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ON THE PYTHAGORAS NUMBERS OF

REAL ANALYTIC SET GERMS

by José F. Fernando & Jesús M. Ruiz

Abstract. — We show that (i) the Pythagoras number of a real analytic set germ
is the supremum of the Pythagoras numbers of the curve germs it contains, and (ii)
every real analytic curve germ is contained in a real analytic surface germ with the
same Pythagoras number (or Pythagoras number 2 if the curve is Pythagorean). This
gives new examples and counterexamples concerning sums of squares and positive
semidefinite analytic function germs.

Résumé (Sur le nombre de Pythagore des germes d’ensembles analytiques réels)
Nous montrons : (i) que le nombre de Pythagore d’un germe d’ensemble analytique

réel est le plus grand des nombres de Pythagore des courbes qu’il contient et (ii)
que tout germe de courbe analytique réelle est contenu dans le germe d’une surface
analytique réelle ayant le même nombre de Pythagore (ou le nombre 2 si la courbe est
pythagoricienne). Cela fournit de nouveaux exemples et contre-exemples à propos des
sommes de carrés et des germes de fonctions analytiques semi-définies.

1. Preliminaries and statement of results

The Pythagoras number of a ring A is the smallest integer p(A) = p ≥ 1 such
that any sum of squares of A is a sum of p squares, and p(A) = +∞ if such an

Texte reçu le 23 avril 2003, accepté le 3 février 2004
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integer does not exist. This invariant appeals specialists from many different
areas, and has a very interesting behaviour in geometric cases; we refer the
reader to [4], [7], [21] and [22]. Here we are interested in the important case of
real analytic germs, which have been extensively studied in [6], [17], [18], [11],
[20], [12], [8], [9], [10].

Let X ⊂ R
n be a real analytic set germ and O(X) its ring of analytic

function germs. Since O(Rn) is the ring R{x} of convergent power series in
x = (x1, . . . , xn), we have O(X) = R{x}/J (X), where J (X) stands for the
ideal of analytic function germs vanishing onX . We will discuss the Pythagoras
number p[X ] = p(A) of the ring A = O(X).

Clearly, if we have another real analytic set germ Y ⊂ X , then J (Y ) ⊃ J (X)
and the canonical surjection O(X) → O(Y ) gives immediately the inequality
p[Y ] ≤ p[X ]. This easy remark can be sharpened as follows:

Theorem 1.1. — The Pythagoras number p[X ] of a real analytic set germ X
is the supremum of the Pythagoras numbers p[Y ] of all real analytic curve

germs Y ⊂ X.

If the germ X is irreducible, the supremum can be restricted to irreducible

curve germs Y . In general this is not possible:

Example 1.2. — The planar curve germ Y : (x2 − y3)(x2 + y3) = 0
has Pythagoras number 2, while its irreducible components Y1 : x2 − y3 = 0
and Y2 : x2 + y3 = 0 have both Pythagoras number 1.

Indeed, since Y ⊂ R
2, we have p[Y ] ≤ 2, and looking at the initial forms

of the series involved, one easily checks that x2 + y2 is not a square mod
(x2−y3)(x2 +y3). On the other hand, O(Yi) ≡ R{t2, t3}, and this ring consists
of all power series without the degree 1 monomial; it follows readily that in this
ring every sum of squares has always a square root.

Note that if X itself is a curve germ, Theorem 1.1 is trivial. On the other
hand, in the irreducible case the result is quite more precise, as it takes the
form of a curve selection lemma:

Theorem 1.3. — Let X be an irreducible real analytic set germ of dimen-

sion ≥ 2, and Z ⊂ X a semianalytic germ with dim(Z) = dim(X). Then p[X ]
is the supremum of the Pythagoras numbers p[Y ] of all irreducible curve

germs Y such that Y \ {0} ⊂ Z.

