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Abstract. — We consider the 17th Hilbert Problem for global real analytic functions
in a modified form that involves infinite sums of squares. Then we prove a local-global
principle for a real global analytic function to be a sum of squares of global real
meromorphic functions. We deduce that an affirmative solution to the 17th Hilbert
Problem for global real analytic functions implies the finiteness of the Pythagoras
number of the field of global real meromorphic functions, hence that of the field of real
meromorphic power series. This measures the difficulty of the 17th Hilbert problem in
the analytic case.

Résumé (Sur la finitude des nombres de Pythagore des fonctions méromorphes réelles)
Nous considérons le 17e problème de Hilbert pour les fonctions analytiques réelles

globales sous une forme modifiée faisant intervenir des sommes infinies de carrés. Nous
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232 F. ACQUISTAPACE, F. BROGLIA, J.F. FERNANDO & J.M. RUIZ

démontrons alors un principe local-global pour qu’une fonction analytique réelle globale
soit une somme de carrés de fonctions méromorphes réelles globales. Nous déduisons
qu’une solution affirmative au 17e problème de Hilbert pour les fonctions analytiques
réelles globales entraîne la finitude du nombre de Pythagore du corps des fonctions
méromorphes réelles globales et donc celle du corps des séries méromorphes réelles. Cela
donne une mesure de la difficulté du 17e problème de Hilbert dans le cas analytique.

1. Introduction

Of all possible versions of the famous 17th Hilbert Problem, that for global
real analytic functions is the one that has resisted any substantial progress. As
is well known, the problem is whether

Every positive semidefinite global real analytic function f : Rm → R is a

sum of squares of global real meromorphic functions.

In this formulation, sums are finite. The best result we can state today goes
back to the early 1980s: a positive semidefinite global real analytic function

whose zero set is discrete off a compact set is a sum of squares of global real

meromorphic functions ([4] and [14], [11], see also [13] and [2]). Thus the
non-compact case remains wide open, except for surfaces ([3], [1], [9]). In this
paper we explore some remarkable features that make the non-compact case
quite different from the compact one. Recall that the Pythagoras number of a
ring is the smallest integer p (or +∞) such that any sum of squares in the ring
is a sum of p squares. We will prove:

Proposition 1.1. — Suppose that every positive semidefinite global real an-

alytic function on Rm
is a finite sum of squares of global real meromorphic

functions. Then the field of global real meromorphic functions on Rm
has finite

Pythagoras number.

And the same conclusion holds for the field of real meromorphic function
germs. Thus, if we can represent every positive semidefinite function as a
finite sum of squares (a qualitative matter), we will not encounter sums of
arbitrary length (a quantitative matter). This kind of surprise will come out
after the consideration of infinite sums of squares. Indeed, dealing with analytic
functions, convergent infinite sums have a meaning, and they are a more subtle
way to produce positive semidefinite functions. In this setting of infinite sums
of squares, we localize the obstruction for a function to be a sum of squares
at the germ of its zero set. After this sketchy preamble, let us now be more
precise.
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ON THE FINITENESS OF PYTHAGORAS NUMBERS 233

In what follows, we consider a real analytic manifold M ⊂ Rn (which we can
suppose embedded as a closed set). This embedding dimension n will appear
in various bounds in our results; the dimension of M will be denoted by m.
(1.2) Germs at a non-empty closed set Z ⊂ M . — Germs at Z are defined exactly
as germs at a point, through neighborhoods of Z in M ; we will denote by fZ

the germ at Z of an analytic function f defined in some neighborhood of Z.
We have the ring O(MZ) of analytic function germs at Z, and its total ring of
fractions M(MZ), which is the ring of meromorphic function germs at Z. Note
that for Z = M we get nothing but global analytic and global meromorphic
functions on M , hence definitions and results for germs apply in particular to
global functions. If Z is connected, then O(MZ) is a domain and M(MZ) a
field.

As usual, a germ fZ is positive semidefinite when some representative f is
positive semidefinite on some neighborhood of Z.

Next, we define infinite sums of squares. The first attempt to use convergent,
even uniformly convergent, series of squares cannot work, as, in the real case,
uniform convergence does not guarantee analyticity. As we must operate freely
with these infinite sums, we must resort to complexification, which on the other
hand is customary in real analytic geometry. Thus, we are led to the following:

Definition 1.3. — Let Z ⊂ M be a non-empty closed set. An infinite sum

of squares of analytic function germs at Z is a series
�

k≥1 f
2
k , where all fk ∈

O(MZ), such that:

(i) in some complexification �M of M there is a neighborhood V of Z on
which each fk extends to a holomorphic function Fk, and

(ii) for every compact set L ⊂ V ,
�

k≥1 supL |Fk|2 < +∞.

