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NON-SUPERSINGULAR HYPERELLIPTIC JACOBIANS

by Yuri G. Zarhin

Abstract. — Let K be a field of odd characteristic p, let f(x) be an irreducible
separable polynomial of degree n ≥ 5 with big Galois group (the symmetric group
or the alternating group). Let C be the hyperelliptic curve y2 = f(x) and J(C)
its jacobian. We prove that J(C) does not have nontrivial endomorphisms over an
algebraic closure of K if either n ≥ 7 or p 6= 3.

Résumé (Jacobiennes hyperelliptiques non supersingulières). — Soient K un corps
de caractéristique impaire p et f(x) un polynôme irréductible séparable dans K[x] de
degré n ≥ 5, avec grand groupe de Galois (le groupe symétrique ou le groupe alterné).
Soit C la courbe hyperelliptique y2 = f(x) et J(C) sa jacobienne. Nous montrons que
J(C) n’a pas d’endomorphisme non trivial sur une clôture algébrique de K si n ≥ 7
ou p 6= 3.

1. Introduction

Let K be a field and Ka its algebraic closure. Assuming that char(K) = 0,
the author [25] proved that the jacobian J(C) = J(Cf ) of a hyperelliptic curve

C = Cf : y2 = f(x)
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has only trivial endomorphisms over Ka if the Galois group Gal(f) of the
irreducible polynomial f ∈ K[x] is “very big”. Namely, if n = deg(f) ≥ 5 and
Gal(f) is either the symmetric group Sn or the alternating group An then the
ring End(J(Cf )) of Ka-endomorphisms of J(Cf ) coincides with Z. Later the
author [25], [29] extended this result to the case of positive char(K) > 2 but
under the additional assumption that n ≥ 9, i.e., the genus of Cf is greater or
equal than 4. We refer the reader to [15], [16], [9], [10], [14], [11], [25], [27], [29],
[28], [30] for a discussion of known results about, and examples of, hyperelliptic
jacobians without complex multiplication.

The aim of the present paper is to extend this result to the case when either
n ≥ 7 or when n ≥ 5 but char(K) > 3. Notice that it is known [25] that in
those cases either End(J(C)) = Z or J(C) is a supersingular abelian variety
and the real problem is how to prove that J(C) is not supersingular.

We also discuss the case of two-dimensional J(C) in characteristic 3.

2. Main result

Throughout this paper we assume that K is a field of characteristic p different
from 2. We fix its algebraic closure Ka and write Gal(K) for the absolute Galois
group Aut(Ka/K).

Theorem 2.1. — Let K be a field with p = char(K) > 2, Ka its algebraic
closure, f(x) ∈ K[x] an irreducible separable polynomial of degree n. Let us
assume that Gal(f) = Sn or An. Suppose that n enjoys one of the following
properties:

(i) n = 7 or 8;

(ii) n = 5 or 6. In addition, p = char(K) > 3.

Let Cf be the hyperelliptic curve y2 = f(x). Let J(Cf ) be its jacobian,
End(J(Cf )) the ring of Ka-endomorphisms of J(Cf ). Then End(J(Cf )) = Z.

Remark 2.2. — Replacing K by a suitable finite separable extension, we may
assume in the course of the proof of Theorem 2.1 that Gal(f) = An. Taking into
account that An is simple non-abelian and replacing K by its abelian extension
obtained by adjoining to K all 2-power roots of unity, we may also assume that
K contains all 2-power roots of unity.

Remark 2.3. — Let f(x) ∈ K[x] be an irreducible separable polynomial of
even degree n = 2m ≥ 6 such that Gal(f) = Sn. Let α ∈ Ka be a root of f
and K1 = K(α) be the corresponding subfield of Ka. We have

f(x) = (x − α)f1(x)

with f1(x) ∈ K1[x]. Clearly, f1(x) is an irreducible separable polynomial
over K1 of degree n − 1 = 2m − 1, whose Galois group is Sn−1. It is also
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clear that the polynomials

h(x) = f1(x + α), h1(x) = xn−1h(1/x) ∈ K1[x]

are irreducible separable of degree n − 1 with the same Galois group Sn−1.

The standard substitution

x1 =
1

x − α
, y1 =

y

(x − α)m

establishes a birational isomorphism between Cf and a hyperelliptic curve

Ch1
: y2

1 = h1(x1).

In light of results of [26], [30] and Remarks 2.2 and 2.3, our Theorem 2.1 is
an immediate corollary of the following auxiliary statement.

Theorem 2.4. — Let K be a field with p = char(K) > 2, Ka its algebraic
closure, f(x) ∈ K[x] an irreducible separable polynomial of degree n. Let us
assume that n and the Galois group Gal(f) of f enjoy one of the following
properties:

(i) n = 5 and Gal(f) = A5;

(ii) n = 7 and Gal(f) = A7. In addition, p = char(K) > 3.

