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Abstract. — We study an adaptation to the logarithmic case of the Kobayashi-
Eisenman pseudo-volume form, or rather an adaptation of its variant defined by Claire
Voisin, for which she replaces holomorphic maps by holomorphic K-correspondences.
We define an intrinsic logarithmic pseudo-volume form ΦX,D for every pair (X, D)

consisting of a complex manifold X and a normal crossing Weil divisor D on X,
the positive part of which is reduced. We then prove that ΦX,D is generically non-
degenerate when X is projective and KX +D is ample. This result is analogous to the
classical Kobayashi-Ochiai theorem. We also show the vanishing of ΦX,D for a large
class of log-K-trivial pairs, which is an important step in the direction of the Kobayashi
conjecture about infinitesimal measure hyperbolicity in the logarithmic case.

Résumé (Pseudo-formes volumes intrinsèques pour les paires logarithmiques)
Nous étudions une adaptation au cas logarithmique de la pseudo-forme volume de

Kobayashi-Eisenman, ou plutôt une adaptation de sa variante définie par Claire Voisin,
pour laquelle elle remplace les applications holomorphes par des K-correspondances
holomorphes. Nous définissons une pseudo-forme volume logarithmique intrinsèque
ΦX,D pour toute paire (X, D) constituée d’une variété complexe X et d’un diviseur
de Weil à croisements normaux D sur X, dont la partie positive est réduite. Nous
prouvons que ΦX,D est génériquement non dégénérée quand X est projective et KX +

D est ample. Ce résultat est analogue au théorème de Kobayashi-Ochiai classique.
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544 T. DEDIEU

Nous montrons aussi l’annulation de ΦX,D pour une grande classe de paires log-K-
triviales, ce qui est une étape importante en direction de la conjecture de Kobayashi
sur l’hyperbolicité au sens de la mesure infinitésimale dans le cas logarithmique.

Introduction

In the standard non logarithmic case, Kobayashi and Eisenman have defined
an intrinsic pseudo-volume form ΨX on every complex manifold X ([13]). The
definition involves all holomorphic maps from the unit polydisk Dn ⊂ Cn to
X. ΨX coincides with the Poincaré hyperbolic volume form on X when X

is a quotient (by a group acting freely and properly discontinuously) of the
unit polydisk Dn. In fact, if X is a smooth curve of genus g, then we have
the following dichotomy as a consequence of the Klein-Poincaré uniformization
theorem: if g = 0 or g = 1, then the universal covering of X is P1 or C, and
ΨX vanishes; if g > 2, then the universal covering of X is the unit disk D,
and ΨX is induced by the Poincaré volume form on D. For an n-dimensional
manifold X, one expects the situation to follow the same outline. This is in
part proved by the Kobayashi-Ochiai theorem ([15]), which states that if X is
of general type, then ΨX is non degenerate outside a proper closed algebraic
subset of X. A variety X such that ΨX > 0 almost everywhere is said to be
infinitesimal measure hyperbolic. On the other hand, Kobayashi conjectured
that if X is not of general type, then ΨX vanishes on a Zariski open subset of
X. The Kobayashi conjecture is proved in the 2-dimensional case for algebraic
varieties, using the classification of surfaces (see [9]): Green and Griffiths show
that ΨX = 0 on a dense Zariski open set when X is covered by abelian varieties,
and use the fact that algebraic K3 surfaces are swept out by elliptic curves.

It is indeed an important step towards the Kobayashi conjecture to show
that if X is a Calabi-Yau variety, then ΨX vanishes generically. In [24], Claire
Voisin defines a new intrinsic pseudo-volume form ΦX,an, which is a variant of
ΨX , and for which she is able to show that a very wide range of Calabi-Yau
varieties satisfy the Kobayashi conjecture (in fact, she shows that the pseudo-
volume form ΦX,an vanishes on these varieties). She also proves a theorem
relative to ΦX,an, which is exactly analogous to the Kobayashi-Ochiai theorem.
The definition of ΦX,an is obtained from the definition of ΨX by replacing the
holomorphic maps from Dn to X by K-correspondences. A K-correspondence
between two complex manifolds X and Y of the same dimension is a closed
analytic subset Σ ⊂ X × Y satisfying the following properties:
(i) the projections Σ→ X and Σ→ Y are generically of maximal rank on each
irreducible component of Σ,
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(ii) the first projection Σ→ X is proper,
(iii) for every desingularization τ : Σ̃→ Σ, letting f := pr1 ◦ τ and g := pr2 ◦ τ ,
one has the inequality Rf 6 Rg between the ramification divisors of f and g.

(1) Σ̃

τ

��
f

��

g

��

Σ

pr1~~
pr2 ��

X Y

A K-correspondence Σ has to be seen as the graph of a multivalued map
between X and Y . The last condition (iii) ensures the existence of a generalized
Jacobian map (J

Σ̃
)T : g∗KY → f∗KX . This definition of a K-correspondence,

which was introduced in [24], derives from the notion of K-equivalence, for
which both projections Σ→ X and Σ→ Y are birational.

It is nowadays understood that for certain problems, it is more relevant to
consider logarithmic pairs (X,D) rather than simply considering varieties. In
this situation, one replaces the canonical bundle KX of X by the log-canonical
bundle KX(D). A first very classical example of this is given by the study of
open varieties. If U is a complex manifold, such that there exist a compact
variety X and a normal crossing divisor D ⊂ X, such that U = X \D, then the
study of the pair (X,D) provides a lot of information about U . For example,
the Betti cohomology with complex coefficients of U can be computed as the
hypercohomology of the logarithmic de Rham complex Ω•X(log D), see e.g. [22].
It has also been made clear, that the minimal model program has to be worked
out for pairs, rather than simply for varieties. But the best clue, showing that
it is indeed necessary to define an intrinsic pseudo-volume form for logarithmic
pairs (analogous to ΨX), is perhaps the following.

In [3], Campana shows that to decompose a compact Kähler variety into
components of special and hyperbolic types, one necessarily has to consider
fibrations with orbifold bases. By definition, a complex manifold X is of special
type if there does not exist any non trivial meromorphic fibration X 99K Y with
orbifold base of general type. Fano and K-trivial manifolds are special, but for
every n > 0 and κ ∈ {−∞, 0, 1, . . . , n−1}, there exist n-dimensional manifolds
X with κ(X) = κ that are special. If Y is a complex manifold, an orbifold
structure on Y is the data of a Q-divisor ∆ =

∑
j ajDj , where 0 < aj 6 1,

aj ∈ Q, and the Dj are distinct irreducible divisors on Y . The canonical
bundle of the orbifold (Y/∆) is the Q-divisor KY + ∆ on Y . If X and Y are
smooth complex varieties, and if f : X → Y is a holomorphic fibration, then
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546 T. DEDIEU

the orbifold base of f is (Y/∆(f)), where

∆(f) :=
∑

D⊂Y

Å
1− 1

m(f,D)

ã
·D,

m(f,D) being the multiplicity of the fiber of f above the generic point of D.
Campana constructs for every variety X (or rather for every orbifold (X/D))
a functorial fibration cX : X → C(X), the core of X, which is characterized
by the fact that the generic fibers are special, and that the orbifold base is
hyperbolic. In addition, he conjectures that the Kobayashi pseudo-metric dX
onX (note that this is not the same as the Kobayashi-Eisenman pseudo-volume
form) is the pull-back via cX of a pseudo-metric δX on the orbifold base of the
core.

In this paper, we seek the definition of a pseudo-volume form ΦX,D on a
logarithmic pair (X,D). Let X be a complex manifold of dimension n, and D
be a normal crossing Weil divisor on X, the positive part of which is reduced
(we say that D is a normal crossing divisor if its support has normal crossings).
Note that we do not require that D has a non zero positive part.

Theorem 1. — (i) There exists a logarithmic pseudo-volume form ΦX,D on
the pair (X,D), i.e. a pseudo-metric on the line bundle

∧n TX(−D), satisfying
the following functoriality property. Let Y be a complex manifold, and ν : Y →
X be a proper morphism with ramification divisor R, such that ν∗D − R is a
normal crossing divisor, the positive part of which is reduced. Then we have

(2) ν∗ΦX,D = ΦY,ν∗D−R

(when ν is not proper, we only get the inequality ν∗ΦX,D 6 ΦY,ν∗D−R).
(ii) Let D and D′ be two normal crossing Weil divisors on X, the respective
positive part of which are reduced. If D 6 D′, then ΦX,D 6 ΦX,D′ .
(iii) If D = 0, then ΦX,0 = ΦX,an.

This is obtained by following the definition of ΦX,an in [24]. One replaces
the holomorphic maps between Dn and X in the definition of ΨX by log-K-
correspondences between (Dn,∆k) and (X,D), where ∆k is the divisor given
in Dn by the equation zn−k+1 · · · zn = 0. They are closed analytic subsets
Σ ⊂ Dn ×X, satisfying the following three properties : (i) the projections to
X and Y are generically of maximal rank on each irreducible component of Σ,
(ii) the first projection Σ→ Dn is proper, and (iii) with the same notations as
in (1) above (τ : Σ̃→ Σ is a desingularization, f = pr1 ◦ τ , and g = pr2 ◦ τ)

(3) Rf − f∗∆k 6 Rg − g∗D.

The ramification divisor Rf (resp. Rg) is the zero divisor of the section of
K

Σ̃
⊗(f∗KDn)−1 (resp. K

Σ̃
⊗(g∗KX)−1) given by the Jacobian map of f (resp.
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g). Condition (iii) ensures the existence of a generalized Jacobian morphism
(J

Σ̃
)T : g∗KX(D)→ f∗KDn(∆k).
In [24], Claire Voisin uses local K-isocorrespondences to transport the

Poincaré volume form of Dn to small open sets on X. Here we use local
log-K-isocorrespondences to transport the logarithmic Poincaré volume form
of (Dn,∆k). This is done in Section 2. Log-K-correspondences are defined
and studied in Section 1.

Section 3 is devoted to the proof of the following result, which generalizes
the Kobayashi-Ochiai theorem to our case.

Theorem 2. — Let (X,D) be a pair consisting of a projective n-dimensional
complex manifold X and a normal crossing Weil divisor D on X, the effec-
tive part of which is reduced and has global normal crossings. If KX + D is
ample, then ΦX,D > 0 (instead of ΨX , and indeed another motivation for our
construction) away from a proper closed algebraic subset of X.

As in [24], this is proved by a standard curvature argument, namely an
adaptation to our case of the Ahlfors-Schwarz lemma, which is more or less
an incarnation of the maximum principle (see e.g. [6] or [23]). We also use
a result of Carlson and Griffiths, about the existence of metrics with negative
Ricci curvature on the complement of hypersurfaces of projective algebraic
manifolds, enjoying some further properties of Kähler-Einstein type (see [4]
and [11]).

Let X and Y be two projective complex manifolds of the same dimension,
and assume that X is of general type. Let ν : Y → X be a dominant morphism.
Using the volume decreasing property ν∗ΨX 6 ΨY , it is well known how to
obtain an upper bound on deg ν from the classical Kobayashi-Ochiai theorem.
However, when X is not of general type, then we cannot say much about the
degree of ν.

One of the major benefits we get by considering ΦX,D instead of ΨX , is
that we get much more precise decreasing volume properties (cf. theorem 1
and Section 2.3). Indeed, by formula (2), where D = 0, the standard volume
decreasing inequality is even replaced by an equality for proper morphisms, the
ramification divisors of which have normal crossings. Taking the ramification
of a morphism ν : Y → X into consideration gives a greater accuracy in the
comparison between the intrinsic (logarithmic) pseudo-volume forms on X and
Y respectively.