The condition (ii) is the standard bound one uses to check that a function
series is absolutely and uniformly convergent on compact sets. Accordingly, on
the neighborhood V = V ∩M of Z, the infinite sum

�
k≥1 f

2
k converges and

defines a real analytic function f , and hence we have an analytic function germ
fZ ; we write fZ =

�
k≥1 f

2
k ∈ O(MZ). Hence, it makes sense to say that an

element of the ring O(MZ) is a sum of p squares in O(MZ), even for p = +∞.
Next, we consider meromorphic functions:

Definition 1.4. — Let Z ⊂ M be a non-empty closed set. An analytic func-
tion germ fZ is a sum of p ≤ +∞ squares of real meromorphic function germs

at Z if there is gZ ∈ O(MZ) such that g
2
ZfZ is a sum of p squares of real

analytic function germs at Z. The zero set {gZ = 0} is called the bad set of
the sum of squares.
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The above notion of bad set mimics the terminology introduced in [7], but
notice that here it refers to each given sum of squares, not to the function it
represents.

We will say that the bad set of a particular representation of a germ fZ

as a sum of squares of real meromorphic function germs is controlled if it is
contained in the zero set germ {fZ = 0}. We will often seek representations
with controlled bad set.

There is little need to remark here that the preceding definitions are re-
strictive in many ways. But this only means that any positive result on the
representation of a function as a sum of squares will be stronger than one would
have stated naively.

The central result in this paper is the following local-global principle:

Theorem 1.5. — Let f : M → R be a positive semidefinite global real analytic

function, and Z = {f = 0} �= ∅ its zero set. Suppose that fZ is a sum of

p ≤ +∞ squares of real meromorphic function germs. Then, f is a sum of

2n−1
p + 1 squares of global real meromorphic functions with controlled bad set.

Remark 1.6. — To check that fZ is a sum of p ≤ +∞ squares it is enough
to check that for every connected component Y of Z the germ fY is a sum of

p squares.
Indeed, those connected components Y form a locally finite family of disjoint

closed sets of M , hence of any given complexification �M of M . Thus, we can
find a locally finite family of disjoint sets V Y ⊃ Y , open in �M , whose union V
is an open neighborhood of Z in �M . The functions on that union V are defined
through their restrictions to the V Y ’s, and convergence on compact sets works
fine. Indeed, every compact set L ⊂ V is the union of the sets L ∩ V Y �= ∅,
which are finite in number and compact; then we have the bound

sup
L

|F |2 ≤
�

L∩ V Y �=∅
sup

L∩ V Y

|F |2

for any function F . �

Our central result, Theorem 1.5, splits into two separate parts. Firstly, what
concerns bad sets:

Proposition 1.7. — Let Z ⊂ M be a non-empty closed set, and fZ an ana-

lytic function germ which is a sum of p ≤ +∞ squares of meromorphic function

germs. Then fZ is a sum of 2n
p squares of meromorphic function germs with

controlled bad set. The number of squares can be lowered to 2n−1
p if fZ van-

ishes on Z.
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Let us mention here that this control of bad sets is crucial in the study of
irreducible factors of positive semidefinite global analytic functions [8].

Secondly, what concerns global sums of squares representations:

Proposition 1.8. — Let f : M → R be a positive semidefinite global real

analytic function, and Z = {f = 0} �= ∅ its zero set. Suppose that the germ fZ

is a sum of q ≤ +∞ squares of real meromorphic function germs with controlled

bad set. Then f is a sum of q + 1 squares of global real analytic functions with

controlled bad set.

Coming back to Theorem 1.5, the only positive result we know so far is that
every positive semidefinite analytic function germ on a compact set is a finite
sum of squares of real meromorphic function germs [2]. By Remark 1.6, we
deduce:

Corollary 1.9. — Let f : M → R be a positive semidefinite analytic func-

tion such that all connected components of its zero set {f = 0} are compact.

Then f is a sum of squares of global real meromorphic functions with controlled

bad set.

