf of rings ([3, Cor. 2.1.7]).

Now we characterize the condition (c) for Euler-homogeneous free germs.

PROPOSITION 4.4. — Let h € O be an Fuler-homogeneous free germ, and
let {61,...,0n} be a basis of Der(log h) such that 61(h) = h and 6;(h) = 0
for 2<i<n. We denote by I C D the ideal generated by do,...,0,. The
following conditions are equivalent:

1) the ideal Annp h® is generated by operators of order 1,
2) the ideal Annp h® is generated by logarithmic differential operators,
3) the ideal Annp h® coincides with the ideal I.

Moreover, if grf'I is generated by o(82),...,0(8,), then these conditions are
equivalent to:
4) the sequence (h,o(82),...,0(3,)) is grf D-regular.

Proof. — The implication 2) = 3) is a consequence of Lemma 4.6. As 3) = 1)
is obvious, let us remark that 1) implies 2). Indeed, if P € F;D annihilates h®,
then, for all @ € O, k € Z, we have P(ah*) = P(a)h*.

Now, we prove 4) = 3). Observe that condition 4) implies grf'l =
(0(02),...,0(6,)) grfD (see [17, Lemma2]). Let P € D be an operator anni-
hilating h*. So there exists N € N such that AN P € V#(D), hence hNP € T
by Lemma 4.6. If N = 0, the assertion is obvious. Otherwise, from our
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assumption, the endomorphism of grf D/ grf' I induced by h is one to one. We
deduce that AN =1 P € I with the help of the following result:

LEMMA 4.5 ([16, Lemme 4.3.2.6]). — Let U € D and let I C D be an ideal,
such that the endomorphism of grD/grf'I induced by the multiplication by
o(U) in grfD is one-to-one. If R € D is such that UR € I, then R € I.

Therefore, P € I by induction on N.

Finally, we prove the implication 3) = 4) under the following assumption:
grf'T = (0(02),...,0(6n)) grf'D.

Let us recall that the characteristic variety of Dh?® is the relative conormal space
associated with h, which is the subspace Wj;, C T*C"™ defined as the closure in
T*C" of {(z,Adh(z)); A € C} ([11])). In particular, W}, is irreducible of pure
dimension n 4+ 1. From the principal ideal theorem, Wy(h) = W N {h = 0}
has pure dimension n. So, if I = Annp h® then grf’I + hgrf'D defines Wy (h)
and (h,0(02),...,0(8,)) is a regular sequence. O

LEMMA 4.6. — Let h € O be an FEuler-homogeneous free germ, and let
{61,...,0n} be a basis of Der(log h) such that 61(h) = h and 6;(h) = 0 for
2 <1 <n. Then the ideal Annyp py h* coincides with VID)(62,...,0n)-

Proof. — From the structure theorem of logarithmic operators (see [3,
Thm 2.1.4]), each logarithmic operator of order d may be written in a unique
way Zhlﬁd a,0)" --- 5", a, € O. Thus the assertion is a consequence of the
identities d1 - h* = sh® and §; - h* =0,2 < i< n. O

REMARK 4.7. — We do not know if condition (b) of Corollary 1.8 is — or not —
always true when h is Koszul-free, or Koszul-free and verifying (a) & (c).

5. The case of generic arrangements of hyperplanes

The purpose of this part is to prove that Annp 1/h is generated by operators
of order 1 when h € C[zy,...,x,] defines a particular type of central hyperplane
arrangement A C C™ (Theorem 5.2). As the case n = 2 is a consequence of
Theorem 1.6, we will assume that n > 3.

Recall that a (central) hyperplane arrangement defined by [[V_, ¢; = 0,
with p > 2 and ¢; € (C")*, is:

o generic if p > n and if, for all 1 <iy < -+ < i, < p, (liy,..., ¥4, ) defines
the origin;

o hyperbolic if £; € Cly + Cls for 3 < i < p.

NoraTioN 5.1. — Let f = (f1,...,fr) : C* - C", 1 < r < n, be an an-
alytic morphism. For every multi-index k = (ki,...,k.11) € N1 where
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1<ki,....kr41 <nandk; #k; for i # 7, let Afé""’fT € D denote the vector
field:

SO 0 & 0
Z(—l)me(i)(f)aTk_ = Z(_l)laTk.mK(i)(f)’
i=1 bl )

where K (i) = (k1,...,ki,...,kr11) € N” and mg;(f) is the determinant of
the r X r matrix obtained from the jacobian matrix of f by deleting the k-th

columns with k & {k1,...,ki,..., krs1}.
In the particular case r = n — 1, the only vector field is denoted by Afi:fr.

THEOREM 5.2. — Let A C C", n > 3, be a central generic arrangement of
hyperplanes, defined by h = [[t_, 4;, p > n. Let A’ C C™ be a hyperbolic
arrangement defined by: h' =T[{_, ¢, , ¢ > 2, and such that {;h =0 defines a
generic arrangement for all 1 < i <gq.