The condition Y \ {0} ⊂ Z means that Z contains both open half-branches
of Y , which improves the more typical one half-branch selection; this is impor-
tant for applications (see [2, VII.4,5]). Summing up, there are two possibilities:

(i) If dim(X) = 2, then p[X ] = p < +∞ (see [8]), and we can find a curve
germ Y ⊂ X , with p[Y ] = p. As said above, if X is irreducible, the curve germ
Y can be chosen irreducible and anywhere in X .
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(ii) If dim(X) ≥ 3, then p[X ] = +∞ (see [9]), and what happens is that X
contains anywhere irreducible curve germs with Pythagoras number arbitrarily
large (note that in this case we can always supposeX irreducible). For instance,
in X = R

3 we can find monomial curve germs Y : xi = tmi with p[Y ] → +∞.

In this statements, anywhere means in any semianalytic set germ of maximal

dimension. We will prove this in Section 2.

In case (ii) we can also find irreducible surface germs X ′ ⊂ X with arbi-
trarily large Pythagoras number p[X ′]. For that, we first find irreducible curve
germs Yk ⊂ X not contained in the singular locus of X such that p[Yk] → +∞;
then, by the condition on the singular locus, X contains some irreducible sur-
face germ Xk ⊃ Yk (see [2, VII.5.1,VIII.2.5]), so that p[Xk] ≥ p[Yk].

After these results it is only natural to seek for a converse, namely:

Theorem 1.4. — Let Y be a curve germ. Then there exist a pure surface

germ X ⊃ Y with

p[X ] =

{
2 if p[Y ] = 1,

p[Y ] otherwise.

We call a set germ pure if its irreducible components have all the same
dimension. In fact, if Y is irreducible, X can be found irreducible too. The
statement above is the best possible one, since surface germs have Pythagoras
number ≥ 2.

The proof of Theorem 1.4 is developed in Section 3. It is interesting
to remark here that for irreducible Y , the surface X one obtains is bira-

tional to R
2, that is, it has a parametrization x = x(s, t) that induces an

isomorphism M(X) → R({s, t}) between the fields of meromorphic func-
tion germs. In particular, although the Pythagoras number p[X ] of the
domain O(X) is arbitrary, the Pythagoras number p(X) of its field of frac-
tions M(X) is always 2: p(X) = p(M(X)) = p(R({s, t})) = 2

The construction used to prove Theorem 1.4 can be extended to obtain the
following relative version of the result: If a surface germ X has some irreducible

components of dimension 1, then those components embed in a surface germ X ′

so that p[X ∪ X ′] = p[X ]. The proof of this technical generalization is most
predictable, and will not be detailed here.

We also notice that the surfaceX may well need bigger embedding dimension
than the curve Y :

Example 1.5. — Consider the curve germ Y ⊂ R
3 given by

Y : x = t5, y = t11, z = t18.

The Pythagoras number of this curve germ is p[Y ] = 2, as one can see af-
ter some (not completely straightforward) work using some ideas in [17], [18]
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and [11]. Consequently, by Theorem 1.4, Y is contained in some surface germX
with p[X ] = 2, but no such a surface germ can be embedded in R

3.

This can be proven by way of contradiction, as we sketch next. Suppose
X ⊂ R

3, defined by an equation f(x, y, z) = 0 which must have order 2 (oth-
erwise, x2 + y2 + z2 would not be a sum of two squares mod f). As f belongs
to J (Y ) = (z2 − yx5, zy2 − x8, y3 − x3z), we can take

f = z2 − yx5 + 2a(zy2 − x8) + 2b(y3 − x3z),

with a, b ∈ R{x, y}. By the Weiertrass Preparation Theorem, we factorize
f = UP , where

U ∈ R{x, y, z} is a unit, and P = z2 + 2B(x, y)z + C(x, y).