Let C be the hyperelliptic curve y2 = f(x) and let J(C) be the jacobian of C.
Then J(C) is not a supersingular abelian variety.

We will prove Theorem 2.4 in Section 3.

Throughout the paper we write End0(X) for the endomorphism algebra
End(X) ⊗ Q of an abelian variety X over an algebraically closed field Fa.

Recall [25] that the semisimple Q-algebra End0(X) has dimension (2 dim(X))2

if and only if p := char(Fa) 6= 0 and X is a supersingular abelian variety.
We write Hp is the quaternion Q-algebra unramified exactly at p and ∞. It is
well known that if X is a supersingular abelian variety in characteristic p then
End0(X) is isomorphic to the matrix algebra Mg(Hp) of size g := dim(X)
over Hp. We will use freely these facts throughout the paper.

3. Proof of Theorem 2.4

We deduce Theorem 2.4 from the following statement.

Theorem 3.1. — Let K be a field with p = char(K) > 2, Ka its algebraic
closure, Let n = q be an odd prime, f(x) ∈ K[x] an irreducible separable
polynomial of degree q. Let us assume that the Galois group Gal(f) of f
is L2(q) := PSL2(Fq), and that it acts doubly transitively on the roots of f .
Suppose that either q = 5 or q = 7. Let C be the hyperelliptic curve y2 = f(x)
and let J(C) be the jacobian of C. If J(C) is a supersingular abelian variety
then n = 5 and p = 3.
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Proof of Theorem 2.4 (modulo Theorem 3.1). — If n = 5 then A5
∼= L2(5) and

we are done. Suppose that n = 7. It is well-known that the simple non-abelian
group

L2(7) ∼= L3(2) := PSL3(F2)

acts doubly transitively on the 7-element projective plane P2(F2) and therefore
is isomorphic to a doubly transitive subgroup of A7. Hence there exists a finite
algebraic extension K1 of K such that the Galois group of f over K1 is L2(7)
acting doubly transitively on the roots of f(x). Applying Theorem 3.1 to K1

and f , we conclude that if 3 6= char(K1) = char(K) = p then J(C) is not
supersingular.

The following results will be used in order to prove Theorem 3.1.

Lemma 3.2. — Let K be a field with char(K) 6= 2 Ka its algebraic closure,
Gal(K) = Aut(Ka) the Galois group of K. Let f(x) ∈ K[x] be an irreducible
separable polynomial of odd degree n. Let us assume that n ≥ 5 and the Galois
group Gal(f) of f acts doubly transitively on the roots of f(x). Let C be the
hyperelliptic curve y2 = f(x) and let J(C) be the jacobian of C. Let J(C)2 be
the group of points of order 2 in J(C)(Ka) viewed as F2-vector space provided
with a natural structure of Gal(K)-module.

Then the image of Gal(K) in AutF2
(J(C)2) is isomorphic to Gal(f) and

EndGal(K)

(

J(C)2
)

= EndGal(f)

(

J(C)2
)

= F2.

Theorem 3.3. — Let F be a field with characteristic p > 2 and assume that F
contains all 2-power roots of unity. Let Fa be an algebraic closure of F . Let
G 6= {1} be a finite perfect group. Suppose that g is a positive integer, X is
a supersingular g-dimensional abelian variety defined over F . Let End(X) be
the ring of all Fa-endomorphisms of X and End0(X) = End(X) ⊗ Q. Let
us assume that the image of Gal(F ) in Aut(X2) is isomorphic to G and the
corresponding faithful representation

ρ̄ : G ↪−→ Aut(X2) ∼= GL(2g, F2)

satisfies EndGX2 = F2.

Then there exists a surjective group homomorphism

π1 : G1 −� G

enjoying the following properties:

(a) The group G1 is a perfect finite group. The kernel of π1 is an elementary
abelian 2-group.

(b) One may lift ρ̄π1 : G1 → Aut(X2) to a faithful absolutely irreducible
symplectic representation

ρ : G1 ↪−→ AutQ2
(V2(X))

of G1 over Q2 in such a way that the following conditions hold:
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. the character χ of ρ takes values in Q;

. ρ(G1) ⊂ (End0(X))∗;

. the homomorphism from the group algebra Q[G1] to End0(X) in-

duced by ρ is surjective and identifies End0(X) ∼= Mg(Hp) with the
direct summand of Q[G1] attached to χ.

(c) p divides the order of G and p ≤ 2g + 1.

(d) Suppose that either every homomorphism from G to GL(g−1, F2) is trivial
or the G-module X2 is very simple in the sense of [26], [29], [31]. Then
kerπ1 is a central cyclic subgroup of order 1 or 2.

Lemma 3.4. — Let p be an odd prime. Let q be an odd prime and Γ = SL2(Fq)
or PSL2(Fq). Suppose that q = 5 or 7 and let us put g = 1

2 (q − 1). Suppose
that Q[Γ] contains a direct summand isomorphic to the matrix algebra Mg(Hp).
Then p = 3 and q = 5.