Combining this with Theorem 2, we obtain a way to control the degree of
a dominant morphism ν : Y → X even if X is not of general type (X and Y
are again of the same dimension). Assume there exists a normal crossing Weil
divisor D on X, with positive part reduced and with global normal crossings,
and such that KX + D is ample. One decomposes the ramification divisor R
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of ν into R = ν∗D + E, where E is a Weil divisor of Y , which has a non zero
negative part as soon as D has a non zero positive part. Assume that E has
normal crossings, and that its negative part is reduced. Then, by integrating
on Y the decreasing volume inequality

ν∗ΦX,D 6 ΦY,−E ,

which is an equality if ν is proper, one gets the inequality

(4)
Å∫

X

ΦX,D

ã
(deg ν) 6

∫
Y

ΦY,−E .

The pseudo-volume forms ΦX,D and ΦY,−E are allowed to have poles along the
positive part of D, and the negative part of E respectively. They are however
integrable at the neighbourhood of these poles, as in the same way the Poincaré
volume form on the punctured disk D \ {0} is integrable at the neighbourhood
of 0. On the other hand, we have

∫
X

ΦX,D > 0 by theorem 2, so inequality (4)
yields an upper bound on deg ν.

Eventually, we prove our main result in Section 4, that for many log-K-
trivial pairs, the pseudo-volume form ΦX,D vanishes. This, of course, has to
be seen as a step in the direction of the logarithmic version of the Kobayashi
conjecture. This is stated as follows.

Theorem 3. — Let Y be a smooth rationally connected variety, and (X,D) be
a pair such that X ⊂ Y is a smooth hypersurface, D is reduced and has normal
crossings, and D = X ∩X ′, where X ′ ⊂ Y is a reduced hypersurface such that

X +X ′ ∈ | −KY |.

Then the pseudo-volume form ΦX,D vanishes.

Note that by adjunction, the variety X := X ∪ X ′ has trivial canonical
bundle. Using the equality of line bundles KX(D) = (KX)

∣∣
X
, we see that

the hypotheses impose that KX(D) is trivial. As in [24], the key point in the
proof is the production of log-K-autocorrespondences of the pair (X,D), i.e.
correspondences Σ ⊂ X × X satisfying the equality Rf − f∗D = Rg − g∗D,
and with the additional dilating property

f∗ηX = λg∗ηX ,

where |λ| 6= 1, and ηX is a generator of H0(X,KX(D)). This construction
is in some way analogous to the definition of the multiplication by a complex
number on an elliptic curve, realized as a cubic plane curve. Another important
feature in the proof is the use of pull-backs on differential forms induced by
correspondences, following original ideas of Mumford ([18], see also Chapter 22
in [22]). One has to be slightly more careful with them than with pull-backs
on cohomology, which are used in [24].
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1. Log-K-correspondences

1.1. Definition and basic properties. — In this section, we define and study the
notion of log-K-correspondence. This will be used in the next section to de-
fine and study properly our variant of the Kobayashi-Eisenman pseudo-volume
form.

Definition 1.1. — Let (X,D) and (Y,D′) be pairs of the same dimension,
i.e. X and Y are complex manifolds of dimension n, and D and D′ are
(not necessarily effective) Weil divisors of X and Y respectively. A log-K-
correspondence from (X,D) to (Y,D′) is a reduced n-dimensional closed ana-
lytic subset Σ ⊂ X × Y , satisfying the three following properties.
(i) The projections to X and Y are generically of maximal rank on each irre-
ducible component of Σ.
(ii) The first projection Σ→ X is proper.
(iii) Let τ : Σ̃ → Σ be a desingularization, f = pr1 ◦ τ : Σ̃ → X, and
g = pr2 ◦ τ : Σ̃ → Y . The ramification divisors Rf and Rg (of f and g

respectively) satisfy the inequality

Rf − f∗D 6 Rg − g∗D′.

The above notations are summed up in the following commutative diagram.
They will be used very often without further notice in the end of this text.

(5) Σ̃

τ

��
f

��

g

��

Σ

pr1~~
pr2 ��

X Y

Note that if condition (iii) is true for one desingularization of Σ, then it is
true for all desingularizations. Let us now explain the meaning of this last
condition. The two Jacobian maps

∧n df and
∧n dg (or rather their transpose)

give isomorphisms of line bundles on Σ̃

f∗ (KX(D)) ∼= K
Σ̃

(−Rf + f∗D) and g∗ (KY (D′)) ∼= K
Σ̃

(−Rg + g∗D′).
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So condition (iii) ensures the existence of a holomorphic (rather than just mero-
morphic) map

(J
Σ̃

)T : g∗ (KY (D′))→ f∗ (KX(D)) ,

given by the transpose of the holomorphic map

J
Σ̃

:=
∧n dg ◦ (

∧n df)
−1

: f∗ (
∧n TX(−D))→ g∗ (

∧n TY (−D′)) ,
which we call the generalized logarithmic Jacobian map. When D = 0 and
D′ = 0, the notion of log-K-correspondence coincides with the notion of K-
correspondence introduced in [24].

It is also important to note the following inequality of divisors on Σ̃. We write
D = D1−D2, with both D1 and D2 non negative, and similarly D′ = D′1−D′2.
If D1 is reduced, then the negative part of Rf − f∗D is the sum of the reduced
divisor (f∗D1)red and possibly of some f -exceptional components contained in
f∗D1. We write this f -exceptional sum E1. In the same way, if D′1 is reduced,
the negative part of Rg − g∗D′ writes (g∗D′1)red +E′1, where E′1 is a sum of g-
exceptional components contained in g∗D′1. So if both D1 and D′1 are reduced,
then condition (iii) implies the inequality

(f∗D1)red + E1 > (g∗D′1)red + E′1.

In particular, if D′ has a positive part (i.e. if D′1 does not vanish), then D

necessarily has a positive part as well.
We shall now describe some enlightening examples.

Example 1.2. — LetX and Y be complex manifolds of dimension n, andD ⊂
X be an effective divisor. A morphism ϕ : X → Y such that the ramification
divisor Rϕ contains D (with multiplicities) yields a morphism of line bundles

(6) ϕ∗KY → KX(−D).

The graph Γϕ ⊂ X × Y is isomorphic to X. It satisfies properties (i) and (ii)
of definition 1.1, and with the notations of (5), one has Rg −Rf = Rϕ > f∗D.
So Γϕ is a (smooth) log-K-correspondence between (X,−D) and (Y, 0), and
the generalized logarithmic Jacobian map

g∗KY → f∗ (KX(−D))

identifies to (6).

Example 1.3. — Let (X,D) and (X ′, D′) be smooth logarithmic pairs, where
X and X ′ are complex manifolds of the same dimension, and D ⊂ X and
D′ ⊂ X ′ are effective divisors. One also usually assumes D and D′ to be normal
crossing divisors, but this is not necessary for this example. A morphism of
pairs ϕ : (X,D) → (X ′, D′) is a morphism of complex manifolds X → X ′,
such that the ramification divisor Rϕ contains ϕ∗D′ −D. In other words, we
require that there exists an effective divisor R ⊂ X, such that KX + D =
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ϕ∗(KX′ + D′) + R as divisors on X. Such a morphism yields a morphism of
line bundles on X

(7) ϕ∗ (KX′(D
′))→ KX(D).

Again, the graph Γϕ ⊂ X×Y is isomorphic to X, and satisfies both properties
(i) and (ii) of definition 1.1, and we have Rg −Rf = Rϕ > g∗D′ − f∗D. So Γϕ
is a log-K-correspondence between (X,D) and (X ′, D′), and the generalized
logarithmic Jacobian map

g∗ (KX′(D
′))→ f∗ (KX(D))

identifies to (7).

Finally, the following notion of log-K-isocorrespondence will be useful later.

Definition 1.4. — Let (X,D) and (Y,D′) be logarithmic pairs of the same
dimension n, and let Σ ⊂ X×Y be a reduced closed analytic subset, generically
finite over X and Y . We let τ : Σ̃ → Σ be a desingularization, and use the
notations (5). If both projections pr1 and pr2 are proper, and if

Rf − f∗D = Rg − g∗D′,

then Σ is a log-K-isocorrespondence between (X,D) and (Y,D′).

Note that under these hypotheses, Σ is a log-K-correspondence between
(X,D) and (Y,D′), and its transpose ΣT ⊂ Y ×X is a log-K-correspondence
between (Y,D′) and (X,D). The generalized logarithmic Jacobian map then
induces an isomorphism of line bundles on Σ̃

g∗ (KY (D′)) ∼= f∗ (KX(D)) .

Example 1.5. — We consider the unit disk D, with maps f : z ∈ D 7→ zp ∈ D

and g : z ∈ D 7→ zq ∈ D, where p and q are two relatively prime integers. Then
the diagram

D

z 7→ zp

{{

z 7→ zq

##
(D, {0}) (D, {0})

yields a log-K-autocorrespondence of the pair (D, {0}). Indeed, we have the
equality of divisors on D

Rf − f∗{0} = (p− 1){0} − p{0} = −{0} = Rg − g∗{0}.
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1.2. Composition of log-K-correspondences. — We shall now study carefully the
composition of two log-K-correspondences. This will allow us in the next sec-
tion to prove some properties of volume decreasing type for our logarithmic
pseudo-volume form.

We first need to define the weaker notion of 0-correspondence, and to study
the composition of two of them. Let X and Y be two n-dimensional complex
manifolds.

Definition 1.6. — A 0-correspondence between X and Y is a reduced closed
analytic subset Σ ⊂ X × Y , which is generically finite over X and Y , and such
that the first projection Σ→ X is proper.

In other words, Σ ⊂ X × Y has only to satisfy conditions (i) and (ii) of
definition 1.1 to be a 0-correspondence.

Let Z be a third n-dimensional complex manifold. We denote by plq the
projection of Z ×X × Y to the l-th and q-th factors.

Proposition-Definition 1.7. — Let Σ ⊂ X × Y and Σ′ ⊂ Z × X be two
0-correspondences. We define Σ ◦ Σ′ ⊂ Z × Y as the union of the components
of p13

(
p−1

12 (Σ′) ∩ p−1
23 (Σ)

)
on which the projections to Z and Y are generically

of maximal rank. Then Σ ◦ Σ′ ⊂ Z × Y is a 0-correspondence.

Before stating the proof of this, let us see on a simple example why it may be
necessary to remove certain irreducible components of p13

(
p−1

12 (Σ′) ∩ p−1
23 (Σ)

)
.

Assume for simplicity that Z, X and Y are surfaces. Suppose we are given
two 0-correspondences Σ ⊂ X × Y and Σ′ ⊂ Z ×X, and that there exist two
irreducible curves CZ ⊂ Z and CY ⊂ Y , and a point x0 ∈ X, such that Σ′

contains CZ × {x0} and Σ contains {x0} × CY . In other words, Σ′ contains a
contraction of the curve CZ to the point x0, and Σ contains a blow-up of the
point x0 onto the curve CY . Then CZ × CY is an irreducible component of
p13

(
p−1

12 (Σ′) ∩ p−1
23 (Σ)

)
of dimension 2. It is obvious that this component does

not satisfy condition (i) of definition 1.1. Note that it would correspond to a
blow-up of every point of CX onto the curve CZ .

Proof. — We have a natural identification between p−1
12 (Σ′)∩p−1

23 (Σ) and Σ′×X
Σ. The first projection Σ′ ×X Σ→ Σ′ is proper by the stability of properness
under base change (Σ→ X is proper by the definition of a 0-correspondence).
Since the projection Σ′ → Z is proper as well, the composition Σ′ ×X Σ →
Σ′ → Z is proper. A fortiori Σ◦Σ′ satisfies condition (ii) of definition 1.1. Now
condition (i) of definition 1.1 is clearly satisfied, and one sees that a component
of p13

(
p−1

12 (Σ′) ∩ p−1
23 (Σ)

)
which is generically of maximal rank over both Z

and Y is necessarily of dimension n.