A small computation gives

U(x, y, 0)C = f(x, y, 0) ∈ (y3, x6),

2U(x, y, 0)B +
∂U

∂z
(x, y, 0)C =

∂f

∂z
(x, y, 0) ∈ (y2, x3)

and after the change of coordinates v = z+B, f becomes v2 +C−B2. Since U
is a unit, U(x, y, 0) is a unit too, and we deduce

C ∈ (y3, x6) ⊂ (y, x2)3, B2 ∈ (y2, x6)2 ⊂ (y, x2)3.

Thus our surface germ is now X : v2 = F, where F = B2 − C ∈ (y, x2)3. This
surface must be equivalent to some surface germ in the list given in [10], but
standard singularity theory (see [14, 9.2.12–14]) tells that this is not possible.

Thus, we can only expect a mild control on the embedding dimension of X .
In fact, a careful analysis of the construction in Section 3 will give some bound
for that embedding dimension in terms of numerical invariants of Y . For in-
stance, if Y is the curve of the example above, the embedding dimension of X
can be lowered to 18!

An interesting consequence of Theorem 1.4 is this:

Corollary 1.6. — Every integer p ≥ 2 is the Pythagoras number of a real

analytic surface germ.

Proof. — Indeed, p is the Pythagoras number of some curve germ by [17], and
then 1.4 applies.

We can look more closely at the construction of these surface germs, which
give new examples concerning the problem whether every positive semidefinite
analytic function germ is a sum of squares of analytic function germs (in short,
psd = sos). In fact, given a curve Y with Pythagoras number p ≥ 2, the
surface X with p[X ] = p lies in a sandwich Y ≡ Y × {0} ⊂ X ⊂ Y × R

d

for suitable d ≥ 1. Thus:
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(1) Any positive semidefinite function germ on Y , extends to a positive
semidefinite function germ on X , and

(2) Every sum of squares on X restricts to a sum of squares on Y .

Consequently, since psd 6= sos for Y , we conclude psd 6= sos forX . In particular,
choosing Y with p[Y ] = 2, we produce a full range of new examples of real

analytic surface germs X with minimal Pythagoras number and psd 6= sos.
These examples include those in [10, Ex.1.5], which correspond to the simplest
possible Y ’s: the planar curves xn = yn+1.

2. Proof of Theorems 1.1 and 1.3

The key result to these theorems is a curve selection lemma with large tangent

space, which refines [3, Prop. 1] in various ways to fit our situation. We present a
different proof which simplifies that of [3] and gives the generalization needed
here:

Lemma 2.1. — Let X ⊂ R
n be a real analytic irreducible germ of dimen-

sion ≥ 2, and Z ⊂ X a semianalytic germ with dim(Z) = dim(X). Then,

for every integer k ≥ 1 there is a real analytic curve germ Y ⊂ X such that:

Y \ {0} ⊂ Z and J (Y ) ⊂ J (X) + (x1, . . . , xn)k.

Proof. — For the proof, we can suppose

Z = {f1 > 0, . . . , fr > 0} ∩X,
where f1, . . . , fr ∈ R{x}. Since X is irreducible, the ring A = O(X) =
R{x}/J (X) is a domain, whose quotient field we denote by K. By the hy-
pothesis on the dimension of Z, there is a total ordering α of K such that
f1(α) > 0, . . . , fr(α) > 0. Write (x) = (x1, . . . , xn) and let m = (x) mod J (X)
be the maximal ideal of A. We consider the convex hull V of R in K with
respect to α (see [2, II.3.6]): V is a valuation ring of K with residue field R,
and since A is henselian, V dominates A. Now, by Hironaka’s resolution of
singularities (see [13]), there is a finitely generated regular A-algebra A′ such
that f = f1 · · · fr has only normal crossings in A′. Furthermore, A′ is proper
over A, that is, if a valuation ring of K contains A, then it contains A′. Conse-
quently, our valuation ring V dominates some localization B of A′; let n denote
the maximal ideal of B. By Zariski’s Subspace Theorem (see [1, 10.6]), A is a
subspace of B (with respect to the adic topologies); consequently:

(2.1.1) There is an integer ` ≥ 1 such that n` ∩A ⊂ mk.