Theorem 3.3 and Lemmas will be proven in Sections 5 and 4.

Proof of Theorem 3.1 (modulo Theorem 3.3 and Lemmas 3.2 and 3.4)
Let us put

X = J(C), G = PSL2(Fq), g =
1

2
(q − 1).

Clearly, either q = 5, g = 2 or q = 7, g = 3. In both cases g = dim(X),
the group G is simple and GL(g − 1, F2) is solvable. It follows that every
homomorphism from G to GL(g − 1, F2) is trivial. It follows from Lemma 3.2
that the image of Gal(K) in Aut(X2) is isomorphic to G and the corresponding
faithful representation

ρ̄ : G ↪−→ Aut(X2) ∼= GL(2g, F2)

satisfies EndGX2 = F2.

Let us assume that X is supersingular. We need to get a contradiction.
Applying Theorem 3.3, we conclude that there exist a finite perfect group G1

and a surjective homomorphism

π1 : G1 −� G = PSL2(Fq)

enjoying the following properties:

(i) either G1
∼= G or Z1 = ker(π1) is a central subgroup of order 2 in G1;

(ii) there exists a direct summand of Q[G1] isomorphic to Mg(Hp)).

The well-known description of central extensions of PSL2(Fq) when q is
an odd prime [4, §4.15, Prop. 4.233] implies that either G1 = PSL2(Fq) or
G1 = SL2(Fq). Applying Lemma 3.4, we arrive to the desired contradiction.
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4. Proof of Lemmas 3.2 and 3.4

We start with some auxiliary constructions related to the permutation
groups [12], [17], [7].

Let B be a finite set consisting of n ≥ 5 elements. We write Perm(B) for
the group of permutations of B. A choice of ordering on B gives rise to an
isomorphism Perm(B) ∼= Sn. Let us assume that n is odd and consider the
permutation module FB

2 : the F2-vector space of all functions ϕ : B → F2. The
space FB

2 carries a natural structure of Perm(B)-module and contains the stable
hyperplane QB := (FB

2 )0 of functions ϕ with
∑

α∈B ϕ(α) = 0. Clearly, QB

carries a natural structure of faithful Perm(B)-module. For each permutation
group H ⊂ Perm(B) the corresponding H-module is called the heart of the
permutation representation of H on B over F2 (see [12], [17], [7]).

Lemma 4.1. — EndH(QB) = F2 if n is odd and H acts 2-transitively on B.

Proof. — See Satz 4 in [12].

Proof of Lemma 3.2. — Suppose f(x) ∈ K[x] is a polynomial of odd degree
n ≥ 5 without multiple roots and X := J(Cf ) is the jacobian of C = Cf :
y2 = f(x). It is well-known that g := dim(X) = 1

2 (n − 1). It is also well-
known (see for instance Section 5 of [26]) that the image of Gal(K) → Aut(X2)
is isomorphic to Gal(f). More precisely, let R ⊂ Ka be the n-element set of
roots of f , let K(R) be the splitting field of f and Gal(f) = Gal(K(R)/K)
the Galois group of f , viewed as a subgroup of of the group Perm(R) of all
permutations of R. We have Gal(f) ⊂ Perm(R). It is well-known (see for
instance, Thm 5.1 on p. 478 of [26]) that Gal(K) → Aut(X2) factors through
the canonical surjection Gal(K) � Gal(K(R)/K) = Gal(f) and the Gal(f)-
modules X2 and QR are isomorphic. In particular,

EndGal(K)(X2) = EndGal(f)(X2) = EndGal(f)(QR).

Assuming that Gal(f) acts doubly transitively on R and applying Lemma 4.1,
we conclude that

EndGal(f)(X2) = EndGal(f)(QR) = F2.

Remark 4.2. — The assertion of Lemma 3.2 is implicitly contained in the
proof of Prop. 3 in [16].

Proof of Lemma 3.4. — It is known [8, Cor. on p. 4] that Q[PSL2(Fq)] is a
direct product of matrix algebras (for all power primes q). Since ker(SL2(Fq) �

PSL2(Fq)) is the only proper normal subgroup in SL2(Fq), it suffices to deal
only with the group SL2(Fq) with q = 5, g = 2 or q = 7, g = 3 and consider only
direct summands of Q[SL2(Fq)] that correspond (in the sense of Lemma 24.7
on p. 124 of [2]) to faithful irreducible characters of degree q − 1 with values
in Q.
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Let χ be an irreducible faithful irreducible character of degree q − 1 with
values in Q. Then (in the notations of [2, §38]) χ = θj where j is an integer
with 1 ≤ j ≤ 1

2 (q − 1). If z is the only nontrivial central element of SL2(Fq)

then θj(z) = (−1)j(q−1). The faithfulness of χ implies (thanks to Lemma 2.19
of [6]) that θj(z) 6= q−1, i.e. j is odd. Let b ∈ SL2(Fq) be an element of order q
and σ a primitive q + 1th root of unity. Then [2, p. 228]

χ(b) = θj(b) = −(σj + σ−j).