But notice that the sum here might well be infinite, since we have no common
bound on the number of squares needed to represent the germs fY . In one
case we do know such a bound: when Y is a singleton, fY is a sum of p =
2m + m squares (because a suitable modification of the germ is algebraic, see
[4, 418-420]). In view of this, the result from the early 1980s stated at the very
beginning of this introduction follows readily:

Corollary 1.10. — Let f : M → R be a positive semidefinite analytic func-

tion such that the set {f = 0, �x� ≥ ρ} is discrete for some ρ > 0. Then f

is a finite sum of squares of global real meromorphic functions with controlled

bad set.

As was roughly explained at the beginning, from Theorem 1.5 we will deduce
this quantitative conclusion:

Proposition 1.11. — Suppose that every infinite sum of squares of meromor-

phic functions on Rm
is a finite sum. Then the Pythagoras number of the field

M(Rm) of global meromorphic functions on Rm
is finite.

Since infinite sums of squares are positive semidefinite, this implies Propo-
sition 1.1.

The same follows readily for the field R({x}) = R({x1, . . . , xm}) of mero-
morphic power series in m variables, because the Pythagoras number of M(Rm)
bounds that of R({x}). In fact, every finite sum of squares in R({x}) can be
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represented by a finite sum of squares of meromorphic functions on an open
ball, which is analytically equivalent to Rm.

We remark that the computation of the Pythagoras number of R({x}) is an
important old problem in the theory of quadratic forms: the only bounds known
are 1, 2, 8 for m = 1, 2, 3 ([6, Problem 6 in §9], [12]), and even finiteness remains
open for larger m. This we consider a measure of the very great difficulty of
the 17th Hilbert Problem for global analytic functions.

The paper is organized as follows. In Section 2 we prove two key lemmas
concerning the extension of holomorphic functions and sums of squares with
fixed values on a given zero set; these lemmas are also needed in the study of
irreducible factors of positive semidefinite global analytic functions [8]. Section
3 is devoted to the proof of Proposition 1.8. In Section 5 we prove Proposition
1.7, and Theorem 1.5 follows from this. Finally, Section 6 is devoted to the
finiteness implications of the 17th Hilbert Problem (Proposition 1.11).

The authors would like to thank Prof. M. Shiota for friendly helpful dis-
cussions during the preparation of this work, notably in connection with the
important fact that bad sets can be controlled.

2. Preliminaries on holomorphic functions

Although our problem concerns real analytic functions, we will of course use
some complex analysis. For holomorphic functions we refer the reader to the
classical [10], for real analytic functions and complexification, to [5].

(2.1) General terminology. — In what follows we denote the coordinates in Cn

by z = (z1, . . . , zn), with zi = xi +
√
−1yi, where xi = Re(zi) and yi = Im(zi)

are respectively the real and the imaginary parts of zi. Also, we consider the
usual conjugation σ : Cn → Cn : z �→ z = (z1, . . . , zn), whose fixed points
are Rn. We say that a subset T ⊂ Cn is (σ-)invariant if σ( T ) = T ; clearly,
T ∩ σ( T ) is the biggest invariant subset of T . Thus, we see real spaces as
subsets of complex spaces. We will use the notations Int and Cl to denote
topological interiors and closures, respectively, with subscripts to specify the
ambient space if necessary.

Let U ⊂ Cn be an invariant open set and let F : U → C be a holomorphic
function. We say that F is (σ-)invariant if F (z) = F (z). This implies that F

restricts to a real analytic function on U = U ∩ Rn. In general, we denote by:

�(F ) : U → C
z �→ F (z)+F (z)

2

�(F ) : U → C
z �→ F (z)−F (z)

2
√
−1

the real and the imaginary parts of F , which satisfy F = �(F ) +
√
−1�(F ).

Note that both are invariant holomorphic functions.
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As a kind of converse, every real analytic function f defined on an open set
V ⊂ Rn extends to an invariant holomorphic function on some invariant open
set V ⊂ Cn with V = V ∩ Rn.

We also recall that Rn has in Cn a neighborhood basis consisting of invariant

open Stein neighborhoods. �

We next see how to extend a holomorphic function modulo another with
some control on its behaviour.

Lemma 2.2. — Let U be an invariant open Stein neighborhood of Rn
in Cn

and let Φ : U → C be an invariant holomorphic function. Let V ⊂ U be an

invariant (non-empty) open set such that {Φ = 0} ∩ V is closed in U. Let

K ⊂ U be an invariant compact set. Then there exist a real constant µ > 0
and an invariant compact set L ⊂ V for which the following property holds:

(∗) for every invariant holomorphic function C : V → C there exists an

invariant holomorphic function A : U → C such that Φ| V divides A| V −C

and

sup
K

|A| ≤ µ sup
L

|C|.