Note also that, since the residue fields of A and V are both R, the residue
field of B is also R. By the normal crossings condition on f , we can write

fj = ujy
mj1

1 · · · ymjd

d ,
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where y1, . . . yd, form a regular system of parameters of B, d = dim(A) ≥ 2,
and uj is a unit, whose residue class mod n we denote by cj ∈ R. Replacing yj

by −yj if needed, we can suppose yj(α) > 0, and since fj(α) > 0, and V
dominates B, it follows cj > 0. We are to define a local homomorphism:

ϕ : A ⊂ B ⊂ B̂ = R[[y]] −→ R[[t]], y = (y1, . . . , yd)

by a suitable choice yi 7→ yi(t) = t2qi + ait
e.

First of all, we choose exponents q1 < · · · < qd so that all formal power series
h(y) ∈ R[[y]] such that h(tq1 , . . . , tqd) = 0 have order ≥ ` (see [3, Lemma 2] or [8,
5.1]). We claim that:

(2.1.2)

{
There is e0 ≥ q1, . . . , qd such that if h(t2q1 , . . . , t2qd) has order ≥ e0,
then h(y) has order ≥ `.

Indeed, consider the homomorphism ψ : R[[y]] → R[[t]] : h 7→ h(t2q1 , . . . , t2qd),
and its kernel q. The choice of the qi’s was made to have q ⊂ (y)`. Now we
consider the descending chain of ideals ae = ψ−1(teR[[t]]). Clearly

⋂
e ae = q,

hence by Chevalley’s Theorem (see [24, VII.5 Thm.13, p.270]), we find e0 such
that ae0

⊂ q + (y)` ⊂ (y)`. This is what we claimed.

We will use the following reformulation:

(2.1.3)

{
For any a1, . . . , ad ∈ R and e ≥ e0, if h(t2q1 +a1t

e, . . . , t2qd +adt
e)

has order ≥ e0, then h(y) has order ≥ `.

This follows readily from (2.1.2), because

h(t2q1 , . . . , t2qd) = h(t2q1 + a1t
e, . . . , t2qd + adt

e) mod te.

Next, consider yq2

1 − yq1

2 ∈ B ⊂ K. Since K is the quotient field of A, we
find g ∈ A, g 6= 0, such that g2(yq2

1 − yq1

2 ) ∈ A. Then:

(2.1.4)






There are non zero real numbers a1, . . . , ad ∈ R and an odd

integer e ≥ e0, such that g(t2q1 + a1t
e, . . . , t2qd + adt

e) 6= 0,
say g(t2q1 + a1t

e, . . . , t2qd + adt
e) = atm + · · · , a 6= 0.

For, fix a1, . . . , ad ∈ R, and assume

g(t2q1 + a1t
e, . . . , t2qd + adt

e) = 0

for every odd integer e ≥ e0. We now borrow a trick from [16], involving the
power series in two variables

g∗(t, z) = g(t2q1 + a1z, . . . , t
2qd + adz).

By assumption, g∗(t, te) = 0 for all odd e ≥ e0, which implies g∗(t, z) = 0.
Hence

0 = g∗(0, z) = g(a1z, . . . , adz) = zωgω(a1, . . . , ad) + · · · ,
where gω 6= 0 is the initial form of g. Thus gω(a1, . . . , ad) = 0. Conse-
quently, it is enough to pick (a1, . . . , ad) ∈ R

d such that gω(a1, . . . , ad) 6= 0
and a1 6= 0, . . . , ad 6= 0. This settles (2.1.4).
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After the preceding preparation we have the homomorphism

ϕ : R{x} → B ⊂ R[[y]] −→ R[[t]], yi 7−→ yi(t) = t2qi + ait
e;

write y(t) = (y1(t), . . . , yd(t)).
From (2.1.1) and (2.1.3) we deduce:

(2.1.5) ϕ−1(teR[[t]]) ⊂ J (X) + (x)k.