We now specify definition 1.7 to the case of log-K-correspondences.
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Proposition 1.8. — Let DZ and DY be Weil divisors of Z and Y respectively,
and DX and D′X be Weil divisors of X. Assume Σ′ is a log-K-correspondence
between (Z,DZ) and (X,D′X), and Σ is a log-K-correspondence between
(X,DX) and (Y,DY ). If D′X > DX , then Σ ◦ Σ′ is a log-K-correspondence
between (Z,DZ) and (Y,DY ).

We have to prove that the two generalized logarithmic Jacobian maps JT
Σ̃

:

g∗ (KY (DY )) → f∗ (KX(DX)) and JT
Σ̃′

: g′∗ (KX(D′X)) → f ′∗ (KZ(DZ)) can

be composed on Σ̃′×X Σ̃, to obtain a generalized logarithmic Jacobian map for
Σ ◦ Σ′. This composition is of course well defined, since we have a morphism
KX(DX) → KX(D′X) of line bundles on X, because of the inequality DX 6
D′X . We just have to show that all this lifts to a desingularization Σ̃′′ → Σ◦Σ′,
and that the map we obtain in this way is actually the generalized logarithmic
Jacobian map of Σ ◦ Σ′. This is a consequence of the following Lemma 1.9.

We need some further notations to state the lemma properly. We let τ ′ :

Σ̃′ → Σ′ and τ : Σ̃ → Σ be desingularizations of Σ′ and Σ respectively. We
call f ′ and g′ (resp. f and g) the maps from Σ̃′ (resp. Σ̃) to Z and X (resp.
X and Y ). Let φ and ψ be the natural projections from Σ̃′ ×X Σ̃ to Σ̃′ and
Σ̃. We call Σ′′ the union of the components of Σ̃′ ×X Σ̃ on which the maps
F := f ′ ◦ φ and G := g ◦ ψ to Z and Y are generically of maximal rank. We
consider a desingularization τ ′′ : Σ̃′′ → Σ′′ ⊂ Σ̃′ ×X Σ̃, and call ‹F and ‹G the
natural maps from Σ̃′′ to Z and Y .

Lemma 1.9. — With the above notations (see also the diagram below), we have

R
G̃
−R

F̃
= (φ ◦ τ ′′)∗(Rg′ −Rf ′) + (ψ ◦ τ ′′)∗(Rg −Rf )

as an equality of divisors on Σ̃′′.

(8)
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Proof. — Consider σ ∈ Σ̃′′ and let z = ‹F (σ), x = g′ ◦φ◦ τ ′′(σ) = f ◦ψ ◦ τ ′′(σ),
and y = ‹G(σ). Let ωz, ωx and ωy be holomorphic n-forms, which generate
respectively KZ near z, KX near x and KY near y. We then have

g′
∗
ωx = χ′ · f ′∗ωz and g∗ωy = χ · f∗ωx,

where χ′ is a meromorphic function defined on the inverse image U ′ ⊂ Σ̃′ of
a neighbourhood of (z, x) ∈ Z × X, with divisor (χ′) = (Rg′ − Rf ′) ∩ U ′,
and χ is similarly a meromorphic function defined on U ⊂ Σ̃ with divisor
(χ) = (Rg−Rf )∩U . Pulling back these equalities on Σ̃′′ via φ◦ τ ′′ and ψ ◦ τ ′′,
one gets

τ ′′
∗
φ∗g′

∗
ωx = χ′◦φ◦τ ′′ ·τ ′′∗φ∗f ′∗ωz and τ ′′

∗
ψ∗g∗ωy = χ◦ψ◦τ ′′ ·τ ′′∗ψ∗f∗ωx.

Now since g′ ◦ φ = f ◦ ψ, we have φ∗g′∗ωx = ψ∗f∗ωx, and therefore

(9) ‹G∗ωy = χ ◦ ψ ◦ τ ′′ · χ′ ◦ φ ◦ τ ′′ · ‹F ∗ωz
on the inverse image U ′′ ⊂ Σ̃′′ of a neighbourhood of (z, y) ∈ Z × Y . Note
that U ′′ contains a neighbourhood of σ ∈ Σ̃′′. The meromorphic function
χ ◦ ψ ◦ τ ′′ · χ′ ◦ φ ◦ τ ′′ has divisor(

τ ′′
∗
φ∗(Rg′ −Rf ′) + τ ′′

∗
ψ∗(Rg −Rf )

)
∩ U ′′.

Proof of Proposition 1.8. — Because of Proposition 1.7, to show that Σ ◦Σ′ is
a log-K-correspondence, it only remains to prove the inequality

R
F̃
− ‹F ∗DZ 6 R

G̃
− ‹G∗DY .

Since Σ′ and Σ are log-K-correspondences, we have

Rg′ −Rf ′ > g′∗D′X − f ′∗DZ and Rg −Rf > g∗DY − f∗DX .

By Lemma 1.9, this yields

R
G̃
−R

F̃
> τ ′′

∗
φ∗(g′∗D′X − f ′∗DZ) + τ ′′

∗
ψ∗(g∗DY − f∗DX).

On the other hand, since D′X > DX , and g′ ◦ φ = f ◦ ψ, we have

φ∗g′∗D′X − ψ∗f∗DX > 0,

and therefore

R
G̃
−R

F̃
> τ ′′

∗
ψ∗g∗DY − τ ′′

∗
φ∗f ′∗DZ = ‹G∗DY − ‹F ∗DZ ,

which is the desired inequality. Eventually, we see from equality (9) that the
morphism JT

Σ̃′′
of line bundles on Σ̃′′ given by the log-K-correspondence Σ ◦Σ′
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is obtained as the composition‹G∗ (KY (DY ))

JT

Σ̃′′ //

(τ ′′◦ψ)∗JT

Σ̃

��

‹F ∗ (KZ(DZ))

(τ ′′ ◦ ψ)∗f∗ (KX(DX))
� � // (τ ′′ ◦ φ)∗g′∗ (KX(D′X))

(τ ′′◦φ)∗JT

Σ̃′

OO

of the generalized logarithmic Jacobian maps given by Σ and Σ′.

2. Intrinsic logarithmic pseudo-volume forms

2.1. The standard Kobayashi-Eisenman pseudo-volume form. — We first recall
the classical definition of the Kobayashi-Eisenman pseudo-volume form and its
fundamental properties.

Let X be an n-dimensional complex manifold. The Kobayashi-Eisenman
pseudo-volume form ΨX is defined by its associated Hermitian pseudo-norm
on
∧n TX

‖ξ‖ΨX,x = inf {λ > 0 s.t. ∃φ : Dn → X with φ(0) = x

and λ · Jφ(∂/∂t1 ∧ · · · ∧ ∂/∂tn) = ξ}

for x ∈ X, ξ ∈
∧n TX,x, where φ denotes a holomorphic map from the unit

polydisk in Cn. Note that if φ is ramified at the origin, then Jφ(∂/∂t1 ∧ · · · ∧
∂/∂tn) = 0, and there does not exist any λ > 0 such that λ · Jφ(∂/∂t1 ∧ · · · ∧
∂/∂tn) = ξ for ξ 6= 0.

ΨX is closely related to the Poincaré hyperbolic volume form on the polydisk
Dn

κn =
in

2n

∧
16j6n

dzj ∧ dzj
(1− |zj |2)

2 .

Indeed, Aut(Dn) acts transitively on the polydisk and leaves the Poincaré vol-
ume form invariant, and since the latter coincides with the standard Euclidean
volume form at 0, we find that

ΨX,x = inf
{

(φ−1
b )∗κn, φ : Dn → X s.t. φ(b) = x and φ unramified at b

}
,

where again φ runs through all holomorphic maps Dn → X (φ−1
b is the local

inverse of φ near b). One also has the following result, which is a consequence
of Ahlfors-Schwarz lemma (see Section 3).

Theorem 2.1 (Kobayashi). — If X is isomorphic to the unit polydisk Dn ⊂
Cn (resp. to the quotient of Dn by a group acting freely and properly discontin-
uously), then the Kobayashi pseudo-volume form ΨX is equal to the Poincaré
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hyperbolic volume form κn (resp. to the hyperbolic volume form on the quotient
induced by κn).

Finally, the following decreasing volume property is a straightforward con-
sequence of the definition. If Y is another smooth manifold of dimension n,
and if φ : X → Y is a holomorphic map, then we have the inequality between
pseudo-volume forms on X

(10) φ∗ΨY 6 ΨX .

There is also a meromorphic version ‹ΨX of ΨX , introduced by Yau in [25].
It is obtained by considering all meromorphic maps φ : Dn 99K X defined near
the origin, instead of considering holomorphic maps as in the definition of ΨX .
It is invariant under birational maps.

2.2. The Poincaré volume form on the punctured disk. — In this paragraph, we
describe the Poincaré volume form on the punctured disk D \ {0}. We will
use it later on as a local model to define intrinsic pseudo-volume forms for
logarithmic pairs.

The punctured disk D \ {0} is the quotient of D under the action of the
subgroup of Aut(D) generated by a parabolic transformation g ∈ Aut(D). In
order to compute the Poincaré volume form of D \ {0}, it is however more
convenient to see it as a quotient of the Poincaré upper half plane H.

Proposition 2.2. — The Poincaré volume form of the punctured disk D\{0}
is

i

2

dz ∧ dz
|z|2 (log |z|2)

2 .

Proof. — The punctured disk D \ {0} is the quotient of H by 〈Z 7→ Z + 1〉.
The projection map is

π : Z ∈ H 7→ z = exp(2πiZ) ∈ D \ {0}.

In particular, we have Z = log(z)/2πi, and

dZ =
1

2πi

dz

z
.

Now, we get the Poincaré volume form on D \ {0} by its expression on H

(11)
i

2

dZ ∧ dZ
|Z − Z|2

=
i

2

dz ∧ dz
|z|2 (log |z|2)

2 .
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Proposition 2.2 is in fact a particular case of a more general fact. Let X be
a punctured Riemann surface, which is universally covered by D. Then every
point x in the puncture corresponds to a subgroup of Aut(D) generated by
a parabolic transformation, and there is a neighbourhood of x in X which is
isomorphic to the quotient of the circle {=(z) > 1} ⊂ H by 〈Z 7→ Z + 1〉 (see
e.g. [8]). Therefore, the Poincaré volume form on X is given by (11) around x.

The Poincaré volume form on D \ {0} yields a logarithmic volume form on
the pair (D, {0}), i.e. a volume form with a pole at z = 0. It is left invariant
by the log-K-autocorrespondences

(12) D

z 7→ zp

{{

z 7→ zq

##
(D, {0}) (D, {0})

described in Example 1.5. Of course, it is also left invariant by the log-K-
autocorrespondences of (D, {0}) given by the rotations z ∈ D 7→ eiα · z ∈ D,
α ∈ R.

Lemma 2.3. — Up to multiplication by a constant, the Poincaré volume form
on D \ {0} is the only logarithmic pseudo-volume form on (D, {0}) that is left
invariant by the rotations centred at 0 and by the log-K-autocorrespondences
(12).

Proof. — Indeed, let
i

2
α(z)

dz ∧ dz
|z|2

be such a logarithmic volume form on the pair (D, {0}). Since it is invariant
under the action of the rotations, α(z) depends only on |z|. On the other hand,
letting z = z′p, we find

dz

z
= p

z′p−1

z′p
dz′ = p

dz′

z′
.

By invariance under the action of the log-K-autocorrespondences (12), we find
that for every r ∈]0, 1[, and for every relatively prime integers p and q, one has

p2α(rp) = q2α(rq).