Proof. — First, consider the coherent sheaf of ideals J ⊂ OC
U generated by Φ,

and the exact sequence of coherent sheaves

0 → J → O U → O U/ J → 0.

Now, we have a corresponding diagram of cross sections:

J (U) ��

��

O(U) ��

��

Γ(U, O U/ J )

��
J ( V ) �� O( V ) �� Γ( V , O U/ J )

Here, the upper right arrow is onto because U is Stein. Furthermore, the right
vertical arrow is onto too. Indeed, each cross section of O U/ J on V can be
extended by zero to U, because the support of O U/ J in V is closed in U. Hence
we have a linear surjective homomorphism

ϕ : O(U) −→ Γ( V , O U/ J ) ≡ O( V )/ J ( V ).

We equip these vector spaces with their natural topologies. As is well known,
O(U) and O( V ) are Fréchet spaces with the topology of uniform convergence
on compact sets. Also, by the closure of modules theorem, we know that J ( V )
is a closed subspace of O( V ), and O( V )/ J ( V ) is also a Fréchet space with the
quotient topology. Summing up, ϕ is a continuous surjective homomorphism

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



238 F. ACQUISTAPACE, F. BROGLIA, J.F. FERNANDO & J.M. RUIZ

of Fréchet spaces, consequently open [15, III.2.1]. In order to make use of this,
we describe explicitly the topologies involved.

Let {Ki}i and {Li}i be families of invariant compact sets in U and V ,
respectively, such that:

• IntCn(L1) �= ∅,
• Li ⊂ Ki for all i,
• Li ⊂ Li+1 and Ki ⊂ Ki+1 for all i, and
•

�
i IntCn(Li) = V and

�
i IntCn(Ki) = U.

Then the topologies of O(U) and O( V ) are defined, respectively, by the
pseudonorms:

�F� =
�

i
1

2i

supKi
|F |

1 + supKi
|F | for F ∈ O(U), and

�G�� =
�

i
1

2i

supLi
|G|

1 + supLi
|G| for G ∈ O( V ).

Moreover, by [15, I.6.3], the quotient topology of O( V )/ J ( V ) is given by the
following third pseudonorm:

�ξ�∗ = inf
G

{�G�� : ξ = G + J ( V )} for ξ ∈ O( V )/ J ( V ).

Next, given the compact set K ⊂ U, we have the following open set in O(U):

W =
�

H ∈ O(U) : sup
K

|H| < 1
�

.

Since ϕ is open, ϕ(W ) is an open neighborhood of 0 in O( V )/ J ( V ), and there
exists ε > 0 such that

W
∗ = {ξ : �ξ�∗ < ε} ⊂ ϕ(W ).

Then, we pick µ >
2
ε , and L = Li with i such that

�
j>i

1
2j <

ε
2 . We will

prove the condition (∗) in the statement for such µ > 0 and L ⊂ V , which by
construction depend only on Φ, V and K.

Let C ∈ O( V ) be a nonzero holomorphic function (for C ≡ 0, just take
A ≡ 0). Since the interior of L in Cn is not empty, a = supL |C| > 0, and we
denote G = 1

aµC ∈ O( V ). Then supL |G| = 1
µ <

ε
2 , and we have:

�G�� =
�

j

1

2j

supLj
|G|

1 + supLj
|G| =

i�

j=1

1

2j

supLj
|G|

1 + supLj
|G| +

�

j>i

1

2j

supLj
|G|

1 + supLj
|G|

< sup
L

|G|
i�

j=1

1

2j
+

�

j>i

1

2j
< sup

L
|G|

i�

j=1

1

2j
+

ε

2
< ε.
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From this, setting ξ = G + J ( V ), we get

�ξ�∗ ≤ �G�� < ε,

and ξ ∈ W
∗ ⊂ ϕ(W ). Consequently, there exists H ∈ W such that ϕ(H) = ξ,

that is, H| V − G ∈ J ( V ), and the holomorphic function F = aµH ∈ O(U)
satisfies the required conditions. For, F | V − C = aµ(H| V − G) ∈ J ( V ), and
since supK |H| < 1:

sup
K

|F | = aµ sup
K

|H| ≤ aµ = µ sup
L

|C|.