On the other hand, by an easy computation with the equality

ϕ(fj) = ϕ(ujy
mj1

1 · · · ymjd

d ) = uj

(
y(t)

)
y1(t)

mj1 · · · yd(t)
mjd

one gets

(2.1.6) ϕ(fj) = cjt
2mj + · · · ,

where cj > 0 and mj = mj1q1 + · · · +mjdqd.
Similarly, using (2.1.4) one sees that:

(2.1.7) ϕ(g2(yq2

1 − yq1

2 )) = a2bt2m+e′

+ · · · ,
where b = −a2q1 6= 0 and e′ = 2q2(q1 − 1) + e is odd.

The homomorphism ϕ would be the curve germ we seek, if it were analytic.
To amend that, we recall that any formal homomorphism A→ R[[t]] can be ap-
proximated (in the Krull topology) by analytic homomorphismsA→ R{t} (this
is M. Artin’s Approximation Theorem, see [23, III.5.1]). But a close enough ap-
proximation A → R{t} induces a homomorphism ϕ̃ : R{x} → R{t}, for which
properties (2.1.5) to (2.1.7) hold true. Thus, we consider the real analytic curve
germ Y ⊂ X whose ideal is J (Y ) = ker(ϕ̃). First of all, this Y verifies the
large tangent space condition

J (Y ) ⊂ J (X) + (x)k

by (2.1.5). To check that Y \ {0} ⊂ Z, we consider the corresponding
parametrization:

t 7−→ x(t) =
(
x1(t), . . . , xn(t)

)
=

(
ϕ̃(x1), . . . , ϕ̃(xn)

)
.

Then (2.1.6) says that

fj(x1(t), . . . , xn(t)) = ϕ̃(fj) = cjt
2mj + · · · > 0

both for t > 0 and for t < 0, so that the two half-branches of this parametriza-

tion lie in Z = {f1 > 0, . . . , fr > 0} ∩ X . Consequently, the only thing that
remains to check is that indeed these two half-branches are different, so that
they truly parametrize Y . But exactly to this purpose we have the element
g2(yq2

1 − yq1

2 ) ∈ A, say

g2(yq2

1 − yq1

2 ) = h mod J (X)

with h ∈ R{x}. By (2.1.7):

h
(
x1(t), . . . , xn(t)

)
= ϕ̃(h) = ϕ̃

(
g2(yq2

1 − yq1

2 )
)

= a2bt2m+e′

+ · · · ,
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which changes sign from t > 0 to t < 0, because b2a 6= 0 and e′ is odd.
This means that the two half-branches are different, and they parametrize
completely Y . Thus the proof is finished.

Using the large tangent curve selection lemma 2.1 above, Theorems 1.1
and 1.3 follow by approximation.

Proof of Theorem 1.3. — We suppose p[Y ] ≤ p for all irreducible curve germs
Y ⊂ X such that dim(Y ∩ Z) = 1, and will see that p[X ] ≤ p. To that end,
since O(X) = R{x}/J (X), we consider a power series h ∈ R{x} that is a sum
of squares mod J (X). We pick generators f1, . . . , fr, of the ideal J (X) and
have to solve in R{x} the equation

(?) h = y
2
1 + · · · + y

2
p + z1f1 + · · · + zrfr

By M. Artin’s Approximation Theorem (see [15]), it is enough to find solutions
mod (x)k for k large, where (x) = (x1, . . . , xn) is the maximal ideal of R{x}.
We fix k and proceed as follows.