This implies that there exists λ > 0 such that

i

2
α(z)

dz ∧ dz
|z|2

= λ
i

2

dz ∧ dz
|z|2 (log |z|2)

2 .
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This shows in particular that the Poincaré logarithmic volume form on
(D, {0}) is essentially characterized by its invariance under the action of log-
K-autocorrespondences of (D, {0}). Note that it is locally integrable around
0 ∈ D. We will use its n-dimensional version given below, to define intrinsic
logarithmic pseudo-volume forms on general pairs in the next subsection.

We let Dn be the unit polydisk, with coordinates (z1, . . . , zn), and ∆k be
the divisor given by the equation zn−k+1 · · · zn = 0. Then the pair (Dn,∆k) is
equipped with the Poincaré logarithmic volume form
(13)

κn,k =

Å
i

2

ãnÑ ∧
16j6n−k

dzj ∧ dzj
(1− |zj |2)2

é
∧

Ñ ∧
n−k+16j6n

dzj ∧ dzj
|zj |2(log |zj |2)2

é
.

This is a C∞ logarithmic volume form on Dn \∆k, and it is singular along ∆k.

2.3. Log-K-correspondences and intrinsic logarithmic pseudo-volume forms. — In
this paragraph, we define the central object of this paper, the intrinsic pseudo-
volume form ΦX,D of a logarithmic pair (X,D).

We first need to introduce the notion of logarithmic pseudo-volume form.

Definition 2.4. — Let (X,D) be a pair composed of a complex manifold X
of dimension n, and a Weil divisor D of X. A logarithmic pseudo-volume form
on (X,D) is a pseudo-metric on the line bundle

∧n TX(−D).

Let µ be a logarithmic pseudo-volume form on (X,D). In case it is C∞, it
writes locally

µ =
1

|h|2
µ′,

where µ′ is a C∞ pseudo-volume form, and h is a meromorphic function with
divisor D: if D = D1 − D2 with D1 and D2 non negative, then h has zeroes
exactly along D1, and poles exactly along D2. It will often be useful to allow
µ′ to have singularities along the positive part D1 of D (cf. definition 3.3).
This is already clear from the expression of the logarithmic Poincaré volume
form on (D, {0}), given in Proposition 2.2 above, and more generally from the
expression of κn,k in (13) above.

Now ΦX,D is defined as follows (we use the notations introduced in the
diagram (5)).

Definition 2.5. — Let (X,D) be a pair composed of an n-dimensional com-
plex manifold X and a normal crossing Weil divisor D of X, such that the
positive part of D is reduced. For every x ∈ X, we let

ΦX,D,x = inf06k6n(inf{(f∗κn,k)σ, where σ ∈ Σ̃,Σ log-K-correspondence
between (Dn,∆k) and (X,D), unramified at σ, with g(σ) = x}).

tome 138 – 2010 – no 4



INTRINSIC PSEUDO-VOLUME FORMS FOR LOGARITHMIC PAIRS 559

A log-K-correspondence Σ between (Dn,∆k) and (X,D) is said to be un-
ramified at σ if the inequality of divisors

Rf − f∗∆k 6 Rg − g∗D

is an equality locally around σ. In this case, the transpose of the generalized
logarithmic Jacobian yields a morphism of line bundles on Σ̃

g∗ (KX(D))→ KDn(∆k),

which is an isomorphism locally around σ. This authorizes the identification of
f∗κn,k with a Hermitian metric on g∗ (KX(D))

∨ locally around σ, and hence
with a logarithmic pseudo-volume element at x = g(σ).

Under the hypotheses of definition 2.5, there exists an unramified log-K-
correspondence between (Dn,∆k) and (X,D) around every point x ∈ X (the
integer k depends on x). To see this, we write D = D1 − D2, with D1 and
D2 non negative, and we choose a local holomorphic system of coordinates
(z1, . . . , zn) centred at x, and defined on an open set U ⊂ X, such that D2

is given in U by zl11 · · · zlrr = 0, and D1 is given in U by zn−k+1 · · · zn = 0

(r + k 6 n). Then D2 is the ramification divisor of the morphism U → V

defined by (z1, . . . , zn) 7→ (zl1+1
1 , . . . , zlr+1

r , zr+1, . . . , zn), where V is an open
subset of Cn. In particular, the graph Γ of this morphism is an unramified
log-K-correspondence between (X,D1 − D2) and (V,D′1). Since D′1 is given
in V by the equation zn−k+1 · · · zn = 0, there exists an unramified log-K-
correspondence between (Dn,∆k) and (V,D′1). Then ΓT ◦ Σ is an unramified
log-K-correspondence between (Dn,∆k) and (X,D) as we wanted. Note that
k is the number of branches at the point x of the positive part D1 of D.

Proposition 2.6. — When D = 0, one has ΦX,0 = ΦX,an. More generally,
when D is effective, we have

ΦX,D|X\D = ΦX\D,an.

Proof. — The reason for this is simply that the logarithmic volume form κn,k
on (Dn,∆k) comes from the Poincaré volume form κn,0 on (Dn, 0), due to the
fact that Dn \ ∆k is a quotient of Dn by a group acting freely and properly
discontinuously (see Paragraph 2.2). Let πk : Dn → Dn be the projection
corresponding to this quotient. One has by definition π∗kκn,k = κn,0.

Let x be a point in X \ D, and Σ be a log-K-correspondence between
(Dn,∆k) and (X,D), with a point σ ∈ Σ̃ above x, where Σ is unramified.
It yields by base change πk : Dn → Dn a log-K-correspondence Σ′ between

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



560 T. DEDIEU

(Dn, 0) and (X \ D, 0). By the same base change, we get a desingularization
Σ̃′ of Σ′.

Σ̃′

f ′

}} π′ ��
g′

��

Dn

πk
!!

Σ̃

f~~
g
��

Dn X

At every point σ′ ∈ Σ̃′ above σ, we have (f ′∗κn,0)σ′ = (f ′∗π∗kκn,k)σ′ =

π′∗(f∗κn,k)σ. In particular, (f ′∗κn,0)σ′ and (f∗κn,k)σ yield the same logarith-
mic volume element at x. At x, it is therefore sufficient to take the infimum
of all f ′∗κn,0 in the expression of ΦX,D in definition 2.5 (i.e. we only consider
k = 0), with Σ′ log-K-correspondence between (Dn, 0) and (X \ D, 0). By
definition, this gives ΦX\D,an at the point x.

When D = −D2 is a negative divisor, a similar agument shows that ΦX,−D2

can be computed only by looking at log-K-correspondences between (Dn, 0)

and (X,−D2). In other words, at a point x ∈ X, ΦX,−D2
is the infimum of all

(f∗κn,0)σ where σ ∈ Σ̃, and Σ is a log-K-correspondence between (Dn, 0) and
(X,−D2) as in definition 2.5.

One has the following obvious comparison results.

Proposition 2.7. — Let X be a complex manifold. Let D and D′ be normal
crossing Weil divisors of X, such that their respective positive parts are reduced.
If D 6 D′, then one has

ΦX,D 6 ΦX,D′ .

When D = 0, one has
ΦX,0 = ΦX,an 6 ΨX .

The inequality ΦX,an 6 ΨX is already contained in [24]. It is a simple
consequence of Example 1.2. The inequality ΦX,D 6 ΦX,D′ when D 6 D′

comes from the fact that a log-K-correspondence between (Dn,∆k) and (X,D′)

is in particular a log-K-correspondence between (Dn,∆k) and (X,D).
In [24], Claire Voisin shows that if X is a quotient of Dn by a group acting

freely and properly discontinuously, then ΦX,an is simply the Poincaré volume
form on X. Then by Proposition 2.6, we have

(14) ΦDn,∆k
= κn,k.

The proof involves curvature arguments, which are generalized in Section 3.
When this is done, we will be able to show equality (14) directly (cf. theorem
3.5).
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Lemma 2.8. — For any pair (X,D) as in definition 2.5, the logarithmic
pseudo-volume form ΦX,D is locally integrable.

Proof. — As we already saw, the Poincaré logarithmic pseudo-volume form
i

2

dz ∧ dz
|z|2(log |z|2)2

on (D, {0}) is integrable at the neighbourhood of 0. As a consequence, the
Poincaré pseudo-volume form κn,k on (Dn,∆k) is locally integrable as well.

Now for any pair (X,D) as in definition 2.5, and for any point x ∈ X, there
exists an integer k, and a log-K-isocorrespondence Σ between (Dn,∆k) and
(X,D), which is unramified at the neighbourhood of a point σ ∈ Σ̃ over x. By
the expression of ΦX,D in definition 2.5, one then has (g∗ΦX,D)σ 6 (f∗κn,k)σ.
In particular, the growth of ΦX,D at x is bounded from above by the growth of
the Poincaré logarithmic volume form on (Dn,∆k), and hence ΦX,D is locally
integrable at x.

An important feature of these intrinsic pseudo-volume forms is their decreas-
ing volume properties. In the standard case, this is inequality (10). For ΦX,D,
we even obtain an equality in the case of a proper morphism. These properties
are obtained by using the study of the composition of log-K-correspondences,
which was carried out in Paragraph 1.2. The main result is the following.

Theorem 2.9. — Let (X,D) and (Y,D′) be two pairs composed of a complex
manifold and a normal crossing Weil divisor, the positive part of which is re-
duced. Assume there exists a log-K-correspondence Σ ⊂ X×Y between (X,D)

and (Y,D′). We consider a desingularization τ : Σ̃→ Σ, and use the notations
of (5). Then we have the inequality of logarithmic pseudo-volume forms on Σ̃

g∗ΦY,D′ 6 f∗ΦX,D.

In the case when D = D′ = 0, this is proved in [24]. As an immediate
consequence of Theorem 2.9, we have the following.

Corollary 2.10. — If Σ is a log-K-isocorrespondence between (X,D) and
(Y,D′), then we have the equality of logarithmic pseudo-volume forms on Σ̃

g∗ΦY,D′ = f∗ΦX,D.

Proof. — Applying Theorem 2.9 to the log-K-correspondence Σ on the one
hand, and to the log-K-correspondence ΣT on the other hand gives both in-
equalities

g∗ΦY,D′ 6 f∗ΦX,D and f∗ΦX,D 6 g∗ΦY,D′ .

One then obviously has the required equality.

Applying the former corollary to Examples 1.2 and 1.3, we get the following.
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Corollary 2.11. — (i) Let π : X → Y be a proper morphism, with ramifica-
tion divisor R with normal crossings. Then we have

ΦX,−R = π∗ΦY,0.

If π is not proper, then we only have ΦX,−R > π∗ΦY,0.
(ii) Let ν : Y → X be a proper morphism, and D be an effective, reduced,
normal crossing divisor on X. We call D′ the proper transform of D with a
reduced scheme structure. Then D′ has normal crossings, and there exist an
effective divisor R ⊂ Y , and an exceptional divisor E ⊂ Y , such that ν ramifies
exactly along (ν∗D−D′)−E +R. If D′ +E −R has normal crossings, and if
E is reduced, then

ν∗ΦX,D = ΦY,D′+E−R.

If ν is not proper, then we only have ν∗ΦX,D 6 ΦY,D′+E−R.

Having the result of Proposition 1.8, it is fairly easy to prove the decreasing
volume property. The argument is the same as in the standard case of ΨX .

Proof of Theorem 2.9. — Let σ ∈ Σ̃, x = f(σ), and y = g(σ). We have to
show that for every ξ ∈ f∗ (

∧n TX(−D))σ ⊂ g∗ (
∧n TY (−D′))σ, one has the

inequality ΦY,D′(g∗ξ) 6 ΦX,D(f∗ξ).