Then Annp 1/1'h is generated by >"-_, 2;(0/dx;) + p + q and by:

Ah/,ﬂil,...,ein72 X H gi & Aé’l,é;,éil,...,éind X H 67,
A0 yeenylin—2 Li@C(L iy seesliyy o)
for all family of distinct indexes 1 < i1 < -+ <ip_g <p, 1 <ip_o < p, such
that (€4,05,0;,,...,4; _,) defines the origin.

As an easy consequence, we have the following result.

COROLLARY 5.3. — Let A C C", n > 3, be a central generic arrangement
of hyperplanes, defined by h = [1_, ¢;, p > n. Then the ideal Annp1/h is
generated by Y7, xi% + p and by the operators:

e |

7:7&7:11---77:71,71

foralll=1d < - <ip_1 <p.
The proof of Theorem 5.2 needs the following technical computation.

PROPOSITION 5.4. — Let 1,...,4, € (C™)*, 3 <n < p, be linear forms which
define a generic arrangement and h € Clx1, ..., x,] be the product [[5_, ¢;. Let
g € C{x1,22} be a reduced germ such that (g,;,,..., %, _,) defines the origin
foralll1 <iy < -+ <in_1 <p. Then the ideal Annp(1/h)g® is generated by
the operators:

Ag,¢i17~~~,¢in,2 . H ¢; and AZ17I27@'17--~,&'",3 . H l;
AL, yin 2 i ¢C(x1,@2,8iy 0500, _5)
for all sequence of distinct indexes i1, ..., in—2 such that (x1,22,0;,, ..., 4, )

defines the origin.
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REMARK 5.5. — If ¢;,,...,4;,, 1 < k < n — 3, are some linear factors of h
such that the family (z1,22,4;,,...,%; ) is free, then there exists at most one
form ¢;, ¢ # 41, ..., ik, such that ¢; belongs to the space C(x1,x2, iy, ..., 4, ) =
Cxy +Cao 4+ Cly, + - - + Cl;, € (C™)*. Indeed, if 45, , and ¢;,, are two such
forms, then C(xy,2,0;,,...,4;) = C(li,,..., 4, ,) since A is generic. And
this is not possible because (g,4;,,...,4;,,,) is O-regular (and g € C{x1,22}).
Conversely, if there exists a form ¢;, i # i1,...,4; (with & < n — 2), such
that ¢; € C(x1, 2, iy, ..., ¥4, ), we prove by a similar argument that the family
(x1,22, iy, ..., 4, ) must be free.

Proof of Proposition 5.4. — Let us denote I C D the left ideal generated by
the given operators and Z C O[y,. . ., &, ] the ideal generated by their principal
symbols. First we prove the following fact.

ASSERTION 1. — The ideal I contains the operators of the form:
(O HE“
P01 ey

with 0 < k<n-—-21<1d4 < -+ <ix <p, and v € D is a vector field
annihilating g, 4;,, . .., 4;, .

Proof. — Two cases are possible.

First, let us suppose that the family (z1, z2,4,, ..., ;) is free. If k <n—2,
we can find some other linear forms ¢;,,,,...,¢;,_, of the arrangement such
that (z1,22,4,,...,%;, _,) defines the origin (Remark 5.5). Then we have:

n—2
v(l;. ;
= o + Z : (g“) _ ATz Ly el by
X13T23E57 5eeesbisyeeisli,
j=kt1 A Lty tina (£ )
v2
where v annihilates g, 4;,,...,¢;, , ;thusv; € ONAIF ivrbin 2 by an easy com-
putation in the coordinates (21, x2, i, . .., ¥4;,_,). In particular, vq H#il g b

belongs to:

p( T[6)arstos( [ &)cr

i=k+1 T yeneyin—2
By similar computations, we check that vs Hi;ﬁi1 i, li belongs to I ; thus so
does v H#ih._.,ik l;.

Now assume that the family (z1,22,4;,,...,%;, ) is not free. As the se-
quence (g,%;,,...,%;, ) is regular, we can not have zi,z2 € C(¢;,,...,4;,).
So, up to exchanging x; for xo, the family (zo,¥;,,...,¥¢;, ) is free and x; be-
longs to C(z2,%i,,...,¥4;, ). In other words, there exists an index & such that
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b, € Clxy, 22,44, ... ,lz-n, ooyl ). So,let £y, ... 4, be other factors of h.
From Remark 5.5, (x1, 22,4, ..., 4, ..., 0, _,) defines the origin and we have
n—1
0= Y S
L ACEI,CE21 Qq e Qg s Qg ip—1 (611>

=kt
since the two members are equal on g, ¢;,,...,¥¢; _,. Hence we conclude exactly
as above (using that A2 bicrbipbini (g ) = (), O

Of course, the inclusion I C Annp(1/h)g® is clear. In order to get the reverse
inclusion, we will just prove that gr Annp(1/h)g® is included in Z. Indeed, we
conclude also easily by induction on order of operators in I, just as in the proof
of Proposition 3.5.