By Lemma 2.1, there exists an irreducible curve germ Y ⊂ X such that
dim(Y ∩ Z) = 1 and J (Y ) ⊂ J (X) + (x)k. Now, since h is a sum of squares
mod J (X), it is a sum of squares mod J (Y ). But by assumption, p[Y ] ≤ p,
so that there are h1, . . . , hp ∈ R{x}, g ∈ J (Y ) such that

h = h2
1 + · · · + h2

p + g.

Then, as J (Y ) ⊂ J (X) + (x)k, we can write g = g1f1 + · · · + grfr mod (x)k,
and consequently

h = h2
1 + · · · + h2

p + g1f1 + · · · + grfr mod (x)k.

This means that (?) has a solution mod (x)k.
As was already said, it follows that (?) has a solution in R{x}, and h is a

sum of squares mod J (X), as wanted.

Finally, a natural modification of the preceding argument settles the re-
ducible case:

Proof of Theorem 1.1. — If X is not irreducible, say X =
⋃

i Xi, the argument
follows the same pattern, once one remarks that if some Yi ⊂ Xi has a large
enough tangent space, then Y =

⋃
i Yi has large tangent space. This again,

is an adic topologies matter. The key fact is this: Let I, J ⊂ R{x} be two

ideals. Then for every k ≥ 1 there is ` ≥ 1 such that
(
I + (x)`

)
∩

(
J + (x)`

)
⊂ I ∩ J + (x)k.

The assertion is an instance of the Artin-Rees Lemma (see [5, III.3.1, Cor. 1]):
just consider the canonical inclusion of finite R{x}-modules

F = A/I ∩ J −→ E = A/I ×A/J,

equiped with the (x)-adic topologies.
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3. Proof of Theorem 1.4

Here we fix a real analytic curve germ Y , construct the surface X of Theo-
rem 1.4, and prove the following, from which the result follows:

(3.1) If p[Y ] ≤ q where q ≥ 2, then p[X ] ≤ q.

To do that, we consider separately the irreducible case.

Proof of Theorem 1.4 for irreducible Y . — Let Y ⊂ R
n be an irreducible curve

germ. Pick a parametrization

t 7−→ x(t) =
(
x1(t), . . . , xn(t)

)
,

which induces an isomorphism

O(Y ) −→ A = R{x(t)} = R{x1(t), . . . , xn(t)} ⊂ R{t}.
Then, R{t}/(x(t)) is a finite R-linear space, say generated by h1(t) ∈ R{t}, . . . ,
hr(t) ∈ R{t}. We will use the fact that A contains all power series of large

enough order, say of order ≥ d.
After this preparation, we consider in R

m = R
n × R

d the coordinates

(x, y) = (x1, . . . , xn, y0, y1, . . . , yd−1),

and the parametrization

(s, t) 7−→
(
x(t), y(s, t)

)
=

(
x1(t), . . . , xn(t), y0(s, t), . . . , yd−1(s, t)

)
,

where yj(s, t) = stj . This parametrization induces a finite homomorphism
ϕ : R{x, y} → R{s, t}. Indeed, let (x, y) be the maximal ideal of R{x, y}.
Since y0(s, t) = s, we have

R{s, t}/(x, y)R{s, t} = R{s, t}/(x(t), y(s, t)) = R{t}/(x(t)),
and this module is a finite R-vector space (generated by h1(t), . . . , hr(t)). Hence
R{s, t} is a finite R{x, y}-module by Mather’s Preparation Theorem (see [19,
II.1.5]).

We consider the image of ϕ

B = ϕ
(
R{x, y}

)
= R{x(t), y(s, t)} ⊂ R{s, t},

its kernel p ⊂ R{x, y}, and the corresponding isomorphism

R{x, y}/p −→ B = R{x(t), y(s, t)} ⊂ R{s, t}.
Clearly, A ⊂ B, and the substitution s = 0 gives a surjection B → A.