Let Σ′ ⊂ Dn×X be a log-K-correspondence between (Dn,∆k) and (X,D),
and σ′ ∈ Σ̃′ such that g′(σ′) = x, and Σ′ is not ramified at σ′. Then there
exists ξ′ ∈ g′∗ (

∧n TX(−D))σ′ satisfying g
′
∗ξ
′ = f∗ξ. By definition, ΦX,D(f∗ξ)

is the infimum of the κn,k(f ′∗ξ
′), taken on all such Σ′ and ξ′.

Now Σ′′ := Σ ◦ Σ′ ⊂ Dn × Y is a log-K-correspondence between (Dn,∆k)

and (Y,D′). It has a desingularization Σ̃′′ obtained as in the diagram (8). We
use the same notations here. Since g′(σ′) = f(σ) = x, there is a point σ′′ ∈ Σ̃′′

above both σ and σ′, and there exists ξ′′ ∈ (ψ ◦ τ ′′)∗f∗ (
∧n TX(−D))σ′′ =

(φ◦τ ′′)∗g′∗ (
∧n TX(−D))σ′′ , such that (ψ◦τ ′′)∗(ξ′′) = ξ and (φ◦τ ′′)∗(ξ′′) = ξ′.

We thus have ‹G∗ξ′′ = g∗ξ on the one hand, and ‹F∗ξ′′ = f ′∗ξ
′, which implies

that κn,k(‹F∗ξ′′) = κn,k(f ′∗ξ
′) on the other hand.

Eventually, we have shown the inclusion of sets

{κn,k(f ′∗ξ
′), with Σ′ ⊂ Dn ×X, and g′∗ξ

′ = f∗ξ}
⊂ {κn,k(f ′′∗ ξ

′′), with Σ′′ ⊂ Dn × Y, and g′′∗ ξ
′′ = g∗ξ} ,

where Σ′ (resp. Σ′′) runs through all log-K-correspondences between (Dn,∆k)

and (X,D) (resp. (Y,D′)). Letting k take any value between 0 and n, and
taking the infima, we get the desired inequality ΦY,D′(g∗ξ) 6 ΦX,D(f∗ξ).

tome 138 – 2010 – no 4



INTRINSIC PSEUDO-VOLUME FORMS FOR LOGARITHMIC PAIRS 563

3. Curvature arguments

Let X be a complex manifold. In the case of the standard Kobayashi-
Eisenman pseudo-volume form, one has the following result, connecting the
positivity (or rather the negativity) of the curvature of the canonical line bundle
of X, and the infinitesimal measure hyperbolicity of X (i.e. positivity of ΨX ,
see [6], or [23]).

Theorem 3.1 (Kobayashi-Ochiai). — If X is a projective complex manifold
which is of general type, then ΨX is non-degenerate outside a proper closed
algebraic subset of X.

It is proved in [15], [10] and for ‹ΨX in [25]. The main ingredient in the proof
is Ahlfors-Schwarz lemma, which we generalize in this section. The converse to
Theorem 3.1 is conjectured to be true in [13].

Conjecture 3.2 (Kobayashi). — If X is a projective complex manifold which
is not of general type, then ΨX = 0 on a dense Zariski open subset of X.

We study a logarithmic variant of this conjecture in the logarithmic Calabi-
Yau case in section 4. In this section, we first establish a generalized Ahlfors-
Schwarz lemma in Paragraph 3.1. Then in Paragraph 3.2, we use it together
with a result of Carlson and Griffiths to prove a version of the Kobayashi-Ochiai
theorem relative to the logarithmic pseudo-volume forms ΦX,D. Note that for
D = 0, this is done in [24].

3.1. Metrics with negative curvature on Dn. — We first need to recall a few facts
about the logarithmic hyperbolic volume form κn,k on (Dn,∆k) and its curva-
ture. It is obtained from the Poincaré metric, which has Kähler form

ωn,k =
i

2

Ñ ∑
16j6n−k

dzj ∧ dzj
(1− |zj |2)

2 +
∑

n−k+16j6n

dzj ∧ dzj
|zj |2(log |zj |2)2

é
(κn,k = ωnn,k/n!, cf. (13)). It has Ricci form

−i∂∂ log

Ñ ∏
16j6n−k

1

(1− zjzj)2

∏
n−k+16j6n

1

zjzj (log(zjzj))
2

é
= 2i

Ñ ∑
16j6n−k

∂
−zj

1− zjzj
dzj +

∑
n−k+16j6n

∂
1

zj log(zjzj)
dzj

é
= −4ωn,k.

This gives the Kähler-Einstein equation

(15) (i∂∂ log κn,k)n = 4nωnn,k = 4nn!κn,k.
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Eventually, we need the following definition to state properly the general-
ization of Ahlfors-Schwarz lemma in the logarithmic case.

Definition 3.3. — Let (X,D) be a pair composed of a complex manifold X,
and a Weil divisor D = D′−D′′, with D′ and D′′ non negative, and D′ reduced
and normal crossing. A logarithmic pseudo-volume form µ on (X,D) is said to
have singularities of Poincaré type if it is C∞ on X \D′, and if it is equivalent
to a non zero multiple of ∏

n−k+16j6n

1

|zj |2 (log |zj |2)
2

at the neighbourhood ofD′, assuming it is given by the equation zn−k+1 · · · zn =

0.

Of course, the logarithmic Poincaré volume form κn,k on (Dn,∆k) has sin-
gularities of Poincaré type.

Proposition 3.4. — Let (X,D) be a pair composed of an n-dimensional com-
plex manifold X and a normal crossing Weil divisor D of X, the positive part of
which is reduced. Let Σ ⊂ Dn×X be a log-K-correspondence between (Dn,∆k)

and (X,D), with desingularization τ : Σ̃ → Σ. Let µ be a logarithmic pseudo-
volume form on (X,D), satisfying the three following properties.
(a) i∂∂ logµ > 0.
(b) µ has singularities of Poincaré type.
(c) (i∂∂ logµ)n > 4nn!µ.
Then one has the inequality of logarithmic pseudo-volume forms on Σ̃

g∗µ 6 f∗κn,k.

Note that if D has a positive part, then µ has poles, and therefore inequality
(c) cannot be true if µ has no singularity, i.e. if it writes locally µ′/|h|2, where h
is a meromorphic function with divisor D, and µ′ is a C∞ pseudo-volume form
on X. In this case, i∂∂ logµ = i∂∂ logµ′ is a C∞ (1, 1)-form. In particular, it
has no pole on X.

Proof of Proposition 3.4. — We begin by restricting Σ to Dn
1−ε := D(0, 1−ε)n

as follows. We let Σε be the inverse image of Σ via the map ((1 − ε)id, id) :

Dn × X → Dn × X. This would correspond in the morphism case to the
transformation of ϕ : Dn → X into ϕ̃ := ϕ|Dn

1−ε
((1− ε)× · ) : Dn → X. Of

course one gets from Σ̃ a desingularization Σ̃ε of Σε in a natural way, with
maps fε and gε to Dn and X.
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Next, one considers the ratio

ψε :=
g∗εµ

f∗ε κn,k
.

It is a non-negative C∞-function on Σ̃ε. To see why, we first write locally
µ = µ′/|h|2, where h is a meromorphic function with divisor D (i.e. it has
zeroes along the positive part D1 of D, and poles along the negative part D2 of
D), and µ′ = χµ′(i/2)n

∧
16j6n dzj ∧dzj is a pseudo-volume form on X, which

is C∞ on X \D1, and singular along D1, so that µ has singularities of Poincaré
type. On the other hand, we let similarly

χn,k =
Ä∏

16j6n−k
(
1− |tj |2

)−2
ä Ä∏

n−k+16j6n

(
log |tj |2

)−2
ä
,

so that κn,k = χn,k(i/2)n
∧

16j6n dtj ∧ dtj/|tn−k+1 · · · tn|2. We let hk(t) =

tn−k+1 · · · tn be a holomorphic equation of ∆k ⊂ Dn. Then ψε writes locally

ψε =
|sg|2g∗εχµ′
|g∗εh|2

· |f∗ε hk|2

|sf |2f∗ε χn,k
,

where sf and sg are local analytic equations of the ramification divisors Rf
and Rg respectively. Now since Σ is a log-K-correspondence between (Dn,∆k)

and (X,D), one has Rg − g∗D > Rf − f∗∆k, and therefore sg · f∗ε hk/sf · g∗εh
is C∞ on X. In addition, since µ has singularities of Poincaré type, the ratio
g∗εχµ′/f

∗
ε χn,k is C∞ on X as well.

Now, 1/χn,k tends to 0 on the boundary of Dn, while ψε · f∗ε χn,k stays
bounded near the boundary of Σ̃ε, since D

n

1−ε is compact and f is proper.
This gives

lim
fε(x)→∂Dn

ψε(x) = 0,

and so by properness of fε, the ratio ψε has a maximum on Σ̃ε. Let x0 ∈ Σ̃ε be
a point where this maximum is reached, and write c := ψε(x0). Then we just
have to show that c 6 1 (we will then get the proposition by letting ε tend to
0).

We now suppose that c > 1, and show as in the standard proof that this
contradicts hypotheses (a), (b) and (c). For α ∈]1, c[, define

Σ̃ε,α =
¶
x ∈ Σ̃ε s.t. ψε(x) > α

©
.

ψε(x) tends to 0 near the boundary of Σ̃ε, so Σ̃ε,α is compact, and with smooth
boundary for α generic. Since i∂∂ logχµ′ = i∂∂ logµ > 0, and i∂∂ logχn,k =

4ωn,k > 0,

θ := g∗ε
(
i∂∂ logχµ′

)n−1
+ g∗ε

(
i∂∂ logχµ′

)n−2
f∗ε
(
i∂∂ logχn,k

)
+ · · ·+ f∗ε

(
i∂∂ logχn,k

)n−1
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is a semi-positive (n − 1, n − 1)-form, positive away from the positive part of
Rf −f∗∆k. Note that it is +∞ along the negative part of Rg−g∗D, i.e. along
the positive part of the reduced divisor (g∗D)red, where µ′ is singular. Now ψε
has Laplacian i∂∂ logψε = i∂∂ log(g∗εχµ′)− i∂∂ log(f∗ε χn,k), and we have(

i∂∂ logψε
)
θ = g∗ε

(
i∂∂ logχµ′

)n − f∗ε (i∂∂ logχn,k
)n

> 4nn! (g∗εµ− f∗ε κn,k) ,

where the inequality is given by condition (c) on µ, and by the Kähler-Einstein
equation (15) for the hyperbolic volume form. Now in Σ̃ε,α we have ψε > 1,
and therefore

g∗εµ− f∗ε κn > 0,

with strict inequality away from the positive part of Rf − f∗∆k (again, this is
+∞ along the positive part of (g∗D)red). Finally the Laplacian i∂∂ logψε is
semi-positive, and positive away from the positive part of Rf − f∗∆k.

When x0 does not belong to the positive part of Rf−f∗∆k, one can conclude
from the maximum principle for pluri-subharmonic functions that ψε cannot
have a maximum at x0, which is a contradiction, and proves c 6 1 as we wanted.
Otherwise, one has to apply the following standard argument. One chooses m
satisfying logα < m < log c, and then defines a function

µ+(x) = max(0, logψε(x)−m).

It is non-negative, positive at x0, and vanishes identically near the boundary
∂Σ̃ε,α. Therefore we have∫

Σ̃ε,α

µ+
(
i∂∂ logψε

)
θ > 0.

Note that the form
(
i∂∂ logψε

)
θ is indeed integrable in Σ̃ε,α, because both µ

and κn,k only have singularities of Poincaré type. The derivatives of µ+ are
integrable, so we can integrate by parts the previous integral. This gives

−
∫

Σ̃ε,α

∂µ+ ∧
(
i∂ logψε

)
θ > 0.