Assume that q = 7. Then either j = 1 or j = 3. Also q + 1 = 8 and we may
choose σ = (1 +

√
−1)/

√
2. Then if j = 1 then χ(b) = −

√
2 and if j = 3 then

χ(b) =
√

2. In both cases χ(b) does not lie in Q. It follows that Q[SL2(F7)]
does not have direct summands isomorphic to the matrix algebras of size 3 over
quaternion Q-algebras (including Hp).

Assume that q = 5. Then j = 1 and χ = θ1. Then q + 1 = 6 and the
multiplicative order n of σj equals 6 = 2 · 3. Also σ2j = σ2 is a primitive
cubic root of unity. Let D be the direct summand of Q[SL2(F5)] attached to χ.
It follows from the case (c) of theorem on p. 4 of [8] (see also [3, Thm 6.1 (ii)]
(with ε = δ = 1)) that D is isomorphic to to the matrix algebra M2(H) where
H is a quaternion Q-algebra ramified (exactly) at ∞ and 3. (This means
that H ∼= H3 and D ∼= M2(H3).) It follows that if D is isomorphic to M2(Hp)
then p = 3.

5. Not supersingularity

We keep all the notations and assumptions of Theorem 3.3. We write T2(X)
for the 2-adic Tate module of X and

ρ2,X : Gal(F ) −→ AutZ2

(

T2(X)
)

for the corresponding 2-adic representation. It is well-known that T2(X) is a
free Z2-module of rank 2dim(X) = 2g and

X2 = T2(X)/2T2(X)

(the equality of Galois modules). Let us put

H = ρ2,X

(

Gal(F )
)

⊂ AutZ2

(

T2(X)
)

.

Clearly, the natural homomorphism

ρ̄2,X : Gal(F ) −→ Aut(X2)

defining the Galois action on the points of order 2 is the composition of ρ2,X

and (surjective) reduction map modulo 2

AutZ2

(

T2(X)
)

−→ Aut(X2).

This gives us a natural (continuous) surjection

π : H −→ ρ̄2,X

(

Gal(F )
) ∼= G,
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whose kernel consists of elements of 1 + 2EndZ2
(T2(X)). The choice of polar-

ization on X gives rise to a non-degenerate alternating bilinear form (Riemann
form) [18]

e : V2(X) × V2(X) −→ Q2(1) ∼= Q2.

Since F contains all 2-power roots of unity, e is Gal(F )-invariant and therefore
is H-invariant. In particular,

H ⊂ Sp
(

V2(X), e
)

⊂ SL
(

V2(X)
)

.

Here Sp(V2(X), e) is the symplectic group attached to e. In particular, the
H-module V2(X) is symplectic.

There exists a finite Galois extension L of F such that all endomorphisms
of X are defined over L. Clearly, Gal(L) = Gal(Fa/L) is an open normal
subgroup of finite index in Gal(F ) and

H ′ = ρ2,X

(

Gal(L)
)

⊂ AutZ2

(

T2(X)
)

⊂ AutQ2

(

V2(X))
)

is an open normal subgroup of finite index in H . We write End0(X) for the
Q-algebra End(X) ⊗ Q of endomorphisms of X .

There exists a finite Galois extension L of F such that all endomorphisms
of X are defined over L. We write End0(X) for the Q-algebra End(X) ⊗ Q of
endomorphisms of X . Since X is supersingular,

dimQEnd0(X) =
(

2dim(X)
)2

= (2g)2.

Recall (see [18]) that the natural map

End0(X) ⊗Q Q2 −→ EndQ2
V2(X)

is an embedding. Dimension arguments imply that

End0(X) ⊗Q Q2 = EndQ2
V2(X).

Since all endomorphisms of X are defined over L, the image

ρ2,X

(

Gal(L)
)

⊂ ρ2,X

(

Gal(F )
)

⊂ AutZ2

(

T2(X)
)

⊂ AutQ2

(

V2(X)
)

commutes with End0(X). This implies that ρ2,X(Gal(L)) commutes with
EndQ2

V2(X) and therefore consists of scalars. Since

ρ2,X

(

Gal(L)
)

⊂ ρ2,X

(

Gal(F )
)

⊂ SL
(

V2(X)
)

,

ρ2,X(Gal(L)) is a finite group. Since Gal(L) is a subgroup of finite index
in Gal(F ), the group H = ρ2,X(Gal(F )) is also finite. In particular, the kernel
of the reduction map modulo 2

AutZ2

(

T2(X)
)

⊃ H → G ⊂ Aut(X2)

consists of periodic elements and, thanks to Minkowski-Serre Lemma [23],
Z := ker(π : H → G) has exponent 1 or 2. In particular, Z is commutative.
Since

Z ⊂ H ⊂ Sp
(

V2(X)
) ∼= Sp(2g, Q2),
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Z is a F2-vector space of dimension ≤ g.