Now note that, ϕ being finite, dim
(
R{x, y}/p

)
= 2. Consequently, the

zero set germ X ⊂ R
m of p is an irreducible real analytic surface germ

with O(X) = R{x, y}/p ≡ B; it is the analytic closure of the image of the
parametrization (s, t) 7→ (x(t), y(s, t)) (actually, X is the image of that
parametrization, but we do not need that here).
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We see next that the inclusion B ⊂ R{s, t} is birational. In fact, we have
the stronger property that

sR{s, t} ⊂
(
y(s, t)

)
B ⊂ B.

Indeed, since h1(t), . . . , hr(t) generate R{s, t}/(x, y)R{s, t} over

R = R{x, y}/(x, y),
we deduce from Nakayama’s lemma that

R{s, t} = R{x, y}h1 + · · · + R{x, y}hr = Bh1 + · · · +Bhr.

Thus it suffices to see that sh(t) ∈ (y(s, t))B for every series h ∈ R{t}. But if h
has order ≥ d, then h ∈ A ⊂ B, and as s = y0(s, t), we are done. So we can
argue by descending induction on the order e < d of h: write h = aet

e + h′(t),
where h′ has order > e, and then

sh = aeye(s, t) + sh′ ∈
(
y(s, t)

)
B.

Now, it is clear from the construction that Y ≡ Y ×{0} ⊂ X ⊂ Y ×R
d, and

it only remains to prove (3.1): given q ≥ 2 such that p[Y ] ≤ q, we show that
p(B) ≤ q.

Let f ∈ B be a sum of squares in B. Then f is a sum of squares in R{s, t},
hence a sum of two squares as follows:

f = (sa1(s, t) + b1(t))
2 + (sa2(s, t) + b2(t))

2, ai ∈ R{s, t}, bi ∈ R{t}.
Here we can assume that b2 = 0, after writing

(sa1 + b1)
2 + (sa2 + b2)

2 =
(
s
a1b1 + a2b2√

b21 + b22
+

√
b21 + b22

)2

+
(
s
−a1b2 + a2b1√

b21 + b22

)2

,

where
√
b21 + b22 ∈ R{t} and bi/

√
b21 + b22 ∈ R{t}.

If b1 = 0, then f = (sa1)
2 + (sa2)

2 is a sum of two squares in B (recall
sR{s, t} ⊂ B). Thus, we may suppose that b1 6= 0.

Now, since the substitution s = 0 gives a surjection B → A and f is a sum
of squares in B, then b21 = f(0, t) is a sum of squares in A. As p(A) = p[Y ] ≤ q,
we find power series c1, . . . , cm, d1, . . . , dm ∈ A ⊂ R{t} such that

b21 = f(0, t) = c21 + d2
1 + · · · + c2m + d2

m, 2m =
{q if q is even,

q + 1, dm = 0 if q is odd.

For later use, we rearrange the addends so that the orders of b1 and c1 coincide.
An straightforward computation gives

f = (sa1 + b1)
2 + (sa2)

2 =
(
(sa1 + b1)

2 + (sa2)
2
) 1

b21

m∑

j=1

(c2j + d2
j)

=

m∑

j=1

(sfj + cj)
2 + (sgj + dj)

2,
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where fj = (a1cj − a2dj)/b1, gj = (a1dj + a2cj)/b1 ∈ R{s, t}, because the
order of b1 is the minimum of the orders of the cj ’s and the bj’s.

This is a representation of f as a sum of 2m squares in B (recall that
sR{s, t} ⊂ B and cj , dj ∈ A ⊂ B). If q is even, then 2m = q and we have
finished. If q is odd, then 2m = q + 1 and some adjustment is required.

The adjustment will be to merge the last square into the first two. Note that
if q is odd then q ≥ 3, fm = a1cm/b1, gm = a2cm/b1 and dm = 0. We consider
the equation

(
s(f1 + y) + c1

)2
+

(
s(g1 + z) + d1

)2
= (sf1 + c1)

2 + (sg1 + d1)
2 + (sgm)2.