Finally, if C is invariant we take A = �(F ), and A satisfies the same condi-
tions. First,

A| V − C = �(F | V )− C = �(F | V − C) = �(ΛΦ| V ) = �(Λ)Φ| V ∈ J ( V )

for some Λ ∈ O( V ). Secondly, as K is invariant:

sup
K

|A| = sup
K

|�(F )| = sup
K

�����
F + F ◦ σ

2

����� ≤ sup
K

|F | + |F ◦ σ|
2

≤ sup
K

|F | ≤ µ sup
L

|C|,

and the proof is complete.

Now we apply this to infinite sums of squares:

Proposition 2.3. — Let U be an invariant open Stein neighborhood of Rn
in

Cn
and let Φ : U → C be an invariant holomorphic function. Let V ⊂ U be

an invariant (non-empty) open set such that {Φ = 0} ∩ V is closed in U. Let

Ck : V → C be invariant holomorphic functions such that
�

k supL |Ck|2 < +∞
for every compact set L ⊂ V . Then there exist invariant holomorphic functions

Ak : U → C, such that
�

k supK |Ak|2 < +∞ for every compact set K ⊂ U
and Φ| V divides all the differences Ak| V − Ck.

Furthermore, if C1 is divisible on V by some holomorphic function H : U →
C, the function A1 can be chosen divisible on U by H.

Proof. — Let {Ki} be a family of invariant compact sets such that
• Ki ⊂ Ki+1 for all i, and
•

�
i IntCn(Ki) = U.

By 2.2, for each i there exists µi > 0 and a compact set Li ⊂ V such that if
C ∈ O( V ) is invariant, there exists an invariant A ∈ O(U) such that A| V −C =
Φ| V B for some B ∈ O( V ) and supKi

|A| ≤ µi supLi
|C|. We may assume that

Li ⊂ Li+1 for all i.
Since

�
k supLi

|Ck|2 < +∞ for all i, there exists a strictly increasing se-
quence (ki) of positive integers such that

�

k≥ki

sup
Li

|Ck|2 ≤
1

2iµ2
i

.
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For each k such that ki ≤ k < ki+1 there exists a holomophic function Ak :
U → C such that supKi

|Ak| ≤ µi supLi
|Ck| and Φ| V divides Ak| V −Ck. Let us

see that for every compact set K ⊂ U the series
�

k supK |Ak|2 < +∞. Since�
i IntCn(Ki) = U, it is enough to check that

�
k supKi

|Ak|2 < +∞ for all i.
But
�

k

sup
Ki

|Ak|2 =
�

1≤k<ki

sup
Ki

|Ak|2 +
�

j≥i

� �

kj≤k<kj+1

sup
Ki

|Ak|2
�

≤
�

1≤k<ki

sup
Ki

|Ak|2 +
�

j≥i

� �

kj≤k<kj+1

sup
Kj

|Ak|2
�

≤
�

1≤k<ki

sup
Ki

|Ak|2 +
�

j≥i

� �

k≥kj

µ
2
j sup

Lj

|Ck|2
�

≤
�

1≤k<ki

sup
Ki

|Ak|2 +
�

j≥i

µ
2
j

1

2jµ2
j

≤
�

1≤k<ki

sup
Ki

|Ak|2 + 1 < +∞.

This concludes the proof of the statement, except for its last assertion. To
see that, notice that the convergence bound does not depend on the choice
of a single term of the series. Then, we write C1 = C

∗
1H| V , where C

∗
1 is

holomorphic on V , and by 2.2 there is a holomorphic function A
∗
1 such that

Φ| V divides A
∗
1| V − C

∗
1 . We conclude by taking A1 = A

∗
1H.

3. Globalization of sums of squares

The purpose of this section is to prove Proposition 1.8. We start with the
following:

Proposition 3.1. — Let f : Rn → R be a global real analytic function, and

Z = {f = 0} �= ∅ its zero set. Suppose that the germ fZ is a sum of q ≤ +∞
squares of analytic function germs. Then f divides a sum

�q
k=1 a

2
k of q squares

of global real analytic functions on Rn
, and the global real analytic function�q

k=1 a
2
k

�
f is strictly positive on Z.

Furthermore, if (the germ at Z) of a global real analytic function h : Rn → R
divides the first addend of the representation of fZ as a sum of squares, then

a1 can be chosen divisible by h.