Let G1 be a minimal subgroup of H such that π(G1) = G. (Since H is finite,
such G1 always exists.) Since G is perfect, G1 is also perfect. (Otherwise, we
may replace G1 by smaller [G1, G1].) Clearly,

Z1 := ker(π : G1 � G) ⊂ Z

is also a F2-vector space of dimension ≤ g. We have

Z1 ⊂ G1 ⊂ H ⊂ Sp
(

V2(X)
) ∼= Sp(2g, Q2).

In particular, the symplectic G1-module is a lifting of the G1(� G)-module X2.

I claim that the natural representation of G1 in the 2g-dimensional Q2-vector
space V2(X) is absolutely irreducible. Indeed, let us put

E := EndG1

(

V2(X)
)

⊂ EndQ2

(

V2(X)
)

.

Clearly,
OE = E ∩ EndZ2

(

T2(X)
)

⊂ EndZ2

(

T2(X)
)

is a Z2-algebra that is a free Z2-module, whose Z2-rank coincides with
dimQ2

(E). Notice that OE is a pure Z2-submodule in EndZ2
(T2(X)), i.e. the

quotient EndZ2
(T2(X))/OE is a torsion-free (finitely generated) Z2-module

and therefore a free Z2-module of finite rank. It follows that the natural map

OE/2OE −→ EndZ2

(

T2(X)
)

/2EndZ2

(

T2(X)
)

= EndF2
(X2)

is an embedding. Clearly, the image of OE/2OE in EndF2
(X2) lies in EndG(X2).

Since EndG(X2) = F2, we conclude that the rank of the free Z2-module OE

is 1, i.e. dimQ2
(E) = 1. This means that E = Q2, i.e. the G1-module V2(X) is

absolutely simple.
Let χ : G1 → Q2 be the character of the absolutely irreducible faithful

representation of G1 in V2(X). Clearly, χ is a faithful (absolutely) irreducible
character of degree 2g. We need to prove that χ(G1) ⊂ Q.

Let F1 ⊂ Fa be the subfield of invariants of the subgroup
{

σ ∈ Gal(F ) | ρ2,X(σ) ∈ G1

}

⊂ Gal(F ).

Clearly, F1 is a finite separable algebraic extension of F and

G1 = ρ2,X

(

Gal(F1)
)

.

Clearly, the image ρ̄2,X

(

Gal(F1)
)

⊂ Aut(X2) coincides with

πρ2,X

(

Gal(F1)
)

= π(G1) = π1(G1) = G ⊂ Aut(X2).

Let L1 be the finite Galois extension of F1 attached to

ρ2,X : Gal(F1) −→ Aut
(

T2(X)
)

.

Clearly, Gal(L1/F1) = G1. In addition, all 2-power torsion points of X are
defined over L1. It follows that all the endomorphisms of X are defined
over L1 (see [22]). On the other hand, I claim that the ring EndF1

(X) of
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F1-endomorphisms of X coincides with Z. Indeed, there is a natural embed-
ding

EndF1
(X) ⊗ Z/2Z ↪−→ EndGal(F1)(X2) = F2

that implies that the rank of the free Z-module EndF1
(X) does not exceed 1

and therefore equals 1, i.e. EndF1
(X) = Z.

Since all the endomorphisms of X are defined over L1, there is a natural
homomorphism

κ : G1 = Gal(L1/F1) −→ Aut
(

End(X)
)

such that

EndF1
(X) =

{

u ∈ End(X) | κ(σ)u = u, ∀σ ∈ Gal(L1/F1) = G1

}

,

σ(ux) =
(

κ(σ)u
)(

σ(x)
)

, ∀x ∈ X(L1), u ∈ End(X), σ ∈ Gal(L1/F1) = G1.

Further we write κ(σ)u for κ(σ)(u). Since EndF1
(X) = Z, we conclude that

Z =
{

u ∈ End(X) | κ(σ)u = u, ∀σ ∈ Gal(L1/F1) = G1

}

.

Since all 2-power torsion points of X defined over L1,

σ(ux) = κ(σ)u
(

σ(x)
)

, ∀x ∈ T2(X), u ∈ End(X), σ ∈ G1.

Since Aut(End(X)) ⊂ Aut(End0(X)), one may view κ as

κ : G1 = Gal(L1/F1) −→ Aut(End0(X)), u 7→ κ(σ)u, u ∈ End0(X), σ ∈ G1

and we have

Q =
{

u ∈ End0(X) | κ(σ)u = u, ∀σ ∈ Gal(L1/F1) = G1

}

,

σ(ux) = κ(σ)u
(

σ(x)
)

, ∀x ∈ V2(X), u ∈ End0(X), σ ∈ G1.

Recall that

End0(X) ⊂ End0(X) ⊗Q Q2 = EndQ2

(

V2(X)
)

,

G1 ⊂ GL
(

V2(X)
)

=
(

EndQ2

(

V2(X)
))∗

.