If we solve it in R{s, t}, we are done. Now, equating coefficients of the powers
of s, we see it is enough to solve the following system





P1(y, z) = 2yf1 + y

2 + 2zg1 + z
2 −

(
a2
cm
b1

)2

= 0,

P2(y, z) = y
c1
b1

+ z
d1

b1
= 0

where c1/b1 ∈ R{t} and d1/b1 ∈ R{t} (this apparently superfluous denomi-
nator b1 will be essential soon!). The jacobian matrix of the previous system is

λ(y, z) =
( 2f1 + 2y 2g1 + z

c1/b1 d1/b1

)
.

Let I be the ideal of R{s, t} generated by

detλ(0, 0) = 2
(
f1
d1

b1
− g1

c1
b1

)

= 2
(a1c1 − a2d1

b1
· d1

b1
− a1d1 + a2c1

b1
· c1
b1

)
= −2

(c21 + d2
1

b21

)
a2.

Since b1 and c1 have the same order, (c21 + d2
1)/b

2
1 ∈ R{t} is a unit, and I = (a2).

Moreover, P1(0, 0) = − (a2cm/b1)
2 ∈ I2 and P2(0, 0) = 0 ∈ I2, so that we can

apply Tougeron’s Implicit Function Theorem (see [23, III.3.2]). Whence, the
system has indeed a solution, as wanted.

Thus we have completed the proof of the case when Y is irreducible. In fact
we have proved the following more precise statement:

(3.2)






Let f ∈ R{x, y} be a sum of squares on X,

with f Y =
∑q

k=1 β
2
k, βk ∈ R{x}.

Then there are αk ∈ (y)R{x, y} such that

f X =
∑q

k=1(αk + βk)2.

Proof for Y reducible. — By induction on the number of irreducible compo-
nents we have a surface germ X ⊂ R

n × R
d with Y × {0} ⊂ X and the

property (3.2). We are to find the same for Y ∪ Y ′, Y ′ irreducible.
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To start with, pick X ′ ⊂ R
n×R

d′

with Y ′×{0} ⊂ X ′ and the property (3.2),
which now says:

If f ∈ R{x, y′} is a sum of squares on X ′, with f Y ′ =
∑q

k=1 β
′
k
2

and

β′
k ∈ R{x}, then there are α′

k ∈ (y′)R{x, y′} such that

f ′
X′ =

q∑

k=1

(α′
k + β′

k)2.

We consider R
N = R

n × R
d × R

d′

and identify

R
n × R

d ≡ R
n × R

d × {0} ⊂ R
N , R

n × R
d′ ≡ R

n × {0} × R
d′ ⊂ R

N ,

to have Y ∪ Y ′ ⊂ X ∪X ′ ⊂ R
N . We claim that p[X ] ≤ q.

Indeed, let f ∈ R{x, y, y′} be a sum of squares on X ∪X ′. Then f is a sum
of squares on Y ∪ Y ′, and can be written as a sum of q squares, say

f Y ∪Y ′ =

q∑

k=1

g2
k, where gk ∈ R{x}.

Now we look at f X and using (3.2) write it as

f X =

q∑

k=1

(αk + gk)2, where αk ∈ (y)R{x, y}.

(note that f Y = (f Y ∪Y ′) Y ). Similarly

f ′
X

′ =

q∑

k=1

(α′
k + gk)2, where α′

k ∈ (y′)R{x, y′}.

Finally, we have

f X∪X′ =

q∑

k=1

(hk + gk)2, where hk = αk + α′
k ∈ (y, y′)R{x, y, y′}.

Indeed, it suffices to show that the sum on the right hand side coincides with f
on X and on X ′. But by construction:

α′
k|Rn×Rd×{0} ≡ 0, X ⊂ R

n × R
d × {0},

αk|Rn×{0}×Rd′ ≡ 0, X ′ ⊂ R
n × {0} × R

d′

.

This completes the induction.
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