Let us study charp D(1/h)g® C T*C™, the characteristic variety of D(1/h)g".
It is easy to check that O C D1/h and that:

0[1/&'1 flk] = 'Dl/&'l Ezk C Dl/h

forall 1 <i; < -- <ip <p, 1 <k <n-—1, under our assumption on h
(using that —1 is the only integral root of the Bernstein polynomial of a nor-
mal crossing). So the characteristic variety of D1/h contains the conormal
bundles 7{%,C" and Tzilﬁ---ﬁLikCn’ 1 <@ < -~ < <p, k<n-—1,
where L; = ker¢; C C". Moreover, using Proposition 2.14.4 of [8], we de-
duce that charp D(1/h)g® is the union of the subspaces W, and WolrL,, nniLi, s
where Wy x C T*C" is the closure of {(z,& + Adg(x)); A € C, (z,&) € T%C"}
for any subanalytic space X C C". The following result gives defining equations
of the spaces VVgILilﬂuﬂLik'

ASSERTION 2. — Let £;,,...,¢;, € (C")*, 1 <k <n—1, be some factors of h.
(i) If k=n—1, then WolrL,, nni,, s defined by {1, ..., 0n_1.
(ii) Assume that k < n — 1. If (z1,22,01,...,4;,) s a free family, then
Wyl L, n-nLs, is defined by {1, ..., Lk, one nonzero element U(Agfl """ ), and

1,22,01,...,€

the principal symbols of n — k — 2 wvector fields Aj;
family.

(iii) Assume that k < n—1. If there exists an index k, 1 < k < k, such that
b € Clzy,x0,l1,..., 4, ..., 4;), then Wolr., nonps, s defined by l1,... U,

T1,22,01,...,05,

and the principal symbols of n—k—1 vector fields A’
free family.

v defining a free

bi defining a

Proof. — In each case, it is easy to check that the (n — 1)-given elements form
a gri’D-regular sequence and define an irreducible space in T*C". Moreover,
they are zero on VVglL,_-lﬂnﬂLik- So the assertion is clear, since VVg|Li1m,,,mLik
is irreducible of dimension n + 1. O
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So let P € Annp(1/h)g® be a nonzero operator of order d. Then o(P)
is zero on charp D(1/h)g®. Let us prove that o(P) € Z. Using the inclu-
sion Wy, n..nr, , C charp D(1/h)g®, we have o(P) € ((iy, ..., li, ,)O[¢]
for 1 <4y <-+- <ip_1 <p. Remark that:

M G li )0 = > [ [Te]o

1<ip < <in_1<p 1<i1 < <ip—2<p Fi1,...in—2

(by induction on p > n, using that every sequence (¢;,,...,¥¢; ) is regular).
Thus, we can write:

o(P) = Z Az('?,)...,in—Z( H &)

1<61 < <ip_2<p i1y neyin 2

for some AZ(-? € O[] zero or homogeneous of degree d.

»»»»» Tn—2

Now let 4;,,...,4; _, be some factors of h such that (x1,x92,0;,...,4;, _,)
is a free family. From the inclusion Wy, n..np,  C charp D(1/h)g® and
Assertion 2, we have:

U(P) € (Eiu oo agin, 29 U(Agﬁeil ..... binz ))O[g]
So, using that the sequences (¢;,¢;,, . .. ,Ei%Z,a(Ag’eil """ bin 2 ))& F 1y, in_a,
are regular, we deduce: Az('?,)...,in,g € (liy,....0 o(A9 b éin,2>)0[§]' Re-

mark that we get a similar result when (z1,22,4;,,...,%;, _,) is not free. Hence
o(P) may be written:

o(P)=U+ Z Az('ll,)...7in,—3( H gi)’

1<i1 <+ <ip—3<p 1F01 . in—3

in—2)

)

where A; X
Lyeers in

_, € O[¢] are zero or homogeneous of degree d, and U € T (with
the help of Assertion 1). Up to a division by Z, we will assume that U = 0.
Iterating this process with Wy, n..aL, » 1 < k < n—2, we get o(P) —A(=2)p,

belongs to Z. Thus, using that W, C charp D(1/h)g®, we have:

A(n72) € (O—(Ag)7£3a o agn)o[é]

So A»=2p, € T, and we conclude that o(P) € Z. This ends the proof. O

Proof of Theorem 5.2. — From Proposition 1.10, we have D1/h = O[1/h], and
(D1/h)[1/h'] = O[1/h'R] is generated by 1/h’h. Thus, using Proposition 3.1
of [18], we deduce that Annp 1/h'h is generated by > ., 2;(9/dx;) +p+q and
the elements of Annp(1/h)h's. We conclude with Proposition 5.4. O
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