It follows that

σuσ−1 = κ(σ)u, ∀u ∈ End0(X), σ ∈ G1.

By Skolem-Noether Theorem, every automorphism of the central simple Q-
algebra End0(X) ∼= Mg(Hp) is an inner one. This implies that for each σ ∈ G1

there exists wσ ∈ End0(X)∗ such that

σuσ−1 = κ(σ)u = wσuw−1
σ , ∀u ∈ End0(X).

Since the center of End0(X) is Q, the choice of wσ is unique up to multiplication
by a non-zero rational number. This implies that wσwτ equals wστ times a non-
zero rational number.

Let us put

c′σ = σw−1
σ ∈

(

EndQ2

(

V2(X)
))∗

.
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Clearly, each c′σ commutes with End0(X) and therefore with End0(X)⊗Q Q2 =
EndQ2

(V2(X)). It follows that all c′σ are scalars, i.e. lie in Q∗

2Id. (Here Id is
the identity map on V2(X).) Clearly, the image

cσ ∈ Q∗

2Id/Q∗Id ∼= Q2
∗/Q∗

of c′σ in Q2
∗/Q∗ does not depend on the choice of wσ . It is also clear that the

map

G1 −→ Q2
∗/Q∗, σ 7−→ c′σ

is a group homomorphism. Since G1 is perfect and Q2
∗/Q∗ is commutative,

this homomorphism is trivial, i.e. cσ = 1 for all σ ∈ G1. This means that

cσ ∈ Q∗Id, ∀σ ∈ G1

and therefore

σ = (c′σ)
−1

wσ ∈ End0(X)∗, ∀σ ∈ G1.

Recall [18] that if one view an element u ∈ End0(X) as linear operator in
V2(X) then the characteristic polynomial Pu(t) of u has rational coefficients;
in particular, the trace of u is a rational number. It follows that χ(G1) ⊂ Q.

Let M be the image of Q[G1] → End0(X). Clearly, M ⊗Q Q2 coincides with
the image of

Q2[G1] −→ End0(X) ⊗Q Q2 = EndQ2

(

V2(X)
)

.

Since the G1-module V2(X) is absolutely simple,

Q2[G1] −→ EndQ2

(

V2(X)
)

is surjective. This implies that

dimQ(M) = dimQ

(

End0(X)
)

and therefore, M = End0(X), i.e. Q[G1] → End0(X) is surjective. The semi-

simplicity of Q[G1] allows us to identify End0(X) with a direct summand
of Q[G1].

If ` is a prime number that does not divide order of G1 then it is well-
known that the group algebra Q`[G1] is a direct product of matrix algebras
over (commutative) fields. It follows that p divides order of G1. Since #(G1)
equals #(G) times a power of 2 and p is odd, we conclude that p divides #(G).
In particular, G1 contains an element u of exact order p. Since

u ∈ G1 ⊂ End0(X) ⊂ EndQ2

(

V2(X)
)

,

Pu(t) is a polynomial of degree 2g with rational coefficients and one of its roots
is a primitive pth root of unity. It follows that Pu(t) is divisible in Q[t] by the
p-th cyclotomic polynomial Φp(t) = (tp − 1)/(t − 1). Since the degree of Φp

is p− 1, we conclude that the degree 2g of Pu(t) is greater or equal than p− 1,
i.e. 2g ≥ p − 1.
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Assume for a while that the G-module X2 is very simple. Since G1 → G
is surjective, the G1-module X2 and its lifting V2(X) are also very simple
G1-modules [29, Remark 5.2 (i,v(a))]. Since Z1 is normal in G1, we conclude,
thanks to [29, Remark 5.2 (vii)] that either the Z1-module V2(X) is absolutely
simple or Z1 consists of scalars. Since Z1 is a finite commutative group, it
does not admit absolutely irreducible representations of dimension > 1. Since
dimQ2

(V2(X)) = 2g > 1, we conclude that Z1 consists scalars; in particular, Z1

is a central subgroup in G1. Since

Z1 ⊂ G1 ⊂ Sp
(

V2(X)
) ∼= Sp(2g, Q2),

either Z = {1} or Z = {±1}. This implies that Z1 is a cyclic group of order 1
or 2.

Further we no longer assume that the G-module X2 is very simple. Assume
instead that every homomorphism from Z to GL(g − 1, F2) is trivial. I claim
that in this case Z is again a central subgroup of G1. Indeed, the short exact
sequence

1 → Z ↪−→ G1 −� G → 1

defines, in light of commutativeness of Z, a natural homomorphism

η : G −→ Aut(Z)

which is trivial if and only if Z is central in G1. Clearly, η(G) is a finite
perfect group. Recall that Z is an elementary 2-group, i.e. Z ∼= Fr

2 for
some nonnegative integer r. Clearly, we may assume that r ≥ 1 and there-
fore Aut(Z) ∼= GL(r, F2). If r ≤ g − 1 then we are done. Suppose that r = g.
Then Z must contain

{±1} ⊂ Sp
(

V2(X)
)

.