Since µ+ = logψε −m when it is non-zero, the former inequality gives∫
Σ̃ε,α

∂µ+ ∧
(
i∂ logψε

)
θ =

∫
{logψε(x)>m}

i (∂ logψε) ∧
(
∂ logψε

)
θ < 0,

which is a contradiction, since the right-hand side integral is obviously positive.

As a first application of this result, we can show directly that ΦDn,∆k
is

indeed given by the hyperbolic logarithmic Poincaré volume form (see Propo-
sition 2.6 as well).
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Theorem 3.5. — For 0 6 k 6 n, we have the equality of logarithmic volume
forms on (Dn,∆k)

ΦDn,∆k
= κn,k.

Proof. — The diagonal in Dn × Dn is a log-K-correspondence between
(Dn,∆k) and itself. By definition 2.5, we thus have ΦDn,∆k

6 κn,k.

On the other hand, let Σ be a log-K-correspondence between (Dn,∆p) and
(Dn,∆k), with 0 6 p 6 n. Then by Proposition 3.4, and using the standard
notations of (5), we have g∗κn,k 6 f∗κn,p. This implies that κn,k 6 ΦDn,∆k

.

3.2. Mappings onto pairs with positive logarithmic canonical bundle. — Before we
state our generalization of the Kobayashi-Ochiai theorem 3.1, let us first recall
that a variety X is said to be of general type if the canonical bundle KX is
big. A line bundle L on X is said to be big if it has maximal Iitaka-Kodaira
dimension κ(X,L) = dimX. This is equivalent to the fact, that the image of
the rational map associated to the linear system |mL| is of maximal dimension
dimX, for m big enough and divisible enough (see e.g. [20]). Given a Weil
divisor D on X, the condition corresponding to the fact that X is of general
type is in our case the bigness of KX +D. However, we shall need some slightly
stronger hypotheses to prove our result.

Theorem 3.6. — Let (X,D) be a pair composed of a projective n-dimensional
complex manifold X, and a normal crossing Weil divisor D of X, the positive
part of which is reduced and has global normal crossings. If KX +D is ample,
then ΦX,D > 0 away from a proper closed algebraic subset of X.

As an important consequence of this result, we can bound from above the
degree of a morphism of logarithmic pairs, which is onto a pair with positive
logarithmic canonical bundle.

Corollary 3.7. — Let (X,D) be a pair composed of a projective manifold X,
and a normal crossing Weil divisor D, the positive part of which is reduced, and
has global normal crossings. We assume that KX +D is ample. Let (Y,D′) be
another logarithmic pair. We assume that D′ has normal crossings, and that its
positive part is reduced. For every dominant morphism φ : (Y,D′) → (X,D),
we have

deg φ 6

∫
Y

ΦY,D′∫
X

ΦX,D
.
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Proof. — The morphism φ induces a log-K-correspondence between (Y,D′)

and (X,D) (cf. Example 1.3). By decreasing volume property, we thus have

(16) φ∗ΦX,D 6 ΦY,D′ .

Since for 0 6 k 6 n, the volume form κn,k is integrable at the neighbourhood
of ∆k, and since X and Y are compact, definition 2.5 implies that the pseudo-
volume forms ΦX,D and ΦY,D′ are integrable on X and Y respectively. In
particular, (16) yields

(deg φ)
∫
X

ΦX,D 6
∫
Y

ΦY,D′ .

Now, by Theorem 3.6, the integral
∫
X

ΦX,D is positive, so deg φ is bounded
from above.

Along with Ahlfors-Schwarz Lemma 3.4, the main ingredient in the proof of
Theorem 3.6 above is the following result.

Lemma 3.8 (Carlson-Griffiths, [4]). — Let (X,D) be a pair as in Theorem 3.6.
Then there exists a logarithmic volume form with Poincaré singularities µ on
(X,D), such that i∂∂ logµ > 0 and (i∂∂ logµ)n > µ.

For a complete proof of this, we refer to [11], Proposition 2.17. Let us still
explain how this pseudo-volume form is constructed. We choose a Hermitian
metric h0 on KX . Equivalently, h−1

0 is a C∞ volume form µX on X. We
assume for simplicity that D is effective, the general case follows easily. Then
D is assumed to have global normal crossings, so it writes D = D1 + · · ·+Dp,
where the Dj are smooth divisors on X, meeting transversaly. We choose a
Hermitian metric hj for every line bundle OX(Dj), and we let sj be a global
section of this line bundle, with zero divisor Dj . Then for α > 0 sufficiently
small, the pseudo-volume form

µα :=
µX∏p

j=1 hj(sj) (log(αhj(sj)))
2

satisfies the required properties.
Before we continue, we want to underline that this result is used as a first

step in the construction of complete Kähler-Einstein metrics with negative Ricci
curvature on the complement of hypersurfaces of projective algebraic manifolds
(see [12] and [19]).

Proof of Theorem 3.6. — By Lemma 3.8, there exists a logarithmic pseudo-
volume form µ on (X,D), with Poincaré singularities, and such that i∂∂ logµ >

0, and (i∂∂ logµ)n > µ. Up to a rescaling, one can assume that µ satisfies
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hypothesis (c) of Proposition 3.4. Then if 0 6 k 6 n, and for every log-
K-correspondence Σ between (Dn,∆k) and (X,D), we have the inequality of
pseudo-volume forms on a desingularization Σ̃

g∗µ 6 f∗κn,k.

It thus follows from the definition 2.5 of ΦX,D that ΦX,D > g∗µ, which implies
that ΦX,D is positive on a Zariski dense open subset of X, since µ is a true
logarithmic volume form on (X,D).

4. Log-K-autocorrespondences on log-K-trivial pairs

In this section, we prove that for many pairs (X,D), where X is a complex
manifold, and D an effective divisor on X, which is reduced and has normal
crossings, such that the line bundle KX(D) is trivial, the pseudo-volume form
ΦX,D vanishes. This can be interpreted as a special case of the Kobayashi
Conjecture 3.2 in the logarithmic case. Again, the caseD = 0 is handled in [24].
However, one has to be slightly more careful in our case for the proof. This is
due to the fact that we need to pull-back differential forms via correspondences,
instead of cohomology classes.

4.1. Log-K-autocorrespondences and the Kobayashi conjecture. — In view of
Theorem 3.6, which has to be seen as a logarithmic version of the Kobayashi-
Ochiai theorem for ΦX,D, the Kobayashi conjecture generalizes as follows in
the logarithmic case.

Conjecture 4.1. — Let (X,D) be a pair composed of a projective manifold
X and a normal crossing Weil divisor D ⊂ X, the positive part of which is
reduced. If (X,D) is not of log-general type ( i.e. if KX + D is not big), then
ΦX,D vanishes on a dense Zariski open subset of X.

This section is devoted to the proof of the following result, which goes in
the direction of this conjecture.

Theorem 4.2. — Let (X,D) be a pair consisting of a smooth projective va-
riety X, and an effective divisor D ⊂ X, which is reduced and has normal
crossings, such that KX(D) is trivial. Assume that there exists a smooth, ra-
tionally connected variety Y , such that X can be realized as a hypersurface
X ⊂ Y , D = X ∩ X ′, where X ′ ⊂ Y is a reduced hypersurface such that
X +X ′ ∈ | −KY |. Then ΦX,D = 0.
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Note that this shows the log-Kobayashi conjecture for a very wide class of
log-K-trivial pairs.

The next proposition shows why this theorem is an easy consequence
of the existence on such pairs of log-K-autocorrespondences (i.e. log-K-
isocorrespondences between a pair (X,D) and itself, see definition 1.4)
satisfying a certain dilation property.

Proposition 4.3. — Let (X,D) be a pair composed of a smooth projective
variety X, and an effective divisor D ⊂ X, which is reduced and has normal
crossings, such that KX(D) is trivial. Let ηX be a generator of H0(X,KX(D)).
If there exists a log-K-autocorrespondence Σ of the pair (X,D), such that for a
desingularization τ : Σ̃ → Σ, and with the notations (5) of definition 1.1, one
has

f∗ηX = λg∗ηX ,

where λ is a complex number with |λ| 6= 1, then ΦX,D = 0.

Proof. — Let ΩX,D be defined as

ΩX,D = (−1)
n(n−1)

2 inηX ∧ ηX .
The dilation property satisfied by Σ shows that

f∗ΩX,D = |λ|2g∗ΩX,D,
while Corollary 2.10 gives the equality of pseudo-volume forms

(17) f∗ΦX,D = g∗ΦX,D.

Now there exists a bounded, upper semi-continuous function χ on X, such that
ΦX,D = χΩX,D. χ has a maximum on X. Let x be a point on X where χ(x)

is this maximum. Then take σ ∈ Σ̃ such that f(σ) = x, and let y = g(σ).
Equality (17) eventually gives χ(y) = |λ|2χ(x). Since of course we can assume
|λ| > 1 by symmetry, this shows that χ(x) = 0, and hence that χ = 0 as we
wanted.

Now the proof of 4.2 amounts to show the following theorem. This is done
in the remainder of this section.

Theorem 4.4. — If (X,D) is a pair satisfying the condition of theorem 4.2,
then there exists a log-K-autocorrespondence of (X,D), such that (with the
notations of proposition 4.3)

(18) mf∗ηX = −m′g∗ηX ,
where m and m′ are distinct positive integers.

In fact, by the following remark, it is enough to prove that there exists a
proper 0-correspondence Σ ⊂ X×X (cf. definition 1.6) satisfying relation (18).
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Remark 4.5. — Let Σ ⊂ X × X be a reduced closed analytic subset, with
both projections proper and generically finite. If mf∗ηX = −m′g∗ηX (with the
notations of proposition 4.3), then Σ is a log-K-autocorrespondence of (X,D).

Indeed, ηX is an everywhere non zero section of KX(D), so the meromorphic
n-form f∗ηX (resp. g∗ηX) on Σ̃ has divisor Rf − f∗D (resp. Rg − g∗D), i.e.
it has zeroes along Rf , and poles along f∗D. Equality (18) thus yields the
equality of divisors

Rf − f∗D = Rg − g∗D
on the desingularization Σ̃, proving that Σ is a log-K-autocorrespondence of
(X,D).

4.2. Geometric construction of self-correspondences on K-trivial pairs. — From
now on, we let Y be a smooth, rationally connected variety of dimension n+ 1,
and X ⊂ Y be a reduced hypersurface in the anticanonical linear class of Y (i.e.
X ∈ |−KY |), with smooth locus sm(X) ⊂ X. By adjunction, X has a canoni-
cal sheaf KX , and it is trivial. We construct in this section a 0-correspondence
Σ ⊂ X × X. In [24], such correspondences were constructed in the case of
smooth X, and proved to be K-autocorrespondences. The process is in some
way analogous to the geometric definition of addition on an elliptic curve in
P2. Of course, we have in mind the case when X = X ∪X ′ is the reunion of
two reduced hypersurfaces, X smooth, and D := X ∩ X ′ is reduced and has
normal crossings, which will give theorem 4.4 for the pair (X,D), where D is
seen as a divisor of X.

Since Y is rationally connected, there exists a rational curve C0 ⊂ Y satis-
fying the two following conditions.
(i) C0 does not meet the singular part of X, and C0 ∩X = mx0 + m′y0 + z0

as a divisor on C0, where x0 and y0 are distinct points of sm(X), m and m′

are (fixed) distinct positive integers, and z0 is a reduced 0-cycle on C0, disjoint
from x0 and y0.
(ii) The deformations of the subscheme C0 ⊂ Y induce arbitrary deforma-
tions of the M -jet of C0 at two points of intersection with X, where M :=

max(m,m′).
This is given by the fact that C0 can be chosen with arbitrarily ample normal
bundle, because Y is rationally connected (see [16]).