Proof. — Consider an invariant open Stein neighborhood U1 of Rn in Cn on
which f has an invariant holomorphic extension F . By hypothesis, there are
q invariant holomorphic functions Ck : V 1 → C, defined on an invariant open
neighborhood V 1 ⊂ U1 of Z in Cn, such that F | V 1

=
�

k C
2
k , where the series

converges in the strong sense of 1.3(ii).
Now, V 1∪{F �= 0} ⊂ U1 is an open neighborhood of Rn in Cn, hence Rn has

an invariant open Stein neighborhood U ⊂ V 1∪{F �= 0}; set V = V 1∩ U. One
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checks easily that {F = 0} ∩ V is closed in U, and henceforth we substitute
U and V for U1 and V 1. By 2.3, applied to Φ = F

2, there exist invariant
holomorphic functions Ak : U → C such that

�
k supK |Ak|2 < +∞ for all

compact set K ⊂ U and F
2 divides Ak|V − Ck on V (and if h is given, its

complexification H is defined on U and divides A1).
On V we have:

�

k

A
2
k − F =

�

k

A
2
k −

�

k

C
2
k =

�

k

�
A

2
k − C

2
k

�
,

and this series is convergent on compact sets, as
�

k A
2
k and

�
k C

2
k are so.

By construction, F
2 divides on V each term A

2
k − C

2
k = (Ak + Ck)(Ak − Ck),

hence it divides their sum
�

k A
2
k − F . Thus there is a holomorphic function

Ψ : V → C such that on V we have:
�

k

A
2
k = F + ΨF

2 = uF, where u = 1 + ΨF.

Clearly, u has no zeros in the zero set of F , hence u is a holomorphic unit in a
perhaps smaller V . To conclude, take ak = Ak|Rn .

We are ready for the:
Proof of Proposition 1.8.— Recall that M is embedded as a closed set in
Rn, hence there is an analytic function h : Rn → R with zero set {h = 0} = M .
Consider an open tubular neighborhood Ω of M in Rn, endowed with the
corresponding analytic retraction π : Ω → M . By composition with π, all
functions extend from M to Ω; we denote those extensions with bars.

By hypothesis, on an open neighborhood V of Z = {f = 0} in M we have a
representation as a sum of q squares:

g
2
f =

�

k

b
2
k,

with {g = 0} ⊂ Z; multiplying by g
2, we can assume g ≥ 0.

Step I: Global denominator. Consider the function g
� = h

2 + ḡ. It is analytic
on the neighborhood U = π

−1(V ) of Z in Rn and {g� = 0} = {g = 0} ⊂ Z by
our choice of g. Thus, g

� is an analytic function on U and its zero set is closed
in Rn. Consequently we can consider the locally principal coherent analytic
sheaf of ideals defined by:

J x =

�
g
�
x ORn,x if x ∈ U,

ORn,x if x �∈ Z.

As H
1(Rn

, O∗Rn) = H
1(Rn

, Z2) = 0, this sheaf is globally principal, say gener-
ated by g

��. The zero set of g
�� is that of g

� and contained in Z, and v = g
��
/g
�
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is an analytic unit on U . On V = U ∩M we can write:

g
��2

f = (vg
�)2f =

�

k

(vbk)2 =
�

k

c
2
k.

Thus g
�� is an analytic function on Rn, its zero set is contained in Z, and it is

a denominator for a sum of squares representation of f .

Step II. Global sum of squares. After Step I, we only care for the sum of
squares γ =

�
k c

2
k. By composition with π, this sum of squares extends to�

k c̄
2
k on U (π respects convergence, as one easily sees by complexification),

and we consider

γ
� = h

2 + γ̄ = h
2 +

q�

k=1

c̄
2
k.

This analytic function is defined on U , but as done before for g and g
�, we find

a analytic function γ
�� defined on Rn with the same zero set Z as γ and γ

�, and
such that γ

��
/γ

� is a positive analytic function on U . Now γ
�� is a sum of q + 1

squares of analytic functions on U , which is a neighborhood of its zero set, and
the first square is h

2. Hence by Proposition 3.1, γ
�� divides a sum

�
k a

2
k of

q+1 squares of analytic functions on Rn, and the quotient w is strictly positive
on Z; furthermore we can choose a1 divisible by h.

Step III. Additional square. The function

α =
γ
��2 +

�
k a

2
k

γ��
= γ

�� + w

is a strictly positive analytic function on Rn: both addends on the right hand
side are ≥ 0, the first one does not vanish off Z, and the second one does not
vanish on Z. Thus, letting β stand for the positive square root of 1/α, we have
the following sum of q + 2 squares of analytic functions on Rn:

γ
�� = (βγ

��)2 +
�

k

(βak)2.