Since {±1} is a central subgroup of G1, the elements of η(G) ⊂ Aut(Z) act
trivially on {±1}. Since the quotient Z/{±1} has F2-dimension g−1, elements
of η(G) act trivially on Z/{±1}. This implies that η(G) is isomorphic to a
subgroup of the commutative group Hom(Z/{±1}, {±1}). Since η(G) is per-
fect, we conclude that η(G) = {1}, i.e. Z is a central subgroup and therefore
is either {1} or {±1}.

6. Hyperelliptic two-dimensional jacobians in characteristic 3

Throughout this section K is a field of characteristic p = 3 and Ka its
algebraic closure, n = 5 or 6,

f(x) =

n
∑

i=0

aix
i ∈ K[x]

a separable polynomial of degree n, i.e. all ai ∈ K, an 6= 0 and f has no
multiple roots. We write Gal(f) ⊂ Sn for the Galois group of f over K.
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Let Cf be the hyperelliptic curve y2 = f(x) over Ka.

Lemma 6.1. — Suppose that n = deg(f) = 5 and a4 = 0.

(i) The jacobian J(Cf ) of Cf is a supersingular abelian variety over Ka if
and only if a1 = a2 = 0, i.e.

f(x) = a5x
5 + a3x

3 + a0.

If this is the case then J(Cf ) is isogenous but not isomorphic to a self-
product of a supersingular elliptic curve.

(ii) Suppose that a0 6= 0 (e.g., f(x) is irreducible over K) and J(Cf ) is a
supersingular abelian variety. Then Gal(f) ⊂ A5 if and only if −1 is a
square in K, i.e. K contains F9.

Proof. — Since p = 3, f(x)(p−1)/2 = f(x). Let us consider the matrices

M :=
( ap−1 ap−2

a2p−1 a2p−2

)

=
(a2 a1

a5 0

)

, M (3) :=
(a3

2 a3
1

a3
5 0

)

.

Extracting cubic roots from all entries of M one gets the Hasse-Witt/Cartier-
Manin matrix M (3) of C (with respect to the standard basis in the space of
differentials of the first kind) [13], [24], [5, p. 129]. Recall (see [13, p. 78], [19],
[24, Thm 3.1], [5, Lemma 1.1]) that the jacobian J(C) is a supersingular abelian
surface not isomorphic to a product of two supersingular elliptic curves if and
only if M 6= 0 but

M (3)M = 0.

Clearly, M 6= 0, because a5 6= 0. It is also clear that

det(M (3)M) = det(M (3)) det(M) = (−a3
1a

3
5)(−a1a5) = a4

1a
4
5.

Hence, if M (3)M = 0 then a1 = 0. Suppose that a1 = 0. Then

M =
(

a2 0
a5 0

)

, M (3) =
(

a3
2 0

a3
5 0

)

, M (3)M =
(

a4
2 0

a3
5a2 0

)

.

We conclude that M (3)M = 0 if and only if a1 = a2 = 0. It follows that J(C)
is a supersingular abelian surface if and only if a1 = a2 = 0. Since M 6= 0,
the jacobian J(C) is not isomorphic to a product of two supersingular elliptic
curves. This proves (i).

In order to prove (ii), let us assume that J(Cf ) is supersingular, i.e.,

f(x) = a5X
5 + a3x

3 + a0.

We know that a0 6= 0, a5 6= 0. Let us put

h(x) := a−1
5 f(x) = x5 + b3x

3 + b0

where b3 = a3/a5, b0 = a0/a5. Clearly, b0 6= 0 and the Galois groups of f(x)
and h(x) coincide. So, it suffices to check that Gal(h) ⊂ A5 if and only if −1
is a square in K.
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The derivative h′(x) of h(x) is 5x4 = −x4. Let α1, . . . , α5 be the roots of h.
Clearly,

5
∏

i=1

αi = −b0.

It is well-known that the Galois group of h lies in the alternating group if and
only if its discriminant

D =
∏

i<j

(αi − αj)
2

is a square in K. On the other hand, it is also well-known that

5
∏

i=1

h′(αi) =: R(h, h′) = (−1)
1

2
deg(h)(deg(h)−1)D.

(Here R(h, h′) is the resultant of h and h′.) It follows that

R(h, h′) =

5
∏

i=1

(−α4
i ) = −

(

5
∏

i=1

αi

)4

= −(−b0)
4 = −b4

0

and therefore D = −b4
0. Clearly, D is a square in K if and only if −1 is a square

in K.

Example 6.2 (Counterexamples for A5 and S5). — Let k be an algebraically
closed field of characteristic p = 3. Let K = k(z) be the field of rational

functions in variable z with constant field k. We write k(z) for an algebraic
closure of k(z). According to Abhyankar [1], the Galois group of the polynomial

h(x) = x5 − zx2 + 1 ∈ k(z)[x] = K[x]

is A5 (see also [20, §3.3]). It follows that the Galois group of the polynomial

f(x) = x5h
(1

x

)

= x5 − zx3 + 1 =

5
∑

i=1

aix
i

is also A5. (Here a5 = 1, a4 = a2 = a1 = 0, a3 = −z, a0 = 1.)