In addition, one chooses a hypersurface W ⊂ X containing the 0-cycle z0.
We denote by |C0| the space parametrizing all deformations of the subscheme
C0 ⊂ Y . Now define Σtot ⊂ sm(X)× sm(X)× |C0| by

(19)
Σtot := {(x, y, C) s.t. C deformation of C0,

C ∩X = mx+m′y + z, supp(z) ⊂W
}
.
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Proposition 4.6. — For a generic choice of W , the Zariski closure of Σtot

in X × X × |C0| has a unique n-dimensional irreducible component through
the point (x0, y0, C0). We call this component Σ′. The Zariski closure of the
projection of Σ′ in X × X is irreducible of dimension n. Let us denote it Σ.
Then Σ ⊂ X ×X is a 0-correspondence.

We call f ′ and g′ the two morphisms Σ′ → X given by the projections of
X×X×|C0| on its first and second factors respectively. Σ is an n-dimensional
component of the closure of (f ′, g′)(Σ′).

Proof. — The proposition essentially follows from the fact that, for a generic
choice of W , Σtot is smooth and of dimension n = dimX at the point
(x0, y0, C0). This gives the existence of a unique component Σ′ at once.
On the other hand, since the deformations of C0 ⊂ Y induce arbitrary
deformations of the M -jet of C0 at x0 and y0, this implies that the image
(f ′, g′)(Σ′) ⊂ X ×X has a component of dimension n.

So let us show that Σtot is smooth and of dimension n near (x0, y0, C0). We
first study the Hilbert scheme of C0 ⊂ Y at the infinitesimal neighbourhood of
C0. Since C0 is a rational curve, and its normal bundle NC0/Y is ample, we
have h1(C0, NC0/Y ) = 0, and the Hilbert scheme of C0 ⊂ Y is smooth, and of
dimension

h0(C0, NC0/Y ) = χ(C0, NC0/Y ).

By the Riemann-Roch formula,

χ(C0, NC0/Y ) = deg(NC0/Y ) + rg(NC0/Y )(1− g)

= −KY · C0 + (2g − 2) + n(1− g) = n− 2−KY · C0

(g = 0 is the geometric genus of C0). Now to compute the dimension of Σtot,
we note that we impose to the deformations C of C0 to meet X properly and
in the smooth locus sm(X) (this is open), and to have intersection C ∩ X =

mx + m′y + z, with supp(z) ⊂ W . This imposes at most (m − 1) + (m′ −
1) + deg z conditions. In fact, for a generic choice of W , these conditions
are infinitesimally independent at the starting point (x0, y0, C0). We deduce
from this that Σtot is smooth at the neighbourhood of (x0, y0, C0), and, since
X ∈ | −KY |, of dimension

(−KY · C0 + n− 2)− (m+m′ − 2 + deg z) = n−KY · C0 −X · C0 = n.

4.3. Realization as log-K-autocorrespondences. — When X = X ∪ X ′ is the
union of two reduced hypersurfaces, and if X is smooth, then a section of KX

gives a meromorphic n-form on the component X by restriction to the smooth
locus of X. In this subsection, we show the following.
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Theorem 4.7. — Let Σ ⊂ X × X be as before (see proposition 4.6). We
consider a desingularization τ : Σ̃→ Σ and use the notations (5) of definition
1.1. Let ηX be a generator of H0(X,KX) (recall that KX is trivial). We have
the equality of meromorphic differential n-forms on Σ̃

(20) mf∗ηX +m′g∗ηX = 0.

Specializing this result to the case X = X ∪ X ′ already mentioned, we
get the following corollary. Of course, it proves theorem 4.4, and because of
Proposition 4.3, we get our main Theorem 4.2 (cf. subsection 4.1).

Corollary 4.8. — If X = X ∪X ′ is the union of two reduced hypersurfaces,
X smooth, and D := X ∩X ′ reduced, then Σ induces a 0-correspondence Σ1 :=

Σ ∩ (X ×X) ⊂ X ×X. If ηX is a generator of H0(X,KX(D)), then we have
the equality of meromorphic differential n-forms

mf∗1 ηX +m′g∗1ηX = 0

on a desingularization Σ̃1 → Σ1, where f1 and g1 are the natural morphisms
Σ1 → X. In particular, Σ1 is a log-K-autocorrespondence of the pair (X,D).

Proof. — In this case, Σ ⊂ X × X splits into four components, contained in
X×X,X×X ′,X ′×X andX ′×X ′ respectively. Of course, the desingularization
τ : Σ̃ → Σ splits as well. The first component gives Σ1 ⊂ X × X, equipped
with a desingularization Σ̃1 → Σ1 induced by τ .

On the other hand, we have by adjunction

(KX)
∣∣
X

= KY (X)
∣∣
X

= KY (X)|X ⊗ OX(X ′) = KX(D).

In particular, since KX is trivial, KX(D) is trivial as well, and if ηX is a
generator of H0(X,KX), then its restriction ηX := ηX

∣∣
X

is a generator of
H0(X,KX(D)). Since X is smooth, ηX is a meromorphic differential n-form,
with polar divisor D. It is now clear from Theorem 4.7 that we have the
equality of meromorphic n-forms

mf∗1 ηX +m′g∗1ηX = 0

on the desingularization Σ̃1 → Σ1. By Remark 4.5, this implies that Σ1 is a
log-K-autocorrespondence of (X,D).

Proof of Theorem 4.7. — We consider a desingularization τ ′ : Σ̃′ → Σ′, with
maps f̃ : Σ̃′ → X and g̃ : Σ̃′ → X. It is enough to show (20) on Σ̃′, that is

(21) mf̃∗ηX = −m′g̃∗ηX .
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The reason for this is that (Σ,pr1,pr2) is the Stein factorization of (Σ′, f ′, g′)

(and also of (Σ̃′, f̃ , g̃)). In fact, since (21) is an equality of meromorphic dif-
ferential forms, it is enough to prove it locally, and on a dense open subset of
Σ̃′.

We construct three 0-correspondences Γx,y, Γz and ΓC between Σ′ and X.
Each of them is defined by its fiber over a generic point σ = (x, y, C) ∈ Σ′. We
describe these generic fibers as subschemes of X.
-The fiber of Γx,y over σ is the 0-cycle mx+m′y.
-The fiber of Γz over σ is the 0-cycle C ·X −mx−m′y. For σ generic, this is
the part of the intersection C ∩X that lies on the hypersurface W ⊂ X.
-The fiber of ΓC over σ is the 0-cycle C ∩X. ΓC can also be defined globally
as C ∩ (Σ′ ×X) ⊂ Σ′ × Y , where C is the universal curve over Σ′.

C �
� //

##

Σ′ × Y

��
Σ′

Now, following an idea of Mumford ([18]), we define the pull-back of ηX
by a 0-correspondence Γ ⊂ Σ′ × X. In fact, since it is enough to prove (21)
locally and on a dense open subset of Σ̃′, we only need to define the pull-back
of the restriction of ηX to a dense open subset of X. We thus define a smooth,
dense open subset Σ◦ ⊂ Σ′ in the following way (since it is smooth, Σ◦ can
also be seen as a dense open subset of Σ̃′). We let pr12 be the projection
X ×X × |C0| → X ×X. Then Σ◦ is the subset of Σ′ ∩ pr−1

12 (sm(X)× sm(X)),
above which the projection ΓC → Σ′ is finite. By restricting Σ◦, one can
assume that it is smooth, and that it is a self-0-correspondence of a smooth,
dense open subset X◦ ⊂ X. We call Γ◦ the restriction of Γ to Σ◦ ×X◦, and ϕ
and ψ the two projections of Γ◦ on Σ◦ and X◦ respectively. The key point here
is the fact that ϕ is proper. Of course, one can also assume Γ◦ to be smooth.

Γ◦

ϕ

��

ψ

��
Σ◦ X◦

We now define the pull-back by Γ◦ of the restriction η◦ := ηX
∣∣
X◦

. Since
X◦ ⊂ sm(X), η◦ is a holomorphic differential n-form on X◦. Its pull-back ψ∗η◦

is then a holomorphic n-form on Γ◦. Eventually, we let

(Γ◦)∗η◦ := ϕ∗ψ
∗η◦,

where ϕ∗ is the trace map relative to ϕ. (Γ◦)∗η◦ is a holomorphic n-form on Σ◦.
It extends to a meromorphic n-form on the smooth variety Σ̃′; we call it Γ∗ηX .
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The definition of the trace map ϕ∗ is classical. It goes as follows. Let ω be a
holomorphic n-form on Γ◦. If U ⊂ Σ◦ is an open subset above which ϕ is not
ramified, then ϕ−1U is the disjoint union of d open subsets U1, . . . , Ud ⊂ Γ◦,
which are all isomorphic to U . On U , ϕ∗ω is defined as the sum

ω|U1
+ · · ·+ ω|Ud .

Then all these local definitions glue together to give a well defined holomorphic
n-form ϕ∗ω on Σ◦, even if ϕ ramifies on Γ◦.

We now have all the definitions we need to end the proof. The equality (21)
is a simple consequence of the following proposition.

Proposition 4.9. — The holomorphic n-form (Γ◦x,y)∗η◦ on Σ◦ vanishes.

To see why this implies (21), we let Γ◦f ′ ⊂ Σ◦×X◦ and Γ◦g′ ⊂ Σ◦×X◦ denote
the restrictions to Σ◦ × X◦ of the graphs of f ′ : Σ′ → X and g′ : Σ′ → X

respectively. By construction, we have the equality of n-cycles in Σ◦ ×X◦

Γ◦x,y = mΓ◦f ′ +m′Γ◦g′ .

This implies that (Γ◦x,y)∗η◦ = mf ′∗η◦ +m′g′∗η◦. So Proposition 4.9 yields the
equality (21) by continuity.

Proof of Proposition 4.9. — By construction, we have Γx,y + Γz = ΓC as n-
cycles in Σ′ ×X, and therefore Γ◦x,y + Γ◦z = Γ◦C in Σ◦ ×X◦. The vanishing of
proposition 4.9 is a consequence of the two vanishings (Γ◦z)

∗η◦ = (Γ◦C)∗η◦ = 0

of holomorphic n-forms on Σ◦.
The first one is given by the fact that Γz is contained in Σ′ ×W ⊂ Σ′ ×X.

Let ν : W̃ →W ◦ ⊂ X◦ be a desingularization of W ◦ := W ∩X◦, and consider
the following 0-correspondence obtained by base change.

(Γ◦z)
′

ϕ̃

��

ψ

��
Σ◦ W̃

ν // X◦

One has (Γ◦z)
∗η◦ = (Γ◦z)

′∗ν∗η◦ = 0, because dimW < n and therefore ν∗η◦ = 0.
As for the second one, it is a consequence of proposition 4.10 below. This

proposition says that we have an equality of meromorphic forms on Σ̃′

(22) Γ∗CηX = C∗l∗ηX .

Here, l∗ : H0(X,KX) → H1(Y,KY ) is a push-forward map induced by the
inclusion l : X ⊂ Y , and C∗ : H1(Y,KY ) → H0(Σ̃′,K

Σ̃′
) is given by the

correspondence between smooth varieties ‹C ⊂ Σ̃′×Y , obtained by base change
from the universal family C ⊂ Σ′ × Y . Now, since Y is rationally connected,
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we have H1(Y,KY ) = 0. We deduce from this that l∗ηX = 0, and therefore
that Γ∗CηX = 0. A fortiori, we have (Γ◦C)∗η◦ = 0 by restriction to Σ◦.

Let us now define precisely the various maps involved in formula (22). Let l
be the inclusion X ⊂ Y . We define a push-forward morphism l∗, as the bound-
ary morphism H0(X,KX)→ H1(Y,KY ) of the long exact sequence associated
to the Poincaré residue exact sequence

0→ KY → KY (X)→ KX → 0.