As h divides a1, when we restrict this to M , the square (βa1)2 disappears, and
γ
��|M is a sum of q + 1 squares of analytic functions on M .

Step IV. Conclusion. By construction, g
��2

f and γ
��|M have the same zero

set Z, and g
��2

f/γ
��|M is a positive unit on a neighborhood of it. Hence that

quotient is a positive unit on M , hence has an analytic square root u. We
conclude that g

��2
f = u

2
γ
��|M is a sum of q + 1 squares of analytic functions

on M , as γ
��|M is. �
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4. Bad sets

The purpose of this section is to show how to control the bad set of a sum of
squares of meromorphic functions, which is the content of Proposition 1.7. This
control is essential to apply Proposition 1.8. First of all, we can always reduce
to the case when M ⊂ Rn is an open set Ω ⊂ Rn using a tubular neighborhood
Ω of M .

After this remark, it is clear that the following statement implies Proposition
1.7:

Lemma 4.1. — Let f : Ω → R be an analytic function defined on a connected

open set Ω ⊂ Rn
. Let h : Ω → R be a nonzero analytic function such that h

2
f is

a sum of p ≤ +∞ squares of analytic functions. Set d = dim({h = 0, f �= 0}).
Then, there exists an analytic function g : Ω → R such that g

2
f is a sum

of q ≤ 2d+1
p squares of analytic functions on Ω, and {g = 0} ⊂ {f = 0}.

Moreover, on a smaller neighborhood of {f = 0} we can assume q ≤ 2d
p.

Proof. — Consider the global analytic set Y = {h = 0}. We pick a point
yi in each irreducible component Yi of Y that is not contained in {f = 0}.
Clearly, we can suppose f(yi) �= 0 and that the yi’s form a discrete set. By
a small diffeotopy around each yi we can move yi off Y , to obtain a smooth
diffeomorphism ψ : Ω → Ω which maps each yi to y

�
i /∈ Y and is the identity on

a neighborhood of {f = 0}. By the latter condition, f
2 divides the map ψ− Id,

hence ψ = Id +f
2
µ for a smooth map µ : Ω → Rn. Now, let η : Ω → Rn be an

analytic mapping close to µ. Then ϕ = Id+f
2
η is close to ψ, and consequently

ϕ is an analytic diffeomorphism of Ω. Note that ϕ is the identity on {f = 0},
and so f and f ◦ϕ have the same zeros. Also, by looking at Taylor expansions,
one sees that f ◦ ϕ = f + f

2
α for some analytic map α : Ω → R. Thus we can

write f ◦ϕ = vf , where v = 1+fα has no zero: a zero x of v would be a zero of
f ◦ ϕ, hence one of f , and v(x) = 1 + f(x)α(x) = 1! Moreover, as f is positive
semidefinite, so is v, and u = +

√
v is a strictly positive analytic function such

that f ◦ ϕ = u
2
f . By hypothesis, h

2
f =

�
j h

2
j , which gives:

u
2(h ◦ ϕ)2f = (h ◦ ϕ)2(f ◦ ϕ) =

�

j

(hj ◦ ϕ)2

(note that if the sum is infinite, it converges in the sense of 1.3(ii)). Hence,

(h2 + u
2(h ◦ ϕ)2)f =

�

j

(h2
j + (hj ◦ ϕ)2).

Now, we multiply both sides times h
2 + u

2(h ◦ ϕ)2 to get

δ
2
f =

�

j

(h2
j + (hj ◦ ϕ)2)(h2 + u

2(h ◦ ϕ)2),
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with δ = h
2 + u

2(h ◦ ϕ)2. If the sum is infinite, we have another infinite sum.
In case the sum is finite, then we recall that the product of two sums of two
squares is again a sum of two squares, and we get twice the number of squares.
Finally, the bad set now is:

{δ = 0} = {h = 0} ∩ {h ◦ ϕ = 0} = {h = 0} ∩ ϕ
−1(Y ),

so that
{δ = 0} \ {f = 0} ⊂

�

i

Yi ∩ ϕ
−1(Y ).

But no irreducible component Yi is contained in ϕ
−1(Y ), because ϕ(yi) /∈ Y ,

hence dim(Yi ∩ ϕ
−1(Y )) < dim(Yi) ≤ d.