Let us consider the hyperelliptic curve

C : y2 = x5 − zx3 + 1

of genus 2 over k(z). It follows from Lemma 6.1 that the jacobian J(C) of C
is a supersingular abelian surface that is not isomorphic to a product of two
supersingular elliptic curves. Hence End(J(C)) is isomorphic to a certain order
in the matrix algebra of size 2 over the quaternion Q-algebra ramified exactly
at 3 and ∞. See [5, Prop. 2.19]) for an explicit description of this order.

Assume now that k is an algebraic closure of F3. Let us put

K0 = F3(z) ⊂ K = k(z) ⊂ k(z).
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Clearly, −1 is not a square in K0 and k(z) is an algebraic closure of K0. Also,
f(x) ∈ K0[x]. An elementary calculation (as in the proof of Lemma 6.1 (ii))
shows that the discriminant of f(x) is −1. This implies that the Galois group
of f(x) over K0 does not lie in A5. It follows that the Galois group of f(x) =
x5 − zx3 + 1 over K0 is S5. However, as we have already seen, the jacobian
of y2 = x5 − zx3 + 1 is supersingular.

Theorem 6.3. — Let K be a field with char(K) = 3, Ka its algebraic closure,
f(x) ∈ K[x] an irreducible separable polynomial of degree n = 5 or 6. Let
us assume that the Galois group Gal(f) of f is the full symmetric group Sn.
Assume, in addition, that −1 is a square in K, i.e. K contains F9.

Let C = Cf be the hyperelliptic curve y2 = f(x). Let J(Cf ) be its jacobian,
End(J(Cf )) the ring of Ka-endomorphisms of J(Cf ). Then End(J(Cf )) = Z.

Proof of Theorem 6.3. — Thanks to Remark 2.3, we may and will assume
that n = 5. We have

f(x) =
5

∑

i=0

aix
i ∈ K[x]

where all the coefficients ai ∈ K and a0 6= 0. Let us put

γ :=
a4

5a0

, h(x) := f(x − γ).

Clearly, h(x) ∈ K[x] is an irreducible polynomial of degree 5 and Gal(h) =
Gal(f) = S5. It is also clear that if

h(x) =

5
∑

i=0

bix
i ∈ K[x]

then b4 = 0, b5 = a5 6= 0. The substitution x1 = x + γ, y1 = y establishes
a K-birational isomorphism between hyperelliptic curves C = Cf : y2 = f(x)
and C1 = Ch : y2

1 = h(x1) and induces an isomorphism of the jacobians J(Cf )
and J(Ch).

Suppose that End(J(Cf )) 6= Z. Then it follows from Theorem 2.1 of [25]
that J(Cf ) is a supersingular abelian variety. It follows that J(Ch) ∼= J(Cf ) is
also a supersingular abelian variety. Applying Lemma 6.1 (ii) to h, we conclude
that Gal(h) ⊂ A5, because −1 is a square in K. However, Gal(h) = S5. We
obtained the desired contradiction.

Example 6.4. — Let k be an algebraically closed field of characteristic 3.
Let K = k(z) be the field of rational functions in variable z with constant

field k. We write k(z) for an algebraic closure of k(z). Let h(x) ∈ k[x] be a
Morse polynomial of degree 5. This means that the derivative h′(x) of h(x)
has deg(h) − 1 = 4 distinct roots β1, . . . , β4 and h(βi) 6= h(βj) while i 6= j.
(For example, x5 − x is a Morse polynomial.) Then a theorem of Hilbert (see
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[21, Thm 4.4.5, p. 41]) asserts that the Galois group of h(x)− z over k(z) is Sn.
Let us consider the hyperelliptic curve

C : y2 = h(x)

of genus 2 over k(z) and its jacobian J(C). It follows from Theorem 6.3 that
End(J(Cf )) = Z. (The case of h(x) = x5 −x was earlier treated by Mori [15].)

7. A corollary

Combining Theorems 2.1 and 6.3 together with Theorem 2.3 of [29] and
Theorem 2.1 of [25], we obtain the following statement.

Theorem 7.1. — Let K be a field with char(K) 6= 2, Ka its algebraic closure,
f(x) ∈ K[x] an irreducible separable polynomial of degree n ≥ 5 such that the
Galois group of f is either Sn or An. If char(K) = 3 and n ≤ 6 then we
additionally assume that Gal(f) = Sn and K contains F9.

Let Cf be the hyperelliptic curve y2 = f(x). Let J(Cf ) be its jacobian,
End(J(Cf )) the ring of Ka-endomorphisms of J(Cf ). Then End(J(Cf )) = Z.
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