On the other hand, we consider C ⊂ Σ′ × Y , which is the universal curve
relative to the parametrizing variety Σ′. We call Φ and Ψ the two projections
on Σ′ and Y respectively. By base change, C gives a correspondence in Σ̃′ ×
Y . Desingularizing this new correspondence, we obtain the following diagram,
where ‹C is smooth, as well as Σ̃′ and Y .‹C

Φ̃

��
Ψ̃

��
Σ̃′ Y

This yields a Mumford pull-back C∗ : H1(Y,KY ) → H0(Σ̃′,K
Σ̃′

), defined as
the composition

H1(Y,KY )
Ψ̃∗−−→ H1(‹C ,K

C̃
)

(Φ̃∗)T−−−−→ H0(Σ̃′,K
Σ̃′

),

where the last morphism is obtained by Serre duality as the transpose of the
pull-back map Φ∗ : Hn(Σ̃′, O

Σ̃′
)→ Hn(‹C , O

C̃
).

Proposition 4.10. — We have Γ∗CηX = C∗l∗ηX , as an equality of meromor-
phic forms on Σ̃′.

Again, this is an equality of meromorphic forms, so we can prove it locally
in the dense open subset Σ◦ ⊂ Σ̃′, where it is an equality of holomorphic
differential forms.

Now the situation is the following. C is a family of curves over Σ′. These
curves are embedded in Y . ΓC is cut out on C ⊂ Σ′ × Y by Σ′ ×X, and since
X ⊂ Y is a divisor, ΓC can be seen as a family of divisors on the curves of the
family C . So basically, Proposition 4.10 is just a generalization of the following
result on curves, which is an application of the residue theorem.

Lemma 4.11. — Let C be a smooth curve, and j : Z ⊂ C be an effective
divisor. We have a push-forward morphism j∗ : H0(Z,KZ) → H1(C,KC),
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taken from the long exact sequence associated to the Poincaré residue exact
sequence

0→ KC → KC(Z)→ KZ → 0.

The following diagram is commutative.

H0(Z,KZ)
j∗ //

∫
Z ''

H1(C,KC)∫
C

��
C

Proof. — We first study the case when Z is a single point x ∈ C with multi-
plicity µ. It will then easily extend to the general case, as will be seen from
the proof. We begin by defining a C∞ function

ρ : z ∈ D 7→ exp

Å |z|2

|z|2 − 1

ã
∈ R.

It extends by 0 on the complementary of the unit disk in C to a C∞ function
C→ R. It also satisfies ρ(0) = 1.

We then consider a neighbourhood U ⊂ C of x ∈ C, equipped with a
holomorphic coordinate z centered at x, and such that U ∼= D via z, and
Z ⊂ C is given by the equation zµ = 0. Let ωZ ∈ H0(Z,KZ). It writes

(23)
a−µ+1 + a−µ+2z + · · ·+ a0z

µ−1

zµ−1
∈ C[z]/(zµ) · 1

zµ−1
,

and we have
∫
Z
ωZ = a0. The differential form

ρ(zµ)

2πi
(a−µ+1 + a−µ+2z + · · ·+ a0z

µ−1)
dz

zµ

is sent to ωZ by the residue map. Its ∂-differential

(24)
1

2πi

−µ|zµ−1|2

(|zµ|2 − 1)2
exp

Å |zµ|2

|zµ|2 − 1

ã(a−µ+1

zµ−1
+ · · ·+ a0

)
dz ∧ dz

thus represents j∗ωZ . Note that in (24), the pole zµ−1 is eliminated by the
|zµ−1|2 from the numerator. The differential form j∗ωZ is therefore a C∞

section of Ω1,1
C . It is supported on U ⊂ C. The integral of this form on D is

1

2πi

∫
D

−µ(rµ−1)2

(r2µ − 1)2
exp

Å
r2µ

r2µ − 1

ãÇ
a−µ+1e

−i(µ−1)θ

rµ−1
+ · · ·+ a0

å
(2irdr ∧ dθ)

= a0

∫
06r61

−2rµ

(r2µ − 1)2
exp

Å
r2µ

r2µ − 1

ã
(µrµ−1dr) = a0.

This proves Lemma 4.11.
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The next step of the proof of Proposition 4.10 is to extend Lemma 4.11 to
the family of curves C . In fact, we have seen that it is enough to consider the
smaller family C◦ → Σ◦.

Γ◦C
(idΣ◦ ,l) //

ϕ
$$

C◦

Φ

��
Σ◦

We recall that ϕ and ψ are the natural morphisms from ΓC to Σ′ and X

respectively, that Φ and Ψ are the natural morphisms from C to Σ′ and Y ,
and that l is the inclusion X ⊂ Y . The following lemma is proved by using
Lemma 4.11, and the fact that the push-forward map Φ∗ is given locally above
Σ◦ by the integration along the fibers of Φ.

Lemma 4.12. — The following diagram is commutative.

H0(Γ◦C ,KΓ◦
C

)
(idΣ◦ ,l)∗ //

ϕ∗ ((

H1( C◦,K C◦)

Φ∗

��
H0(Σ◦,KΣ◦)

To be more precise, the vertical arrows of the preceding diagram are given
by ϕ◦∗ and Φ◦∗ respectively, where ϕ◦ := ϕ|Γ◦

C
and Φ◦ := Φ| C◦ .

Proof. — Again, we want to show an equality of holomorphic differential forms
on Σ◦. This can be done locally. We thus choose an open subset V ⊂ Σ◦ over
which the map Γ◦C → Σ◦ is étale (or rather the map (Γ◦C)red → Σ◦ is étale).
Then ϕ−1(V ) is a disjoint union of open subsets Vj ⊂ Γ◦C , such that for every
j one has (Vj)red ∼= V .

One can assume that V is equipped with a holomorphic system of coordinates
v = (v1, . . . , vn), and that there exists a neighbourhood Uj of every Vj ⊂
Φ−1(V ) equipped with a holomorphic system of coordinates (v, tj), such that
Φ is simply given locally by (v, tj) 7→ v, and that Vj is given by the local
equation t

µj
j = 0 (µj is equal to 1, m or m′). The coordinates tj give local

parameters of the curves Cσ (σ ∈ V ) at their points of intersection with X.
Let η ∈ H0(Γ◦C ,KΓ◦

C
). Its restriction to ϕ−1(V ) is a collection of meromor-

phic forms

ηj =
Ä
aj,−µj+1(v) + aj,−µj+2(v)tj + · · ·+ aj,0(v)t

µj−1
j

ä dv1 ∧ · · · ∧ dvn
t
µj−1
j
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on the open subsets Vj , exactly as in (23). The map ϕ∗ is locally defined as
the trace map, so ϕ∗η is given in V by

ϕ∗η =
(∑

j
aj,0(v)

)
dv1 ∧ · · · ∧ dvn.

On the other hand, (id, l)∗η is given in Φ−1(V ) by a ∂-closed, C∞ differential
form of type (n+ 1, 1), which vanishes outside from the neighbourhood

⋃
j Uj

of Γ◦C ⊂ C◦. In the neighbourhood Uj of Vj ⊂ Φ−1(V ), it is given by the
∂-differential of
ρ(t

µj
j )

2πi

Ä
aj,−µj+1(v) + aj,−µj+2(v)tj + · · ·+ aj,0(v)t

µj−1
j

ä dtj
t
µj
j

∧ dv1 ∧ · · · ∧ dvn,

exactly as in the proof of Lemma 4.11. Eventually, Φ∗ is given by the integration
along the fibers of Φ. To compute this, we let ζ be a holomorphic n-vector field
over V (i.e. a holomorphic section of

∧n TΣ◦ over V ), given in coordinates by

(25) h(v)
∂

∂v1
∧ · · · ∧ ∂

∂vn
.

We lift it to a C∞ n-vector field ζ̃ on Φ−1(V ). Using a partition of unity, we can
assume that in every Uj , ζ̃ is simply given by the expression (25). At a point
σ ∈ V of coordinates v, the inner product (Φ∗(id, l)∗η) (ζ)σ is by definition∫

Cσ

((id, l)∗η) (ζ̃),

where Cσ is the fiber of Φ over σ. We let Zσ := (Γ◦C ∩ Cσ), and denote by jσ
the inclusion Zσ ⊂ Cσ. The inner product η(ζ̃)Zσ :=

∑
z∈Supp(Zσ) η(ζ̃)z sits

naturally in H0(Zσ,KZσ ). Now the (1, 1)-form ((id, l)∗η) (ζ̃) restricted to Cσ
is precisely (jσ)∗(η(ζ̃)Zσ ), so by Lemma 4.11, we have

(Φ∗(id, l)∗η) (ζ)σ =

∫
Cσ

(jσ)∗(η(ζ̃)Zσ ) =

∫
Zσ

η(ζ̃)Zσ = (ϕ∗η)(ζ)σ.

This shows the equality of holomorphic differential forms Φ∗(id, l)∗η = ϕ∗η on
V .

To conclude the proof of Proposition 4.10, it only remains to show the fol-
lowing commutativity result.

Lemma 4.13. — The following diagram is commutative.

H0(X,KX)
l∗ //

ψ∗

��

H1(Y,KY )

Ψ∗

��
H0(Γ◦C ,KΓ◦

C
)

(idΣ◦ ,l)∗ // H1( C◦,K C◦)
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In fact, the vertical arrows of this diagram are rather (ψ◦)∗ and (Ψ◦)∗, where
ψ◦ : Γ◦C → X and Ψ◦ : C◦ → Y are the restrictions of ψ and Ψ to Γ◦C and C◦

respectively.

Proof. — It is clear from the definitions that ψ◦ = Ψ◦|Γ◦
C
. On the other hand,

we have Ψ∗X = Γ◦C as an equality of divisors on C◦. This shows that we have
a morphism of short exact sequences as follows.

0 // Ψ∗KY
//

Ψ∗

��

Ψ∗KY (X) //

Ψ∗

��

ψ∗KX
//

ψ∗

��

0

0 // K C◦ // K C◦(Γ
◦
C) // KΓ◦

C
// 0

It yields a morphism between the associated long exact sequences in cohomol-
ogy. In particular, the following diagram is commutative.

· · · // H0(Γ◦C , ψ
∗KX) //

��

H1( C◦,Ψ∗KY )

��

// · · ·

· · · // H0(Γ◦C ,KΓ◦
C

) // H1( C◦,K C◦) // · · ·

Up to the shrinking of Σ◦ ⊂ Σ, we can assume that both ψ◦ and Ψ◦ are smooth,
so we have H0(Γ◦C , ψ

∗KX) ∼= H0(X,KX) and H1( C◦,Ψ∗KY ) ∼= H1(Y,KY ), and
the lemma is proved.

Eventually, Lemmas 4.12 and 4.13 give the commutativity of the left-hand
side square and of the right-hand side triangle in the following diagram.

H0(X,KX)
ψ∗ //

l∗

��

(Γ◦C)∗

((
H0(Γ◦C ,KΓ◦

C
)

ϕ∗ //

(idΣ◦ ,l)∗

��

H0(Σ◦,KΣ◦)

H1(Y,KY )
Ψ∗
//

( C◦)∗

DD

H1( C◦,K C◦)

Φ∗

77

On the other hand, it follows from the definitions of (Γ◦C)∗ and ( C◦)∗ that
the bended arrows commute with the rest of the diagram. We thus have the
equality of holomorphic forms on Σ◦

(Γ◦C)∗η◦ = ( C◦)∗l∗ηX ,
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which yields by continuity the desired equality of meromorphic differential
forms on Σ̃′. This ends the proof of proposition 4.10. Theorem 4.7 is thus
completely proved.
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