Thus the dimension of the bad set drops off {f = 0}, and after d + 1 repe-
titions we get the first assertion of the statement. If, instead, we stop after d

times, then
dim({g = 0, f �= 0}) ≤ 0.

This means that D = {g = 0, f �= 0} is a discrete closed subset of Ω, and this
latter can be replaced by Ω \ D to get the second assertion.

Consequently, Propositions 1.7 and 1.8 are proved, and together they imply
Theorem 1.5. In the next section we use the latter to reveal the quantitative
content of the 17th Hilbert problem in the non-compact case.

5. The finiteness implications

To start with, we prove the following reformulation of the half of Proposition
1.11 that concerns global meromorphic functions on Rm.

Proposition 5.1. — Suppose that the Pythagoras number of M(Rm) is +∞.

Then there is a global real analytic function f : Rm → R that is a sum of squares

of global real meromorphic functions (and hence is positive semidefinite), but

not a finite sum of such squares.

Proof. — By hypothesis, for each p ≥ 1 there is an analytic function fp : Rm →
R (m > 1) that is a sum of squares of meromorphic functions, but not of p

such squares. We may suppose that the zero set Zp of fp has codimension ≥ 2.
Indeed, set g = fp. At each zero x of g, we have a unique factorization of

analytic germs gx = ζ
2
xηx, ηx without multiple factors. The germ {ηx = 0}

has codimension ≥ 2, since otherwise some irreducible factor ξx of ηx would
change sign at x, and gx too. Now, the ζx’s generate a locally principal coherent
analytic sheaf of ideals, J , which is globally principal (once again we use that
on Rm locally principal sheaves are all globally principal). Let h be a global
generator of J , so that g = h

2
g
�. Each germ g

�
x coincides with ηx up to a unit,
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hence its zero set has codimension ≥ 2 and g
�
x does not change sign. Replacing

g by g
� we may suppose its zero set has codimension ≥ 2 as claimed.

Back to our fp’s, assume for a moment that Zp can be moved into the open
cylinder

Vp = {x = (x�, xm) ∈ Rm : �x� − a
�
p� <

1
4},

where a
�
p = (p, 0, . . . , 0) ∈ Rm−1. Then the Zp’s form a locally finite family,

and Z =
�

p Zp is a closed analytic subset of Rm. Consequently, we can define
the following locally principal sheaf:

J x =

�
fp ORm,x if x ∈ Zp,

ORm,x if x �∈ Z.

Again, we know that J has a global generator f . Thus, on each Vp there is
an analytic unit vp such that f = vpfp. Note also that the zero set of f is Z,
which does not disconnect Rm, because its codimension is ≥ 2. Hence, f has
constant sign on Rm and we may assume f ≥ 0, and vp > 0. In particular,
+
√

vp is analytic on Vp, so that f and fp behave the same concerning sums of
squares. Since, by construction, the connected components Y of Z are those of
the Zp’s, we deduce that each germ fY is a sum of squares, and by Remark 1.6,
so is the germ fZ . Thus, by Theorem 1.5, f is a sum of squares of meromorphic
functions. However, this sum cannot be finite, say of q squares, because fq is
not a sum of q squares.

To complete the proof it only remains to move each Zp by a suitable analytic
diffeomorphism of Rm. This we do now.

Since Zp has codimension ≥ 2, many lines do not meet Zp, and
after a linear change of coordinates, we may assume this is the case
for the xm-axis. Then, picking an analytic function δ(xm) such that
0 < δ(xm) < dist

�
Zp, (0, . . . , 0, xm)

�
, the analytic diffeomorphism of Rm

(x�, xm) �→
Å�

1 + x2
m

δ(xm)
x
�
, xm

ã

moves Zp off {�x��2 < 1 + x
2
m}. Next, we define (x�, xm) �→ (y�, ym) by:

y
� − a

�
p =

x
�

4(1 + y2
m)

, ym = 2�x��2 − xm.

We claim that this analytic diffeomorphism moves the set {�x��2 ≥ 1 + x
2
m}

inside the cylinder �y� − a
�
p� <

1
4 , and we are done.

Indeed, if �x��2 ≥ 1 + x
2
m(≥ 1), then

ym = 2�x��2 − xm ≥ �x��2 + 1 + x
2
m − xm > �x��.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



246 F. ACQUISTAPACE, F. BROGLIA, J.F. FERNANDO & J.M. RUIZ

Consequently:

�y� − a
�
p� =

�x��
4(1 + y2

m)
<

�x��
4(1 + �x��2) <

1

4
.
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